WorldWideScience

Sample records for biobased floor strippers

  1. Development of stripper options for FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Marti, F.; Hershcovitch, A.; Momozaki, Y.; Nolen, J.; Reed, C.; Thieberger, P.

    2010-09-12

    The US Department of Energy Facility for Rare Isotope Beams (FRIB) at Michigan State University includes a heavy ion superconducting linac capable of accelerating all ions up to uranium with energies higher than 200 MeV/u and beam power up to 400 kW. To achieve these goals with present ion source performance it is necessary to accelerate simultaneously two charge states of uranium from the ion source in the first section of the linac. At an energy of approximately 16.5 MeV/u it is planned to strip the uranium beam to reduce the voltage needed in the rest of the linac to achieve the final energy. Up to five different charge states are planned to be accelerated simultaneously after the stripper. The design of the stripper is a challenging problem due to the high power deposited (approximately 0.7 kW) in the stripper media by the beam in a small spot. To assure success of the project we have established a research and development program that includes several options: carbon or diamond foils, liquid lithium films, gas strippers and plasma strippers. We present in this paper the status of the different options.

  2. Performance Evaluation of Hap-Free Paint Strippers vs. Methylene-Chloride-Based Strippers for Removing Army Chemical Agent Resistant Coatings (CARC)

    National Research Council Canada - National Science Library

    Kelley, John; Considine, Thomas

    2006-01-01

    ...). The purpose of this effort is to investigate HAP-free alternative chemical paint strippers as potential replacements for the methylene-chloride- based chemical strippers currently used in both processes...

  3. P-type diamond stripper foils for tandem ion accelerators

    International Nuclear Information System (INIS)

    Phelps, A.W.; Koba, R.

    1989-01-01

    The authors are developing a stripper foil composed of a p-type diamond membrane. This diamond stripper foil should have a significantly longer lifetime than any conventional stripper foil material. To be useful for stripper foils, the boron-doped blue diamond films must be thinner than 0.8 μm and pore-free. Two methods are compared for their ability to achieve a high nucleation areal density on a W substrate. Some W substrates were first coated with think layer of boron (≤20 nm) in order to enhance nucleation. Other W substrates were scratched with submicron diamond particles. A schematic diagram of the stripper foil is shown. Stripper foils were created by etching away the central area of W substrates. The diamond membrane was then supported by an annulus of W. Tungsten was selected as a ring-support material because of its high electrical and thermal conductivity, relatively low thermal expansion, and proven suitability as a substrate for diamond CVD. Warping or fracture of the diamond film after substrate etch-back was investigated

  4. Picker versus stripper harvesters on the High Plains of Texas

    Science.gov (United States)

    A break even analysis based on NPV was conducted to compare picker-based and stripper-based harvest systems with and without field cleaners. Under no conditions analyzed was the NPV of a stripper system without a field cleaner greater than a stripper system with a field cleaner. Break even curves re...

  5. Simulation of ion beam scattering in a gas stripper

    Energy Technology Data Exchange (ETDEWEB)

    Maxeiner, Sascha, E-mail: maxeiner@phys.ethz.ch; Suter, Martin; Christl, Marcus; Synal, Hans-Arno

    2015-10-15

    Ion beam scattering in the gas stripper of an accelerator mass spectrometer (AMS) enlarges the beam phase space and broadens its energy distribution. As the size of the injected beam depends on the acceleration voltage through phase space compression, the stripper becomes a limiting factor of the overall system transmission especially for low energy AMS system in the sub MV region. The spatial beam broadening and collisions with the accelerator tube walls are a possible source for machine background and energy loss fluctuations influence the mass resolution and thus isotope separation. To investigate the physical processes responsible for these effects, a computer simulation approach was chosen. Monte Carlo simulation methods are applied to simulate elastic two body scattering processes in screened Coulomb potentials in a (gas) stripper and formulas are derived to correctly determine random collision parameters and free path lengths for arbitrary (and non-homogeneous) gas densities. A simple parametric form for the underlying scattering cross sections is discussed which features important scaling behaviors. An implementation of the simulation was able to correctly model the data gained with the TANDY AMS system at ETH Zurich. The experiment covered transmission measurements of uranium ions in helium and beam profile measurements after the ion beam passed through the He-stripper. Beam profiles measured up to very high stripper densities could be understood in full system simulations including the relevant ion optics. The presented model therefore simulates the fundamental physics of the interaction between an ion beam and a gas stripper reliably. It provides a powerful and flexible tool for optimizing existing AMS stripper geometries and for designing new, state of the art low energy AMS systems.

  6. What You Should Know about Using Paint Strippers

    Science.gov (United States)

    ... is readily absorbed through the skin and may cause health problems. Adverse health effects in the developing fetus have been noted in laboratory animals exposed to some of the chemicals in paint strippers. Therefore, women of child-bearing age who work with or use paint strippers on a regular ...

  7. Development of a rotating graphite carbon disk stripper

    Science.gov (United States)

    Hasebe, Hiroo; Okuno, Hiroki; Tatami, Atsushi; Tachibana, Masamitsu; Murakami, Mutsuaki; Kuboki, Hironori; Imao, Hiroshi; Fukunishi, Nobuhisa; Kase, Masayuki; Kamigaito, Osamu

    2018-05-01

    Highly oriented graphite carbon sheets (GCSs) were successfully used as disk strippers. An irradiation test conducted in 2015 showed that GCS strippers have the longest lifetime and exhibit improved stripping and transmission efficiencies. The problem of disk deformation in previously used Be-disk was solved even with higher beam intensity.

  8. A new gas stripper system for BARC-TIFR Pelletron Accelerator facility: installation and preliminary results

    International Nuclear Information System (INIS)

    Sharma, S.C.; Ninawe, N.G.; Yadav, M.L.; Ekambaram, M.; Ramjilal; Matkar, U.V.; Ansari, Q.N.; Lokare, R.N.; Ramlal; Gupta, A.K.; Bhagwat, P.V.; Pillay, R.G.

    2009-01-01

    The gas-stripper plays a key role in stripping the heavy and molecular ion beams in a tandem accelerator. Efficiency of gas stripper depends on its supporting vacuum pumps. A new recirculating turbo molecular pump-based gas stripper has been installed in the high voltage terminal of Pelletron Accelerator. Re-circulating the stripper gas reduces the flow of gas into the accelerating tubes reducing the transmission losses. Preliminary results obtained using the new gas stripper system are discussed. (author)

  9. Hybrid-type long-lived carbon stripper foils

    International Nuclear Information System (INIS)

    Sugai, Isao; Kato, Hajime

    1989-01-01

    A new method for the preparation of hybrid-type long-lived carbon stripper foils was developed. The new procedure is based on a modification of our controlled dc arc-discharge method. The carbon foils are of the multilayer type and the layers are composed of carbon particles emitted from the electrodes in the ac arc-discharge and from the cathode in the dc arc-discharge. With this simple and powerful method long lived carbon stripper foils can be prepared with higher reliability and reproducibility than with the previous procedure. (orig.)

  10. Consortium for Petroleum & Natural Gas Stripper Wells

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Joel [Pennsylvania State Univ., University Park, PA (United States)

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  11. Liquid-film stripper for high-intensity heavy-ion beams

    International Nuclear Information System (INIS)

    Leemann, B.T.; Merrill, P.; Syversrud, H.K.; Wada, R.; Yourd, R.B.

    1981-03-01

    Electron strippers are widely used in heavy ion accelerators such as tandem Van de Graaff generators and heavy ion linacs. The SuperHILAC at Lawrence Berkeley Laboratory, employs a fluorocarbon oil vapor stripper at 113 keV/A for its high intensity injector ABEL, while after acceleration to 1.199 MeV/A a 35 μg/cm 2 carbon foil stripper is used. At present, the lifetime of these foils is about 1 hour for an 40 Ar beam of approx. 1 μA average particle current. With higher intensity high mass (100 less than or equal to A less than or equal to 238) beams available from ABEL injector the lifetime is expected to drop drastically and might be as low as one minute. A different approach to solve the stripper foil lifetime problem uses a thin free standing oil film spun from the edge of a sharp-edged rotating disc touching the surface of an oil reservoir. Areas of about 10 cm 2 with areal densities down to 20 μg/cm 2 have been reported. The work described here is based on the same concept, and produces a constantly regenerated, stable, free standing oil film of appropriate thickness for use at the SuperHILAC

  12. [Current status of bio-based materials industry in China].

    Science.gov (United States)

    Diao, Xiaoqian; Weng, Yunxuan; Huang, Zhigang; Yang, Nan; Wang, Xiyuan; Zhang, Min; Jin, Yujuan

    2016-06-25

    In recent years, bio-based materials are becoming a new dominant industry leading the scientific and technological innovation, and economic development of the world. We reviewed the new development of bio-based materials industry in China, analyzed the entire market of bio-based materials products comprehensively, and also stated the industry status of bio-based chemicals, such as lactic acid, 1,3-propanediol, and succinic acid; biodegradable bio-based polymers, such as co-polyester of diacid and diol, polylactic acid, carbon dioxide based copolymer, polyhydroxyalknoates, polycaprolactone, and thermoplastic bio-based plastics; non-biodegradable bio-based polymers, such as bio-based polyamide, polytrimethylene terephthalate, bio-based polyurethane, and bio-based fibers.

  13. Low-head air stripper treats oil tanker ballast water

    International Nuclear Information System (INIS)

    Goldman, M.

    1992-01-01

    Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions

  14. Fabrication of versatile cladding light strippers and fiber end-caps with CO2 laser radiation

    Science.gov (United States)

    Steinke, M.; Theeg, T.; Wysmolek, M.; Ottenhues, C.; Pulzer, T.; Neumann, J.; Kracht, D.

    2018-02-01

    We report on novel fabrication schemes of versatile cladding light strippers and end-caps via CO2 laser radiation. We integrated cladding light strippers in SMA-like connectors for reliable and stable fiber-coupling of high-power laser diodes. Moreover, the application of cladding light strippers in typical fiber geometries for high-power fiber lasers was evaluated. In addition, we also developed processes to fuse end-caps to fiber end faces via CO2 laser radiation and inscribe the fibers with cladding light strippers near the end-cap. Corresponding results indicate the great potential of such devices as a monolithic and low-cost alternative to SMA connectors.

  15. [Preface for special issue on bio-based materials (2016)].

    Science.gov (United States)

    Weng, Yunxuan

    2016-06-25

    Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.

  16. BPM Magazine : biobased performance materials

    NARCIS (Netherlands)

    Bolck, C.H.; Bos, H.L.; Gennip, van E.; Zee, van der M.

    2011-01-01

    BPM magazine is een uitgave van het Biobased Performance Materials programma. In dit programma werken kennisinstellingen en bedrijven samen aan nieuwe biobased plastics en aan toepassingsgericht onderzoek om de eigenschappen van bestaande biokunststoffen te verbeteren.

  17. Tests of prototype salt stripper system for IFR fuel cycle

    International Nuclear Information System (INIS)

    Carls, E.L.; Blaskovitz, R.J.; Johnson, T.R.; Ogata, T.

    1993-01-01

    One of the waste treatment steps for the on-site reprocessing of spent fuel from the Integral Fast Reactor fuel cycles is stripping of the electrolyte salt used in the electrorefining process. This involves the chemical reduction of the actinides and rare earth chlorides forming metals which then dissolve in a cadmium pool. To develop the equipment for this step, a prototype salt stripper system has been installed in an engineering scale argon-filled glovebox. Pumping trails were successful in transferring 90 kg of LiCl-KCl salt containing uranium and rare earth metal chlorides at 500 degree C from an electrorefiner to the stripper vessel at a pumping rate of about 5 L/min. The freeze seal solder connectors which were used to join sections of the pump and transfer line performed well. Stripping tests have commenced employing an inverted cup charging device to introduce a Cd-15 wt % Li alloy reductant to the stripper vessel

  18. BPM Magazine : biobased performance materials

    NARCIS (Netherlands)

    Bolck, C.H.; Bos, H.L.; Gennip, van E.; Zee, van der M.

    2011-01-01

    BPM magazine is a publication of the Biobased Performance Materials programme. In this programme, knowledge institutions and businesses are working together on new bio-based plastics and application-focused research to improve the properties of existing bio-plastics.

  19. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently in the final stages of developing and testing our new Microsoft(trademark) Access/Excel based software. We will be processing this well data and identifying potential candidate wells that can be used in Phase 2 to validate these methodologies. Preparation of the final technical report is underway

  20. Effect of thickness of foil strippers in transmission of beams through 15 UD pelletron accelerator at IUAC

    International Nuclear Information System (INIS)

    Ojha, S.; Pankaj Kumar; Gargari, S.; Joshi, R.; Abhilash; Kabiraj, D.; Chopra, S.

    2009-01-01

    15 UD Pelletron accelerator at IUAC, New Delhi is equipped with a foil stripper and a gas stripper at high voltage terminal. Besides these, we have foil stripper assemblies at High Energy Dead Section (HEDS) of Pelletron and after analyser magnet. Incoming negative ion looses electrons when they pass through the strippers at terminal and becomes positively charged. The next foil stripper at HEDS increases the positive charge state of ion by removing more electrons which helps in delivering beams at higher energy. Typical thickness of carbon foils loaded in the foil stripper assembly in the terminal is around 4 microgram per square centimetre (4 μg/cm 2 ). Thicker foils were installed in the terminal assembly to study the effect of thickness of foil on charge state distribution and transmission of ion beams. Charge state distribution of ions produced out of molecular beam was also studied. In this paper we present and discuss the results and observations with thicker foils on ion as well as molecular beams. (author)

  1. Sustainable bio-based materials: opportunities and challenges

    NARCIS (Netherlands)

    van der Meer, Yvonne

    2017-01-01

    Research in the area of bio-based materials aims to achieve breakthroughs in bio-based materials development. A novel way is presented to organise bio-based materials research with a value chain approach in which sustainability research is integrated in the research program. This research approach

  2. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process this well data and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway

  3. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  4. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji

    2013-01-01

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm 2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm 2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm 2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the 197 Au − (∼9MeV, ∼1μA) and 63 Cu − (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp 3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (I D /I G ) measured by the Raman spectroscopy is 0.78

  5. Production of thin carbon stripper foils using heated-substrates in a cathodic arc deposition system

    International Nuclear Information System (INIS)

    Merchant, A.R.; Lobanov, N.; Elliman, R.G.; Ophel, T.R.; Rode, A.; Weisser, D.C.; Turkentine, R.B.

    1998-01-01

    The lifetime of carbon stripper foil can have a marked impact on the successful running of a beam line. Standard techniques for production of carbon stripper foils include evaporation of carbon (ec) and laser-pulsed ablation (Ipa). Recent work by a using Ipa has been successful in substantially increasing the lifetime of a very thin foil. The suspected mechanism for the increased lifetime of the foil is that the amorphous carbon foil is density-matched to that of graphite (around 2.26g/cc). In this work, we attempt to reproduce this result by producing carbon stripper foils with a mass-density similar to graphite using a cathodic arc deposition system. The cathodic arc is well known for the production of tetrahedral amorphous carbon: a high density, high stress form of carbon with over 90% sp 3 -like bonds; to reduce the density of the carbon and promote more graphitic structure, a high bias was initially attempted but this proved unsuccessful. Another method is to use a heated-substrate holder to reduce compressive stress within the deposited film. The performance of the density-matched carbon stripper foils and the implications for future production of high-quality carbon stripper foils in our laboratory will be discussed. (authors)

  6. 48 CFR 52.223-1 - Biobased Product Certification.

    Science.gov (United States)

    2010-10-01

    ....223-1 Biobased Product Certification. As prescribed in 23.406(a), insert the following provision: Biobased Product Certification (DEC 2007) As required by the Farm Security and Rural Investment Act of 2002... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Biobased Product...

  7. Consortium for Petroleum & Natural Gas Stripper Wells PART 2 OF 3

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Joel [Pennsylvania State Univ., University Park, PA (United States)

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  8. Consortium for Petroleum & Natural Gas Stripper Wells PART 3 OF 3

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Joel [Pennsylvania State Univ., University Park, PA (United States)

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  9. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  10. Intense heavy ion beam-induced effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, Katharina

    2016-08-01

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  11. A new method for making long-lived carbon stripper foils

    International Nuclear Information System (INIS)

    Sugai, Isao; Ishii, Sabro; Hattori, Toshiyuki; Muto, Hideshi; Takahashi, Yohsuke; Kato, Hajime; Yamazaki, Kuniaki.

    1989-01-01

    We have developed a new method for preparation of long-lived carbon stripper foils, based on the modification of our 'controlled DC arc-discharge method'. The carbon foils consist of multi-layers, and carbon particles in each layer are emitted from the electrode in AC arc-discharge or from the cathode electrode in DC arc-discharge. The lifetimes of the carbon foils made by the new method are equal to or longer than those prepared by the controlled DC arc-discharge method. The new method is simple and powerful to make long-lived carbon stripper foils with higher reliability and reproducibility than the previous method. (author)

  12. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    International Nuclear Information System (INIS)

    Ray W. Sheldon

    2001-01-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (stripper gas water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program is intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research is to determine appropriate guidelines for field trials by accurately

  13. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  14. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    Science.gov (United States)

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States

  16. Safety Aspects of Bio-Based Nanomaterials.

    Science.gov (United States)

    Catalán, Julia; Norppa, Hannu

    2017-12-01

    Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  17. Safety Aspects of Bio-Based Nanomaterials

    Directory of Open Access Journals (Sweden)

    Julia Catalán

    2017-12-01

    Full Text Available Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi­cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  18. My 2030s. Citizens about the Biobased Economy; My 2030s. Burgers over de Biobased Economy

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, N.; Hulshof, M.; Van der Veen, M.

    2013-02-15

    My 2030s is the first qualitative study of the needs and concerns of citizens about the Biobased Economy, an economy in which fossil fuels are largely substituted by vegetable alternatives. This final report describes the reason and purpose of My 2030s, the course of the public debates and the results of research into ideas of citizens on the Biobased Economy The report concludes with recommendations on how the stakeholders can actively involve citizens in one of the major transitions of the next century [Dutch] My 2030s is het eerste kwalitatieve onderzoek naar de wensen en zorgen van burgers over de Biobased Economy, een economie waarin fossiele grondstoffen grotendeels zijn vervangen door plantaardige alternatieven. Dit eindrapport beschrijft de aanleiding en opzet van My 2030s, het verloop van de publieksdebatten en de resultaten van het onderzoek naar denkbeelden van burgers over de Biobased Economy. Het rapport eindigt met aanbevelingen over hoe de stakeholders burgers actief kunnen betrekken bij een van de belangrijkste transities van de komende eeuw.

  19. Modeling and experiment to threshing unit of stripper combine ...

    African Journals Online (AJOL)

    Modeling and experiment to threshing unit of stripper combine. ... were conducted with the different feed rates and drum rotator speeds for the rice stripped mixtures. ... and damage as well as for threshing unit design and process optimization.

  20. Challenges for bio-based products in sustainable value chains

    NARCIS (Netherlands)

    Cardon, L.; Lin, J.W.; De Groote, M.; Ragaert, K.; Kopecka, J.A.; Koster, R.P.

    2011-01-01

    This work concerns studies related to strategic development of products in which bio-based plastics are or will be applied, referred to as bio-based products. The studies cover (1) current and potential benefits of bio-based products in extended value chains including activities after end-of-life of

  1. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution. Revision 3

    International Nuclear Information System (INIS)

    Gupta, M.K.

    1994-06-01

    The purpose is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs (Ref. 7) and Quiet Time Runs Program (described in Section 3.6). The Filter/Stripper Test Runs and Quiet Time Runs program involves a 12,000 gallon feed tank containing an agitator, a 4,000 gallon flush tank, a variable speed pump, associated piping and controls, and equipment within both the Filter and the Stripper Building

  2. Prospects for a bio-based succinate industry.

    Science.gov (United States)

    McKinlay, James B; Vieille, C; Zeikus, J Gregory

    2007-09-01

    Bio-based succinate is receiving increasing attention as a potential intermediary feedstock for replacing a large petrochemical-based bulk chemical market. The prospective economical and environmental benefits of a bio-based succinate industry have motivated research and development of succinate-producing organisms. Bio-based succinate is still faced with the challenge of becoming cost competitive against petrochemical-based alternatives. High succinate concentrations must be produced at high rates, with little or no by-products to most efficiently use substrates and to simplify purification procedures. Herein are described the current prospects for a bio-based succinate industry, with emphasis on specific bacteria that show the greatest promise for industrial succinate production. The succinate-producing characteristics and the metabolic pathway used by each bacterial species are described, and the advantages and disadvantages of each bacterial system are discussed.

  3. Inter-organizational collaboration in bio-based business

    NARCIS (Netherlands)

    Nuhoff-Isakhanyan, Gohar

    2016-01-01

    Globally, bio-based business is often perceived as sustainable, because its renewable production can potentially lower carbon and greenhouse emissions by substituting fossil-fuel-based production, reduce environmental sourcing problems, and create turnover and jobs. However, bio-based business

  4. Life cycle impact assssment of biobased plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, Ioannis; Faaij, André; Lundquist, Lars; Schenker, Urs; Biois, J.F.; Patel, M.K.

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol

  5. Recent Advances in the Sound Insulation Properties of Bio-based Materials

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhu

    2013-12-01

    Full Text Available Many bio-based materials, which have lower environmental impact than traditional synthetic materials, show good sound absorbing and sound insulation performances. This review highlights progress in sound transmission properties of bio-based materials and provides a comprehensive account of various multiporous bio-based materials and multilayered structures used in sound absorption and insulation products. Furthermore, principal models of sound transmission are discussed in order to aid in an understanding of sound transmission properties of bio-based materials. In addition, the review presents discussions on the composite structure optimization and future research in using co-extruded wood plastic composite for sound insulation control. This review contributes to the body of knowledge on the sound transmission properties of bio-based materials, provides a better understanding of the models of some multiporous bio-based materials and multilayered structures, and contributes to the wider adoption of bio-based materials as sound absorbers.

  6. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    Science.gov (United States)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  7. Design and manufacturing of bio-based sandwich structures

    CSIR Research Space (South Africa)

    John, Maya J

    2017-03-01

    Full Text Available The aim of this chapter is to discuss the design and manufacturing of bio-based sandwich structures. As the economic advantages of weight reduction have become mandatory for many advanced industries, bio-based sandwich panels have emerged...

  8. Life cycle impact assessment of bio-based plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, I.; Faaij, A. P C; Lundquist, L.; Schenker, U.; Briois, J. F.; Patel, M. K.

    2015-01-01

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol

  9. Petrol contaminated groundwater treatment with air-stripper in Balassagyarmat, Hungary

    International Nuclear Information System (INIS)

    Szabo, Peter; Bernath, Balazs

    2005-01-01

    Hydrocarbon contaminated groundwater is a common environmental problem in Hungary. Leakage of underground storage tanks, pipe break or illegal tapping as well as lorry accidents can be mentioned as main reasons. MEGATERRA Ltd. elaborated, adopted and tested several groundwater clean-up methods. These methods are based on detailed survey and investigation, sampling and analysis, delineation of contaminated groundwater, risk assessment, establishment of monitoring wells, pumping tests and remediation action plan. One of these methods was implemented by MEGATERRA Ltd. in Balassagyarmat, Hungary. Contamination source was a 10 m 3 vol. simple wall underground fuel-storage tank, which had been emptied. When the remediation started in April 1998, the petrol had already been accumulated on the ground water table forming a 5-7 m wide and 10-15 m long plume being expanded to SSE-NNW direction. The area of the dissolved hydrocarbon contaminated groundwater-body was 1 000 m 2 and its concentration reached up to 30-40 mg/l TPH. The free-phase hydrocarbon layer was 10 cm thick. For the remediation of contaminated groundwater MEGATERRA Ltd. applied pump and treat method, namely groundwater pumping using extraction well, skimming of free-phase hydrocarbon, stripping of the contaminated ground water in air-stripper tower and draining of the treated groundwater into a drainage ditch. In the centre of the plume we established an extraction well with 300 mm diameter in a 500 mm borehole. Peristaltic skimmer pump was used inside the extraction well to remove the free phase petrol from the ground water surface.Because of the intense volatility of the pollutant we applied aeration (stripping) technology. The extracted contaminated groundwater was cleaned in air-stripper equipment being able to eliminate efficiently the volatile pollutants from the water. The aeration tower is a compact cylindrical shaped column with 650 mm in diameter. Its height depends on the pollutant's type The

  10. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, K.; Tomut, M.; Simon, P.; Hubert, C.; Romanenko, A.; Lommel, B.; Trautmann, C.

    2015-01-01

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  11. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    Science.gov (United States)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  12. Biobased Plastics 2012

    NARCIS (Netherlands)

    Bolck, C.H.; Ravenstijn, J.; Molenveld, K.; Harmsen, P.F.H.

    2011-01-01

    Dit boek geeft inzicht in de huidige op de markt verkrijgbare biobased plastics en de te verwachten ontwikkelingen. Er wordt gekeken naar zowel thermoplastische als thermohardende materialen. Het boek biedt inzicht in de productie, verwerking en eigenschappen van de verschillende types. Daarnaast

  13. Microbial conversion of biomass into bio-based polymers.

    Science.gov (United States)

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enzymatic Synthesis of Biobased Polyesters and Polyamides

    Directory of Open Access Journals (Sweden)

    Yi Jiang

    2016-06-01

    Full Text Available Nowadays, “green” is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be “green”, being associated with massive energy consumption and severe pollution problems (for example, the “Plastic Soup” as a public stereotype. To achieve green polymers, three elements should be entailed: (1 green raw materials, catalysts and solvents; (2 eco-friendly synthesis processes; and (3 sustainable polymers with a low carbon footprint, for example, (biodegradable polymers or polymers which can be recycled or disposed with a gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore, synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides an opportunity for achieving green polymers and a future sustainable polymer industry, which will eventually play an essential role for realizing and maintaining a biobased and sustainable society.

  15. Can bio-based attributes upgrade a brand? How partial and full use of bio-based materials affects the purchase intention of brands

    NARCIS (Netherlands)

    Reinders, Machiel J.; Onwezen, Marleen C.; Meeusen, Marieke J.G.

    2017-01-01

    To reduce human dependency on fossil fuels, increasing attempts are being made to substitute synthetic materials in products with bio-based materials. Global brands attempt to differentiate themselves by adding bio-based materials to their products. However, little is known about consumers'

  16. Composites and blends from biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.S. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  17. Bio-based Industries Joint Undertaking: The catalyst for sustainable bio-based economic growth in Europe.

    Science.gov (United States)

    Mengal, Philippe; Wubbolts, Marcel; Zika, Eleni; Ruiz, Ana; Brigitta, Dieter; Pieniadz, Agata; Black, Sarah

    2018-01-25

    This article discusses the preparation, structure and objectives of the Bio-based Industries Joint Undertaking (BBI JU). BBI JU is a public-private partnership (PPP) between the European Commission (EC) and the Bio-based Industries Consortium (BIC), the industry-led private not-for-profit organisation representing the private sectors across the bio-based industries. The model of the public-private partnership has been successful as a new approach to supporting research and innovation and de-risking investment in Europe. The BBI JU became a reality in 2014 and represents the largest industrial and economic cooperation endeavour financially ever undertaken in Europe in the area of industrial biotechnologies. It is considered to be one of the most forward-looking initiatives under Horizon 2020 and demonstrates the circular economy in action. The BBI JU will be the catalyst for this strategy to mobilise actors across Europe including large industry, small and medium-sized enterprises (SMEs), all types of research organisations, networks and universities. It will support regions and in doing so, the European Union Member States and associated countries in the implementation of their bioeconomy strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Potential food applications of biobased materials. An EU- concerted action project

    DEFF Research Database (Denmark)

    Haugaard, V.K.; Udsen, A.M.; Mortensen, G.

    2001-01-01

    and coatings to food but novel commercial applications of these are scarce. Based on information currently available on the properties of biobased packaging materials the study identified products in the fresh meat, dairy, ready meal, beverage, fruit and vegetable, snack, frozen food and dry food categories......The objective of the study was to ascertain the state of the art with regard to the applicability of biobased packaging materials to foods and to identify potential food applications for biobased materials. The study revealed relatively few examples of biobased materials used as primary, secondary...... or tertiary packaging materials for foods. This is due to the fact that published investigations on the use of biobased materials are still scarce, and results obtained remain unpublished because of commercial pressures. The scientific literature contains numerous reports on applications of edible films...

  19. Bio-based chemicals - green, but also sustainable?

    DEFF Research Database (Denmark)

    Ögmundarson, Ólafur; Herrgard, Markus; Förster, Jochen

    For almost two decades, the chemical industry has put great effort into developing bio-chemicals,among others to fight global warming caused by greenhouse gas emissions, one of the biggest threats that are faced by our society today. To facilitate a growing and versatile bio-based chemical...... production, the US Department of Energy proposed in 2004 a list of 12 building block chemicals which can either be converged through biological or chemical conversions. Moving toward more bio-based chemicals, the chemical industry does not only claim to reduce climate change impacts, but also...... that they are increasing overall sustainability in chemical production. Whether such claims are justifiable is unclear. When sustainability of bio-based polymer production is assessed, various environmental trade-offs occur that need to be considered. It is not enough to claim that a bio-chemical is sustainable...

  20. Resource recovery from bio-based production processes: a future necessity?

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; S.B.A. Udugama, Isuru; Cignitti, Stefano

    2017-01-01

    The promise of transforming waste streams with small economic value into valuable products makes resource recovery technologies in bio-based production processes an attractive proposition. However, the use of resource recovery technologies in industrial applications is still minimal, despite its...... technologies to industrial bio-based production processes. The role and importance of economics, technology readiness and socio-environmental impacts of resource recovery in successfully implementing resource recovery technologies in industrial bio-based production processes is also discussed. Finally, based...... wide use in closely related processes such as dairy production. In this paper, a perspective on the role of resource recovery in bio-based production processes is provided through reviewing the past practice and identifying the benefits, opportunities and challenges of introducing resource recovery...

  1. Radiation lifetimes and failure mechanisms of carbon stripper foils

    International Nuclear Information System (INIS)

    Auble, R.L.

    1981-01-01

    Measurements of lifetimes of thin carbon foils under heavy-ion irradiation are compiled and recent advances in stripper foil technology are reviewed. The impact of recent foil lifetime improvements, many by more than an order of magnitude, on heavy-ion electrostatic accelerators is discussed. Foil inhomogeneities, particularly those caused by sputtering are suggested to be a prime factor in usable foil lifetimes

  2. Types, production and assessment of biobased food packaging materials

    Science.gov (United States)

    Food packaging performs an essential function, but packaging materials can have a negative impact on the environment. This book describes the latest advances in bio-based food packaging materials. Book provides a comprehensive review on bio-based, biodegradable and recycled materials and discusses t...

  3. Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings

    Science.gov (United States)

    2015-04-01

    ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use in Composites and...copyright notation hereon. ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use...4. TITLE AND SUBTITLE Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  4. Simulation studies of gas and plasma-based charge strippers

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Oliver Sebastian [Institut fuer Theorie Elektromagnetischer Felder, Technische Univ. Darmstadt (Germany); Boine-Frankenheim, Oliver [Institut fuer Theorie Elektromagnetischer Felder, Technische Univ. Darmstadt (Germany); GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany)

    2016-07-01

    Charge stripping of heavy ion beams at high intensities is a major challenge in current and future facilities with high intensity heavy ion beams. Conventional stripping techniques are limited in their applicability, e.g. solid carbon foils suffer from short lifetimes at high intensities and gas strippers usually achieve only low charge states. One possible alternative is the use of a plasma as a stripping medium. The presented work focuses on theoretical studies of the interaction of an heavy ion beam with a plasma and accompanying effects in possible charge strippers. The main interest in the presented studies is the final charge state distribution of the ion beam. Different models for solving the corresponding rate equations were developed, taking into account ionization, recombination, energy loss and straggling processes. Sophisticated models, e.g. for ionization cross sections, as well as limits and applicability of simplified models are discussed. Quantitative results are presented in form an overview of the charge state distributions of different - conventional and novel - charge stripping media. Furthermore comparisons are done with charge state distributions of available experimental data. Typical practically relevant target conditions are discussed as well as deterioration of beam quality.

  5. Application of multi-criteria material selection techniques to constituent refinement in biobased composites

    International Nuclear Information System (INIS)

    Miller, Sabbie A.; Lepech, Michael D.; Billington, Sarah L.

    2013-01-01

    Highlights: • Biobased composites have the potential to replace certain engineered materials. • Woven reinforcement can provide better material properties in biobased composites. • Short fiber filler can provide lower environmental impact in biobased composites. • Per function, different fibers are desired to lower composite environmental impact. - Abstract: Biobased composites offer a potentially low environmental impact material option for the construction industries. Designing these materials to meet both performance requirements for an application and minimize environmental impacts requires the ability to refine composite constituents based on environmental impact and mechanical properties. In this research, biobased composites with varying natural fiber reinforcement in a poly(β-hydroxybutyrate)-co-(β-hydroxyvalerate) matrix were characterized based on material properties through experiments and environmental impact through life cycle assessments. Using experimental results, these biobased composites were found to have competitive flexural properties and thermal conductivity with certain short-chopped glass fiber reinforced plastics. Multi-criteria material selection techniques were applied to weigh desired material properties with greenhouse gas emissions, fossil fuel demand, and Eco-Indicator ’99 score. The effects of using different reinforcing fibers in biobased composites were analyzed using the developed selection scheme as a tool for choosing constituents. The use of multi-criteria material selection provided the ability to select fiber reinforcement for biobased composites and showed when it would be more appropriate to use a novel biobased composite or a currently available engineered material

  6. The development of a cryopump for stripper gas pumping in a 30 MV tandem Van de Graaff

    International Nuclear Information System (INIS)

    Halliday, B.S.

    1980-04-01

    The development of a cryopump is described for a 30 MV tandem Van de Graaf accelerator to control the vacuum pressure in the beam tube at the centre terminal when a gas stripper is in use. The system has been fully assembled and has been mechanically tested, the cryo pumps have been cooled to 18 0 K and the insulation tested electrically to +- 20 kV between the pump elements and the biased stripper canal. (UK)

  7. Processing and characterization of bio-based composites

    Science.gov (United States)

    Lu, Hong

    Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.

  8. Consumer perception of bio-based products-An exploratory study in 5 European countries

    NARCIS (Netherlands)

    Sijtsema, Siet J.; Onwezen, Marleen C.; Reinders, Machiel J.; Dagevos, Hans; Partanen, Asta; Meeusen-van Onna, Marieke

    2016-01-01

    This study explores people's perceptions (i.e., positive and negative associations, mixed feelings) regarding the concept of 'bio-based' in general and specific bio-based products. This exploratory study is one of the first consumer studies in the field of bio-based research. Three focus group

  9. Design of a new terminal gas stripper system

    International Nuclear Information System (INIS)

    Alvarez, Daniela E.; Amodei, Aldo J.; Bonino, Adrian G.; Bustos, Gustavo R.; Giannico, Matias A.; Serdeiro, Guillermo A.; Pomar, Cayetano

    2002-01-01

    A new terminal gas stripper, for the electrostatic FN tandem accelerator of the AMS system at the Nuclear Regulatory Authority in Argentina, is being designed at present. Most of the vacuum, electrical and electronic components are already available. The remote control of the system is being developed at LABI (Eng. Faculty, Buenos Aires University, Argentina). In order to construct the vacuum chamber, a collaboration with the LNLS (Campinas Univ, Sao Paulo, Brazil) is under consideration. The status of the project is presented. (author)

  10. Bio-composites : opportunities for value-added biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Drzal, L.T. [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemical Engineering and Materials Science]|[Michigan State Univ., East Lansing, MI (United States). Composite Materials and Structures Center

    2003-07-01

    In order to reduce dependency on foreign oil, there is a growing need to develop and commercialize new bio-based green materials and technologies that can produce bio-based structural materials that are competitive with current synthetic products. The use of bio-based products would also improve the environment and create new opportunities for the agricultural economy. This paper described ongoing research into bio-based materials and products that replace petroleum-based products. In particular, it examined the use of biocomposites made by embedding natural/biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, corn stalk fibers and native Michigan grasses into petroleum-derived traditional plastics such as polypropylene, unsaturated polyesters and epoxies. It also examines the use of green biocomposites developed by embedding these bio-fibers into renewable resource-based bioplastics such as cellulosic plastics and soy-based plastics. New processing methods that combine biofibers with plastics were needed to produce the biocomposites with desirable mechanical properties. The study showed that biofiber reinforced petroleum-based plastic biocomposites can produce a structural material that offers a balance between ecology, economy and technology. The potential for using these materials for automotive and building materials was also presented. 1 tab., 28 figs.

  11. Tandem accelerator transmission and life measurement of 50 keV/amu Au ions using stripper foil made by INS

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Satoshi; Takahashi, Tsutomu; Shima, Kunihiro [Tsukuba Univ., Ibaraki (Japan). Tandem Accelerator Center; Sugai, Isamu; Oyaizu, Mitsuhiro

    1996-12-01

    The role of stripper foil is the charge exchange of ions. The thickness for attaining equilibrium in charge exchange becomes thinner as ions become lower speed and heavier. Accordingly, for the stripper foil, thin foil thickness is demanded in addition to the demand of long life. The stripper foil made by INS, University of Tokyo, is recognized as its long life. In the 12 UD PELETRON tandem accelerator in University of Tsukuba, in order to meet the demand of users to use heavy ions, the use of long life stripper foil has become urgent necessity. Therefore, as for the foil made by INS, the life by Au ion irradiation and the Au ion transmission were measured four times. As to the features of the test of this time, irradiation was carried out under the severe condition for the foil of low speed Au ions, and the change of beam transmission with time lapse was observed in addition to the life. The method of measurement is explained. The preparation of foils and the determination of their thickness are reported. As the results, the lifetime of the foils made by INS and the thickness dependence and time dependence or dose dependence of the transmission of low speed, heavy Au-197 ions are described. (K.I.)

  12. Socio-economic opportunities of the biobased economy in the south-west of the Netherlands. Estimated employment impact in 2020; Sociaaleconomische kansen van de biobased economy in Zuidwest-Nederland. Inschatting werkgelegenheidseffecten in 2020

    Energy Technology Data Exchange (ETDEWEB)

    Van Lieshout, M.; Warringa, G.; Bergsma, G.; Croezen, H.

    2013-06-15

    This study, commissioned by the Socio-Economic Councils (SER) of the Dutch provinces of Zeeland and Brabant, was carried out in collaboration with a supervisory committee comprising numerous stakeholders in the biobased economy in the south-west of the Netherlands. The motto was 'agro meets chemistry'. Given that it was clear from the outset that the volume of locally available biomass is insufficient for large-scale power generation without inducing serious competition with food production, it was opted to restrict the scope of the 'biobased economy' to production of biobased chemicals and innovative materials. Because of the study's limited scope and duration, gross employment effects were also calculated for Zeeland and West Brabant only. To this end, three factors critical for the growth of the biobased economy and thus for potential employment effects were analysed: the price of fossil feedstocks, the availability of biomass for chemical industry applications, and the availability of capital for investing in innovative biobased processes. To cover the full range of possible developments in the biobased economy, two scenarios were developed: high and low, with in each case employment effects being estimated on the basis of a biomass flow analysis and employment indices [Dutch] Deze studie is uitgevoerd in opdracht van de SER Zeeland en de SER Brabant, in samenwerking met een begeleidingscommissie met brede vertegenwoordiging van stakeholders van de biobased economy in Zuidwest Nederland. De insteek was 'agro meets chemistry'. Aangezien bij aanvang vast stond dat de lokaal beschikbare biomassa onvoldoende is voor grootschalige energieopwekking, zonder ernstige concurrentie met voedselproductie te veroorzaken, is er voor gekozen om de biobased economy te beperken tot de productie van biobased chemie en innovatieve materialen. Verder is gezien de beperkte omvang en doorlooptijd van de studie besloten om

  13. Bio-Based Coatings for Paper Applications

    Directory of Open Access Journals (Sweden)

    Vibhore Kumar Rastogi

    2015-11-01

    Full Text Available The barrier resistance and wettability of papers are commonly controlled by the application of petroleum-based derivatives such as polyethylene, waxes and/or fluor- derivatives as coating. While surface hydrophobicity is improved by employing these polymers, they have become disfavored due to limitations in fossil-oil resources, poor recyclability, and environmental concerns on generated waste with lack of biodegradation. Alternatively, biopolymers including polysaccharides, proteins, lipids and polyesters can be used to formulate new pathways for fully bio-based paper coatings. However, difficulties in processing of most biopolymers may arise due to hydrophilicity, crystallization behavior, brittleness or melt instabilities that hinder a full exploitation at industrial scale. Therefore, blending with other biopolymers, plasticizers and compatibilizers is advantageous to improve the coating performance. In this paper, an overview of barrier properties and processing of bio-based polymers and their composites as paper coating will be discussed. In particular, recent technical advances in nanotechnological routes for bio-based nano- composite coatings will be summarized, including the use of biopolymer nanoparticles, or nanofillers such as nanoclay and nanocellulose. The combination of biopolymers along with surface modification of nanofillers can be used to create hierarchical structures that enhance hydrophobicity, complete barrier protection and functionalities of coated papers.

  14. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    International Nuclear Information System (INIS)

    Jerry James; Gene Huck; Tim Knobloch

    2001-01-01

    A study group of 376 Clinton Sand wells in Ohio provided data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the causes of the abnormal production decline. Analysis of the historic frequency of the problem indicates over 70% of the wells experienced abnormal production decline. The most frequently occurring causes of abnormal production declines were determined to be fluid accumulation (46%), gas gathering restrictions (24%), and mechanical failures (23%). Data collection forms and decision trees were developed to cost-effectively diagnose the abnormal production declines and suggest corrective action. The decision trees and data collection sheets were incorporated into a procedure guide to provide stripper gas well operators with a methodology to analyze and correct abnormal production declines. The systematic methodologies and techniques developed should increase the efficiency of problem well assessment and implementation of solutions for stripper gas wells. This eight quarterly technical progress report provides a summary of the deliverables completed to date, including the results of the remediations, the procedure guide, and the technology transfer. Due to the successful results of the study to date and the efficiency of the methodology development, two to three additional wells will be selected for remediation for inclusion into the study. The results of the additional remediations will be included in the final report

  15. Techno-Economic Analysis of a Secondary Air Stripper Process

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, J.R. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Nikolic, Heather [Center for Applied Energy Research, University of Kentucky, Lexington, KY (United States); Thompson, Jesse [Center for Applied Energy Research, University of Kentucky, Lexington, KY (United States); Liu, Kunlei [Center for Applied Energy Research, University of Kentucky, Lexington, KY (United States); Pinkerton, Lora L. [WorleyParsons, Reading, PA (United States); Brubaker, David [WorleyParsons, Reading, PA (United States); Simpson, James C. [WorleyParsons, Reading, PA (United States); Wu, Song [Mitsubishi Hitachi Power Systems America, Inc, Basking Ridge, NJ (United States); Bhown, Abhoyjit S. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2017-08-22

    We present results of an initial techno-economic assessment on a post-combustion CO2 capture process developed by the Center for Applied Energy Research (CAER) at the University of Kentucky using Mitsubishi Hitachi Power Systems’ H3-1 aqueous amine solvent. The analysis is based on data collected at a 0.7 MWe pilot unit combined with laboratory data and process simulations. The process adds a secondary air stripper to a conventional solvent process, which increases the cyclic loading of the solvent in two ways. First, air strips additional CO2 from the solvent downstream of the conventional steam-heated thermal stripper. This extra stripping of CO2 reduces the lean loading entering the absorber. Second, the CO2-enriched air is then sent to the boiler for use as secondary air. This recycling of CO2 results in a higher concentration of CO2 in the flue gas sent to the absorber, and hence a higher rich loading of the solvent exiting the absorber. A process model was incorporated into a full-scale supercritical pulverized coal power plant model to determine the plant performance and heat and mass balances. The performance and heat and mass balance data were used to size equipment and develop cost estimates for capital and operating costs. Lifecycle costs were considered through a levelized cost of electricity (LCOE) assessment based on the capital cost estimate and modeled performance. The results of the simulations show that the CAER process yields a regeneration energy of 3.12 GJ/t CO2, a $53.05/t CO2 capture cost, and LCOE of $174.59/MWh. This compares to the U.S. Department of Energy’s projected costs (Case 10) of regeneration energy of 3.58 GJ/t CO2 , a $61.31/t CO2 capture cost, and LCOE of $189.59/MWh. For H3-1, the CAER process results in a regeneration energy of 2.62 GJ/tCO2 with a stripper pressure of 5.2 bar, a capture cost of $46.93/t CO2, and an LCOE of $164.33/MWh.

  16. SYNTHESIS AND CHARACTERIZATION OF BIO-BASED POLYESTER POLYOL

    Directory of Open Access Journals (Sweden)

    MİTHAT ÇELEBİ

    2016-11-01

    Full Text Available Polyurethanes are versatile polymeric materials and are usually synthesised by isocyanate reactions with polyols. Due to the variety of isocyanates and polyols, particularly polyols, polyurethanes can be easily tailored for wide applications, such as rigid and flexible foams, coatings, adhesives, and elastomers. Considerable efforts have been recently devoted to developing bio-based substitutes for petroleum-based polyuretahanes due to increasing concerns over the depletion of petroleum resources, environment, and sustainability. Polyester polyols based on aliphatic and aromatic dicarboxylic acids are one of the most important materials in polymer technologies. Large volume of plants oils are used as renewable resources to produce various chemicals which are industrially important to make soaps, cosmetic products, surfactants, lubricants, diluents, plasticizers, inks, agrochemicals, composite materials, food industry. This study introduces synthesis and properties of bio-based polyols from different renewable feedstocks including vegetable oils and derivatives. A comparison of bio-based polyol properties with their petroleum-based analogues were investigated.

  17. Advanced biomass science and technology for bio-based products: proceedings

    Science.gov (United States)

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  18. Opportunities for a bio-based economy in the Netherlands

    International Nuclear Information System (INIS)

    Sanders, J.; Hoeven, D. van der

    2008-01-01

    The shift to a bio-based economy for the Netherlands is not only required because of climate change, but also for industrial strategy reasons. Traditional strongholds of the Dutch economy like the Rotterdam harbour, the agricultural sector (including the greenhouse sector, and food and feed industries) and the petrochemical industry will be affected by the new economic realities, and it is precisely to these sectors that a bio-based economy will offer new opportunities. (author)

  19. Treatment of H0 and H- beams spilled at the stripper foil at full energy charge-exchange injection scheme

    International Nuclear Information System (INIS)

    Yamane, Isao

    1991-01-01

    The charge-exchange injection into a synchrotron to generate high-intensity pulsed proton beams for a spallation neutron source is reviewed while focusing on the treatment of H 0 and H - beams spilled at the stripper foil. After charge-exchange injection is briefly outlined, scattering by foil atoms and causes to spill H 0 and H - beams are described. These spilled beams can amount to several μA and should be carefully treated. It is then shown that a direct H - injection system needs to be considerably long and requires a very long straight section. Because of its simplicity, two-step H 0 injection has very wide applicability to various types of rings. However, it has a problem of emittance growth due to angular divergence in the stripper magnet and an ionoptical mismatch at the stripper foil. These problems are discussed, including a new proposal for a measure to remedy this problem. The laser photoionization injection is also briefly mentioned. (author)

  20. A convenient way to double the capacity of a NEC type foil stripper

    International Nuclear Information System (INIS)

    Chapman, K.R.

    1988-01-01

    A convenient method is described to increase the capacity of a NEC type terminal stripper. This renders the necessity for tank entry to renew foils less frequent. This is especially useful when the use of heavy ion beams renders foil lifetimes very short. (orig.)

  1. More chemistry between green and growth. The opportunities and dilemmas of a bio-based economy; Meer chemie tussen groen en groei. De kansen en dilemma's van een biobased economy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-12-15

    A bio-based economy is one in which enterprises manufacture non-food products from biomass. Such products include fuel for the transport industry, chemicals, materials, and energy. Biomass is the biological material of living or recently living organisms, either animal or vegetable. With technology becoming more sophisticated, it is growing easier to turn plants, trees, crops, and residual animal waste into biomass. Waste and waste streams are increasingly being used as input in production processes, thereby gaining an economic value of their own. They are giving rise to new, sustainable products with considerable added value that replace products based on non-renewable materials. New bio-based products may offer the Netherlands new economic opportunities. The Dutch can already boast a number of distinct advantages in that respect, thanks to the sophistication of their industrial sector, agro-industry, chemicals and energy industries, and transport and logistics sector - all key sectors in a bio-based economy. However, the growing world population and increasing level of prosperity worldwide, and the environmental and climate problems associated with such growth, are adding to the complexity of policy-making aimed at developing a bio-based economy. The shift from fossil-based to bio-based materials must be part of a comprehensive policy aimed at achieving a sustainable economy. [Dutch] In dit advies gaat de SER in op mogelijkheden en knelpunten van de biobased economy. In een biobased economy dienen plantaardige en dierlijke biomassa (zoals gewassen, planten, snijafval, mest) als groene grondstoffen om non-food producten mee te maken (denk aan cosmetica, bioplastics, brandstoffen). De SER vindt dat de rijksoverheid stevig moet inzetten op een biobased economy met meer gesloten kringlopen. Dit draagt immers bij aan economische groei en aan een meer duurzame economie (gesloten kringlopen, gunstige arbeidsomstandigheden)

  2. Development of PLA hybrid yarns for biobased self-reinforced polymer composites

    Science.gov (United States)

    Köhler, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight materials are a necessity in various industries. Lightweight design is in the key interest of the mobility sector, e.g. the automotive and aerospace industry. This trend applies also for the consumer industries, e.g. sporting goods. In addition, the worldwide demand for replacing fossil-based materials has led to a significant growth of bioplastics. Due to their low mechanical performance and durability, their use is still limited. Therefore, it is necessary to develop biobased, sustainable polymeric materials with high stiffness, high impact and high durability without impairing recyclability at a similar price level of non-biobased solutions. Biobased self-reinforced polymer composites offer these unique properties.

  3. The stripper design and test at HIRFL-CSR

    International Nuclear Information System (INIS)

    Zhang Hongbin; Xiao Guoqing; Yuan Youjin; Xu Hushan; Li Zhankui; Lu Ziwei; Mao Ruishi; Zhao Tiecheng

    2010-01-01

    Charge stripping is employed to produce multi-charged ions for injecting the cooling storage ring. After penetrating through the carbon foil, the widened distribution of ion charge states poses a limit to the ion injection. Therefore, the carbon foil plays a key role in the charge stripping injection. In this paper,four strippers for Heavy Ion Research Facility at Lanzhou (HIRFL) and Cooling Storage Ring (CSR) are introduced. The charge state distribution of the stripped ions is measured and the stripping efficiency of the foils is investigated. The experimental results are consistent with the theoretical values. (authors)

  4. Projections for the Production of Bulk Volume Bio-Based Polymers in Europe and Environmental Implications

    NARCIS (Netherlands)

    Patel, M.K.; Crank, M.

    2007-01-01

    In this paper we provide an overview of the most important emerging groups of bio-based polymers for bulk volume applications and we discuss market projections for these types of bio-based polymers in the EU, thereby distinguishing between three scenarios. Bio-based polymers are projected to reach a

  5. Minimize constraints for a biobased economy. Progress report. Version 1.0; Wegnemen van belemmeringen in de biobased economy. Voortgangsrapportage. Versie 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Bex, P.M.H.H.; Blank, R.E.

    2013-04-15

    In the study 'Conflicting interests in the biobased economy (BBE in Dutch)), an overview is given of constraints, experienced by entrepreneurs, that limit innovations and investments in the BBE and thus hinder the transition towards a biobased economy. In a first inventory 69 constraints were identified. This report summarizes the progress of the BBE Program, and gives an overview of new constraints. The solutions for the constraints can be found at www.biobasedeconomy.nl [Dutch] In het onderzoek 'Botsende belangen in de biobased economy' (BBE) zijn de belemmeringen van ondernemers in kaart gebracht die innovaties en investeringen in de BBE beperken en daarmee de transitie van de BBE in de weg staan. In een eerste inventarisatie zijn 69 belemmeringen geidentificeerd. Deze voortgangsrapportage geeft een overzicht van de voortgang van het BBE Programma, de naar voren gekomen nieuwe belemmeringen. De oplossingen voor de belemmeringen zijn terug te vinden op www.biobasedeconomy.nl.

  6. Towards a carbon-negative sustainable bio-based economy.

    Science.gov (United States)

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Van Breusegem, Frank; De Mey, Marjan; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  7. Towards a carbon-negative sustainable bio-based economy

    Directory of Open Access Journals (Sweden)

    Bartel eVanholme

    2013-06-01

    Full Text Available The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy towards sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green and industrial (white biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  8. Towards a carbon-negative sustainable bio-based economy

    Science.gov (United States)

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Breusegem, Frank Van; Mey, Marjan De; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy. PMID:23761802

  9. Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA and man-made cellulosics

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2012-01-01

    The purpose of this paper is to review the environmental profiles of petrochemical PET, (partially) bio-based PET, recycled PET, and recycled (partially) bio-based PET, and compare them with other bio-based materials, namely PLA (polylactic acid, a bio-based polyester) and man-made cellulose

  10. Integrating Social Aspect into Sustainability Assessment of Bio-Based Industries: Towards a Systemic Approach

    OpenAIRE

    Rafiaani, P.; Van Passel, S.; Lebailly, Philippe; Kuppens, T.; Azadi, Hossein; Van Dael, M.

    2016-01-01

    Biobased industries require to be assessed on their positive and negative impacts on sustainable development. However, social factors are usually neglected in the majority of impact assessments of biobased industries: they are mainly focused on environmental performance and (techno)- economic assessments. This review proposes a new systemic approach for assessing and integrating the social dimension into sustainability assessments of biobased industries. First the main methodologies for as...

  11. Bio-based composite pedestrian bridge. Part 2: materials and production process

    NARCIS (Netherlands)

    Lepelaar, Mark; Hoogendoorn, Alwin; Blok, Rijk; Teuffel, Patrick; Kawaguchi, K.; Ohsaki, M.; Takeuchi, T.

    2016-01-01

    The Bio-based composite bridge is a 3TU project which aims to design and realize a 14m span pedestrian bridge made from fibre-reinforced polymers (FRP) and which is introduced in part 1 of this paper. Part 2 will focus on various studies about bio-based materials, which are suitable for structural

  12. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    Science.gov (United States)

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A comparative review of petroleum-based and bio-based acrolein production.

    Science.gov (United States)

    Liu, Lu; Ye, X Philip; Bozell, Joseph J

    2012-07-01

    Acrolein is an important chemical intermediate for many common industrial chemicals, leading to an array of useful end products. This paper reviews all the synthetic methods, including the former (aldol condensation) and contemporary (partial oxidation of propylene) manufacturing methods, the partial oxidation of propane, and most importantly, the bio-based glycerol-dehydration route. Emphasis is placed on the petroleum-based route from propylene and the bio-based route from glycerol, an abundantly available and relatively inexpensive raw material available from biodiesel production. This review provides technical details and incentives for industrial proyduction that justify a transition toward bio-based acrolein production. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Environmental Comparison of Biobased Chemicals from Glutamic Acid with Their Petrochemical Equivalents

    NARCIS (Netherlands)

    Lammens, T.M.; Potting, J.; Sanders, J.P.M.; Boer, de I.J.M.

    2011-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased

  15. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents

    NARCIS (Netherlands)

    Lammens, T.M.; Potting, J.; Sanders, J.P.M.; Boer, de I.J.M.

    2012-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased

  16. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    Science.gov (United States)

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  17. Bio-based targeted chemical engineering education : Role and impact of bio-based energy and resourcedevelopment projects

    NARCIS (Netherlands)

    N.M. Márquez Luzardoa; Dr. ir. Jan Venselaar

    2012-01-01

    Avans University of Applied Sciences is redrafting its courses and curricula in view of sustainability. For chemical engineering in particular that implies a focus on 'green' and bio-based processes, products and energy. Avans is situated in the Southwest region of the Netherlands and specifically

  18. Production of bio-based materials using photobioreactors with binary cultures

    Science.gov (United States)

    Beliaev, Alex S; Pinchuk, Grigoriy E; Hill, Eric A; Fredrickson, Jim K

    2013-08-27

    A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors or CO.sub.2 and/or bicarbonate. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. The present invention provides a method of cultivation that does not need sparging of a closed bioreactor to remove or add a gaseous byproduct or nutrient from a liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.

  19. 7 CFR 2902.7 - Determining biobased content.

    Science.gov (United States)

    2010-01-01

    ....7 Determining biobased content. (a) Certification requirements. For any product offered for... the weight (mass) of the total organic carbon in the material or product. (d) Products with the same...

  20. RIVM ZZS-2-BIO project : the biobased replacement potential of hazardous substances

    NARCIS (Netherlands)

    Es, van D.S.

    2014-01-01

    A quick scan of the ZZS (zeer zorgwekkende stoffen) list of 371 substances of very high concern shows that there is significant potential in biobased replacement of part of the list. It is shown that in many cases easily implementable biobased alternatives are already available or in advanced stages

  1. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison

    2001-09-12

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. the consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. During this reporting period the SWC entered into a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) to provide an additional $100,000 in co-funding for stripper well production-orientated projects.The SWC hosted its first meeting in which members proposed research projects to the SWC membership. The meeting was held on April 9-10, 2001 in State College, Pennsylvania. Twenty three proposals were submitted to the SWC for funding consideration. Investigators of the proposed projects provided the SWC membership with a 20 minute (15 minute technical discussion, 5 minute question and answer session) presentation. Of the 23 proposals, the Executive Council approved $921,000 in funding for 13 projects. Penn State then immediately started the process of issuing subcontracts to the various projects approved for funding.

  2. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    International Nuclear Information System (INIS)

    Joel L. Morrison

    2001-01-01

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. the consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. During this reporting period the SWC entered into a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) to provide an additional$100,000 in co-funding for stripper well production-orientated projects.The SWC hosted its first meeting in which members proposed research projects to the SWC membership. The meeting was held on April 9-10, 2001 in State College, Pennsylvania. Twenty three proposals were submitted to the SWC for funding consideration. Investigators of the proposed projects provided the SWC membership with a 20 minute (15 minute technical discussion, 5 minute question and answer session) presentation. Of the 23 proposals, the Executive Council approved$921,000 in funding for 13 projects. Penn State then immediately started the process of issuing subcontracts to the various projects approved for funding

  3. The Biobased Economy. Biofuels, Materials and Chemicals in the Post-oil Era

    International Nuclear Information System (INIS)

    Langeveld, H.; Sanders, J.; Meeusen, M.

    2010-01-01

    The impending threats of catastrophic climate change and peak oil are driving our society towards increased use of biomass for energy, chemical compounds and other materials - the beginnings of a biobased economy. As alternative development models for the biobased economy emerge, we need to determine potential applications, their perspectives and possible impacts as well as policies that can steer technological and market development in such a way that our objectives are met. Currently, it is still far from clear what will be the most sustainable routes to follow, which technologies should be included, and how their development will affect, and be affected by, research, public opinion and policy and market forces. This groundbreaking work, edited by a group of leading researchers originally from Wageningen Agricultural University in the Netherlands, sets out to unpick the complex systems in play. It provides an illuminating framework for how policy and market players could and should drive the development of a biobased economy that is effective, sustainable, fair and cost efficient. Starting with a state-of-the-art overview of major biobased technologies, including biorefinery and technologies for the production of biofuels, biogas, biomass feedstocks for chemistry and bioplastics, it discusses how different actor groups interact through policy and markets. Information from case studies is used to demonstrate how the potential of the biobased economy in different parts of the world, such as North America, Europe, and emerging economies like China and Brazil can be realised using research, debate, policy and commercial development. The result is an essential resource for all those working in or concerned with biobased industries, their policy or research.

  4. U^{28+}-intensity record applying a H_{2}-gas stripper cell

    Directory of Open Access Journals (Sweden)

    Winfried Barth

    2015-04-01

    Full Text Available To meet the Facility for Antiproton and Ion Research science requirements higher beam intensity has to be achieved in the present GSI-accelerator complex. For this an advanced upgrade program for the UNILAC is ongoing. Stripping is a key technology for all heavy ion accelerators. For this an extensive research and development program was carried out to optimize for high brilliance heavy ion operation. After upgrade of the supersonic N_{2}-gas jet (2007, implementation of high current foil stripping (2011 and preliminary investigation of H_{2}-gas jet operation (2012, recently (2014 a new H_{2}-gas cell using a pulsed gas regime synchronized with arrival of the beam pulse has been developed. An obviously enhanced stripper gas density as well as a simultaneously reduced gas load for the pumping system result in an increased stripping efficiency, while the beam emittance remains the same. A new record intensity (7.8 emA for ^{238}U^{28+} beams at 1.4  MeV/u has been achieved applying the pulsed high density H_{2} stripper target to a high intensity ^{238}U^{4+} beam from the VARIS ion source with a newly developed extraction system. The experimental results are presented in detail.

  5. Treatability test of a stacked-tray air stripper for VOC in water

    Energy Technology Data Exchange (ETDEWEB)

    Pico, T., LLNL

    1998-04-01

    A common strategy for hydraulic containment and mass removal at VOC contaminated sites is `pump and treat (P&T)`. In P&T operations, contaminated ground water is pumped from wells, treated above ground, and discharged. Many P&T remediation systems at VOC sites rely on air stripping technology because VOCs are easily transferred to the vapor phase. In stacked-tray air strippers, contaminated water is aerated while it flows down through a series of trays. System operations at LLNL are strictly regulated by the California and federal Environmental Protection Agencies (Cal/EPA and EPA), the Bay Area Air Quality Management District (BAAQMD), the California Regional Water Quality Control Board (RWQCB) and the Department of Toxic Substances Control (DTSC). These agencies set discharge limits, require performance monitoring, and assess penalties for non-compliance. National laboratories are also subject to scrutiny by the public and other government agencies. This extensive oversight makes it necessary to accurately predict field treatment performance at new extraction locations to ensure compliance with all requirements prior to facility activation. This paper presents treatability test results for a stacked- tray air stripper conducted at LLNL and compares them to the vendor`s modeling software results.

  6. Stripper foil failure modes and cures at the Oak Ridge Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. A. Plum

    2011-03-01

    Full Text Available The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H^{0} excited states created during the H^{-} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H^{-} beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  7. Impact of Bio-Based Plastics on Current Recycling of Plastics

    Directory of Open Access Journals (Sweden)

    Luc Alaerts

    2018-05-01

    Full Text Available Bio-based plastics are increasingly appearing in a range of consumption products, and after use they often end up in technical recycling chains. Bio-based plastics are different from fossil-based ones and could disturb the current recycling of plastics and hence inhibit the closure of plastic cycles, which is undesirable given the current focus on a transition towards a circular economy. In this paper, this risk has been assessed via three elaborated case studies using data and information retrieved through an extended literature search. No overall risks were revealed for bio-based plastics as a group; rather, every bio-based plastic is to be considered as a potential separate source of contamination in current recycling practices. For PLA (polylactic acid, a severe incompatibility with PET (polyethylene terephthalate recycling is known; hence, future risks are assessed by measuring amounts of PLA ending up in PET waste streams. For PHA (polyhydroxy alkanoate there is no risk currently, but it will be crucial to monitor future application development. For PEF (polyethylene furanoate, a particular approach for contamination-related issues has been included in the upcoming market introduction. With respect to developing policy, it is important that any introduction of novel plastics is well guided from a system perspective and with a particular eye on incompatibilities with current and upcoming practices in the recycling of plastics.

  8. Fostering the Bioeconomic Revolution in Biobased Products and Bioenergy: An Environmental Approach

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2001-01-01

    This document is a product of the Biomass Research and Development Board and presents a high-level summary of the emerging national strategy for biobased products and bioenergy. It provides the first integrated approach to policies and procedures that will promote R&D and demonstration leading to accelerated production of biobased products and bioenergy.

  9. NONPROCESS SOLVENT USE IN THE FURNITURE REFINISHING AND REPAIR INDUSTRY: EVALUATION OF ALTERNATIVE CHEMICAL STRIPPERS

    Science.gov (United States)

    The report gives results of an evaluation of the feasibility of using alternatives to high volatile organic compound/hazardous air pollutant (VOC/HAP) solvent-based, chemical strippers that are currently used in the furniture repair and refinishing industry to remove both traditi...

  10. Between mountains of gold and green business. System analysis of a bio-based economy; Tussen gouden bergen en groene business. Systeemverkenning van een bio-based economie

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, R.; Roelofs, E.; Suurs, R.; Van der Zee, F.

    2012-04-15

    The study shows it is possible for the Dutch industry to expand its strong knowledge position to a forceful international competitive position by aiming innovations towards the realization of a biobased economy. The main conclusions of this report are that the biobased economy offers big opportunities for sustainable economic development in the Netherlands and in Europe, but there is no guarantee of success. At a European level a stable and inviting investment climate necessary for biobased economic activity is lacking. In the Netherlands there is a need for a proactive innovation policy to substantially accelerate the development of promising business cases [Dutch] Deze verkenning vertrekt vanuit trends en ontwikkelingen in de wereld en kijkt vervolgens naar de consequenties voor Europa en Nederland. Dit 'van buiten naar binnen' perspectief contrasteert met veel andere analyses die doorgaans vertrekken vanuit de kansen voor bio-based processen en producten en vooral ingaan op de 'gewenste' maatschappelijke context. Gekeken is enerzijds naar globale maatschappelijke trends en anderzijds naar specifieke sleutelactiviteiten binnen het Nederlandse innovatiesysteem. De verkenning gaat met deze benadering niet alleen in op de mondiale en Europese context, maar analyseert ook op systematische wijze de sterkten en zwakten binnen het Nederlandse innovatiesysteem.

  11. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    Science.gov (United States)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  12. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    Science.gov (United States)

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Novel strategies for biobased feedstock utilization : Efficiency, optimization and production of a platform chemical

    NARCIS (Netherlands)

    Koopman, F.W.

    2010-01-01

    Due to evident environmental, economical and political reasons, it is becoming inevitable to shift society’s dependence away from fossil towards renewable, bio-based resources. However, for efficient implementation of biobased resources, cost effectiveness is key. In this thesis, different

  14. Influence and efficiency of catalytic stripper in organic carbon removal from laboratory generated soot aerosols

    Science.gov (United States)

    A catalytic stripper (CS) is a device used to remove the semi-volatile, typically organic carbon, fraction by passing raw or diluted exhaust over an oxidation catalyst heated to 300˚C. The oxidation catalyst used in this study is a commercially available diesel oxidation ca...

  15. Bio-based fillers for environmentally friendly composites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2017-03-01

    Full Text Available The use of bio-based fillers as alternative replacement for synthetic fillers has been dictated by increasing ecological concerns as well as depleting petroleum resources. The other aspect is a growing need for eco-friendly, renewable...

  16. Understanding intentions to purchase bio-based products

    NARCIS (Netherlands)

    Onwezen, Marleen C.; Reinders, Machiel J.; Sijtsema, Siet J.

    2017-01-01

    This article aims to explore whether subjective ambivalence increases the understanding of consumers' intentions to buy bio-based products. Subjective ambivalence is the aversive feeling that accompanies evaluations containing both negative and positive elements. Two studies (N = 1851) in six

  17. Biobased adhesives and non-conventional bonding

    Science.gov (United States)

    Charles Frihart

    2010-01-01

    Biobased adhesives fall into several major classes based upon their chemical structures. Starches are used in large volume, especially in the paper products industries, but cellulosics generally do not have the strength and water resistance needed for most wood products. Several authors have covered cellulosics adhesives (Baumann and Conner 2002, Pizzi 2006). However...

  18. Special on the Bio-based Economy. Making money with a green economy; Special Biobased Economy. Geld verdienen met een groene economie

    Energy Technology Data Exchange (ETDEWEB)

    Waterval, R. (ed.)

    2011-12-15

    Bio-based is booming. Increasingly more businesses see a healthy business case in products that are not made with fossil raw materials, but with biomass. But where are the opportunities for the Netherlands? And which roles can the government, trade and industry and science play? This PM special contains interviews with and experiences of pioneering entrepreneurs and agricultural attaches in the Netherlands and abroad [Dutch] Biobased is booming. Steeds meer bedrijven zien een gezonde businesscase in producten die niet gemaakt zijn met fossiele grondstoffen maar met biomassa. Waar liggen de kansen voor Nederland? En welke rol is daarbij weggelegd voor de overheid, het bedrijfsleven en de wetenschap? In deze PM-special onder meer interviews met en ervaringen van pionerende entrepreneurs en landbouwattaches in binnen- en buitenland.

  19. REACHing out to the bio-based economy : Perspectives and challenges of EU chemicals legislation

    NARCIS (Netherlands)

    Luit RJ; Waaijers-van der Loop SL; Heugens EHW; ICH; VSP

    2017-01-01

    The Dutch National Institute for Public Health and the Environment (hereafter: RIVM) recently investigated how the bio-based economy, more specifically the bio-based chemistry sector, relates to the EU REACH Regulation on chemicals. From this investigation, RIVM learnt that REACH may actually be an

  20. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    Science.gov (United States)

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  1. 30 CFR 210.155 - What reports must I submit for Federal onshore stripper oil properties?

    Science.gov (United States)

    2010-07-01

    ... Minerals Management Service, P.O. Box 25165, MS 392B2, Denver, Colorado 80217-0165; or (ii) Special courier... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What reports must I submit for Federal onshore stripper oil properties? 210.155 Section 210.155 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT...

  2. Challenges in Building a Sustainable Biobased Economy

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    2017-01-01

    for the production of fuels, chemicals, energy and materials is therefore recognized as a need by numerous industries and policy makers in countries around the world. In addition, a biobased economy has the potential to generate new jobs and even new industries, creating new opportunities for entrepreneurship...

  3. Biobased economy : state-of-the-art assessment

    NARCIS (Netherlands)

    Nowicki, P.L.; Banse, M.A.H.; Bolck, C.H.; Bos, H.L.; Scott, E.L.

    2008-01-01

    The interest in the biobased economy stems from the possibility to substitute biologically derived materials and processes for the production of goods that will, therefore, result in a reduced use of petroleum and petro-chemistry. Other reasons are the reduction in the energy required in production

  4. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution

    International Nuclear Information System (INIS)

    Gupta, M.K.

    1993-10-01

    In-Tank Precipitation is a process for removing radioactivity from the salt stored in the Waste Management Tank Farm at Savannah River. The process involves precipitation of cesium and potassium with sodium tetraphenylborate (STPB) and adsorption of strontium and actinides on insoluble sodium titanate (ST) particles. The purpose of this report is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs and Quiet Time Runs Program. The primary objective of the filter-stripper test runs and quiet time runs program is to ensure that the facility will fulfill its design basis function prior to the introduction of radioactive feed. Risks associated with the program are identified and include hazards, both personnel and environmental, associated with handling the chemical simulants; the presence of flammable materials; the potential for damage to the permanenet ITP and Tank Farm facilities. The risks, potential accident scenarios, and safeguards either in place or planned are discussed at length

  5. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M.K.

    1993-10-01

    In-Tank Precipitation is a process for removing radioactivity from the salt stored in the Waste Management Tank Farm at Savannah River. The process involves precipitation of cesium and potassium with sodium tetraphenylborate (STPB) and adsorption of strontium and actinides on insoluble sodium titanate (ST) particles. The purpose of this report is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs and Quiet Time Runs Program. The primary objective of the filter-stripper test runs and quiet time runs program is to ensure that the facility will fulfill its design basis function prior to the introduction of radioactive feed. Risks associated with the program are identified and include hazards, both personnel and environmental, associated with handling the chemical simulants; the presence of flammable materials; the potential for damage to the permanenet ITP and Tank Farm facilities. The risks, potential accident scenarios, and safeguards either in place or planned are discussed at length.

  6. To be, or not to be biodegradable… that is the question for the bio-based plastics

    OpenAIRE

    Prieto, Auxiliadora

    2016-01-01

    Summary Global warming, market and production capacity are being the key drivers for selecting the main players for the next decades in the market of bio?based plastics. The drop?in bio?based polymers such as the bio?based polyethylene terephtalate (PET) or polyethylene (PE), chemically identical to their petrochemical counterparts but having a component of biological origin, are in the top of the list. They are followed by new polymers such as PHA and PLA with a significant market growth rat...

  7. Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products.

    Science.gov (United States)

    Sherwood, James; Clark, James H; Farmer, Thomas J; Herrero-Davila, Lorenzo; Moity, Laurianne

    2016-12-29

    Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond.

  8. Floor interaction

    DEFF Research Database (Denmark)

    Petersen, Marianne Graves; Krogh, Peter; Ludvigsen, Martin

    2005-01-01

    Within architecture, there is a long tradition of careful design of floors. The design has been concerned with both decorating floors and designing floors to carry information. Ubiquitous computing technology offers new opportunities for designing interactive floors. This paper presents three...... different interactive floor concepts. Through an urban perspective it draws upon the experiences of floors in architecture, and provides a set of design issues for designing interactive floors....

  9. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    Science.gov (United States)

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-07-28

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  10. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    Science.gov (United States)

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  11. Development of Bio-Based Paint by using Methyl Esters from Palm Oil for Corrosion Inhibitor

    International Nuclear Information System (INIS)

    Mohibah Musa; Miradatul Najwa Muhd Rodhi; Najmiddin Yaakob; Ku Halim Ku Hamid; Juferi Idris

    2013-01-01

    Paint is used as a means of protection to prevent surfaces from being corroded over time. This research is focused on the development of a Bio-based paint made from palm oil methyl ester (POME) which originated from crude palm oil (CPO). New formulation paint has been developed to protect the pipeline from corrosion thus reducing the cost of the operation. Bio-based paint is made up of four components which are solvent, binder, additives, and pigment. The solvent in the bio-based paint is POME. The additives used are wetting and dispersing agent. The pigment used in the bio-based paint is TiO 2 . The formulation was developed by using a constant amount of additives and binder but varying the amount of POME at 10 ml, 15 ml, 20 ml, 25 ml and 30 ml with addition of water. The Standard Testing Methods for measuring the corrosion rate (ASTM G5-94(2011)) was carried out for each sample. In conclusion, it is proven that in the making of bio-based paint formulation for better corrosion inhibitor; the best amount of binder, additives and de-foam that should be used is 20 ml, 10 ml and 10 ml, respectively. (author)

  12. More chemistry between green and growth. The opportunities and dilemmas of a bio-based economy

    International Nuclear Information System (INIS)

    2010-12-01

    A bio-based economy is one in which enterprises manufacture non-food products from biomass. Such products include fuel for the transport industry, chemicals, materials, and energy. Biomass is the biological material of living or recently living organisms, either animal or vegetable. With technology becoming more sophisticated, it is growing easier to turn plants, trees, crops, and residual animal waste into biomass. Waste and waste streams are increasingly being used as input in production processes, thereby gaining an economic value of their own. They are giving rise to new, sustainable products with considerable added value that replace products based on non-renewable materials. New bio-based products may offer the Netherlands new economic opportunities. The Dutch can already boast a number of distinct advantages in that respect, thanks to the sophistication of their industrial sector, agro-industry, chemicals and energy industries, and transport and logistics sector - all key sectors in a bio-based economy. However, the growing world population and increasing level of prosperity worldwide, and the environmental and climate problems associated with such growth, are adding to the complexity of policy-making aimed at developing a bio-based economy. The shift from fossil-based to bio-based materials must be part of a comprehensive policy aimed at achieving a sustainable economy. [nl

  13. Perspectives on Resource Recovery from Bio-Based Production Processes: From Concept to Implementation

    DEFF Research Database (Denmark)

    S.B.A. Udugama, Isuru; Mansouri, Seyed Soheil; Mitic, Aleksandar

    2017-01-01

    Recovering valuable compounds from waste streams of bio-based production processes is in line with the circular economy paradigm, and is achievable by implementing “simple-to-use” and well-established process separation technologies. Such solutions are acceptable from industrial, economic...... and environmental points of view, implying relatively easy future implementation on pilot- and full-scale levels in the bio-based industry. Reviewing such technologies is therefore the focus here. Considerations about technology readiness level (TRL) and Net Present Value (NPV) are included in the review, since TRL...... and NPV contribute significantly to the techno-economic evaluation of future and promising process solutions. Based on the present review, a qualitative guideline for resource recovery from bio-based production processes is proposed. Finally, future approaches and perspectives toward identification...

  14. Bio-based products from solar energy and carbon dioxide.

    Science.gov (United States)

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Bio-based Polymer Foam from Soyoil

    Science.gov (United States)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  16. Biobased step-growth polymers : chemistry, functionality and applicability

    NARCIS (Netherlands)

    Noordover, B.A.J.

    2008-01-01

    Inspired by the opportunity to obtain materials with interesting new properties and further stimulated by the increasing oil prices and the augmenting environmental concerns, renewed interest in biobased polymers has recently arisen. Extensive efforts are being invested in extracting useful starting

  17. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives

    Science.gov (United States)

    Silverman, Julian R.

    2016-01-01

    As nonrenewable resources deplete and educators seek relevant interdisciplinary content for organic chemistry instruction, biobased laboratory experiments present themselves as potential alternatives to petroleum-based transformations, which offer themselves as sustainable variations on important themes. Following the principles of green chemistry…

  18. Computational Methods to Assess the Production Potential of Bio-Based Chemicals.

    Science.gov (United States)

    Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M; Herrgård, Markus J

    2018-01-01

    Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.

  19. Emittance measurements at the new UNILAC-pre-stripper using a pepper-pot with a PC-controlled CCD-camera

    CERN Document Server

    Dolinska, M E; Forck, P; Hoffmann, T; Liakin, D; Peters, A; Strehl, P

    2000-01-01

    The complex mathematical algorithms and procedures to extract emittance data from intensity distributions measured with a single shot pepper-pot device are described. First results of mathematical evaluation from the commissioning of the new GSI pre-stripper linac structures are presented.

  20. Comparison of a wire belt conveyor and cross auger conveyor for conveying burr cotton on a stripper harvester

    Science.gov (United States)

    Cotton fiber quality begins to degrade naturally with the opening of the boll, and mechanical harvesting processes are perceived to exacerbate fiber degradation. Previous research indicates that stripper-harvested cotton generally has lower fiber quality including on average lower micronaire, length...

  1. Perceived floor slipperiness and floor roughness in a gait experiment.

    Science.gov (United States)

    Yu, Ruifeng; Li, Kai Way

    2015-01-01

    Slips and falls contribute to occupational injuries and fatalities globally. Both floor slipperiness and floor roughness affect the occurrence of slipping and falling. Investigations on fall-related phenomena are important for the safety and health of workers. The purposes of this study were to: compare the perceived floor slipperiness before and after walking on the floor; compare the perceived floor slipperiness with and without shoes for males and females; discuss the perceived floor roughness based on barefoot walking; and establish regression models to describe the relationship between perceived floor slipperiness and actual friction of the floors. Male and female subjects walked on 3 m walkways with or without shoes. The perceived floor slipperiness ratings both before and after their walk were collected. The perceived floor slipperiness both before and after walking were significantly affected by both floor and surface conditions. Gender, floor, surface, and footwear conditions were all significant factors affecting the adjustment of perceived floor slipperiness. The subjects made more adjustment on perceived floor slipperiness rating when they had shoes on than when they were barefooted. Regression models were established to describe the relationship between perceived floor slipperiness and floor coefficient of friction. These models may be used to estimate perceived floor slipperiness, or in reverse, the coefficient of friction of the floor, so as to prevent slipping and falling in workplaces.

  2. 3D Printable Filaments Made of Biobased Polyethylene Biocomposites

    Directory of Open Access Journals (Sweden)

    Daniel Filgueira

    2018-03-01

    Full Text Available Two different series of biobased polyethylene (BioPE were used for the manufacturing of biocomposites, complemented with thermomechanical pulp (TMP fibers. The intrinsic hydrophilic character of the TMP fibers was previously modified by grafting hydrophobic compounds (octyl gallate and lauryl gallate by means of an enzymatic-assisted treatment. BioPE with low melt flow index (MFI yielded filaments with low void fraction and relatively low thickness variation. The water absorption of the biocomposites was remarkably improved when the enzymatically-hydrophobized TMP fibers were used. Importantly, the 3D printing of BioPE was improved by adding 10% and 20% TMP fibers to the composition. Thus, 3D printable biocomposites with low water uptake can be manufactured by using fully biobased materials and environmentally-friendly processes.

  3. 75 FR 61624 - Promotion of Development, Reduction of Royalty Rates for Stripper Well and Heavy Oil Properties

    Science.gov (United States)

    2010-10-06

    ...-241A.00] RIN 1004-AE04 Promotion of Development, Reduction of Royalty Rates for Stripper Well and Heavy... economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or..., investment, productivity, innovation, or the ability of U.S.-based enterprises to compete with foreign-based...

  4. Potential for Biobased Adhesives in Wood Bonding

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    There has been a resurgence of interest and research on using bio-based materials as wood adhesives; however, they have achieved only limited market acceptance. To better understand this low level of replacement, it is important to understand why adhesives work or fail in moisture durability tests. A holistic model for wood adhesives has been developed that clarifies...

  5. Bio-based C-3 Platform Chemical: Biotechnological Production and -Conversion of 3-Hydroxypropionaldehyde

    OpenAIRE

    Rezaei, Roya

    2013-01-01

    Demands for efficient, greener, economical and sustainable production of chemicals, materials and energy have led to development of industrial biotechnology as a key technology area to provide such products from bio-based raw materials from agricultural-, forestry- and related industrial residues and by-products. For the bio-based industry, it is essential to develop a number of building blocks or platform chemicals for C2-C6 chemicals and even aromatic chemicals. 3-hydroxypropionaldehyde (3H...

  6. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.

    Science.gov (United States)

    Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan

    2017-07-14

    Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.

  7. HFRR investigation of biobased and petroleum based oils

    Science.gov (United States)

    Biobased oils come in a wide range of chemical structures as do petroleum based oils. In addition, a distinct structural difference exists between these two broad categories of oils. Previous work has shown that, in spite of the structural differences, these two categories of oils display similar pr...

  8. Bio-based supply chains : risks and institutional arrangements

    NARCIS (Netherlands)

    Peerlings, J.H.M.; Ge, L.; Galen, van M.A.

    2012-01-01

    One of the challenges for the bio-based economy is to achieve production efficiency that can compete with fossil-based products. New scale-efficient product supply chains have to be created, or current supply chains have to be amended to incorporate the biomass supply chain. These new supply chains

  9. Six recommendations for a bio-based economy in the Netherlands

    International Nuclear Information System (INIS)

    Van der Hoeven, D.

    2009-03-01

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. Based on the results of the studies the platform formulated six recommendations [nl

  10. Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy.

    Science.gov (United States)

    Arnold, Stefanie; Moss, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-10-01

    Lignocellulosic biomass is an important feedstock for a potential future bio-based economy. Owing to its compact structure, suitable decomposition technologies will be necessary to make it accessible for biotechnological conversion. While chemical and enzymatic hydrolysis are currently established methods, a promising alternative is provided by fast pyrolysis. The main resulting product thereof, referred to as pyrolysis oil, is an energy-rich and easily transportable liquid. Many of the identified constituents of pyrolysis oil, however, have previously been reported to display adverse effects on microbial growth. In this Opinion we discuss relevant biological, biotechnological, and technological challenges that need to be addressed to establish pyrolysis oil as a reliable microbial feedstock for a bio-based economy of the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Opportunity and development of bio-based composites

    Science.gov (United States)

    Zhiyong Cai; Jerrold E. Winandy

    2005-01-01

    Our forests are a naturally renewable resource that has been used as a principal source of bio-energy and building materials for centuries. The rapid growth of world population has now resulted in substantial increases in demand and in consumption of all raw materials. This now provides a unique opportunity of developing new bio-based composites. The 100-year history...

  12. Synthesis of Biobased Succinonitrile from Glutamic Acid and Glutamine

    NARCIS (Netherlands)

    Lammens, T.M.; Nôtre, Le J.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2011-01-01

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the

  13. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  14. Charge state distributions for heavy ions in carbon stripper foils

    International Nuclear Information System (INIS)

    McMahan, M.A.; Lebed, R.F.; Feinberg, B.

    1989-03-01

    We have extended the database of measured charge state distributions available in the literature through measurements at the SuperHILAC using carbon stripper foils in the energy range 1.2--8.5 MeV/u. Modifying a semi-empirical model to include the effect of electronic shells, we are able to correctly predict the mean charge state to within 1/2 a charge state for 6≤Z≤92 and energies from 30 keV/u to 16 MeV/u. We have determined parameters for the widths of the distributions for each electronic shell. For distributions lying across a shell boundary, we join the two Gaussians of different widths to get an asymmetric distribution. 18 refs., 4 figs., 2 tabs

  15. Kilowatt-level cladding light stripper for high-power fiber laser.

    Science.gov (United States)

    Yan, Ping; Sun, Junyi; Huang, Yusheng; Li, Dan; Wang, Xuejiao; Xiao, Qirong; Gong, Mali

    2017-03-01

    We designed and fabricated a high-power cladding light stripper (CLS) by combining a fiber-etched CLS with a cascaded polymer-recoated CLS. The etched fiber reorganizes the numerical aperture (NA) distribution of the cladding light, leading to an increase in the leakage power and a flatter distribution of the leakage proportion in the cascaded polymer-recoated fiber. The index distribution of the cascaded polymer-recoated fiber is carefully designed to ensure an even leakage of cladding light. More stages near the index of 1.451 are included to disperse the heat. The CLS is capable of working consistently under 1187 W of cladding light with an attenuation of 26.59 dB, and the highest local temperature is less than 35°C.

  16. Carbon stripper foils held in place with carbon fibers

    International Nuclear Information System (INIS)

    Jolivet, Connie S.; Miller, Shawn A.; Stoner, John O.; Ladd, Peter

    2008-01-01

    The Spallation Neutron Source (SNS) currently under construction at Oak Ridge National Laboratory, Oak Ridge, Tennessee, is planned to initially utilize carbon stripper foils having areal densities approximately 260 μg/cm 2 . The projected design requires that each foil be supported by only one fixed edge. For stability of the foil, additional support is to be provided by carbon fibers. The feasibility of manufacturing and shipping such mounted carbon foils produced by arc evaporation was studied using two prototypes. Production of the foils is described. Fibers were chosen for satisfactory mechanical strength consistent with minimal interference with the SNS beam. Mounting of the fibers, and packaging of the assemblies for shipping are described. Ten completed assemblies were shipped to SNS for further testing. Preliminary evaluation of the survivability of the foils in the SNS foil changer is described

  17. Superamphiphobic overhang structured coating on a biobased material

    Energy Technology Data Exchange (ETDEWEB)

    Tuominen, Mikko, E-mail: mikko.tuominen@sp.se [SP Technical Research Institute of Sweden—Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm (Sweden); Teisala, Hannu [Tampere University of Technology, Paper Converting and Packaging Technology, Department of Materials Science, P.O. Box 589, FI-33101 Tampere (Finland); Haapanen, Janne; Mäkelä, Jyrki M. [Tampere University of Technology, Aerosol Physics Laboratory, Department of Physics, P.O. Box 692, FI-33101 Tampere (Finland); Honkanen, Mari; Vippola, Minnamari [Tampere University of Technology, Material Characterization, Department of Materials Science, P.O. Box 589, FI-33101 Tampere (Finland); Bardage, Stig [SP Technical Research Institute of Sweden, Sustainable Built Environment, Biobased Materials and Products, Box 5609, SE-114 86 Stockholm (Sweden); Wålinder, Magnus E.P. [KTH Royal Institute of Technology, Department of Civil and Architectural Engineering, Building Materials, SE-100 44 Stockholm (Sweden); Swerin, Agne [SP Technical Research Institute of Sweden—Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm (Sweden); KTH Royal Institute of Technology, Department of Chemistry, Surface and Corrosion Science, SE-100 44 Stockholm (Sweden)

    2016-12-15

    Highlights: • A superamphiphobic coating on a wood shows extreme liquid repellence against water, ethylene glycol, diiodomethane and olive oil. • The coated wood sample can have the required geometrical homogeneity to establish superamphiphobic properties. • To our knowledge, this is the first time superamphiphobicity based on overhang structures has been shown for a renewable bio-based material.A superamphiphobic coating on a wood shows extreme liquid repellence with static contact angles (CA) greater than 150° and roll-off angles less than 10° against water, ethylene glycol, diiodomethane and olive oil. - Abstract: A superamphiphobic coating on a biobased material shows extreme liquid repellency with static contact angles (CA) greater than 150° and roll-off angles less than 10° against water, ethylene glycol, diiodomethane and olive oil, and a CA for hexadecane greater than 130°. The coating consisting of titania nanoparticles deposited by liquid flame spray (LFS) and hydrophobized using plasma-polymerized perfluorohexane was applied to a birch hardwood. Scanning electron microscopy (SEM) imaging after sample preparation by UV laser ablation of coated areas revealed that capped structures were formed and this, together with the geometrically homogeneous wood structure, fulfilled the criteria for overhang structures to occur. The coating showed high hydrophobic durability by still being non-wetted after 500 000 water drop impacts, and this is discussed in relation to geometrical factors and wetting forces. The coating was semi-transparent with no significant coloration. A self-cleaning effect was demonstrated with both water and oil droplets. A self-cleanable, durable and highly transparent superamphiphobic coating based on a capped overhang structure has a great potential for commercial feasibility in a variety of applications, here exemplified for a biobased material.

  18. Opportunities for a Bio-based Economy in the Netherlands

    NARCIS (Netherlands)

    Sanders, J.P.M.; Hoeven, van der D.A.

    2008-01-01

    The shift to a bio-based economy for the Netherlands is not only required because of climate change, but also for industrial strategy reasons. Traditional strongholds of the Dutch economy like the Rotterdam harbour, the agricultural sector (including the greenhouse sector, and food and feed

  19. Polypyrrole Additional functions to bio-based façades

    NARCIS (Netherlands)

    Sailer, M.F. (Michael); Oostra, M.A.R. (Mieke); Eversdijk, J. (Jacco)

    2015-01-01

    AbstractDue to the crisis of 2008 the construction and real estate market became more demand-driven. Architects, builders and developers are looking for high-quality solutions for the realization of sustainable buildings. Supplying SMEs experience an increasing demand for bio-based materials with

  20. Cascade use indicators for selected biopolymers: Are we aiming for the right solutions in the design for recycling of bio-based polymers?

    Science.gov (United States)

    Hildebrandt, Jakob; Bezama, Alberto; Thrän, Daniela

    2017-04-01

    When surveying the trends and criteria for the design for recycling (DfR) of bio-based polymers, priorities appear to lie in energy recovery at the end of the product life of durable products, such as bio-based thermosets. Non-durable products made of thermoplastic polymers exhibit good properties for material recycling. The latter commonly enjoy growing material recycling quotas in countries that enforce a landfill ban. Quantitative and qualitative indicators are needed for characterizing progress in the development towards more recycling friendly bio-based polymers. This would enable the deficits in recycling bio-based plastics to be tracked and improved. The aim of this paper is to analyse the trends in the DfR of bio-based polymers and the constraints posed by the recycling infrastructure on plastic polymers from a systems perspective. This analysis produces recommendations on how life cycle assessment indicators can be introduced into the dialogue between designers and recyclers in order to promote DfR principles to enhance the cascading use of bio-based polymers within the bioeconomy, and to meet circular economy goals.

  1. Cascade use indicators for selected biopolymers: Are we aiming for the right solutions in the design for recycling of bio-based polymers?

    Science.gov (United States)

    Hildebrandt, Jakob; Bezama, Alberto; Thrän, Daniela

    2017-01-01

    When surveying the trends and criteria for the design for recycling (DfR) of bio-based polymers, priorities appear to lie in energy recovery at the end of the product life of durable products, such as bio-based thermosets. Non-durable products made of thermoplastic polymers exhibit good properties for material recycling. The latter commonly enjoy growing material recycling quotas in countries that enforce a landfill ban. Quantitative and qualitative indicators are needed for characterizing progress in the development towards more recycling friendly bio-based polymers. This would enable the deficits in recycling bio-based plastics to be tracked and improved. The aim of this paper is to analyse the trends in the DfR of bio-based polymers and the constraints posed by the recycling infrastructure on plastic polymers from a systems perspective. This analysis produces recommendations on how life cycle assessment indicators can be introduced into the dialogue between designers and recyclers in order to promote DfR principles to enhance the cascading use of bio-based polymers within the bioeconomy, and to meet circular economy goals. PMID:28097922

  2. Surface treatment of glass substrates for the preparation of long-lived carbon stripper foils

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Takekoshi, Eiko

    1981-02-01

    Glass substrates having uniformly distributed microscopic grains on the surfaces are useful to make long-lived carbon stripper foils for heavy ions. A method of surface treatment of glass substrates to form the surface structure is described. This method consists of precipitation of glass components, such as soda, onto the surfaces in a hot and humid atmosphere and a fogging treatment of forming microscopic grains of the precipitated substances. Some results of studies on the treatment conditions are also presented. (author)

  3. Bio-based renewable additives for anti-icing applications (phase one).

    Science.gov (United States)

    2016-09-04

    The performance and impacts of several bio-based anti-icers along with a traditional chloride-based anti-icer (salt brine) were evaluated. : A statistical design of experiments (uniform design) was employed for developing anti-icing liquids consistin...

  4. The KFB Program on Biobased Fuels for Vehicles

    International Nuclear Information System (INIS)

    1996-12-01

    KFB supports research and demonstration projects for bio-based transport fuels, alcohols and biogas. The program started in 1991 and will continue through 1997. The program focuses on heavy vehicles, e.g. buses for public transportation. Projects and intermediate results are described in the brochure. Information is also available at the KFB homepage. //www.kfb.se

  5. Center for BioBased Binders and Pollution Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry [Univ. of Northern Iowa, Cedar Falls, IA (United States)

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  6. Bio-Based Adhesives and Evaluation for Wood Composites Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Ferdosian

    2017-02-01

    Full Text Available There has been a rapid growth in research and innovation of bio-based adhesives in the engineered wood product industry. This article reviews the recent research published over the last few decades on the synthesis of bio-adhesives derived from such renewable resources as lignin, starch, and plant proteins. The chemical structure of these biopolymers is described and discussed to highlight the active functional groups that are used in the synthesis of bio-adhesives. The potentials and drawbacks of each biomass are then discussed in detail; some methods have been suggested to modify their chemical structures and to improve their properties including water resistance and bonding strength for their ultimate application as wood adhesives. Moreover, this article includes discussion of techniques commonly used for evaluating the petroleum-based wood adhesives in terms of mechanical properties and penetration behavior, which are expected to be more widely applied to bio-based wood adhesives to better evaluate their prospect for wood composites application.

  7. 76 FR 3789 - Voluntary Labeling Program for Biobased Products

    Science.gov (United States)

    2011-01-20

    ... products is to inform consumers that these new and innovative products are available and that USDA has... violates the consumer advertising rules of the FTC. \\2\\ The definition of ``biobased products'' found in... endorsement. The consumer may also conclude that forestry practices, no matter how sustainable, are less...

  8. SUSTAINABLE TRAILER FLOORING

    Directory of Open Access Journals (Sweden)

    John Lu

    2009-05-01

    Full Text Available Different trailer flooring materials, including wood-based, aluminum, steel, and synthetic plastic floors, were evaluated in accordance with their durability and sustainability to our natural environment. Wood-based trailer flooring is an eco-friendly product. It is the most sustainable trailer flooring material compared with fossil fuel-intensive steel, aluminum, and plastics. It is renewable and recyclable. Oak, hard maple, and apitong are strong and durable hardwood species that are currently extensively used for trailer flooring. For manufacture, wood-based flooring is higher in energy efficiency and lower in carbon emission than steel, aluminum and plastics. Moreover, wood per se is a natural product that sequesters carbon. Accordingly, using more wood-based trailer flooring is effective to reduce global warming.

  9. Unexpected nitrile formation in bio-based mesoporous materials (Starbons®).

    Science.gov (United States)

    Attard, Jennifer; Milescu, Roxana; Budarin, Vitaliy; Matharu, Avtar S; Clark, James H

    2018-01-16

    The bio-based mesoporous materials made from polysaccharides, Starbons® can be modified by two different routes to give high levels of N-content, unexpectedly including significant quantities of nitrile groups which can improve the materials performance in applications including metal capture.

  10. Two-dimensional thermal simulations of aluminum and carbon ion strippers for experiments at SPIRAL2 using the highest beam intensities

    International Nuclear Information System (INIS)

    Tahir, N.A.; Kim, V.; Lamour, E.; Lomonosov, I.V.; Piriz, A.R.; Rozet, J.P.; Stöhlker, Th.; Sultanov, V.; Vernhet, D.

    2012-01-01

    In this paper we report on two-dimensional numerical simulations of heating of a rotating, wheel shaped target impacted by the full intensity of the ion beam that will be delivered by the SPIRAL2 facility at Caen, France. The purpose of this work is to study heating of solid targets that will be used to strip the fast ions of SPIRAL2 to the required high charge state for the FISIC (Fast Ion–Slow Ion Collision) experiments. Strippers of aluminum with different emissivities and of carbon are exposed to high beam current of different ion species as oxygen, neon and argon. These studies show that carbon, due to its much higher sublimation temperature and much higher emissivity, is more favorable compared to aluminum. For the highest beam intensities, an aluminum stripper does not survive. However, problem of the induced thermal stresses and long term material fatigue needs to be investigated before a final conclusion can be drawn.

  11. 3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithography

    International Nuclear Information System (INIS)

    Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Simões, Pedro N; Serra, Arménio C; Coelho, Jorge F J; Farinha, Dina; Faneca, Henrique; Bártolo, Paulo J

    2014-01-01

    New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester’s properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area. (paper)

  12. Floors: Selection and Maintenance.

    Science.gov (United States)

    Berkeley, Bernard

    Flooring for institutional, commercial, and industrial use is described with regard to its selection, care, and maintenance. The following flooring and subflooring material categories are discussed--(1) resilient floor coverings, (2) carpeting, (3) masonry floors, (4) wood floors, and (5) "formed-in-place floors". The properties, problems,…

  13. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    OpenAIRE

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versati...

  14. The biobased economy: biofuels, materials and chemicals in the post-oil era

    National Research Council Canada - National Science Library

    Langeveld, Hans; Meeusen, Marieke; Sanders, Johan

    2010-01-01

    .... Starting with a state-of-the-art overview of major biobased technologies, including biorefinery and technologies for the production of biofuels, biogas, biomass feedstocks for chemistry and bio...

  15. Sustainability Benefits and Challenges of Inter-Organizational Collaboration in Bio-Based Business: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Gohar Nuhoff-Isakhanyan

    2016-03-01

    Full Text Available Bio-based businesses are often considered to be sustainable. However, they are also linked to sustainability challenges such as deforestation and soil erosion. Encouraged to exploit innovative solutions and enhance sustainability, organizations engaged in bio-based activities extensively explore collaboration possibilities with external partners. The objective of this paper is to integrate the available knowledge on sustainability of inter-organisational collaborations in bio-based businesses, while considering the three aspects of sustainability: environmental, economic, and social. We collected data from three academic sources—Web of Science, Scopus, and EconLit—and conducted a systematic literature review. The results show the importance of geographical proximity and complementarity in creating sustainability benefits such as reduced emissions, reduced waste, economic synergies, and socio-economic activities. Based on the findings, we have developed a framework that illustrates sustainability benefits and challenges. Interestingly, the studies emphasize sustainability benefits more in emerging than in industrialised economies, especially relating to the social aspects of sustainability. In conclusion, although the scholars have not discussed mitigation of several sustainability challenges in bio-based businesses, such as land use conflicts, they have found evidence of vital sustainability benefits, such as energy availability, lower emissions, improved socio-economic life, and poverty reduction, which are essential in emerging economies.

  16. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    Science.gov (United States)

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.

  17. Biodegradability of biobased polymeric materials in natural environments: Structures and Chemistry

    CSIR Research Space (South Africa)

    Muniyasamy, S

    2017-03-01

    Full Text Available The development of biobased polymer materials from renewable resources meets the concept of sustainability, offering the potential of renewability, biodegradation, and a path away from the problems associated with plastic derived from nonrenewable...

  18. Biobased alkylphenols from lignins via a two-step pyrolysis - Hydrodeoxygenation approach

    NARCIS (Netherlands)

    de Wild, P. J.; Huijgen, W.J.J.; Kloekhorst, A.; Chowdari, R. K.; Heeres, H. J.

    Five technical lignins (three organosolv, Kraft and soda lignin) were depolymerised to produce monomeric biobased aromatics, particularly alkylphenols, by a new two-stage thermochemical approach consisting of dedicated pyrolysis followed by catalytic hydrodeoxygenation (HDO) of the resulting

  19. Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Maria Chiara Mistretta

    2018-04-01

    Full Text Available The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties, suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives.

  20. Social Life Cycle Approach as a Tool for Promoting the Market Uptake of Bio-Based Products from a Consumer Perspective

    Directory of Open Access Journals (Sweden)

    Pasquale Marcello Falcone

    2018-03-01

    Full Text Available The sustainability of bio-based products, especially when compared with fossil based products, must be assured. The life cycle approach has proven to be a promising way to analyze the social, economic and environmental impacts of bio-based products along the whole value chain. Until now, however, the social aspects have been under-investigated in comparison to environmental and economic aspects. In this context, the present paper aims to identify the main social impact categories and indicators that should be included in a social sustainability assessment of bio-based products, with a focus on the consumers’ category. To identify which social categories and indicators are most relevant, we carry out a literature review on existing social life cycle studies; this is followed by a focus group with industrial experts and academics. Afterwards, we conduct semi-structured interviews with some consumer representatives to understand which social indicators pertaining to consumers are perceived as relevant. Our findings highlight the necessity for the development and dissemination of improved frameworks capable of exploiting the consumers’ role in the ongoing process of market uptake of bio-based products. More specifically, this need regards the effective inclusion of some social indicators (i.e., end users’ health and safety, feedback mechanisms, transparency, and end-of-life responsibility in the social life cycle assessment scheme for bio-based products. This would allow consumers, where properly communicated, to make more informed and aware purchasing choices, therefore having a flywheel effect on the market diffusion of a bio-based product.

  1. Waste rice seed in conventional and stripper-head harvested fields in California: Implications for wintering waterfowl

    Science.gov (United States)

    Fleskes, Joseph P.; Halstead, Brian J.; Casazza, Michael L.; Coates, Peter S.; Kohl, Jeffrey D.; Skalos, Daniel A.

    2012-01-01

    Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field

  2. Sustainable coatings from bio-based, enzymatically synthesized polyesters with enhanced functionalities

    NARCIS (Netherlands)

    Gustini, L.; Lavilla, C.; Finzel, L.; Noordover, B.A.J.; Hendrix, M.M.R.M.; Koning, C.E.

    2016-01-01

    Bio-based sorbitol-containing polyester polyols were synthesized via enzymatic polycondensation. The selectivity of the biocatalyst for primary vs. secondary hydroxyl groups allowed for the preparation of close to linear renewable polyester polyols with enhanced hydroxyl functionalities, both as

  3. A bio-based fibre-reinforced plastic pedestrian bridge for Schiphol

    NARCIS (Netherlands)

    Smits, J.E.P.; Gkaidatzis, R.

    2015-01-01

    The present paper investigates Bio-based fibre-reinforced plastics, used as a load-bearing element of a bridge. We aim to increase the renewable content and decreasing the embodied energy of FRP. To achieve that, the consisting raw materials of these plastics which are based on non-renewable

  4. 76 FR 53113 - Guidelines for Designating Biobased Products for Federal Procurement

    Science.gov (United States)

    2011-08-25

    ... Designating Biobased Products for Federal Procurement AGENCY: Office of Procurement and Property Management... that the Department of Agriculture, Office of Procurement and Property Management, is hereby requesting... comments to: Ron Buckhalt, USDA, Office of Procurement and Property Management, Room 361, Reporters...

  5. Pelvic floor muscle function in women with pelvic floor dysfunction

    DEFF Research Database (Denmark)

    Tibaek, Sigrid; Dehlendorff, Christian

    2014-01-01

    The objectives of this study were to investigate the level of pelvic floor muscle (PFM) function in women with pelvic floor dysfunction (PFD) referred by gynaecologists and urologists for in-hospital pelvic floor muscle training (PFMT), and to identity associated factors for a low level of PFM...

  6. Potential of Coproduction of Energy, Fuels and Chemicals from Biobased Renewable Resources. Transition Path 3. Co-production of Energy, Fuels and Chemicals

    International Nuclear Information System (INIS)

    2006-11-01

    This report shows how in 2030, biobased alternatives can potentially cover up to 30% of the Netherlands' domestic energy and chemicals demand, effectively reducing CO2 emissions. Maximizing the economical potential of biobased alternatives seems the most attractive strategy. The method to compare various routes has been highly simplified and the conclusions of this report are only valid within the limitations of the underlying assumptions. Nevertheless, the Working group WISE BIOMAS of the Platform Biobased Raw Materials feels that the conclusions are valuable for Dutch policy makers and others interested in the use of biobased raw materials. In 2030, biobased alternatives are expected to be sufficiently competitive to fossil-based alternatives, even without subsidies. They are expected to play a significant role in an energy mix comprised of other renewables as well as 'clean' fossil energy sources. Presently, however, the Netherlands needs to step up its stimulation of biobased applications, through substantial investments in R and D programmes, demonstration plants, as well as measures to stimulate implementation. The whole package of tax reductions, local government purchases, etc., as well as direct financial support should amount to approximately 500 million euros per year. The simplified study presented here provides input for more realistic macro-economic scenario analysis taking actual and updated cost-availability relations including second generation biofuels and biochemicals, land use, international trade, etc., into account. Initial discussions with for instance the Netherlands Bureau for Economic Policy Analysis (Centraal Plan Bureau or CPB) have taken place, but are not covered in this report. It is urgently suggested to update macro-economic scenarios for securing the best Netherlands' position among the accelerating global development towards biobased resources

  7. To be, or not to be biodegradable… that is the question for the bio-based plastics.

    Science.gov (United States)

    Prieto, Auxiliadora

    2016-09-01

    Global warming, market and production capacity are being the key drivers for selecting the main players for the next decades in the market of bio-based plastics. The drop-in bio-based polymers such as the bio-based polyethylene terephtalate (PET) or polyethylene (PE), chemically identical to their petrochemical counterparts but having a component of biological origin, are in the top of the list. They are followed by new polymers such as PHA and PLA with a significant market growth rate since 2014 with projections to 2020. Research will provide improved strains designed through synthetic and systems biology approaches; furthermore, the use of low-cost substrates will contribute to the widespread application of these bio- based polymers. The durability of plastics is not considered anymore as a virtue, and interesting bioprospecting strategies to isolate microorganisms for assimilating the recalcitrant plastics will pave the way for in vivo strategies for plastic mineralization. In this context, waste management of bio-based plastic will be one of the most important issues in the near future in terms of the circular economy. There is a clear need for standardized labelling and sorting instructions, which should be regulated in a coordinated way by policymakers and material producers. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. SUSTAINABLE TRAILER FLOORING

    OpenAIRE

    John Lu; Marc Chorney; Lowell Peterson

    2009-01-01

    Different trailer flooring materials, including wood-based, aluminum, steel, and synthetic plastic floors, were evaluated in accordance with their durability and sustainability to our natural environment. Wood-based trailer flooring is an eco-friendly product. It is the most sustainable trailer flooring material compared with fossil fuel-intensive steel, aluminum, and plastics. It is renewable and recyclable. Oak, hard maple, and apitong are strong and durable hardwood species that are curren...

  9. Unraveling Dutch citizens' perceptions on the bio-based economy : The case of bioplastics, bio-jetfuels and small-scale bio-refineries

    NARCIS (Netherlands)

    Lynch, Durwin H J; Klaassen, Pim; Broerse, Jacqueline E W

    2017-01-01

    Little is known about how citizens perceive the transition towards a bio-based economy (BBE), despite the fact that they are one of the most important actors in this transition. Citizens' perceptions of bio-based innovations can support policy-makers to improve the quality of decision-making and the

  10. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals.

    Science.gov (United States)

    Schwartz, Thomas J; Shanks, Brent H; Dumesic, James A

    2016-04-01

    Advances in metabolic engineering have allowed for the development of new biological catalysts capable of selectively de-functionalizing biomass to yield platform molecules that can be upgraded to biobased chemicals using high efficiency continuous processing allowed by heterogeneous chemical catalysis. Coupling these disciplines overcomes the difficulties of selectively activating COH bonds by heterogeneous chemical catalysis and producing petroleum analogues by biological catalysis. We show that carboxylic acids, pyrones, and alcohols are highly flexible platforms that can be used to produce biobased chemicals by this approach. More generally, we suggest that molecules with three distinct functionalities may represent a practical upper limit on the extent of functionality present in the platform molecules that serve as the bridge between biological and chemical catalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Scott Reeves; Buckley Walsh

    2003-08-01

    In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression

  12. 77 FR 25632 - Guidelines for Designating Biobased Products for Federal Procurement

    Science.gov (United States)

    2012-05-01

    ... section 3201.2 and adding a definition of the term ``relevant stakeholder,'' which is used in the proposed...,'' ``Qualifying biobased product,'' and ``Relevant stakeholder'' to read as follows: Sec. 3201.2 Definitions... current program guidelines, gather input from government, industry, and public stakeholders on different...

  13. Feasibility Study for the Use of Green, Bio-Based, Efficient Reactive Sorbent Material to Neutralize Chemical Warfare Agents

    Science.gov (United States)

    2012-08-02

    REPORT Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents 14. ABSTRACT 16...way cellulose, lignin and hemicelluloses interact as well as whole wood dissolution occurs in ILs. The present project was conducted to 1. REPORT...Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents Report Title ABSTRACT Over the

  14. Opportunities for using bio-based fibers for value-added composites

    Science.gov (United States)

    Zhiyong Cai; Jerrold E. Winandy

    2006-01-01

    Efficient and economical utilization of various bio-based materials is an effective way to improve forest management, promote long-term sustainability, and restore native ecosystems. However, the dilemma is how to deal with lesser used, undervalued or no-value bio-resources such as small diameter trees, agricultural residues (wheat straw, rice straw, and corn stalk),...

  15. Synthesis and characterization of poly (lactic acid)/chitosan nanocomposites based on renewable resources as biobased-material

    Science.gov (United States)

    Suryani; Agusnar, H.; Wirjosentono, B.; Rihayat, T.; Salisah, Z.

    2018-01-01

    Biobased becomes one of the new breakthrough in the smart engineering, especially in biomedical applications, such as tissue engineering that serves as a supporting physical structure to trigger the growth of skin tissue. From various studies which had been done, it was known that the optimal Biobased healed wounds or injuries in a relatively short time. In this study, a Biobased natural polymer based e.g Poly(Lactic Acid) (PLA)/Chitosan Nanocomposites was made. PLA was synthesized from saba banana (Musa acuminata) as raw material using Ring-Opening Polymerization (ROP) method. PLA was mixed with Chitosan with Chitosan concentration variations of 1%, 3%, and 5% to form a nanocomposites. The analysis result showed that Chitosan concentration in PLA/Chitosan Nanocomposites sample affected the value of tensile strength. The highest value of tensile strength was obtained on a sample of 100 ml volume with a concentration of 3%, which was 120.396 MPa. The highest percentage of elongation was obtained in 100 ml volume sample with 5% concentration, which was 26.3686%. In the hydrophilicity test, the highest percentage of water absorption was obtained in a 200 ml volume sample with 5% concentration, which was 44.615%. The addition of Chitosan to the sample affected the functional group bonding, where there was a functional group of NH2 at the wave number of 2923.92 cm-1. The sample characteristics based on water absorption indicated that the sample was potentially to be used as Biobased construction material.

  16. Bio-Based Nano Composites from Plant Oil and Nano Clay

    Science.gov (United States)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  17. Bio-based materials with novel characteristics for tissue engineering applications - A review.

    Science.gov (United States)

    Bedian, Luis; Villalba-Rodríguez, Angel M; Hernández-Vargas, Gustavo; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2017-05-01

    Recently, a wider spectrum of bio-based materials and materials-based novel constructs and systems has been engineered with high interests. The key objective is to help for an enhanced/better quality of life in a secure way by avoiding/limiting various adverse effects of some in practice traditional therapies. In this context, different methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, bio-based therapeutic constructs are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable materials-based novel constructs for multipurpose applications is essential and a core demand to tackle many human health related diseases. Bio-based materials possess several complementary functionalities, e.g. unique chemical structure, bioactivity, non-toxicity, biocompatibility, biodegradability, recyclability, etc. that position them well in the modern world's materials sector. In this context, the utilization of biomaterials provides extensive opportunities for experimentation in the field of interdisciplinary and multidisciplinary scientific research. With an aim to address the global dependence on petroleum-based polymers, researchers have been redirecting their interests to the engineering of biological materials for targeted applications in different industries including cosmetics, pharmaceuticals, and other biotechnological or biomedical applications. Herein, we reviewed biotechnological advancements at large and tissue engineering from a biomaterials perspective in particular and envision directions of future developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry

    International Nuclear Information System (INIS)

    Hatakeyema, Hyoe; Tanamachi, Noriko; Matsumura, Hiroshi; Hirose, Shigeo; Hatakeyama, Tatsuko

    2005-01-01

    Bio-based polyurethane (PU) composite foams filled with various inorganic fillers, such as barium sulfate (BaSO 4 ), calcium carbonate (CaCO 3 ) and talc were prepared using polyols, such as diethylene glycol, triethylene glycol and polyethylene glycol (molecular weight ca. 200) containing molasses and lignin. Reactive hydroxyl groups in plant components and above polyols were used as reaction sites. Morphological observation of fracture surface of composites was carried out by scanning electron microscopy. Thermal properties of bio-based PU composites were examined by thermogravimetry. It was found that the above composites decompose in two stages reflecting decomposition of organic components. Decomposition temperature increased with increasing filler content, when plant components were homogenously mixed with inorganic fillers. Activation energy calculated by Ozawa-Wall-Flynn method was ca. 150 kJ mol -1 . The durability of composites was predicted using kinetic data. Calculated values indicate that composites with fillers are more durable than that of those without fillers at a moderate temperature region

  19. Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy

    NARCIS (Netherlands)

    Cok, B.|info:eu-repo/dai/nl/371750679; Tsiropoulos, I.; Roes, A.L.|info:eu-repo/dai/nl/303022388; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2014-01-01

    Bio-based succinic acid has the potential to become a platform chemical, i.e. a key building block for deriving both commodity and high-value chemicals, which makes it an attractive compound in a bio-based economy. A few companies and industrial consortia have begun to develop its industrial

  20. Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use

    NARCIS (Netherlands)

    Bos, Harriëtte L.; Meesters, Koen P.H.; Conijn, Sjaak G.; Corré, Wim J.; Patel, Martin K.

    2016-01-01

    Non-renewable energy use, greenhouse gas emissions and land use of two biobased products and biofuel from oil crops is investigated and compared with products from sugar crops. In a bio-based economy chemicals, materials and energy carriers will be produced from biomass. Next to side streams,

  1. A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals.

    Science.gov (United States)

    Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai

    2015-12-01

    In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. © 2015 Authors; published by Portland Press Limited.

  2. Sustainability benefits and challenges of inter-organizational collaboration in bio-based business

    NARCIS (Netherlands)

    Nuhoff-Isakhanyan, Gohar; Wubben, Emiel F.M.; Omta, S.W.F.

    2016-01-01

    Bio-based businesses are often considered to be sustainable. However, they are also linked to sustainability challenges such as deforestation and soil erosion. Encouraged to exploit innovative solutions and enhance sustainability, organizations engaged in bio-based activities extensively explore

  3. Solving decontaminable flooring problems

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Pennsylvania Power and Light wanted to cover deteriorating concrete in unit 2 of its Susquehanna BWR with a smooth, durable, decontaminable coating. Traditionally, floors in the plant had been coated with epoxy paint, but many of these floors suffered delamination, and failed in three to five years. Painting with epoxy would also interrupt operations for as much as three days while the floor dried, yet critical instruments in some areas had to be monitored at least once per shift. In addition, conventional floor surface preparation produced dust and vibration around sensitive equipment. The solution was a dustless scabbling system for surface preparation, followed by the installation of a high-strength acrylic industrial floor known as Silakal. The work was carried out by Pentek. Silikal bonds to the underlying concrete, so that delamination of the floor will not occur even under severe traffic conditions. Another advantage of this type of flooring is that it cures in one hour, so floor resurfacing has only minimal impact on plant operations. (author)

  4. Assessing the Economic Viability of Bio-based Products for Missouri Value-added Crop Production

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas Kalaitzandonakes

    2005-11-30

    While research and development on biobased products has continued strong over the years, parallel attention on the economics and management of such product innovation has been lacking. With the financial support of the Department of Energy, the Economics and Management of Agrobiotechnology Center at the University of Missouri-Columbia has launched a pilot graduate education program that seeks to fill the gap. Within this context, a multi-disciplinary research and teaching program has been structured with an emphasis on new product and innovation economics and management. More specifically, this pilot graduate education program has the following major objectives: (1) To provide students with a strong background in innovation economics, management, and strategy. (2) To diversify the students academic background with coursework in science and technology. (3) To familiarize the student with biobased policy initiatives through interaction with state and national level organizations and policymakers. (4) To facilitate active collaboration with industry involved in the development and production of biobased products. The pilot education program seeks to develop human capital and research output. Although the research is, initially, focused on issues related to the State of Missouri, the results are expected to have national implications for the economy, producers, consumers and environment.

  5. Synthesis and Characterization of Bio-based Nanomaterials from Jabon (Anthocephalus cadamba (Roxb. Miq Wood Bark: an Organic Waste Material from Community Forest

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2015-06-01

    Full Text Available The application of nanotechnology to produce nanomaterials from renewable bio-based materials, like wood bark, has great potential to benefit the wood processing industry. To support this issue, we investigated the production of bio-based nanomaterials using conventional balls milling. Jabon (Anthocephalus cadamba(Roxb. Miq wood bark (JWB, an organic waste material from a community forest was subjected to conventional balls milling for 96 h and was converted into bio-based nanomaterial. The morphology and particle size, chemical components, functional groups and crystallinity of the bio-based nanomaterial were evaluated using scanning electron microscopy (SEM, scanning electron microscopy extended with energy dispersive X-ray spectroscopy (SEM-EDS, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The particle-sizes obtained for the JWB bio-based nanomaterial were between 43 nm to 469 nm and the functional groups were detected as cellulose. The chemical components found were carbon, oxygen, chloride, potassium and calcium, except for the sample produced from sieve type T14, which did not contain chloride. The crystalline structure was calcium oxalate hydrate (C2CaO4.H2O with crystalline sizes 21 nm and 15 nm, produced from sieve types T14 and T200 respectively.

  6. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh; Löf, David; Hvilsted, Søren

    2016-01-01

    A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA)...... stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition....

  7. Investigation of curing rates of bio-based thiol-ene films from diallyl 2,5-furandicaboxylate

    DEFF Research Database (Denmark)

    Larsen, Daniel Bo; Sønderbæk-Jørgensen, Rene; Duus, Jens Ø.

    2018-01-01

    The bio-based monomer, 2,5-furandicarboxylic acid, has been adapted to classic thiol-ene chemistry by derivatization of the acid with allyl alcohol. This new monomer has allowed for the synthesis of new thermoset systems, capable of forming green, sustainable materials through UV-crosslinking. In......The bio-based monomer, 2,5-furandicarboxylic acid, has been adapted to classic thiol-ene chemistry by derivatization of the acid with allyl alcohol. This new monomer has allowed for the synthesis of new thermoset systems, capable of forming green, sustainable materials through UV......-crosslinking. In this study, the synthesis of the new monomer along with thorough kinetic studies of the new thermoset systems are presented. In order to determine kinetic values for the systems, all reactions have been followed by real-time FT-IR. Initially, a study of three different photoinitiators is performed...... on a classic TEMPIC-TATATO system, in order to determine the superior initiator for the new systems. The new monomer is crosslinked with five different thiol compounds in both stoichiometric and off-stoichiometric ratios, yielding an array of bio-based thermosets. The properties of these systems are determined...

  8. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.

    Science.gov (United States)

    Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia

    2016-04-01

    The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Introductory guide to floors and flooring

    CSIR Research Space (South Africa)

    Billingham, PA

    1977-01-01

    Full Text Available not make use of the warming and cooling effects of direct contact with the ground. Indeed the precautions that are necessary to protect such floors against damp and decay may actually reduce the comfort levels within a house. This is because there is a... with resultant discomfort and extra heating costs. Today, in South Africa, most modern homesareof singlestorey con- struction with aconcrete floor slab in direct contact with theground which once again makes its full contribution to the comfort and structural...

  10. Bio-based self-healing coatings based on thermo-reversible Diels-Alder reaction

    NARCIS (Netherlands)

    Turkenburg, D.H.; Durant, Y.; Fischer, H.R.

    2017-01-01

    Stimulated by the growing demand for greener and more sustainable polymer systems we have studied thermoreversible polymer networks composed largely (> 83% w/w) of diethylitaconate of bio-based origin. A series of coating materials has been synthesized consisting of linear chains of diethylitaconate

  11. Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus

    NARCIS (Netherlands)

    Chen, Yuxuan; Yu, Q. L.; Brouwers, H. J.H.

    2017-01-01

    Miscanthus Giganteus (i.e. Elephant Grass) is a cost-effective and extensively available ecological resource in many agricultural regions. This article aims at a fundamental research on a bio-based lightweight concrete using miscanthus as aggregate, i.e. miscanthus lightweight concrete (MLC), with

  12. Robust cladding light stripper for high-power fiber lasers using soft metals.

    Science.gov (United States)

    Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid

    2014-04-20

    In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

  13. Investigation of floor Nusselt number in floor heating system for insulated ceiling conditions

    International Nuclear Information System (INIS)

    Karadag, Refet; Teke, Ismail

    2007-01-01

    In this study, in a floor heated room, natural convection heat transfer over the floor is analysed numerically for different thermal conditions. An equation relevant to Nusselt number over the floor has been obtained by using the numerical data. Different equations are given in the literature. They consider the effect of floor Rayleigh number while neglecting the effect of wall and ceiling thermal conditions. Numerical data obtained in this study show that the Nusselt number over the floor depends on not only the floor Rayleigh number but also the wall Rayleigh number (for insulated ceiling conditions). The equations given in the literature are different from each other due to their not considering the effect of wall and ceiling Rayleigh numbers. This difference between the equations may be eliminated by obtaining an equation containing the effect of floor, wall and ceiling Rayleigh numbers. In this new approach, an equation relevant to the floor Nusselt number that depends on the floor and wall Rayleigh numbers has been obtained in the floor heating system for insulated ceiling conditions. The equation obtained in this study has been compared with the equations given in the literature. It has been seen that the equation obtained in this study matches the numerical values under more extensive thermal conditions than the equations given in the literature. The maximum deviation for the equations given in the literature is 35%, but in the current study, the maximum deviation has been found to be 10%. As a result, it is more convenient to use the equation found in the new approach as a function of Rayleigh number over the floor and wall for insulated ceiling conditions

  14. Thermoplastic poly(urethane urea)s from novel, bio-based amorphous polyester diols

    NARCIS (Netherlands)

    Tang, D.; Noordover, B.A.J.; Sablong, R.J.; Koning, C.E.

    2012-01-01

    In this study, two novel, bio-based, amorphous polyester diols, namely poly(1,2-dimethylethylene adipate) (PDMEA) and poly(1,2-dimethylethylene succinate) (PDMES) are used to prepare thermoplastic poly(urethane urea)s (TPUUs). Interestingly, the TPUUs based on PDMEA show similar thermal and

  15. Twisting biomaterials around your little finger: Environmental impacts of bio-based wrappings

    NARCIS (Netherlands)

    Hermann, B.G.; Blok, K.; Patel, M.K.

    2010-01-01

    Background, aim, and scope Packaging uses nearly 40% of all polymers, a substantial share of which is used for sensitive merchandise such as moisture-sensitive food. To find out if bio-based materials are environmentally advantageous for this demanding application, we compared laminated, printed

  16. Latent Heat Characteristics of Biobased Oleochemical Carbonates as Novel Phase Change Materials

    Science.gov (United States)

    Oleochemical carbonates are biobased materials that were readily prepared through a carbonate interchange reaction between renewable C10-C18 fatty alcohols and dimethyl or diethyl carbonate in the presence of a catalyst. These carbonates have various commercial uses in cosmetic, fuel additive and l...

  17. Enzymatic polymerization of bio-based monomers for applications in hydrogels and coatings

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Nguyen, Hiep Dinh; Storgaard, Thomas

    of the enzymatic catalysts that can provide control over polymer structure in functional polymers. Lipase catalyzed polymerizations (specifically CALB) has been applied to prepare functional polyesters and to evaluate the possibilities of using less stable bio-based monomers such as itaconic acid or its...

  18. Technological change of the energy innovation system: From oil-based to bio-based energy

    International Nuclear Information System (INIS)

    Wonglimpiyarat, Jarunee

    2010-01-01

    This paper concerns the structural developments and the direction of technological change of the energy innovation system, based on the studies of Kuhn's model of scientific change and Schumpeter's model of technological change. The paper uses the case study of Thai government agencies for understanding the way governments can facilitate technological innovation. The analyses are based on a pre-foresight exercise to examine the potential of the bio-based energy and investigate a set of development policies necessary for the direction of energy system development. The results have shown that bio-based energy is seen as the next new wave for future businesses and one of the solutions to the problem of high oil prices to improve the world's economic security and sustainable development. (author)

  19. Fully Biobased Unsaturated Aliphatic Polyesters from Renewable Resources : Enzymatic Synthesis, Characterization, and Properties

    NARCIS (Netherlands)

    Jiang, Yi; Alberda van Ekenstein, Gerhard; Woortman, Albert J. J.; Loos, Katja

    2014-01-01

    Fully biobased saturated and unsaturated aliphatic polyesters and oligoesters are successfully prepared by Candida antarctica lipase B (CALB)-catalyzed polycondensations of succinate, itaconate, and 1,4-butanediol. The effects of monomer substrates and polymerization methods on enzymatic

  20. Soy adhesives that can form durable bonds for plywood, laminated wood flooring, and particleboard

    Science.gov (United States)

    Charles R. Frihart; Michael J. Birkeland; Anthony J. Allen; James M. Wescott

    2010-01-01

    Synthetic adhesives, including urea-formaldehyde (UF) and phenol-formaldehyde (PF), have generally replaced biobased adhesives over the past 70 years because of their durability, low cost, and ease of use. However, in the past few years, concern about formaldehyde emissions, cost, and interest in biobased materials have renewed interest in soy adhesives. The use of soy...

  1. Effect of pelvic floor rehabilitation technique in preventing the postpartum pelvic floor dysfunction

    Directory of Open Access Journals (Sweden)

    Shi-Qiong Li

    2017-04-01

    Full Text Available Objective: To explore the effect of pelvic floor rehabilitation technique in preventing the postpartum pelvic floor dysfunction and on the sexual life quality. Methods: A total of 286 puerpera with pelvic floor dysfunction who were admitted in our hospital from May, 2014 to May, 2015 42 d after delivery were included in the study, and randomized into the treatment group and the control group with 143 cases in each group. After guidance, the puerpera in the control group were given pelvic floor muscle training by themselves at home. On this basis, the puerpera in the treatment group were treated by the pelvic floor rehabilitation apparatus. The puerpera in the two groups were treated for 4 weeks. The pelvic floor function before treatment, 6 months and 1 year after delivery was detected. The color Doppler ultrasound apparatus was used to detect BSD, PUVA, UVJ-M, and BND 3 months after delivery. Results: BND, PUVA-R, PUVA-S, and UVJ-M 3 months after delivery in the treatment groups were significantly lower than those in the control group, while BSD-S was significantly higher than that in the control group. The improvement of type I and II muscle fiber fatigue (%, POP-Q degree, AP indication point (cm, and vaginal dynamic pressure (cmH2O was significantly superior to that in the control group. The comparison of pelvic floor muscle strength classification before treatment between the two groups was not statistically significant. After treatment, the pelvic floor muscle in the two groups was significantly strengthened, and the proportion of V grade patients was significantly increased when compared with before treatment. Conclusions: The postpartum early pelvic floor rehabilitation technique can effectively enhance the pelvic floor function, and prevent the postpartum pelvic floor dysfunction, with an accurate efficacy; therefore, it deserves to be widely recommended in the clinic.

  2. 77 FR 14691 - Approval and Promulgation of Air Quality Implementation Plans; Rhode Island; Reasonably Available...

    Science.gov (United States)

    2012-03-13

    .... Specifically, the requirement does not apply to cold cleaning machines: (1) Used in ``special and extreme... products; 2. Requirements for charcoal lighter materials, aerosol adhesives and floor wax strippers; 3...). This APC regulation applies to anyone that solicits the use of or applies asphalt for road paving...

  3. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate.

    Science.gov (United States)

    Bensabeh, Nabil; Ronda, Joan C; Galià, Marina; Cádiz, Virginia; Lligadas, Gerard; Percec, Virgil

    2018-04-09

    Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) of (-)-menthyl acrylate, a biobased hydrophobic monomer, was investigated at 25 °C in ethanol, isopropanol, ethyl lactate, 2,2,2-trifluoroethanol (TFE), and 2,2,3,3-tetrafluoropropanol (TFP). All solvents are known to promote, in the presence of N ligands, the mechanistically required self-regulated disproportionation of Cu(I)Br into Cu(0) and Cu(II)Br 2 . Both fluorinated alcohols brought out their characteristics of universal SET-LRP solvents and showed the proper polarity balance to mediate an efficient polymerization of this bulky and hydrophobic monomer. Together with the secondary alkyl halide initiator, methyl 2-bromopropionate (MBP), and the tris(2-dimethylaminoethyl)amine (Me 6 -TREN) ligand, TFE and TPF mediated an efficient SET-LRP of MnA at room temperature that proceeds through a self-generated biphasic system. The results presented here demonstrate that Cu(0) wire-catalyzed SET-LRP can be used to target polyMnA with different block lengths and narrow molecular weight distribution at room temperature. Indeed, the use of a combination of techniques that include GPC, 1 H NMR, MALDI-TOF MS performed before and after thioetherification of bromine terminus via "thio-bromo" click chemistry, and in situ reinitiation copolymerization experiments supports the near perfect chain end functionality of the synthesized biobased hydrophobic polymers. These results expand the possibilities of SET-LRP into the area of renewable resources where hydrophobic compounds are widespread.

  4. Sustainability of biomass in a bio-based economy. A quick-scan analysis of the biomass demand of a bio-based economy in 2030 compared to the sustainable supply

    Energy Technology Data Exchange (ETDEWEB)

    Ros, J.; Olivier, J.; Notenboom, J. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Croezen, H.; Bergsma, G. [CE Delft, Delft (Netherlands)

    2012-02-15

    The conversion of a fossil fuel-based economy into a bio-based economy will probably be restricted in the European Union (EU) by the limited supply of ecologically sustainable biomass. It appears realistic that, for the EU, the sustainable biomass supply will be enough to meet about 10% of the final energy and feedstock consumption in 2030. Under optimistic assumptions, this supply might increase to 20%. EU Member States, in their Renewable Energy Action Plans for 2020, already aim to apply an amount of biomass that already approaches this 10%. Therefore, from a sustainability perspective, there is an urgent need to guarantee ecologically sustainable biomass production. In considering sustainable biomass production, land use is the most critical issue, especially the indirect land-use impacts on greenhouse gas emissions and biodiversity. The use of waste resources and agricultural and forestry residues, that does not involve additional land use, therefore, would be a sustainable option. Technically, it is possible to use these types of resources for most applications in a bio-based economy. However, it seems unlikely that, by 2030, waste and residue resources will contribute more than three to four per cent to the final energy and feedstock consumption in Europe. Moreover, many waste and residue resources currently already have useful applications; for instance, as feed or soil improvers. These are the main findings of a quick-scan analysis carried out by the PBL Netherlands Environmental Assessment Agency and CE Delft on the sustainability of a bio-based economy. Three priorities can be distinguished in the transition to an ecologically sustainable bio-based economy that aims to reduce the consumption of fossil fuels: (1) develop new technologies, procedures and infrastructure to collect or to produce more biomass without using directly or indirectly valuable natural land; (2) develop technologies to produce hydrocarbons from types of biomass that have potentially

  5. Decontamination of floor surfaces

    International Nuclear Information System (INIS)

    Smirous, F.

    1983-01-01

    Requirements are presented put on the surfaces of floors of radiochemical workplaces. The mechanism is described of retaining the contaminant in the surface of the flooring, ways of reducing the hazards of floor surface contamination, decontamination techniques and used decontamination agents. (J.P.)

  6. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Proper Estimation of the Energy Consumption in A Carbon Dioxide-MEA Stripper

    DEFF Research Database (Denmark)

    Madeddu, Claudio; Errico, Massimiliano; Baratti, Roberto

    In the field of CCS, the chemical absorption/desorption using amines represents one of the most easily implemented process for the reduction of the carbon dioxide generated by combustion plants. The high energy consumption in the solvent regeneration section represents the major concern for its...... fully industrial application. In the design of a carbon dioxide-MEA stripper, once the process targets are fixed, the estimation of the reboiler duty represents a crucial point for what concerns the quantification of the energy requirement. Furthermore, the vapor flow produced in the reboiler influences...... in simultaneous multicomponent material transfer, energy transfer and chemical reactions, is fundamental for an accurate design of the system. In this work the solvent regeneration section of a pilot-plant post-combustion CO2 capture facility was modeled using a rate-based approach, focusing on some key...

  8. Bio-based polyurethane foams toward applications beyond thermal insulation

    International Nuclear Information System (INIS)

    Gama, Nuno V.; Soares, Belinda; Freire, Carmen S.R.; Silva, Rui; Neto, Carlos P.; Barros-Timmons, Ana; Ferreira, Artur

    2015-01-01

    Highlights: • Coffee grounds wastes were successfully liquefied yielding a bio-based polyol. • Coffee grounds derived foams formulations were optimized by tuning reagents’ contents. • The viscoelastic properties of these foams are promising to expand their applications. - Abstract: In this work the preparation of viscoelastic bio-based polyurethane foams (PUFs) using polyols obtained via acid liquefaction of coffee grounds wastes has been optimized. In a first stage, the effect of different ratios of isocyanate content to hydroxyl number (0.6, 0.7 and 0.8) and of three distinct percentages of catalyst (3%, 5% and 7%) on the extent of the polymerization reaction was studied by infrared spectroscopy. Next, different percentages of surfactant (14%, 16% and 18%) and blowing agent (12%, 14% and 16%) were used to assess their effect on the density, thermal conductivity and mechanical properties of the foams, including their recovery time. The mechanical properties of the ensuing foams proved to be very interesting due to their viscoelastic behavior. PUFs were also characterized by scanning electron microscopy (SEM) revealing a typical cellular structure and by thermogravimetric analysis (TGA) which proved that these materials are thermally stable up to 190 °C. These results suggest other potential applications for these materials beyond heat insulation in areas where damping properties can be an added value

  9. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    Science.gov (United States)

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa

    2016-03-01

    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  10. Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts

    Directory of Open Access Journals (Sweden)

    X. Q. Liu

    2012-04-01

    Full Text Available In this paper a bio-based epoxy with outstanding thermal and mechanical properties was synthesized using a rosin-based epoxy monomer and a rosin-based curing agent. The chemical structures of rosin based epoxy monomer and curing agent were confirmed by Nuclear Magnetic Resonance (NMR and Fourier Transform Infrared (FT-IR spectra. The flexural mechanical and dynamic mechanical properties as well as thermal stability of the cured epoxy were investigated. The results showed that the cured epoxy exhibited a glass transition temperature (Tg of 164°C and its flexural strength and modulus were as high as 70 and 2200 MPa, respectively. This indicated that a wholly bio-based epoxy resin possessing high performance was successfully obtained.

  11. Flooring-systems and their interaction with usage of the floor

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian; Andersen, Lars Vabbersgaard

    2017-01-01

    Some flooring-system designs might be sensitive to their vibrational performance, as there might be the risk that serviceability-limit-state problems may be encountered. For evaluating the vibrational performance of the flooring-system at the design stage, decisions need to be made by the enginee...

  12. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility

    NARCIS (Netherlands)

    Oever, van den Martien; Molenveld, Karin

    2017-01-01

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of

  13. Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Gangarapu, S.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely

  14. Securing renewable resource supplies for changing market demands in a bio-based economy

    NARCIS (Netherlands)

    Dam, van J.E.G.; Klerk-Engels, de B.; Struik, P.C.; Rabbinge, R.

    2005-01-01

    Establishment of a bio-based economy has been recognised as one of the key issues for sustainable development For future developments renewable resources will play a key role as CO2 neutral raw material for sustainable industrial production to curb depletion of fossil resources. Options to fully

  15. Conversion of polyhydroxybutyrate (PHB) to methyl crotonate for the production of biobased monomers

    NARCIS (Netherlands)

    Spekreijse, J.; Notre, Le J.E.L.; Sanders, J.P.M.; Scott, E.L.

    2015-01-01

    Within the concept of the replacement of fossil with biobased resources, bacterial polyhydroxybutyrate (PHB) can be obtained from volatile fatt y acids (VFAs) from agro-food waste streams and used as an intermediate toward attractive chemicals. Here we address a crucial step in this process, the

  16. Supporting shop floor intelligence

    DEFF Research Database (Denmark)

    Carstensen, Peter; Schmidt, Kjeld; Wiil, Uffe Kock

    1999-01-01

    Many manufacturing enterprises are now trying to introduce various forms of flexible work organizations on the shop floor. However, existing computer-based production planning and control systems pose severe obstacles for autonomous working groups and other kinds of shop floor control to become r......-to-day production planning by supporting intelligent and responsible workers in their situated coordination activities on the shop floor....

  17. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The Recent Developments in Biobased Polymers toward General and Engineering Applications : Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    NARCIS (Netherlands)

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering

  19. Why we need resilience thinking to meet societal challenges in bio-based production systems

    NARCIS (Netherlands)

    Ge, L.; Anten, N.P.R.; Dixhoorn, van I.D.E.; Feindt, P.H.; Kramer, K.; Leemans, H.B.J.; Gielen-Meuwissen, M.P.M.; Spoolder, H.A.M.; Sukkel, W.

    2016-01-01

    The need to feed an increasing world population and to
    respond to the effects of climate change creates
    unprecedented challenges for bio-based production systems.
    Many of these systems have been designed to maximize
    productivity and efficiency under standard

  20. A study of the use of bio-based technologies (lubricant and grease) in rail applications.

    Science.gov (United States)

    2014-05-01

    The objective of the project was to study the efficacy of using bio-based lubricant and grease technologies in railroad applications : (locomotives and maintenance of way equipment). Several commercially available rail curve greases were identified a...

  1. 17 CFR 3.11 - Registration of floor brokers and floor traders.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Registration of floor brokers and floor traders. 3.11 Section 3.11 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... a contract market or registered as a derivatives transaction execution facility by the Commission...

  2. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.

    Science.gov (United States)

    Iwata, Tadahisa

    2015-03-09

    Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stabilized and Immobilized Bacillus subtilis Arginase for the Biobased Production of Nitrogen-Containing Chemicals

    NARCIS (Netherlands)

    Könst, P.M.; Turras, P.M.C.C.D.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2010-01-01

    L-Ornithine could serve as an intermediate in the biobased production of 1,4-diaminobutane from L-arginine. Using the concept of biorefinery, L-arginine could become widely available from biomass waste streams via the nitrogen storage polypeptide cyanophycin. Selective hydrolysis of L-arginine to

  4. Process systems engineering studies for catalytic production of bio-based platform molecules from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2017-01-01

    Highlights: • A process-systems engineering study for production of bio-based platform molecules to is presented. • Experimentally verified catalysis studies for biomass conversion are investigated. • New separations for effective recovery of bio-based platform molecules are developed. • Separations are integrated with catalytic biomass conversions. • Proposed process can compete economically with the current production approaches. - Abstract: This work presents a process-system engineering study of an integrated catalytic conversion strategy to produce bio-based platform molecules (levulinic acid (LA), furfural (FF), and propyl guaiacol (PG)) from hemicellulose (C_5), cellulose (C_6), and lignin fractions of lignocellulosic biomass. A commercial-scale process based on the strategy produces high numerical carbon yields (overall yields: 35.2%; C_6-to-LA: 20.4%, C_5-to-FF: 69.2%, and Lignin-to-PG: 13.3%) from a dilute concentration of solute (1.3–30.0 wt.% solids), but a high recovery of these molecules requires an efficient separation system with low energy requirement. A heat exchanger network significantly reduced the total energy requirements of the process. An economic analysis showed that the minimum selling price of LA as the highest value-added product (42.3 × 10"3 t of LA/y using 700 × 10"3 dry t/y of corn stover) is US$1707/t despite using negative economic parameters, and that this system can be cost-competitive with current production approaches.

  5. Floor cooler for floor trough of a nuclear reactor

    International Nuclear Information System (INIS)

    Friedrich, H.J.

    1985-01-01

    Cooling pipes are situated below the floor trough of a BWR, which are connected to the annular distribution or collection pipes. The distribution and collection pipes are connected by parallel hairpin pipes with involute shape to the centre of the floor trough. These hairpin pipes are situated in a lower plane than the annular distribution pipe to the centre and in a higher plane from the centre to the outer annular collector pipe. (orig./HP) [de

  6. [Functional aspects of pelvic floor surgery].

    Science.gov (United States)

    Wagenlehner, F M E; Gunnemann, A; Liedl, B; Weidner, W

    2009-11-01

    Pelvic floor dysfunctions are frequently seen in females. The human pelvic floor is a complex structure and heavily stressed throughout female life. Recent findings in the functional anatomy of the pelvic floor have led to a much better understand-ing, on the basis of which enormous improvements in the therapeutic options have arisen. The pelvic floor activity is regulated by three main muscular forces that are responsible for vaginal tension and suspension of the pelvic floor -organs, bladder and rectum. For different reasons laxity in the vagina or its supporting ligaments as a result of altered connective tissue can distort this functional anatomy. A variety of symptoms can derive from these pelvic floor dysfunctions, such as urinary urge and stress incontinence, abnormal bladder emptying, faecal incontinence, obstructive bowel disease syndrome and pelvic pain. Pelvic floor reconstruction is nowadays driven by the concept that in the case of pelvic floor symptoms restoration of the anatomy will translate into restoration of the physiology and ultimately improve the patients' symptoms. The exact surgical reconstruction of the anatomy is there-fore almost exclusively focused on the restoration of the lax pelvic floor ligaments. An exact identification of the anatomic lesions preoperatively is eminently necessary, to allow for an exact anatomic reconstruction with respect to the muscular forces of the pelvic floor. Georg Thieme Verlag Stuttgart * New York.

  7. Pelvic floor physical therapy in urogynecologic disorders.

    Science.gov (United States)

    Kotarinos, Rhonda K

    2003-08-01

    Physical therapists are uniquely qualified to treat pelvic floor dysfunction with conservative management techniques. Techniques associated with incontinence and support functions of the pelvic floor include bladder training and pelvic floor rehabilitation: pelvic floor exercises, biofeedback therapy, and pelvic floor electrical stimulation. Pain associated with mechanical pelvic floor dysfunction can be treated by physical therapists utilizing various manual techniques and modalities. Research documents that conservative management is effective in treating many conditions associated with pelvic floor dysfunction. Research should be conducted to determine if addressing diastasis recti and contracture of the pelvic floor musculature should be a component of the standard physical therapy protocol.

  8. Performance Assessment of Hazardous Air Pollutant (HAP)Free Chemical Paint Strippers on Military Coatings for Validation to Federal Specification TT-R-2918A

    Science.gov (United States)

    2016-03-01

    ARL-TN-0742 ● MAR 2016 US Army Research Laboratory Performance Assessment of Hazardous Air Pollutant (HAP)–Free Chemical Paint...the originator. ARL-TN-0742 ● MAR 2016 US Army Research Laboratory Performance Assessment of Hazardous Air Pollutant (HAP...COVERED (From - To) 1–30 April 2014 4. TITLE AND SUBTITLE Performance Assessment of Hazardous Air Pollutant (HAP)–Free Chemical Paint Strippers

  9. School Flooring Factors

    Science.gov (United States)

    McGrath, John

    2012-01-01

    With all of the hype that green building is receiving throughout the school facility-management industry, it's easy to overlook some elements that may not be right in front of a building manager's nose. It is helpful to examine the role floor covering plays in a green building project. Flooring is one of the most significant and important systems…

  10. Improved natural rubber composites reinforced with a complex filler network of biobased nanoparticles and ionomer

    Science.gov (United States)

    Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...

  11. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    Science.gov (United States)

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  12. Bio-Based Polyols from Seed Oils for Water-Blown Rigid Polyurethane Foam Preparation

    Directory of Open Access Journals (Sweden)

    Paweena Ekkaphan

    2016-01-01

    Full Text Available The preparation of water-blown rigid polyurethane (RPUR foams using bio-based polyols from sesame seed oil and pumpkin seed oil has been reported. Polyols synthesis involved two steps, namely, hydroxylation and alcoholysis reaction. FTIR, NMR, and ESI-MS were used to monitor the process of the synthesized polyols and their physicochemical properties were determined. The resulting polyols have OH number in the range of 340–351 mg KOH/g. RPUR foams blown with water were produced from the reaction of biopolyols with commercial polymeric methylene diphenyl diisocyanate (PMDI. The proper PUR formulations can be manipulated to produce the desired material applications. These seed oil-based RPUR foams exhibited relatively high compressive strength (237.7–240.2 kPa with the density in the range of 40–45 kg/m3. Additionally, the cell foam morphology investigated by scanning electron microscope indicated that their cellular structure presented mostly polygonal closed cells. The experimental results demonstrate that these bio-based polyols can be used as an alternative starting material for RPUR production.

  13. Design methodology for bio-based processing: Biodiesel and fatty alcohol production

    DEFF Research Database (Denmark)

    Simasatikul, Lida; Arpornwichanopa, Amornchai; Gani, Rafiqul

    2013-01-01

    A systematic design methodology is developed for producing multiple main products plus side products starting with one or more bio-based renewable source. A superstructure that includes all possible reaction and separation operations is generated through thermodynamic insights and available data........ Economic analysis and net present value are determined to find the best economically and operationally feasible process. The application of the methodology is presented through a case study involving biodiesel and fatty alcohol productions....

  14. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    OpenAIRE

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ?drop-in? biofuels. Some microo...

  15. Bio-based composites from stone groundwood applied to new product development

    OpenAIRE

    Julián Pérez, Fernando; Méndez González, José Alberto; Espinach Orús, Xavier; Verdaguer Pujadas, Narcís; Mutjé Pujol, Pere; Vilaseca Morera, Fabiola

    2012-01-01

    This paper deals with the product design, engineering, and material selection intended for the manufacturing of an eco-friendly chair. The final product is expected to combine design attributes with technical and legal feasibility with the implementation of new bio-based materials. Considering the industrial design, a range of objectives and trends were determined after setting the market requirements, and the final concept was proposed and modeled. The product geometry, production technology...

  16. Price floors for emissions trading

    International Nuclear Information System (INIS)

    Wood, Peter John; Jotzo, Frank

    2011-01-01

    Price floors in greenhouse gas emissions trading schemes can guarantee minimum abatement efforts if prices are lower than expected, and they can help manage cost uncertainty, possibly as complements to price ceilings. Provisions for price floors are found in several recent legislative proposals for emissions trading. Implementation however has potential pitfalls. Possible mechanisms are government commitments to buy back permits, a reserve price at auction, or an extra fee or tax on acquittal of emissions permits. Our analysis of these alternatives shows that the fee approach has budgetary advantages and is more compatible with international permit trading than the alternatives. It can also be used to implement more general hybrid approaches to emissions pricing. - Research highlights: → Price floors for emissions trading schemes guarantee a minimum carbon price. → Price floors mean that emissions can be less than specified by the ETS cap. → We examine how price floors can relate to different policy objectives. → We compare different mechanisms for implementing a price floor. → We find that a mechanism where there is an extra tax or fee has advantages.

  17. Floor heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, U

    1984-02-01

    The question of whether PPC- and VPE-floor heating pipes can endure damage when incompletely imbedded in the floor finish is investigated in an experimental setup. An expansion of the pipe, caused by a temperature increase from 20/sup 0/C to 50/sup 0/C was measured and considered too small to deduce the degree of danger from the damage.

  18. Potential of commodity chemicals to become bio-based according to maximum yields and petrochemical prices

    NARCIS (Netherlands)

    Straathof, Adrie J.J.; Bampouli, A.

    2017-01-01

    Carbohydrates are the prevailing biomass components available for bio-based production. The most direct way to convert carbohydrates into commodity chemicals is by one-step conversion at maximum theoretical yield, such as by anaerobic fermentation without side product formation. Considering these

  19. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials

    International Nuclear Information System (INIS)

    Weiss, Martin; Patel, Martin; Heilmeier, Hermann; Bringezu, Stefan

    2007-01-01

    The enhanced use of biomass for the production of energy, fuels, and materials is one of the key strategies towards sustainable production and consumption. Various life cycle assessment (LCA) studies demonstrate the great potential of bio-based products to reduce both the consumption of non-renewable energy resources and greenhouse gas emissions. However, the production of biomass requires agricultural land and is often associated with adverse environmental effects such as eutrophication of surface and ground water. Decision making in favor of or against bio-based and conventional fossil product alternatives therefore often requires weighing of environmental impacts. In this article, we apply distance-to-target weighing methodology to aggregate LCA results obtained in four different environmental impact categories (i.e., non-renewable energy consumption, global warming potential, eutrophication potential, and acidification potential) to one environmental index. We include 45 bio- and fossil-based product pairs in our analysis, which we conduct for Germany. The resulting environmental indices for all product pairs analyzed range from -19.7 to +0.2 with negative values indicating overall environmental benefits of bio-based products. Except for three options of packaging materials made from wheat and cornstarch, all bio-based products (including energy, fuels, and materials) score better than their fossil counterparts. Comparing the median values for the three options of biomass utilization reveals that bio-energy (-1.2) and bio-materials (-1.0) offer significantly higher environmental benefits than bio-fuels (-0.3). The results of this study reflect, however, subjective value judgments due to the weighing methodology applied. Given the uncertainties and controversies associated not only with distance-to-target methodologies in particular but also with weighing approaches in general, the authors strongly recommend using weighing for decision finding only as a

  20. Pelvic floor and sexual male dysfunction

    Directory of Open Access Journals (Sweden)

    Antonella Pischedda

    2013-04-01

    Full Text Available The pelvic floor is a complex multifunctional structure that corresponds to the genito- urinary-anal area and consists of muscle and connective tissue. It supports the urinary, fecal, sexual and reproductive functions and pelvic statics. The symptoms caused by pelvic floor dysfunction often affect the quality of life of those who are afflicted, worsening significantly more aspects of daily life. In fact, in addition to providing support to the pelvic organs, the deep floor muscles support urinary continence and intestinal emptying whereas the superficial floor muscles are involved in the mechanism of erection and ejaculation. So, conditions of muscle hypotonia or hypertonicity may affect the efficiency of the pelvic floor, altering both the functionality of the deep and superficial floor muscles. In this evolution of knowledge it is possible imagine how the rehabilitation techniques of pelvic floor muscles, if altered and able to support a voiding or evacuative or sexual dysfunction, may have a role in improving the health and the quality of life.

  1. Maxillary Sinus Floor Augmentation

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Jensen, Janek Dalsgaard

    2017-01-01

    , radiological and histomorphometric outcome as well as complications are presented after maxillary sinus floor augmentation applying the lateral window technique with a graft material, maxillary sinus membrane elevation without a graft material and osteotome-mediated sinus floor elevation with or without...

  2. The effect of sub-floor heating on house-dust-mite populations on floors and in furniture.

    Science.gov (United States)

    de Boer, Rob

    2003-01-01

    It is well known that dehydrating conditions for house dust mites can be created by simply raising the temperature, causing loss of body water and eventually death. Thus, it can be expected that conditions for dust mites are less favourable on floors supplied with sub-floor heating. This was examined in a study of 16 houses with sub-floor heating and 21 without. The pattern of changes in air humidity and temperature on the floors was investigated and compared to known data of the tolerance of dust mites. Also the resident mite populations were compared. Floors with sub-floor heating had, on average, fewer mites, but the difference with unheated floors was small. It was remarkable that mite numbers were also lower in upholstered furniture. Another important observation was that some houses with sub-floor heating had high mite numbers, indicating that this type of heating is compatible with a thriving mite population. Temperature and humidity conditions of heated floors may allow mites not only to survive, but also to remain active in winter. A moderate increase in temperature, a moderate decrease in (absolute) air humidity, or a combination of both, will suffice to keep the humidity all winter below the Critical Equilibrium Humidity, the level of air humidity that is critical for mite growth and reproduction, hence for allergen production. However, it is argued that measures to suppress allergen production by house dust mites are likely to be far more effective if taken in summer rather than in winter.

  3. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  4. Development of floor smear sampler (floor radioactive contamination measuring instrument) for nuclear facilities

    International Nuclear Information System (INIS)

    Miyagawa, Minoru; Ito, Haruo; Nozawa, Katsuro; Shinohara, Yotaro; Hashimoto, Hiroshi.

    1980-01-01

    The control of the floor contamination with radioactive substances in nuclear facilities is strictly carried out by smear method, in which the contaminants on floor surfaces are wiped off with filter papers or cloths, and the contamination density on the floor surfaces is measured through their intensity of radioactivity. This wiping work is laborious since it is carried out in leaning-over posture when many samples must be taken in wide floor area. Therefore, to achieve labor saving in this work, an automatic sampler was developed. In the floor smear sampler developed, samples are taken on long band type wiping cloths only by handle operation, and the sample numbers are printed. When many samples are taken in wide floor area, this is especially effective, and the labor saving by 1/3 to 1/2 can be achieved. At present, this sampler is put in practical use in Hamaoka Nuclear Power Station. At the time of trial manufacture, the method of wiping, the mechanisms of wiping, cloth feeding and running, the contact pressure and the number of times of wiping affecting wiping efficiency and the required torque of a motor were examined. The developed sampler is that of constant contact pressure, vibration wiping type, and the rate of sampling is 10 sec per one sample. 100 samples can be taken on one roll of wiping cloth. The results of performance test are reported. (Kako, I.)

  5. Design methodology for bio-based processing: Biodiesel and fatty alcohol production

    DEFF Research Database (Denmark)

    Simasatikul, Lida; Arpornwichanop, Amornchai; Gani, Rafiqul

    2012-01-01

    A systematic design methodology is developed for producing two main products plus side products starting with one or more bio-based renewable source. A superstructure that includes all possible reaction and separation operations is generated through thermodynamic insights and available data. The ....... Economic analysis and net present value are determined to find the best economically and operationally feasible process. The application of the methodology is presented through a case study involving biodiesel and fatty alcohol productions....

  6. Production and 3D printing processing of bio-based thermoplastic filament

    OpenAIRE

    Gkartzou, Eleni; Koumoulos, Elias P.; Charitidis, Costas A.

    2017-01-01

    In this work, an extrusion-based 3D printing technique was employed for processing of biobased blends of Poly(Lactic Acid) (PLA) with low-cost kraft lignin. In Fused Filament Fabrication (FFF) 3D printing process, objects are built in a layer-by-layer fashion by melting, extruding and selectively depositing thermoplastic fibers on a platform. These fibers are used as building blocks for more complex structures with defined microarchitecture, in an automated, cost-effective process, with minim...

  7. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Synthetics, mineral oils, and bio-based lubricants chemistry and technology

    CERN Document Server

    Rudnick, Leslie R

    2005-01-01

    As the field of tribology has evolved, the lubrication industry is also progressing at an extraordinary rate. Updating the author's bestselling publication, Synthetic Lubricants and High-Performance Functional Fluids, this book features the contributions of over 60 specialists, ten new chapters, and a new title to reflect the evolving nature of the field: Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. The book contains chapters on all major lubricant fluids used in a wide range of applications. For each type of lubricant, the authors discuss the historical develo

  9. Study on thermal properties of synthetic and bio-based polyurethane

    Directory of Open Access Journals (Sweden)

    Šercer Mladen

    2015-01-01

    Full Text Available Polymers that are created by the chemical polymerization of naturally occurring monomers are attracting considerable commercial interest in the last few years because of their non-toxicity, biodegradability and biocompatibility and use of feedstock that is renewable. The development of specialized lignin compounds, such as electrically conducting polymers, engineering plastics and polyurethane, is an area of highest interest and growth. The paper will present the comparison of the mechanical and thermal properties of conventional polyurethane and bio-based polyurethane, i.e. polyurethane based on polyols produced by liquefaction of waste wood biomass.

  10. Linear Alkylbenzenesulfonates in indoor Floor Dust

    DEFF Research Database (Denmark)

    Madsen, Jørgen Øgaard; Wolkoff, Peder; Madsen, Jørgen Øgaard

    1999-01-01

    The amount of Linear Alkylbenzenesulfonates (LAS) in the particle fraction of floor dust sampled from 7 selected public buildings varied between 34 and 1500 microgram per gram dust, while the contents of the fibre fractions generally were higher with up to 3500 microgram LAS/g dust. The use...... of a cleaning agent with LAS resulted in an increase of the amount of LAS in the floor dust after floor wash relative to just before floor wash. However, the most important source of LAS in the indoor floor dust appears to be residues of detergent in clothing. Thus, a newly washed shirt contained 2960 microgram...

  11. A point at the horizon. Start of an intersectoral Business Plan Biobased Economy

    International Nuclear Information System (INIS)

    2011-06-01

    This document is the starting point of a joint business plan for the transition to a Dutch biobased economy (BBE), in which the 6 top sectors chemistry, agro-food, horticulture and propagation materials, logistics, energy and water want to join forces to give more shape to the leading role of the Netherlands in the transition to a sustainable society. [nl

  12. Effects of Floor Covering Resistance of a Radiant Floor on System Energy and Exergy Performances

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Floor covering resistance (material and thickness) can be influenced by subjective choices (architectural design, interior design, texture, etc.) with significant effects on the performance of a radiant heating and cooling system. To study the effects of floor covering resistance on system...... performance, a water-based radiant floor heating and cooling system (dry, wooden construction) was considered to be coupled to an air-to-water heat pump, and the effects of varying floor covering resistances (0.05 m2K/W, 0.09 m2K/W and 0.15 m2K/W) on system performance were analyzed in terms of energy...... and exergy. In order to achieve the same heating and cooling outputs, higher average water temperatures are required in the heating mode (and lower temperatures in the cooling mode) with increasing floor covering resistance. These temperature requirements decrease the heat pump’s performance (lower...

  13. Key parameters in testing biodegradation of bio-based materials in soil.

    Science.gov (United States)

    Briassoulis, D; Mistriotis, A

    2018-05-05

    Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Biobased Packaging - Application in Meat Industry

    Directory of Open Access Journals (Sweden)

    S. Wilfred Ruban

    2009-04-01

    Full Text Available Because of growing problems of waste disposal and because petroleum is a nonrenewable resource with diminishing quantities, renewed interest in packaging research is underway to develop and promote the use of “bio-plastics.” In general, compared to conventional plastics derived from petroleum, bio-based polymers have more diverse stereochemistry and architecture of side chains which enable research scientists a greater number of opportunities to customize the properties of the final packaging material. The primary challenge facing the food (Meat industry in producing bio-plastic packaging, currently, is to match the durability of the packaging with product shelf-life. Notable advances in biopolymer production, consumer demand for more environmentally-friendly packaging, and technologies that allow packaging to do more than just encompass the food are driving new and novel research and developments in the area of packaging for muscle foods. [Vet. World 2009; 2(2.000: 79-82

  15. Isosorbide as the structural component of bio-based unsaturated polyesters for use as thermosetting resins.

    Science.gov (United States)

    Sadler, Joshua M; Toulan, Faye R; Nguyen, Anh-Phuong T; Kayea, Ronald V; Ziaee, Saeed; Palmese, Giuseppe R; La Scala, John J

    2014-01-16

    In recent years, the development of renewable bio-based resins has gained interest as potential replacements for petroleum based resins. Modified carbohydrate-based derivatives have favorable structural features such as fused bicyclic rings that offer promising candidates for the development of novel renewable polymers with improved thermomechanical properties when compared to early bio-based resins. Isosorbide is one such compound and has been utilized as the stiffness component for the synthesis of novel unsaturated polyesters (UPE) resins. Resin blends of BioUPE systems with styrene were shown to possess viscosities (120-2200 cP) amenable to a variety of liquid molding techniques, and after cure had Tgs (53-107 °C) and storage moduli (430-1650 MPa) that are in the desired range for composite materials. These investigations show that BioUPEs containing isosorbide can be tailored during synthesis of the prepolymer to meet the needs of different property profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Comparison of radiocarbon techniques for the assessment of biobase content in fuels

    International Nuclear Information System (INIS)

    Culp, Randy; Cherkinsky, Alex; Ravi Prasad, G.V.

    2014-01-01

    A comparison was made between various radiocarbon measurement techniques for the purpose of quantifying each methods capability for the proper apportionment of biobase-derived additives to gasoline. Measurement techniques include (1) direct liquid scintillation counting, (2) carbon dioxide absorption followed by liquid scintillation counting, (3) conversion to benzene followed by liquid scintillation counting and (4) accelerator mass spectrometry. In addition, stable isotope ratios of carbon and hydrogen were determined to assist in the authentication of a fuels source with regard to petrochemical or biobase origin is required for the confirmation of minimum anti-knock components, consumer awareness and proper assessment for regulatory taxation. Accelerator mass spectrometry was found to be the most precise technique followed by conversion of fuel to benzene with liquid scintillation counting and direct counting by liquid scintillation counting. Finally, liquid scintillation counting of absorbed carbon dioxide was found to be the least precise and should not be used for this analysis. The high to low precisions correlate with the high to low cost of equipment and support required by each of these methods except for direct liquid scintillation counting. Therefore, laboratories interested in developing capability to perform such authentication can use this data to consider the economics of the optimum technique to use for radiocarbon measurement

  17. Intumescent formulations based on lignin and phosphinates for the bio-based textiles

    Science.gov (United States)

    Mandlekar, N.; Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Malucelli, G.; Guan, J.

    2017-10-01

    This study investigates new intumescent formulations based on lignin and phosphinates to improve the flame retardant properties of Polyamide 11, while preserving the bio-based characteristics of this latter. Lignin has the advantage of being a bio-based compound and can be effectively used as carbon source for the design of intumescent systems in combination with other flame retardant additives. Metal phosphinates belong to a novel class of phosphorus flame retardants. Despite their increasing use, there is lack of scientific understanding as far as their fire retardancy mechanism is considered, especially in char forming polymeric materials. In this context, Polyamide 11 was melt blended with lignin and metal phosphinates. The possibility of melt spinning the prepared blends were assessed through melt flow index (MFI) tests; thermogravimetric (TG) analyses and cone calorimetry tests were exploited for investigating the thermal stability and the combustion behaviour of the obtained products, respectively. MFI results indicate that some formulations are suitable for melt spinning processes to generate flame retardant multifilament. Furthermore, the combination of lignin and phosphinates provides charring properties to polyamide 11. Finally, cone calorimetry data confirmed that the designed intumescent formulations could remarkably reduce PHRR through formation of protective char layer, hence slowing down the combustion process.

  18. A comparative study on thermal efficiency between the present floor and a ceramic floor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.M.; Kim, K.S. [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Choi, B.S. [Kyung Hee University, Yongin (Korea, Republic of); Ko, J.S.; Park, S.K. [Bomwoo and Co. LTD., Kwangju (Korea, Republic of)

    1999-04-01

    A ceramic floor with improved thermal conductivity and efficiency has been developed in this study. The new ceramic floor minimizes the shrinkage rate to below 0.07% and shows almost no cleavage. There is no need to repair the ceramic floor because its bottom surface is flat. It especially shows an excellent performance in the test of a compressive strength (300 kg/cm{sup 2} based on 28 days), a flexural strength (64 kg/cm{sup 2} based on 28 days), and a convenient pressing. It is lighter than the present floor and it is expected to be applicable for a self-leveling ceramic motar in the residences and apartments. It shows an excellent character in the thermal conductivity and other physical properties compare to the present cement mortar. 5 refs., 3 figs., 2 tabs.

  19. Floors: Care and Maintenance.

    Science.gov (United States)

    Post Office Dept., Washington, DC.

    Guidelines, methods and policies regarding the care and maintenance of post office building floors are overviewed in this handbook. Procedures outlined are concerned with maintaining a required level of appearance without wasting manpower. Flooring types and characteristics and the particular cleaning requirements of each type are given along with…

  20. Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring

    International Nuclear Information System (INIS)

    Plum, M.

    1995-01-01

    The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil

  1. Investigations on KONUS beam dynamics using the pre-stripper drift tube linac at GSI

    Science.gov (United States)

    Xiao, C.; Du, X. N.; Groening, L.

    2018-04-01

    Interdigital H-mode (IH) drift tube linacs (DTLs) based on KONUS beam dynamics are very sensitive to the rf-phases and voltages at the gaps between tubes. In order to design these DTLs, a deep understanding of the underlying longitudinal beam dynamics is mandatory. The report presents tracking simulations along an IH-DTL using the PARTRAN and BEAMPATH codes together with MATHCAD and CST. Simulation results illustrate that the beam dynamics design of the pre-stripper IH-DTL at GSI is sensitive to slight deviations of rf-phase and gap voltages with impact to the mean beam energy at the DTL exit. Applying the existing geometrical design, rf-voltages, and rf-phases of the DTL were re-adjusted. In simulations this re-optimized design can provide for more than 90% of transmission of an intense 15 emA beam keeping the reduction of beam brilliance below 25%.

  2. 77 FR 10939 - Driving Innovation and Creating Jobs in Rural America Through Biobased and Sustainable Product...

    Science.gov (United States)

    2012-02-24

    ... Sustainable Product Procurement Memorandum for the Heads of Executive Departments and Agencies The Bio... economic development, create new jobs, and provide new markets for farm commodities. Biobased and sustainable products help to increase our energy security and independence. The Federal Government, with...

  3. Green Thermosetting Factory: Novel Star-Shaped Biobased Systems and Their Thermosetting Resins; Synthesis and Characterization

    Science.gov (United States)

    Jahandideh, Arash

    Increasing attentions toward sustainable development, economic and environmental issues have led to many attempts at replacing the petroleum-based materials with renewables. Substitution of petroleum-based platforms with green alternative technologies is beneficiary in different ways. Using bio-renewables reduces the dependency of the national plastic industry to the petroleum resources and substantially promotes the environmental profile and sustainability of the product. It is expected that the emergence of the corn-based thermosetting industry generates substantial profits for the corn production sector. Developments in the emerging biobased thermosets are spectacular from a technological point of view. However, there are still several disadvantages associated with the current biobased thermosetting resins, e.g. low processability, environmental issues, expensive sources and poor thermomechanical properties. Use of natural fibers not only contributes to the production of a more environmentally friendly product, but also has advantages such as low-weight product and low manufacturing costs. The results of this study show a possibility of production of biocomposites made from natural fibers and star-shaped resin, synthesized from corn-based materials (lactic acid and itaconic acid) and different multihydroxyl core molecules. These resins were synthesized via two-steps strategy: polycondensation of the monomers with the core molecules followed by end-functionalization of the branches by methacrylic anhydride or itaconic acid. The results have shown that these resin are capable of competing with or even surpassing fossil fuel based resins in terms of cost and eco-friendliness aspect. Inexpensive biobased raw material, better environmental profile, low viscosity, and better processability of the matrix along with better thermomechanical properties of the produced biocomposites are of advantages expected for these systems.

  4. Going greener: Synthesis of fully biobased unsaturated polyesters for styrene crosslinked resins with enhanced thermomechanical properties

    Directory of Open Access Journals (Sweden)

    C. S. M. F. Costa

    2017-11-01

    Full Text Available The main goal of this work was the development of fully biobased unsaturated polyesters (UPs that upon crosslinking with unsaturated monomers (UM could lead to greener unsaturated polyester resins (UPRs with similar thermomechanical properties to commercial fossil based UPR. After the successful synthesis of the biobased UPs, those were crosslinked with styrene (Sty, the most commonly used monomer, and the influence of the chemical structure of the UPs on the thermomechanical characteristics of UPRs were evaluated. The properties were compared with those of a commercial resin (Resipur 9837©. The BioUPRs presented high gel contents and contact angles that are similar to the commercial resin. The thermomechanical properties were evaluated by dynamic mechanical thermal analysis (DMTA and it was found that the UPR synthesized using propylene glycol (PG, succinic acid (SuAc and itaconic acid (ItAc presented very close thermomechanical properties compared to the commercial resin.

  5. Building with electromagnetic shield structure for individual floors

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1991-01-01

    This invention relates to a building having a floor-by-floor electromagnetic shield structure well-suited for application to an information network system in which an electromagnetically shielded space is divided by individual floors and electric waves are utilized within the building on a floor-by-floor basis. (author). 8 figs

  6. Building with electromagnetic shield structure for individual floors

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1991-09-10

    This invention relates to a building having a floor-by-floor electromagnetic shield structure well-suited for application to an information network system in which an electromagnetically shielded space is divided by individual floors and electric waves are utilized within the building on a floor-by-floor basis. (author). 8 figs.

  7. Gallic acid as an oxygen scavenger in bio-based multilayer packaging films

    OpenAIRE

    Pant, Astrid; Sängerlaub, Sven; Müller, Kajetan

    2017-01-01

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and ...

  8. Flooring choices for newborn ICUs.

    Science.gov (United States)

    White, R D

    2007-12-01

    Floors are a major element of newborn intensive care unit (NICU) construction. They provide visual cues, sound control, and with certain materials, some degree of physical comfort for workers. Flooring materials may entail a significant cost for installation and upkeep and can have substantial ecological impact, both in the choice of the flooring itself, as well as the substances used to clean it. In this article the important aspects to consider for each factor are explored and recommendations are offered for appropriate choices in various NICU areas.

  9. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  10. Physical and mechanical properties of biobased materials - Starch polylactate and polyhydroxybutyrate

    DEFF Research Database (Denmark)

    Bergenholtz, Karina P.; Nielsen, Per Væggemose; Olsen, M.B.

    2001-01-01

    Commercial and semi-commercial biobased materials (Polylactate, PLA, polyhydroxybutyrate, PHB, wheat starch and corn starch) were investigated. Physical and mechanical characterisation (tensile strength, elongation, tear strength, compression, gas permeability (CO2 and O-2) and water vapour...... permeability (WVP)) was examined. Tests on both films and cups show potential use of these materials for primary food packaging, especially PLA and PHB. An interesting O-2:CO2 permeability ratio (1:7 to 1:12) was seen, which make these materials suitable for packaging of food with high respiration...

  11. Formaldehyde and TVOC emission behavior of laminate flooring by structure of laminate flooring and heating condition.

    Science.gov (United States)

    An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong

    2011-03-15

    Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.

    Science.gov (United States)

    Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan

    2017-05-03

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).

  13. Comparison of radiocarbon techniques for the assessment of biobase content in fuels.

    Science.gov (United States)

    Culp, Randy; Cherkinsky, Alex; Ravi Prasad, G V

    2014-11-01

    A comparison was made between various radiocarbon measurement techniques for the purpose of quantifying each methods capability for the proper apportionment of biobase-derived additives to gasoline. Measurement techniques include (1) direct liquid scintillation counting, (2) carbon dioxide absorption followed by liquid scintillation counting, (3) conversion to benzene followed by liquid scintillation counting and (4) accelerator mass spectrometry. In addition, stable isotope ratios of carbon and hydrogen were determined to assist in the authentication of a fuels source with regard to petrochemical or biobase origin is required for the confirmation of minimum anti-knock components, consumer awareness and proper assessment for regulatory taxation. Accelerator mass spectrometry was found to be the most precise technique followed by conversion of fuel to benzene with liquid scintillation counting and direct counting by liquid scintillation counting. Finally, liquid scintillation counting of absorbed carbon dioxide was found to be the least precise and should not be used for this analysis. The high to low precisions correlate with the high to low cost of equipment and support required by each of these methods except for direct liquid scintillation counting. Therefore, laboratories interested in developing capability to perform such authentication can use this data to consider the economics of the optimum technique to use for radiocarbon measurement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Modelling continuous pharmaceutical and bio-based processes at plant-wide level: A roadmap towards efficient decision-making

    DEFF Research Database (Denmark)

    Ramin, Pedram; Mansouri, Seyed Soheil; Udugama, Isuru A.

    2018-01-01

    The importance of developing simulation models for decision making in pharmaceutical and bio-based production processes is elaborated in this article. The advantages of modelling continuous processes are outlined and certain barriers in this regard are identified. Although there have been some...

  15. Rigid, bio-based polyamides from galactaric acid derivatives with elevated glass transition temperatures and their characterization

    NARCIS (Netherlands)

    Wróblewska, Aleksandra A.; Bernaerts, Katrien; de Wildeman, Stefaan

    2017-01-01

    A comparative study was prepared investigating the synthesis of polyamides using bio-based building blocks derived from sugar beet pulp, namely 2,3:4,5-di-O-methylene-galactarate (GalXH) and 2,3:4,5-di-O-isopropylidene-galactarate (GalXMe) derivatives. Two different approaches towards the synthesis

  16. Crustal Ages of the Ocean Floor - Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crustal Ages of the Ocean Floor Poster was created at NGDC using the Crustal Ages of the Ocean Floor database draped digitally over a relief of the ocean floor...

  17. Stripper, shut-in and orphan wells in joint operations

    International Nuclear Information System (INIS)

    Nixon, R.

    1999-01-01

    Low productivity wells, stripper wells, can be an excellent source of income to independent operators or small companies, but a serious financial burden for larger companies. Shut-in wells, for most companies, are either waiting on a market and production facilities, or represent deferred abandonment liabilities. Orphan wells also reflect financial distress. The firm, Cord Oil and Gas Management Ltd., was formed in 1986 to specifically assist oil and gas companies, sophisticated investors and financial institutions with the management, enhancement and disposition of non-core or low productivity assets. This type of production, depending on the number of wells and cumulative production, can be the life blood of a small organization or a serious drain on the administrative personnel and financial resources of larger organizations. Philosophically, industry and/or government needs to manage the eventuality of abandonments by establishing financial criteria. Some suggestions for industry include: (1) establish provisions within joint operating agreements to set aside an abandonment and environmental cleanup fund; (2) minimize the inventory of abandonment candidates by an ongoing program of reclamation; (3) offset abandonment costs with salvage value of tangible equipment under AFE approval; and (4) voluntarily restrict transfer abandonment liabilities with producing assets on a selective basis. Some suggestions for governments include: (1) fund the orphan well by a deposit for every well drilled; (2) restrict the transfer of liabilities for abandoned and inactive wells by ensuring that the transferee is financially capable; and (3) access the chain of title to ensure non-operators remain responsible for the proportionate shares of abandonment and cleanup costs

  18. 75 FR 66126 - Multilayered Wood Flooring From China

    Science.gov (United States)

    2010-10-27

    ...)] Multilayered Wood Flooring From China AGENCY: United States International Trade Commission. ACTION: Institution... flooring, provided for in subheadings 4409.10, 4409.29, 4412.31, 4412.32, 4412.39, 4412.94, 4412.99, 4418... multilayered wood flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC...

  19. 75 FR 79019 - Multilayered Wood Flooring From China

    Science.gov (United States)

    2010-12-17

    ...)] Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in the subject... imports from China of multilayered wood flooring, provided for in subheadings 4409.10, 4409.29, 4412.31... multilayered wood flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC...

  20. Mode of delivery and Pelvic floor disorder

    International Nuclear Information System (INIS)

    Noor, R.; Neelam, H.; Bashir, M.S.

    2017-01-01

    Objective: To compare pelvic floor dysfunction in non pregnant women who had delivered vaginally versus those with cesarean delivery. Methodology: The prevalence of pelvic floor disorders among non pregnant women was assesses by using a standardized tool pelvic floor distress inventory short form (PFDI-20). Data was collected from Jinnah Hospital Lahore, Pakistan. Results: Total numbers of participants were 278. 47.12% subjects had moderate, 36.69% miner and 16.19% had severe pelvic floor dysfunction. The symptoms of pelvic organ prolapse were more prevalent (mean value is 59.1876) than Urinary Distress (mean value is 40.5426), while the Colorectal-Anal Distress (mean value is 35.9150) were least prevalent. Conclusion: Pelvic floor disorders are very common among females and are strongly associated with mode of delivery. Although spontaneous vaginal birth was extensively associated with pelvic floor disorders the instrumental delivery affects most. (author)

  1. Functional anatomy of pelvic floor

    Directory of Open Access Journals (Sweden)

    Salvatore Rocca Rossetti

    2016-03-01

    Full Text Available Generally, descriptions of the pelvic floor are discordant, since its complex structures and the complexity of pathological disorders of such structures; commonly the descriptions are sectorial, concerning muscles, fascial developments, ligaments and so on. On the contrary to understand completely nature and function of the pelvic floor it is necessary to study it in the most unitary view and in the most global aspect, considering embriology, philogenesy, anthropologic development and its multiple activities others than urological, gynaecological and intestinal ones. Recent acquirements succeeded in clarifying many aspects of pelvic floor activity, whose musculature has been investigated through electromyography, sonography, magnetic resonance, histology, histochemistry, molecular research. Utilizing recent research concerning not only urinary and gynecologic aspects but also those regarding statics and dynamics of pelvis and its floor, it is now possible to study this important body part as a unit; that means to consider it in the whole body economy to which maintaining upright position, walking and behavior or physical conduct do not share less than urinary, genital, and intestinal functions. It is today possible to consider the pelvic floor as a musclefascial unit with synergic and antagonistic activity of muscular bundles, among them more or less interlaced, with multiple functions and not only the function of pelvic cup closure.

  2. External Hand Forces Exerted by Long-Term Care Staff to Push Floor-Based Lifts: Effects of Flooring System and Resident Weight.

    Science.gov (United States)

    Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C

    2016-09-01

    The aim of this study was to investigate the effects of flooring type and resident weight on external hand forces required to push floor-based lifts in long-term care (LTC). Novel compliant flooring is designed to reduce fall-related injuries among LTC residents but may increase forces required for staff to perform pushing tasks. A motorized lift may offset the effect of flooring on push forces. Fourteen female LTC staff performed straight-line pushes with two floor-based lifts (conventional, motor driven) loaded with passengers of average and 90th-percentile resident weights over four flooring systems (concrete+vinyl, compliant+vinyl, concrete+carpet, compliant+carpet). Initial and sustained push forces were measured by a handlebar-mounted triaxial load cell and compared to participant-specific tolerance limits. Participants rated pushing difficulty. Novel compliant flooring increased initial and sustained push forces and subjective ratings compared to concrete flooring. Compared to the conventional lift, the motor-driven lift substantially reduced initial and sustained push forces and perceived difficulty of pushing for all four floors and both resident weights. Participants exerted forces above published tolerance limits only when using the conventional lift on the carpet conditions (concrete+carpet, compliant+carpet). With the motor-driven lift only, resident weight did not affect push forces. Novel compliant flooring increased linear push forces generated by LTC staff using floor-based lifts, but forces did not exceed tolerance limits when pushing over compliant+vinyl. The motor-driven lift substantially reduced push forces compared to the conventional lift. Results may help to address risk of work-related musculoskeletal injury, especially in locations with novel compliant flooring. © 2016, Human Factors and Ergonomics Society.

  3. 76 FR 76435 - Multilayered Wood Flooring From China

    Science.gov (United States)

    2011-12-07

    ...)] Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in the subject... multilayered wood flooring, provided for in subheadings 4409.10, 4409.29, 4412.31, 4412.32, 4412.39, 4412.94... flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC, Fountain Inn, SC...

  4. Bio-based alkyds by direct enzymatic bulk polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh

    to a corresponding classical reference. In a further development of the system, it has been found possible to use the esters of pentaerythritol and stearic acid in combination with the penta-aze derivative for the preparation of pseudo alkyds containing only pentaerythritol as polyol with high degree of branching....... Bio-based alkyds prepared from a combination of glycerol, and tall oil fatty acids, and azelaic acid by enzymatic polymerization show improved hydrophobicity and lower glass transition temperatures compared to an alkyd prepared from the same raw materials by a classical boiling method. The enzymatic...... of pentaerythritol derivatized with azelaic acid (or penta-aze) was examined and tested for the production of more branched alkyd systems. A photostability test validated the concept, and the method also resulted in alkyds with improved hydrophobicity and lower glass transition temperatures compared...

  5. Antimicrobial Membranes of Bio-Based PA 11 and HNTs Filled with Lysozyme Obtained by an Electrospinning Process

    Directory of Open Access Journals (Sweden)

    Valeria Bugatti

    2018-03-01

    Full Text Available Bio-based membranes were obtained using Polyamide 11 (PA11 from renewable sources and a nano-hybrid composed of halloysite nanotubes (HNTs filled with lysozyme (50 wt % of lysozyme, as a natural antimicrobial molecule. Composites were prepared using an electrospinning process, varying the nano-hybrid loading (i.e., 1.0, 2.5, 5.0 wt %. The morphology of the membranes was investigated through SEM analysis and there was found to be a narrow average fiber diameter (0.3–0.5 μm. The mechanical properties were analyzed and correlated to the nano-hybrid content. Controlled release of lysozyme was followed using UV spectrophotometry and the release kinetics were found to be dependent on HNTs–lysozyme loading. The experimental results were analyzed by a modified Gallagher–Corrigan model. The application of the produced membranes, as bio-based pads, for extending the shelf life of chicken slices has been tested and evaluated.

  6. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  7. The use of bio-based materials to reduce the environmental impact of construction

    OpenAIRE

    Lawrence, Michael

    2014-01-01

    In the UK, the construction industry is responsible for over 50 % of total carbon emissions. 20% of these carbon emissions are embodied within the construction and materials of buildings and the balance is expended in environmental control (heating, lighting, air conditioning) and other ‘in use’ aspects of occupation of buildings. This is replicated in other countries to a similar extent. This lecture identifies ways in which the use of bio-based construction materials can significantly reduc...

  8. Performance of palm oil as a biobased machining lubricant when drilling inconel 718

    OpenAIRE

    Abd Rahim Erween; Sasahara Hiroyuki

    2017-01-01

    Metalworking fluid acts as cooling and lubrication agent at the cutting zone in the machining process. However, conventional Metalworking fluid such mineral oil gives negative impact on the human and environment. Therefore, the manufacture tends to substitute the mineral oil to bio-based oil such as vegetables and synthetic oil. In this paper, the drilling experiment was carried out to evaluate the efficiency of palm oil and compare it with minimal quantity lubrication technique using synthet...

  9. Magnetic resonance imaging of pelvic floor dysfunction.

    Science.gov (United States)

    Lalwani, Neeraj; Moshiri, Mariam; Lee, Jean H; Bhargava, Puneet; Dighe, Manjiri K

    2013-11-01

    Pelvic floor dysfunction is largely a complex problem of multiparous and postmenopausal women and is associated with pelvic floor or organ descent. Physical examination can underestimate the extent of the dysfunction and misdiagnose the disorders. Functional magnetic resonance (MR) imaging is emerging as a promising tool to evaluate the dynamics of the pelvic floor and use for surgical triage and operative planning. This article reviews the anatomy and pathology of pelvic floor dysfunction, typical imaging findings, and the current role of functional MR imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. [Continuous improvement of portable domestic pelvic floor neuromuscular electrical stimulation on the pelvic floor function of patients with urinary incontinence].

    Science.gov (United States)

    Sun, Zhijing; Zhu, Lan; Lang, Jinghe; Wang, Wei; Shi, Honghui; Pang, Hongxia; Shi, Xinwen

    2015-12-01

    To evaluate continuous improvement of portable domestic pelvic floor neuromuscular electrical stimulation on the pelvic floor function of patients with stress urinary incontinence after short-term pelvic floor electrophysiological treatment in hospital. Totally 60 women with stress urinary incontinence were recruited for this randomized controlled trial. The control group including a total of 30 patients, only received 4 weeks pelvic floor electrophysiological treatment in the hospital. Family consolidation treatment group (experimental group) including 30 patients, after 4-week treatment in hospital, received 12-week of pelvic floor neuromuscular electrical stimulation using portable electrical stimulator at home under the guidance of doctors. In post-treatment 6 months and 9 months, 1-hour pad test was measured for urine leakage, pelvic floor electrical physiological parameters were assessed, and subjective improvement of symptoms of urinary incontinence were evaluated. All these data were analysed to compare the effect of the two groups. In 9 months after treatment, average change of urine leakage, the control group and experiment group were (75±24)% versus (99±3)%, the difference was statistically significant (Pcontinuous improvement of pelvic floor function.

  11. Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity

    DEFF Research Database (Denmark)

    Nielsen, Jens; Archer, John; Essack, Magbubah

    2017-01-01

    , represents a remarkable source of biodiversity that can be geared towards economical and sustainable bioproduction processes in the local area and can be competitive in the international bio-based economy. Recent bioprospecting studies, conducted by the King Abdullah University of Science and Technology...

  12. Secondary Resources in the Bio-Based Economy : A Computer Assisted Survey of Value Pathways in Academic Literature

    NARCIS (Netherlands)

    Davis, Chris B.; Aid, Graham; Zhu, B.

    2017-01-01

    Research on value pathways for organic wastes has been steadily increasing in recent decades. There have been few considerably broad overview studies of such materials and their valuation potential in the bio-based economy in part because of the vast multitude of materials and processes that can

  13. Modular Flooring System

    Science.gov (United States)

    Thate, Robert

    2012-01-01

    The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped

  14. Knowledge of the pelvic floor in nulliparous women

    OpenAIRE

    Neels, Hedwig; Wyndaele, Jean-Jacques; Tjalma, Wiebren A. A.; De Wachter, Stefan; Wyndaele, Michel; Vermandel, Alexandra

    2016-01-01

    [Purpose] Proper pelvic floor function is important to avoid serious dysfunctions including incontinence, prolapse, and sexual problems. The current study evaluated the knowledge of young nulliparous women about their pelvic floor and identified what additional information they wanted. [Subjects and Methods] In this cross-sectional survey, a validated, 36 item questionnaire was distributed to 212 nulliparous women. The questionnaire addressed demography, pelvic floor muscles, pelvic floor dys...

  15. Container floor at high temperatures

    International Nuclear Information System (INIS)

    Reutler, H.; Klapperich, H.J.; Mueller-Frank, U.

    1978-01-01

    The invention describes a floor for container which is stressed at high, changing temperatures and is intended for use in gas-cooled nuclear reactors. Due to the downward cooling gas flow in these types of reactor, the reactor floor is subjected to considerable dimensional changes during switching on and off. In the heating stage, the whole graphite structure of the reactor core and floor expands. In order to avoid arising constraining forces, sufficiently large expansion spaces must be allowed for furthermore restoring forces must be present to close the gaps again in the cooling phase. These restoring forces must be permanently present to prevent loosening of the core cuits amongst one another and thus uncontrollable relative movement. Spring elements are not suitable due to fast fatigue as a result of high temperatures and radiation exposure. It is suggested to have the floor elements supported on rollers whose rolling planes are downwards inclined to a fixed point for support. The construction is described in detail by means of drawings. (GL) [de

  16. No bulging of floor heating pipes to be expected in case of incomplete floor plastering

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, U

    1983-02-01

    According to advertising slogans floor heating pipes are said to be damaged prematurely by bulges if they are not completely surrounded by flooring plaster. The author has thoroughly dealt with this problem and made the respective measurements. He found out that there are so few bulges occurring that they cannot lead to damages.

  17. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    Science.gov (United States)

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  18. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials

    NARCIS (Netherlands)

    Weiss, M.|info:eu-repo/dai/nl/156419912; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Heilmeier, H.; Bringezu, S.

    2007-01-01

    The enhanced use of biomass for the production of energy, fuels, and materials is one of the key strategies towards sustainable production and consumption. Various life cycle assessment (LCA) studies demonstrate the great potential of bio-based products to reduce both the consumption of

  19. Recognition and Management of Nonrelaxing Pelvic Floor Dysfunction

    OpenAIRE

    Faubion, Stephanie S.; Shuster, Lynne T.; Bharucha, Adil E.

    2012-01-01

    Nonrelaxing pelvic floor dysfunction is not widely recognized. Unlike in pelvic floor disorders caused by relaxed muscles (eg, pelvic organ prolapse or urinary incontinence, both of which often are identified readily), women affected by nonrelaxing pelvic floor dysfunction may present with a broad range of nonspecific symptoms. These may include pain and problems with defecation, urination, and sexual function, which require relaxation and coordination of pelvic floor muscles and urinary and ...

  20. Floor-Fractured Craters through Machine Learning Methods

    Science.gov (United States)

    Thorey, C.

    2015-12-01

    Floor-fractured craters are impact craters that have undergone post impact deformations. They are characterized by shallow floors with a plate-like or convex appearance, wide floor moats, and radial, concentric, and polygonal floor-fractures. While the origin of these deformations has long been debated, it is now generally accepted that they are the result of the emplacement of shallow magmatic intrusions below their floor. These craters thus constitute an efficient tool to probe the importance of intrusive magmatism from the lunar surface. The most recent catalog of lunar-floor fractured craters references about 200 of them, mainly located around the lunar maria Herein, we will discuss the possibility of using machine learning algorithms to try to detect new floor-fractured craters on the Moon among the 60000 craters referenced in the most recent catalogs. In particular, we will use the gravity field provided by the Gravity Recovery and Interior Laboratory (GRAIL) mission, and the topographic dataset obtained from the Lunar Orbiter Laser Altimeter (LOLA) instrument to design a set of representative features for each crater. We will then discuss the possibility to design a binary supervised classifier, based on these features, to discriminate between the presence or absence of crater-centered intrusion below a specific crater. First predictions from different classifier in terms of their accuracy and uncertainty will be presented.

  1. Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing

    Directory of Open Access Journals (Sweden)

    Yu Gao

    2017-12-01

    Full Text Available Thermoplastic vulcanizate (TPV combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide (PLA and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid (PBBSI were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material.

  2. Bio-based economy in the Netherlands. Macro-economic outline of a large-scale introduction of green resources in the Dutch energy supply

    International Nuclear Information System (INIS)

    Van der Hoeven, D.

    2009-03-01

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. This is the public version of studies [nl

  3. Development of stripper films made of high strength, long life carbon nitride

    International Nuclear Information System (INIS)

    Oyaizu, Mitsuhiro; Sugai, Isamu; Yoshida, Koji; Haruyama, Yoichi.

    1994-01-01

    The heavy ion accelerators such as tandem type van de Graaff, linear accelerators, cyclotrons and so on raise the acceleration efficiency usually by producing multivalent ions by making the charge conversion of heavy ions using carbon thin films. However, when the electrons of large atomic number ions of low energy, high intensity current are stripped, the conventional carbon thin films on the market or home made were very short in their life, and have become the cause of remarkably lowering the acceleration efficiency. The concrete objectives of the development are the use of the charge conversion of unstable nuclear ions in the E arena accelerator for JHP of the future project of Institute of Nuclear Study and the manufacture of the carbon films which are used for the charge conversion of the H beam of high energy, but at the time of exchanging the films, there is the problem of the radiation exposure of large amount, therefore, the development of high reliability, long life stripper films has been strongly demanded. The experiment was carried out by controlled carbon arc discharge process using both AC and DC and the ion beam sputtering process using reactive nitrogen gas. The results are reported. (K.I.)

  4. Comparison of panoramic radiograph with cone-beam computed tomography in assessment of maxillary sinus floor and nasal floor

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Bokkasam

    2015-01-01

    Full Text Available Introduction: Panoramic radiograph is frequently prescribed by dentists for implant planning and, hence, accurate assessment of anatomical structures in panoramic radiograph is of utmost importance. Aims: The aim of the present study is to know the accuracy of panoramic radiograph in assessment of relationship between maxillary sinus floor and posterior teeth roots, and the distance from alveolar crest to nasal floor by comparing it with that of cone-beam computed tomographic (CBCT image. Materials and Methods: Panoramic and CBCT images of 30 patients were analyzed. The topographic relationship of each root of posterior teeth to the maxillary sinus floor was evaluated and classified into three classes. The distance from the peak point on maxillary alveolar crest to nasal floor was measured in panoramic radiograph as well as in CBCT image. All the measurements were made by built-in measurement tools. Results: Class 1 roots in panoramic radiograph showed high agreement (86% with CBCT image, followed by class 0 (76%. There was a significant difference in the measurements of alveolar bone height (ABH in the nasal floor region with a P value of 0.018. Conclusion: Panoramic radiograph is reliable in assessment of nasal floor and maxillary sinus, provided position of the patient, distortion, and the inherent magnification factor are taken into consideration.

  5. Imaging pelvic floor disorders. 2. rev. ed.

    International Nuclear Information System (INIS)

    Stoker, Jaap; Taylor, Stuart A.; DeLancey, John O.L.

    2008-01-01

    This volume builds on the success of the first edition of imaging pelvic floor disorders and is aimed at those practitioners with an interest in the imaging, diagnosis and treatment of pelvic floor dysfunction. Concise textual information from acknowledged experts is complemented by high-quality diagrams and images to provide a thorough update of this rapidly evolving field. Introductory chapters fully elucidate the anatomical basis underlying disorders of the pelvic floor. State of the art imaging techniques and their application in pelvic floor dysfunction are then discussed in detail. Additions since the first edition include consideration of the effect of aging and new chapters on perineal ultrasound, functional MRI and MRI of the levator muscles. The closing sections of the book describe the modern clinical management of pelvic floor dysfunction, including prolapse, urinary and faecal incontinence and constipation, with specific emphasis on the integration of diagnostic and treatment algorithms. (orig.)

  6. Imaging pelvic floor disorders. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Stoker, Jaap [Amsterdam Univ. (Netherlands). Dept. of Radiology; Taylor, Stuart A. [University College Hospital, London (United Kingdom). Dept. of Specialist X-Ray; DeLancey, John O.L. (eds.) [Michigan Univ., Ann Arbor, MI (United States). L4000 Women' s Hospital

    2008-07-01

    This volume builds on the success of the first edition of imaging pelvic floor disorders and is aimed at those practitioners with an interest in the imaging, diagnosis and treatment of pelvic floor dysfunction. Concise textual information from acknowledged experts is complemented by high-quality diagrams and images to provide a thorough update of this rapidly evolving field. Introductory chapters fully elucidate the anatomical basis underlying disorders of the pelvic floor. State of the art imaging techniques and their application in pelvic floor dysfunction are then discussed in detail. Additions since the first edition include consideration of the effect of aging and new chapters on perineal ultrasound, functional MRI and MRI of the levator muscles. The closing sections of the book describe the modern clinical management of pelvic floor dysfunction, including prolapse, urinary and faecal incontinence and constipation, with specific emphasis on the integration of diagnostic and treatment algorithms. (orig.)

  7. System dynamics modelling of the European demand for bio-based plastics: An analysis of scaling and learning effects and framework conditions on price competitiveness and market growth

    OpenAIRE

    Horvat, Djerdj; Wydra, Sven

    2017-01-01

    Bio-based plastics are used as raw materials in a wide range of applications and provide potential for mitigating climate change by lowering CO2 emissions. However, because of the high production costs compared to fossil-based alternative products, they are currently not cost competitive on the market. Moreover, the decrease of oil price as main antecedent of fossil-based plastics has even been diminishing their competiveness. Thus, the future of bio-based plastics on the market depends on th...

  8. Floor heating maximizes residents` comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkanen, P.; Wikstroem, T.

    1996-11-01

    Storing heat in floors by using economical night-time electricity does not increase the specific consumption of heating. According to studies done by IVO, the optimum housing comfort is achieved if the room is heated mainly by means of floor heating that is evened out by window or ceiling heating, or by a combination of all three forms of heating. (orig.)

  9. 78 FR 30329 - Multilayered Wood Flooring from China

    Science.gov (United States)

    2013-05-22

    ...)] Multilayered Wood Flooring from China AGENCY: United States International Trade Commission. ACTION: Notice of...-1179 (Final) concerning multilayered wood flooring (``MLWF'') from China. For further information... reconsider ``its decision not to investigate domestic producers of hardwood plywood used for flooring'' 2. to...

  10. Pelvic floor function during and after first pregnancy

    NARCIS (Netherlands)

    Brummen, H.J. van

    2006-01-01

    This study evaluated the effects the first pregnancy and childbirth on the pelvic floor. Pregnancy and vaginal delivery can negatively affect pelvic floor function. Micturition symptoms, defecation symptoms and sexual dysfunction are all signs of an impaired pelvic floor function. These symptoms are

  11. Gait of dairy cows on floors with different slipperiness.

    Science.gov (United States)

    Telezhenko, E; Magnusson, M; Bergsten, C

    2017-08-01

    This study assessed the slip resistance of different types of solid flooring in cattle housing using a range of technical tests and gait analysis. Dynamic and static coefficient of friction, skid resistance, and abrasiveness were tested on concrete flooring with a smooth finish, a grooved pattern, or a tamped pattern, acid-resistant mastic asphalt, soft rubber mats, and a worn slatted concrete floor. Coefficients of friction and skid resistance were tested under clean and slurry-soiled conditions. Linear kinematic variables were assessed in 40 cows with trackway measurements after the cows passed over the floors in a straight walk. All gait variables were assessed as deviations from those obtained on the slatted concrete floor, which was used as a baseline. The coefficient of friction tests divided the floors into 3 categories: concrete flooring, which had a low coefficient of friction (0.29-0.41); mastic asphalt flooring, which had medium values (0.38-0.45); and rubber mats, which had high values (0.49-0.57). The highest abrasion (g/10 m) was on the asphalt flooring (4.48), and the concrete flooring with a tamped pattern had significantly higher abrasiveness (2.77) than the other concrete floors (1.26-1.60). Lowest values on the skid-resistance tests (dry/wet) were for smooth concrete (79/35) and mastic asphalt (65/47), especially with a slurry layer on the surface. Gait analysis mainly differentiated floors with higher friction and abrasion by longer strides and better tracking. Step asymmetry was lower on floors with high skid-resistance values. The most secure cow gait, in almost every aspect, was observed on soft rubber mats. Relationships between gait variables and physical floor characteristics ranged from average to weak (partial correlations 0.54-0.16). Thus, none of the physical characteristics alone was informative enough to characterize slip resistance. With reference to gait analysis, the abrasiveness of the hard surfaces was more informative than the

  12. Mapping of multi-floor buildings: A barometric approach

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Xiao, Jizhong

    2011-01-01

    This paper presents a new method for mapping multi5floor buildings. The method combines laser range sensor for metric mapping and barometric pressure sensor for detecting floor transitions and map segmentation. We exploit the fact that the barometric pressure is a function of the elevation......, and it varies between different floors. The method is tested with a real robot in a typical indoor environment, and the results show that physically consistent multi5floor representations are achievable....

  13. Some Passive Damping Sources on Flooring Systems besides the TMD

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2010-01-01

    Impulsive loads and walking loads can generate problematic structural vibrations in flooring-systems. Measures that may be taken to mitigate the problem would often be to consider the implementation of a tuned mass damper or even more advanced vibration control technologies; this in order to add...... damping to the structure. Basically also passive humans on a floor act as a damping source, but it also turns out from doing system identification tests with a floor strip that a quite simple set-up installed on the floor (cheap and readily at hand) might do a good job in terms of reducing vertical floor...... vibrations for some floors. The paper describes the tests with the floor strip, and the results, in terms of dynamic floor behaviour, are compared with what would be expected had the floor instead been equipped with a tuned mass damper....

  14. Structural Foams of Biobased Isosorbide-Containing Copolycarbonate

    Directory of Open Access Journals (Sweden)

    Stefan Zepnik

    2017-01-01

    Full Text Available Isosorbide-containing copolycarbonate (Bio-PC is a partly biobased alternative to conventional bisphenol A (BPA based polycarbonate (PC. Conventional PC is widely used in polymer processing technologies including thermoplastic foaming such as foam injection molding. At present, no detailed data is available concerning the foam injection molding behavior and foam properties of Bio-PC. This contribution provides first results on injection-molded foams based on isosorbide-containing PC. The structural foams were produced by using an endothermic chemical blowing agent (CBA masterbatch and the low pressure foam injection molding method. The influence of weight reduction and blowing agent concentration on general foam properties such as density, morphology, and mechanical properties was studied. The test specimens consist of a foam core in the center and compact symmetrical shell layers on the sides. The thickness of the foam core increases with increasing weight reduction irrespective of the CBA concentration. The specific (mechanical bending properties are significantly improved and the specific tensile properties can almost be maintained while reducing the density of the injection-molded parts.

  15. Life cycle inventory of manufacturing prefinished engineered wood flooring in eastern U.S. with comparison to solid strip wood flooring

    Science.gov (United States)

    Richard D. Bergman; Scott A. Bowe

    2011-01-01

    Building products have come under increased scrutiny because of environmental impacts from their manufacture. Our study followed the life cycle inventory approach for prefinished engineered wood flooring in the eastern US and compared the results with those of solid strip wood flooring. Our study surveyed five engineered wood flooring manufacturers in the eastern US....

  16. Experimental Verification of an Instrument to Test Flooring Materials

    Science.gov (United States)

    Philip, Rony; Löfgren, Hans, Dr

    2018-02-01

    The focus of this work is to validate the fluid model with different flooring materials and the measurements of an instrument to test flooring materials and its force attenuating capabilities using mathematical models to describe the signature and coefficients of the floor. The main contribution of the present work focus on the development of a mathematical fluid model for floors. The aim of the thesis was to analyze, compare different floor materials and to study the linear dynamics of falling impacts on floors. The impact of the hammer during a fall is captured by an accelerometer and response is collected using a picoscope. The collected data was analyzed using matlab least square method which is coded as per the fluid model. The finding from this thesis showed that the fluid model works with more elastic model but it doesn’t work for rigid materials like wood. The importance of parameters like velocity, mass, energy loss and other coefficients of floor which influences the model during the impact of falling on floors were identified and a standardized testing method was set.

  17. Patients with Pelvic Floor Muscle Spasm Have a Superior Response to Pelvic Floor Physical Therapy at Specialized Centers.

    Science.gov (United States)

    Polackwich, Alan Scott; Li, Jianbo; Shoskes, Daniel A

    2015-10-01

    Chronic prostatitis/chronic pelvic pain syndrome is a common condition that often requires multimodal therapy. Patients with chronic pelvic pain syndrome have a high incidence of pelvic floor spasm, which can be treated with pelvic floor physical therapy. However, this is a specialized skill. We compared outcomes of pelvic floor physical therapy as part of multimodal therapy in patients with chronic pelvic pain syndrome between those treated at our institution and elsewhere. We identified patients from our chronic pelvic pain syndrome registry with pelvic floor spasm who were seen between 2010 and 2014 for more than 1 visit. Patient phenotype was assessed with the UPOINT system and symptom severity was determined by the National Institutes of Health CPSI. A 6-point decrease in CPSI was used to define patient improvement. A total of 82 patients fit the study criteria. Mean age was 41.6 years (range 19 to 75) and median symptom duration was 24 months (range 3 to 240). Mean CPSI was 26.8 (range 10 to 41), the median number of positive UPOINT domains was 3 (range 1 to 6) and 27 patients (32.9%) were treated locally. At followup 9 patients had refused pelvic floor physical therapy, and 24 and 48 had undergone pelvic floor physical therapy elsewhere and at CCF, respectively. The mean change in CPSI was 1.11 ± 4.1 in patients who refused, -3.46 ± 6.7 in those treated elsewhere and -11.3 ± 7.0 in those treated at CCF (p physical therapy at CCF (OR 4.23, p = 0.002) and symptom duration (OR 0.52, p = 0.03) predicted improvement. Pelvic floor physical therapy can be effective for chronic pelvic pain syndrome in patients with pelvic floor spasm. However, the outcome depends on specialty training and experience of therapists. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

    Directory of Open Access Journals (Sweden)

    In-Ju Kim

    2018-03-01

    Full Text Available Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents. Keywords: floor surface finishes, operational levels of floor surface roughness, slip resistance, wet, soapy and oily environments

  19. An architecture for agile shop floor control systems

    DEFF Research Database (Denmark)

    Langer, Gilad; Alting, Leo

    2000-01-01

    as shop floor control. This paper presents the Holonic Multi-cell Control System (HoMuCS) architecture that allows for design and development of holonic shop floor control systems. The HoMuCS is a shop floor control system which is sometimes referred to as a manufacturing execution system...

  20. Comfort analysis of lightweight floor system

    NARCIS (Netherlands)

    Zegers, S.F.A.J.G.; Herwijnen, van F.; Randall, B.

    2007-01-01

    During the past 60 years, floor systems used in housing and office-buildings in the Netherlands were mostly made of concrete or other similar materials, These floor systems, which can be characterized as heavy, normally posed little problems concerning vibrations. In recent years, in light of

  1. Floor Vibrations - as Induced and Reduced by Humans

    DEFF Research Database (Denmark)

    Pedersen, Lars

    . As for dynamic loads focus is placed on heel impact excitation and actions of jumping people causing floor vibrations. As for interaction between stationary humans and the vibrating floor focus is on modelling humans as oscillating spring-mass-damper systems attached to the floor rather than as simple added mass...

  2. Life-cycle analysis of bio-based aviation fuels.

    Science.gov (United States)

    Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q

    2013-12-01

    Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Production of Plant Phthalate and its Hydrogenated Derivative from Bio-Based Platform Chemicals.

    Science.gov (United States)

    Lu, Rui; Lu, Fang; Si, Xiaoqin; Jiang, Huifang; Huang, Qianqian; Yu, Weiqiang; Kong, Xiangtao; Xu, Jie

    2018-04-06

    Direct transformation of bio-based platform chemicals into aromatic dicarboxylic acids and their derivatives, which are widely used for the manufacture of polymers, is of significant importance for the sustainable development of the plastics industry. However, limited successful chemical processes have been reported. This study concerns a sustainable route for the production of phthalate and its hydrogenated derivative from bio-based malic acid and erythritol. The key Diels-Alder reaction is applied to build a substituted cyclohexene structure. The dehydration reaction of malic acid affords fumaric acid with 96.6 % yield, which could be used as the dienophile, and 1,3-butadiene generated in situ through erythritol deoxydehydration serves as the diene. Starting from erythritol and dibutyl fumarate, a 74.3 % yield of dibutyl trans-4-cyclohexene-1,2-dicarboxylate is obtained. The palladium-catalyzed dehydrogenation of the cycloadduct gives a 77.8 % yield of dibutyl phthalate. Dibutyl trans-cyclohexane-1,2-dicarboxylate could be formed in nearly 100 % yield under mild conditions by hydrogenation of the cycloadduct. Furthermore, fumaric acid and fumarate, with trans configurations, were found to be better dienophiles for this Diels-Alder reaction than maleic acid and maleate, with cis configuration, based on the experimental and computational results. This new route will pave the way for the production of environmental friendly plastic materials from plants. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Flooring-systems and their interaction with furniture and humans

    DEFF Research Database (Denmark)

    Frier, Christian; Pedersen, Lars; Andersen, Lars Vabbersgaard

    2017-01-01

    Flooring-system designs may be sensitive in terms of their vibrational performance due the risk that serviceability-limit-state problems may be encountered. For evaluating the vibrational performance of a flooring system at the design stage, decisions must be made by the engineer in charge...... of computations. Passive humans and/or furniture are often present on a floor. Typically, these masses and their way of interacting with the floor mass are ignored in predictions of vibrational behaviour of the flooring system. Utilizing a shell finite-element model, the paper explores and quantifies how non......-structural mass can influence central parameters describing the dynamic behaviour of the flooring system with focus on elevated non-structural mass. © 2017 The Authors. Published by Elsevier Ltd....

  5. Development of floor design response spectra for seismic design of floor-supported equipment or components, Revision 1, February 1978

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This guide presents an acceptable method for developing two horizontal and one vertical floor design response spectra at various floor or other equipment-support locations from the time-history motions resulting from the dynamic analysis of the supporting structure. These floor design response spectra are used in the dynamic analysis of systems or equipment supported at various locations of the supporting structure. Consulation has been provided by the Advisory Committee on Reactor Safeguards

  6. Deflection of resilient materials for reduction of floor impact sound.

    Science.gov (United States)

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  7. Decontamination of polyvinylchloride- and rubber type flooring

    International Nuclear Information System (INIS)

    Kunze, S.

    1975-01-01

    These types, fabricated by mixing of the basic components, showed no relation between content of fillers and decontamination results. Decontamination results are partly poorer, if the flooring contains a high concentration of the filler, especially if the latter consists mainly of hydrophilic materials. The coloring of the floorings seems to have no influence on the decontamination but floorings with clearly separated patterns can not be recommended for nuclear facilities. Fabricated by chemical reactions between polymeres, vulcanization materials and fillers, the decontamination results depend definitely from the proper choice of the filler. Flooring types, containing lampblack, graphite, kaoline, barium sulfate and titanium oxide are easy to decontamine. Again, increasing contents of hydrophilic filler cause a fall off in the decontamination results. (orig.) [de

  8. Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates

    Directory of Open Access Journals (Sweden)

    Ina Schoon

    2017-12-01

    Full Text Available Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation conditions used on an industrial scale. The α,β-unsaturated double bond of the itaconic acid is prone to side reactions that can lead to the gelation of the polyester resin under standard conditions. This is especially true when bio-based diols such as 1,3-propanediol or 1,4-butanediol are used to obtain resins that are 100% derived from renewable resources. It was observed in earlier studies that high amounts of these aliphatic diols in the polyester lead to low conversion and gelation of the resins. In this work, a catalytic study using different diols was performed in order to elucidate the reasons for this behavior. It was shown that the choice of catalyst has a crucial influence on the side reactions occurring during the polycondensation reactions. In addition, the side reactions taking place were identified and suppressed. These results will allow for the synthesis of polyester itaconates on a larger scale, setting the stage for their industrial application.

  9. Historical Cavern Floor Rise for All SPR Sites

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Dylan Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    The Strategic Petroleum Reserve (SPR) contains the largest supply is the largest stockpile of government-owned emergency crude oil in the world. The oil is stored in multiple salt caverns spread over four sites in Louisiana and Texas. Cavern infrastructure near the bottom of the cavern can be damaged from vertical floor movement. This report presents a comprehensive history of floor movements in each cavern. Most of the cavern floor rise rates ranged from 0.5-3.5 ft/yr, however, there were several caverns with much higher rise rates. BH103, BM106, and BH105 had the three highest rise rates. Information from this report will be used to better predict future vertical floor movements and optimally place cavern infrastructure. The reasons for floor rise are not entirely understood and should be investigated.

  10. Towards reinforcement solutions for urban fibre/fabric waste using bio-based biodegradable resins.

    Science.gov (United States)

    Agrawal, Pramod; Hermes, Alina; Bapeer, Solaf; Luiken, Anton; Bouwhuis, Gerrit; Brinks, Ger

    2017-10-01

    The main research question is how to systematically define and characterize urban textile waste and how to effectively utilise it to produce reinforcement(s) with selected bio-based biodegradable resin(s). Several composite samples have been produced utilising predominantly natural and predominantly synthetic fibres by combining loose fibres with PLA, nonwoven fabric with PLA, woven fabric with PLA, two-layer composite & four-layer composite samples. Physio-chemical characterisations according to the established standards have been conducted. The present work is a step toward the circular economy and closing the loop in textile value chain.

  11. Association between preterm labour and pelvic floor muscle function.

    Science.gov (United States)

    Aran, Turhan; Pekgöz, Ipek; Bozkaya, Hasan; Osmanagaoglu, Mehmet A

    2018-03-23

    We hypothesised that the pressure on the cervix increases with advancing gestation and it may lead to a cervical shortening and cause preterm labour in women with weak pelvic floor muscles. The aim of this prospective study was to measure vaginal resting pressure and pelvic floor muscle strength in the first trimester of pregnancy and to investigate their effects on labour. A study was conducted on the pregnant women with a low risk for preterm birth. The pelvic floor muscle strength and vaginal resting pressure were assessed in 320 pregnant women at their first trimester with a vaginal pressure measurement device. Fifty-two pregnant women were hospitalised for tocolytic therapy because of spontaneous preterm labour. Thirty-two of them (10.2%) had a preterm delivery despite the tocolytic therapy. Both the vaginal resting pressure (p = .009, 95%CI: 0.8; 5.9) and the pelvic floor muscle strength (p = .01, 95%CI: 3.5; 13.1) were significantly lower in the women with a preterm labour. Impact statement What is already known on this subject? The pelvic floor muscles have an essential role in continence and provide support to the pelvic organs. They also have an impact on labour. The pelvic floor muscles should distend to allow the passage of the foetus during labour. The rotation and flexion of the foetal head is due to the pelvic floor resistance. The effect of a vaginal birth on the pelvic floor's function is readily understood. On the other hand, the effect of the pelvic floor muscle function on labour is still controversial. What do the results of this study add? This prospective study showed that there is a negative association between the pelvic floor muscle strength and preterm labour. This is the first clinical study indicating that weak pelvic floor muscles may cause a preterm labour. What are the implications of these findings for clinical practice and/or further research? Pelvic floor physical therapy may be an alternative preventive strategy to reduce

  12. Biomechanics of the pelvic floor musculature

    NARCIS (Netherlands)

    Janda, S.

    2006-01-01

    The present thesis was motivated by two main goals. The first research goal of the thesis was to understand the complex biomechanical behaviour of the pelvic floor muscles. The second goal was to study the mechanism of the pelvic organ prolapse (genital prolapse). The pelvic floor in humans is a

  13. Azolla domestication towards a biobased economy?

    Science.gov (United States)

    Brouwer, Paul; Bräutigam, Andrea; Külahoglu, Canan; Tazelaar, Anne O E; Kurz, Samantha; Nierop, Klaas G J; van der Werf, Adrie; Weber, Andreas P M; Schluepmann, Henriette

    2014-05-01

    Due to its phenomenal growth requiring neither nitrogen fertilizer nor arable land and its biomass composition, the mosquito fern Azolla is a candidate crop to yield food, fuels and chemicals sustainably. To advance Azolla domestication, we research its dissemination, storage and transcriptome. Methods for dissemination, cross-fertilization and cryopreservation of the symbiosis Azolla filiculoides-Nostoc azollae are tested based on the fern spores. To study molecular processes in Azolla including spore induction, a database of 37 649 unigenes from RNAseq of microsporocarps, megasporocarps and sporophytes was assembled, then validated. Spores obtained year-round germinated in vitro within 26 d. In vitro fertilization rates reached 25%. Cryopreservation permitted storage for at least 7 months. The unigene database entirely covered central metabolism and to a large degree covered cellular processes and regulatory networks. Analysis of genes engaged in transition to sexual reproduction revealed a FLOWERING LOCUS T-like protein in ferns with special features induced in sporulating Azolla fronds. Although domestication of a fern-cyanobacteria symbiosis may seem a daunting task, we conclude that the time is ripe and that results generated will serve to more widely access biochemicals in fern biomass for a biobased economy. No claim to original European Union works. New Phytologist © 2014 New Phytologist Trust.

  14. Motor cortical representation of the pelvic floor muscles.

    Science.gov (United States)

    Schrum, A; Wolff, S; van der Horst, C; Kuhtz-Buschbeck, J P

    2011-07-01

    Pelvic floor muscle training involves rhythmical voluntary contractions of the external urethral sphincter and ancillary pelvic floor muscles. The representation of these muscles in the motor cortex has not been located precisely and unambiguously. We used functional magnetic resonance imaging to determine brain activity during slow and fast pelvic floor contractions. Cerebral responses were recorded in 17 healthy male volunteers, 21 to 47 years old, with normal bladder control. Functional magnetic resonance imaging was performed during metronome paced slow (0.25 Hertz) and fast (0.7 Hertz) contractions of the pelvic floor that mimicked the interruption of voiding. To study the somatotopy of the cortical representations, flexion-extension movements of the right toes were performed as a control task. Functional magnetic resonance imaging during pelvic floor contractions detected activity of the supplementary motor area in the medial wall and of the midcingulate cortex, insula, posterior parietal cortex, putamen, thalamus, cerebellar vermis and upper ventral pons. There were no significant differences in activation between slow and fast contractions. Toe movements involved significantly stronger activity of the paracentral lobule (ie the medial primary motor cortex) than did the pelvic floor contractions. Otherwise the areas active during pelvic floor and leg muscle contractions overlapped considerably. The motor cortical representation of pelvic floor muscles is located mostly in the supplementary motor area. It extends further ventrally and anteriorly than the representation of distal leg muscles. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. 9 CFR 91.26 - Concrete flooring.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000 psi...

  16. Surgical reconstruction of pelvic floor descent: anatomic and functional aspects.

    Science.gov (United States)

    Wagenlehner, F M E; Bschleipfer, T; Liedl, B; Gunnemann, A; Petros, P; Weidner, W

    2010-01-01

    The human pelvic floor is a complex structure and pelvic floor dysfunction is seen frequently in females. This review focuses on the surgical reconstruction of the pelvic floor employing recent findings on functional anatomy. A selective literature research was performed by the authors. Pelvic floor activity is regulated by 3 main muscular forces that are responsible for vaginal tension and suspension of the pelvic floor organs, bladder and rectum. A variety of symptoms can derive from pelvic floor dysfunctions, such as urinary urge and stress incontinence, abnormal bladder emptying, fecal incontinence, obstructive bowel disease syndrome and pelvic pain. These symptoms mainly derive, for different reasons, from laxity in the vagina or its supporting ligaments as a result of altered connective tissue. Pelvic floor reconstruction is nowadays driven by the concept that in case of pelvic floor symptoms, restoration of the anatomy will translate into restoration of the physiology and ultimately improve patients' symptoms. The surgical reconstruction of the anatomy is almost exclusively focused on the restoration of the lax pelvic floor ligaments. Exact preoperative identification of the anatomical lesions is necessary to allow for exact anatomical reconstruction with respect to the muscular forces of the pelvic floor. Copyright 2010 S. Karger AG, Basel.

  17. A bio-based ‘green’ process for catalytic adipic acid production from lignocellulosic biomass using cellulose and hemicellulose derived γ-valerolactone

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2016-01-01

    Highlights: • A bio-based ‘green’ process for catalytic conversion of corn stover to adipic acid (ADA) is studied. • New separations for effective recovery of biomass derivatives are developed. • Separations are integrated with cellulose/hemicellulose-to-ADA conversions. • Proposed process can compete economically with the current petro-based process. - Abstract: A bio-based ‘green’ process is presented for the catalytic conversion of corn stover to adipic acid (ADA) based on experimental studies. ADA is used for biobased nylon 6.6 manufacturing from lignocellulosics as carbon and energy source. In this process, the cellulose and hemicellulose fractions are catalytically converted to γ-valerolactone (GVL), using cellulose and hemicellulose-derived GVL as a solvent, and subsequently upgrading to ADA. Experimental studies showed maximal carbon yields (biomass-to-GVL: 41% and GVL-to-ADA: 46%) at low concentrations (below 16 wt% solids) using large volumes of GVL solvents while requiring efficient interstage separations and product recovery. This work presents an integrated process, including catalytic conversion and separation subsystems for GVL and ADA production and recovery, and designs a heat exchanger network to satisfy the total energy requirements of the integrated process via combustion of biomass residues (lignin and humins). Finally, an economic analysis shows that 2000 metric tonnes (Mt) per day of corn stover feedstock processing results in a minimum selling price of $633 per Mt if using the best possible parameters.

  18. Study of peak broadening effect in floor time histories

    International Nuclear Information System (INIS)

    Soni, R.S.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-01-01

    Seismic design of secondary systems such components and piping is usually carried out by using the floor motions at their support points. These floor motions can be in the form of Floor Response Spectra (FRS) or the Floor Time Histories (FTH). In order to account for the various uncertainties in generating these floor motions, these motions should be peak broadened and smoothened as per the regulatory codes. Presented here in this paper is the methodology to account for such peak broadening effect in the FTH. Results of this study have been compared with the FRS approach and various important conclusions have been arrived at based on the study

  19. Amine Solvent Regeneration for CO2 Capture Using Geothermal Energy with Advanced Stripper Configurations

    International Nuclear Information System (INIS)

    Van Wagener, D.H.; Rochelle, G.T.; Gupta, A.; Bryant, S.L.

    2014-01-01

    Absorption/stripping using alkanol-amine solvents for removing CO 2 from the flue gas of coal-fired power plants requires a substantial amount of energy. Typical designs anticipate the use of steam extraction between the Intermediate Pressure (IP) and Low Pressure (LP) turbines to provide heat for the re-boiler. Geothermal energy in the form of hot brine offers an alternative to this large parasitic load on the power generation cycle. We investigate the requirements (number and spacing of extraction/injection well pairs) to provide heat at 150 deg. C for a pilot scale (60 MWe) and a full scale (900 MWe) capture process for thirty years. The calculations are based on properties of a geopressured/geothermal aquifer near the Texas Gulf Coast. In the vicinity of a large coal-fired power plant in South Texas, this aquifer lies between 3 050 and 3 350 m (10 000 and 11 000 ft) below the surface. We present a novel design of the stripper/regenerator process based on heat exchange with the brine, discharging the brine at 100 deg. C. The results indicate that the overall process is feasible and that costs are of similar magnitude to standard designs. (authors)

  20. An Improved Prediction Model for the Impact Sound Level of Lightweight Floors: Introducing Decoupled Floor-Ceiling and Beam-Plate Moment

    DEFF Research Database (Denmark)

    Mosharrof, Mohammad Sazzad; Brunskog, Jonas; Ljunggren, Fredrik

    2011-01-01

    the impact sound pressure level in a receiving room for a coupled floor structure where floor and ceiling are rigidly connected by beams. A theoretical model for predicting the impact sound level for a decoupled floor structure, which has no rigid mechanical connections between the floor and the ceiling......, is developed. An analytical method has been implemented, where a spatial Fourier transform method as well as the Poisson’s sum formula is applied to model transformed plate displacements. Radiated sound power was calculated from these displacements and normalized sound pressure levels were calculated in one...... and is found to be dependent on frequency, showing significant improvement in predicting impact sound level at high frequency region....

  1. Comparison of changes in the mobility of the pelvic floor muscle on during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction.

    Science.gov (United States)

    Jung, Halim; Jung, Sangwoo; Joo, Sunghee; Song, Changho

    2016-01-01

    [Purpose] The purpose of this study was to compare changes in the mobility of the pelvic floor muscle during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. [Subjects] Thirty healthy adults participated in this study (15 men and 15 women). [Methods] All participants performed a bridge exercise and abdominal curl-up during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. Pelvic floor mobility was evaluated as the distance from the bladder base using ultrasound. [Results] According to exercise method, bridge exercise and abdominal curl-ups led to significantly different pelvic floor mobility. The pelvic floor muscle was elevated during the abdominal drawing-in maneuver and descended during maximal expiration. Finally, pelvic floor muscle mobility was greater during abdominal curl-up than during the bridge exercise. [Conclusion] According to these results, the abdominal drawing-in maneuver induced pelvic floor muscle contraction, and pelvic floor muscle contraction was greater during the abdominal curl-up than during the bridge exercise.

  2. Porn star/stripper/escort: economic and sexual dynamics in a sex work career.

    Science.gov (United States)

    Escoffier, Jeffrey

    2007-01-01

    This article explores the career dynamics of performers in the gay male pornography industry, by focusing on a common career path- from porn star to stripper to escort. Between 1995 and 2005, most men performing in gay porn films, unlike contract actresses in the straight porn industry, have been unable to earn enough income to work exclusively as performers in front of the camera. The industry's constant search for new faces and fresh performers creates what sociologist Paul Cressey has called "the retrogressive dynamic": The longer a person works in a sexual occupation, the less one is paid, and the lower the status of the work venue. In the porn industry, one aspect of this process is referred to as "overexposure," during which the performer experiences a diminishing "fantasy potential" as fans lose erotic interest in the porn star who has appeared too frequently in too many movies. Performers attempt to confront the retrogressive dynamic by limiting the number of adult films in which they appear in a year, diversifying their sexual repertoire, or shifting into other roles within the industry (behind the camera, marketing, production, etc.). One common option is to pursue work in economically complementary forms of sex work such as stripping and escorting.

  3. FLOOR IDENTIFICATION WITH COMMERCIAL SMARTPHONES IN WIFI-BASED INDOOR LOCALIZATION SYSTEM

    Directory of Open Access Journals (Sweden)

    H. J. Ai

    2016-06-01

    Full Text Available In this paper, we utilize novel sensors built-in commercial smart devices to propose a schema which can identify floors with high accuracy and efficiency. This schema can be divided into two modules: floor identifying and floor change detection. Floor identifying module starts at initial phase of positioning, and responsible for determining which floor the positioning start. We have estimated two methods to identify initial floor based on K-Nearest Neighbors (KNN and BP Neural Network, respectively. In order to improve performance of KNN algorithm, we proposed a novel method based on weighting signal strength, which can identify floors robust and quickly. Floor change detection module turns on after entering into continues positioning procedure. In this module, sensors (such as accelerometer and barometer of smart devices are used to determine whether the user is going up and down stairs or taking an elevator. This method has fused different kinds of sensor data and can adapt various motion pattern of users. We conduct our experiment with mobile client on Android Phone (Nexus 5 at a four-floors building with an open area between the second and third floor. The results demonstrate that our scheme can achieve an accuracy of 99% to identify floor and 97% to detecting floor changes as a whole.

  4. The influence of flooring on environmental stressors: a study of three flooring materials in a hospital.

    Science.gov (United States)

    Harris, Debra D

    2015-01-01

    Three flooring materials, terrazzo, rubber, and carpet tile, in patient unit corridors were compared for absorption of sound, comfort, light reflectance, employee perceptions and preferences, and patient satisfaction. Environmental stressors, such as noise and ergonomic factors, effect healthcare workers and patients, contributing to increased fatigue, anxiety and stress, decreased productivity, and patient safety and satisfaction. A longitudinal comparative cohort study comparing three types of flooring assessed sound levels, healthcare worker responses, and patient Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings over 42 weeks. A linear mixed model analysis was conducted to determine significant differences between the means for participant responses and objective sound meter data during all three phases of the study. A significant difference was found for sound levels between flooring type for equivalent continuous sound levels. Carpet tile performed better for sound attenuation by absorption, reducing sound levels 3.14 dBA. Preferences for flooring materials changed over the course of the study. The HCAHPS ratings aligned with the sound meter data showing that patients perceived the noise levels to be lower with carpet tiles, improving patient satisfaction ratings. Perceptions for healthcare staff and patients were aligned with the sound meter data. Carpet tile provides sound absorption that affects sound levels and influences occupant's perceptions of environmental factors that contribute to the quality of the indoor environment. Flooring that provides comfort underfoot, easy cleanability, and sound absorption influence healthcare worker job satisfaction and patient satisfaction with their patient experience. © The Author(s) 2015.

  5. Recognition and Management of Nonrelaxing Pelvic Floor Dysfunction

    Science.gov (United States)

    Faubion, Stephanie S.; Shuster, Lynne T.; Bharucha, Adil E.

    2012-01-01

    Nonrelaxing pelvic floor dysfunction is not widely recognized. Unlike in pelvic floor disorders caused by relaxed muscles (eg, pelvic organ prolapse or urinary incontinence, both of which often are identified readily), women affected by nonrelaxing pelvic floor dysfunction may present with a broad range of nonspecific symptoms. These may include pain and problems with defecation, urination, and sexual function, which require relaxation and coordination of pelvic floor muscles and urinary and anal sphincters. These symptoms may adversely affect quality of life. Focus on the global symptom complex, rather than the individual symptoms, may help the clinician identify the condition. The primary care provider is in a position to intervene early, efficiently, and effectively by (1) recognizing the range of symptoms that might suggest nonrelaxing pelvic floor dysfunction, (2) educating patients, (3) performing selective tests when needed to confirm the diagnosis, and (4) providing early referral for physical therapy. PMID:22305030

  6. Glazed Tiles as Floor Finish in Nigeria

    Directory of Open Access Journals (Sweden)

    Toyin Emmanuel AKINDE

    2013-09-01

    Full Text Available Tile is no doubt rich in antiquity; its primordial  show, came as mosaic with primary prospect in sacred floor finish before its oblivion, courtesy of, later consciousness towards wall finish in banquets, kitchens, toilets, restaurants and even bars. Today, its renaissance as floor finish is apparent in private and public architectural structures with prevalence in residential, recreational, commercial, governmental and other spaces. In Nigeria, the use of glazed tiles as floor finish became apparent, supposedly in mid-twentieth century; and has since, witnessed ever increasing demands from all sundry; a development that is nascent and has necessitated its mass  production locally with pockets of firms in the country. The latter however, is a resultant response to taste cum glazed tiles affordability, whose divergent sophistication in design, colour, size and shape is believed preferred to terrazzo, carpet and floor flex tile. Accessible as glazed tile and production is, in recent times; its dearth of a holistic literature in Nigeria is obvious. In the light of the latter, this paper examine glazed tiles as floor finish in Nigeria, its advent, usage, production, challenge, benefit and prospect with the hope of opening further frontier in discipline specifics.

  7. WOODEN FLOORING – BETWEEN PRESENT AND FUTURE

    Directory of Open Access Journals (Sweden)

    Ivan CISMARU

    2015-06-01

    Full Text Available The paper aims at presenting a systematization of the wood floors, both in terms of the areas of application, and in terms of the fastening solutions and structures in constructions. In this respect, an extensive bibliographic research was achieved, on the researchers’ preoccupations. Starting from the current situation and forecasting the future, from the point of view of the chances held by wooden flooring, in competition with other types of materials, we dare say the wooden flooring or the wood in combination with other materials are not likely to be eliminated from the “civil-engineering market”. The wood floors are likely to develop as an application, especially in the area of the “special floors”, specific to the indoor sports or social halls; and even for some industrial sectors, with strict operating conditions (elasticity, thermal insulation, soundproofing that cannot be provided by other types of materials or structures. Starting from this last observation, the paper also aims at submitting current opinions with respect to this type of floors, both in the light of the current databases and in the light of the future researches, to this end

  8. What Is Low Profile Access Flooring and Why More Businesses Need It

    OpenAIRE

    NetfloorUSA

    2017-01-01

    Low profile access flooring is being commonly used in a variety of businesses today. To understand why more businesses, need this type of flooring, it is essential that we take the time to first understand what is low profile flooring actually is. What Is Low Profile Access Flooring A low profile access floor is a floor that is designed to sit above the original concrete slab flooring installed in any home, business, or public building. The higher floor height creates a space between ...

  9. Polygons on Crater Floor

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-357, 11 May 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a pattern of polygons on the floor of a northern plains impact crater. These landforms are common on crater floors at high latitudes on Mars. Similar polygons occur in the arctic and antarctic regions of Earth, where they indicate the presence and freeze-thaw cycling of ground ice. Whether the polygons on Mars also indicate water ice in the ground is uncertain. The image is located in a crater at 64.8oN, 292.7oW. Sunlight illuminates the scene from the lower left.

  10. Preparation of new biobased coatings from a triglycidyl eugenol derivative through thiol-epoxy click reaction

    OpenAIRE

    Guzman, Dailyn; Ramis Juan, Xavier; Fernández Francos, Xavier; de la Flor1 López, Sílvia; Serra Albet, Àngels

    2018-01-01

    © 2017 Elsevier B.V. A new triglycidyl eugenol derivative (3EPO-EU) was synthesized and characterized by spectroscopic techniques, and used as starting monomer in the preparation of novel bio-based thiol-epoxy thermosets. As thiols, commercially available tetrathiol derived from pentaerythritol (PETMP), a trithiol derived from eugenol (3SH-EU) and the hexathiol derived from squalene (6SH-SQ) were used in the presence of 4-(N,N-dimethylamino)pyridine as the basic catalyst. A flexible diglycidy...

  11. 17 CFR 240.11a-1 - Regulation of floor trading.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Regulation of floor trading... Securities Exchange Act of 1934 Adoption of Floor Trading Regulation (rule 11a-1) § 240.11a-1 Regulation of floor trading. (a) No member of a national securities exchange, while on the floor of such exchange...

  12. Physical distribution of oak strip flooring 1969

    Science.gov (United States)

    William C. Miller; William C. Miller

    1971-01-01

    As an aid to the marketing of oak strip flooring, a study was made of the distribution process for this product, from manufacture to consumer-where the flooring came from, where it went, how much was shipped, and who handled it.

  13. Pelvic floor muscle training as a persistent nursing intervention: Effect on delivery outcome and pelvic floor myodynamia

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2014-03-01

    Conclusion: Persistent nursing intervention for pregnant/postpartum women helped to shorten the second stage of labour and contributed to the recovery of postpartum pelvic floor myodynamia. The influence of this intervention on the delivery mode, and rates of episiotomy and perineal laceration remains unknown. Medical staff should strengthen health education programmes that involve pelvic floor functional rehabilitation.

  14. Facile Fabrication of 100% Bio-based and Degradable Ternary Cellulose/PHBV/PLA Composites

    Directory of Open Access Journals (Sweden)

    Tao Qiang

    2018-02-01

    Full Text Available Modifying bio-based degradable polymers such as polylactide (PLA and poly(hydroxybutyrate-co-hydroxyvalerate (PHBV with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials.

  15. Micro- and nano bio-based delivery systems for food applications: In vitro behavior.

    Science.gov (United States)

    de Souza Simões, Lívia; Madalena, Daniel A; Pinheiro, Ana C; Teixeira, José A; Vicente, António A; Ramos, Óscar L

    2017-05-01

    Micro- and nanoencapsulation is an emerging technology in the food field that potentially allows the improvement of food quality and human health. Bio-based delivery systems of bioactive compounds have a wide variety of morphologies that influence their stability and functional performance. The incorporation of bioactive compounds in food products using micro- and nano-delivery systems may offer extra health benefits, beyond basic nutrition, once their encapsulation may provide protection against undesired environmental conditions (e.g., heat, light and oxygen) along the food chain (including processing and storage), thus improving their bioavailability, while enabling their controlled release and target delivery. This review provides an overview of the bio-based materials currently used for encapsulation of bioactive compounds intended for food applications, as well as the main production techniques employed in the development of micro- and nanosystems. The behavior of such systems and of bioactive compounds entrapped into, throughout in vitro gastrointestinal systems, is also tracked in a critical manner. Comparisons between various in vitro digestion systems (including the main advantages and disadvantages) currently in use, as well as correlations between the behavior of micro- and nanosystems studied through in vitro and in vivo systems were highlighted and discussed here for the first time. Finally, examples of bioactive micro- and nanosystems added to food simulants or to real food matrices are provided, together with a revision of the main challenges for their safe commercialization, the regulatory issues involved and the main legislation aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Assessment of the effect of pelvic floor exercises on pelvic floor muscle strength using ultrasonography in patients with urinary incontinence: a prospective randomized controlled trial

    OpenAIRE

    Tosun, Ozge Celiker; Solmaz, Ulas; Ekin, Atalay; Tosun, Gokhan; Gezer, Cenk; Ergenoglu, Ahmet Mete; Yeniel, Ahmet Ozgur; Mat, Emre; Malkoc, Mehtap; Askar, Niyazi

    2016-01-01

    [Purpose] The aim of this study was to evaluate whether the effect of pelvic floor exercises on pelvic floor muscle strength could be detected via ultrasonography in patients with urinary incontinence. [Subjects and Methods] Of 282 incontinent patients, 116 participated in the study and were randomly divided into a pelvic floor muscle training (n=65) group or control group (n=51). The pelvic floor muscle training group was given pelvic floor exercise training for 12 weeks. Both groups were ev...

  17. Air gun near the sea floor as shear-wave source?

    NARCIS (Netherlands)

    Drijkoningen, G.G.; Dieulangard, D.; Holicki, M.E.

    2015-01-01

    The feasibility of using an air gun near the sea floor as shear-wave source has been investigated. With an air gun near the sea floor, an evanescent P-wave in the water becomes a propagating S-wave in the sea floor, such that it seems that a pure shear-wave source has been used at the sea floor.

  18. Dermoid cyst in the mouth floor

    International Nuclear Information System (INIS)

    Portelles Masso, Ayelen Maria; Torres Inniguez, Ailin Tamara.

    2010-01-01

    The Dermoid cyst account for the 0.01 % of all cysts of buccal cavity. Its more frequent location is in the mouth floor. This is the case of a female patient aged 19 who approximately 7 years noted an increase of volume under tongue growing gradually and noting outside face and the discomfort at to speak and to chew. Complementary studies were conducted and under general anesthesia a surgical exeresis was carried out by intrabuccal approach achieving excellent esthetic and functional results. Histopathologic diagnosis matched with a dermoid cyst of mouth floor. Patient has not lesion recurrence after three years after operation. We conclude that the Dermoid cyst of mouth floor appear as benign tumor of middle line. The intrabuccal exeresis demonstrates esthetic and functional benefits. (author)

  19. Nonsurgical Management of Severe Esophageal and Gastric Injury Following Alkali Ingestion

    Directory of Open Access Journals (Sweden)

    Ramy D Abaskharoun

    2007-01-01

    Full Text Available The ingestion of caustic substances may result in significant gastrointestinal injury. Endoscopy can play a major role in the initial evaluation and subsequent therapy of such injuries. The case of a 50-year-old man who ingested an alkaline floor stripper is described, including the endoscopic management of esophageal and pyloric strictures, with good functional results. The role of endoscopy, steroids and acid suppression in the management of such patients is also explored.

  20. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    Science.gov (United States)

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  1. Challenges and opportunities in using Life Cycle Assessment and Cradle to Cradle® for biodegradable bio-based polymers: a review

    DEFF Research Database (Denmark)

    Niero, Monia; Manat, Renil; Møller, Birger Lindberg

    2015-01-01

    Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from establis......Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from...... establishedtechnologies and the identification of the best option for the end of use stage, e.g. for use as packaging. Weconsider the case of a natural fiber-based composite material obtained from barley straw and present someinsights from both LCA and C2C perspectives in the identification of the best option for its end...

  2. Improving the cleaning procedure to make kitchen floors less slippery.

    Science.gov (United States)

    Quirion, F; Poirier, P; Lehane, P

    2008-12-01

    This investigation shows that, in most cases, the floor cleaning procedure of typical restaurants could be improved, resulting in a better cleaning efficiency and a better floor friction. This simple approach could help reduce slips and falls in the workplace. Food safety officers visited ten European style restaurants in the London Borough of Bromley (UK) to identify their floor cleaning procedure in terms of the cleaning method, the concentration and type of floor cleaner and the temperature of the wash water. For all 10 restaurants visited, the cleaning method was damp mopping. Degreasers were used in three sites while neutral floor cleaners were used in seven sites. Typically, the degreasers were over diluted and the neutrals were overdosed. The wash water temperature ranged from 10 to 72 degrees C. The on-site cleaning procedures were repeated in the laboratory for the removal of olive oil from new and sealed quarry tiles, fouled and worn quarry tiles and new porcelain tiles. It is found that in 24 out of 30 cases, cleaning efficiency can be improved by simple changes in the floor cleaning procedure and that these changes result in a significant improvement of the floor friction. The nature of the improved floor cleaning procedure depends on the flooring type. New and properly sealed flooring tiles can be cleaned using damp mopping with a degreaser diluted as recommended by the manufacturer in warm or hot water (24 to 50 degrees C). But as the tiles become worn and fouled, a more aggressive floor cleaning is required such as two-step mopping with a degreaser diluted as recommended by the manufacturer in warm water (24 degrees C).

  3. Nondestructive structural evaluation of wood floor systems with a vibration technique.

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Lawrence Andrew Soltis

    2002-01-01

    The objective of this study was to determine if transverse vibration methods could be used to effectively assess the structural integrity of wood floors as component systems. A total of 10 wood floor systems, including 3 laboratory-built floor sections and 7 in-place floors in historic buildings, were tested. A forced vibration method was applied to the floor systems...

  4. Improvement of PVC floor tiles by gamma radiation

    International Nuclear Information System (INIS)

    Plessis, T.A. du; Badenhorst, F.

    1988-01-01

    Gamma radiation presents a unique method of transforming highly plasticized PVC floor tiles, manufactured at high speed through injection moulding, into a high quality floor covering at a cost at least 30% less than similarly rated rubber tiles. A specially formulated PVC compound was developed in collaboration with a leading manufacturer of floor tiles. These tiles are gamma crosslinked in its shipping cartons to form a dimensionally stable product which is highly fire resistant and inert to most chemicals and solvents. These crosslinked tiles are more flexible than the highly filled conventional PVC floor tiles, scratch resistant and have a longer lifespan and increased colour fastness. These tiles are also less expensive to install than conventional rubber tiles. (author)

  5. The pelvic floor muscles: muscle thickness in healthy and urinary-incontinent women measured by perineal ultrasonography with reference to the effect of pelvic floor training. Estrogen receptor studies

    DEFF Research Database (Denmark)

    Bernstein, Inge Thomsen

    1997-01-01

    demonstrated that the striated periurethral muscles and the pelvic floor muscles are of paramount importance for the closure function. This emphasizes the importance of well-functioning pelvic floor muscles to obtain continence, and probably explains the rationale for the effect of pelvic floor training...... in treating urinary incontinence. This study presents a review of the literature on female urinary incontinence, continence mechanisms, pelvic floor muscles, and pelvic floor training. Furthermore, a review of the literature on estrogen receptors in the pelvic floor muscles is given. Perineal ultrasonography...... the effect of pelvic floor training. Additionally, a study of the Pelvic floor muscles was performed to assess the presence of estrogen receptors. Muscle thickness seems to decrease with age. In women over age 60 years, a significantly thinner pelvic floor muscle was found compared to younger women...

  6. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Piezoelectric energy harvester under parquet floor

    Science.gov (United States)

    Bischur, E.; Schwesinger, N.

    2011-03-01

    The design, fabrication and testing of piezoelectric energy harvesting modules for floors is described. These modules are used beneath a parquet floor to harvest the energy of people walking over it. The harvesting modules consist of monoaxial stretched PVDF-foils. Multilayer modules are built up as roller-type capacitors. The fabrication process of the harvesting modules is simple and very suitable for mass production. Due to the use of organic polymers, the modules are characterized by a great flexibility and the possibility to create them in almost any geometrical size. The energy yield was determined depending on the dynamic loading force, the thickness of piezoelectric active material, the size of the piezoelectric modules, their alignment in the walking direction and their position on the floor. An increase of the energy yield at higher loading forces and higher thicknesses of the modules was observed. It was possible to generate up to 2.1mWs of electric energy with dynamic loads of 70kg using a specific module design. Furthermore a test floor was assembled to determine the influence of the size, alignment and position of the modules on the energy yield.

  8. 75 FR 70061 - Dealer Floor Plan Pilot Program Meeting

    Science.gov (United States)

    2010-11-16

    ... SMALL BUSINESS ADMINISTRATION Dealer Floor Plan Pilot Program Meeting AGENCY: U.S. Small Business... location, date, time, and agenda for a meeting regarding the Dealer Floor Plan Pilot Program established in the Small Business Jobs Act of 2010. The meeting will be open to the public. DATES: The Dealer Floor...

  9. Isolation, Characterization, and Environmental Application of Bio-Based Materials as Auxiliaries in Photocatalytic Processes

    Directory of Open Access Journals (Sweden)

    Davide Palma

    2018-05-01

    Full Text Available Sustainable alternative substrates for advanced applications represent an increasing field of research that attracts the attention of worldwide experts (in accordance with green chemistry principles. In this context, bio-based substances (BBS isolated from urban composted biowaste were purified and characterized. Additionally, these materials were tested as auxiliaries in advanced oxidizing photocatalytic processes for the abatement of organic contaminants in aqueous medium. Results highlighted the capability of these substances to enhance efficiency in water remediation treatments under mild conditions, favoring the entire light-driven photocatalytic process.

  10. Renewable fibers and bio-based materials for packaging applications - A review of recent developments

    DEFF Research Database (Denmark)

    Johansson, Caisa; Bras, Julien; Mondragon, Inaki

    2012-01-01

    This review describes the state-of-the-art of material derived from the forest sector with respect to its potential for use in the packaging industry. Some innovative approaches are highlighted. The aim is to cover recent developments and key challenges for successful introduction of renewable...... materials in the packaging market. The covered subjects are renewable fibers and bio-based polymers for use in bioplastics or as coatings for paper-based packaging materials. Current market sizes and forecasts are also presented. Competitive mechanical, thermal, and barrier properties along with material...

  11. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Macro-economics biobased synthesis report

    International Nuclear Information System (INIS)

    Hoefnagels, R.; Dornburg, V.; Faaij, A.; Banse, M.

    2009-03-01

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. The results of the synthesis of the modelling work are presented in this report

  12. Ploughing the deep sea floor.

    Science.gov (United States)

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land.

  13. Industrial tests of rock consolidation for fighting floor swelling

    Energy Technology Data Exchange (ETDEWEB)

    Pirskii, A A; Stovpnik, S N [KPI (USSR)

    1990-04-01

    Reports on investigations into the mechanism of floor swelling in main roadways and into rock mass stabilization by consolidating fluid injection combined with blasting. The principal cause of deterioration in the stability of workings is considered to be the state of stress in the rock mass, rock destruction in side walls where rock blocks are being pressed into the floor while the floor rock is squeezed out into the working space. A case study of fluid injection combined with blasting applied in several mines in the Donbass is presented where holes were drilled 1.5-3 m deep and explosive charges of 0.07-0.1 kg/hole and injection of hardening solutions (0.56-0.83 m{sup 3}/m of workings) were applied. As a result floor swelling rates were reduced by up to about 5 times (e.g. from 2.5 mm/d to 0.5 mm/d.). The period of maintenence free upkeep of workings was extended to 6-8 years. The economic effect in maintenance of 1 m of workings was 11.7 rubles for floor consolidation without sidewall bolting and 51.4 rubles for floor consolidation combined with sidewall bolting. Recommendations that concern the technology of floor consolidation by fluid injection and blasting are made. 4 refs.

  14. Life cycle risks for human health: a comparison of petroleum versus bio-based production of five bulk organic chemicals.

    Science.gov (United States)

    Roes, Alexander L; Patel, Martin K

    2007-10-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses bio-based feedstocks instead of the fossil raw materials used in the petrochemical sector. The purpose of this study was to investigate whether the production of chemicals by means of white biotechnology has lower conventional risks than their production by petrochemical processes. Conventional risks are the risks of well-established processes, and not those related to genetically modified microorganisms and plants. Our approach combines classical risk assessment methods (largely based on toxicology), as developed by the life cycle assessment (LCA) community, with statistics on technological disasters, accidents, and work-related illnesses. Moreover, it covers the total process chain for both petrochemical and bio-based products from cradle to grave. The approach was applied to five products: the plastics polytrimethylene terephthalate (PTT), polyhydroxyalkanoates (PHA), polyethylene terephthalate (PET), polyethylene (PE), and ethanol. Our results show that the conventional risks related to the white biotechnology products studied are lower than those of the petrochemical products. However, considering the uncertainties with respect to the ranges of input data, the (incomplete) coverage of emissions by the environmental priority strategies (EPS) 2000 method, and the uncertainties of the assumptions made in this study (i.e., large to very large), the differences in results between bio-based and petrochemical products fall into the uncertainty range. Because of this, future research is necessary to decrease the uncertainties before we can conclude that the conventional risks of biotechnologically produced chemicals are lower than those of fossil-fuel-derived chemicals.

  15. Charge state distribution of ^{86}Kr in hydrogen and helium gas charge strippers at 2.7  MeV/nucleon

    Directory of Open Access Journals (Sweden)

    H. Kuboki

    2014-12-01

    Full Text Available The charge state distributions of krypton (^{86}Kr with an energy of 2.7  MeV/nucleon were measured using hydrogen (H_{2} and helium (He gas charge strippers. A differential pumping system was constructed to confine H_{2} and He gases to a thickness sufficient for the charge state distributions to attain equilibrium. The mean charge states of ^{86}Kr in H_{2} and He gases attained equilibrium at 25.1 and 23.2, respectively, whereas the mean charge state in N_{2} gas at equilibrium was estimated to be less than 20. The charge distributions are successfully reproduced by the cross sections of ionization and electron capture processes optimized by a fitting procedure.

  16. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Hiep Dinh Nguyen

    2016-10-01

    Full Text Available A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA were polymerized using an immobilized Candida antarctica lipase B (CALB and the potential for an enzymatic synthesis of alkyds was investigated. The developed method enables the use of both glycerol and also pentaerythritol (for the first time as the alcohol source and was found to be very robust. This allows simple variations in the molar mass and structure of the polyester without premature gelation, thus enabling easy tailoring of the branched polyester structure. The postpolymerization crosslinking of the polyesters illustrates their potential as binders in alkyds. The formed films had good UV stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition.

  17. Consumer acceptance of fresh blueberries in bio-based packages.

    Science.gov (United States)

    Almenar, Eva; Samsudin, Hayati; Auras, Rafael; Harte, Janice

    2010-05-01

    Instrumental analyses have shown that non-vented bio-based containers made from poly(lactic acid) (PLA) have the capability to enhance blueberry shelf life as compared with commercial vented petroleum-based clamshell containers. However, consumer preference has not been explored so far. In this study, two sensory evaluations, triangle and paired preference tests, were performed after storing fruit in both containers at 3 and 10 degrees C for 7 and 14 days. In addition, physicochemical analyses were performed after each tasting in order to correlate instrumental findings with consumer preference. The results of the triangle test showed the capability of the consumer to differentiate (P consumer preference for flavour, texture, external appearance and overall quality (P Consumers distinguished between blueberries from different packages and preferred those packaged in the PLA containers. The instrumental analyses showed that the usable life of the berries was extended in the PLA containers. A correlation between consumer preference and instrumental evaluations was found.

  18. A novel & affordable interactive floor for educational applications

    DEFF Research Database (Denmark)

    Boisen, Ulrik; Hansen, Anders Juul; Knudsen, Lars

    2011-01-01

    This article examines two research areas: How interactive floors can be used beneficially in an educational context, and how an interactive floor can be created which is mobile and relatively inexpensive....

  19. Modern Theories of Pelvic Floor Support : A Topical Review of Modern Studies on Structural and Functional Pelvic Floor Support from Medical Imaging, Computational Modeling, and Electromyographic Perspectives.

    Science.gov (United States)

    Peng, Yun; Miller, Brandi D; Boone, Timothy B; Zhang, Yingchun

    2018-02-12

    Weakened pelvic floor support is believed to be the main cause of various pelvic floor disorders. Modern theories of pelvic floor support stress on the structural and functional integrity of multiple structures and their interplay to maintain normal pelvic floor functions. Connective tissues provide passive pelvic floor support while pelvic floor muscles provide active support through voluntary contraction. Advanced modern medical technologies allow us to comprehensively and thoroughly evaluate the interaction of supporting structures and assess both active and passive support functions. The pathophysiology of various pelvic floor disorders associated with pelvic floor weakness is now under scrutiny from the combination of (1) morphological, (2) dynamic (through computational modeling), and (3) neurophysiological perspectives. This topical review aims to update newly emerged studies assessing pelvic floor support function among these three categories. A literature search was performed with emphasis on (1) medical imaging studies that assess pelvic floor muscle architecture, (2) subject-specific computational modeling studies that address new topics such as modeling muscle contractions, and (3) pelvic floor neurophysiology studies that report novel devices or findings such as high-density surface electromyography techniques. We found that recent computational modeling studies are featured with more realistic soft tissue constitutive models (e.g., active muscle contraction) as well as an increasing interest in simulating surgical interventions (e.g., artificial sphincter). Diffusion tensor imaging provides a useful non-invasive tool to characterize pelvic floor muscles at the microstructural level, which can be potentially used to improve the accuracy of the simulation of muscle contraction. Studies using high-density surface electromyography anal and vaginal probes on large patient cohorts have been recently reported. Influences of vaginal delivery on the

  20. Heat suppression of the fiber coating on a cladding light stripper in high-power fiber laser.

    Science.gov (United States)

    Yan, Ming-Jian; Wang, Zheng; Meng, Ling-Qiang; Yin, Lu; Han, Zhi-Gang; Shen, Hua; Wang, Hai-Lin; Zhu, Ri-Hong

    2018-01-20

    We present a theoretical model for the thermal effect of the fiber coating on a high-power cladding light stripper, which is fabricated by chemical etching. For the input and output of the fiber coating, a novel segmented corrosion method and increasing attenuation method are proposed for heat suppression, respectively. The relationship between the attenuation and temperature rise of the fiber coating at the output is experimentally demonstrated. The temperature distribution of the fiber coating at the input as well as the return light power caused by scattering are measured for the etched fiber with different surface roughness values. The results suggest that the rise in temperature is primarily caused by the scattering light propagating into the coating. Finally, an attenuation of 27 dB is achieved. At a room temperature of 23°C and input pump power of 438 W, the highest temperature of the input fiber coating decreases from 39.5°C to 27.9°C by segmented corrosion, and the temperature rise of the output fiber coating is close to 0.

  1. Management of disorders of the posterior pelvic floor.

    Science.gov (United States)

    Berman, Loren; Aversa, John; Abir, Farshad; Longo, Walter E.

    2005-01-01

    INTRODUCTION: Constipation is a relatively common problem affecting 15 percent of adults in the Western world, and over half of these cases are related to pelvic floor disorders. This article reviews the clinical presentation and diagnostic approach to posterior pelvic floor disorders, including how to image and treat them. METHODS: A Pubmed search using keywords "rectal prolapse," "rectocele," "perineal hernia," and "anismus" was performed, and bibliographies of the revealed articles were cross-referenced to obtain a representative cross-section of the literature, both investigational studies and reviews, that are currently available on posterior pelvic floor disorders. DISCUSSION: Pelvic floor disorders can occur with or without concomitant physical anatomical defects, and there are a number of imaging modalities available to detect such abnormalities in order to decide on the appropriate course of treatment. Depending on the nature of the disorder, operative or non-operative therapy may be indicated. CONCLUSION: Correctly diagnosing pelvic floor disorders can be complex and challenging, and the various imaging modalities as well as clinical history and exam must be considered together in order to arrive at a diagnosis. PMID:16720016

  2. Special aspects of attic floor warming in historic buildings

    Directory of Open Access Journals (Sweden)

    Murgul Vera

    2017-01-01

    Full Text Available This article containsreasoningof the heat transfer performance uniformity factor determination for attic floors of historic residential buildings while energy effective modifying buildings. The numeral value of this heat transfer performance uniformity factor for the wooden attic floor structure was founddurung investigation. It was estimated that there was no moisture condensation in the wooden attic floor structure.

  3. Short communication: Flooring preferences of dairy cows at calving.

    Science.gov (United States)

    Campler, M; Munksgaard, L; Jensen, M B; Weary, D M; von Keyserlingk, M A G

    2014-02-01

    The present study investigated the flooring preference during the 30 h before parturition in Holstein dairy cows housed individually in a maternity pen. Seventeen multiparous cows were moved, on average, 2 d before expected calving date into an individual maternity pen with 3 different flooring surfaces: 10 cm of sand, pebble-top rubber mats, or concrete flooring, each covered with 15 cm of straw. Calving location, lying time, and total time and number of lying bouts on each of the floor types were recorded during 2 periods: precalving (24 to 29 h before calving) and at calving (0 to 5h before calving). Ten cows calved on sand, 6 on concrete, and 1 on the rubber mat. Lying bouts increased during the hours closest to calving, regardless of flooring. The number of lying bouts did not differ between flooring types precalving but cows had more lying bouts on sand and concrete compared with rubber at calving. Cows spent more time lying down on sand and concrete compared with rubber precalving, but lying times did not differ between treatments at calving. Cows that calved on sand spent more time lying on sand at calving compared with the other 2 flooring types. Cows that calved on concrete did not show a flooring preference at calving. These results indicate that rubber mats are the least preferred by dairy cows in the maternity pens, even when covered with a deep layer of straw. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Obtaining and Estimating Low Noise Floors in Vibration Sensors

    DEFF Research Database (Denmark)

    Brincker, Rune; Larsen, Jesper Abildgaard

    2007-01-01

    For some applications like seismic applications and measuring ambient vibrations in structures, it is essential that the noise floors of the sensors and other system components are low and known to the user. Some of the most important noise sources are reviewed and it is discussed how the sensor...... can be designed in order to obtain a low noise floor. Techniques to estimate the noise floors for sensors are reviewed and are demonstrated on a commercial commonly used sensor for vibration testing. It is illustrated how the noise floor can be calculated using the coherence between simultaneous...

  5. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Malakhova Anna Nikolaevna

    2016-06-01

    Full Text Available One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor slabs. The article provides constructive solutions of precast hollow core floor slabs and solid monolithic slabs that were used in the construction of buildings before wide use of large precast hollow core floor slabs. The article considers the application of caisson hollow core floor slabs for modern monolithic multi-storeyed buildings. The design solutions of such floor slabs, experimental investigations and computer modeling of their operation under load were described in this article. The comparative analysis of the calculation results of computer models of a hollow slabs formed of rod or plastic elements showed the similarity of calculation results.

  6. Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources.

    Science.gov (United States)

    Qiu, Yibin; Lei, Peng; Zhang, Yatao; Sha, Yuanyuan; Zhan, Yijing; Xu, Zongqi; Li, Sha; Xu, Hong; Ouyang, Pingkai

    2018-01-01

    The Jerusalem artichoke is a perennial plant that belongs to the sunflower family. As a non-grain crop, Jerusalem artichoke possesses a number of desirable characteristics that make it a valuable feedstock for biorefinery, such as inulin content, rapid growth, strong adaptability, and high yields. This review provides a comprehensive introduction to renewable Jerusalem artichoke-based biomass resources and recent advances in bio-based product conversion. Furthermore, we discuss the latest in the development of inulinase-producing microorganisms and enhanced inulin hydrolysis capacity of microbes by genetic engineering, which lead to a more cost-effective Jerusalem artichoke biorefinery. The review is aimed at promoting Jerusalem artichoke industry and new prospects for higher value-added production.

  7. Global floor planning approach for VLSI design

    International Nuclear Information System (INIS)

    LaPotin, D.P.

    1986-01-01

    Within a hierarchical design environment, initial decisions regarding the partitioning and choice of module attributes greatly impact the quality of the resulting IC in terms of area and electrical performance. This dissertation presents a global floor-planning approach which allows designers to quickly explore layout issues during the initial stages of the IC design process. In contrast to previous efforts, which address the floor-planning problem from a strict module placement point of view, this approach considers floor-planning from an area planning point of view. The approach is based upon a combined min-cut and slicing paradigm, which ensures routability. To provide flexibility, modules may be specified as having a number of possible dimensions and orientations, and I/O pads as well as layout constraints are considered. A slicing-tree representation is employed, upon which a sequence of traversal operations are applied in order to obtain an area efficient layout. An in-place partitioning technique, which provides an improvement over previous min-cut and slicing-based efforts, is discussed. Global routing and module I/O pin assignment are provided for floor-plan evaluation purposes. A computer program, called Mason, has been developed which efficiently implements the approach and provides an interactive environment for designers to perform floor-planning. Performance of this program is illustrated via several industrial examples

  8. Pelvic floor dysfunction, and effects of pregnancy and mode of delivery on pelvic floor

    Directory of Open Access Journals (Sweden)

    Murat Bozkurt

    2014-12-01

    Full Text Available Pelvic floor dysfunction (PFD, although seems to be simple, is a complex process that develops secondary to multifactorial factors. The incidence of PFD is increasing with increasing life expectancy. PFD is a term that refers to a broad range of clinical scenarios, including lower urinary tract excretory and defecation disorders, such as urinary and anal incontinence, overactive bladder, and pelvic organ prolapse, as well as sexual disorders. It is a financial burden on the health care system and disrupts women's quality of life. Strategies applied to decrease PFD are focused on the course of pregnancy, mode and management of delivery, and pelvic exercise methods. Many studies in the literature define traumatic birth, usage of forceps, length of the second stage of delivery, and sphincter damage as modifiable risk factors for PFD. Maternal age, fetal position, and fetal head circumference are nonmodifiable risk factors. Although numerous studies show that vaginal delivery affects pelvic floor structures and their functions in a negative way, there is not enough scientific evidence to recommend elective cesarean delivery in order to prevent development of PFD. PFD is a heterogeneous pathological condition, and the effects of pregnancy, vaginal delivery, cesarean delivery, and possible risk factors of PFD may be different from each other. Observational studies have identified certain obstetrical exposures as risk factors for pelvic floor disorders. These factors often coexist; therefore, the isolated effects of these variables on the pelvic floor are difficult to study. The routine use of episiotomy for many years in order to prevent PFD is not recommended anymore; episiotomy should be used in selected cases, and the mediolateral procedures should be used if needed.

  9. Laparoscopic Pelvic Floor Repair Using Polypropylene Mesh

    Directory of Open Access Journals (Sweden)

    Shih-Shien Weng

    2008-09-01

    Conclusion: Laparoscopic pelvic floor repair using a single piece of polypropylene mesh combined with uterosacral ligament suspension appears to be a feasible procedure for the treatment of advanced vaginal vault prolapse and enterocele. Fewer mesh erosions and postoperative pain syndromes were seen in patients who had no previous pelvic floor reconstructive surgery.

  10. Detection of lunar floor-fractured craters using machine learning methods

    Science.gov (United States)

    Thorey, C.

    2015-10-01

    About 200 Floor Fractured Craters (FFCs) have been identified by Schultz (1976) on the Moon, mainly around the lunar maria. These craters are a class of impact craters that are distinguished by having radi-ally and concentric floor-fractured networks and ab-normally shallow floors. In some cases, the uplift of the crater floor can be as large as 50% of the initial crater depth. These impact craters are interpreted to have undergone endogenous deformations after their formation.

  11. 29 CFR 1910.23 - Guarding floor and wall openings and holes.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Guarding floor and wall openings and holes. 1910.23 Section... floor and wall openings and holes. (a) Protection for floor openings. (1) Every stairway floor opening... opening and hole shall be guarded by a standard skylight screen or a fixed standard railing on all exposed...

  12. 40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile subcategory... manufacture of asbestos floor tile. ...

  13. An education program about pelvic floor muscles improved women's knowledge but not pelvic floor muscle function, urinary incontinence or sexual function: a randomised trial.

    Science.gov (United States)

    de Andrade, Roberta Leopoldino; Bø, Kari; Antonio, Flavia Ignácio; Driusso, Patricia; Mateus-Vasconcelos, Elaine Cristine Lemes; Ramos, Salvador; Julio, Monica Pitanguy; Ferreira, Cristine Homsi Jorge

    2018-04-01

    Does an educational program with instructions for performing 'the Knack' improve voluntary contraction of the pelvic floor muscles, reduce reports of urinary incontinence, improve sexual function, and promote women's knowledge of the pelvic floor muscles? Randomised, controlled trial with concealed allocation, intention-to-treat analysis and blinded assessors. Ninety-nine women from the local community. The experimental group (n=50) received one lecture per week for 4 weeks, and instructions for performing 'the Knack'. The control group (n=49) received no intervention. The primary outcome was maximum voluntary contraction of the pelvic floor muscles measured using manometry. Secondary outcomes were: ability to contract the pelvic floor muscles measured using vaginal palpation; severity of urinary incontinence measured by the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF) scored from 0 to 21; self-reported sexual function; and knowledge related to the pelvic floor. Outcomes were measured at baseline and after 4 weeks. The intervention did not significantly improve: maximum voluntary contraction (MD 2.7 cmH 2 O higher in the experimental group, 95% CI -0.5 to 5.9); ability to contract the pelvic floor muscles (RR 2.18, 95% CI 0.49 to 9.65); or self-reported severity of urinary incontinence (MD 1 point greater reduction in the experimental group, 95% CI -3 to 1). Sexual function did not significantly differ between groups, but very few of the women engaged in sexual activity during the study period. The educational program did, however, significantly increase women's knowledge related to the location, functions and dysfunctions of the pelvic floor muscles, and treatment options. Education and teaching women to perform 'the Knack' had no significant effect on voluntary contraction of the pelvic floor muscles, urinary incontinence or sexual function, but it promoted women's knowledge about the pelvic floor. Brazilian Registry of Clinical

  14. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial...... hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  15. Generation of floor response spectra for PFBR RCB

    International Nuclear Information System (INIS)

    Sajish, S.D.; Ramakrishna, V.; Chellapandi, P.; Chetal, S.C.

    2003-01-01

    This paper describes the generation of floor time histories and corresponding floor response spectrums at various locations in reactor containment building (RCB) for 500 MWe Prototype Fast Breeder Reactor (PFBR). The RCB and its internal structures are modeled with equivalent 3D-beam elements (stick model), which have got the essential global stiffness and inertial properties of the corresponding building. The main aspect in the simulation of beam model is derivation of equivalent cross sectional properties such as bending, torsional and shear rigidities including shear centers. These properties have been obtained through 3D plate/shell element models with appropriate kinematic constraints, for the zones between floors of corresponding buildings. The stick model includes a set of springs and dampers to simulate soil effects, on which base raft and various sticks are mounted. The soil stiffness and damping values are derived based on equations given in ASCE-98. Time history analysis has been done using three uncorrelated time histories, which are derived from the site dependent design response spectra. Floor time histories (FTH) are extracted at important locations from which the corresponding floor response spectrums (FRS) have been generated for various damping values. Peak broadening of the response spectrums has been done according ASCE criteria. Floor response spectrum corresponds to reactor assembly support shows amplification 2.5 for SSE and 3 for OBE. CASTEM 3M is used for seismic analysis and generation of FRS. (author)

  16. Portable flooring protects finished surfaces, is easily moved

    Science.gov (United States)

    Carmody, R. J.

    1964-01-01

    To protect curved, finished surface and provide support for workmen, portable flooring has been made from rigid plastic foam blocks, faced with aluminum strips. Held together by nylon webbing, the flooring can be rolled up for easy carrying.

  17. Dance floors as injury risk: analysis and evaluation of acute injuries caused by dance floors in professional dance with regard to preventative aspects.

    Science.gov (United States)

    Wanke, Eileen M; Mill, Helmgard; Wanke, Alice; Davenport, Jaqueline; Koch, Franziska; Groneberg, David A

    2012-09-01

    A dance floor is often the only support of movements in dance. A dance floor surface that shows deficiencies, can result in acute injuries and chronic problems. Although the significance of an adequate dance floor is well known, there is still a lack of differentiated analyses of dance floor-related acute injuries. This study presents data on acute injuries exclusively caused by the dance floor. The data were obtained from standardized work accident reports from consultants (F 1000), documentary accident records from all Berlin theatres, a state ballet school (n=2,281), and case records from the Berlin State Accident Insurance (UKB) covering a period of 17 years. All analyses and descriptive statistics were conducted with Excel 2007 and SPSS 18. Dance floor surfaces were the causative factor in 12.8% of all accidents (n=291, female 183, male 108). Almost two thirds (62.6%) of all accidents in professional dancers happened on stage, and almost half (49.5%) occurred during performances. As for causative factors, 53.1% of the professional dancers (P) and 42.5% of the dance students (S) claimed that the floor had been "too slippery," with "getting stuck" or (tripping) as the second most common problem (P 18.4%, S 11.3%). Of the injured dancers, 41.8% were older than 30 years and can therefore be categorized as experienced. Dance floors play a significant role in the occurrence of acute injuries, even in experienced dancers. Performances on stage seem to be a particular risk. However, injury prevention measures should include all work locations (P) as well as non-dance-specific locations (S).

  18. 27 CFR 46.195 - Floor stocks requirements.

    Science.gov (United States)

    2010-04-01

    ... Tubes Held for Sale on April 1, 2009 General § 46.195 Floor stocks requirements. (a) Take inventory. The dealer must establish the quantity of articles subject to the floor stocks tax held for sale on April 1, 2009. The dealer may take a physical inventory or may use a record (book) inventory, as specified in...

  19. [Quality of life in women with pelvic floor dysfunction].

    Science.gov (United States)

    Segedi, Ljiljana Mladenović; Ilić, Katarina Parezanović; Curcić, Aleksandar; Visnjevac, Nemanja

    2011-11-01

    Pelvic floor dysfunction is a frequent problem affecting more than 50% of women in peri- and postmenopause. Considering that ageing and menopause befall in the significant factors causing this issue, as well as the expected longevity of women in the world and in our country, pelvic floor dysfunction prevelence is foreseen to be even higher. The aim of the study was to evaluate impact of the symptoms of pelvic dysfunction on quality of life and examine body image satisfaction in adult women with pelvic organ prolapse presenting to tertiary care clinic for surgical treatment. This prospective case-control study included 50 patients who presented to tertiary care gynecology clinic for surgical treatment and 50 controls with normal pelvic floor support and without urinary incontinence who presented tertiary care gynecology clinic for other reasons. Both, patients and controls, completed two quastionnaires recommended for the evaluation of symptoms (Pelvic floor distress inventory - short forms) and quality of life impact (Pelvic floor impact questionnaire - short form) of pelvic organ prolapse, and Body Image Scale. The patients scored significantly worse on the prolapse, urinary, colorectal scales and overall score of Pelvic floor distress inventory--20 than controls subjects (134.91 vs 78.08; p self-conscious (78% vs 42%; p body. There was a positive correlation between decreased quality of life and body image in women with pelvic dysfunction. Women with pelvic floor dysfunction have decreased quality of life and body image.

  20. Anonymous electronic trading versus floor trading

    OpenAIRE

    Franke, Günter; Hess, Dieter

    1995-01-01

    This paper compares the attractiveness of floor trading and anonymous electronic trading systems. It is argued that in times of low information intensity the insight into the order book of the electronic trading system provides more valuable information than floor trading, but in times of high information intensity the reverse is true. Thus, the electronic system's market share in trading activity should decline in times of high information intensity. This hypothesis is tested by data on BUND...

  1. Effect of slatted and solid floors and permeability of floors in pig houses on environment, animal welfare and health and food safety: a review of literature

    NARCIS (Netherlands)

    Vermeij, I.; Enting, J.; Spoolder, H.A.M.

    2009-01-01

    An integrated approach can improve understanding of floor performance. Not only gap width or percentage of slatted floor is important, but a minimum percentage of permeability of the total floor area appears to be decisive

  2. Imaging of the posterior pelvic floor

    International Nuclear Information System (INIS)

    Stoker, Jaap; Bartram, Clive I.; Halligan, Steve

    2002-01-01

    Disorders of the posterior pelvic floor are relatively common. The role of imaging in this field is increasing, especially in constipation, prolapse and anal incontinence, and currently imaging is an integral part of the investigation of these pelvic floor disorders. Evacuation proctography provides both structural and functional information for rectal voiding and prolapse. Dynamic MRI may be a valuable alternative as the pelvic floor muscles are visualised, and it is currently under evaluation. Endoluminal imaging is important in the management of anal incontinence. Both endosonography and endoanal MRI can be used for detection of anal sphincter defects. Endoanal MRI has the advantage of simultaneously evaluating external sphincter atrophy, which is an important predictive factor for the outcome of sphincter repair. Many aspects of constipation and prolapse remain incompletely understood and treatment is partly empirical; however, imaging has a central role in management to place patients into treatment-defined groups. (orig.)

  3. Imaging of the posterior pelvic floor

    Energy Technology Data Exchange (ETDEWEB)

    Stoker, Jaap [Department of Radiology, Academic Medical Center, University of Amsterdam (Netherlands); Bartram, Clive I.; Halligan, Steve [Intestinal Imaging Centre, St. Mark' s Hospital, London (United Kingdom)

    2002-04-01

    Disorders of the posterior pelvic floor are relatively common. The role of imaging in this field is increasing, especially in constipation, prolapse and anal incontinence, and currently imaging is an integral part of the investigation of these pelvic floor disorders. Evacuation proctography provides both structural and functional information for rectal voiding and prolapse. Dynamic MRI may be a valuable alternative as the pelvic floor muscles are visualised, and it is currently under evaluation. Endoluminal imaging is important in the management of anal incontinence. Both endosonography and endoanal MRI can be used for detection of anal sphincter defects. Endoanal MRI has the advantage of simultaneously evaluating external sphincter atrophy, which is an important predictive factor for the outcome of sphincter repair. Many aspects of constipation and prolapse remain incompletely understood and treatment is partly empirical; however, imaging has a central role in management to place patients into treatment-defined groups. (orig.)

  4. Predictive multiscale computational model of shoe-floor coefficient of friction.

    Science.gov (United States)

    Moghaddam, Seyed Reza M; Acharya, Arjun; Redfern, Mark S; Beschorner, Kurt E

    2018-01-03

    Understanding the frictional interactions between the shoe and floor during walking is critical to prevention of slips and falls, particularly when contaminants are present. A multiscale finite element model of shoe-floor-contaminant friction was developed that takes into account the surface and material characteristics of the shoe and flooring in microscopic and macroscopic scales. The model calculates shoe-floor coefficient of friction (COF) in boundary lubrication regime where effects of adhesion friction and hydrodynamic pressures are negligible. The validity of model outputs was assessed by comparing model predictions to the experimental results from mechanical COF testing. The multiscale model estimates were linearly related to the experimental results (p < 0.0001). The model predicted 73% of variability in experimentally-measured shoe-floor-contaminant COF. The results demonstrate the potential of multiscale finite element modeling in aiding slip-resistant shoe and flooring design and reducing slip and fall injuries. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Common floor system vertical earthquake-proof structure for reactor equipment

    International Nuclear Information System (INIS)

    Morishita, Masaki.

    1996-01-01

    In an LMFBR type reactor, a reactor container, a recycling pump and a heat exchanger are disposed on a common floor. Vertical earthquake-proof devices which can be stretched only in vertical direction formed by laminating large-sized bellevilles are disposed on a concrete wall at the circumference of each of reactor equipments. A common floor is placed on all of the vertical earthquake-proof devices to support the entire earthquake-proof structure simultaneously. If each of reactor equipments is loaded on the common floor and the common floor is entirely supported against earthquakes altogether, since the movement of each of the reactor equipments loaded on the common floor is identical, relative dislocation is not exerted on the main pipelines which connect the equipments. In addition, since the entire earthquake structure has a flat common floor and each of the reactor equipments is suspended to minimize the distance between a gravitational center and a support point, locking vibration is less caused to the horizontal earthquake. (N.H.)

  6. Functional imaging of the pelvic floor

    Energy Technology Data Exchange (ETDEWEB)

    Lienemann, Andreas E-mail: andreaslienemann@web.de; Fischer, Tanja

    2003-08-01

    Introduction/Objective: Pelvic floor dysfunction and associated pelvic organ prolapse represent a major problem in our present-day society, mostly afflicting parous women. Magnetic resonance imaging (MRI) is assuming an increasingly important role in the more accurate delineation of the extent of the problem. This article briefly reviews one of the main radiological methods for the dynamic evaluation of the pelvic floor: functional cine MRI. Methods and Material: Out of the literature the smallest common denominator for functional cine MRI can be defined as follows: high field system; patient either in supine or sitting position; fast gradient echo sequence; midsagittal slice orientation; either a stack of slices or repeated measurements at the same slice position with the patient at rest or straining; image analysis using the pubococcygeal reference line. Results: All except two publications stress the usefulness of functional cine MRI in the evaluation of patients with organ descent and prolapse. This well accepted method allows for the visualization of all relevant structures in the anterior, middle and posterior compartment. It is especially useful in the detection of enteroceles, and provides a reliable postoperative follow-up tool. Isolated urinary or stool incontinence are not an indication for functional cine MRI, as is the case in patients with equivocal clinical findings. To date it does not allow for real 3D imaging of the pelvic floor or sufficient determination of fascial defects. Discussion: Functional cine MRI of the pelvic floor is a promising new imaging method for the detection of organ descent and prolapse in patients with equivocal clinical findings. The combination of function and morphology allows for an innovative view of the pelvic floor, and thus adds to our understanding of the various interactions of the structures.

  7. Modelling floor heating systems using a validated two-dimensional ground coupled numerical model

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Roots, Peter

    2005-01-01

    This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......, that the foundation has a large impact on the energy consumption of buildings heated by floor heating. Consequently, this detail should be in focus when designing houses with floor heating....

  8. Do women with pelvic floor dysfunction referred by gynaecologists and urologists at hospitals complete a pelvic floor muscle training programme?

    DEFF Research Database (Denmark)

    Tibaek, Sigrid; Dehlendorff, Christian

    2013-01-01

    For decades women with pelvic floor dysfunction (PFD) have been referred to pelvic floor muscle training (PFMT), but there is only little information on whether the women complete the programmes and why. The objectives of this study were to investigate to which extent women completed a PFMT...

  9. Indoor radon seasonal variability at different floors of buildings

    International Nuclear Information System (INIS)

    De Francesco, S.; Tommasone, F. Pascale; Cuoco, E.; Tedesco, D.

    2010-01-01

    Indoor radon concentrations have been measured with the α track etch integrated method in public buildings in the town of Pietramelara, north-western Campania, Southern Italy. In particular, our measurements were part of an environmental monitoring program originally aimed at assessing the range of seasonal fluctuations in indoor radon concentrations, at various floors of the studied buildings. However, subsequent analysis of the data and its comparison with the meteorological data recorded in the same period has shown an unexpected pattern at the different floors. In this report we present data suggesting that, besides the well-known medium and longterm periodicity, there could also be a differentiation in major meteorological controlling factors at the different floors of the buildings, a fact that does not appear to have been reported previously. While the lower floors proved to be markedly affected by rainfall, for the upper floors, instead, a different behaviour has been detected, which could possibly be related to global solar radiation.

  10. Pelvic floor spasm as a cause of voiding dysfunction.

    Science.gov (United States)

    Kuo, Tricia L C; Ng, L G; Chapple, Christopher R

    2015-07-01

    Pelvic floor disorders can present with lower urinary tract symptoms, bowel, sexual dysfunction, and/or pain. Symptoms of pelvic muscle spasm (nonrelaxing pelvic floor or hypertonicity) vary and can be difficult to recognize. This makes diagnosis and management of these disorders challenging. In this article, we review the current evidence on pelvic floor spasm and its association with voiding dysfunction. To distinguish between the different causes of voiding dysfunction, a video urodynamics study and/or electromyography is often required. Conservative measures include patient education, behavioral modifications, lifestyle changes, and pelvic floor rehabilitation/physical therapy. Disease-specific pelvic pain and pain from pelvic floor spasm needs to be differentiated and treated specifically. Trigger point massage and injections relieves pain in some patients. Botulinum toxin A, sacral neuromodulation, and acupuncture has been reported in the management of patients with refractory symptoms. Pelvic floor spasm and associated voiding problems are heterogeneous in their pathogenesis and are therefore often underrecognized and undertreated; it is therefore essential that a therapeutic strategy needs to be personalized to the individual patient's requirements. Therefore, careful evaluation and assessment of individuals using a multidisciplinary team approach including a trained physical therapist/nurse clinician is essential in the management of these patients.

  11. Endoscopic anatomy of the orbital floor and maxillary sinus.

    Science.gov (United States)

    Moore, Corey C; Bromwich, Matthew; Roth, Kathy; Matic, Damir B

    2008-01-01

    Endoscopic repair of orbital blow-out fractures could become a predictable and efficient treatment alternative to traditional methods. However, maxillary sinus endoscopy provides a complex and disorienting view of the orbital floor. To be a useful and consistent technique for providing access to the orbital floor, specific knowledge of maxillary endoscopic anatomy is required. The purpose of the study was to provide an anatomic description of the orbital floor via the endoscopic approach. Objectives include defining consistent landmarks for use in endoscopic repair of orbital floor fractures. Using 0- and 30-degree rigid endoscopes, 6 fresh cadavers (12 maxillary sinuses) were examined via a standard Caldwell-Luc approach. Computed tomographic scans, plastic molds, and digital images were used to compare observable averages within bony anatomy. Potential bony landmarks were correlated with soft-tissue anatomy in fresh specimens. The maxillary ostium, orbital floor, and lateral ethmoid air cells were visualized, and their structures were described. Observations were made in relation to the anatomy of the orbital floor and maxillary sinus, including fracture pattern and force transmission pathways. An "orbitomaxillary" sinus bony thickening was identified and described for the first time. This study provides the basis for further refinement of surgical technique and opens the door for future clinical trials using endoscopic repair.

  12. Nuclear reactor cavity floor passive heat removal system

    Science.gov (United States)

    Edwards, Tyler A.; Neeley, Gary W.; Inman, James B.

    2018-03-06

    A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluid communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.

  13. Comparison of changes in the mobility of the pelvic floor muscle on during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction

    OpenAIRE

    Jung, Halim; Jung, Sangwoo; Joo, Sunghee; Song, Changho

    2016-01-01

    [Purpose] The purpose of this study was to compare changes in the mobility of the pelvic floor muscle during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. [Subjects] Thirty healthy adults participated in this study (15 men and 15 women). [Methods] All participants performed a bridge exercise and abdominal curl-up during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. Pelvic floor mobility...

  14. Validation of the Pelvic Floor Distress Inventory-20 and the Pelvic Floor Impact Questionnaire-7 in Danish women with pelvic organ prolapse

    DEFF Research Database (Denmark)

    Due, Ulla; Brostrøm, Søren; Lose, Gunnar

    2013-01-01

    To translate the Pelvic Floor Distress Inventory-20 (PFDI-20) and the Pelvic Floor Impact Questionnaire-7 (PFIQ-7) and to evaluate their psychometric properties in Danish women with symptomatic pelvic organ prolapse....

  15. Development of rationalized system treating floor drain

    International Nuclear Information System (INIS)

    Nakamura, Yasuyuki; Serizawa, Kenichi; Komatsu, Akihiro; Shimizu, Takayuki

    1998-01-01

    Radioactive liquid wastes generated at BWR plants are collected and treated as required. These days, however, generation of floor drain has deceased and HFF (Hollow Fiber Filter) has experienced a wide applicability to several kinds of liquid wastes. We should consider that the floor drain can be mixed and diluted with equipment drain and be purified by HFF. That enables some of the sumps and long priming pipes to be combined. From this point of view, we have developed a highly rationalized waste liquid system. We have evaluated the applicability of this system after an investigation into the generation and properties of floor drain and equipment drain at the latest BWR'S and an on-site test at a typical BWR. (author)

  16. An education program about pelvic floor muscles improved women’s knowledge but not pelvic floor muscle function, urinary incontinence or sexual function: a randomised trial

    Directory of Open Access Journals (Sweden)

    Roberta Leopoldino de Andrade

    2018-04-01

    Full Text Available Question: Does an educational program with instructions for performing ‘the Knack’ improve voluntary contraction of the pelvic floor muscles, reduce reports of urinary incontinence, improve sexual function, and promote women’s knowledge of the pelvic floor muscles? Design: Randomised, controlled trial with concealed allocation, intention-to-treat analysis and blinded assessors. Participants: Ninety-nine women from the local community. Intervention: The experimental group (n = 50 received one lecture per week for 4 weeks, and instructions for performing ‘the Knack’. The control group (n = 49 received no intervention. Outcome measures: The primary outcome was maximum voluntary contraction of the pelvic floor muscles measured using manometry. Secondary outcomes were: ability to contract the pelvic floor muscles measured using vaginal palpation; severity of urinary incontinence measured by the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF scored from 0 to 21; self-reported sexual function; and knowledge related to the pelvic floor. Outcomes were measured at baseline and after 4 weeks. Results: The intervention did not significantly improve: maximum voluntary contraction (MD 2.7 cmH2O higher in the experimental group, 95% CI –0.5 to 5.9; ability to contract the pelvic floor muscles (RR 2.18, 95% CI 0.49 to 9.65; or self-reported severity of urinary incontinence (MD 1 point greater reduction in the experimental group, 95% CI –3 to 1. Sexual function did not significantly differ between groups, but very few of the women engaged in sexual activity during the study period. The educational program did, however, significantly increase women’s knowledge related to the location, functions and dysfunctions of the pelvic floor muscles, and treatment options. Conclusion: Education and teaching women to perform ‘the Knack’ had no significant effect on voluntary contraction of the pelvic floor muscles

  17. Pelvic floor dyssynergia: efficacy of biofeedback training.

    Science.gov (United States)

    Gadel Hak, Nabil; El-Hemaly, Mohamed; Hamdy, Emad; El-Raouf, Ahmed Abd; Atef, Ehab; Salah, Tarek; El-Hanafy, Ehab; Sultan, Ahmad; Haleem, Magdy; Hamed, Hala

    2011-03-01

    Paradoxical contraction of the pelvic floor during attempts to defaecate is described as pelvic floor dyssynergia (anismus). It is a behavioural disorder (no associated morphological or neurological abnormalities); consequently, biofeedback training has been recommended as a behavioural therapy for such a disorder. The aim of the present study was to evaluate long-term satisfaction of patients diagnosed with pelvic floor dyssynergia after biofeedback. Sixty patients (35 females and 25 males) with a mean age of 30±12years and a 4year duration of constipation were included. Forty-five patients had normal colonic transit and 15 patients had slow colonic transit. History, physical examination and barium enema were done to exclude constipation secondary to organic causes. Colonic and pelvic floor functions (colon-transit time, anorectal manometry, EMG and defaecography) were performed before and after biofeedback treatments. Patients were treated on a weekly basis with an average of (6±2) sessions. At the end of sessions, 55 out of 60 patients (91.6%) reported a subjectively overall improvement. Symptoms of dyschezia were reported less frequently after biofeedback. Age and gender were not predictive factors of outcome. No symptoms at initial assessment were predictive for patient's satisfaction but the only factor of predictive value was the diagnosis of anismus and the motivated patient who wanted to continue the sessions. Biofeedback remains a morbidity free, low-cost and effective outpatient therapy for well-motivated patients complaining of functional constipation and diagnosed as pelvic floor dyssynergia. Copyright © 2011 Arab Journal of Gastroenterology. Published by Elsevier Ltd. All rights reserved.

  18. 120 Years of U.S. Residential Housing Stock and Floor Space

    Energy Technology Data Exchange (ETDEWEB)

    Pinto de Moura, Maria C.; Smith, Steven J.; Belzer, David B.

    2015-08-11

    Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions. Floor space is a major driver of building energy demand. This paper develops a historical time series of total residential floor space for 1891-2010 and examines the role of socio-economic drivers GDP, population and household size on floor space. Using primarily data from the U.S. Census Bureau, we develop new construction and vintage-disaggregated housing stock for three building types, and address various data inconsistency issues. An examination of the long-term relationship of GDP and total residential floor space shows a remarkably constant trend over the period. While population increases five times over the period, a 50% decrease in household size contributes towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. Total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years.

  19. {sup 14}C determination in different bio-based products

    Energy Technology Data Exchange (ETDEWEB)

    Santos Arévalo, Francisco-Javier, E-mail: fj.santos@csic.es [Centro Nacional de Aceleradores (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía), Thomas Alva Edison 7, 41092 Seville (Spain); Gómez Martínez, Isabel; Agulló García, Lidia; Reina Maldonado, María-Teresa [Centro Nacional de Aceleradores (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía), Thomas Alva Edison 7, 41092 Seville (Spain); García León, Manuel [Centro Nacional de Aceleradores (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía), Thomas Alva Edison 7, 41092 Seville (Spain); Dpto. de Física Atómica Molecular y Nuclear, Universidad de Sevilla, Reina Mercedes s/n, 41012 Seville (Spain)

    2015-10-15

    Radiocarbon determination can be used as a tool to investigate the presence of biological elements in different bio-based products, such as biodiesel blends. These products may also be produced from fossil materials obtaining the same final molecules, so that composition is chemically indistinguishable. The amount of radiocarbon in these products can reveal how much of these biological elements have been used, usually mixed with petrol derived components, free of {sup 14}C. Some of these products are liquid and thus the handling at the laboratory is not as straightforward as with solid samples. At Centro Nacional de Aceleradores (CNA) we have tested the viability of these samples using a graphitization system coupled to an elemental analyzer used for combustion of the samples, thus avoiding any vacuum process. Samples do not follow any chemical pre-treatment procedure and are directly graphitized. Specific equipment for liquid samples related to the elemental analyzer was tested. Measurement of samples was performed by low-energy AMS at the 1 MV HVEE facility at CNA, paying special attention to background limits and reproducibility during sample preparation.

  20. 76 FR 7098 - Dealer Floor Plan Pilot Program

    Science.gov (United States)

    2011-02-09

    ... Plan Pilot Program AGENCY: U.S. Small Business Administration (SBA). ACTION: Program implementation with request for comments. SUMMARY: SBA is introducing a new Dealer Floor Plan Pilot Program to make... Plan Pilot Program was created in the Small Business Jobs Act of 2010. Under the new Dealer Floor Plan...

  1. 49 CFR 38.99 - Floors, steps and thresholds.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Floors, steps and thresholds. 38.99 Section 38.99 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Commuter Rail Cars and Systems § 38.99 Floors, steps and thresholds...

  2. Fabrication and electromagnetic properties of bio-based helical soft-core particles by way of Ni-Fe alloy electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Lan Mingming, E-mail: lan_mingming@163.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Zhang Deyuan; Cai Jun; Zhang Wenqiang; Yuan Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2011-12-15

    Ni-Fe alloy electroplating was used as a bio-limited forming process to fabricate bio-based helical soft-core ferromagnetic particles, and a low frequency vibration device was applied to the cathode to avoid microorganism (Spirulina platens) cells adhesion to the copper net during the course of plating. The morphologies and ingredients of the coated Spirulina cells were characterized using scanning electron microscopy and energy dispersive spectrometer. The complex permittivity and permeability of the samples containing the coated Spirulina cells before and after heat treatment were measured and investigated by a vector network analyzer. The results show that the Spirulina cells after plating keep their initial helical shape, and applying low frequency vibration to the copper net cathode in the plating process can effectively prevent agglomeration and intertwinement of the Spirulina cells. The microwave absorbing and electromagnetic properties of the samples containing the coated Spirulina cells particles with heat treatment are superior to those samples containing the coated Spirulina cells particles without heat treatment. - Highlights: > We used the microorganism cells as forming template to fabricate the bio-based helical soft-core ferromagnetic particles. > Microorganism selected as forming templates was Spirulina platens, which are of natural helical shape and have high aspect ratio. > Coated Spirulina cells were a kind lightweight ferromagnetic particle.

  3. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Michael [Technology Management Inc., Cleveland, OH (United States); Ruhl, Robert [Technology Management Inc., Cleveland, OH (United States)

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  4. "Help Me Pull That Cursor" A Collaborative Interactive Floor Enhancing Community Interaction

    Directory of Open Access Journals (Sweden)

    Peter Krogh

    2004-05-01

    Full Text Available In this paper we describe the development, experiments and evaluation of the iFloor, an interactive floor prototype installed at the local central municipality library. The primary purpose of the iFloor prototype is to support and stimulate community interaction between collocated people. The context of the library demands that any user can walk up and use the prototype without any devices or prior introduction. To achieve this, the iFloor proposes innovative interaction (modes/paradigms/patterns for floor surfaces through the means of video tracking. Browsing and selecting content is done in a collaborative process and mobile phones are used for posting messages onto the floor. The iFloor highlights topics on social issues of ubiquitous computing environments in public spaces, and provides an example of how to exploit human spatial movements, positions and arrangements in interaction with computers.

  5. A Method of Assembling Wall or Floor Elements

    DEFF Research Database (Denmark)

    2002-01-01

    The invention relates to a method of constructing, at the site of use, a building wall (1) or a building floor (1) using a plurality of prefabricated concrete or lightweight concrete plate-shaped wall of floor elements (10), in particular cast elements, which have a front side and a rear side...

  6. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production.

    Science.gov (United States)

    Zhuang, Kai H; Herrgård, Markus J

    2015-09-01

    In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. 120 Years of U.S. Residential Housing Stock and Floor Space.

    Directory of Open Access Journals (Sweden)

    Maria Cecilia P Moura

    Full Text Available Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891-2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891-2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.

  8. Floor-fractured craters on Ceres and implications for interior processes

    Science.gov (United States)

    Buczkowski, Debra; Schenk, Paul M.; Scully, Jennifer E. C.; Park, Ryan; Preusker, Frank; Raymond, Carol; Russell, Christopher T.

    2016-10-01

    Several of the impact craters on Ceres have patterns of fractures on their floors. These fractures appear similar to those found within a class of lunar craters referred to as Floor-Fractured Craters (FFCs) [Schultz, 1976].Lunar FFCs are characterized by anomalously shallow floors cut by radial, concentric, and/or polygonal fractures, and have been classified into crater classes, Types 1 through 6, based on their morphometric properties [Schultz, 1976; Jozwiak et al, 2012, 2015]. Models for their formation have included both floor uplift due to magmatic intrusion below the crater or floor shallowing due to viscous relaxation. However, the observation that the depth versus diameter (d/D) relationship of the FFCs is distinctly shallower than the same association for other lunar craters supports the hypotheses that the floor fractures form due to shallow magmatic intrusion under the crater [Jozwiak et al, 2012, 2015].FFCs have also been identified on Mars [Bamberg et al., 2014]. Martian FFCs exhibit morphological characteristics similar to the lunar FFCs, and analyses suggest that the Martian FCCs also formed due to volcanic activity, although heavily influenced by interactions with groundwater and/or ice.We have cataloged the Ceres FFCs according to the classification scheme designed for the Moon. Large (>50 km) Ceres FFCs are most consistent with Type 1 lunar FFCs, having deep floors, central peaks, wall terraces, and radial and/or concentric fractures. Smaller craters on Ceres are more consistent with Type 4 lunar FFCs, having less-pronounced floor fractures and a v-shaped moats separating the wall scarp from the crater interior.An analysis of the d/D ratio for Ceres craters shows that, like lunar FFCs, the Ceres FFCs are anomalously shallow. This suggests that the fractures on the floor of Ceres FFCs may be due the intrusion of a low-density material below the craters that is uplifting their floors. While on the Moon and Mars the intrusive material is hypothesized

  9. Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging

    OpenAIRE

    Burgos, Nuria; Armentano, Ilaria; Fortunati, Elena; Dominici, Franco; Luzi, Francesca; Fiori, Stefano; Cristofaro, Francesco; Visai, Livia; Jiménez, Alfonso; Kenny, José María

    2017-01-01

    Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous f...

  10. Newly invented biobased materials from low-carbon, diverted waste fibers: research methods, testing, and full-scale application in a case study structure

    Science.gov (United States)

    Julee A Herdt; John Hunt; Kellen Schauermann

    2016-01-01

    This project demonstrates newly invented, biobased construction materials developed by applying lowcarbon, biomass waste sources through the Authors’ engineered fiber processes and technology. If manufactured and applied large-scale the project inventions can divert large volumes of cellulose waste into high-performance, low embodied energy, environmental construction...

  11. Comparison between dynamic cystocolpoproctography and dynamic pelvic floor MRI: pros and cons: which is the "functional" examination for anorectal and pelvic floor dysfunction?

    Science.gov (United States)

    Maglinte, Dean D T; Hale, Douglass S; Sandrasegaran, Kumar

    2013-10-01

    "Functional" imaging of anorectal and pelvic floor dysfunction has assumed an important role in the diagnosis and management of these disorders. Although defecography has been widely practiced for decades to evaluate the dynamics of rectal emptying, debate concerning its clinical relevance, how it should be done and interpreted continues. Due to the recognition of the association of defecatory disorders with pelvic organ prolapse in women, the need to evaluate the pelvic floor as a unit has arisen. To meet this need, defecography has been extended to include not only evaluation of defecation disorders but also the rest of the pelvic floor by opacifying the small bowel, vagina, and the urinary bladder. The term "dynamic cystocolpoproctography" (DCP) has been appropriately applied to this examination. Rectal emptying performed with DCP provides the maximum stress to the pelvic floor resulting in complete levator ani relaxation. In addition to diagnosing defecatory disorders, this method of examination demonstrates maximum pelvic organ descent and provides organ-specific quantification of organ prolapse, information that is only inferred by means of physical examination. It has been found to be of clinical value in patients with defecation disorders and the diagnosis of associated prolapse in other compartments that are frequently unrecognized by history taking and the limitations of physical examination. Pelvic floor anatomy is complex and DCP does not show the anatomical details pelvic magnetic resonance imaging (MRI) provides. Technical advances allowing acquisition of dynamic rapid MRI sequences has been applied to pelvic floor imaging. Early reports have shown that pelvic MRI may be a useful tool in pre-operative planning of these disorders and may lead to a change in surgical therapy. Predictions of hypothetical increase cancer incidence and deaths in patients exposed to radiation, the emergence of pelvic floor MRI in addition to questions relating to the

  12. Chronic pelvic floor dysfunction.

    Science.gov (United States)

    Hartmann, Dee; Sarton, Julie

    2014-10-01

    The successful treatment of women with vestibulodynia and its associated chronic pelvic floor dysfunctions requires interventions that address a broad field of possible pain contributors. Pelvic floor muscle hypertonicity was implicated in the mid-1990s as a trigger of major chronic vulvar pain. Painful bladder syndrome, irritable bowel syndrome, fibromyalgia, and temporomandibular jaw disorder are known common comorbidities that can cause a host of associated muscular, visceral, bony, and fascial dysfunctions. It appears that normalizing all of those disorders plays a pivotal role in reducing complaints of chronic vulvar pain and sexual dysfunction. Though the studies have yet to prove a specific protocol, physical therapists trained in pelvic dysfunction are reporting success with restoring tissue normalcy and reducing vulvar and sexual pain. A review of pelvic anatomy and common findings are presented along with suggested physical therapy management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Smart Floor with Integrated Triboelectric Nanogenerator As Energy Harvester and Motion Sensor.

    Science.gov (United States)

    He, Chuan; Zhu, Weijun; Chen, Baodong; Xu, Liang; Jiang, Tao; Han, Chang Bao; Gu, Guang Qin; Li, Dichen; Wang, Zhong Lin

    2017-08-09

    A smart floor is demonstrated by integrating a square-frame triboelectric nanogenerator (SF-TENG) into a standard wood floor. The smart floor has two working modes based on two pairs of triboelectric materials: one is purposely chosen polytetrafluoroethylene films and aluminum (Al) balls, and the other is the floor itself and the objects that can be triboelectrically charged, such as basketball, shoe soles, and Scotch tape, etc. Utilizing the Al balls enclosed inside shallow boxes, the smart floor is capable of harvesting vibrational energy and, hence, provides a nonintrusive way to detect sudden falls in elderly people. In addition, when the basketball is bounced repeatedly on the floor, the average output voltage and current are 364 ± 43 V and 9 ± 1 μA, respectively, and 87 serially connected light-emitting diodes can be lit up simultaneously. Furthermore, the friction between the triboelectrically chargeable objects and the floor can also induce an alternating current output in the external circuit without the vibration of the Al balls. Normal human footsteps on the floor produce a voltage of 238 ± 17 V and a current of 2.4 ± 0.3 μA. Therefore, this work presents a smart floor with built-in SF-TENG without compromising the flexibility and stability of the standard wood floor and also demonstrates a way to harvest ambient energy solely by using conventional triboelectric materials in our daily life.

  14. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten

    2017-01-01

    : a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy...

  15. Modelling continuous pharmaceutical and bio-based processes at plant-wide level: A roadmap towards efficient decision-making

    DEFF Research Database (Denmark)

    Ramin, Pedram; Mansouri, Seyed Soheil; Udugama, Isuru A.

    2018-01-01

    The importance of developing simulation models for decision making in pharmaceutical and bio-based production processes is elaborated in this article. The advantages of modelling continuous processes are outlined and certain barriers in this regard are identified. Although there have been some...... advancements in the field, there needs to be a larger international collaboration in this regard for providing reliable data for model validation, for development of generic modelbased frameworks and implementing them in computer-aided platforms in the form of software tools....

  16. A prospective study of floor surface, shoes, floor cleaning and slipping in US limited-service restaurant workers.

    Science.gov (United States)

    Verma, Santosh K; Chang, Wen Ruey; Courtney, Theodore K; Lombardi, David A; Huang, Yueng-Hsiang; Brennan, Melanye J; Mittleman, Murray A; Ware, James H; Perry, Melissa J

    2011-04-01

    Slips and falls are a leading cause of injury at work. Few studies, however, have systematically examined risk factors of slipping outside the laboratory environment. This study examined the association between floor surface characteristics, slip-resistant shoes, floor cleaning frequency and the risk of slipping in limited-service restaurant workers. 475 workers from 36 limited-service restaurants from three major chains in six states in the USA were recruited to participate in a prospective cohort study of workplace slipping. Kitchen floor surface roughness and coefficient of friction (COF) were measured in eight working areas and then averaged within each restaurant. The use of slip-resistant shoes was determined by examining the participant's shoes and noting the presence of a 'slip-resistant' marking on the sole. Restaurant managers reported the frequency of daily kitchen floor cleaning. Participants reported their slip experience and work hours weekly for up to 12 weeks. The survey materials were made available in three languages: English, Spanish and Portuguese. The associations between rate of slipping and risk factors were assessed using a multivariable negative binomial generalised estimating equation model. The mean of individual slipping rate varied among the restaurants from 0.02 to 2.49 slips per 40 work hours. After adjusting for age, gender, BMI, education, primary language, job tenure and restaurant chain, the use of slip-resistant shoes was associated with a 54% reduction in the reported rate of slipping (95% CI 37% to 64%), and the rate of slipping decreased by 21% (95% CI 5% to 34%) for each 0.1 increase in the mean kitchen COF. Increasing floor cleaning frequency was significantly associated with a decreasing rate of slipping when considered in isolation but not after statistical adjustment for other factors. These results provide support for the use of slip-resistant shoes and measures to increase COF as preventive interventions to reduce slips

  17. Lead exposures from varnished floor refinishing.

    Science.gov (United States)

    Schirmer, Joseph; Havlena, Jeff; Jacobs, David E; Dixon, Sherry; Ikens, Robert

    2012-01-01

    We evaluated the presence of lead in varnish and factors predicting lead exposure from floor refinishing and inexpensive dust suppression control methods. Lead in varnish, settled dust, and air were measured using XRF, laboratory analysis of scrape and wipe samples, and National Institute for Occupational Safety and Health (NIOSH) Method 7300, respectively, during refinishing (n = 35 homes). Data were analyzed using step-wise logistic regression. Compared with federal standards, no lead in varnish samples exceeded 1.0 mg/cm(2), but 52% exceeded 5000 ppm and 70% of settled dust samples after refinishing exceeded 40 μg/ft(2). Refinishing pre-1930 dwellings or stairs predicted high lead dust on floors. Laboratory analysis of lead in varnish was significantly correlated with airborne lead (r = 0.23, p = 0.014). Adding dust collection bags into drum sanders and HEPA vacuums to edgers and buffers reduced mean floor lead dust by 8293 μg Pb/ft(2) (pairborne lead exposures to less than 50 μg/m(3). Refinishing varnished surfaces in older housing produces high but controllable lead exposures.

  18. Dance floor mechanical properties and dancer injuries in a touring professional ballet company.

    Science.gov (United States)

    Hopper, Luke S; Allen, Nick; Wyon, Matthew; Alderson, Jacqueline A; Elliott, Bruce C; Ackland, Timothy R

    2014-01-01

    The mechanical properties of the floors used by dancers have often been suggested to be associated with injury, yet limited etiological evidence is available to support this hypothesis. The dance floors at three theatres regularly used by a touring professional ballet company were mechanically quantified with the aim of comparing floor properties with injury incidence in dancers. Cross sectional. Test points on the floors were quantified in accordance with European Sports Surface Standard protocols for force reduction. Injuries and associated variables occurring within the ballet company dancers during activity on the three floors were recorded by the company's medical staff. An injury was recorded if a dancer experienced an incident that restricted the dancer from performing all normal training or performance activities for a 24 h period. Injuries were delimited to those occurring in the lower limbs or lumbar region during non-lifting tasks. Floor construction varied between venues and a range of floor mechanical properties were observed. None of the floors complied with the range of force reduction values required by the European Sport Surface Standards. The highest injury rate was observed on the floor with the greatest variability of force reduction magnitudes. No difference in injury frequency was observed between the venues with the highest and lowest mean force reduction magnitudes. Professional dancers can be required to perform on floors that may be inadequate for safe dance practice. Intra-floor force reduction variability may have a stronger association with injury risk than mean floor force reduction magnitude. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Dual-stiffness flooring: can it reduce fracture rates associated with falls?

    Science.gov (United States)

    Knoefel, Frank; Patrick, Louise; Taylor, Jodie; Goubran, Rafik

    2013-04-01

    Falls cause significant morbidity and mortality in long term care facilities. Dual-stiffness flooring (DSF) has previously shown promise in reducing such morbidity in experimental models. This study set out to measure the impact of SmartCell flooring on falls-related morbidity in a nursing home. All falls occurring at an Arizona nursing home between July 1, 2008, and December 31, 2010, were reviewed for age, sex, diagnosis of osteoporosis, number of medications, history of previous falls, type of flooring (normal vs DSF), time of day, type of injury, and resulting actions. Fall-related outcomes were compared across room types using chi-square and logistic regression methods. Eighty-two falls on the DSF were compared with 85 falls on the regular floor. There was a tendency for residents falling on DSF to have less bruising and abrasions, while having more redness and cuts. There were 2 fractures on regular flooring (2.4% fracture rate) and none on the DSF flooring (0% fracture rate). The fracture rate of 2.4% of falls on the regular floor is consistent with previous reports in the literature, whereas a 0% rate found on the DSF floor is a clinically significant improvement. This suggests that DSF may be a practical approach for institutions and consumers to reduce fall-related injuries. A larger scale controlled study to confirm these encouraging preliminary findings is warranted. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.

  20. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of biofuels and bio-based chemicals

    Science.gov (United States)

    An exponential increase in our understanding of genomes, proteomes, and metabolomes provides greater impetus to address critical biotechnological issues such as sustainable production of biofuels and bio-based chemicals and, in particular, the development of improved microbial biocatalysts for use i...

  1. Analysis of the economic impact of large-scale deployment of biomass resources for energy and materials in the Netherlands : macro-economics biobased synthesis report

    NARCIS (Netherlands)

    Hoefnagels, R.; Dornburg, V.; Faaij, A.; Banse, M.A.H.

    2011-01-01

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for

  2. Awareness and timing of pelvic floor muscle contraction, pelvic exercises and rehabilitation of pelvic floor in lifelong premature ejaculation: 5 years experience

    Directory of Open Access Journals (Sweden)

    Giuseppe La Pera

    2014-06-01

    Full Text Available Objectives: To assess the cure rate of patients with premature ejaculation who underwent a treatment involving: 1 awareness of the pelvic floor muscles 2 learning the timing of execution and maintenance of contraction of the pelvic floor muscles during the sensation of the pre-orgasmic phase 3 pelvic floor rehabilitation (bio feed back, pelvic exercises and electrostimulation. Materials and methods: We recruited 78 patients with lifelong premature ejaculation who completed the training. The patients were informed of the role of the pelvic floor. They were taught to carry out the execution and maintenance of contraction of the pelvic floor muscles during the sensation of the pre-orgasmic phase to control the ejaculatory reflex. In order to improve the awareness, the tone and the endurance of the pelvic floor muscles, patients were treated with the rehabilitation of pelvic floor (RPF consisting mainly in biofeedback, pelvic exercises and in some cases also in electro-stimulation (ES. The training was carried out for a period of about 2-6 months with an average of 2-5 visits per cycle. Results: 54% of patients who completed the training were cured of premature ejaculation and learned over time to be able to postpone the ejaculation reflex. In a subgroup of 26 patients was also measured the IELT which on the average increased from < 2 minutes to >10 minutes. The best results occurred mainly in patients aged less than 35 where the cure rate was 65%. There were no side effects. Conclusions: In this study, approximately half of patients with premature ejaculation were cured after applying the above treatment.This therapy, necessitates a fairly long period of time (2-6 months and a great commitment on the part of the patient, nevertheless it can be a valid and effective treatment for patients with premature ejaculation. This treatment makes the patient independent in that he is not bound to specific times for taking medication. Furthermore there are no

  3. The architectural foundations for agent-based shop floor control

    DEFF Research Database (Denmark)

    Langer, Gilad; Bilberg, Arne

    1998-01-01

    simulation and cell controlenabling technologies. In order to continuethis research effortnew concepts and theories for shop floor control are investigated.This paper reviews the multi-agent concept aimed at investigatingits potential use in shop floor control systems. The paper willalso include a survey...

  4. Performance of palm oil as a biobased machining lubricant when drilling inconel 718

    Directory of Open Access Journals (Sweden)

    Abd Rahim Erween

    2017-01-01

    Full Text Available Metalworking fluid acts as cooling and lubrication agent at the cutting zone in the machining process. However, conventional Metalworking fluid such mineral oil gives negative impact on the human and environment. Therefore, the manufacture tends to substitute the mineral oil to bio-based oil such as vegetables and synthetic oil. In this paper, the drilling experiment was carried out to evaluate the efficiency of palm oil and compare it with minimal quantity lubrication technique using synthetic ester, flood coolant and air blow with respect to cutting temperature, cutting force, torque and tool life. The experimental results showed that the application of palm oil under minimal quantity lubrication condition as the cutting fluid was more efficient process as it improves the machining performances.

  5. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters

    Directory of Open Access Journals (Sweden)

    Oliver Goerz

    2014-04-01

    Full Text Available Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a and isosorbide dicrotonate (9b, which were reacted with benzaldehyde oxime in the presence of zinc(II iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a and methyl crotonate (3b were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition.

  6. Compliant flooring for fall injury prevention in long-term care

    OpenAIRE

    Lachance, Chantelle

    2017-01-01

    A promising strategy for reducing the incidence and severity of fall-related injuries in long-term care (LTC) is to decrease the ground surface stiffness, and the subsequent forces applied to the body parts at impact, through installation of compliant flooring. Evidence about the feasibility of compliant flooring in LTC is extremely limited. My PhD research addresses this gap by conducting a comprehensive, multimethod evaluation of compliant flooring. Specifically, I investigate the feasibili...

  7. Thermal analysis of a double layer phase change material floor

    International Nuclear Information System (INIS)

    Jin Xing; Zhang Xiaosong

    2011-01-01

    Phase change materials (PCMs) can be used to shift the cooling or heating load from the peak period to the off-peak period. In this paper, a new double layer phase change material (PCM) floor is put forward. The two layers of PCM have different melting temperature. The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. According to the numerical model built in this paper, the thermal performances of the floor are analyzed. The results show that the optimal melting temperatures of PCMs exist. The fluctuations of the floor surface temperatures and the heat fluxes will be reduced and the system still can provide a certain amount of heat or cold energy after the heat pump or chiller has been turned off for a long time. Compared to the floor without PCM, the energy released by the floor with PCM in peak period will be increased by 41.1% and 37.9% during heating and cooling when the heat of fusion of PCM is 150 kJ/kg. - Highlights: → A new double layer phase change material floor is put forward. → The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. → The optimal melting temperatures of PCMs in the system exist. → The heat and cold energy released by the floor with PCM in peak period can be increased by 41.1% and 37.9%.

  8. Pelvic Floor Physical Therapy for Vulvodynia: A Clinician's Guide.

    Science.gov (United States)

    Prendergast, Stephanie A

    2017-09-01

    Vulvar pain affects up to 20% of women at some point in their lives, and most women with vulvar pain have associated pelvic floor impairments. Pelvic floor dysfunction is associated with significant functional limitations in women by causing painful intercourse and urinary, bowel, and sexual dysfunction. A quick screening of the pelvic floor muscles can be performed in the gynecology office and should be used when patients report symptoms of pelvic pain. It is now known the vulvar pain syndromes are heterogeneous in origin; therefore, successful treatment plans are multimodal and include physical therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. DESIGN AND MANUFACTURING OF MODULAR PARQUET FLOORING IN INDUSTRIAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Ivan CISMARU

    2014-09-01

    Full Text Available The paper submits constructive options and methods to design and manufacture modular parquet flooring, as well as fastening methods in constructions. Likewise, it presents the branches of civil engineering where modular parquet flooring may be turned to profit – industrial buildings, company premises or residential premises. The turn towards the achievement of private constructions, such as individual houses, led to losing control of the modular system applied in defining the inner sizes of the constructions and implicitly to the apparition of dimensional incompatibilities between the parquet flooring and the built spaces. The paper sets out (to solve by an individualized design procedure to achieve modular parquet flooring in industrial system, in correspondence with the sizes of the inner spaces afferent to the constructions.

  10. Physical and chemical test results of electrostatic safe flooring materials

    Science.gov (United States)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  11. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    OpenAIRE

    Malakhova Anna Nikolaevna

    2016-01-01

    One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor ...

  12. Synthesis of Bio-Based Poly(lactic acid-co-10-hydroxy decanoate Copolymers with High Thermal Stability and Ductility

    Directory of Open Access Journals (Sweden)

    Dongjian Shi

    2015-03-01

    Full Text Available Novel bio-based aliphatic copolyesters, poly(lactic acid-co-10-hydroxy decanoate (P(LA-co-HDA, PLH, were successfully synthesized from lactic acid (LA and 10-hydroxycapric acid (HDA by a thermal polycondensation process, in the presence of p-toluenesulfonic acid (p-TSA and SnCl2·2H2O as co-catalyst. The copolymer structure was characterized by Fourier transform infrared (FTIR and proton nuclear magnetic resonance (1H NMR. The weight average molecular weights (Mw of PLH, from gel permeation chromatography (GPC measurements, were controlled from 18,500 to 37,900 by changing the molar ratios of LA and HDA. Thermogravimetric analysis (TGA results showed that PLH had excellent thermal stability, and the decomposition temperature at the maximum rate was above 280 °C. The glass transition temperature (Tg and melting temperature (Tm of PLH decreased continuously with increasing the HDA composition by differential scanning calorimetry (DSC measurements. PLH showed high ductility, and the breaking elongation increased significantly by the increment of the HDA composition. Moreover, the PLH copolymer could degrade in buffer solution. The cell adhesion results showed that PLH had good biocompatibility with NIH/3T3 cells. The bio-based PLH copolymers have potential applications as thermoplastics, elastomers or impact modifiers in the biomedical, industrial and agricultural fields.

  13. Chemoenzymatic Synthesis of Oligo(L-cysteine) for Use as a Thermostable Bio-Based Material.

    Science.gov (United States)

    Ma, Yinan; Sato, Ryota; Li, Zhibo; Numata, Keiji

    2016-01-01

    Oligomerization of thiol-unprotected L-cysteine ethyl ester (Cys-OEt) catalyzed by proteinase K in aqueous solution has been used to synthesize oligo(L-cysteine) (OligoCys) with a well-defined chemical structure and relatively large degree of polymerization (DP) up to 16-17 (average 8.8). By using a high concentration of Cys-OEt, 78.0% free thiol content was achieved. The thermal properties of OligoCys are stable, with no glass transition until 200 °C, and the decomposition temperature could be increased by oxidation. Chemoenzymatically synthesized OligoCys has great potential for use as a thermostable bio-based material with resistance to oxidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Error Floor Analysis of Coded Slotted ALOHA over Packet Erasure Channels

    DEFF Research Database (Denmark)

    Ivanov, Mikhail; Graell i Amat, Alexandre; Brannstrom, F.

    2014-01-01

    We present a framework for the analysis of the error floor of coded slotted ALOHA (CSA) for finite frame lengths over the packet erasure channel. The error floor is caused by stopping sets in the corresponding bipartite graph, whose enumeration is, in general, not a trivial problem. We therefore ...... identify the most dominant stopping sets for the distributions of practical interest. The derived analytical expressions allow us to accurately predict the error floor at low to moderate channel loads and characterize the unequal error protection inherent in CSA.......We present a framework for the analysis of the error floor of coded slotted ALOHA (CSA) for finite frame lengths over the packet erasure channel. The error floor is caused by stopping sets in the corresponding bipartite graph, whose enumeration is, in general, not a trivial problem. We therefore...

  15. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Hunter [School of Packaging, Michigan State University, East Lansing, Michigan (United States); Li, Yana [Mechanical Engineering College, Wuhan Polytechnic University (China); Almenar, Eva, E-mail: ealmenar@msu.edu [School of Packaging, Michigan State University, East Lansing, Michigan (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  16. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    International Nuclear Information System (INIS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-01-01

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film

  17. Touch Is Everywhere: Floor Surfaces as Ambient Haptic Interfaces.

    Science.gov (United States)

    Visell, Y; Law, A; Cooperstock, J R

    2009-01-01

    Floor surfaces are notable for the diverse roles that they play in our negotiation of everyday environments. Haptic communication via floor surfaces could enhance or enable many computer-supported activities that involve movement on foot. In this paper, we discuss potential applications of such interfaces in everyday environments and present a haptically augmented floor component through which several interaction methods are being evaluated. We describe two approaches to the design of structured vibrotactile signals for this device. The first is centered on a musical phrase metaphor, as employed in prior work on tactile display. The second is based upon the synthesis of rhythmic patterns of virtual physical impact transients. We report on an experiment in which participants were able to identify communication units that were constructed from these signals and displayed via a floor interface at well above chance levels. The results support the feasibility of tactile information display via such interfaces and provide further indications as to how to effectively design vibrotactile signals for them.

  18. Floor cleaning: effect on bacteria and organic materials in hospital rooms.

    Science.gov (United States)

    Andersen, B M; Rasch, M; Kvist, J; Tollefsen, T; Lukkassen, R; Sandvik, L; Welo, A

    2009-01-01

    Routine surface cleaning is recommended to control the spread of pathogens in hospital environments. In Norway, ordinary cleaning of patient rooms is traditionally performed with soap and water. In this study, four floor-mopping methods--dry, spray, moist and wet mopping--were compared by two systems using adenosine triphosphate (ATP) bioluminescence (Hygiena and Biotrace). These systems assess residual organic soil on surfaces. The floor-mopping methods were also assessed by microbiological samples from the floor and air, before and after cleaning. All methods reduced organic material on the floors but wet and moist mopping seemed to be the most effective (P < 0.001, P < 0.011, respectively, ATP Hygiena). The two ATP methods were easy to use, although each had their own reading scales. Cleaning reduced organic material to 5-36% of the level present before cleaning, depending upon mopping method. All four mopping methods reduced bacteria on the floor from about 60-100 to 30-60 colony-forming units (cfu)/20cm2 floor. Wet, moist and dry mopping seemed to be more effective in reducing bacteria on the floor, than the spray mopping (P=0.007, P=0.002 and P=0.011, respectively). The burden of bacteria in air increased for all methods just after mopping. The overall best cleaning methods seemed to be moist and wet mopping.

  19. Robust Floor Determination Algorithm for Indoor Wireless Localization Systems under Reference Node Failure

    Directory of Open Access Journals (Sweden)

    Kriangkrai Maneerat

    2016-01-01

    Full Text Available One of the challenging problems for indoor wireless multifloor positioning systems is the presence of reference node (RN failures, which cause the values of received signal strength (RSS to be missed during the online positioning phase of the location fingerprinting technique. This leads to performance degradation in terms of floor accuracy, which in turn affects other localization procedures. This paper presents a robust floor determination algorithm called Robust Mean of Sum-RSS (RMoS, which can accurately determine the floor on which mobile objects are located and can work under either the fault-free scenario or the RN-failure scenarios. The proposed fault tolerance floor algorithm is based on the mean of the summation of the strongest RSSs obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSNs during the online phase. The performance of the proposed algorithm is compared with those of different floor determination algorithms in literature. The experimental results show that the proposed robust floor determination algorithm outperformed the other floor algorithms and can achieve the highest percentage of floor determination accuracy in all scenarios tested. Specifically, the proposed algorithm can achieve greater than 95% correct floor determination under the scenario in which 40% of RNs failed.

  20. Sea-floor geology in northwestern Block Island Sound, Rhode Island

    Science.gov (United States)

    McMullen, Katherine Y.; Poppe, Lawrence J.; Ackerman, Seth D.; Blackwood, Dann S.; Woods, D.A.

    2014-01-01

    Multibeam-echosounder and sidescan-sonar data, collected by the National Oceanic and Atmospheric Administration in a 69-square-kilometer area of northwestern Block Island Sound, are used with sediment samples, and still and video photography of the sea floor, collected by the U.S. Geological Survey at 43 stations within this area, to interpret the sea-floor features and sedimentary environments. Features on the sea floor include boulders, sand waves, scour depressions, modern marine sediments, and trawl marks. Boulders, which are often several meters wide, are found in patches in the shallower depths and tend to be overgrown with sessile flora and fauna. They are lag deposits of winnowed glacial drift, and reflect high-energy environments characterized by processes associated with erosion and nondeposition. Sand waves and megaripples tend to have crests that either trend parallel to shore with 20- to 50-meter (m) wavelengths or trend perpendicular to shore with several-hundred-meter wavelengths. The sand waves reflect sediment transport directions perpendicular to shore by waves, and parallel to shore by tidal or wind-driven currents, respectively. Scour depressions, which are about 0.5 m lower than the surrounding sea floor, have floors of gravel and coarser sand than bounding modern marine sediments. These scour depressions, which are conspicuous in the sidescan-sonar data because of their more highly reflective coarser sediment floors, are likely formed by storm-generated, seaward-flowing currents and maintained by the turbulence in bottom currents caused by their coarse sediments. Areas of the sea floor with modern marine sediments tend to be relatively flat to current-rippled and sandy.

  1. 17 CFR 155.2 - Trading standards for floor brokers.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Trading standards for floor brokers. 155.2 Section 155.2 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION TRADING STANDARDS § 155.2 Trading standards for floor brokers. Each contract market shall adopt and submit...

  2. Modified Chitosan Nanoparticle by Radiation Synthesis: An Approach to Drug Delivery and Bio-Based Additive for Biomedical Applications

    International Nuclear Information System (INIS)

    Pasanphan, W.; Rimdusit, P.; Rattanawongwiboon, T.; Choofong, S.

    2010-01-01

    Self-assembly chitosan nanoparticle (CsNP) has been synthesized via radiolytic methodology using gamma irradiation. The systematic condition in preparation was studied. Chitosan nanoparticle was modified using hydrophobic core of deoxycholic acid (DC) and stearyl methacrylate (SMA) and the hydrophilic shell of polyethylene glycol monomethacrylate (PEG). The hydrophobic/hydrophilic CsNP was prepared for drug carrier molecule. The SMA-CsNP was also conjugated with pyperidine, hindered amine light stabilizer function, to achieve a bio-based additive for biomedical plastic. (author)

  3. Modified Chitosan Nanoparticle by Radiation Synthesis: An Approach to Drug Delivery and Bio-Based Additive for Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasanphan, W.; Rimdusit, P.; Rattanawongwiboon, T.; Choofong, S., E-mail: sciwvm@ku.ac.th, E-mail: pwanvimol@yahoo.com [Kasetsart University, Faculty of Science, Department of Applied Radiation and Isotopes, 50 Phahonyothin Road, Chatuchak, Bangkok 1090 (Thailand)

    2010-07-01

    Self-assembly chitosan nanoparticle (CsNP) has been synthesized via radiolytic methodology using gamma irradiation. The systematic condition in preparation was studied. Chitosan nanoparticle was modified using hydrophobic core of deoxycholic acid (DC) and stearyl methacrylate (SMA) and the hydrophilic shell of polyethylene glycol monomethacrylate (PEG). The hydrophobic/hydrophilic CsNP was prepared for drug carrier molecule. The SMA-CsNP was also conjugated with pyperidine, hindered amine light stabilizer function, to achieve a bio-based additive for biomedical plastic. (author)

  4. Characterization of the protective capacity of flooring systems using force-deflection profiling.

    Science.gov (United States)

    Glinka, Michal N; Karakolis, Thomas; Callaghan, Jack P; Laing, Andrew C

    2013-01-01

    'Safety floors' aim to decrease the risk of fall-related injuries by absorbing impact energy during falls. Ironically, excessive floor deflection during walking or standing may increase fall risk. In this study we used a materials testing system to characterize the ability of a range of floors to absorb energy during simulated head and hip impacts while resisting deflection during simulated single-leg stance. We found that energy absorption for all safety floors (mean (SD)=14.8 (4.9)J) and bedside mats (25.1 (9.3)J) was 3.2- to 5.4-fold greater than the control condition (commercial carpet). While footfall deflections were not significantly different between safety floors (1.8 (0.7)mm) and the control carpet (3.7 (0.6)mm), they were significantly higher for two bedside mats. Finally, all of the safety floors, and two bedside mats, displayed 3-10 times the energy-absorption-to-deflection ratios observed for the baseline carpet. Overall, these results suggest that the safety floors we tested effectively addressed two competing demands required to reduce fall-related injury risk; namely the ability to absorb substantial impact energy without increasing footfall deflections. This study contributes to the literature suggesting that safety floors are a promising intervention for reducing fall-related injury risk in older adults. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Floor response spectra of buildings with uncertain structural properties

    International Nuclear Information System (INIS)

    Chen, P.C.

    1975-01-01

    All Category I equipment, such as reactors, vessels, and major piping systems of nuclear power plants, is required to withstand earthquake loadings in order to minimize risk of seismic damage. The equipment is designed by using response spectra of the floor on which the equipment is mounted. The floor response spectra are constructed usually from the floor response time histories which are obtained through a deterministic dynamic analysis. This analysis assumes that all structural parameters, such as mass, stiffness, and damping have been calculated precisely, and that the earthquakes are known. However, structural parameters are usually difficult to determine precisely if the structures are massive and/or irregular, such as nuclear containments and its internal structures with foundation soil incorporated into the analysis. Faced with these uncertainties, it has been the practice to broaden the floor response spectra peaks by +-10 percent of the peak frequencies on the basis of conservatism. This approach is based on engineering judgement and does not have an analytical basis to provide a sufficient level of confidence in using these spectra for equipment design. To insure reliable design, it is necessary to know structural response variations due to variations in structural properties. This consideration leads to the treatment of structural properties as random variables and the use of probabilistic methods to predict structural response more accurately. New results on floor response spectra of buildings with uncertain structural properties obtained by determining the probabilistic dynamic response from the deterministic dynamic response and its standard deviation are presented. The resulting probabilistic floor response spectra are compared with those obtained deterministically, and are shown to provide a more reliable method for determining seismic forces

  6. Development of a 3-dimensional seismic isolation floor for computer systems

    International Nuclear Information System (INIS)

    Kurihara, M.; Shigeta, M.; Nino, T.; Matsuki, T.

    1991-01-01

    In this paper, we investigated the applicability of a seismic isolation floor as a method for protecting computer systems from strong earthquakes, such as computer systems in nuclear power plants. Assuming that the computer system is guaranteed for 250 cm/s 2 of input acceleration in the horizontal and vertical directions as the seismic performance, the basic design specification of the seismic isolation floor is considered as follows. Against S 1 level earthquakes, the maximum acceleration response of the seismic isolation floor in the horizontal and vertical directions is kept less than 250 cm/s 2 to maintain continuous computer operation. Against S 2 level earthquakes, the isolation floor allows large horizontal movement and large displacement of the isolation devices to reduce the acceleration response, although it is not guaranteed to be less than 250 cm/s 2 . By reducing the acceleration response, however, serious damage to the computer systems is reduced, so that they can be restarted after an earthquake. Usually, seismic isolation floor systems permit 2-dimensional (horizontal) isolation. However, in the case of just-under-seated earthquakes, which have large vertical components, the vertical acceleration response of this system is amplified by the lateral vibration of the frame of the isolation floor. Therefore, in this study a 3-dimensional seismic isolation floor, including vertical isolation, was developed. This paper describes 1) the experimental results of the response characteristics of the 3-dimensional seismic isolation floor built as a trial using a 3-dimensional shaking table, and 2) comparison of a 2-dimensional analytical model, for motion in one horizontal direction and the vertical direction, to experimental results. (J.P.N.)

  7. Biobased alkylphenols from lignins via a two-step pyrolysis - Hydrodeoxygenation approach.

    Science.gov (United States)

    de Wild, P J; Huijgen, W J J; Kloekhorst, A; Chowdari, R K; Heeres, H J

    2017-04-01

    Five technical lignins (three organosolv, Kraft and soda lignin) were depolymerised to produce monomeric biobased aromatics, particularly alkylphenols, by a new two-stage thermochemical approach consisting of dedicated pyrolysis followed by catalytic hydrodeoxygenation (HDO) of the resulting pyrolysis oils. Pyrolysis yielded a mixture of guaiacols, catechols and, optionally, syringols in addition to alkylphenols. HDO with heterogeneous catalysts (Ru/C, CoMo/alumina, phosphided NiMO/C) effectively directed the product mixture towards alkylphenols by, among others, demethoxylation. Up to 15wt% monomeric aromatics of which 11wt% alkylphenols was obtained (on the lignin intake) with limited solid formation (<3wt% on lignin oil intake). For comparison, solid Kraft lignin was also directly hydrotreated for simultaneous depolymerisation and deoxygenation resulting in two times more alkylphenols. However, the alkylphenols concentration in the product oil is higher for the two-stage approach. Future research should compare direct hydrotreatment and the two-stage approach in more detail by techno-economic assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sea-floor morphology and sedimentary environments in southern Narragansett Bay, Rhode Island

    Science.gov (United States)

    McMullen, Katherine Y.; Poppe, Lawrence J.; Blackwood, Dann S.; Nardi, Matthew J.; Andring, Matthew A.

    2015-09-09

    Multibeam echosounder data collected by the National Oceanic and Atmospheric Administration along with sediment samples and still and video photography of the sea floor collected by the U.S. Geological Survey were used to interpret sea-floor features and sedimentary environments in southern Narragansett Bay, Rhode Island, as part of a long-term effort to map the sea floor along the northeastern coast of the United States. Sea-floor features include rocky areas and scour depressions in high-energy environments characterized by erosion or nondeposition, and sand waves and megaripples in environments characterized by coarse-grained bedload transport. Two shipwrecks are also located in the study area. Much of the sea floor is relatively featureless within the resolution of the multibeam data; sedimentary environments in these areas are characterized by processes associated with sorting and reworking. This report releases bathymetric data from the multibeam echosounder, grain-size analyses of sediment samples, and photographs of the sea floor and interpretations of the sea-floor features and sedimentary environments. It provides base maps that can be used for resource management and studies of topics such as benthic ecology, contaminant inventories, and sediment transport.

  9. Floor heating and cooling combined with displacement ventilation: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Causone, Francesco; Corgnati, Stefano P. [TEBE Research Group, Department of Energetics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Baldin, Fabio [Department of Applied Physics, University of Padova, via Venezia 1, 35131 Padova (Italy); Olesen, Bjarne W. [ICIEE, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Alle Building 402, 2800 Kgs. Lyngby (Denmark)

    2010-12-15

    Design guidelines envisage that floor heating can be used together with displacement ventilation (DV), provided that the supply air is not overly heated before it can reach heat and contaminant sources. If this is not controlled a mixing flow pattern could occur in the room. The use of floor cooling with DV is also considered possible, although draught risk at ankle level and vertical air temperature differences must be controlled carefully, because they could increase. Few studies on these topics were found in the literature. An indoor environmental chamber was set up to obtain measurements aimed at analysing the possibilities and limitations of combining floor heating/cooling with DV. Air temperature profiles, air velocity profiles, surface temperatures and ventilation effectiveness were measured under different environmental conditions that may occur in practice. These values were compared to equivalent temperature measurements obtained using a thermal manikin. The measurements show that floor heating can be used with DV, obtaining high ventilation effectiveness values. A correlation between the floor heating capacity and the air temperature profile in the room was found. Measurements showed that floor cooling does not increase draught risk at ankle level, although it does increase vertical air temperature differences. (author)

  10. Pyroclastic Deposits in the Floor-fractured Crater Alphonsus

    Science.gov (United States)

    Allen, Carlton C.; Donaldson-Hanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    Alphonsus, the 118 km diameter floor-fractured crater, is located immediately east of Mare Nubium. Eleven pyroclastic deposits have been identified on the crater's floor. Early telescopic spectra suggest that the floor of Alphonsus is noritic, and that the pyroclastic deposits contain mixtures of floor material and a juvenile component including basaltic glass. Head and Wilson contend that Nubium lavas intruded the breccia zone beneath Alphonsus, forming dikes and fractures on the crater floor. In this model, the magma ascended to the level of the mare but cooled underground, and a portion broke thru to the surface in vulcanian (explosive) eruptions. Alternatively, the erupted material could be from a source unrelated to the mare, in the style of regional pyroclastic deposits. High-resolution images and spectroscopy from the Moon Mineralogy Mapper (M3), Diviner Lunar Radiometer, and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (NAC) provide data to test these formation models. Spectra from M3 confirm that the crater floor is primarily composed of noritic material, and that the Nubium lavas are basaltic. Spectra from the three largest pyroclastic deposits in Alphonsus are consistent with a minor low- Ca pyroxene component in a glass-rich matrix. The centers of the 2 micron absorption bands have wavelengths too short to be of the same origin as the Nubium basalts. Diviner Christiansen feature (CF) values were used to estimate FeO abundances for the crater floor, Nubium soil, and pyroclastic deposits. The estimated abundance for the crater floor (7.5 +/- 1.4 wt.%) is within the range of FeO values for Apollo norite samples. However, the estimated FeO abundance for Nubium soil (13.4 +/- 1.4 wt.%) is lower than those measured in most mare samples. The difference may reflect contamination of the mare soil by highland ejecta. The Diviner-derived FeO abundance for the western pyroclastic deposit is 13.8 +/- 3.3 wt.%. This is lower than the values for mare soil

  11. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    Science.gov (United States)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  12. Effect of different flooring systems on claw conformation of dairy cows.

    Science.gov (United States)

    Telezhenko, E; Bergsten, C; Magnusson, M; Nilsson, C

    2009-06-01

    The effect of different flooring surfaces in walking and standing areas on claw conformation, claw horn growth, and wear was studied in 2 experiments during 2 consecutive housing seasons in a research dairy herd of 170 cows. In experiment 1, the flooring systems tested were solid rubber mats, mastic asphalt with and without rubber-matted feed-stalls, and aged concrete slats. In experiment 2, slatted concrete flooring was compared with slatted rubber flooring. The cows were introduced to the respective flooring systems in early lactation and their claws were trimmed before the exposure period. Toe length, toe angle, sole concavity, and claw width, as well as claw growth and wear rates were recorded for lateral and medial claws of the left hind limb. Claw asymmetry calculations were based on these claw measurements and on differences in sole protrusion between lateral and medial soles. Asphalt floors caused shorter toe length and steeper toe angle. They also increased wear on rear claws (5.30 +/- 0.31 and 5.95 +/- 0.33 mm/mo for lateral and medial claw, respectively; LSM +/- SE) and horn growth rate (5.12 +/- 0.36 and 5.83 +/- 0.31 mm/mo of lateral and medial claws, respectively). Rubber mats instead of asphalt in walking areas reduced wear (1.36 +/- 0.19 and 2.02 +/- 0.20 mm/mo for lateral and medial claw, respectively) and claw growth (3.83 +/- 0.23 and 3.94 +/- 0.17 mm/mo for lateral and medial claw, respectively). Rubber-matted feed-stalls together with asphalt walkways decreased claw wear (3.29 +/- 0.31 and 4.10 +/- 0.32 mm/mo for lateral and medial claw, respectively). The concavity of claw soles was reduced on asphalt, especially in the lateral rear claws. Rubber matting in feed-stalls prevented loss of sole concavity compared with asphalt. Claw asymmetry did not differ between flooring systems. While different access to abrasive flooring affected claw conformation, there was no evidence that flooring system influenced the disproportion between lateral and

  13. Accounting for the constrained availability of land: a comparison of biobased ethanol, polyethylene, and PLA with regard to non-renewable energy use and land use

    NARCIS (Netherlands)

    Bos, H.; Meesters, K.; Conijn, S.; Corré, W.; Patel, M.K.

    2012-01-01

    In a bio-based economy, chemicals, materials, biofuels, and other forms of energy will be produced from biomass. Pressure on agricultural land will thus increase, calling for highly effi cient solutions in terms of land use, with minimal environmental impacts. In order to gain better insight into

  14. Regular exercisers have stronger pelvic floor muscles than nonregular exercisers at midpregnancy.

    Science.gov (United States)

    Bø, Kari; Ellstrøm Engh, Marie; Hilde, Gunvor

    2018-04-01

    Today all healthy pregnant women are encouraged to be physically active throughout pregnancy, with recommendations to participate in at least 30 minutes of aerobic activity on most days of the week in addition to performing strength training of the major muscle groups 2-3 days per week and also pelvic floor muscle training. There is, however, an ongoing debate whether general physical activity enhances or declines pelvic floor muscle function. The objectives of the study were to compare vaginal resting pressure, pelvic floor muscle strength, and endurance in regular exercisers (exercise ≥30 minutes 3 or more times per week) and nonexercisers at midpregnancy. Furthermore, another objective was to assess whether regular general exercise or pelvic floor muscle strength was associated with urinary incontinence. This was a cross-sectional study at mean gestational week 20.9 (±1.4) including 218 nulliparous pregnant women, with a mean age of 28.6 years (range, 19-40 years) and prepregnancy body mass index of 23.9 kg/m 2 (SD, 4.0). Vaginal resting pressure, pelvic floor muscle strength, and pelvic floor muscle endurance were measured by a high-precision pressure transducer connected to a vaginal balloon. The International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form was used to assess urinary incontinence. Differences between groups were analyzed using an independent-sample Student t test. Linear regression analysis was conducted to adjust for prepregnancy body mass index, age, smoking during pregnancy, and regular pelvic floor muscle training during pregnancy. The significance value was set to P ≤ .05. Regular exercisers had statistically significant stronger (mean 6.4 cm H 2 O [95% confidence interval, 1.7-11.2]) and more enduring (mean 39.9 cm H 2 Osec [95% confidence interval, 42.2-75.7]) pelvic floor muscles. Only pelvic floor muscle strength remained statistically significant, when adjusting for possible confounders. Pelvic floor

  15. Generation of airborne Listeria innocua from model floor drains.

    Science.gov (United States)

    Berrang, Mark E; Frank, Joseph F

    2012-07-01

    Listeria monocytogenes can colonize floor drains in poultry processing and further processing facilities, remaining present even after cleaning and disinfection. Therefore, during wash down, workers exercise caution to avoid spraying hoses directly into drains in an effort to prevent the escape and transfer of drain microflora to food contact surfaces. The objective of this study was to examine the extent to which an inadvertent water spray into a colonized floor drain can cause the spread of airborne Listeria. Listeria innocua was used to inoculate a polyvinyl chloride model floor drain, resulting in approximately 10(8) cells per ml of phosphate-buffered saline and 10(4) attached cells per square centimeter of inner surface. Each model drain was subjected to a 2-s spray of tap water at 68.9 kPa from a distance of 1 m. Drains were sprayed while filled and again after emptying. Airborne cells were collected by using sedimentation plates containing Listeria selective agar which were placed on the floor and walls of a contained room at incremental horizontal and vertical distances of 0.6, 1.2, 2.4, or 4.0 m from the drain. Sedimentation plates were exposed for 10 min. A mechanical sampler was used to also collect air by impaction on the surface of Listeria selective agar to determine the number of cells per liter of air. The experiment was conducted in triplicate rooms for each of four replications. L. innocua was detected on sedimentation plates on the floor as far as 4.0 m from the drain and on walls as high as 2.4 m above the floor and 4 m from the drain. A 2-s spray with a water hose into a contaminated drain can cause airborne spread of Listeria, resulting in the potential for cross-contamination of food contact surfaces, equipment, and exposed product.

  16. Clinical functional evaluation of female's pelvic floor: integrative review

    Directory of Open Access Journals (Sweden)

    Ana Carolina Nociti Lopes Fernandes

    2018-06-01

    Full Text Available Abstract Introduction: The effectiveness of pelvic floor muscle training (PFMT depends on the correct prescription of intensity, repetition and endurance of muscle contractions, which are provided by an adequate assessment of pelvic floor muscle. Objective: Verify the techniques, resources and strategies used for clinical functional evaluation of female pelvic floor (PF described in literature. Methods: It’s an integrative review of published studies and books from 2010 until December 2015. Relevant articles with complete description of PF evaluation were found through the use of Scielo, LILACS, PubMed and Medline databases. Results: 34 articles that fulfilled all the criteria were selected. Conclusion: The most used techniques, resources and strategies were: anamnesis, physical examination, measurement of pelvic floor muscle activity using Modified Oxford Scale or perineometry, and use of questionnaires to analyze patient's perspective of their own symptoms. Thus, we could use the parameters obtained in the evaluation to plan an ideal PFMT for each patient, so the physiotherapist would have a good database to analyze the evolution and define the end of therapy.

  17. Characterization of radiation modified κ-carrageenan oligomers for bio-based materials development

    International Nuclear Information System (INIS)

    Abad, Lucille V.; Relleve, Lorna S.; Aranilla, Charito T.; Racadio, Darwin T.; Dela Rosa, Alumanda M.

    2011-01-01

    κ-carrageenan oligomers are known to have several biological activities such as anti-HIV, anti-herpes, antitumor and antioxidant properties. Recent progress in the development of radiation modified κ-carrageenan has resulted in new applications such as plant growth promoter, radiation dose indicator and hydrogels for wound dressing. This presentation would touch on the changes in chemical structure, gelation and conformational transition behavior and molecular size of κ-carrageenan at doses from 0 to 200 kGy and would be correlated to these functions for the development of bio-based materials. Chemical and spectral analyses were carried out using UV-Vis spectroscopy, FT-IR spectroscopy, NMR spectroscopy, reducing sugar analysis, free sulfate and carboxylic acid analysis. The chemical and spectral analyses of the radiolytic products indicated increasing reducing sugars, carbonyl, carboxylic acids, and sulfates with increasing doses which reached a maximum level at a certain dose depending on the irradiation condition. Values were very much lower in solid irradiation (in vacuum and in air) as compared to aqueous irradiation. NMR data also revealed an intact structure of the oligomer irradiated at 100 kGy in the specific fraction that contains an Mw = (3-10) kDa. κ-carrageenan oligomers exhibited antioxidant properties as determined by hydroxyl radical scavenging activity, reducing power and DPPH radical scavenging capacity assay. The degree of oxidative inhibition increased with increasing dose which can be attributed to higher reducing sugar. Dynamic light scattering (DLS) experiments showed that a dose of up to 50 kGy, sol-gelation transition was still observed. Beyond 50 kGy, no gelation took place, instead appearance of fast relax-carrageenan mode in characteristic decay time function was observed at doses of (75-150) kGy. Optimum peak intensity was found at 100 kGy (mol wt. 5-10 kDa) which coincides with the optimum plant growth promoter effect in κ

  18. Physical, Complementary, and Alternative Medicine in the Treatment of Pelvic Floor Disorders.

    Science.gov (United States)

    Arnouk, Alex; De, Elise; Rehfuss, Alexandra; Cappadocia, Carin; Dickson, Samantha; Lian, Fei

    2017-06-01

    The purpose of the study was to catalog the most recent available literature regarding the use of conservative measures in treatment of pelvic floor disorders. Pelvic floor disorders encompass abnormalities of urination, defecation, sexual function, pelvic organ prolapse, and chronic pain, and can have significant quality of life implications for patients. Current guidelines recommend behavioral modifications and conservative treatments as first-line therapy for pelvic floor disorders. We have reviewed the literature for articles published on physical, complementary, and alternative treatments for pelvic floor disorders over the past 5 years. Review of pelvic floor muscle physiotherapy (PFMT) and biofeedback (BF) shows a benefit for patients suffering from bladder dysfunction (incontinence, overactive bladder), bowel dysfunction (constipation, fecal incontinence), pelvic organ prolapse, and sexual dysfunction (pelvic pain). Combination of PFMT and BF has shown improved results compared to PFMT alone, and some studies find that electrical stimulation can augment the benefit of BF and PFMT. Additionally, acupuncture and cognitive behavioral therapy has shown to be an effective treatment for pelvic floor disorders, particularly with respect to pelvic pain. This update highlights beneficial conservative treatments available for pelvic floor dysfunction, and supplements the current literature on treatment options for patients suffering from these disorders.

  19. Floor-Fractured Craters on Ceres and Implications for Internal Composition and Processes

    Science.gov (United States)

    Buczkowski, D.; Schenk, P.; Scully, J. E. C.; Park, R. S.; Preusker, F.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    Several of the impact craters on Ceres have patterns of fractures on their floors. These fractures appear similar to those found within a class of lunar craters referred to as Floor-Fractured Craters (FFCs) [1]. Lunar FFCs are characterized by anomalously shallow floors cut by radial, concentric, and/or polygonal fractures, and have been classified into crater classes, Types 1 through 6, based on their morphometric properties [1,2]. Models for their formation have included both floor uplift due to magmatic intrusion below the crater or floor shallowing due to viscous relaxation. However, the observation that the depth versus diameter (d/D) relationship of the FFCs is distinctly shallower than the same association for other lunar craters supports the hypotheses that the floor fractures form due to shallow magmatic intrusion under the crater [2]. We have cataloged the Ceres FFCs according to the classification scheme designed for the Moon. Large (>50 km) Ceres FFCs are most consistent with Type 1 lunar FFCs, having deep floors, central peaks, wall terraces, and radial and/or concentric fractures. Smaller craters on Ceres are more consistent with Type 4 lunar FFCs, having less-pronounced floor fractures and v-shaped moats separating the wall scarp from the crater interior. An analysis of the d/D ratio for Ceres craters shows that, like lunar FFCs, the Ceres FFCs are anomalously shallow. This suggests that the fractures on the floor of Ceres FFCs may be due the intrusion of a low-density material below the craters that is uplifting their floors. While on the Moon the intrusive material is hypothesized to be silicate magma, this is unlikely for Ceres. However, a cryovolcanic extrusive edifice has been identified on Ceres [3], suggesting that cryomagmatic intrusions could be responsible for the formation of the Ceres FFCs. References: [1] Schultz P. (1976) Moon, 15, 241-273 [2] Jozwiak L.M. et al (2015) JGR 117, doi: 10.1029/2012JE004134 [3] Ruesch O. et al (2016

  20. Assessment of pelvic floor dysfunctions using dynamic magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Hoda Salah Darwish

    2014-03-01

    Conclusion: Dynamic MRI is an ideal, non invasive technique which does not require patient preparation for evaluation of pelvic floor. It acts as one stop shop for diagnosing single or multiple pelvic compartment involvement in patients with pelvic floor dysfunction.