WorldWideScience

Sample records for bioassay surface chemistry

  1. Surface chemistry

    CERN Document Server

    Desai, KR

    2008-01-01

    The surface Chemistry of a material as a whole is crucially dependent upon the Nature and type of surfaces exposed on crystallites. It is therefore vitally important to independently Study different, well - defined surfaces through surface analytical techniques. In addition to composition and structure of surface, the subject also provides information on dynamic light scattering, micro emulsions, colloid Stability control and nanostructures. The present book endeavour to bring before the reader that the understanding and exploitation of Solid state phenomena depended largely on the ability to

  2. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  3. Impact of surface chemistry

    OpenAIRE

    Somorjai, Gabor A.; Li, Yimin

    2010-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized.

  4. Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review.

    Science.gov (United States)

    Wieczerzak, M; Namieśnik, J; Kudłak, B

    2016-09-01

    For centuries, mankind has contributed to irreversible environmental changes, but due to the modern science of recent decades, scientists are able to assess the scale of this impact. The introduction of laws and standards to ensure environmental cleanliness requires comprehensive environmental monitoring, which should also meet the requirements of Green Chemistry. The broad spectrum of Green Chemistry principle applications should also include all of the techniques and methods of pollutant analysis and environmental monitoring. The classical methods of chemical analyses do not always match the twelve principles of Green Chemistry, and they are often expensive and employ toxic and environmentally unfriendly solvents in large quantities. These solvents can generate hazardous and toxic waste while consuming large volumes of resources. Therefore, there is a need to develop reliable techniques that would not only meet the requirements of Green Analytical Chemistry, but they could also complement and sometimes provide an alternative to conventional classical analytical methods. These alternatives may be found in bioassays. Commercially available certified bioassays often come in the form of ready-to-use toxkits, and they are easy to use and relatively inexpensive in comparison with certain conventional analytical methods. The aim of this study is to provide evidence that bioassays can be a complementary alternative to classical methods of analysis and can fulfil Green Analytical Chemistry criteria. The test organisms discussed in this work include single-celled organisms, such as cell lines, fungi (yeast), and bacteria, and multicellular organisms, such as invertebrate and vertebrate animals and plants.

  5. Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review.

    Science.gov (United States)

    Wieczerzak, M; Namieśnik, J; Kudłak, B

    2016-09-01

    For centuries, mankind has contributed to irreversible environmental changes, but due to the modern science of recent decades, scientists are able to assess the scale of this impact. The introduction of laws and standards to ensure environmental cleanliness requires comprehensive environmental monitoring, which should also meet the requirements of Green Chemistry. The broad spectrum of Green Chemistry principle applications should also include all of the techniques and methods of pollutant analysis and environmental monitoring. The classical methods of chemical analyses do not always match the twelve principles of Green Chemistry, and they are often expensive and employ toxic and environmentally unfriendly solvents in large quantities. These solvents can generate hazardous and toxic waste while consuming large volumes of resources. Therefore, there is a need to develop reliable techniques that would not only meet the requirements of Green Analytical Chemistry, but they could also complement and sometimes provide an alternative to conventional classical analytical methods. These alternatives may be found in bioassays. Commercially available certified bioassays often come in the form of ready-to-use toxkits, and they are easy to use and relatively inexpensive in comparison with certain conventional analytical methods. The aim of this study is to provide evidence that bioassays can be a complementary alternative to classical methods of analysis and can fulfil Green Analytical Chemistry criteria. The test organisms discussed in this work include single-celled organisms, such as cell lines, fungi (yeast), and bacteria, and multicellular organisms, such as invertebrate and vertebrate animals and plants. PMID:27472199

  6. Nanoscale surface chemistry

    OpenAIRE

    Madey, Theodore E.; Pelhos, Kalman; WU, QIFEI; Barnes, Robin; Ermanoski, Ivan; Chen, Wenhua; Kolodziej, Jacek J.; Rowe, John E.

    2002-01-01

    We report evidence in several experiments for nanometer-size effects in surface chemistry. The evidence concerns bimetallic systems, monolayer films of Pt or Pd on W(111) surfaces. Pyramidal facets with {211} faces are formed on annealing on physical monolayer of Pt, Pd on a W(111) substrate, and facet sizes increase with annealing temperature. We used synchrotron radiation-based soft x-ray photoemission to show that monolayer films of Pt, Pd, on W “float” on the outer surface, whereas multil...

  7. Organometallic chemistry of metal surfaces

    International Nuclear Information System (INIS)

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures

  8. Organic chemistry on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen; Zaera, Francisco [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2006-07-15

    Chemistry on solid surfaces is central to many areas of practical interest such as heterogeneous catalysis, tribology, electrochemistry, and materials processing. With the development of many surface-sensitive analytical techniques in the past decades, great advances have been possible in our understanding of such surface chemistry at the molecular level. Earlier studies with model systems, single crystals in particular, have provided rich information about the adsorption and reaction kinetics of simple inorganic molecules. More recently, the same approach has been expanded to the study of the surface chemistry of relatively complex organic molecules, in large measure in connection with the selective synthesis of fine chemicals and pharmaceuticals. In this report, the chemical reactions of organic molecules and fragments on solid surfaces, mainly on single crystals of metals but also on crystals of metal oxides, carbides, nitrides, phosphides, sulfides and semiconductors as well as on more complex models such as bimetallics, alloys, and supported particles, are reviewed. A scheme borrowed from the organometallic and organic chemistry literature is followed in which key examples of representative reactions are cited first, and general reactivity trends in terms of both the reactants and the nature of the surface are then identified to highlight important mechanistic details. An attempt has been made to emphasize recent advances, but key earlier examples are cited as needed. Finally, correlations between surface and organometallic and organic chemistry, the relevance of surface reactions to applied catalysis and materials functionalization, and some promising future directions in this area are briefly discussed. (author)

  9. Surface chemistry theory and applications

    CERN Document Server

    Bikerman, J J

    2013-01-01

    Surface Chemistry Theory and Applications focuses on liquid-gas, liquid-liquid, solid-gas, solid-liquid, and solid-solid surfaces. The book first offers information on liquid-gas surfaces, including surface tension, measurement of surface tension, rate of capillarity rise, capillary attraction, bubble pressure and pore size, and surface tension and temperature. The text then ponders on liquid-liquid and solid-gas surfaces. Discussions focus on surface energy of solids, surface roughness and cleanness, adsorption of gases and vapors, adsorption hysteresis, interfacial tension, and interfacial t

  10. Surface Chemistry in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Alex V. Hamza

    2009-12-01

    Full Text Available Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  11. Surface chemistry in three dimensions

    DEFF Research Database (Denmark)

    Bollinger, Mikkel; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    2000-01-01

    Based on self-consistent density functional calculations it is shown that a new dissociation process for CO adsorbed on a Ru(0001) surface is made possible when the distance to a second Ru(0001) surface placed just above it is below some critical value. This '3D' process is more facile than...... the usual single surface ('2D') process because indirect adsorbate-adsorbate interactions in the transition state are absent in the '3D' case. The prospects for STM-induced single molecule chemistry and for '3D' catalysts are discussed. (C) 2000 Elsevier Science B.V. All rights reserved....

  12. Surface chemistry in photodissociation regions

    Science.gov (United States)

    Esplugues, G. B.; Cazaux, S.; Meijerink, R.; Spaans, M.; Caselli, P.

    2016-06-01

    Context. The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Aims: Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. Methods: We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. Results: We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in different environments. In addition, we study how chemistry is affected by the presence/absence of ice mantles (bare dust or icy dust) and the impact of considering different desorption probabilities. Conclusions: The type of substrate (bare dust or icy dust) and the probability of desorption can significantly alter the chemistry occurring on grain surfaces, leading to differences of several orders of magnitude in the abundances of gas-phase species, such as CO, H2CO, and CH3OH. The type of substrate, together with the density and intensity of the radiation field, also determine the threshold extinction to form ices of CO2 and H2O. We also conclude that H2CO and CH3OH are mainly released into the gas phase of low, far-ultraviolet illuminated PDRs through chemical desorption upon two-body surface reactions, rather than through photodesorption.

  13. Surface chemistry in photodissociation regions

    CERN Document Server

    Esplugues, G B; Meijerink, R; Spaans, M; Caselli, P

    2016-01-01

    The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in d...

  14. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  15. Evaluation of bioassays to monitor surface microlayer toxicity in tropical marine waters.

    Science.gov (United States)

    Rumbold, D G; Snedaker, S C

    1997-02-01

    Bioassays were developed, using embryos of: coral,Montastraea faveolata; graysby, Epinephelus cruentatus;grouper, Epinephelus adscensionis x gruttatus (hybrid); queenconch, Strombus gigas; rock-boring urchin, Echinodermatalucunter; spotted seatrout, Cynoscion nebulosus; variegatedurchin, Lytechinus variegatus; winged pearl oyster, Pteriacolymbus; and yellowtail snapper, Ocyurus chrysurus. Relativesensitivities and precison of various species-endpoint combinations wereevaluated using three reference toxicants: copper, sodium dodecyl sulfate,and Dibrom(R). The 24-h P. colymbus embryo test had the best overallsensitivity and exhibited a high degree of precision. However, oyster embryoswere difficult to obtain and did not aggregate at the air-water interface.Therefore, the P. colymbus embryo test was deemed unsuitable for useas a bioassay for monitoring sea-surface microlayer (SSML) toxicity. Testsbased on normal development of L. variegatus to the early pluteus 3stage and percent normal-live C. nebulosus larvae at 48 h wererelatively sensitive and exhibited good replicability and repeatability. TheL. variegatus urchin embryo test was also found to be highlyreproducible. The results of this comparative study indicated that L.variegatus and C. nebulosus were suitable surrogates forcoral-reef species in toxicity assessments of the SSML. PMID:9069187

  16. Controlled surface chemistries and quantitative cell response

    Science.gov (United States)

    Plant, Anne L.

    2002-03-01

    Living cells experience a large number of signaling cues from their extracellular matrix. As a result of these inputs, a variety of intracellular signaling pathways are apparently initiated simultaneously. The vast array of alternative responses that result from the integration of these inputs suggests that it may be reasonable to look for cellular response not as an 'on' or 'off' condition but as a distribution of responses. A difficult challenge is to determine whether variations in responses from individual cells arise from the complexity of intracellular signals or are due to variations in the cell culture environment. By controlling surface chemistry so that every cell 'sees' the same chemical and physical environment, we can begin to assess how the distribution of cell response is affected strictly by changes in the chemistry of the cell culture surface. Using the gene for green fluorescent protein linked to the gene for the promoter of the extracellular matrix protein, tenascin, we can easily probe the end product in a signaling pathway that is purported to be linked to surface protein chemistry and to cell shape. Cell response to well-controlled, well-characterized, and highly reproducible surfaces prepared using soft lithography techniques are compared with more conventional ways of preparing extracellular matrix proteins for cell culture. Using fluorescence microscopy and image analysis of populations of cells on these surfaces, we probe quantitatively the relationship between surface chemistry, cell shape and variations in gene expression endpoint.

  17. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...

  18. Surface chemistry of "unprotected" nanoparticles

    DEFF Research Database (Denmark)

    Schrader, Imke; Warneke, Jonas; Neumann, Sarah;

    2015-01-01

    The preparation of colloidal nanoparticles in alkaline ethylene glycol is a powerful approach for the preparation of model catalysts and ligand-functionalized nanoparticles. For these systems the term "unprotected" nanoparticles has been established because no strongly binding stabilizers...... study. "Unprotected" Pt and Ru nanoparticles were characterized by NMR spectroscopy, which does not evidence the presence of any C-H containing species bound to the particle surface. Instead, the colloids were found to be covered by CO, as demonstrated by IR spectroscopy. However, analysis...

  19. The Plasma Chemistry of Polymer Surfaces

    CERN Document Server

    Friedrich, Jö

    2012-01-01

    This book illustrates plasma properties, polymer characteristics, surface specifics, and how to purposefully combine plasma and polymer chemistry. In so doing, it covers plasma polymerization, surface functionalization, etching, crosslinking, and deposition of monotype functional-group-bearing plasma polymers. It explains different techniques and plasma types, such as pressure-pulsed, remote, low-wattage plasmas and plasma polymerization in liquids. Finally, among the numerous applications discussed are plasmas for chemical synthesis, industrial processes or the modification of membranes and p

  20. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hye-Young Park

    2005-12-17

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  1. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Young [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  2. Smart Surface Chemistries of Conducting Polymers

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik

    In this thesis we investigate post-polymerization covalent modifications of poly(3,4-dioxythiophene (PEDOT)-type conducting polymers. The aim of the modifications is to gain specific control of the interaction between the material and living mammalian cells. The use of “click-chemistry” to modify...... a straightforward and in-expensive method for patterning conducting polymer thin films into microelectrodes, without losing control of the surface chemistry of the samples. On the contrary, the method provides direct control of the surface chemistry of both the fabricated micro-electrodes and the gaps between them....... The method is based on locally removing PEDOTtype polymers to expose underlying non-conducting functional polymer substrates. Thereby, multifunctional substrates are obtained. By applying this method, we are able to fabricate allpolymer micro-systems with multiple types of localized functional (bio...

  3. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    Science.gov (United States)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu

  4. Surface chemistry and mineralogy. [of planet Mars

    Science.gov (United States)

    Banin, A.; Clark, B. C.; Waenke, H.

    1992-01-01

    The accumulated knowledge on the chemistry and mineralogy of Martian surface materials is reviewed. Pertinent information obtained by direct analyses of the soil on Mars by the Viking Landers, by remote sensing of Mars from flyby and orbiting spacecraft, by telescopic observations from earth, and through detailed analyses of the SNC meteorites presumed to be Martian rocks are summarized and analyzed. A compositional model for Mars soil, giving selected average elemental concentrations of major and trace elements, is suggested. It is proposed that the fine surface materials on Mars are a multicomponent mixture of weathered and nonweathered minerals. Smectite clays, silicate mineraloids similar to palagonite, and scapolite are suggested as possible major candidate components among the weathered minerals.

  5. Ferroelectric based catalysis: Switchable surface chemistry

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  6. The 2007 Nobel Prize in Chemistry for surface chemistry: understanding nanoscale phenomena at surfaces.

    Science.gov (United States)

    Bowker, Michael

    2007-11-01

    The 2007 Nobel Prize in Chemistry was awarded to Gerhard Ertl for his seminal work in the area of surface science, particularly at the gas-solid interface. Although Ertl began his career at a time when the term "nanotechnology" was not yet known, his contributions to the field have paved the way for many future scientists in this area and led to a deeper understanding of catalysis and other surface-specific processes at the nanoscale. Here, we summarize the scientific developments that guided early progress in surface science, and we explore the major advancements in Ertl's career, including his work on adsorption and oxidation of small molecules on metal surfaces. Significant contributions of other key scientists to this rich area are also presented.

  7. Bioassay-guided extraction of crude fucose-containing sulphated polysaccharides from Sargassum fusiforme with response surface methodology

    Science.gov (United States)

    Fu, Zhifei; Li, Haihua; Liu, Hongbing; Hu, Shuman; Li, Yueying; Wang, Mengxue; Guan, Huashi

    2016-06-01

    The response surface methodology (RSM) combined with bioassays was employed to optimize the extraction process of crude fucose-containing sulphated polysaccharides (cFCSP) from Sargassum fusiforme. The central composite design (CCD) was used with four variables, five levels, and four responses. The four variables were pH value of hydrochloric acid solution, extraction temperature (°C), ratio of liquid to raw material (mL g-1), and extraction time (h), respectively. Chemical and bioassay indices were used in combination as the response parameters, which included the yield of cFCSP, fucose content, proliferation rate of spleen cells, and lipopolysaccharide-induced proliferation of splenocytes. The experimental data were fitted to a second-order polynomial equation using multiple regression analysis, and examined using the appropriate statistical methods. The best extraction conditions were as follows: the pH value of hydrochloric acid solution was 3.50; the extraction temperature was 100°C; the ratio of liquid to raw material was 15.00 mL g-1 and the extraction time was 2.50 h. The experimental yield was close to the predicted from the model. The extract could promote spleen lymphocyte proliferation, especially the lipopolysaccharide-induced lymphocyte proliferation in vitro, which suggested that its immunomodulatory effect on B lymphocytes. Therefore, cFCSP extracted from S. fusiforme could be utilized as an immunostimulant in functional foods and pharmaceutical industry in future.

  8. Surface chemistry: Key to control and advance myriad technologies

    OpenAIRE

    Yates, John T.; Campbell, Charles T.

    2011-01-01

    This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemi...

  9. Surface Chemistry in Heterogeneous Catalysis: An Emerging Discipline.

    Science.gov (United States)

    White, J. M.; Campbell, Charles T.

    1980-01-01

    Provides background data on surface chemistry as an emerging discipline. Highlights the important role which surfaces play in catalysis by focusing on the catalyzed oxidation of carbon monoxide. Provides a demonstration of how surfaces exert their influences in heterogeneous phenomena and illustrates how experimental problems in this field are…

  10. Gas Plasma Surface Chemistry for Biological Assays.

    Science.gov (United States)

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development. PMID:26160577

  11. Gas Plasma Surface Chemistry for Biological Assays.

    Science.gov (United States)

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development.

  12. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  13. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    OpenAIRE

    Wei Zheng; Remko van den Hurk; Yong Cao; Rongbing Du; Xuejun Sun; Yiyu Wang; McDermott, Mark T.; Stephane Evoy

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, ...

  14. Heterogeneous Chemistry on the Ice Surfaces

    Science.gov (United States)

    Klán, P.; Heger, D.; Ray, D.; Krausko, J.; Lisitsyn, L.; Neděla, V.

    2012-04-01

    The porous nature of ice surfaces, especially of snow crystals, allows for adsorption of volatile and semivolatile organic compounds. Contrary to frozen aqueous solutions, in which the impurities reside in a 3-dimensional cage (micropockets), contaminant molecules located on a snow grain surface at low concentrations can be visualized in terms of a 2-dimensional cage. Low concentrations of snow contaminants and the complexity the system are a great challenge to those who want to study the physical and chemical processes occurring in natural snow. We investigated the surface coverage of artificial snow grains by organic contaminants in relation to their surface self-association, diffusion, and chemical reactions, such as radical recombination, ozonolysis, or redox processes. Our studies have revealed that hydrophobic organic molecules can be located on the surface of snow grains in associations rather than as isolated species even at very low concentrations. The results from investigations on photochemistry of ice surface contaminants in the absence or presence of semiconductor nanoparticles or humic acids, using various study techniques, including fluorimetry or scanning electron microscopy, will be presented.

  15. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    OpenAIRE

    Chang, Q; Cuppen, H. M.; Herbst, E.

    2007-01-01

    AIM: We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that c...

  16. 2D chemistry on Au(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rauls, Eva; Blankenburg, Stephan; Schmidt, Wolf Gero [Theoretische Physik, Universitaet Paderborn (Germany)

    2009-07-01

    The design of functional two-dimensional molecular networks has become an area of intense research. The constraint to 2 in contrast to the availability of 3 dimensions has a large impact on many chemical reactions. Chemical reactions between surface adsorbed molecules may lead to products very different from those obtained in solutions or the gas phase. The imide formation between a diaminoterphenyl (DATP) and a PTCDA molecule is one very interesting example in this respect. In scanning tunneling microscopy (STM) experiments, it has been observed that the Au surface changes both the reaction path and the reaction product compared to 3D. In order to understand these experimental observations, we have studied the chemical reactions both in solution and on the Au(111) surface by density-functional theory calculations in the generalized-gradient approximation.

  17. Quantification of air plasma chemistry for surface disinfection

    Science.gov (United States)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  18. Organic chemistry on Titan: Surface interactions

    Science.gov (United States)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  19. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix;

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  20. Density Functional Theory in Surface Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Norskov, Jens

    2011-05-19

    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  1. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  2. Magmatic and fragmentation controls on volcanic ash surface chemistry

    Science.gov (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  3. Testing Grain Surface Chemistry in Star Forming Regions

    Science.gov (United States)

    Keane, Jacqueline; Boogert, Adwin

    2008-03-01

    The key chemical reactions that produce the first generation ice mantles in dense molecular clouds are still poorly known. Within cold, dense clouds, species formed in the gas and on the grain surfaces will stick to the grains and form icy mantles. However, during star-formation, materials in the general cloud medium are subjected to numerous chemical and physical processes that are driven mostly by thermal and energetic radiation. The comparison between background stars and protostars is a proven excellent tool for this purpose. By comparing observed interstellar solid state abundances with models of grain surface chemistry it is possible to elucidate the efficiency and hence relevancy of a number of chemical reactions, in particular the CO_2 formation pathways. In part because of Spitzer, significant progress has been made towards understanding the various effects of these radiation processes on the ices around a large sample of high- and low-mass protostars. First results suggest that two different CO2 formation pathways play a role in these harsh environments. Though which reaction initially dominated the chemistry is unknown due to the numerous physical processes. Unfortunately, only a small sample of background field stars have been observed, most notably Taurus. In Taurus, only one reaction pathway appears to be efficient in quiescent regions, but this result is sample limited. We propose to take low resolution spectra from 5 to 22 microns along the line of sight toward 31 field stars behind the LDN 673 molecular cloud. Differences in near-IR ice chemistry have already been observed and we will use these mid-infrared data to provide more stringent constraints on chemical models of grain surface chemistry. With this sample it is possible to address fundamental questions in astrochemistry: what are the dominant grain surface chemistry pathways? What is the composition of the first generation ice mantles in molecular clouds?

  4. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    CERN Document Server

    Chang, Q; Herbst, E

    2007-01-01

    AIM: We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. METHOD: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Althoug...

  5. Engineered microtopographies and surface chemistries direct cell attachment and function

    Science.gov (United States)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a

  6. Ferroelectrics: A pathway to switchable surface chemistry and catalysis

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I.

    2016-08-01

    It has been known for more than six decades that ferroelectricity can affect a material's surface physics and chemistry thereby potentially enhancing its catalytic properties. Ferroelectrics are a class of materials with a switchable electrical polarization that can affect surface stoichiometry and electronic structure and thus adsorption energies and modes; e.g., molecular versus dissociative. Therefore, ferroelectrics may be utilized to achieve switchable surface chemistry whereby surface properties are not fixed but can be dynamically controlled by, for example, applying an external electric field or modulating the temperature. Several important examples of applications of ferroelectric and polar materials in photocatalysis and heterogeneous catalysis are discussed. In photocatalysis, the polarization direction can control band bending at water/ferroelectric and ferroelectric/semiconductor interfaces, thereby facilitating charge separation and transfer to the electrolyte and enhancing photocatalytic activity. For gas-surface interactions, available results suggest that using ferroelectrics to support catalytically active transition metals and oxides is another way to enhance catalytic activity. Finally, the possibility of incorporating ferroelectric switching into the catalytic cycle itself is described. In this scenario, a dynamic collaboration of two polarization states can be used to drive reactions that have been historically challenging to achieve on surfaces with fixed chemical properties (e.g., direct NOx decomposition and the selective partial oxidation of methane). These predictions show that dynamic modulation of the polarization can help overcome some of the fundamental limitations on catalytic activity imposed by the Sabatier principle.

  7. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  8. The impact of surface chemistry modification on macrophage polarisation.

    Science.gov (United States)

    Rostam, Hassan M; Singh, Sonali; Salazar, Fabian; Magennis, Peter; Hook, Andrew; Singh, Taranjit; Vrana, Nihal E; Alexander, Morgan R; Ghaemmaghami, Amir M

    2016-11-01

    Macrophages are innate immune cells that have a central role in combating infection and maintaining tissue homeostasis. They exhibit remarkable plasticity in response to environmental cues. At either end of a broad activation spectrum are pro-inflammatory (M1) and anti-inflammatory (M2) macrophages with distinct functional and phenotypical characteristics. Macrophages also play a crucial role in orchestrating immune responses to biomaterials used in the fabrication of implantable devices and drug delivery systems. To assess the impact of different surface chemistries on macrophage polarisation, human monocytes were cultured for 6 days on untreated hydrophobic polystyrene (PS) and hydrophilic O2 plasma-etched polystyrene (O2-PS40) surfaces. Our data clearly show that monocytes cultured on the hydrophilic O2-PS40 surface are polarised towards an M1-like phenotype, as evidenced by significantly higher expression of the pro-inflammatory transcription factors STAT1 and IRF5. By comparison, monocytes cultured on the hydrophobic PS surface exhibited an M2-like phenotype with high expression of mannose receptor (MR) and production of the anti-inflammatory cytokines IL-10 and CCL18. While the molecular basis of such different patterns of cell differentiation is yet to be fully elucidated, we hypothesise that it is due to the adsorption of different biomolecules on these surface chemistries. Indeed our surface characterisation data show quantitative and qualitative differences between the protein layers on the O2-PS40 surface compared to PS surface which could be responsible for the observed differential macrophage polarisation on each surface.

  9. The role of "inert" surface chemistry in marine biofouling prevention.

    Science.gov (United States)

    Rosenhahn, Axel; Schilp, Sören; Kreuzer, Hans Jürgen; Grunze, Michael

    2010-05-01

    The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short

  10. Surface chemistry of metal catalyst under carbon nanotube growth conditions

    Science.gov (United States)

    Back, Tyson Cody

    The catalyst nanoparticle is critical to the yield, type, and diameter in the growth and nucleation of carbon nanotubes. The objective of this study is focused on determining what changes take place with the catalyst chemistry under growth conditions typically seen in chemical vapor deposition, CVD, experiments. It is well known that catalyst poisoning can occur and in turn effects the catalytic activity of the nanoparticle. A complete description of this mechanism is as of yet undetermined. In order to elucidate this process iron films were deposited onto Si substrates that contained a support layer of Al2O3 or SiO2. These samples were investigated with various surface chemistry techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and electron energy loss spectroscopy (EELS). In addition, structural characteristics were investigated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface techniques were used in-situ in order to observe chemistries that might not be observable outside a CVD reactor. Two sets of experiments were performed on the silica and alumina supports. The first consisted of carbon nanotube growth at near atmospheric pressure, while the second was performed under vacuum. The oxide support was shown to have an affect on the type of nanotubes grown under identical conditions. The silica support films produced more MWNT, while the alumina support films produced more SWNT. This difference was due to the amount of ripening that takes place on the oxide supports. Also in-situ XPS revealed differences in the chemistry of iron catalyst during growth and these differences were attributed to substrate interactions between alumina and iron. Finally, in-situ XPS analysis showed no evidence of carbides or oxides acting as a catalyst during the nucleation process.

  11. Saltwater icephobicity: Influence of surface chemistry on saltwater icing.

    Science.gov (United States)

    Carpenter, Katherine; Bahadur, Vaibhav

    2015-01-01

    Most studies on icephobicity focus on ice formation with pure water. This manuscript presents studies to understand the influence of surfaces on saltwater ice nucleation and propagation. Experiments are conducted to quantify the influence of surface chemistry on saltwater ice nucleation and to understand the utility of superhydrophobic surfaces for saltwater icephobicity. These experiments are conducted with pure water and two sodium chloride solutions, which represent the salinity of seawater and briny produced water. It is seen that the presence of salt slows down the ice front propagation velocity significantly. Saltwater droplet impact dynamics on superhydrophobic surfaces are also different from pure water. Saltwater droplets retract more and a greater fraction of impacting liquid is repelled from the superhydrophobic surface. It is seen that the greater bounciness of saltwater droplets is a result of slower ice nucleation propagation kinetics. These experiments indicate that superhydrophobic surfaces will have better resistance to impact icing with saltwater than pure water and can remain useful at temperatures as low as -40 °C. Overall, this work is a starting point for further studies on heterogeneous nucleation in saltwater and serves as a bridge between the widely studied freshwater icephobic surfaces and saltwater-related applications. PMID:26626958

  12. Saltwater icephobicity: Influence of surface chemistry on saltwater icing

    Science.gov (United States)

    Carpenter, Katherine; Bahadur, Vaibhav

    2015-12-01

    Most studies on icephobicity focus on ice formation with pure water. This manuscript presents studies to understand the influence of surfaces on saltwater ice nucleation and propagation. Experiments are conducted to quantify the influence of surface chemistry on saltwater ice nucleation and to understand the utility of superhydrophobic surfaces for saltwater icephobicity. These experiments are conducted with pure water and two sodium chloride solutions, which represent the salinity of seawater and briny produced water. It is seen that the presence of salt slows down the ice front propagation velocity significantly. Saltwater droplet impact dynamics on superhydrophobic surfaces are also different from pure water. Saltwater droplets retract more and a greater fraction of impacting liquid is repelled from the superhydrophobic surface. It is seen that the greater bounciness of saltwater droplets is a result of slower ice nucleation propagation kinetics. These experiments indicate that superhydrophobic surfaces will have better resistance to impact icing with saltwater than pure water and can remain useful at temperatures as low as -40 °C. Overall, this work is a starting point for further studies on heterogeneous nucleation in saltwater and serves as a bridge between the widely studied freshwater icephobic surfaces and saltwater-related applications.

  13. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-07-01

    Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  14. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  15. Modulation of human osteoblasts by metal surface chemistry.

    Science.gov (United States)

    Hofstetter, Wilhelm; Sehr, Harald; de Wild, Michael; Portenier, Jeannette; Gobrecht, Jens; Hunziker, Ernst B

    2013-08-01

    The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself. PMID:23359530

  16. Modulation of human osteoblasts by metal surface chemistry.

    Science.gov (United States)

    Hofstetter, Wilhelm; Sehr, Harald; de Wild, Michael; Portenier, Jeannette; Gobrecht, Jens; Hunziker, Ernst B

    2013-08-01

    The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself.

  17. Surface chemistry interventions to control boiler tube fouling - Part II

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Guzonas, D.A.; Klimas, S.J

    2004-06-15

    This is the third in a series of reports from an investigation co-funded by the Electric Power Research Institute (EPRI) and by Atomic Energy of Canada Limited (AECL) into the effectiveness of alternative amines for controlling the rate of tube-bundle fouling under steam generator (SG) operating conditions. The objectives of this investigation are to determine whether the fouling rate depends on the amine used for pH control, to identify those factors that influence the effectiveness, and use this information to optimize the selection of an amine for chemistry control and deposit control in the steam cycle and steam generator, respectively. Work to date has demonstrated that the rate of particle deposition under steam generator operating conditions is strongly influenced by surface chemistry (Turner et al., 1997; Turner et al., 1999). This dependence upon surface chemistry is illustrated by the difference between the deposition rates measured for hematite and magnetite, and by the dependence of the particle deposition rate on the amine used for pH control. Deposition rates of hematite were found to be more than 10 times greater than those for magnetite under similar test conditions (Turner et al., 1997). At 270{sup o}C and pH{sub T} 6.2, the surfaces of hematite and magnetite are predicted to be positively charged and negatively charged, respectively (Shoonen, 1994). Measurements of the point of zero charge (PZC) of magnetite at temperatures from 25{sup o}C to 290{sup o}C by Wesolowski et al. (1999) have confirmed that magnetite is negatively charged at the stated conditions. A PZC of 4.2 was measured for Alloy 600 at 25{sup o}C (Balakrishnan and Turner, un-published results), and its surface is expected to remain negatively charged for alkaline chemistry over the temperature range of interest. Therefore, there will be a repulsive force between the surfaces of magnetite particles and Alloy 600 at 270{sup o}C and pH{sub T} 6.2 that is absent for hematite particles

  18. The chemistry and physics of zinc oxide surfaces

    Science.gov (United States)

    Wöll, Christof

    Metal oxides are virtually everywhere - only gold has the property not to form an oxide on its surface when exposed to the ambient. As a result, understanding the physics and chemistry of oxide surfaces is a topic of pronounced general interest and, of course, also a necessary prerequisite for many technical applications. The most important of these is certainly heterogeneous catalysis, but one has to realize that - under ambient conditions - virtually all phenomena occurring at liquid/metal and gas/metal interfaces are determined by the corresponding oxide. This applies in particular to friction phenomena, adhesion and corrosion. A necessary - but not necessarily sufficient - condition for unravelling the fundamentals governing this complex field is to analyze in some detail elementary chemical and physical processes at oxide surfaces. Although the Surface Science of metal surfaces has seen a major progress in the past decades, for oxides detailed experimental investigations for well-defined single crystal surfaces still represent a formidable challenge - mostly because of technical difficulties (charging), but to some extent also due to fundamental problems related to the stabilization of polar surfaces. As a result, the amount of information available for this class of materials is - compared to that at hand for metals - clearly not satisfactory. A particular disturbing lack of information is that about the presence of hydrogen at oxide surfaces - either as hydroxy-species or in form of metal hydrides. In the present review we will summarize recent experimental and theoretical information which has become available from single crystal studies on ZnO surfaces. While the number of papers dealing with another oxide, rutile TiO 2, is significantly larger (although titania does not exhibit a polar surface), also for zinc oxide a basis of experimental and theoretical knowledge as been accumulated, which - at least for the non-polar surfaces - allows to understand

  19. Tailoring on-surface chemistry of (hetero)aromatics on transition metal surfaces

    OpenAIRE

    Pinardi, Anna Lisa

    2013-01-01

    This thesis deals about on-surface chemistry, one of the most powerful bottom-up approaches employed in nanotechnology to assemble molecular networks, and driving to a modification of the structure and the electronic properties of the deposited organic molecules. A subject of fundamental relevance and technological importance. In the experimental work of the thesis, different organic molecule-metal systems have been grown and analysed in depth with Ultra High Vacuum surface science techni...

  20. Carbon dioxide chemistry on the surface of Titan

    Science.gov (United States)

    Hodyss, Robert; Piao, Sophie; Malaska, Michael; Cable, Morgan

    2016-10-01

    Titan possesses many of the basic elements of habitability, including a rich organic chemistry. However, the thick atmosphere of Titan shields the surface from radiation, which makes the incorporation of oxygen into organic compounds difficult, due to a reducing environment and low temperatures that slow chemical reactions. These obstacles may be overcome by impacts or cryovolcanic heating of ice, which would mix organics with liquid water and allow chemical reactions that can incorporate oxygen. However, reactions involving oxygen can occur on Titan without invoking such unusual conditions. We show that the reaction of carbon dioxide with amines can lead to oxygenated organics at Titan's surface without the need for external energy input, via the carbamation reaction: R-NH2 + CO2 → R-NH-COOH. Using a combination of micro-Raman spectroscopy and UHV FTIR spectroscopy, we examine the reaction products and kinetics of the carbamation reaction for a variety of primary and secondary amines. We have observed carbamic acid formation in mixtures of methylamine, ethylamine and dibutylamine with CO2 at cryogenic temperatures. This indicates that both primary and secondary amines can undergo carbamation at low temperatures. Reaction was observed with methylamine as low as 40 K, and with ethylamine at 100 K, demonstrating that carbamation is fast at Titan surface temperatures. We will present data on the kinetics of the carbamation reaction for a variety of amines, as well as estimates of the quantity of carbamic acids that may be produced on Titan's surface and in the atmosphere.

  1. Supported Organometallic Complexes: Surface Chemistry, Spectroscopy, Catalysis, and Homogeneous Models

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin J. [Northwestern Univ., Evanston, IL (United States); Stalzer, Madelyn M. [Northwestern Univ., Evanston, IL (United States); Delferro, Massimiliano [Northwestern Univ., Evanston, IL (United States)

    2016-09-09

    The goal of this project is to model, understand at a fundamental level, expand, and exploit pathways by which organometallic molecules of varying nuclearity undergo chemisorptive activation and catalytic activity enhancement on solid surfaces. Such processes connect to real-world, large-scale industrial hydrocarbon processes and to manufacturing cleaner, greener, more environmentally acceptable products, including those from renewable resources. This research program combines catalyst synthesis, surface chemistry and spectroscopy, homogeneous analogue catalysis, structural analysis, and computation, and involves collaboration with national laboratory and industrial researchers. The objectives are to: 1) Investigate mononuclear and binuclear organometallic chemisorption on “super Brønsted acid” and related oxide surfaces, 2) Synthesize and characterize mononuclear and polynuclear catalyst precursors for understanding-based surface and solution phase catalysis, 3) Use this information to produce new types of efficient energy storage materials, 4) Computationally model both solution phase and chemisorbed catalysts, and investigate their reactivity modes. Of relevance to national energy issues is the potential to transform/metathesize inert saturated hydrocarbons,to drive “uphill” processes by coupling to exoergic transformations, to better utilize biofeedstocks (e.g., Dow’s world-scale Brazilian non-petroleum polyethylene process), and to address challenges articulated in recent BES Catalysis BRN and Grand Research Challenges reports. The long-range objective is therefore to understand and exploit (catalyst)∙∙∙(catalyst) and (catalyst )∙∙∙(surface/cocatalyst) interactions for new, instructive reactivity patterns, and to connect activating surface environments with mechanistically less complex solution environments. The information obtained is then fed back into further catalyst discovery efforts. We have pursued correlated synthesis

  2. Ionic Liquids Can Permanently Modify Porous Silicon Surface Chemistry.

    Science.gov (United States)

    Trivedi, Shruti; Coombs, Sidney G; Wagle, Durgesh V; Bhawawet, Nakara; Baker, Gary A; Bright, Frank V

    2016-08-01

    To develop ionic liquid/porous silicon (IL/pSi) microarrays we have contact pin-printed 20 hydrophobic and hydrophilic ionic liquids onto as-prepared, hydrogen-passivated porous silicon (ap-pSi) and then determined the individual IL spot size, shape and associated pSi surface chemistry. The results reveal that the hydrophobic ionic liquids oxidize the ap-pSi slightly. In contrast, the hydrophilic ionic liquids lead to heavily oxidized pSi (i.e., ox-pSi). The strong oxidation arises from residual water within the hydrophilic ILs that is delivered from these ILs into the ap-pSi matrix causing oxidation. This phenomenon is less of an issue in the hydrophobic ILs because their water solubility is substantially lower.

  3. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry.

    Science.gov (United States)

    Zhang, Meining; Yu, Ping; Mao, Lanqun

    2012-04-17

    To understand the molecular basis of brain functions, researchers would like to be able to quantitatively monitor the levels of neurochemicals in the extracellular fluid in vivo. However, the chemical and physiological complexity of the central nervous system (CNS) presents challenges for the development of these analytical methods. This Account describes the rational design and careful construction of electrodes and nanoparticles with specific surface/interface chemistry for quantitative in vivo monitoring of brain chemistry. We used the redox nature of neurochemicals at the electrode/electrolyte interface to establish a basis for monitoring specific neurochemicals. Carbon nanotubes provide an electrode/electrolyte interface for the selective oxidation of ascorbate, and we have developed both in vivo voltammetry and an online electrochemical detecting system for continuously monitoring this molecule in the CNS. Although Ca(2+) and Mg(2+) are involved in a number of neurochemical signaling processes, they are still difficult to detect in the CNS. These divalent cations can enhance electrocatalytic oxidation of NADH at an electrode modified with toluidine blue O. We used this property to develop online electrochemical detection systems for simultaneous measurements of Ca(2+) and Mg(2+) and for continuous selective monitoring of Mg(2+) in the CNS. We have also harnessed biological schemes for neurosensing in the brain to design other monitoring systems. By taking advantage of the distinct reaction properties of dopamine (DA), we have developed a nonoxidative mechanism for DA sensing and a system that can potentially be used for continuously sensing of DA release. Using "artificial peroxidase" (Prussian blue) to replace a natural peroxidase (horseradish peroxidase, HRP), our online system can simultaneously detect basal levels of glucose and lactate. By substituting oxidases with dehydrogenases, we have used enzyme-based biosensing schemes to develop a physiologically

  4. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    Science.gov (United States)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  5. Role of Surface Chemistry in Nanoscale Electrokinetic Transport

    Science.gov (United States)

    Atalay, Selcuk

    This dissertation work presents the efforts to study the electrofluidics phenomena, with a focus on surface charge properties in nanoscale systems with the potential applications in imaging, energy conversion, ultrafiltration, DNA analysis/sequencing, DNA and protein transport, drug delivery, biological/chemical agent detection and micro/nano chip sensors. Since the ion or molecular or particle transport and also liquid confinement in nano-structures are strongly dominated by the surface charge properties, in regards of the fundamental understanding of electrofluidics at nanoscale, we have used surface charge chemistry properties based on 2-pK charging mechanism. Using this mechanism, we theoretically and analytically showed the surface charge properties of silica nanoparticles as a function of their size, pH level and salt ionic strength of aqueous solution. For a fixed particle size, the magnitude of the surface charge typically increases with an increase in pH or background salt concentration. Furthermore, we investigated the surface charge properties of a charged dielectric nanoparticle and flat wall in electrostatic interactions. According to the theoretical results strong interactions cause a non-uniform surface charge density on the nanoparticle and the plate as a result of the enhancement of proton concentration in the gap between the particle and the plate. This effect increases with decreased separation distance (Kh). We moreover investigated the ion confinement inside the nanospaces and using a continuum model, we showed the proton enhancement in extended nanochannels. The proton enrichment at the center of the nanochannel is significant when the bulk pH is medium high and the salt concentration is relatively low. The results gathered are informative for the development of biomimetic nanofluidic apparatuses and the interpretation of relevant experimental data. Later, we have developed an analytical model for electroosmotic ion transport inside p

  6. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering

    Science.gov (United States)

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C. M.

    2016-01-01

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions. PMID:27389331

  7. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Fernández, Tahia D; Mäkilä, Ermei M; Le Guével, Xavier; Mayorga, Cristobalina; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-11-01

    Nanoparticles (NPs) have been suggested for immunotherapy applications in order to optimize the delivery of immuno-stimulative or -suppressive molecules. However, low attention towards the impact of the NPs' physicochemical properties has presented a major hurdle for developing efficient immunotherapeutic agents. Here, the effects of porous silicon (PSi) NPs with different surface chemistries were evaluated on human monocyte-derived dendritic cells (MDDCs) and lymphocytes in order to highlight the importance of the NPs selection in immuno-stimulative or -suppressive treatment. Although all the PSi NPs showed high biocompatibility, only thermally oxidized PSi (TOPSi) and thermally hydrocarbonized PSi (THCPSi) NPs were able to induce very high rate of immunoactivation by enhancing the expression of surface co-stimulatory markers of the MDDCs (CD80, CD83, CD86, and HLA-DR), inducing T-cell proliferation, and also the secretion of interleukins (IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α). These results indicated a balanced increase in the secretion of Th1, Th2, and Treg cytokines. Moreover, undecylenic acid functionalized THCPSi, as well as poly(methyl vinyl ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane functionalized thermally carbonized PSi and polyethyleneimine conjugated undecylenic acid functionalized THCPSi NPs showed moderate immunoactivation due to the mild increase in the above-mentioned markers. By contrast, thermally carbonized PSi (TCPSi) and (3-aminopropyl)triethoxysilane functionalized TCPSi NPs did not induce any immunological responses, suggesting that their application could be in the delivery of immunosuppressive molecules. Overall, our findings suggest all the NPs containing more nitrogen or oxygen on the outermost backbone layer have lower immunostimulatory effect than NPs with higher C-H structures on the surface.

  8. Pyridine coordination chemistry for molecular assemblies on surfaces.

    Science.gov (United States)

    de Ruiter, Graham; Lahav, Michal; van der Boom, Milko E

    2014-12-16

    CONSPECTUS: Since the first description of coordination complexes, many types of metal-ligand interactions have creatively been used in the chemical sciences. The rich coordination chemistry of pyridine-type ligands has contributed significantly to the incorporation of diverse metal ions into functional materials. Here we discuss molecular assemblies (MAs) formed with a variety of pyridine-type compounds and a metal containing cross-linker (e.g., PdCl2(PhCN2)). These MAs are formed using Layer-by-Layer (LbL) deposition from solution that allows for precise fitting of the assembly properties through molecular programming. The position of each component can be controlled by altering the assembly sequence, while the degree of intermolecular interactions can be varied by the level of π-conjugation and the availability of metal coordination sites. By setting the structural parameters (e.g., bond angles, number of coordination sites, geometry) of the ligand, control over MA structure was achieved, resulting in surface-confined metal-organic networks and oligomers. Unlike MAs that are constructed with organic ligands, MAs with polypyridyl complexes of ruthenium, osmium, and cobalt are active participants in their own formation and amplify the growth of the incoming molecular layer. Such a self-propagating behavior for molecular systems is rare, and the mechanism of their formation will be discussed. These exponentially growing MAs are capable of storing metal salts that can be used during the buildup of additional molecular layers. Various parameters influencing the film growth mechanism will be presented, including (i) the number of binding sites and geometry of the organic ligands, (ii) the metal and the structure of the polypyridyl complexes, (iii) the influence of the metal cross-linker (e.g., second or third row transition metals), and (iv) the deposition conditions. By systematic variation of these parameters, switching between linear and exponential growth could

  9. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    Science.gov (United States)

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  10. Tuning of nanoparticle biological functionality through controlled surface chemistry and characterisation at the bioconjugated nanoparticle surface

    Science.gov (United States)

    Hristov, Delyan R.; Rocks, Louise; Kelly, Philip M.; Thomas, Steffi S.; Pitek, Andrzej S.; Verderio, Paolo; Mahon, Eugene; Dawson, Kenneth A.

    2015-12-01

    We have used a silica - PEG based bionanoconjugate synthetic scheme to study the subtle connection between cell receptor specific recognition and architecture of surface functionalization chemistry. Extensive physicochemical characterization of the grafted architecture is capable of capturing significant levels of detail of both the linker and grafted organization, allowing for improved reproducibility and ultimately insight into biological functionality. Our data suggest that scaffold details, propagating PEG layer architecture effects, determine not only the rate of uptake of conjugated nanoparticles into cells but also, more significantly, the specificity of pathways via which uptake occurs.

  11. Plug-Based Microfluidics with Defined Surface Chemistry to Miniaturize and Control Aggregation of Amyloidogenic Peptides**

    OpenAIRE

    Meier, Matthias; Kennedy-Darling, Julia; Choi, Se Hoon; Norstrom, Eric M.; Sisodia, Sangram S; Ismagilov, Rustem F.

    2009-01-01

    Small with control: For miniaturization of protein aggregation experiments the interfacial chemistry must be controlled to avoid protein aggregation caused by interfacial adsorption. Plug-based microfluidics with defined surface chemistry (see schematic picture) can then be used to perform hundreds of aggregation experiments with volume-limited samples, such as cerebrospinal fluid from mice.

  12. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    Science.gov (United States)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  13. Characterisation of the inorganic chemistry of surface waters in South Africa

    OpenAIRE

    Huizenga, Jan Marten

    2011-01-01

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 samples) in South Africa were transformed into an Excel dataset and subsequently quality screened using the stoichiometric charge balance, after which 196 570 (41%) of the wa...

  14. Fenton Redox Chemistry: Arsenite Oxidation by Metallic Surfaces

    NARCIS (Netherlands)

    Borges Freitas, S.C.; Van Halem, D.; Badruzzaman, A.B.M.; Van der Meer, W.G.J.

    2014-01-01

    Pre-oxidation of As(III) is necessary in arsenic removal processes in order to increase its efficiency. Therefore, the Fenton Redox Chemistry is defined by catalytic activation of H2O2 and currently common used for its redox oxidative properties. In this study the effect of H2O2 production catalysed

  15. Seventh BES [Basic Energy Sciences] catalysis and surface chemistry research conference

    International Nuclear Information System (INIS)

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases

  16. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  17. Detection of Tetrodotoxins in Puffer Fish by a Self-Assembled Monolayer-Based Immunoassay and Comparison with Surface Plasmon Resonance, LC-MS/MS, and Mouse Bioassay.

    Science.gov (United States)

    Reverté, Laia; de la Iglesia, Pablo; del Río, Vanessa; Campbell, Katrina; Elliott, Christopher T; Kawatsu, Kentaro; Katikou, Panagiota; Diogène, Jorge; Campàs, Mònica

    2015-11-01

    The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities.

  18. Detection of Tetrodotoxins in Puffer Fish by a Self-Assembled Monolayer-Based Immunoassay and Comparison with Surface Plasmon Resonance, LC-MS/MS, and Mouse Bioassay.

    Science.gov (United States)

    Reverté, Laia; de la Iglesia, Pablo; del Río, Vanessa; Campbell, Katrina; Elliott, Christopher T; Kawatsu, Kentaro; Katikou, Panagiota; Diogène, Jorge; Campàs, Mònica

    2015-11-01

    The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities. PMID:26424329

  19. Desorption of 1,3,5-Trichlorobenzene from Multi-Walled Carbon Nanotubes: Impact of Solution Chemistry and Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Sheikh Uddin

    2013-05-01

    Full Text Available The strong affinity of carbon nanotubes (CNTs to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be realized until the contaminants are desorbed from CNTs. It is well recognized that the desorption of environmental pollutants from pre-laden CNTs varies with the environmental conditions, such as the solution pH and ionic strength. However, comprehensive investigation on the influence of solution chemistry on the desorption process has not been carried out, even though numerous investigations have been conducted to investigate the impact of solution chemistry on the adsorption of environmental pollutants on CNTs. The main objective of this study was to determine the influence of solution chemistry (e.g., pH, ionic strength and surface functionalization on the desorption of preloaded 1,3,5-trichlorobenzene (1,3,5-TCB from multi-walled carbon nanotubes (MWNTs. The results suggested that higher pH, ionic strength and natural organic matter in solution generally led to higher desorption of 1,3,5-TCB from MWNTs. However, the extent of change varied at different values of the tested parameters (e.g., pH 7. In addition, the impact of these parameters varied with MWNTs possessing different surface functional groups, suggesting that surface functionalization could considerably alter the environmental behaviors and impact of MWNTs.

  20. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    Science.gov (United States)

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-10-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.

  1. Chemistry

    International Nuclear Information System (INIS)

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF3 and dissolved UF4, and, in some cases, between the dissolved uranium fluorides and graphite, and the UC2. Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U4+/U3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  2. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  3. Complex Surface Concentration Gradients by Stenciled "Electro Click Chemistry"

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede;

    2010-01-01

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click...... reaction" between alkynes and azides at room temperature. A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, while the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically...

  4. On the use of SPM to probe the interplay between polymer surface chemistry and polymer surface mechanics

    Science.gov (United States)

    Brogly, Maurice; Noel, Olivier; Awada, Houssein; Castelein, Gilles

    2007-03-01

    Adhesive properties of a polymer surface results from the complex contribution of surface chemistry and activation of sliding and dissipating mechanisms within the polymer surface layer. The purpose of this study is to dissociate the different contributions (chemical and mechanical) included in an AFM force-distance curve in order to establish relationships between the surface viscoelastic properties of the polymer, the surface chemistry of functionalized polymer surfaces and the adhesive forces, as determined by C-AFM experiments. Indeed we are interested in the measurements of local attractive or adhesive forces in AFM contact mode, of controlled chemical and mechanical model substrates. In order to investigate the interplay between mechanical or viscoelastic mechanisms and surface chemistry during the tip - polymer contact, we achieved force measurements on model PDMS polymer networks, whose surfaces are chemically controlled with the same functional groups as before (silicon substrates). On the basis of AFM nano-indentation experiments, surface Young moduli have been determined. The results show that the viscoelastic contribution is dominating in the adhesion force measurement. We propose an original model, which express the local adhesion force to the energy dissipated within the contact and the surface properties of the material (thermodynamic work of adhesion). Moreover we show that the dissipation function is related to Mc, the mass between crosslinks of the network.

  5. Flame treatment of low-density polyethylene: Surface chemistry across the length scales

    NARCIS (Netherlands)

    Song, Jing; Gunst, Ullrich; Arlinghaus, Heinrich F.; Vancso, G. Julius

    2007-01-01

    The relationship between surface chemistry and morphology of flame treated low-density polyethylene (LDPE) was studied by various characterization techniques across different length scales. The chemical composition of the surface was determined on the micrometer scale by X-ray photoelectron spectros

  6. Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Bak, Martin; Jølck, Rasmus Irming; Eliasen, Rasmus;

    2016-01-01

    be used for functionalization of other nanoparticles or solid surfaces. The method exploits a synergistic effect of having both affinity and covalent anchoring tags on the surface of the liposome. This was achieved by synthesizing a peptide linker system that uses Cu-free strain-promoted click chemistry...

  7. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  8. Geochemistry and Organic Chemistry on the Surface of Titan

    Science.gov (United States)

    Lunine, J. I.; Beauchamp, P.; Beauchamp, J.; Dougherty, D.; Welch, C.; Raulin, F.; Shapiro, R.; Smith, M.

    2001-01-01

    Titan's atmosphere produces a wealth of organic products from methane and nitrogen. These products, deposited on the surface in liquid and solid form, may interact with surface ices and energy sources to produce compounds of exobiological interest. Additional information is contained in the original extended abstract.

  9. Recovering ferromagnetic metal surfaces to fully exploit chemistry in molecular spintronics

    Directory of Open Access Journals (Sweden)

    Marta Galbiati

    2015-05-01

    Full Text Available Organic spintronics is a new emerging field that promises to offer the full potential of chemistry to spintronics, as for example high versatility through chemical engineering and simple low cost processing. However, one key challenge that remains to be unlocked for further applications is the high incompatibility between spintronics key materials such as high Curie temperature Co, Ni, Fe (and their alloys and wet chemistry. Indeed, the transition metal proneness to oxidation has so far hampered the integration of wet chemistry processes into the development of room temperature organic spintronics devices. As a result, they had mainly to rely on high vacuum physical processes, restraining the choice of available organic materials to a small set of sublimable molecules. In this letter, focusing on cobalt as an example, we show a wet chemistry method to easily and selectively recover a metallic surface from an air exposed oxidized surface for further integration into spintronics devices. The oxide etching process, using a glycolic acid based solution, proceeds without increasing the surface roughness and allows the retrieval of an oxygen-free chemically active cobalt layer. This unlocks the full potential of wet chemistry processes towards room temperature molecular spintronics with transition metals electrodes. We demonstrate this by the grafting of alkylthiols self-assembled monolayers on recovered oxidized cobalt surfaces.

  10. Surface chemistry interventions to control boiler tube fouling

    International Nuclear Information System (INIS)

    The adsorption of ammonia, morpholine, ethanolamine, and dimethylamine onto the surfaces of colloidal magnetite and hematite was measured at 25oC. The effect of the adsorption on the surface potential was quantified by measuring the resulting shift in the isoelectric point of the corrosion products and by the direct measurement of the surface interaction force between the corrosion products and Inconel 600. These measurements have served to support the hypothesis that adsorption of amine affects the magnetite deposition rate by lowering the force of repulsion between magnetite and the surface of Inconel 600. The deposition rate of hematite increased as the oxygen concentration increased. A mechanism to account for enhanced deposition rates at high mixture qualities (> 0.35) has been identified and shown to predict behaviour that is consistent with both experimental and plant data. As a result of this investigation, several criteria are proposed to reduce the extent of corrosion product deposition on the tube bundle. Low hematite deposition is favoured by a low concentration of dissolved oxygen, and low magnetite deposition is favoured by choosing an amine for pH control that has little tendency to adsorb onto the surface of magnetite. To minimize adsorption the amine should have a high base strength and a large 'footprint' on the surface of magnetite. To prevent enhanced deposition at high mixture qualities, it is proposed that a modified amine be used that will reduce the surface tension or the elasticity of the steam-water interface or both

  11. Chemistry

    International Nuclear Information System (INIS)

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF4--H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF2--ThF4 for Fe and analysis of LiF--BeF--ThF4 for Te

  12. Chemistry and material science at the cell surface

    Directory of Open Access Journals (Sweden)

    Weian Zhao

    2010-04-01

    Full Text Available Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1 targeting cells to desirable sites in cell therapy, 2 programming assembly of cells for tissue engineering, 3 bioimaging and sensing, and ultimately 4 manipulating cell biology.

  13. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    OpenAIRE

    Norhan Nady

    2016-01-01

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be ...

  14. Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry

    OpenAIRE

    Lupul, Iwona; Yperman, Jan; Carleer, Robert; Gryglewicz, Grazyna

    2015-01-01

    Surface-modified hemp stem-based activated carbons (HACs) were prepared and used for the adsorption of atrazine from aqueous solution, and their adsorption performance was examined. A series of HACs were prepared by potassium hydroxide activation of hemp stems, followed by subsequent modification by thermal annealing, oxidation with nitric acid and amination. The resultant HACs differed in surface chemistry, while possessing similar porous structure. The surface group characteristics were exa...

  15. The surface chemistry of metal–organic frameworks

    OpenAIRE

    McGuire, Christina V.; Forgan, Ross S.

    2015-01-01

    Metal–organic frameworks (MOFs) have received particular attention over the last 20 years as a result of their attractive properties offering potential applications in a number of areas. Typically, these characteristics are tuned by functionalisation of the bulk of the MOF material itself. This Feature Article focuses instead on modification of MOF particles at their surfaces only, which can also offer control over the bulk properties of the material. The differing surface modification techni...

  16. Mechanical work makes important contributions to surface chemistry at steps

    OpenAIRE

    Francis, M. F.; Curtin, W. A.

    2015-01-01

    The effect of mechanical strain on the binding energy of adsorbates to late transition metals is believed to be entirely controlled by electronic factors, with tensile stress inducing stronger binding. Here we show, via computation, that mechanical strain of late transition metals can modify binding at stepped surfaces opposite to well-established trends on flat surfaces. The mechanism driving the trend is mechanical, arising from the relaxation of stored mechanical energy. The mechanical ene...

  17. Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Register

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Acikgöz, Canet; Daugaard, Anders Egede;

    2012-01-01

    A versatile procedure is presented for fast and efficient micropatterning of multiple types of covalently bound surface chemistry in perfect register on and between conductive polymer microcircuits. The micropatterning principle is applied to several types of native and functionalized PEDOT (poly...... functionalized conjugated polymer systems.......A versatile procedure is presented for fast and efficient micropatterning of multiple types of covalently bound surface chemistry in perfect register on and between conductive polymer microcircuits. The micropatterning principle is applied to several types of native and functionalized PEDOT (poly(3...

  18. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Science.gov (United States)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  19. Surface chemistry of atmospheric plasma modified polycarbonate substrates

    International Nuclear Information System (INIS)

    Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88 deg. to 18 deg. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of -(C-O)- groups and also introduction of new functional groups i.e. -(O-C=O)- after the treatment process. AFM topographic images demonstrated an increase in the rms roughness of the surface from 2.0 nm to 4.0 nm caused by the treatment. Increase in rms roughness of the surface caused relevant decrease in transmission up to ∼2-5%.

  20. First-order chemistry in the surface-flux layer

    DEFF Research Database (Denmark)

    Kristensen, L.; Andersen, C.E.; Ejsing Jørgensen, Hans;

    1997-01-01

    We have discussed the behavior of a non-conserved scalar in the stationary, horizontally homogeneous, neutral surface-flux layer and, on the basis of conventional second-order closure, derived analytic expressions for flux and for mean concentration of a gas, subjected to a first-order removal...... process, The analytic flux solution showed a clear deviation from the constant flux, characterizing a conserved scalar in the surface-flux layer. It decreases with height and is reduced by an order of magnitude of the surface flux at a height equal to about the typical mean distance a molecule can travel...... of a characteristic turbulent time scale and the scalar mean lifetime. We show that if we use only first-order closure and neglect the effect of the Damkohler ratio on the turbulent diffusivity we obtain another analytic solution for the profiles of the flux and the mean concentration which, from an experimental...

  1. The surface chemistry of metal-oxygen interactions

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Baroni, Stefano

    1997-01-01

    We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibri...... between the O 2p orbitals and the metal valence states. The resulting bonds are stronger when established with low coordinated metal atoms, and give rise to an effective adsorbate-adsorbate interaction when two oxygen atoms are bound to the same metal orbital....

  2. Mussel-inspired surface chemistry for multifunctional coatings.

    Science.gov (United States)

    Lee, Haeshin; Dellatore, Shara M; Miller, William M; Messersmith, Phillip B

    2007-10-19

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules. PMID:17947576

  3. EFFECT OF HYPERCROSSLINKED RESINS SURFACE CHEMISTRY ON THEADSORPTION OF PHENOL FROM AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Guan-hua Meng; Ai-min Lia; Wei-ben Yang; Fu-qiang Liu; Quan-xing Zhang

    2006-01-01

    Two hypercrosslinked resins with similar physical characters but different surface chemistry were synthesized and used to remove phenol from aqueous solutions. The FTIR spectra, elemental analysis and the Boehm titration were used to characterize the chemical properties of the resins. The adsorption experiments were carried out using the bottle-point technique, and the effects of the surface chemistry on the adsorption were discussed. The adsorption data fit well with the Freundlich model, indicating the heterogeneity of the resins surface. It could be seen from the experimental results that the adsorption capacity increased with the increase in the total surface concentration of oxygen-containing groups. The pH dependence and the effects of ionic strength were also discussed. The kinetic adsorption data fit well with the pseudo-second order model, and the results showed that the surface oxygen-containing groups have little effect on the adsorption rate.

  4. On-Surface Synthesis by Click Chemistry Investigated by STM and XPS

    DEFF Research Database (Denmark)

    Vadapoo, Sundar Raja

    2014-01-01

    Molecular synthesis is essential in the bottom-up approach of achieving highly stable nanostructures. On-surface synthesis is highly interesting from the basic science of view to improve the understanding of molecular behavior adsorbed on metal surfaces, and has potential applications...... such as molecular electronics and surface functionalization. In this thesis, a well-defined click chemistry approach is followed, with the study of azide-alkyne cycloaddition on Cu(111) surface in UHV environment. A successful achievement of the click reaction product via on-surface synthesis has been shown, which...... is characterised by STM and XPS....

  5. Mussel-Inspired Surface Chemistry for Multifunctional Coatings

    OpenAIRE

    Lee, Haeshin; Dellatore, Shara M.; Miller, William M.; Messersmith, Phillip B.

    2007-01-01

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assemble...

  6. Engineering novel cell surface chemistry for selective tumor cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, C.R. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  7. Bioassays Based on Molecular Nanomechanics

    Directory of Open Access Journals (Sweden)

    Arun Majumdar

    2002-01-01

    Full Text Available Recent experiments have shown that when specific biomolecular interactions are confined to one surface of a microcantilever beam, changes in intermolecular nanomechanical forces provide sufficient differential torque to bend the cantilever beam. This has been used to detect single base pair mismatches during DNA hybridization, as well as prostate specific antigen (PSA at concentrations and conditions that are clinically relevant for prostate cancer diagnosis. Since cantilever motion originates from free energy change induced by specific biomolecular binding, this technique is now offering a common platform for label-free quantitative analysis of protein-protein binding, DNA hybridization DNA-protein interactions, and in general receptor-ligand interactions. Current work is focused on developing “universal microarrays” of microcantilever beams for high-throughput multiplexed bioassays.

  8. Role of surface chemistry in protein remodeling at the cell-material interface.

    Directory of Open Access Journals (Sweden)

    Virginia Llopis-Hernández

    Full Text Available BACKGROUND: The cell-material interaction is a complex bi-directional and dynamic process that mimics to a certain extent the natural interactions of cells with the extracellular matrix. Cells tend to adhere and rearrange adsorbed extracellular matrix (ECM proteins on the material surface in a fibril-like pattern. Afterwards, the ECM undergoes proteolytic degradation, which is a mechanism for the removal of the excess ECM usually approximated with remodeling. ECM remodeling is a dynamic process that consists of two opposite events: assembly and degradation. METHODOLOGY/PRINCIPAL FINDINGS: This work investigates matrix protein dynamics on mixed self-assembled monolayers (SAMs of -OH and -CH(3 terminated alkanethiols. SAMs assembled on gold are highly ordered organic surfaces able to provide different chemical functionalities and well-controlled surface properties. Fibronectin (FN was adsorbed on the different surfaces and quantified in terms of the adsorbed surface density, distribution and conformation. Initial cell adhesion and signaling on FN-coated SAMs were characterized via the formation of focal adhesions, integrin expression and phosphorylation of FAKs. Afterwards, the reorganization and secretion of FN was assessed. Finally, matrix degradation was followed via the expression of matrix metalloproteinases MMP2 and MMP9 and correlated with Runx2 levels. We show that matrix degradation at the cell material interface depends on surface chemistry in MMP-dependent way. CONCLUSIONS/SIGNIFICANCE: This work provides a broad overview of matrix remodeling at the cell-material interface, establishing correlations between surface chemistry, FN adsorption, cell adhesion and signaling, matrix reorganization and degradation. The reported findings improve our understanding of the role of surface chemistry as a key parameter in the design of new biomaterials. It demonstrates the ability of surface chemistry to direct proteolytic routes at the cell

  9. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    Science.gov (United States)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  10. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    NARCIS (Netherlands)

    Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.

    2012-01-01

    We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod

  11. Influence of surface chemistry on the electronic properties of graphene related carbon materials

    OpenAIRE

    Chutia, Arunabhirm; Cimpoesu, Fanica; Tsuboi, Hideyuki; Miyamotob, Akira

    2010-01-01

    A theoretical study on the influence of organic functional groups on the electronic properties of graphene related carbon materials was carried out. Here we report, using density functional theory and tight-binding approach, that the best candidates for conducting supramolecular devices can be obtained by engineering the surface chemistry and stacking conformation of these materials.

  12. Surface Modification of Nanoporous 1,2-Polybutadiene by Atom Transfer Radical Polymerization or Click Chemistry

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars;

    2010-01-01

    Surface-initiated atom transfer radical polymerization (ATRP) and click chemistry were used to obtain functional nanoporous polymers based oil nanoporous 1,2-polybutadiene (PB) with gyroid morphology. The ATRP monolith initiator was prepared by immobilizing bromoester initiators onto the pore walls...

  13. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires

    Science.gov (United States)

    Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán

    2016-10-01

    Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.

  14. Surface and coordination chemistry related to GaAs

    Science.gov (United States)

    Keys, Andrea

    The vapor phase structures of Al(tBU)3 and Ga(tBU)3 have been investigated by gas phase electron diffraction and consist of planar three-coordinate monomers. Salient structural parameters (ra) include: Al-C = 2.005(3) A, Ga-C = 2.034(2) A. The geometries are controlled by inter-ligand interactions. The electron diffraction structures are compared to those determined by ab initio calculations for M(tBU)3 (M = Al, Ga, In). To understand the most suitable linkages for the surface of GaAs, model compounds were synthesized by reacting Ga(tBU)3 and [tBu2Ga(mu-Cl]2 with one molar equivalent of varying ligands. The synthesized compounds include chlorides, benzenethiolate, dithiocarbamates, carboxylates, amides, benzohydroxamate, and phenylphosphonate. The Ga ⋯ Ga and Ga-ligand interatomic distances for these compounds, as well as Group 15 and 16 donor bridging ligands, are compared to the values for the surface of GaAs and cubic-GaS in order to determine their suitability as linkage groups for self-assembled monolayers. The most suitable linkages were determined to be benzenethiol and phenylphophonic acid, and these were used to grow self-assembled monolayers on {100} GaAs. Carboxylic acid was also used, to determine the success of the organometallic model compounds in predicting the suitability of ligands for surface reaction. Self-assembled monolayers were also grown on Al2O3, using carboxylic acids and phenylphosphonic acids as the surface linkages. Metallo-organic chemical vapor deposition was performed using single-source precursors ( tBU)2Ga(S2CNR2). The tert -butyl gallium bis-dialkyl-dithiocarbamate compounds, (tBu)Ga(S2CNR2)2, are formed as minor products via ligand disproportionation reactions. Gallium sulfide (GaS) thin films have been grown at 375-425°C by atmospheric pressure metal-organic chemical vapor deposition using compounds (tBu) 2Ga(S2CNMe2) and (tBu)2Ga(S 2CNEt2) as single source precursors. Polycrystalline samples of the chalcogenides InSe, In2Se3

  15. Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry

    Science.gov (United States)

    Marshall-Bowman, Karina; Ohara, Shohei; Sverjensky, Dimitri A.; Hazen, Robert M.; Cleaves, H. James

    2010-10-01

    The abiotic polymerization of amino acids may have been important for the origin of life, as peptides may have been components of the first self-replicating systems. Though amino acid concentrations in the primitive oceans may have been too dilute for significant oligomerization to occur, mineral surface adsorption may have provided a concentration mechanism. As unactivated amino acid polymerization is thermodynamically unfavorable and kinetically slow in aqueous solution, we studied mainly the reverse reaction of polymer degradation to measure the impact of mineral surface catalysis on peptide bonds. Aqueous glycine (G), diglycine (GG), diketopiperazine (DKP), and triglycine (GGG) were reacted with minerals (calcite, hematite, montmorillonite, pyrite, rutile, or amorphous silica) in the presence of 0.05 M, pH 8.1, KHCO 3 buffer and 0.1 M NaCl as background electrolyte in a thermostatted oven at 25, 50 or 70 °C. Below 70 °C, reaction kinetics were too sluggish to detect catalytic activity over amenable laboratory time-scales. Minerals were not found to have measurable effects on the degradation or elongation of G, GG or DKP at 70 °C in solution. At 70 °C pyrite was the most catalytic mineral with detectible effects on the degradation of GGG, although several others also displayed catalytic behavior. GGG degraded ˜1.5-4 times faster in the presence of pyrite than in control reactions, depending on the ratio of solution concentration to mineral surface area. The rate of pyrite catalysis of GGG hydrolysis was found to be saturable, suggesting the presence of discrete catalytic sites on the mineral surface. The mineral-catalyzed degradation of GGG appears to occur via a GGG → DKP + G mechanism, rather than via GGG → GG + G, as in solution-phase reactions. These results are compatible with many previous findings and suggest that minerals may have assisted in peptide synthesis in certain geological settings, specifically by speeding the approach to equilibrium

  16. Measuring the role of surface chemistry in silicon microphotonics

    CERN Document Server

    Borselli, M; Painter, O; Borselli, Matthew; Johnson, Thomas J.; Painter, Oskar

    2005-01-01

    The silicon/silicon dioxide (Si/SiO2) interface plays a crucial role in the performance, cost, and reliability of most modern microelectronic devices, from the basic transistor to flash memory, digital cameras, and solar cells. Today the gate oxide thickness of modern transistors is roughly 5 atomic layers, with 8 metal wire layers required to transport all the signals within a microprocessor. In addition to the increasing latency of such reduced-dimension metal wires, further "Moore's Law" scaling of transistor cost and density is predicted to saturate in the next decade. As a result, silicon-based microphotonics is being explored for the routing and generation of high-bandwidth signals. In comparison to the extensive knowledge of the electronic properties of the Si/SiO2 interface, little is known about the optical properties of Si surfaces used in microphotonics. In this Letter, we explore the optical properties of the Si surface in the telecommunication-relevant wavelength band of 1400-1600 nm. Utilizing a...

  17. Random Phase Approximation in Surface Chemistry: Water Splitting on Iron.

    Science.gov (United States)

    Karlický, František; Lazar, Petr; Dubecký, Matúš; Otyepka, Michal

    2013-08-13

    The reaction of water with zero-valent iron (anaerobic corrosion) is a complex chemical process involving physisorption and chemisorption events. We employ random phase approximation (RPA) along with gradient-corrected and hybrid density functional theory (DFT) functionals to study the reaction of water with the Fe atom and Fe(100) surface. We show that the involvement of the exact electron exchange and nonlocal correlation effects in RPA improves the description of all steps of the reaction on the Fe surface with respect to standard [meaning local density approximation (LDA) or generalized gradient approximation (GGA)] DFT methods. The reaction profile calculated by range-separated hybrid functional HSE06 agrees reasonably well with the RPA profile, which makes HSE06 a computationally less demanding alternative to RPA. We also investigate the reaction of the Fe atom with water using DFT, RPA, and coupled-cluster through the perturbative triples complete basis set [CCSD(T)-3s3p-DKH/CBS] method. Local DFT methods significantly underestimate reaction barriers, while the reaction kinetics and thermodynamics from RPA agree with the reference CCSD(T) data. Both systems, i.e., the Fe atom and Fe(100), provide the same reaction mechanism, indicating that anaerobic corrosion is a stepwise process involving one-electron steps, with the first reaction step (formation of the HFeOH intermediate) representing the rate-limiting step. PMID:26584120

  18. Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions

    OpenAIRE

    Gonçalves, Maraisa; Sánchez García, Laura; Jardim, Erika de Oliveira; Silvestre Albero, Joaquín; Rodríguez Reinoso, Francisco

    2011-01-01

    The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH3 breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic ...

  19. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M.

    2016-01-01

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature Tv, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that Tv has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  20. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Mráz, S.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-01-25

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature T{sub v}, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that T{sub v} has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  1. Chemistry

    International Nuclear Information System (INIS)

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na3CrF6 and Na5Cr3F14, were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li2BeF4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe2+ and Cr3+ and the determination of the U3+/U4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF4--NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF4--NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  2. Catalyst design for enhanced sustainability through fundamental surface chemistry.

    Science.gov (United States)

    Personick, Michelle L; Montemore, Matthew M; Kaxiras, Efthimios; Madix, Robert J; Biener, Juergen; Friend, Cynthia M

    2016-02-28

    Decreasing energy consumption in the production of platform chemicals is necessary to improve the sustainability of the chemical industry, which is the largest consumer of delivered energy. The majority of industrial chemical transformations rely on catalysts, and therefore designing new materials that catalyse the production of important chemicals via more selective and energy-efficient processes is a promising pathway to reducing energy use by the chemical industry. Efficiently designing new catalysts benefits from an integrated approach involving fundamental experimental studies and theoretical modelling in addition to evaluation of materials under working catalytic conditions. In this review, we outline this approach in the context of a particular catalyst-nanoporous gold (npAu)-which is an unsupported, dilute AgAu alloy catalyst that is highly active for the selective oxidative transformation of alcohols. Fundamental surface science studies on Au single crystals and AgAu thin-film alloys in combination with theoretical modelling were used to identify the principles which define the reactivity of npAu and subsequently enabled prediction of new reactive pathways on this material. Specifically, weak van der Waals interactions are key to the selectivity of Au materials, including npAu. We also briefly describe other systems in which this integrated approach was applied. PMID:26755756

  3. Surface chemistry of black phosphorus under a controlled oxidative environment

    Science.gov (United States)

    Luo, Wei; Zemlyanov, Dmitry Y.; Milligan, Cory A.; Du, Yuchen; Yang, Lingming; Wu, Yanqing; Ye, Peide D.

    2016-10-01

    Black phosphorus (BP), the bulk counterpart of monolayer phosphorene, is a relatively stable phosphorus allotrope at room temperature. However, monolayer phosphorene and ultra-thin BP layers degrade in ambient atmosphere. In this paper, we report the investigation of BP oxidation and discuss the reaction mechanism based on the x-ray photoelectron spectroscopy (XPS) data. The kinetics of BP oxidation was examined under various well-controlled conditions, namely in 5% O2/Ar, 2.3% H2O/Ar, and 5% O2 and 2.3% H2O/Ar. At room temperature, the BP surface is demonstrated not to be oxidized at a high oxidation rate in 5% O2/Ar nor in 2.3% H2O/Ar, according to XPS, with the thickness of the oxidized phosphorus layer <5 Å for 5 h. On the other hand, in the O2/H2O mixture, a 30 Å thickness oxide layer was detected already after 2 h of the treatment. This result points to a synergetic effect of water and oxygen in the BP oxidation. The oxidation effect was also studied in applications to the electrical measurements of BP field-effect transistors (FETs) with or without passivation. The electrical performance of BP FETs with atomic layer deposition (ALD) dielectric passivation or h-BN passivation formed in a glove-box environment are also presented.

  4. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels

    Science.gov (United States)

    Syverud, Kristin

    2014-01-01

    Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. PMID:24713295

  5. Effects of Surface Chemistry on the Porous Structure of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Radovic, Ljubisa R; Hatcher, Patrick G

    1997-05-01

    In this report, 129 Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe some poorly understood features of coal microporous structure, particularly in establishing that a connected network exists, the type of connectivity, and its changes with the rank of coal. Micropore size scale and distribution are also considered. Two methods are developed which are new and versatile tools for the investigation of porous structure. Both utilize xenon gas that is in motion, while undergoing diffusion or exchange in coal, to describe the connectivity of the micropore structure of coal. Time tracking of the adsorption process by NMR, selective saturation, and saturation transfer techniques were used to obtain new information on the coal rank dependence of porous structure. In addition, an existing 129 Xe chemical shift-pore diameter model was used to calculate micropore diameters for coals, as well as for a microporous carbon, before and after pore-size alteration. In the initial study performed, straightforward 129 Xe NMR spectra at equilibrium xenon adsorption at a series of pressures were acquired for a rank-varied set of six coals. Acquisition of the NMR signal as an echo was tested and found to improve spectral quality. The spectra were used to calculate micropore diameters for the six coals. These range from 5.6 to 7.5 and exhibit a minimum value for the intermediate coal rank. The smallest pores occur in coals of about 82-85% carbon; at both lower and higher coal ranks, the average micropore size tends to be larger. The changes in the spectra with coal rank and surface area were explored. Signal linewidths were found to decrease with increasing coal rank and were interpreted in terms of increasing chemical or physical homogeneity of the coal as rank increases. The packing density of powdered coal was found to alter the spectral appearance in a high volatile bituminous coal, which is preliminary evidence that exchange affects the

  6. Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size

    Science.gov (United States)

    Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; Biener, Juergen; Biener, Monika M.; Lein, Pamela J.; Seker, Erkin

    2015-01-01

    Designing neural-electrode interfaces that maintain close physical coupling of neurons to the electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron-electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interaction with cortical neuron-glia co-cultures, we demonstrate that the nanostructure of np-Au is achieving close physical coupling of neurons through maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations of the dealloying conditions. Our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage, and may enhance the neuron-electrode coupling through nanostructure-mediated suppression of scar tissue formation. PMID:25706691

  7. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  8. Role of the surface chemistry of activated carbons in dye removal from aqueous solution

    Science.gov (United States)

    Zhou, Hua-lei; Zhen, Wen-juan; Zhu, Qian; Wu, Xiao-bin; Chang, Zhi-dong; Li, Wen-jun

    2015-07-01

    Commercial activated carbons were modified by a series of chemical or physical treatments using H2O2, NH3, and heating under N2 flow without notably changing their pore structures. The resultant carbons were characterized by N2 adsorption and Bohem titration and then used to remove Ponceau 4R, methyl orange and brilliant blue from aqueous solutions. Surface chemistry was found to play a significantly different role in removing these three compounds. The removal of anionic Ponceau 4R increases with increasing carbon surface basicity due to the predominant dispersive interaction mechanism. In contrast, surface chemistry has little effect on the removal of anionic methyl orange, which can be explained by two parallel mechanisms involving electrostatic and dispersive interactions due to the basic amine group in a dye molecule. The influence of surface chemistry on the removal of amphoteric brilliant blue dye can also be ignored due to a weak interaction between the carbons and dye molecules, which is resulted from strong cohesive energy from electrostatic forces inside amphoteric dye molecules.

  9. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    Science.gov (United States)

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  10. Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100).

    Science.gov (United States)

    Caglar, B; Niemantsverdriet, J W Hans; Weststrate, C J Kees-Jan

    2016-08-24

    Rhodium-based catalysts are potential candidates to process biomass and serve as a representation of the class of noble metal catalysts for biomass-related processes. Biomass can be processed in aqueous media (hydrolysis and aqueous phase reforming), and in this case the surface chemistry involves hydroxyl (OH) species. In our study this was modelled by the presence of pre-adsorbed oxygen. Ethylene glycol, with a hydroxyl group on every carbon atom, serves as a model compound to understand the conversion of biomass derived molecules into desirable chemicals on catalytically active metal surfaces. Ethanol (containing one OH group) serves as a reference molecule for ethylene glycol (containing two OH groups) to understand the interaction of C-OH functionalities with a Rh(100) surface. The surface chemistry of ethylene glycol and ethanol in the presence of pre-adsorbed oxygen on a Rh(100) surface has been studied via temperature programmed reaction spectroscopy (TPRS) and reflection absorption infrared spectroscopy (RAIRS) using various coverages of O(ad) and ethylene glycol and ethanol. Pre-adsorbed oxygen alters the decomposition chemistry of both compounds, thereby affecting the product distribution. Under an oxygen-lean condition, the selectivity to produce methane from ethanol is enhanced significantly (4.5-fold with respect to that obtained on the oxygen-free surface). For ethylene glycol, oxygen-lean conditions promote the formation of formaldehyde, with 10-15% selectivity. In addition, with Oad present the fraction of molecules that decompose on the surface increases 2-fold for ethanol and 1.5-fold for ethylene glycol, due to fast O-H bond activation by pre-adsorbed oxygen. Under oxygen-rich conditions, the decomposition products are mainly oxidized to carbon dioxide and water for both molecules. In this condition, the promotion effect provided by adsorbed oxygen for the dissociative adsorption of ethanol and ethylene glycol is reduced due to the site blocking

  11. Bulk and surface energetics of crystalline lithium hydride: Benchmarks from quantum Monte Carlo and quantum chemistry

    OpenAIRE

    Binnie, S. J.; Nolan, S. J.; Drummond, Neil; Alfe`, D.; Allan, N. L; Manby, F. R.; Gillan, M. J.

    2010-01-01

    We show how accurate benchmark values of the surface formation energy of crystalline lithium hydride can be computed by the complementary techniques of quantum Monte Carlo (QMC) and wavefunction-based molecular quantum chemistry. To demonstrate the high accuracy of the QMC techniques, we present a detailed study of the energetics of the bulk LiH crystal, using both pseudopotential and all-electron approaches. We show that the equilibrium lattice parameter agrees with experiment to within 0.03...

  12. On Surface-Initiated Atom Transfer Radical Polymerization Using Diazonium Chemistry To Introduce the Initiator Layer

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Lillethorup, Mie; Ceccato, Marcel;

    2011-01-01

    This work features the controllability of surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate, initiated by a multilayered 2-bromoisobutyryl moiety formed via diazonium chemistry. The thickness as a function of polymerization time has been studied by varying...... Cu(II)/Cu(I) complexes (L = Me(6)TREN, PMDETA, and BIPY). It is also observed that the ability of polymer brushes to reinitiate depends on the initial thickness and the solvent used for generating it....

  13. Surface chemistry and reactivity of skin-passed hot dip galvanized coating

    OpenAIRE

    Mataigne, Jean-Michel; Vaché, Véronique; Repoux, Monique

    2009-01-01

    GI coatings are covered by a very thin aluminum layer that precipitates after wiping. Anisotropic growing of zinc crystals during solidification induces a strong basal texture in GI coatings. Skin-pass induced changes in GI coating surface chemistry, crystallography and reactivity have been assessed. Local coating analyses have been performed (XPS, TOF-SIMS) in order to describe local effects of roughness indentation during skin-pass on coating characteristics. A laboratory bi-crushing device...

  14. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels

    OpenAIRE

    Chinga-Carrasco, Gary; Syverud, Kristin

    2014-01-01

    Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups ar...

  15. Regulating Biocompatibility of Carbon Spheres via Defined Nanoscale Chemistry and a Careful Selection of Surface Functionalities

    Science.gov (United States)

    Misra, Santosh K.; Chang, Huei-Huei; Mukherjee, Prabuddha; Tiwari, Saumya; Ohoka, Ayako; Pan, Dipanjan

    2015-10-01

    A plethora of nanoarchitectures have been evaluated preclincially for applications in early detection and treatment of diseases at molecular and cellular levels resulted in limited success of their clinical translation. It is important to identify the factors that directly or indirectly affect their use in human. We bring a fundamental understanding of how to adjust the biocompatibility of carbon based spherical nanoparticles (CNPs) through defined chemistry and a vigilant choice of surface functionalities. CNPs of various size are designed by tweaking size (2-250 nm), surface chemistries (positive, or negatively charged), molecular chemistries (linear, dendritic, hyperbranched) and the molecular weight of the coating agents (MW 400-20 kDa). A combination of in vitro assays as tools were performed to determine the critical parameters that may trigger toxicity. Results indicated that hydrodynamic sizes are potentially not a risk factor for triggering cellular and systemic toxicity, whereas the presence of a highly positive surface charge and increasing molecular weight enhance the chance of inducing complement activation. Bare and carboxyl-terminated CNPs did present some toxicity at the cellular level which, however, is not comparable to those caused by positively charged CNPs. Similarly, negatively charged CNPs with hydroxyl and carboxylic functionalities did not cause any hemolysis.

  16. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    Science.gov (United States)

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-05-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.

  17. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    Science.gov (United States)

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-01-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes. PMID:27188492

  18. Simulation of hydrogen mitigation in catalytic recombiner: Part-I: Surface chemistry modelling

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudharwadkar, Deoras M. [Department of Mechanical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, Maharashtra (India); Aghalayam, Preeti A. [Department of Chemical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076 (India); Iyer, Kannan N., E-mail: kiyer@iitb.ac.i [Department of Mechanical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, Maharashtra (India)

    2011-05-15

    This paper aims at accurate modelling of a Passive Catalytic Recombiner used for hydrogen mitigation in the nuclear power plant containments. In order to assess the performance of the recombiner through numerical simulations, it is required to accurately predict the catalytic reactions. There are various detailed reaction mechanisms available in the literature for prediction of hydrogen-oxygen reaction over a platinum surface. While a single step reaction rate expression is always sought in order to obtain numerical predictions economically, a detailed reaction mechanism that includes several elementary reactions and intermediate species is likely to produce more accurate predictions. The paper compares the solution from two of competing models, one a single step reaction and the other a multiple reaction model. A new single step rate expression is also derived from the detailed mechanism after simplifying it for the present problem. The paper also considers the diffusion controlled model that assumes rapid reaction rates for which the surface chemistry is not required at all. In order to find the best suited approach to model the surface chemistry, CFD simulations were performed with FLUENT code using available experimental data from the literature. The current study reports comparison up to 4% H{sub 2} mole fraction in dry air with catalyst temperature varying from 300 K to 800 K. It is demonstrated that the new single step model is able to satisfactorily predict the data as well as the detailed chemistry model. The diffusion controlled model is shown to over-predict the data.

  19. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  20. Protein Adsorption to Surface Chemistry and Crystal Structure Modification of Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Ryo Jimbo

    2010-07-01

    Full Text Available Objectives: To observe the early adsorption of extracellular matrix and blood plasma proteins to magnesium-incorporated titanium oxide surfaces, which has shown superior bone response in animal models.Material and Methods: Commercially pure titanium discs were blasted with titanium dioxide (TiO2 particles (control, and for the test group, TiO2 blasted discs were further processed with a micro-arc oxidation method (test. Surface morphology was investigated by scanning electron microscopy, surface topography by optic interferometry, characterization by X-ray photoelectron spectroscopy (XPS, and by X-ray diffraction (XRD analysis. The adsorption of 3 different proteins (fibronectin, albumin, and collagen type I was investigated by an immunoblotting technique.Results: The test surface showed a porous structure, whereas the control surface showed a typical TiO2 blasted structure. XPS data revealed magnesium-incorporation to the anodic oxide film of the surface. There was no difference in surface roughness between the control and test surfaces. For the protein adsorption test, the amount of albumin was significantly higher on the control surface whereas the amount of fibronectin was significantly higher on the test surface. Although there was no significant difference, the test surface had a tendency to adsorb more collagen type I.Conclusions: The magnesium-incorporated anodized surface showed significantly higher fibronectin adsorption and lower albumin adsorption than the blasted surface. These results may be one of the reasons for the excellent bone response previously observed in animal studies.

  1. Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors

    Science.gov (United States)

    Kisner, Alexandre; Heggen, Marc; Mayer, Dirk; Simon, Ulrich; Offenhäusser, Andreas; Mourzina, Yulia

    2014-04-01

    Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adsorbates and their charge and/or polarity, although little is known about the nature of surface chemistry interactions on metallic ultrathin nanowires. Here we report the first studies about the effect of functional groups of short-chain alkanethiol molecules on the electrical resistance of ultrathin gold nanowires. We fabricated ultrathin nanowire electrical sensors based on chemiresistors using conventional microfabrication techniques, so that the contact areas were passivated to leave only the surface of the nanowires exposed to the environment. By immobilizing alkanethiol molecules with head groups such as -CH3, -NH2 and -COOH on gold nanowires, we examined how the charge proximity due to protonation/deprotonation of the functional groups affects the resistance of the sensors. Electrical measurements in air and in water only indicate that beyond the gold-sulfur moiety interactions, the interfacial charge due to the acid-base chemistry of the functional groups of the molecules has a significant impact on the electrical resistance of the wires. Our data demonstrate that the degree of dissociation of the corresponding functional groups plays a major role in enhancing the surface-sensitive resistivity of the nanowires. These results stress the importance of recognizing the effect of protonation/deprotonation of the surface chemistry on the resulting electrical sensitivity of ultrathin metal nanowires and the applicability of such sensors for studying interfacial properties using electrodes of comparable size to the electrochemical double layer.Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional

  2. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    Science.gov (United States)

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  3. Bioadhesion of mussels and geckos: Molecular mechanics, surface chemistry, and nanoadhesives

    Science.gov (United States)

    Lee, Haeshin

    The adhesive strategies of living creatures are diverse, ranging from temporary to permanent adhesions with various functions such as locomotion, self-defense, communication, colony formation, and so on. The classic example of temporary adhesion is the gecko, which is known for its ability to walk along vertical and even inverted surfaces; this remarkable adhesion arises from the interfacial weak interactions of van der Waals and capillary forces. In contrast, a celerbrated example of permanent adhesion is found in marine mussels which secrete protein adhesives that function in aqueous environments without mechanical failure against turbulent conditions on the seashore. In addition, mussel adhesives stick to virtually all inorganic and organic surfaces. However, most commonly used man-made adhesives lack such unique adhesion properties compared to their natural counterparts. For example, many commercial adhesives quickly lose their adhesive strength when exposed to solvents, particularly water. The first part of this thesis focused on adhesion mechanics of mussels at a single-molecule level, in which the adhesive molecule showed surprisingly strong yet reversible adhesion on inorganic surfaces but exhibited irreversible covalent bond formation on organic surfaces. Strong and reversible adhesion on mucin surfaces was found, indicating potential application for drug delivery via mucus layers. Next, inspired by the mussel's versatile adhesion on a wide variety of material surfaces, a material-independent surface modification chemistry called 'polydopamine coating' is described. This concept was subsequently adapted to develop a surface-independent polymeric primer for layer-by-layer assembly of multifunctional coatings. Finally, a new bio-hybrid adhesive 'geckel' was developed by the functional combination of adhesion strategies of geckos and mussels. The new bio-inspired adhesive and material-independent surface chemistry can revolutionize the research areas such as

  4. Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM

    Science.gov (United States)

    Penna, Andrea; Careri, Maria; Spencer, Nicholas D.; Rossi, Antonella

    2015-08-01

    Since it was proposed for the first time, desorption electrospray ionization-mass spectrometry (DESI-MS) has been evaluated for applicability in numerous areas. Elucidations of the ionization mechanisms and the subsequent formation of isolated gas-phase ions have been proposed so far. In this context, the role of both surface and pneumatic effects on ion-formation yield has recently been investigated. Nevertheless, the effect of the surface chemistry has not yet been completely understood. Functionalized glass surfaces have been prepared, in order to tailor surface performance for ion formation. Three substrates were functionalized by depositing three different silanes [3-mercaptopropyltriethoxysilane (MTES), octyltriethoxysilane (OTES), and 1H,1H,2H,2H-perfluorooctyltriethoxy-silane (FOTES)] from toluene solution onto standard glass slides. Surface characterization was carried out by contact-angle measurements, tapping-mode atomic force microscopy, and X-ray photoelectron spectroscopy. Morphologically homogeneous and thickness-controlled films in the nm range were obtained, with surface free energies lying between 15 and 70 mJ/m2. These results are discussed, together with those of DESI-MS on low-molecular-weight compounds such as melamine, tetracycline, and lincomycin, also taking into account the effects of the sprayer potential and its correlation with surface wettability. The results demonstrate that ion-formation efficiency is affected by surface wettability, and this was demonstrated operating above and below the onset of the electrospray.

  5. Surface defects and chemistry on the SnO2(110) surface

    Science.gov (United States)

    Cox, David F.

    1990-01-01

    A variety of ultrahigh vacuum (UHV) surface science techniques have been used to characterize the structural, electronic and chemical properties of SnO2(110), a model catalytic surface. Two types of surface oxygen vacancies have been identified, each associated with different band gap (defect) electronic states. Adsorption experiments show that the interaction of simple gases with this surface occurs primarily through these oxygen vacancies and can show site-specificity to only one of the two types of vacancies.

  6. Surface chemistry influences cancer killing effect of TiO2 nanoparticles.

    Science.gov (United States)

    Thevenot, Paul; Cho, Jai; Wavhal, Dattatray; Timmons, Richard B; Tang, Liping

    2008-09-01

    Photocatalyzed titanium dioxide (TiO2) nanoparticles have been shown to eradicate cancer cells. However, the required in situ introduction of ultraviolet light limits the use of such a therapy in humans. In the present study the nonphotocatalytic anticancer effect of surface-functionalized TiO2 was examined. Nanoparticles bearing -OH, -NH(2), or -COOH surface groups were tested for their effect on in vitro survival of several cancer and control cell lines. The cells tested included B16F10 melanoma, Lewis lung carcinoma, JHU prostate cancer cells, and 3T3 fibroblasts. Cell viability was observed to depend on particle concentrations, cell types, and surface chemistry. Specifically, -NH(2) and -OH groups showed significantly higher toxicity than -COOH. Microscopic and spectrophotometric studies revealed nanoparticle-mediated cell membrane disruption leading to cell death. The results suggest that functionalized TiO2, and presumably other nanoparticles, can be surface-engineered for targeted cancer therapy.

  7. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    Science.gov (United States)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  8. Control and Characterization of Titanium Dioxide Morphology: Applications in Surface Organometallic Chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2014-05-01

    Surface Organometallic Chemistry leads to the combination of the high activity and specificity of homogeneous catalysts with the recoverability and practicality of heterogeneous catalysts. Most metal complexes used in this chemistry are grafted on metal oxide supports such as amorphous silica (SiO2) and γ-alumina (Al2O3). In this thesis, we sought to enable the use of titania (TiO2) as a new support for single-site well-defined grafting of metal complexes. This was achieved by synthesizing a special type of anatase-TiO2, bearing a high density of identical hydroxyl groups, through hydrothermal synthesis then post-treatment under high vacuum followed by oxygen flow, and characterized by several analytical techniques including X-ray diffraction, transmission electron microscopy, infrared spectroscopy and nuclear magnetic resonance. Finally, as a proof of concept, the grafting of vanadium oxychloride (VOCl3) was successfully attempted.

  9. Do organic surface films on sea salt aerosols influence atmospheric chemistry? ─ a model study

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2007-11-01

    Full Text Available Organic material from the ocean's surface can be incorporated into sea salt aerosol particles often producing a surface film on the aerosol. Such an organic coating can reduce the mass transfer between the gas phase and the aerosol phase influencing sea salt chemistry in the marine atmosphere. To investigate these effects and their importance for the marine boundary layer (MBL we used the one-dimensional numerical model MISTRA. We considered the uncertainties regarding the magnitude of uptake reduction, the concentrations of organic compounds in sea salt aerosols and the oxidation rate of the organics to analyse the possible influence of organic surfactants on gas and liquid phase chemistry with a special focus on halogen chemistry. By assuming destruction rates for the organic coating based on laboratory measurements we get a rapid destruction of the organic monolayer within the first meters of the MBL. Larger organic initial concentrations lead to a longer lifetime of the coating but lead also to an unrealistically strong decrease of O3 concentrations as the organic film is destroyed by reaction with O3. The lifetime of the film is increased by assuming smaller reactive uptake coefficients for O3 or by assuming that a part of the organic surfactants react with OH. With regard to tropospheric chemistry we found that gas phase concentrations for chlorine and bromine species decreased due to the decreased mass transfer between gas phase and aerosol phase. Aqueous phase chlorine concentrations also decreased but aqueous phase bromine concentrations increased. Differences for gas phase concentrations are in general smaller than for liquid phase concentrations. The effect on gas phase NO2 or NO is very small (reduction less than 5% whereas liquid phase NO2 concentrations increased in some cases by nearly 100%. We list suggestions for further laboratory studies which are needed for improved model studies.

  10. The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions.

    Science.gov (United States)

    Ding, Yuxiao; Zhang, Liyun; Wu, Kuang-Hsu; Feng, Zhenbao; Shi, Wen; Gao, Qiang; Zhang, Bingsen; Su, Dang Sheng

    2016-10-15

    The surface chemistry of nanocarbon support can tailor chemical properties of precious metal nanoparticle/nanocarbon hybrid catalyst in heterogeneous reactions. We report on modified reduced graphene oxide (rGO) support with ionic liquid-derived carbonaceous surface for palladium nanoparticle (Pd NPs) decoration and their actions in different heterogeneous reactions. The surface chemistry of support materials was characterized in detail, and the influence of which on the formation and distribution of metal particles was further investigated. Three different types of reactions including Suzuki-Miyaura coupling reaction, CO oxidation and phenol reduction were examined in terms of reactivity and selectivity. The roles of substituted nitrogen in graphitic lattice and grafted groups on the carbon surface were exploited. Nitrogen-doping can give rise to changes in electronic properties of supported metals, and the Lewis basicity of the doped nitrogen atoms can favor the adsorption of acidic reactants in phenol reduction. The grafted groups derived a negative impact to the Suzuki-Miyaura coupling reaction, due to the involvement of larger reactant molecules, despite that they could prevent significant sintering of Pd NPs in the CO oxidation. PMID:27442144

  11. Surface chemistry dependent "switch" regulates the trafficking and therapeutic performance of drug-loaded carbon nanotubes.

    Science.gov (United States)

    Das, Manasmita; Singh, Raman Preet; Datir, Satyajit R; Jain, Sanyog

    2013-04-17

    The present study explores the possibility of exploiting surface functionality as one of the key regulators for modulating the intracellular trafficking and therapeutic performance of drug loaded carbon nanotubes (CNTs). In line with that approach, a series of biofunctionalized multiwalled carbon nanotubes (f-CNTs 1-6) decorated with various functional molecules including antifouling polymer (PEG), tumor recognition modules (folic acid/hyaluronic acid/estradiol), and fluorophores (rhodamine B isothiocyanate/Alexa Fluor) were synthesized. By loading different anticancer agents (methotrexate (MTX), doxorubicin (DOX), and paclitaxel (PTX)) onto each functionalized CNT preparation, we tried to elucidate how the surface functional molecules associated with each f-CNT influence their therapeutic potential. We observed that antiproliferative or apoptotic activity of drug-loaded CNTs critically depends on their mechanistic pathway of cellular internalization and intracellular trafficking, which in turn had an intimate rapport with their surface chemistry. To our knowledge, for the first time, we have embarked on the possibility of using a surface chemistry dependent "switch" to remote-control the second and third order targeting of chemotherapeutic agents supramolecularly complexed/adsorbed on CNTs, which in turn is expected to benefit the development of futuristic nanobots for cancer theranostics.

  12. Effect of Surface Chemistry on the Mechanisms and Governing Laws of Friction and Wear.

    Science.gov (United States)

    Dai, Ling; Sorkin, Viacheslav; Zhang, Yong-Wei

    2016-04-01

    Recent studies have shown that interface chemistry, that is, the formation and breaking of chemical bonds across contacting interfaces, is closely related to the wear and friction behavior at the nanoscale. In reality, the dangling bond density (DBD) at contacting surfaces can vary greatly. Currently, it remains unclear how friction and wear mechanisms depend on DBDs and whether the Archard's law for wear and Amonton's law for friction are still applicable for contacting surfaces with different DBDs. In this work, we address these issues by studying the wear and friction behavior between two sliding diamond-like carbon surfaces by controlling DBDs via hydrogenation using molecular dynamics simulations. It is found that the chemical bond breaking and remaking across the contacting interface play the key role in determining the friction and wear behavior. During the sliding, a higher DBD leads to more chemical bond formations across the interface, causing stronger wear via either atom or cluster detachments. With the same DBD, a mechanism transition from an atom-by-atom to cluster detachments is observed by increasing the normal load. Remarkably, a fully saturated surface can exhibit a wearless friction. We further show that after necessary modifications, the Archard's law for wear and the Amonton's law for friction may be applicable at the nanoscale. The present work reveals insights into the effect of interface chemistry on the friction and wear, and it provides guidelines for effective antiwear design. PMID:27004415

  13. Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface

    International Nuclear Information System (INIS)

    The thermal chemistry of a Cu(I) ketoiminate complex, Cu-KI5, resulting from the modification of the known Air Products CupraSelect® copper CVD precursor Cu(hfac)(tmvs) designed to tether the two ligands via an isopropoxide linker, was studied under ultrahigh vacuum on a Cu(110) single-crystal surface by using a combination of temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy. Adsorption at low temperatures was determined to take place via the displacement of the vinyl ligand by the surface. Molecular desorption was seen at 210 K, and the evolution of Cu(II)-KI52 was established to take place at 280 K, presumably from a disproportionation reaction that also leads to the deposition of Cu(0). Other sets of desorption products were seen at 150, 250, and 430 K, all containing copper atoms and small organic moieties with molecular masses below 100 amu. The latter TPD peak in particular indicates significant fragmentation of the ligands, likely at the C–N bond that holds the vinylsilane-isopropoxide moiety tethered to the ketoimine fragment, and possibly also at the union between the vinylsilane and the alkoxide linker. The 430 K temperature measured for this chemistry may set an upper limit for clean Cu film deposition, but since reactivity on the surface was also found to be inhibited at higher surface coverages, it may be delayed to higher temperatures under atomic layer deposition conditions

  14. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA-evolution

    Directory of Open Access Journals (Sweden)

    R. H. H. Janssen

    2012-04-01

    Full Text Available We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to well reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA concentration. An examination of the budgets of organic aerosol and terpene concentration shows that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically examine the role of the land surface, which governs both the surface energy balance partitioning and terpene-emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene-emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore it influences the relationship between organic aerosol and terpene-concentrations. Our findings indicate that the diurnal evolution of SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.

  15. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    Directory of Open Access Journals (Sweden)

    R. H. H. Janssen

    2012-08-01

    Full Text Available We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to satisfactorily reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA concentration. An examination of the budgets of organic aerosol and terpene concentrations show that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically investigate the role of the land surface, which governs both the surface energy balance partitioning and terpene emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore, it influences the relationship between organic aerosol and terpene concentrations. Our findings indicate that the diurnal evolution of secondary organic aerosols (SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.

  16. Early osseointegration driven by the surface chemistry and wettability of dental implants

    Directory of Open Access Journals (Sweden)

    Suelen Cristina SARTORETTO

    2015-06-01

    Full Text Available Objective The objective of this study was to investigate the impact of two different commercially available dental implants on osseointegration. The surfaces were sandblasting and acid etching (Group 1 and sandblasting and acid etching, then maintained in an isotonic solution of 0.9% sodium chloride (Group 2. Material and Methods X-ray photoelectron spectroscopy (XPS was employed for surface chemistry analysis. Surface morphology and topography was investigated by scanning electron microscopy (SEM and confocal microscopy (CM, respectively. Contact angle analysis (CAA was employed for wetting evaluation. Bone-implant-contact (BIC and bone area fraction occupied (BAFO analysis were performed on thin sections (30 μm 14 and 28 days after the installation of 10 implants from each group (n=20 in rabbits' tibias. Statistical analysis was performed by ANOVA at the 95% level of significance considering implantation time and implant surface as independent variables. Results Group 2 showed 3-fold less carbon on the surface and a markedly enhanced hydrophilicity compared to Group 1 but a similar surface roughness (p>0.05. BIC and BAFO levels in Group 2 at 14 days were similar to those in Group 1 at 28 days. After 28 days of installation, BIC and BAFO measurements of Group 2 were approximately 1.5-fold greater than in Group 1 (p<0.05. Conclusion The surface chemistry and wettability implants of Group 2 accelerate osseointegration and increase the area of the bone-to-implant interface when compared to those of Group 1.

  17. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications.

    Science.gov (United States)

    Vaithilingam, Jayasheelan; Prina, Elisabetta; Goodridge, Ruth D; Hague, Richard J M; Edmondson, Steve; Rose, Felicity R A J; Christie, Steven D R

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM-AF surface was observed to be porous with an average surface roughness (Ra) of 17.6±3.7μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour.

  18. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications.

    Science.gov (United States)

    Vaithilingam, Jayasheelan; Prina, Elisabetta; Goodridge, Ruth D; Hague, Richard J M; Edmondson, Steve; Rose, Felicity R A J; Christie, Steven D R

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM-AF surface was observed to be porous with an average surface roughness (Ra) of 17.6±3.7μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour. PMID:27287125

  19. Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: copper and oxygen deposition on aluminum (111) surfaces.

    Science.gov (United States)

    Lanthony, Cloé; Guiltat, Mathilde; Ducéré, Jean Marie; Verdier, Agnes; Hémeryck, Anne; Djafari-Rouhani, Mehdi; Rossi, Carole; Chabal, Yves J; Estève, Alain

    2014-09-10

    The surface chemistry associated with the synthesis of energetic nanolaminates controls the formation of the critical interfacial layers that dominate the performances of nanothermites. For instance, the interaction of Al with CuO films or CuO with Al films needs to be understood to optimize Al/CuO nanolaminates. To that end, the chemical mechanisms occurring during early stages of molecular CuO adsorption onto crystalline Al(111) surfaces are investigated using density functional theory (DFT) calculations, leading to the systematic determination of their reaction enthalpies and associated activation energies. We show that CuO undergoes dissociative chemisorption on Al(111) surfaces, whereby the Cu and O atoms tend to separate from each other. Both Cu and O atoms form islands with different properties. Copper islanding fosters Cu insertion (via surface site exchange mechanism) into the subsurface, while oxygen islands remain stable at the surface. Above a critical local oxygen coverage, aluminum atoms are extracted from the Al surface, leading to oxygen-aluminum intermixing and the formation of aluminum oxide (γ-alumina). For Cu and O co-deposition, copper promotes oxygen-aluminum interaction by oxygen segregation and separates the resulting oxide from the Al substrate by insertion into Al and stabilization below the oxide front, preventing full mixing of Al, Cu, and O species. PMID:25089744

  20. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  1. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces.

    Science.gov (United States)

    Chapleski, Robert C; Zhang, Yafen; Troya, Diego; Morris, John R

    2016-07-01

    Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, researchers are developing an understanding for how surface structure and functionality affect interfacial chemistry with this class of highly oxidizing pollutants. Together with future research initiatives, these studies will provide a more complete description of atmospheric chemistry and help others more accurately predict the properties of aerosols, the environmental impact of interfacial oxidation, and the concentrations of tropospheric gases.

  2. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays.

    Science.gov (United States)

    Wang, Jingxian; Bovee, Toine F H; Bi, Yonghong; Bernhöft, Silke; Schramm, Karl-Werner

    2014-02-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activities. The estrogenic activity was assessed using a rapid yeast estrogen bioassay, based on the expression of a green fluorescent reporter protein. Weak anti-estrogenic activity was detected in sediments from an area close to the dam of the reservoir, and weak estrogenic activities ranging from 0.3 to 1 ng 17β-estradiol (E2) equivalents (EQ) g(-1) dry weight sediment (dw) were detected in sediments from the Wanzhou to Guojiaba areas. In the upstream areas Wanzhou and Wushan, sediments demonstrated additive effects in co-administration of 1 nM E2 in the yeast test system, while sediments from the downstream Badong and Guojiaba areas showed estrogenic activities which seemed to be more than additive (synergistic activity). There was an increasing tendency in estrogenic activity from upstream of TGR to downstream, while this tendency terminated and converted into anti-estrogenic activity in the area close to the dam. The AhR activity was detected employing rat hepatoma cell line (H4IIE). EROD activities were found homogenously distributed in sediments in TGR ranging from 200 to 311 pg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) EQ g(-1) dw for total AhR agonists and from 45 to 76 pg TCDD EQ g(-1) dw for more persistent AhR agonists. The known AhR agonists polycyclic aromatic hydrocarbon, polychlorinated biphenyl, and PCDD/F only explained up to 8 % of the more persistent AhR agonist activity in the samples, which suggests that unidentified AhR-active compounds represented a great proportion of the TCDD EQ in sediments from TGR. These findings of estrogenic potential and dioxin-like activity in TGR sediments provide possible weight-of-evidence of potential

  3. Diffusive grain-surface chemistry involving the atoms and diatomic molecules of two elements

    CERN Document Server

    Rae, J G L; Hartquist, T W; Pilling, M J; Toniazzo, T

    2003-01-01

    A model of the grain surface chemistry involving the accretion of atoms of two different elements, X and Y, and their reactions to form species X_2, XY, and Y_2 was examined for a wide range of choices for the values of its three free parameters - the accretion rate of X and Y, the desorption rate of X and the grain surface sweeping time of Y, all considered relative to the grain surface sweeping rate of X. Relative production rates of the diatomics were calculated with five methods involving, respectively, a high-order truncation of the master equation, a low-order truncation of the master equation, the standard deterministic rate equation approach, a modified rate equation approach and a set of approximations which are in some cases appropriate for accretion dominated chemistry. The accuracies of the relative production rates calculated with the different methods were assessed for the wide range of model parameters. The more accurate of the low-truncation master equation calculations and the standard determ...

  4. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    International Nuclear Information System (INIS)

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.Graphical Abstract

  5. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Polito, Anthony B.; Maurer-Gardner, Elizabeth I.; Hussain, Saber M., E-mail: saber.hussain@us.af.mil [Air Force Research Laboratory, Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate (United States)

    2015-12-15

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.Graphical Abstract.

  6. Carbon key-properties for microcystin adsorption in drinking water treatment: structure or surface chemistry?

    OpenAIRE

    Júlio, Maria de Fátima de Jesus Leal

    2011-01-01

    The carbon key-properties (structure and surface chemistry) for microcystin-LR (MC-LR) adsorption onto activated carbon were investigated. Waters with an inorganic background matrix approaching that of the soft natural water (2.5 mM ionic strength) were used. Also, model waters with controlled ionic make-up and NOM surrogate with similar size of MC-LR (tannic acid - TA) with MC-LR extracts were tested with activated carbon NORIT 0.8 SUPRA. For this AC, two particle sizes, 125-180 μm and 63-90...

  7. Succinimidyl Ester Surface Chemistry: Implications of the Competition between Aminolysis and Hydrolysis on Covalent Protein Immobilization

    OpenAIRE

    Lim, China Y.; Owens, Nicholas A.; Wampler, Ronald D.; Ying, YiXin; Granger, Jennifer H.; Porter, Marc D.; Takahashi, Makoto; Shimazu, Katsuaki

    2014-01-01

    N-Hydroxysuccinimide (NHS) ester terminal groups are commonly used to covalently couple amine-containing biomolecules (e.g., proteins and peptides) to surfaces via amide linkages. This one-step aminolysis is often performed in buffered aqueous solutions near physiological pH (pH 6 to pH 9). Under these conditions, the hydrolysis of the ester group competes with the amidization process, potentially degrading the efficiency of the coupling chemistry. The work herein examines the efficiency of c...

  8. Protein Adsorption to Surface Chemistry and Crystal Structure Modification of Titanium Surfaces

    OpenAIRE

    Ryo Jimbo; Mikael Ivarsson; Anita Koskela; Young-Taeg Sul; Johansson, Carina B.

    2010-01-01

    ABSTRACT Objectives To observe the early adsorption of extracellular matrix and blood plasma proteins to magnesium-incorporated titanium oxide surfaces, which has shown superior bone response in animal models. Material and Methods Commercially pure titanium discs were blasted with titanium dioxide (TiO2) particles (control), and for the test group, TiO2 blasted discs were further processed with a micro-arc oxidation method (test). Surface morphology was investigated by scanning electron micro...

  9. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    Science.gov (United States)

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  10. Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Shibi [College of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States); Nguyen, Luan; Cheng, Fang [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States); Liu, Lacheng [Department of Physics, Nanchang University, Nanchang 350000 (China); Yu, Ying [College of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Tao, Franklin, E-mail: franklin.tao.2011@gmail.com [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-11-30

    Graphical abstract: - Abstract: Near surface alloy (NSA) model catalyst Pt/Cu/Pt(1 1 1) was prepared on Pt(1 1 1) through a controlled vapor deposition of Cu atoms. Different coordination environments of Pt atoms of the topmost Pt layer with the underneath Cu atoms in the subsurface result in different local electronic structures of surface Pt atoms. Surface structure and chemistry of the NAS model catalyst in Torr pressure of CO were studied with high pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In Torr pressure of CO, the topmost Pt layer of Pt/Cu/Pt(1 1 1) is restructured to thin nanoclusters with size of about 1 nm. Photoemission feature of O 1s of CO on Pt/Cu/Pt(1 1 1) suggests CO adsorbed on both edge and surface of these formed nanoclusters. This surface is active for CO oxidation. Atomic layers of carbon are formed on Pt/Cu/Pt(1 1 1) at 573 K in 2 Torr of CO.

  11. Flame treatment of low-density polyethylene: Surface chemistry across the length scales

    International Nuclear Information System (INIS)

    The relationship between surface chemistry and morphology of flame treated low-density polyethylene (LDPE) was studied by various characterization techniques across different length scales. The chemical composition of the surface was determined on the micrometer scale by X-ray photoelectron spectroscopy (XPS) as well as with time of flight secondary ion mass spectrometry (ToF-SIMS), while surface wettability was obtained through contact angle (CA) measurements on the millimeter scale. The surface concentration of hydroxyl, carbonyl and carboxyl groups, as a function of the 'number' of the flame treatment passes (which is proportional to the treatment time) was obtained. Moreover, a correlation was found with chemical composition and polarity, emphasizing the role of oxygen-containing functional groups introduced during the treatment. Carboxyl functional groups were specifically identified by fluorescent labeling and the results were compared with the ToF-SIMS data. In addition, atomic force microscopy (AFM) was used to evaluate changes in surface topography and roughness on the nanometer to micrometer length scales. After flame treatment, water-soluble low molecular weight oxidized materials (LMWOM), which were generated as products of oxidation and chain scission of the LDPE surface, agglomerated into small topographical mounds that were visible in the AFM micrographs. After rinsing the flame treated samples with water and ethanol, bead-like nodular surface structures were observed. The ionization state of flame treated LDPE surfaces was monitored by chemical force microscopy (CFM). The effective surface pKa values of carboxylic acid (-COOH) obtained by AFM were revealed by chemical force titration curves and the effective surface pKa values were found to be around 6

  12. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    Science.gov (United States)

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12.

  13. Immobilization of Cysteine-Tagged Proteins on Electrode Surfaces by Thiol-Ene Click Chemistry.

    Science.gov (United States)

    Zhang, Lin; Vilà, Neus; Klein, Tobias; Kohring, Gert-Wieland; Mazurenko, Ievgen; Walcarius, Alain; Etienne, Mathieu

    2016-07-13

    Thiol-ene click chemistry can be exploited for the immobilization of cysteine-tagged dehydrogenases in an active form onto carbon electrodes (glassy carbon and carbon felt). The electrode surfaces have been first modified with vinylphenyl groups by electrochemical reduction of the corresponding diazonium salts generated in situ from 4-vinylaniline. The grafting process has been optimized in order to not hinder the electrochemical regeneration of NAD(+)/NADH cofactor and soluble mediators such as ferrocenedimethanol and [Cp*Rh(bpy)Cl](+). Having demonstrated the feasibility of thiol-ene click chemistry for attaching ferrocene moieties onto those carbon surfaces, the same approach was then applied to the immobilization of d-sorbitol dehydrogenases with cysteine tag. These proteins can be effectively immobilized (as pointed out by XPS), and the cysteine tag (either 1 or 2 cysteine moieties at the N terminus of the polypeptide chain) was proven to maintain the enzymatic activity of the dehydrogenase upon grafting. The bioelectrode was applied to electroenzymatic enantioselective reduction of d-fructose to d-sorbitol, as a case study. PMID:27299176

  14. On the master equation approach to diffusive grain-surface chemistry: the H, O, CO system

    CERN Document Server

    Stantcheva, T; Herbst, E

    2002-01-01

    We have used the master equation approach to study a moderately complex network of diffusive reactions occurring on the surfaces of interstellar dust particles. This network is meant to apply to dense clouds in which a large portion of the gas-phase carbon has already been converted to carbon monoxide. Hydrogen atoms, oxygen atoms, and CO molecules are allowed to accrete onto dust particles and their chemistry is followed. The stable molecules produced are oxygen, hydrogen, water, carbon dioxide (CO2), formaldehyde (H2CO), and methanol (CH3OH). The surface abundances calculated via the master equation approach are in good agreement with those obtained via a Monte Carlo method but can differ considerably from those obtained with standard rate equations.

  15. Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang; Zaera, Francisco, E-mail: zaera@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States)

    2015-01-01

    The thermal chemistry of a Cu(I) ketoiminate complex, Cu-KI5, resulting from the modification of the known Air Products CupraSelect{sup ®} copper CVD precursor Cu(hfac)(tmvs) designed to tether the two ligands via an isopropoxide linker, was studied under ultrahigh vacuum on a Cu(110) single-crystal surface by using a combination of temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy. Adsorption at low temperatures was determined to take place via the displacement of the vinyl ligand by the surface. Molecular desorption was seen at 210 K, and the evolution of Cu(II)-KI5{sub 2} was established to take place at 280 K, presumably from a disproportionation reaction that also leads to the deposition of Cu(0). Other sets of desorption products were seen at 150, 250, and 430 K, all containing copper atoms and small organic moieties with molecular masses below 100 amu. The latter TPD peak in particular indicates significant fragmentation of the ligands, likely at the C–N bond that holds the vinylsilane-isopropoxide moiety tethered to the ketoimine fragment, and possibly also at the union between the vinylsilane and the alkoxide linker. The 430 K temperature measured for this chemistry may set an upper limit for clean Cu film deposition, but since reactivity on the surface was also found to be inhibited at higher surface coverages, it may be delayed to higher temperatures under atomic layer deposition conditions.

  16. Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yunxi; Zaera, Francisco, E-mail: zaera@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States)

    2016-01-15

    The thermal surface chemistry of copper(I)-N,N′-di-sec-butylacetamidinate, [Cu({sup s}Bu-amd)]{sub 2}, a metalorganic complex recently proposed for the chemical-based deposition of copper films, has been characterized on SiO{sub 2} films under ultrahigh vacuum conditions by x-ray photoelectron spectroscopy (XPS). Initial adsorption at cryogenic temperatures results in the oxidation of the copper centers with Cu 2p{sub 3/2} XPS binding energies close to those seen for a +2 oxidation state, an observation that the authors interpret as the result of the additional coordination of oxygen atoms from the surface to the Cu atoms of the molecular acetamidinate dimer. Either heating to 300 K or dosing the precursor directly at that temperature leads to the loss of one of its two ligands, presumably via hydrogenation/protonation with a hydrogen/proton from a silanol group, or following a similar reaction on a defect site. By approximately 500 K the Cu 2p{sub 3/2}, C 1s, and N 1s XPS data suggest that the remaining acetamidinate ligand is displaced from the copper center and bonds to the silicon oxide directly, after which temperatures above 900 K need to be reached to promote further (and only partial) decomposition of those organic moieties. It was also shown that the uptake of the Cu precursor is self-limiting at either 300 or 500 K, although the initial chemistry is somewhat different at the two temperatures, and that the nature of the substrate also defines reactivity, with the thin native silicon oxide layer always present on Si(100) surfaces being less reactive than thicker films grown by evaporation, presumably because of the lower density of surface nucleation sites.

  17. In-Depth Electrochemical Investigation of Surface Attachment Chemistry via Carbodiimide Coupling.

    Science.gov (United States)

    Booth, Marsilea Adela; Kannappan, Karthik; Hosseini, Ali; Partridge, Ashton

    2015-07-28

    Aminoferrocene is used as an electroactive indicator to investigate carbodiimide coupling reactions on a carboxylic acid-functionalized self-assembled monolayer. The commonly used attachment chemistry with 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) is used for surface activation. A number of conditions are investigated, including EDC and NHS concentration, buffer solutions, incubation timing, and aminoferrocene concentration. Ferrocene is a well-documented electroactive species, and the number of surface-bound ferrocene species can be calculated using electrochemical methods. This capability allows determination of optimal conditions, as well as providing a method for comparing and investigating novel carboxylated surfaces. An EDC-mediated procedure with ∼5 mM EDC and NHS (1:1) made in water, with a full acid monolayer, with 250 μM aminoferrocene for 40 min was found to give the highest ferrocene attachment. An application of this is demonstrated for preparing a probe-DNA-coated surface for DNA sensing. By backfilling with aminoferrocene, a differential quantification of the amount of probe DNA available for sensing can be obtained. This provides an elegant method to monitor an important aspect, namely, probe surface characterization, which will be highly useful for biosensing purposes. PMID:26107592

  18. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    Directory of Open Access Journals (Sweden)

    Norhan Nady

    2016-04-01

    Full Text Available A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone (PES membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid—is presented.

  19. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    Science.gov (United States)

    Nady, Norhan

    2016-04-18

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

  20. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    Science.gov (United States)

    Nady, Norhan

    2016-01-01

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented. PMID:27096873

  1. Surface chemistry and fundamental limitations on the plasma cleaning of metals

    Science.gov (United States)

    Dong, Bin; Driver, M. Sky; Emesh, Ismail; Shaviv, Roey; Kelber, Jeffry A.

    2016-10-01

    In-situ X-ray photoelectron spectroscopy (XPS) studies reveal that plasma cleaning of air-exposed Co or Cu transition metal surfaces results in the formation of a remnant C film 1-3 monolayers thick, which is not reduced upon extensive further plasma exposure. This effect is observed for H2 or NH3 plasma cleaning of Co, and He or NH3 plasma cleaning of Cu, and is observed with both inductively coupled (ICP) and capacitively-coupled plasma (CCP). Changes in C 1 s XPS spectra indicate that this remnant film formation is accompanied by the formation of carbidic C on Co and of graphitic C on Cu. This is in contrast to published work showing no such remnant carbidic/carbon layer after similar treatments of Si oxynitride surfaces. The observation of the remnant carbidic C film on Co and graphitic film on Cu, but not on silicon oxynitride (SiOxNy), regardless of plasma chemistry or type, indicates that this effect is due to plasma induced secondary electron emission from the metal surface, resulting in transformation of sp3 adventitious C to either a metal carbide or graphite. These results suggest fundamental limitations to plasma-based surface cleaning procedures on metal surfaces.

  2. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chiang Yuchun [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 320, Taiwan (China)]. E-mail: ycchiang@saturn.yzu.edu.tw; Lee, C.-Y. [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 320, Taiwan (China); Lee, H.-C. [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 320, Taiwan (China)

    2007-01-15

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance.

  3. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry

    CERN Document Server

    Ranjan, Sukrit

    2016-01-01

    The UV environment is a key boundary condition for the origin of life. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multi-layer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is ...

  4. Application of Multi-Species Microbial Bioassay to Assess the Effects of Engineered Nanoparticles in the Aquatic Environment: Potential of a Luminous Microbial Array for Toxicity Risk Assessment (LumiMARA on Testing for Surface-Coated Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    YounJung Jung

    2015-07-01

    Full Text Available Four different manufactured surface-coated silver nanoparticles (AgNPs with coating of citrate, tannic acid, polyethylene glycol, and branched polyethylenimine were used in this study. The toxicity of surface-coated AgNPs was evaluated by a luminous microbial array for toxicity risk assessment (LumiMARA using multi-species of luminescent bacteria. The salt stability of four different AgNPs was measured by UV absorbance at 400 nm wavelength, and different surface-charged AgNPs in combination with bacteria were observed using scanning electron microscopy (SEM. Both branched polyethylenimine (BPEI-AgNPs and polyethylene glycol (PEG-AgNPs were shown to be stable with 2% NaCl (non-aggregation, whereas both citrate (Cit-AgNPs and tannic acid (Tan-AgNPs rapidly aggregated in 2% NaCl solution. The values of the 50% effective concentration (EC50 for BPEI-AgNPs in marine bacteria strains (1.57 to 5.19 mg/L were lower than those for the other surface-coated AgNPs (i.e., Cit-AgNPs, Tan-AgNPs, and PEG-AgNPs. It appears that the toxicity of AgNPs could be activated by the interaction of positively charged AgNPs with the negatively charged bacterial cell wall from the results of LumiMARA. LumiMARA for toxicity screening has advantageous compared to a single-species bioassay and is applicable for environmental samples as displaying ranges of assessment results.

  5. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Bilge; Heski, Clemens

    2013-08-31

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical

  6. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.

    Science.gov (United States)

    Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I

    2015-08-18

    Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes. Nonadiabatic electronic excitation in exothermic catalytic reactions results in the flow of energetic electrons with an energy of 1-3 eV when chemical energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called "hot electrons". The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces, and the influence of hot electrons on atomic and molecular processes. We outline research efforts aimed at identification of the intrinsic relation between the flow of hot electrons and catalytic reactions. We show various strategies for detection and use of hot electrons generated by the energy dissipation processes in surface chemical reactions and photon absorption. A Schottky barrier localized at the metal-oxide interface of either catalytic nanodiodes or hybrid nanocatalysts allows hot electrons to irreversibly transport through the interface. We show that the chemicurrent, composed of hot electrons excited by the surface reaction of CO oxidation or hydrogen oxidation, correlates well with the turnover rate measured separately by gas chromatography. Furthermore, we show that hot electron flows generated on a gold thin film by photon absorption (or internal photoemission) can be amplified by localized surface plasmon resonance. The influence of hot charge carriers on the chemistry at the metal-oxide interface are discussed for the cases of Au, Ag, and Pt

  7. Surface Chemistry of Nanoscale Mineralized Collagen Regulates Periodontal Ligament Stem Cell Fate.

    Science.gov (United States)

    Fu, Yu; Liu, Shuai; Cui, Sheng-Jie; Kou, Xiao-Xing; Wang, Xue-Dong; Liu, Xiao-Mo; Sun, Yue; Wang, Gao-Nan; Liu, Yan; Zhou, Yan-Heng

    2016-06-29

    The interplay between stem cells and their extracellular microenvironment is of critical importance to the stem cell-based therapeutics in regenerative medicine. Mineralized collagen is the main component of bone extracellular matrix, but the effect of interfacial properties of mineralized collagen on subsequent cellular behaviors is unclear. This study examined the role of surface chemistry of nanoscale mineralized collagen on human periodontal ligament stem cell (hPDLSC) fate decisions. The intrafibrillarly mineralized collagen (IMC), fabricated by a biomimetic bottom-up approach, showed a bonelike hierarchy with nanohydroxyapatites (HAs) periodically embedded within fibrils. The infrared spectrum of the IMC showed the presence of phosphate, carbonate, amide I and II bands; and infrared mapping displayed uniform and higher spatial distribution of mineralization in the IMC. However, the distribution of the phosphate group differed far from that of the amide I group in the extrafibrillarly mineralized collagen (EMC), in which flowerlike HA clusters randomly depositing around the surface of the fibrils. Moreover, a large quantity of extrafibrillar HAs covered up the C═O stretch and N-H in-plane bend, resulting in substantial reduction of amide I and II bands. Cell experiments demonstrated that the hPDLSCs seeded on the IMC exhibited a highly branched, osteoblast-like polygonal shape with extended pseudopodia and thick stress fiber formation; while cells on the EMC displayed a spindle shape with less branch points and thin actin fibril formation. Furthermore, the biocompatibility of EMC was much lower than that of IMC. Interestingly, even without osteogenic induction, mRNA levels of major osteogenic differentiation genes were highly expressed in the IMC during cultivation time. These data suggest that the IMC with a similar nanotopography and surface chemistry to natural mineralized collagen directs hPDLSCs toward osteoblast differentiation, providing a promising

  8. Surface chemistry of InP ridge structures etched in Cl{sub 2}-based plasma analyzed with angular XPS

    Energy Technology Data Exchange (ETDEWEB)

    Bouchoule, Sophie, E-mail: sophie.bouchoule@lpn.cnrs.fr; Cambril, Edmond; Guilet, Stephane [Laboratoire de Photonique et Nanostructure (LPN)—UPR20, CNRS, Route de Nozay, 91460 Marcoussis (France); Chanson, Romain; Pageau, Arnaud; Rhallabi, Ahmed; Cardinaud, Christophe, E-mail: christophe.cardinaud@cnrs-imn.fr [Institut des matériaux Jean Rouxel (IMN), UMR6502, Université de Nantes, CNRS, 44322 Nantes (France)

    2015-09-15

    Two x-ray photoelectron spectroscopy configurations are proposed to analyze the surface chemistry of micron-scale InP ridge structures etched in chlorine-based inductively coupled plasma (ICP). Either a classical or a grazing configuration allows to retrieve information about the surface chemistry of the bottom surface and sidewalls of the etched features. The procedure is used to study the stoichiometry of the etched surface as a function of ridge aspect ratio for Cl{sub 2}/Ar and Cl{sub 2}/H{sub 2} plasma chemistries. The results show that the bottom surface and the etched sidewalls are P-rich, and indicate that the P-enrichment mechanism is rather chemically driven. Results also evidence that adding H{sub 2} to Cl{sub 2} does not necessarily leads to a more balanced surface stoichiometry. This is in contrast with recent experimental results obtained with the HBr ICP chemistry for which fairly stoichiometric surfaces have been obtained.

  9. UNIFYING SCALER FOR BIOASSAY TESTS

    Science.gov (United States)

    An extensive set of interlaboratory root bioassay data was unified using centroids of individual tests as scalers. It is shown that the dose response obeys a first order differential equation with the constant of the equation related to the sensitivity of the dose response relati...

  10. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S., E-mail: sfeliu@cenim.csic.es; Llorente, I.

    2015-08-30

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  11. TEOS surface chemistry on SiO{sub 2} at CVD temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bartrarm, M.E.; Moffat, H.K.

    1995-12-31

    We have developed a significantly improved understanding of thermal TEOS (tetraethylorthosilicate, Si(OCH{sub 2}CH{sub 3}){sub 4}) surface chemistry at CVD (chemical vapor deposition) temperatures and pressures. This was accomplished using GCMS (gas chromatography-mass spectroscopy) and FTIR (Fourier transform infrared spectroscopy) to examine how TEOS reaction rates are influenced by factors critical to the heterogeneous reaction. This included determining the TEOS pressure dependence, testing if reaction by-products inhibit TEOS decomposition, evaluating functional groups on the SiO{sub 2} surface as potential reaction sites, and establishing the functional group coverage dependencies. Our results show that TEOS decomposition rates are first-order in TEOS pressure and independent of the surface reaction by-products and the relative coverages of siloxane bridges (Si-O-Si) and hydroxyls on SiO{sub 2}. These conclusions suggest that a precise knowledge of functional group coverages on SiO{sub 2} is not essential for modeling thermal TEOS decomposition rates at 1000K. In the absence of gas-phase reactions, growth rates should be directly proportional to TEOS pressure. Therefore, it is likely that non-uniform SiO{sub 2} depositions observed in thermal TEOS CVD are due to depletion of TEOS in the gas-phase and/or thermal gradients on the surface.

  12. The Effect of Surface Chemistry and Morphology on the Properties of HVAF PEEK Single Splats

    Science.gov (United States)

    Withy, B. P.; Hyland, M. M.; James, B. J.

    2008-12-01

    Thermal spray of polymers has had limited investigation due to the narrow processing windows that are inherent to polymer powders, especially their low temperatures of thermal degradation. The polymer poly aryl ether ether ketone (PEEK) has a continuous use temperature of 260 °C, does not suffer significant thermal degradation below 500 °C (Lu et al., Polymer, 37(14):2999-3009, 1996), and has high resistance to alkaline and acidic attack. These properties led to PEEK being selected for investigation. To minimize thermal degradation of the particles, the high velocity air fuel technique was used. To investigate the effect of substrate pretreatment on single splat properties, single splats were collected on aluminum 5052 substrates with six different pretreatments. The single splats collected were imaged by scanning electron microscopy and image analysis was performed with ImageJ, an open source scientific graphics package. On substrates held at 323 °C, it was found that substrate pretreatment had a significant effect on the circularity and area of single splats, and also on the number of splats deposited on the substrates. Increases in splat circularity, area, and the number of splats deposited on the surface were linked to the decrease in chemisorbed water on the substrate surface and the decrease of surface roughness. This proved that surface chemistry and roughness are crucial to forming single splats with good properties, which will lead to coatings of good properties.

  13. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    Science.gov (United States)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  14. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways.

    Science.gov (United States)

    Liu, D X; Liu, Z C; Chen, C; Yang, A J; Li, D; Rong, M Z; Chen, H L; Kong, M G

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H(+), nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2(-) and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  15. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    Science.gov (United States)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2‑ and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  16. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  17. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, S.L.; Leger, L.J.; Wu, C.; Cross, J.B.; Jurgensen, C.W. [Los Alamos National Lab., NM (United States)]|[Bell Telephone Labs., Inc., Murray Hill, NJ (United States)

    1994-05-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen `spin-off` or `dual use` technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  18. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Science.gov (United States)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  19. 77 FR 14837 - Bioassay at Uranium Mills

    Science.gov (United States)

    2012-03-13

    ... COMMISSION Bioassay at Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for public comment draft regulatory guide (DG), DG-8051, ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions...

  20. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsu, Naofumi, E-mail: nohtsu@mail.kitami-it.ac.jp [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Kozuka, Taro; Hirano, Mitsuhiro [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Arai, Hirofumi [Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan)

    2015-09-15

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO{sub 2} layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH{sub 4}){sub 2}O·5B{sub 2}O{sub 3}, (NH{sub 4}){sub 2}SO{sub 4}, or (NH{sub 4}){sub 3}PO{sub 4}, after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO{sub 2}), while incorporation from electrolyte was only observed for (NH{sub 4}){sub 3}PO{sub 4}. Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO{sub 2} formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials.

  1. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    International Nuclear Information System (INIS)

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO2) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO2 protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes

  2. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    Energy Technology Data Exchange (ETDEWEB)

    Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M. [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine); Sapsay, V.I.; Klymchuk, D.O. [M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska St., 01601 Kyiv (Ukraine); Puziy, A.M., E-mail: alexander.puziy@ispe.kiev.ua [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Phosphoric acid activation results in formation of carbons with acidic surface groups. Black-Right-Pointing-Pointer Maximum amount of surface groups is introduced at impregnation ratio 1.25. Black-Right-Pointing-Pointer Phosphoric acid activated carbons show high capacity to copper. Black-Right-Pointing-Pointer Phosphoric acid activated carbons are predominantly microporous. Black-Right-Pointing-Pointer Maximum surface area and pore volume achieved at impregnation ratio 1.0. - Abstract: Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 Degree-Sign C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (S{sub BET} = 2081 m{sup 2}/g, V{sub tot} = 1.1 cm{sup 3}/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  3. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  4. Surface chemistry and optical property of TiO2 thin films treated by low-pressure plasma

    International Nuclear Information System (INIS)

    The low temperature RF plasma treatment was used to control the surface chemistry and optical property of TiO2 thin films deposited by RF magnetron sputtering with a very good uniformity at 300 deg. C substrate heating temperature. The XRD pattern indicates the crystalline structure of the film could be associated to amorphous structure of TiO2 in thin film. The plasma treatment of TiO2 film can increase the proportion of Ti3+ in Ti2p and decrease in carbon atoms as alcohol/ether group in C1s at the surface. The optical transmittance of the film was enhanced by 50% after the plasma treatment. The surface structure and morphology remain the same for untreated and low-pressure plasma-treated films. Therefore, increase in the optical transmission could be due to change in surface chemistry and surface cleaning by plasma treatment. - Graphical abstract: The surface chemistry and surface states of TiO2 films was modified using low-pressure RF plasma treatment. The surface roughness and crystalline structure remain unchanged for low-pressure plasma-treated films. There was an increase in the Ti3+ surface states of Ti2p at the surface and this can be useful to increase the photocatalytic activities of TiO2 films. The proportion of carbon atoms as carboxyl group in C1s was also increased after plasma treatment. All the plasma-treated films show a higher optical transmittance when untreated and it was increased when the power was increased. The increase in the optical transmission could be due to surface cleaning of films by plasma treatment and possibly due to change in the surface chemistry

  5. Surface modification of nanoporous 1,2-polybutadiene by atom transfer radical polymerization or click chemistry.

    Science.gov (United States)

    Guo, Fengxiao; Jankova, Katja; Schulte, Lars; Vigild, Martin E; Ndoni, Sokol

    2010-02-01

    Surface-initiated atom transfer radical polymerization (ATRP) and click chemistry were used to obtain functional nanoporous polymers based on nanoporous 1,2-polybutadiene (PB) with gyroid morphology. The ATRP monolith initiator was prepared by immobilizing bromoester initiators onto the pore walls through two different methodologies: (1) three-step chemical conversion of double bonds of PB into bromoisobutyrate, and (2) photochemical functionalization of PB with bromoisobutyrate groups. Azide functional groups were attached onto the pore walls before click reaction with alkynated MPEG. Following ATRP-grafting of hydrophilic polyacrylates and click of MPEG, the originally hydrophobic samples transformed into hydrophilic nanoporous materials. The successful modification was confirmed by infrared spectroscopy, contact angle measurements and measurements of spontaneous water uptake, while the morphology was investigated by small-angle X-ray scattering and transmission electron microscopy. PMID:20099923

  6. Modification of ilmenite surface chemistry for enhancing surfactants adsorption and bubble attachment.

    Science.gov (United States)

    Fan, Xianfeng; Waters, Kristian E; Rowson, Neil A; Parker, David J

    2009-01-01

    In this study, microwave irradiation is used to modify ilmenite surface chemistry to enhance the adsorption of surfactants and the air bubble attachment. The results indicate that microwave irradiation can increase ilmenite flotation recovery by 20%. A positron emission particle tracking technique is used to study the dynamic behaviour of ilmenite particles in a Denver cell. The data shows that the poor flotation recovery of ilmenite is not only due to the reduce probability of ilmenite being captured by air bubbles, but also the short residence time of the particles remaining in the froth phase. The ilmenite particles can be frequently captured by air bubbles, but dropped to the bulk liquid from the froth phase, normally over 15 s. Microwave irradiation changes the ilmenite flow pattern in the Denver cell. The average time of ilmenite remaining in froth phase is increased from 11.5 to 29.1 s. PMID:18950784

  7. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    CERN Document Server

    Popescu, M N; Dietrich, S

    2016-01-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g., the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate "point-particle" analysis, we show analytically that -- owing to this kind of induced active response (chemi-osmosis) of the wall -- such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial "swimmers" exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change ...

  8. SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry

    KAUST Repository

    Baumgardner, William J.

    2010-07-21

    The colloidal synthesis of SnSe nanoparticles is accomplished through the injection of bis[bis(trimethylsilyl)amino]tin(II) into hot trioctylphosphine: selenium in the presence of oleylamine. Through the manipulation of reaction temperature particles are grown with the average diameter reliably tuned to 4-10 nm. Quantum confinement is examined by establishing a relationship between particle size and band gap while the in depth growth dynamics are illuminated through UV-vis-NIR spectroscopy. Surface chemistry effects are explored, including the demonstration of useful ligand exchanges and the development of routes toward anisotropic particle growth. Finally, transient current-voltage properties of SnSe nanocrystal films in the dark and light are examined. © 2010 American Chemical Society.

  9. Facile Fabrication of a Silver Nanoparticle Immersed, Surface-Enhanced Raman Scattering Imposed Paper Platform through Successive Ionic Layer Absorption and Reaction for On-Site Bioassays.

    Science.gov (United States)

    Kim, Wansun; Kim, Yeon-Hee; Park, Hun-Kuk; Choi, Samjin

    2015-12-23

    We introduce a novel, facile, rapid, low-cost, highly reproducible, and power-free synthesizable fabrication method of paper-based silver nanoparticle (AgNP) immersed surface-enhanced Raman scattering (SERS) platform, known as the successive ionic layer absorption and reaction (SILAR) method. The rough and porous properties of the paper led to direct synthesis of AgNPs on the surface as well as in the paper due to capillary effects, resulting in improved plasmon coupling with interparticles and interlayers. The proposed SERS platform showed an enhancement factor of 1.1 × 10(9), high reproducibility (relative standard deviation of 4.2%), and 10(-12) M rhodamine B highly sensitive detection limit by optimizing the SILAR conditions including the concentration of the reactive solution (20/20 mM/mM AgNO3/NaBH4) and the number of SILAR cycles (six). The applicability of the SERS platform was evaluated using two samples including human cervical fluid for clinical diagnosis of human papillomavirus (HPV) infection, associated with cervical cancer, and a malachite green (MG) solution for fungicide and parasiticide in aquaculture, associated with human carcinogenesis. The AgNP-immersed SERS-functionalized platform using the SILAR technique allowed for high chemical structure sensitivity without additional tagging or chemical modification, making it a good alternative for early clinical diagnosis of HPV infection and detection of MG-activated human carcinogenesis.

  10. THE EFFECTS OF SURFACE CHEMISTRY ON THE PROPERTIES OF PROTEINS CONFINED IN NANO-POROUS MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, L. M.; O' Neill, H.

    2007-01-01

    The entrapment of proteins using the sol-gel route provides a means to retain its native properties and artifi cially reproduce the molecular crowding and confi nement experienced by proteins in the cell allowing investigation of the physico-chemical and structural properties of biomolecules at the biotic/abiotic interface. The biomolecules are spatially separated and ‘caged’ in the gel structure but solutes can freely permeate the matrix. Thus, properties such as the folding of ensembles of individual molecules can be examined in the absence of aggregation effects that can occur in solution studies. Green fl uorescent protein from Aequorea coerulescens was used as a model protein to examine the unfolding/re-folding properties of protein in silica gels. The recombinant protein was isolated and purifi ed from Escherichia coli extracts by cell lysis, three-phase partitioning, dialysis, and anion exchange chromatography. The purity of the protein was greater than 90% as judged by SDS PAGE gel analysis. Sol-gels were synthesized using tetramethylorthosilicate (TMOS) in combination with, methyltrimethoxyorthosilane (MTMOS), ethyltrimethoxyorthosilane (ETMOS), 3-aminopropyltriethoxysilane (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS). The acid induced denaturation and renaturation of GFP was analyzed by UV-visible, fl uorescence, and circular dichroism (CD) spectroscopies. No renaturation was observed in gels that were made with TMOS only, and in the presence of APTES, MTMOS, and ETMOS. However, in gels that were made with GPTMS, the CD and UV-visible spectra indicated that the protein had refolded. The fl uorescence emission spectrum indicated that approximately 20% of fl uorescence had returned. This study highlights the importance of the surface chemistry of the silica gels for the refolding properties of the entrapped GFP. Future studies will investigate the effect of surface chemistry on the thermal and solvent stability of the entrapped protein.

  11. Chemistry of the sea-surface microlayer. 3. Studies on the nutrient chemistry of the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.; Nagarajan, R.

    Nutrients showed enrichment in the surface microlayer compared to those in sub-surface water and there was a decreasing trend in the enrichment factor from nearshore to offshore in Northern Arabian Sea. The nutrient concentrations were correlated...

  12. Combined experiment and theory approach in surface chemistry: Stairway to heaven?

    Science.gov (United States)

    Exner, Kai S.; Heß, Franziska; Over, Herbert; Seitsonen, Ari Paavo

    2015-10-01

    In this perspective we discuss how an intimate interaction of experiments with theory is able to deepen our insight into the catalytic reaction system on the molecular level. This strategy is illustrated by discussing various examples from our own research of surface chemistry and model catalysis. The particular examples were carefully chosen to balance the specific strength of both approaches - theory and experiment - and emphasize the benefit of this combined approach. We start with the determination of complex surface structures, where diffraction techniques in combination with theory are clear-cut. The promoter action of alkali metals in heterogeneous catalysis is rationalized with theory and experiment for the case of CO coadsorption. Predictive power of theory is limited as demonstrated with the apparent activity of chlorinated TiO2(110) in the oxidation of HCl: Even if we know all elementary reaction steps of a catalytic reaction mechanism, the overall kinetics may remain elusive and require the application kinetic Monte Carlo simulations. Catalysts are not always stable under reaction conditions and may chemically transform as discussed for the CO oxidation reaction over ruthenium. Under oxidizing reaction conditions ruthenium transforms into RuO2, a process which is hardly understood on the molecular level. Lastly we focus on electrochemical reactions. Here theory is clearly ahead since spectroscopic methods are not available to resolve the processes at the electrode surface.

  13. Preparation and application of a novel electrochemical sensing material based on surface chemistry of polyhydroquinone

    International Nuclear Information System (INIS)

    A new analogue of polydopamine (PDA), i.e., polyhydroquinone (PH2Q), was polymerized and its surface chemistry was studied by different ways of characterization. PH2Q was produced by the self-polymerization of H2Q mediated by dissolved oxygen, and the self-polymerization process was strongly dependent on the type and the pH value of the buffer solutions. PH2Q can not only achieve surface hydrophilization of different substrates like polyethylene terephthalate (PET) film, graphite strip, C12SH/Au and wax slice, but also possess several unique properties like reversible adsorption, good solubility and low cost. These properties made PH2Q an ideal polymeric modifier for the noncovalent functionalization of some nanomaterials. By simply grinding with PH2Q, pristine multi-walled carbon nanotubes (MWNTs) can be readily dispersed in water with high solubility and good stability. The resulting MWNT–PH2Q composite exhibited excellent electrochemical performance, which was employed for the simultaneous determination of dopamine (DA) and uric acid (UA). - Highlights: • Polyhydroquinone (PH2Q) was produced by the self-polymerization of hydroquinone (H2Q) mediated by dissolved oxygen. • PH2Q can achieve surface hydrophilization of a variety of substrates. • PH2Q is an ideal polymeric modifier for the functionalization of multi-walled carbon nanotubes (MWNTs). • The MWNT–PH2Q composite can be employed for the simultaneous determination of dopamine (DA) and uric acid (UA)

  14. On the photoactivity of S-doped nanoporous carbons:Importance of surface chemistry and porosity

    Institute of Scientific and Technical Information of China (English)

    Teresa J. Bandosz; Mykola Seredych

    2014-01-01

    This minireview summarizes our recent findings on the photoactivity of S-doped nanoporous car-bons. The materials were either synthesized from the sulfur-containing polymers or obtained by heat treatment of commercial carbon with hydrogen sulfide. Their surface was extensively charac-terized from the points of view of its surface chemistry, porosity, morphology, and electronic prop-erties. The carbons showed enhanced activity towards oxidation of arsine and removal of diben-zothiophenes from model diesel fuel. The latter were oxidized to various oxygen containing inter-mediates and the cleavage of C-C bonds in aromatic ring was detected when carbon with adsorbed species was exposed to UV or visible light. Irradiation resulted in generation of photocurrent in a broad range of wavelength. The presence of sulfur led to the reduction of oxygen and contributed to an increased capacitive performance. We link these effects to the presence of reduced sulfur in the small pores which enhances the dispersive interactions via inducing a positive charge to carbon atoms, to sulfur in oxygenated forms which contribute to Faradaic reactions and increase the polar interactions, and to the hydrophobicity of a surface in small pores where oxygen can be reduced by excited electrons from chromophoric-like sulfur containing groups.

  15. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells

    International Nuclear Information System (INIS)

    Silver nanoparticles (Ag NPs) have recently received much attention for their possible applications in biotechnology and life sciences. Ag NPs are of interest to defense and engineering programs for new material applications as well as for commercial purposes as an antimicrobial. However, little is known about the genotoxicity of Ag NPs following exposure to mammalian cells. This study was undertaken to examine the DNA damage response to polysaccharide surface functionalized (coated) and non-functionalized (uncoated) Ag NPs in two types of mammalian cells; mouse embryonic stem (mES) cells and mouse embryonic fibroblasts (MEF). Both types of Ag NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and phosphorylated-H2AX expression. Furthermore both of them induced cell death as measured by the annexin V protein expression and MTT assay. Our observations also suggested that the different surface chemistry of Ag NPs induce different DNA damage response: coated Ag NPs exhibited more severe damage than uncoated Ag NPs. The results suggest that polysaccharide coated particles are more individually distributed while agglomeration of the uncoated particles limits the surface area availability and access to membrane bound organelles

  16. Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry.

    Science.gov (United States)

    Bak, Martin; Jølck, Rasmus I; Eliasen, Rasmus; Andresen, Thomas L

    2016-07-20

    Functionalization of nanoparticles is a key element for improving specificity of drug delivery systems toward diseased tissue or cells. In the current study we report a highly efficient and chemoselective method for post-functionalization of liposomes with biomacromolecules, which equally well can be used for functionalization of other nanoparticles or solid surfaces. The method exploits a synergistic effect of having both affinity and covalent anchoring tags on the surface of the liposome. This was achieved by synthesizing a peptide linker system that uses Cu-free strain-promoted click chemistry in combination with histidine affinity tags. The investigation of post-functionalization of PEGylated liposomes was performed with a cyclic RGDfE peptide. By exploring both affinity and covalent tags a 98 ± 2.0% coupling efficiency was achieved, even a diluted system showed a coupling efficiency of 87 ± 0.2%. The reaction kinetics and overall yield were quantified by HPLC. The results presented here open new possibilities for constructing complex nanostructures and functionalized surfaces. PMID:27269516

  17. Assembly of linear nano-chains from iron oxide nanospheres with asymmetric surface chemistry.

    Directory of Open Access Journals (Sweden)

    Pubudu M Peiris

    Full Text Available Besides the multifunctionality, another equally important aspect of nanoparticles is their engineerability to control the geometrical and chemical properties during fabrication. In this work, we exploited this aspect to define asymmetric surface chemistry of an iron oxide nanosphere by controlling the topology of ligand expression on its surface resulting in a particle with two faces, one displaying only amines and the other only thiols. Specifically, amine-functionalized iron oxide nanospheres were attached on a solid support via a crosslinker containing a disulfide bridge. Liberation of the nanosphere using thiolytic cleavage created thiols on the portion of the particle's surface that interacted with the solid support. Employing a solid-phase strategy and a step-by-step addition of particles, the two unique faces on the same nanosphere served as fittings to assemble them into linear nano-chains. Assembly of chains with various lengths and aspect ratios was controlled by the size and number of the added nanospheres. The characteristics of those chains showed a high degree of uniformity indicating the exceptional control of the synthetic process. Notably, one of the unique properties of the iron oxide nano-chains was an increased magnetic relaxivity, indicating their potential use as contrast agents for magnetic resonance imaging.

  18. An examination of the analysis of radiostrontiums in bioassay applications

    International Nuclear Information System (INIS)

    Radiostrontiums are among the most radiologically significant radionuclides in the nuclear reactor environment due to their relatively high fission yield, long physical half-life, volatility and mobility in the workplace, and long retention times in tissues such as bone. Effective bioassay programs include analytical processes that consider prospective monitoring requirements provided by screening measurements, as well as the retrospective monitoring requirements provided by screening measurements following an intake. Chromatography using crown ethers as well as the use of spectrometry techniques with advanced liquid-scintillation counters or solid-state surface-barrier detectors appear to have significant benefits for Sr bioassay programs. (author). 90 refs., 2 tabs., 3 figs

  19. Hydrogeologic controls of surface-water chemistry in the Adirondack region of New York State

    Science.gov (United States)

    Peters, N.E.; Driscoll, C.T.

    1987-01-01

    Relationships between surface-water discharge, water chemistry, and watershed geology were investigated to evaluate factors affecting the sensitivity of drainage waters in the Adirondack region of New York to acidification by atmospheric deposition. Instantaneous discharge per unit area was derived from relationships between flow and staff-gage readings at 10 drainage basins throughout the region. The average chemical composition of the waters was assessed from monthly samples collected from July 1982 through July 1984. The ratio of flow at the 50-percent exceedence level to the flow at the 95-percent exceedence level of flow duration was negatively correlated with mean values of alkalinity or acid-neutralizing capacity (ANC), sum of basic cations (SBC), and dissolved silica, for basins containing predominantly aluminosilicate minerals and little or no carbonate-bearing minerals. Low ratios are indicative of systems in which flow is predominately derived from surface- and ground-water storage, whereas high ratios are characteristic of watersheds with variable flow that is largely derived from surface runoff. In an evaluation of two representative surface-water sites, concentrations of ANC, SBC, and dissolved silica, derived primarily from soil mineral weathering reactions. decreased with increasing flow. Furthermore, the ANC was highest at low flow when the percentage of streamflow derived from ground water was maximum. As flow increased, the ANC decreased because the contribution of dilute surface runoff and lateral flow through the shallow acidic soil horizons to total flow increased. Basins having relatively high ground-water contributions to total flow, in general, have large deposits of thick till or stratified drift. A major factor controlling the sensitivity of these streams and lakes to acidification is the relative contribution of ground water to total discharge. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  20. The effect of pesticide residue on caged mosquito bioassays.

    Science.gov (United States)

    Barber, J A S; Greer, Mike; Coughlin, Jamie

    2006-09-01

    Wind tunnel experiments showed that secondary pickup of insecticide residue by mosquitoes in cage bioassays had a significant effect on mortality. Cage bioassays using adult Ochlerotatus taeniorhynchus (Wiedemann) investigated the effect of exposure time to a contaminated surface. Cages were dosed in a wind tunnel using the LC50 for naled (0.124 mg a.i./ml) and an LC25 (0.0772 mg a.i./ml) for naled. Half of the bioassay mosquitoes were moved directly into clean cages with the other half remaining in the sprayed, hence contaminated, cage. Treatment mortality was assessed at 8, 15, 30, 60, 120, 240, and 1,440 min postapplication. Cage contamination had a significant effect on mosquito mortality for both the LC25 and LC50 between 15 and 30 min postapplication. PMID:17067048

  1. Bioassay for investigation of auxin transport in single cell layers

    Directory of Open Access Journals (Sweden)

    Alina B. Wodzicki

    2014-02-01

    Full Text Available Auxin was collected from the cambial region of Pinus sylvestris by applying agar strips to the cut surfaces of stem sections which comprised a single layer of 2 to 4-mm long, mainly intact fusiform cells. Sections of the agar strips were either bioassayed immediately to determine their auxin content or stored for several months at -80oC, extracted with 80% MeOH and redissolved in hot agar prior to bioassay. Auxin concentrations were determined by Went's oat coleoptile test, as described by Funke, which was modified considerably to give highly reproducible results. The modifications proved essential for good replication of results and are described in detail together with the use of the bioassay to determine changes in cambial cell polarity during ageing and senescence in P. sylvestris.

  2. Evaluation of the Effectiveness of Surfactants and Denaturants to Elute and Denature Adsorbed Protein on Different Surface Chemistries.

    Science.gov (United States)

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-11-01

    The elution and/or denaturation of proteins from material surfaces by chemical excipients such as surfactants and denaturants is important for numerous applications including medical implant reprocessing, bioanalyses, and biodefense. The objective of this study was to develop and apply methods to quantitatively assess how surface chemistry and adsorption conditions influence the effectiveness of three commonly used surfactants (sodium dodecyl sulfate, n-octyl-β-d-glucoside, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and two denaturants (guanidium hydrochloride and urea) to elute protein (hen egg white lysozyme and bovine pancreatic ribonuclease A) from three different surface chemistries (silica glass, poly(methyl methacrylate), and high-density polyethylene). The structure and bioactivity of residual protein on the surface following elution were characterized using circular dichroism spectropolarimetry and enzyme assays to assess the extent of protein denaturation. Our results indicate that the denaturants were generally more effective than the surfactants in removing the adsorbed proteins from each type of surface. Also, the denaturing capacity of these excipients on the residual proteins on the surfaces was distinctly different from their influence on the proteins in solution and was unique for each of the adsorption conditions. Taken altogether, these results reveal that the effectiveness of surfactants and denaturants to elute and denature adsorbed protein is significantly influenced by surface chemistry and the conditions from which the protein was adsorbed. These results provide a basis for the selection, design, and further development of chemical agents for protein elution and surface decontamination. PMID:26449787

  3. Scanning near-field optical microscopy on rough surfaces: applications in chemistry, biology, and medicine

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Shear-force apertureless scanning near-field optical microscopy (SNOM with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The experimental use of the new photophysical effect is described. The applications of the new technique are manifold. Important mechanistic questions in solid-state chemistry (oxidation, diazotization, photodimerization, surface hydration, hydrolysis are answered with respect to simultaneous AFM (atomic force microscopy and detailed crystal packing. Prehistoric petrified bacteria and concomitant pyrite inclusions are also investigated with local RAMAN SNOM. Polymer beads and unstained biological objects (rabbit heart, shrimp eye allow for nanoscopic analysis of cell organelles. Similarly, human teeth and a cancerous tissue are analyzed. Bladder cancer tissue is clearly differentiated from healthy tissue without staining and this opens a new highly promising diagnostic tool for precancer diagnosis. Industrial applications are demonstrated at the corrosion behavior of dental alloys (withdrawal of a widely used alloy, harmless substitutes, improvement of paper glazing, behavior of blood bags upon storage, quality assessment of metal particle preparations for surface enhanced RAMAN spectroscopy, and determination of diffusion coefficient and light fastness in textile fiber dyeing. The latter applications include fluorescence SNOM. Local fluorescence SNOM is also used in the study of partly aggregating dye nanoparticles within resin/varnish preparations. Unexpected new insights are obtained in all of the various fields that cannot be obtained by other techniques.

  4. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    Science.gov (United States)

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. PMID:26295195

  5. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry

    Science.gov (United States)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  6. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry.

    Science.gov (United States)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti(4+) to form planar p-type [Ti(4+)n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B(3+), Al(3+) and Sn(4+)) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device. PMID:26828848

  7. The evolution of the surface of the mineral schreibersite in prebiotic chemistry.

    Science.gov (United States)

    La Cruz, Nikita L; Qasim, Danna; Abbott-Lyon, Heather; Pirim, Claire; McKee, Aaron D; Orlando, Thomas; Gull, Maheen; Lindsay, Danny; Pasek, Matthew A

    2016-07-27

    We present a study of the reactions of the meteoritic mineral schreibersite (Fe,Ni)3P, focusing primarily on surface chemistry and prebiotic phosphorylation. In this work, a synthetic analogue of the mineral was synthesized by mixing stoichiometric proportions of elemental iron, nickel and phosphorus and heating in a tube furnace at 820 °C for approximately 235 hours under argon or under vacuum, a modification of the method of Skála and Drábek (2002). Once synthesized, the schreibersite was characterized to confirm the identity of the product as well as to elucidate the oxidation processes affecting the surface. In addition to characterization of the solid product, this schreibersite was reacted with water or with organic solutes in a choline chloride-urea deep eutectic mixture, to constrain potential prebiotic products. Major inorganic solutes produced by reaction of water include orthophosphate, phosphite, pyrophosphate and hypophosphate consistent with prior work on Fe3P corrosion. Additionally, schreibersite corrodes in water and dries down to form a deep eutectic solution, generating phosphorylated products, in this case phosphocholine, using this synthesized schreibersite. PMID:27157087

  8. Surface chemistry and electronic structure of nonpolar and polar GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, T.C. Shibin; Aggarwal, Neha; Gupta, Govind, E-mail: govind@nplindia.org

    2015-08-01

    Highlights: • Surface chemistry and electronic structure of polar and nonpolar GaN is reported. • Influence of polarization on electron affinity of p & np GaN films is investigated. • Correlation between surface morphology and polarity has been deduced. - Abstract: Photoemission and microscopic analysis of nonpolar (a-GaN/r-Sapphire) and polar (c-GaN/c-Sapphire) epitaxial gallium nitride (GaN) films grown via RF-Molecular Beam Epitaxy is reported. The effect of polarization on surface properties like surface states, electronic structure, chemical bonding and morphology has been investigated and correlated. It was observed that polarization lead to shifts in core level (CL) as well as valence band (VB) spectra. Angle dependent X-ray Photoelectron Spectroscopic analysis revealed higher surface oxide in polar GaN film compared to nonpolar GaN film. On varying the take off angle (TOA) from 0° to 60°, the Ga−O/Ga−N ratio varied from 0.11–0.23 for nonpolar and 0.17–0.36 for polar GaN film. The nonpolar film exhibited N-face polarity while Ga-face polarity was perceived in polar GaN film due to the inherent polarization effect. Polarization charge compensated surface states were observed on the polar GaN film and resulted in downward band bending. Ultraviolet photoelectron spectroscopic measurements revealed electron affinity and ionization energy of 3.4 ± 0.1 eV and 6.8 ± 0.1 eV for nonpolar GaN film and 3.8 ± 0.1 eV and 7.2 ± 0.1 eV for polar GaN film respectively. Field Emission Scanning Electron Microscopy measurements divulged smooth morphology with pits on polar GaN film. The nonpolar film on the other hand showed pyramidal structures having facets all over the surface.

  9. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  10. Surface chemistry and size influence the release of model therapeutic nanoparticles from poly(ethylene glycol) hydrogels

    International Nuclear Information System (INIS)

    Nanoparticles have emerged as promising therapeutic and diagnostic tools, due to their unique physicochemical properties. The specific core and surface chemistries, as well as nanoparticle size, play critical roles in particle transport and interaction with biological tissue. Localized delivery of therapeutics from hydrogels is well established, but these systems generally release molecules with hydrodynamic radii less than ∼5 nm. Here, model nanoparticles with biologically relevant surface chemistries and diameters between 10 and 35 nm are analyzed for their release from well-characterized hydrogels. Functionalized gold nanoparticles or quantum dots were encapsulated in three-dimensional poly(ethylene glycol) hydrogels with varying mesh size. Nanoparticle size, surface chemistry, and hydrogel mesh size all influenced the release of particles from the hydrogel matrix. Size influenced nanoparticle release as expected, with larger particles releasing at a slower rate. However, citrate-stabilized gold nanoparticles were not released from hydrogels. Negatively charged carboxyl or positively charged amine-functionalized quantum dots were released from hydrogels at slower rates than neutrally charged PEGylated nanoparticles of similar size. Transmission electron microscopy images of gold nanoparticles embedded within hydrogel sections demonstrated uniform particle distribution and negligible aggregation, independent of surface chemistry. The nanoparticle-hydrogel interactions observed in this work will aid in the development of localized nanoparticle delivery systems.

  11. Patterned porous silicon photonic crystals with modular surface chemistry for spatial control of neural stem cell differentiation

    Science.gov (United States)

    Huang, Tiffany H.; Pei, Yi; Zhang, Douglas; Li, Yanfen; Kilian, Kristopher A.

    2016-05-01

    We present a strategy to spatially define regions of gold and nanostructured silicon photonics, each with materials-specific surface chemistry, for azide-alkyne cycloaddition of different bioactive peptides. Neural stem cells are spatially directed to undergo neurogenesis and astrogenesis as a function of both surface properties and peptide identity.We present a strategy to spatially define regions of gold and nanostructured silicon photonics, each with materials-specific surface chemistry, for azide-alkyne cycloaddition of different bioactive peptides. Neural stem cells are spatially directed to undergo neurogenesis and astrogenesis as a function of both surface properties and peptide identity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08327c

  12. Studies of the surface reactivity of metal oxyhydroxides and sulfides with relevance to environmental chemistry

    Science.gov (United States)

    Pierre-Louis, Andro-Marc

    With the benefits of an ever increasing advance of industrialization around the globe come formidable environmental problems. Three environmental problems that have relevance to the research described in this thesis are the 1) buildup of atmospheric CO2 gas through the burning of fossil fuels, 2) eutrophication of aquatic systems, and 3) the acidification of environments from acid mine drainage (AMD) resulting from coal-mining activities. In particular research is presented in this thesis that investigated the surface chemistry of CO2 and phosphate (PO43-) on a suite of environmentally relevant iron oxyhydroxide materials and the chemistry of phospholipid molecules on environmentally relevant iron sulfide surfaces to suppress AMD. To develop a microscopic understanding of the surface chemistry of the different systems, an array of experimental and computational techniques were used in the research. Techniques included X-ray photoelectron spectroscopy, atomic adsorption, X-ray diffraction, scanning transmission microscopy with electron dispersive X-ray spectroscopy (STEM/EDS), ion chromatography (IC), and attenuated total reflectance Fourier transform Infrared (ATR-FTIR). Results from the latter technique were interpreted with the aid of density function theory (DFT) calculations. Iron oxyhydroxides, which consisted of ferrihydrite (FeOOH), goethite (α-FeOOH), ferrimagnetic ferrihydrite (FerriFh), and aluminum-doped iron oxyhydroxide (content from 0-100 mol%) were synthesized and studied before and after exposure to gaseous CO2, CO32-, and PO43- species. FeOOH and mixed Al/Fe oxyhydroxide surfaces showed high affinities for the formation of carbonate and bicarbonate species upon exposure to gaseous CO2. Within the Al/Fe oxyhydroxide circumstance, a low Al level of incorporation in the iron oxyhydroxide structure caused a slight increase in surface area and increase in the amount of oxyanion (e.g., CO32- or PO43-) adsorption up to an Al level of 30 mol%. Significant

  13. Variations in snow and firn chemistry along US ITASE traverses and the effect of surface glazing

    Directory of Open Access Journals (Sweden)

    D. A. Dixon

    2013-03-01

    Full Text Available This study provides a baseline from which changes in the chemistry of the atmosphere over Antarctica can be monitored under expected warming scenarios and continued intensification of industrial activities in the Southern Hemisphere. It is the first study to measure more than 25 chemical constituents in the surface snow and firn across extensive regions of Antarctica. We present major ion, trace element, heavy metal, rare earth element and oxygen isotope data from a series of surface snow samples and shallow firn sections collected along four US ITASE traverses across East and West Antarctica. In each sample we measure dissolved concentrations of Na+, K+, Mg2+, Ca2+, Cl−, NO3+, SO42−, and MS− using ion chromatography and total concentrations of Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg, Li, and K using inductively coupled plasma sector field mass spectrometry (ICP-SFMS. We also measure δ18O by isotope ratio mass spectrometry. Satellite remote sensing measurements of microwave backscatter and grain size are used to assist in the identification of glaze/dune areas across Antarctica and determine if these areas can possibly contain useful chemical climate records. The majority of the non-glaze/dune samples in this study exhibit similar, or lower, concentrations to those from previous studies. Consequently, the results presented here comprise a conservative baseline for Antarctic surface snow chemical concentrations. The elements Cd, Pb, As and Bi are enriched across Antarctica relative to both ocean and upper crust elemental ratios. Local and global volcanic outgassing may account for the majority of the Bi measured in East and West Antarctica and for a significant fraction of the Cd and As. However, significant concentrations of Cd, Pb, and As remain across much of Antarctica.

  14. Preparation and application of a novel electrochemical sensing material based on surface chemistry of polyhydroquinone

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Xueping [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080 (China); Wang, Yingkai [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hu, Chengguo, E-mail: cghu@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080 (China); Huang, Jianlin; Chen, Huaixia; Wang, Shengfu [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); Hu, Shengshui, E-mail: sshu@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080 (China)

    2014-07-01

    A new analogue of polydopamine (PDA), i.e., polyhydroquinone (PH{sub 2}Q), was polymerized and its surface chemistry was studied by different ways of characterization. PH{sub 2}Q was produced by the self-polymerization of H{sub 2}Q mediated by dissolved oxygen, and the self-polymerization process was strongly dependent on the type and the pH value of the buffer solutions. PH{sub 2}Q can not only achieve surface hydrophilization of different substrates like polyethylene terephthalate (PET) film, graphite strip, C{sub 12}SH/Au and wax slice, but also possess several unique properties like reversible adsorption, good solubility and low cost. These properties made PH{sub 2}Q an ideal polymeric modifier for the noncovalent functionalization of some nanomaterials. By simply grinding with PH{sub 2}Q, pristine multi-walled carbon nanotubes (MWNTs) can be readily dispersed in water with high solubility and good stability. The resulting MWNT–PH{sub 2}Q composite exhibited excellent electrochemical performance, which was employed for the simultaneous determination of dopamine (DA) and uric acid (UA). - Highlights: • Polyhydroquinone (PH{sub 2}Q) was produced by the self-polymerization of hydroquinone (H{sub 2}Q) mediated by dissolved oxygen. • PH{sub 2}Q can achieve surface hydrophilization of a variety of substrates. • PH{sub 2}Q is an ideal polymeric modifier for the functionalization of multi-walled carbon nanotubes (MWNTs). • The MWNT–PH{sub 2}Q composite can be employed for the simultaneous determination of dopamine (DA) and uric acid (UA)

  15. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  16. The UBI-QEP method. A practical theoretical approach to understanding chemistry on transition metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Shustorovich, Evgeny [American Scientific Materials Technologies, Inc., New York, NY (United States); Sellers, Harrell [Department of Chemistry and Biochemistry, South Dakota State University Brooking, SD (United States)

    1998-04-01

    In this review we examine the presently available theoretical techniques for determining metal surface reaction energetics. The unity bond index-quadratic exponential potential (UBI-QEP) method, which provides heats of adsorption and reaction activation barriers with a typical accuracy of 1-3 Kcal/mol, emerges as the method with the widest applicability for complex and practically important reaction systems. We discuss in detail the theoretical foundations of the analytic UBI-QEP method which employs the most general two-body interaction potentials. The potential variable, named a bond index, is a general exponential function of the two-center bond distance. The bond indices of interacting bonds are assumed to be conserved at unity (up to the dissociation point), and we cite state-of-the-art ab initio calculations to support this assumption. The UBI-QEP method allows one to calculate the reaction energetics in a straightforward variational way. We summarize the analytic formulas for adsorbate binding energies in various coordination modes and for intrinsic and diffusion activation barriers. We also describe a computer program which makes UBI-QEP calculations fully automated. The normalized bond index-molecular dynamics (NBI-MD) simulation technique, which is an adaptation of the UBI-QEP reactive potential functions to molecular dynamics, is described. Detailed summaries of applications are given which include the Fischer-Tropsch synthesis, oxygen assisted X-H bond cleavage, hydrogen peroxide, methanol and ammonia syntheses, decomposition and reduction of NO, and SO{sub x} chemistry

  17. Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011

    Science.gov (United States)

    McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.

  18. Surface chemistry and structures of 1,4-phenylene diisocyanide on gold films from solution

    Science.gov (United States)

    Abuflaha, Rasha; Olson, Dustin; Bennett, Dennis W.; Tysoe, Wilfred T.

    2016-07-01

    The adsorption of 1,4-phenylene diisocyanide (PDI) is studied on gold films as a function of PDI exposure from benzene solution by a combination of attenuated total internal reflection infrared (ATR-IR) spectroscopy and conductivity measurements. The infrared spectrum found for low PDI doses exhibits a single isocyanide vibrational peak consistent with the formation of -(Au-PDI)- oligomer chains that have been identified previously on a Au(111) surface dosed in ultrahigh vacuum. Larger solution doses cause the isocyanide peaks to split into two, with the lower-frequency vibrations corresponding to a free isocyanide mode, indicating the formation of a perpendicular, vertically bonded PDI molecule. This observation also rationalizes the apparent disparity between studies of the chemistry of PDI on gold in ultrahigh vacuum and with solution dosing. Since it has been shown previously that the -(Au-PDI)- oligomer chains are capable of providing conductive linkages between gold nanoparticles on an insulating mica substrate, it was proposed that higher PDI doses from solution should cause a decrease in conductivity due to chain disruption. This effect was found experimentally, thereby providing corroborative evidence for the above conclusions.

  19. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    Science.gov (United States)

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-01

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state. PMID:26266528

  20. The effect of surface chemistry on particulate fouling under flow-boiling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Klimas, S.J

    2001-07-01

    A model of particulate fouling has been developed that takes account of the influence of deposit consolidation on the kinetics of the fouling process. Fouling kinetics predicted by the model are linear, falling-rate or asymptotic, depending on the relative magnitudes of the rate constants for deposition, re-entrainment, and consolidation. One of the key predictions of the model is that the steady-state fouling rate is proportional to the ratio K{lambda}{sub c}/{lambda}, where K, {lambda}{sub c} and {lambda} are the rate constants for deposition, consolidation, and removal, respectively. Tests conducted in a high-temperature recirculating-water loop have demonstrated that chemistry exerts a strong influence on the fouling kinetics of particulate corrosion product under flow-boiling conditions in alkaline water at 270{sup o}C. For example, the fouling rates of lepidocrocite and hematite are 12 and 50 times greater, respectively, than the rate for magnetite. It is argued that the difference can be attributed to the sign of the surface charge that develops on the metal oxide surfaces in the high-temperature coolant, which, in turn, is a function of pH relative to the isoelectric point of the metal oxide. Chemical effects also influence fouling behaviour through the rate of consolidation. For example, when morpholine is used for the alkalizing agent the fouling rate is 3-5 times higher than the case when the pH is controlled using dimethylamine. The difference is attributed to the rate of deposit consolidation, which is 6-20 times greater than the rate of deposit removal for morpholine compared to 0.2-0.3 times the rate of removal for dimethylamine. The results of this investigation, together with the insights provided by the fouling model, are being used to guide the selection of the alkalizing amine to optimize its properties for both corrosion (pH) control and deposit control in the steam generator. (author)

  1. Virtual screening of bioassay data

    Directory of Open Access Journals (Sweden)

    Schierz Amanda C

    2009-12-01

    Full Text Available Abstract Background There are three main problems associated with the virtual screening of bioassay data. The first is access to freely-available curated data, the second is the number of false positives that occur in the physical primary screening process, and finally the data is highly-imbalanced with a low ratio of Active compounds to Inactive compounds. This paper first discusses these three problems and then a selection of Weka cost-sensitive classifiers (Naive Bayes, SVM, C4.5 and Random Forest are applied to a variety of bioassay datasets. Results Pharmaceutical bioassay data is not readily available to the academic community. The data held at PubChem is not curated and there is a lack of detailed cross-referencing between Primary and Confirmatory screening assays. With regard to the number of false positives that occur in the primary screening process, the analysis carried out has been shallow due to the lack of cross-referencing mentioned above. In six cases found, the average percentage of false positives from the High-Throughput Primary screen is quite high at 64%. For the cost-sensitive classification, Weka's implementations of the Support Vector Machine and C4.5 decision tree learner have performed relatively well. It was also found, that the setting of the Weka cost matrix is dependent on the base classifier used and not solely on the ratio of class imbalance. Conclusions Understandably, pharmaceutical data is hard to obtain. However, it would be beneficial to both the pharmaceutical industry and to academics for curated primary screening and corresponding confirmatory data to be provided. Two benefits could be gained by employing virtual screening techniques to bioassay data. First, by reducing the search space of compounds to be screened and secondly, by analysing the false positives that occur in the primary screening process, the technology may be improved. The number of false positives arising from primary screening leads to

  2. Role of surface chemistry in adhesion between ZnO nanowires and carbon fibers in hybrid composites.

    Science.gov (United States)

    Ehlert, Gregory J; Galan, Ulises; Sodano, Henry A

    2013-02-01

    Low interface strength is a persistent problem in composite materials and cascades to limit a variety of bulk material properties such as lamina shear strength. Whiskerization has long been pursued as a method to reinforce the interphase and improve both the single fiber interface strength as well as the bulk properties. Recent developments have shown that ZnO nanowire whiskerization can effectively improve the properties of a bulk composite without requiring the high temperatures that previous deposition processes needed. Although the efficacy of a ZnO nanowire interphase has been established, the mechanism for adhesion of the interphase to the fiber has not been identified. Specifically, the addition of the ZnO nanowires to the surface of the fibers requires that the ZnO nanowires have strong chemical adhesion to the fiber surface. This work will create a variety of chemical environments on the surface of the fibers through new and common chemical functionalization procedures and quantify the surface chemistry through X-ray photoelectron spectroscopy. The effect of fiber surface chemistry on the adhesion of the ZnO is assessed through single fiber fragmentation testing. The interface strength is found to strongly correlate with the concentration of ketone groups on the surface of the fibers. Following the experimental observations, liftoff of a ZnO crystal from a graphene surface was simulated with a variety of surface functionalizations. The computational models confirm the preference for ketone groups in promoting adhesion between ZnO and graphite.

  3. Electrochemical functionalization of carbon surfaces by aromatic azide or alkyne molecules: a versatile platform for click chemistry.

    Science.gov (United States)

    Evrard, David; Lambert, François; Policar, Clotilde; Balland, Véronique; Limoges, Benoît

    2008-01-01

    The electrochemical reduction of phenylazide or phenylacetylene diazonium salts leads to the grafting of azido or ethynyl groups onto the surface of carbon electrodes. In the presence of copper(I) catalyst, these azide- or alkyne-modified surfaces react efficiently and rapidly with compounds bearing an acetylene or azide function, thus forming a covalent 1,2,3-triazole linkage by means of click chemistry. This was illustrated with the surface coupling of ferrocenes functionalized with an ethynyl or azido group and the biomolecule biotin terminated by an acetylene group.

  4. New insights into the fouling mechanism of dissolved organic matter applying nanofiltration membranes with a variety of surface chemistries.

    Science.gov (United States)

    Mustafa, Ghulam; Wyns, Kenny; Buekenhoudt, Anita; Meynen, Vera

    2016-04-15

    Nanofiltration (NF) membrane fouling by DOM remains a major and poorly understood issue. To acquire a better insight we studied the fouling of the DOM fractions humic acids (HAs) and fulvic acids (FAs), with and without Ca(2+), on native and grafted ceramic NF membranes. Grafting with two methods and three different grafting groups allowed to create a range of membranes with a variety of surface chemistries, and a wide range of surface polarity, much broader than ever used in previous studies. A typical polymer (polyamide) NF membrane was included for comparison. All obtained results reveal that membrane fouling is not determined by membrane hydrophilicity/hydrophobicity as a general and sole criterion, but rather on the whole of the surface chemistry determining the amount and strength of the possible foulant-membrane interactions. As a consequence the effect of inorganic ions on the fouling is also dependent on the surface chemistry. Important new insight in the DOM fouling mechanism was acquired, shedding new light on the state-of-the-art knowledge. PMID:26905798

  5. Arsenic-Dominated Chemistry in the Acid Cleaning of InGaAs and InAlAs Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Pianetta, P.; Chen, P.-T.; Kobayashi, M.; Nishi, Y.; Goel, N.; Garner, M.; Tsai, W.

    2008-10-31

    The surface cleaning of InGaAs and InAlAs is studied using Synchrotron Radiation Photoelectron Spectroscopy. Thermal annealing at 400 C can not completely remove the native oxides from those surfaces. Elemental arsenic build-up is observed on both surfaces after acid treatment using HCl, HF or H{sub 2}SO{sub 4} solutions, which is similar to acid-cleaned GaAs surface. Cleaned InGaAs surface is oxide free but small amount of aluminum oxide remains on cleaned InAlAs surface. The common chemical reactions between III-As semiconductors and acid solutions are identified and are found to be dominated by arsenic chemistry.

  6. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    Science.gov (United States)

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; Prinz, Fritz B.; Lee, Wonyoung

    2015-11-01

    We report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created with yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte-electrode interfaces of solid oxide fuel cells for higher electrochemical performance.

  7. Recovering ferromagnetic metal surfaces to fully exploit chemistry in molecular spintronics

    OpenAIRE

    Marta Galbiati; Sophie Delprat; Michele Mattera; Samuel Mañas-Valero; Alicia Forment-Aliaga; Sergio Tatay; Cyrile Deranlot; Pierre Seneor; Richard Mattana; Frédéric Petroff

    2015-01-01

    Organic spintronics is a new emerging field that promises to offer the full potential of chemistry to spintronics, as for example high versatility through chemical engineering and simple low cost processing. However, one key challenge that remains to be unlocked for further applications is the high incompatibility between spintronics key materials such as high Curie temperature Co, Ni, Fe (and their alloys) and wet chemistry. Indeed, the transition metal proneness to oxidation has so far hamp...

  8. Influence of ambient air exposure on surface chemistry and electronic properties of thin copper phthalocyanine sensing layers

    Energy Technology Data Exchange (ETDEWEB)

    Grzadziel, L. [Institute of Physics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice (Poland); Krzywiecki, M., E-mail: mkrzywiecki@polsl.p [Institute of Physics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice (Poland); Peisert, H.; Chasse, T. [Institute of Physical and Theoretical Chemistry, University of Tuebingen, Auf de Morgenstelle 8, D-72076 Tuebingen (Germany); Szuber, J. [Institute of Electronics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice (Poland)

    2011-01-31

    In this paper we present photoemission studies of the influence of 12-hour exposure to the ambient air on the chemical and electronic properties of thin 16-nm copper phthalocyanine (CuPc) sensing layers deposited on n- and p-type silicon Si(111) substrates covered with the native oxide. The surface chemistry and electronic parameters of organic thin film including surface band bending, work function, electron affinity and their variations upon the exposure have been monitored with X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy techniques. We found that after the exposure, the surface chemistry of CuPc remained unaffected, however the work function and surface band bending increased by 0.55 eV and 0.45 eV for the layers on n-Si and by 0.25 eV and 0.30 eV for those on p-Si. Additionally, we detected a slight surface dipole at CuPc on n-Si manifested by a small shift in electron affinity of 0.10 eV. In order to explain these changes we developed a model basing on the interaction of ionic species with the phthalocyanine surface.

  9. Thermal chemistry of copper(I)-N,N '-di-sec-butylacetamidinate on Cu(110) single-crystal surfaces

    International Nuclear Information System (INIS)

    The surface chemistry of copper(I)-N,N'-di-sec-butylacetamidinate on Cu(110) single-crystal surfaces has been characterized under ultrahigh vacuum by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy. A series of thermal stepwise conversions were identified, starting with the partial dissociative adsorption of the copper acetamidinate dimers into a mixture of monomers and dimers on the surface. An early dissociation of a C-N bond leads to the production of N-sec-butylacetamidine, which is detected in TPD experiments in three temperature regimes, the last one centered around 480 K. Butene, and a small amount of butane, is also detected above approximately 500 K, and hydrogen production, an indication of dehydrogenation of surface fragments, is observed at 460, 550 and 670 K. In total, only about 10% of the initial copper(I)-N,N'-di-sec-butylacetamidinate adsorbed monolayer decomposes, and only about ∼3% of carbon is left behind on the surface after heating to high temperatures. The implications of this surface chemistry to the design of chemical film growth processes using copper acetamidinates as precursors are discussed.

  10. Nickel-free manganese bearing stainless steel in alkaline media-Electrochemistry and surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, B., E-mail: belsener@unica.i [Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, SS 554 bivio per Sestu, I-09042 Monserrato (Italy); ETH Zurich, Institute for Building Materials, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Addari, D. [Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, SS 554 bivio per Sestu, I-09042 Monserrato (Italy); Coray, S. [ETH Zurich, Institute for Building Materials, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Rossi, A., E-mail: rossi@unica.i [Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, SS 554 bivio per Sestu, I-09042 Monserrato (Italy)

    2011-04-30

    Research highlights: {yields} New nickel-free manganese bearing 18Cr18Mn2Mo stainless steel in alkaline media. {yields} XPS analysis shows Mo(VI) enrichment up to 6% in the passive film upon ageing. {yields} No pitting corrosion in alkaline media (pH 13) up to 4 M NaCl (14 wt%). {yields} Promising alternative stainless steel for reinforcement in concrete. - Abstract: The use of austenitic nickel-containing stainless steels as concrete reinforcement offers excellent corrosion protection for concrete structures in harsh chloride bearing environments but is often limited due to the very high costs of these materials. Manganese bearing nickel-free stainless steels can be a cost-effective alternative for corrosion resistant reinforcements. Little, however, is known about the electrochemistry and even less on surface chemistry of these materials in alkaline media simulating concrete pore solutions. In this work a combined electrochemical (ocp = open circuit potential) and XPS (X-ray photoelectron spectroscopy) surface analytical investigation on the austenitic manganese bearing DIN 1.4456 (X8CrMnMoN18-18-2) stainless steel immersed into 0.1 M NaOH and more complex alkaline concrete pore solutions was performed. The results show that the passive film composition changes with immersion time, being progressively enriched in chromium oxy-hydroxide becoming similar to the conventional nickel-containing stainless steels. The composition of the metal interface beneath the passive film is strongly depleted in manganese and enriched in iron; chromium has nearly the nominal composition. The results are discussed regarding the film growth mechanism (ageing) of the new nickel-free stainless steel in alkaline solutions compared to traditional austenitic steels. Combining the results from pitting potential measurements with the composition of the passive film and the underlying metal interface, it can be concluded that the resistance against localized corrosion of the new nickel

  11. Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering

    International Nuclear Information System (INIS)

    Highlights: • AFM was firstly used to characterize the surface morphology and roughness of weathered wood–plastic composites. • Composites containing lignin showed less loss of flexural strength and modulus and less roughness on weathered surface compared with lignin-free composites. • ATR-FTIR and XPS analyses demonstrated in detail that significant chemistry changes occurred in wood flour, lignin, and cellulose. • The crystallinity of PP increased in all weathered samples due to chain scissions and recrystallization. • The stabilization and antioxidation effects of lignin were proved. - Abstract: In this study, six groups of polypropylene composites reinforced with wood flour (WF), cellulose, and lignin at different loading levels were exposed in a QUV accelerated weathering tester for a total duration of 960 h. The changes in surface morphology, chemistry, and thermal properties of weathered samples were characterized by atomic force microscope (AFM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetric (DSC), respectively. The flexural properties of all samples were tested after different durations of weathering. The results showed that: (1) the surface roughness of all samples increased after weathering; (2) composites containing lignin showed less loss of flexural strength and modulus and less roughness on weathered surface compared with lignin-free composites, indicating the functions of stabilization and antioxidation of lignin; (3) the crystallinity of PP increased in all weathered samples due to chain scissions and recrystallization; (4) ATR-FTIR and XPS analyses demonstrated in detail that significant changes occurred in surface chemistry, accompanied by the photodegradation and photo-oxidation of lignin and cellulose with prolonged weathering time

  12. Rapid bioassay for oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J. [ALS Environmental, Edmonton, AB (Canada); Oosterbroek, L. [HydroQual, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation described a study conducted to develop a rapid bioassay for soils contaminated with oil. The bioassay method was designed for a weight of evidence (WoE) approach and eco-contact guideline derivation protocol. Microtox bioassays were conducted on cyclodextrin extracts of soil quantified by solvent extraction and gas chromatography. The method was demonstrated using straight {beta}-cyclodextrin soil extracts and activated {beta}-cyclodextrin soil extracts. An analysis of the methods showed that the activation step weakens or breaks the cyclodextrin and polycyclic hydrocarbon (PHC) inclusion complex. The released PHC became toxic to the microtox organism. Results from the bioassays were then correlated with earthworm reproduction bioassay results. tabs., figs.

  13. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    OpenAIRE

    Feliu Jr., S.; Pardo, Angel; Merino, M. C.; Coy, A. E.; Viejo, F.; Arrabal, R.

    2009-01-01

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 °C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH)2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of M...

  14. Increasing the Detection Limit of the Parkinson Disorder through a Specific Surface Chemistry Applied onto Inner Surface of the Titration Well

    Directory of Open Access Journals (Sweden)

    Fabienne Poncin-Epaillard

    2012-04-01

    Full Text Available The main objective of this paper was to illustrate the enhancement of the sensitivity of ELISA titration for neurodegenerative proteins by reducing nonspecific adsorptions that could lead to false positives. This goal was obtained thanks to the association of plasma and wet chemistries applied to the inner surface of the titration well. The polypropylene surface was plasma-activated and then, dip-coated with different amphiphilic molecules. These molecules have more or less long hydrocarbon chains and may be charged. The modified surfaces were characterized in terms of hydrophilic—phobic character, surface chemical groups and topography. Finally, the coated wells were tested during the ELISA titration of the specific antibody capture of the α-synuclein protein. The highest sensitivity is obtained with polar (Θ = 35°, negatively charged and smooth inner surface.

  15. Transport of Ions and Particles Through Single Pores of Controlled Geometry and Surface Chemistry

    Science.gov (United States)

    Pevarnik, Matthew A.

    Synthetic nanopores are a powerful tool to control the transport of ions, molecules, and water at the molecular level, mimicking biological systems. In this research, polymer pores are prepared of different geometries, sizes, and surface chemistry to utilize features seen in naturally occurring systems. Specifically, it was one of the goals of this research to prepare and characterize single polymer pores that rectify the current due to a combination of electrostatic and hydrophobic interactions, similar to naturally occurring ion channels. Prior to modification, aqueous electrolytic solutions are able to conduct readily through the single polymer pores, but after the chemisorption of hydrophobic chemical groups, the pore demonstrates open and closed states. This behavior is also observed to be voltage dependent. Increasing voltage increases the probability of the pore to be in the open states. There is also a voltage range where the pore does not conduct at all. The hydrophobic gating was studied as a function of pore diameter and charge of the residual groups and could be used for an on demand drug delivery system. Another technique that was utilized in this research is the resistive-pulse technique, which is a powerful approach to detect single molecules and particles. A single particle passing through a pore can be observed as a transient drop of the transmembrane current. This research focuses on resistive-pulse sensing experiments performed with track-etched polymer pores characterized by an undulating diameter along the pore length. The resistive pulses generated by spherical beads passing through these pores have a repeatable pattern of large variations corresponding to these diameter changes. We show that this pattern of variations enables the unambiguous resolution of multiple particles simultaneously in the pore, the detection of transient sticking of particles within the pore, and confirmation whether any individual particle completely translocates the

  16. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution

    Science.gov (United States)

    Wang, Lei; Shinohara, Tadashi; Zhang, Bo-Ping

    2010-08-01

    The surface chemistry on AZ31 and AZ91 magnesium alloys was characterized by X-ray photoelectron spectroscopy (XPS) in the corrosion and the passivation zones. In the corrosion zone, the presence of Mg(OH) 2 and MgCO 3 species was found in the outer surface, whereas, in the inner layer, the co-existence of Mg(OH) 2, MgO and MgCO 3 species was observed for both alloys. The presence of Al 3+ in the surface electrolyte to form Al 2O 3/Al(OH) 3 and the formation of carbonate product provide a better passivation on the surfaces and retard the chloride-induced corrosion on the materials in the passivation zone.

  17. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lei [Materials Reliability Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Shinohara, Tadashi, E-mail: SHINOHARA.Tadashi@nims.go.jp [Materials Reliability Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Zhang Boping [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-08-01

    The surface chemistry on AZ31 and AZ91 magnesium alloys was characterized by X-ray photoelectron spectroscopy (XPS) in the corrosion and the passivation zones. In the corrosion zone, the presence of Mg(OH){sub 2} and MgCO{sub 3} species was found in the outer surface, whereas, in the inner layer, the co-existence of Mg(OH){sub 2}, MgO and MgCO{sub 3} species was observed for both alloys. The presence of Al{sup 3+} in the surface electrolyte to form Al{sub 2}O{sub 3}/Al(OH){sub 3} and the formation of carbonate product provide a better passivation on the surfaces and retard the chloride-induced corrosion on the materials in the passivation zone.

  18. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution

    International Nuclear Information System (INIS)

    The surface chemistry on AZ31 and AZ91 magnesium alloys was characterized by X-ray photoelectron spectroscopy (XPS) in the corrosion and the passivation zones. In the corrosion zone, the presence of Mg(OH)2 and MgCO3 species was found in the outer surface, whereas, in the inner layer, the co-existence of Mg(OH)2, MgO and MgCO3 species was observed for both alloys. The presence of Al3+ in the surface electrolyte to form Al2O3/Al(OH)3 and the formation of carbonate product provide a better passivation on the surfaces and retard the chloride-induced corrosion on the materials in the passivation zone.

  19. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    International Nuclear Information System (INIS)

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25-150 deg. C, -CH3 and -OH were unveiled as dominant surface groups after the Al(CH3)3 precursor and O2 plasma half-cycles, respectively. At lower temperatures more -OH and C-related impurities were found to be incorporated in the Al2O3 film, but the impurity level could be reduced by prolonging the plasma exposure. The results demonstrate that -OH surface groups rule the surface chemistry of the Al2O3 process and likely that of plasma-assisted ALD of metal oxides from organometallic precursors in general

  20. A solid phase extraction based non-disruptive sampling technique to investigate the surface chemistry of macroalgae.

    Science.gov (United States)

    Cirri, Emilio; Grosser, Katharina; Pohnert, Georg

    2016-01-01

    The surface chemistry of aquatic organisms determines their biotic interactions. Metabolites in the spatially limited laminar boundary layer mediate processes, such as antifouling, allelopathy and chemical defense against herbivores. However, very few methods are available for the investigation of such surface metabolites. An approach is described in which surfaces are extracted by means of C18 solid phase material. By powdering wet algal surfaces with this material, organic compounds are adsorbed and can be easily recovered for subsequent liquid chromatography/mass spectrometry (LC/MS) and gas chromatography/mass spectrometry (GC/MS) investigations. The method is robust, picks up metabolites of a broad polarity range and is easy to handle. It is more universal compared to established solvent dipping protocols and it does not cause damage to the test organisms. A protocol is introduced for the macroalgae Fucus vesiculosus, Caulerpa taxifolia and Gracilaria vermiculophylla, but it can be easily transferred to other aquatic organisms. PMID:26795737

  1. Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering

    Science.gov (United States)

    Peng, Yao; Liu, Ru; Cao, Jinzhen

    2015-03-01

    In this study, six groups of polypropylene composites reinforced with wood flour (WF), cellulose, and lignin at different loading levels were exposed in a QUV accelerated weathering tester for a total duration of 960 h. The changes in surface morphology, chemistry, and thermal properties of weathered samples were characterized by atomic force microscope (AFM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetric (DSC), respectively. The flexural properties of all samples were tested after different durations of weathering. The results showed that: (1) the surface roughness of all samples increased after weathering; (2) composites containing lignin showed less loss of flexural strength and modulus and less roughness on weathered surface compared with lignin-free composites, indicating the functions of stabilization and antioxidation of lignin; (3) the crystallinity of PP increased in all weathered samples due to chain scissions and recrystallization; (4) ATR-FTIR and XPS analyses demonstrated in detail that significant changes occurred in surface chemistry, accompanied by the photodegradation and photo-oxidation of lignin and cellulose with prolonged weathering time.

  2. Simulation study of the effects of surface chemistry and temperature on the conformations of ssDNA oligomers near hydrophilic and hydrophobic surfaces

    International Nuclear Information System (INIS)

    We study the effects of the presence of a hydrophilic and a hydrophobic surface on the conformations and interactions of a single-stranded DNA (ssDNA) oligomer using atomistic molecular dynamics, umbrella sampling, and temperature-replica exchange. Our simulations capture the expected interactions between the ssDNA and the two surfaces (e.g., hydrogen bonds, hydrophobic interactions), but we find that the surface chemistry does not strongly affect the exposure of the relatively hydrophobic nucleobases or the hydrophilic phosphate backbone in a 16-base ssDNA. Likewise, the surfaces do not strongly affect the preferred size of the ssDNA compared to bulk solution, although the hydrophilic surface does favor slightly more compact ssDNA conformations than the hydrophobic surface. In more compact conformations, the negative charge of the ssDNA is more concentrated, and the energetic interactions of the DNA and DNA-bound counterions with the hydrophilic surface are more favorable, which consequently favors smaller ssDNA sizes. Increasing temperature, regardless of the presence or chemistry of a surface, makes it less unfavorable for the ssDNA to assume both compact and extended conformations. With increasing temperature the free energy cost of assuming a compact conformation is reduced to a greater extent than the cost of assuming an extended conformation. The reason for this difference is the entropically favorable release of DNA-bound water molecules upon assuming a compact conformation. Increasing temperature decreases water-DNA interactions while surprisingly increasing counterion-DNA interactions, changes which are attributed to the relative balance of entropic and energetic contributions for water molecules and counterions bound to the ssDNA

  3. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces

    DEFF Research Database (Denmark)

    Lösche, M.; Piepenstock, M.; Diederich, A.;

    1993-01-01

    The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both...... in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of apprx 40 ANG . A systematic...... dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state...

  4. Surface chemistry and interfacial charge-transfer mechanisms in photoinduced oxygen exchange at O2-TiO2 interfaces.

    Science.gov (United States)

    Montoya, Juan Felipe; Peral, José; Salvador, Pedro

    2011-04-01

    Experimental results obtained over the last three decades on photoinduced oxygen isotopic exchange (POIE) of TiO₂ oxygen atoms with those of adsorbed water molecules and gaseous O₂ are analyzed in the light of recent information from the literature on the interaction of water and O₂ species with the TiO₂ surface (obtained by application of surface spectroscopy techniques in combination with high-resolution scanning tunnelling microscopy). The analysis emphasizes the singular role that bridging oxygen ions and bridging oxygen vacancies play in TiO₂ surface chemistry and interfacial electron transfer at the gas phase-TiO₂ interface in the absence and presence of water. The observed competition between POIE and the photo-oxidation (PO) of organic compounds is analyzed in terms of the recently developed direct-indirect (D-I) kinetic model for heterogeneous photocatalysis (D. Monllor-Satoca et al., Catal. Today, 2007, 129, 247, and references therein). PMID:21442702

  5. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization

    International Nuclear Information System (INIS)

    Graphical abstract: A novel strategy combination of mussel inspired chemistry and chain transfer free radical polymerization has been developed for surface modification of carbon nanotubes with polymers for the first time. - Highlights: • Surface modification of CNTs via mussel inspired chemistry. • Preparation of aminated polymers through free radical polymerization. • Functionalized CNTs with aminated polymers via Michael addition reaction. • Highly dispersed CNTs in organic and aqueous solution. - Abstract: In this work, a novel strategy for surface modification of carbon nanotubes (CNTs) was developed via combination of mussel inspired chemistry and chain transfer free radical polymerization. First, pristine CNTs were functionalized with polydopamine (PDA), which is formed via self-polymerization of dopamine in alkaline conditions. These PDA functionalized CNTs can be further reacted with amino-terminated polymers (named as PDMC), which was synthesized through chain transfer free radical polymerization using cysteamine hydrochloride as chain transfer agent and methacryloxyethyltrimethyl ammonium chloride as the monomer. PDMC perfectly conjugated with CNT-PDA was ascertained by a series of characterization techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The dispersibility of obtained CNT nanocomposites (named as CNT-PDA-PDMC) was further examined. Results showed that the dispersibility of CNT-PDA-PDMC in aqueous and organic solutions was obviously enhanced. Apart from PDMC, many other amino-terminated polymers can also be used to functionalization of CNTs via similar strategy. Therefore, the method described in this work should be a general strategy for fabrication various polymer nanocomposites

  6. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qing; Tian, Jianwen; Liu, Meiying; Zeng, Guangjian; Huang, Qiang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke; Zhang, Qingsong [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2015-08-15

    Graphical abstract: A novel strategy combination of mussel inspired chemistry and chain transfer free radical polymerization has been developed for surface modification of carbon nanotubes with polymers for the first time. - Highlights: • Surface modification of CNTs via mussel inspired chemistry. • Preparation of aminated polymers through free radical polymerization. • Functionalized CNTs with aminated polymers via Michael addition reaction. • Highly dispersed CNTs in organic and aqueous solution. - Abstract: In this work, a novel strategy for surface modification of carbon nanotubes (CNTs) was developed via combination of mussel inspired chemistry and chain transfer free radical polymerization. First, pristine CNTs were functionalized with polydopamine (PDA), which is formed via self-polymerization of dopamine in alkaline conditions. These PDA functionalized CNTs can be further reacted with amino-terminated polymers (named as PDMC), which was synthesized through chain transfer free radical polymerization using cysteamine hydrochloride as chain transfer agent and methacryloxyethyltrimethyl ammonium chloride as the monomer. PDMC perfectly conjugated with CNT-PDA was ascertained by a series of characterization techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The dispersibility of obtained CNT nanocomposites (named as CNT-PDA-PDMC) was further examined. Results showed that the dispersibility of CNT-PDA-PDMC in aqueous and organic solutions was obviously enhanced. Apart from PDMC, many other amino-terminated polymers can also be used to functionalization of CNTs via similar strategy. Therefore, the method described in this work should be a general strategy for fabrication various polymer nanocomposites.

  7. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  8. The influences of the transfer method and particle surface chemistry on the dispersion of nanoparticles in nanocomposites

    Science.gov (United States)

    Pravaz, Olivier; Droz, Benoît; Schurtenberger, Peter; Dietsch, Hervé

    2012-10-01

    The synthesis via in situ polymerization and characterization of nanocomposites (NCs) made from silica (SiO2) nanoparticles in a methyl methacrylate (MMA) monomer matrix is reported. We first investigate the transfer of well-defined spherical silica nanoparticles (NPs) (average radius R = 24.2 +/- 3.2 nm) into the monomer solvent. We study the influence of two transfer methods and different surface chemistries on the resulting colloidal stability. The first transfer method consists of drying the silica particles into powder before dispersing them via ultrasonication in the MMA matrix. The second is based on repetitive centrifugations to exchange NPs from their synthetic milieu to pure MMA, avoiding the dried powder state. These transfer methods are compared for two kinds of NP surface chemistry, natural silanol (Si-OH) groups of the silica NPs and an additional silane coupling agent, namely 3-(trimethoxysilyl)propyl methacrylate (TPM), which mimics the monomeric group of the MMA dispersing milieu. We then characterize the morphology of the resulting nanocomposites prepared via in situ polymerization at a fixed amount of dispersed NPs (2.2 wt%; 1 vol%) using a combination of transmission electron microscopy (TEM) from ultramicrotomed nanocomposite films, thermogravimetry (TGA) and small angle X-ray scattering (SAXS).The synthesis via in situ polymerization and characterization of nanocomposites (NCs) made from silica (SiO2) nanoparticles in a methyl methacrylate (MMA) monomer matrix is reported. We first investigate the transfer of well-defined spherical silica nanoparticles (NPs) (average radius R = 24.2 +/- 3.2 nm) into the monomer solvent. We study the influence of two transfer methods and different surface chemistries on the resulting colloidal stability. The first transfer method consists of drying the silica particles into powder before dispersing them via ultrasonication in the MMA matrix. The second is based on repetitive centrifugations to exchange NPs from

  9. A Shrinkage Estimator for Combination of Bioassays

    Institute of Scientific and Technical Information of China (English)

    Jian Xiong; D.G. Chen; Zhen-hai Yang

    2007-01-01

    A shrinkage estimator and a maximum likelihood estimator are proposed in this paper for combination of bioassays. The shrinkage estimator is obtained in closed form which incorporates prior information just on the common log relative potency after the homogeneity test for combination of bioassays is accepted. It is a practical improvement over other estimators which require iterative procedure to obtain the estimator for the relative potency. A real data is also used to show the superiorities for the newly-proposed procedures.

  10. Episodic acidification of small streams in the northeastern united states: Fish mortality in field bioassays

    Science.gov (United States)

    Van Sickle, J.; Baker, J.P.; Simonin, H.A.; Baldigo, Barry P.; Kretser, W.A.; Sharpe, W.E.

    1996-01-01

    In situ bioassays were performed as part of the Episodic Response Project, to evaluate the effects of episodic stream acidification on mortality of brook trout (Salvelinus fontinalis) and forage fish species. We report the results of 122 bioassays in 13 streams of the three study regions: the Adirondack mountains of New York, the Catskill mountains of New York, and the Northern Appalachian Plateau of Pennsylvania. Bioassays during acidic episodes had significantly higher mortality than did bioassays conducted under nonacidic conditions, but there was little difference in mortality rates in bioassays experiencing acidic episodes and those experiencing acidic conditions throughout the test period. Multiple logistic regression models were used to relate bioassay mortality rates to summary statistics of time-varying stream chemistry (inorganic monomeric aluminum, calcium, pH, and dissolved organic carbon) estimated for the 20-d bioassay periods. The large suite of candidate regressors also included biological, regional, and seasonal factors, as well as several statistics summarizing various features of aluminum exposure duration and magnitude. Regressor variable selection and model assessment were complicated by multicol-linearity and overdispersion. For the target fish species, brook trout, bioassay mortality was most closely related to time-weighted median inorganic aluminum. Median Ca and minimum pH offered additional explanatory power, as did stream-specific aluminum responses. Due to high multicollinearity, the relative importance of different aluminum exposure duration and magnitude variables was difficult to assess, but these variables taken together added no significant explanatory power to models already containing median aluminum. Between 59 and 79% of the variation in brook trout mortality was explained by models employing between one and five regressors. Simpler models were developed for smaller sets of bioassays that tested slimy and mottled sculpin

  11. Bioassay criteria for environmental restoration workers

    International Nuclear Information System (INIS)

    Environmental restoration (ER) work at the U. S. Department of Energy Hanford Site posed questions concerning when to perform bioassay monitoring of workers for potential intakes of radioactivity. Application of criteria originally developed for use inside radionuclide processing facilities to ER work resulted in overly restrictive bioassay requirements. ER work typically involves site characterization or, excavating large quantities of potentially contaminated soil, rather than working with concentrated quantities of radioactivity as in a processing facility. An improved approach, tailored to ER work, provided soil contamination concentrations above which worker bioassay would be required. Soil concentrations were derived assuming acute or chronic intakes of 2% of an Annual Limit on Intake (ALI), or a potential committed effective dose equivalent of 100 mrem, and conservative dust loading of air from the work. When planning ER work, the anticipated soil concentration and corresponding need for bioassay could be estimated from work-site historical records. Once site work commenced, soil sampling and work-place surveys could be used to determine bioassay needs. This approach substantially reduced the required number of bioassay samples with corresponding reductions in analytical costs, schedules, and more flexible work-force management. (Work supported by the US Department of Energy under contract DOE-AC06-76RLO 1830.)

  12. Surface layer ozone and nitric oxides in the Arctic: The inuence of boundary layer dynamics, snowpack chemistry, surface exchanges, and seasonality

    Science.gov (United States)

    Van Dam, Brie A.

    The snowpack is a region of active chemistry. Aqueous chemistry in a quasi-liquid layer on snow grains and gas-phase chemical reactions in snow interstitial air can lead to the production or destruction of important trace gases. Physical transport parameters such as wind pumping and diffusion affect the vertical distribution of gases within the snowpack. The resulting emission or uptake of trace gases at the atmosphere-snowpack interface can have significant in uence on the chemistry of the lower atmosphere. In this work the dynamic interactions between the snowpack and atmosphere are examined from multiple perspectives. The primary focus is on ozone (O3) and nitrogen oxides (NOx) in the Arctic, a region undergoing widespread environmental change. To investigate an ice-sheet location with year round snow cover, data from a two-year campaign at Summit, Greenland are implemented. At Summit this study examines (1) the processes contributing to vigorous chemistry in snow interstitial air, and (2) the role of the boundary layer over snow in determining surface layer NOx. Physical and chemical processes are shown to contribute to distinct seasonal and diurnal cycles of O3, NO, and NO2 in the snowpack. Boundary layer depths estimated from sonic anemometer turbulence quantities are used alongside sodar-derived values to show that the depth of the stable to weakly stable boundary layer at Summit was not a primary factor in determining NO x in early summer. Motivated by observations of an increase in the length of the snow-free season in the Arctic in recent decades, data from a one-year experiment at the seasonally-snow covered location of Toolik Lake, AK are also incorporated. This study shows the first observations of springtime ozone depletion events at a location over 200 km from the coast in the Arctic. FLEXPART analysis is used to illustrate that these inland events are linked to transport conditions. Lastly at this location, eddy-covariance O3 uxes were calculated to

  13. Mass Spectrometric Analysis of the Cell Surface N-Glycoproteome by Combining Metabolic Labeling and Click Chemistry

    Science.gov (United States)

    Smeekens, Johanna M.; Chen, Weixuan; Wu, Ronghu

    2015-04-01

    Cell surface N-glycoproteins play extraordinarily important roles in cell-cell communication, cell-matrix interactions, and cellular response to environmental cues. Global analysis is exceptionally challenging because many N-glycoproteins are present at low abundances and effective separation is difficult to achieve. Here, we have developed a novel strategy integrating metabolic labeling, copper-free click chemistry, and mass spectrometry (MS)-based proteomics methods to analyze cell surface N-glycoproteins comprehensively and site-specifically. A sugar analog containing an azido group, N-azidoacetylgalactosamine, was fed to cells to label glycoproteins. Glycoproteins with the functional group on the cell surface were then bound to dibenzocyclooctyne-sulfo-biotin via copper-free click chemistry under physiological conditions. After protein extraction and digestion, glycopeptides with the biotin tag were enriched by NeutrAvidin conjugated beads. Enriched glycopeptides were deglycosylated with peptide- N-glycosidase F in heavy-oxygen water, and in the process of glycan removal, asparagine was converted to aspartic acid and tagged with 18O for MS analysis. With this strategy, 144 unique N-glycopeptides containing 152 N-glycosylation sites were identified in 110 proteins in HEK293T cells. As expected, 95% of identified glycoproteins were membrane proteins, which were highly enriched. Many sites were located on important receptors, transporters, and cluster of differentiation proteins. The experimental results demonstrated that the current method is very effective for the comprehensive and site-specific identification of the cell surface N-glycoproteome and can be extensively applied to other cell surface protein studies.

  14. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    Science.gov (United States)

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-01-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562

  15. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method.

    Science.gov (United States)

    Zhang, Yanan; Ren, Weiqing

    2014-12-28

    Droplets on a solid surface patterned with microstructures can exhibit the composite Cassie-Baxter (CB) state or the wetted Wenzel state. The stability of the CB state is determined by the energy barrier separating it from the wetted state. In this work, we study the CB to Wenzel transition using the string method [E et al., J. Chem. Phys. 126, 164103 (2007); W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 138, 134105 (2013)]. We compute the transition states and energy barriers for a three-dimensional droplet on patterned surfaces. The liquid-vapor coexistence is modeled using the mean field theory. Numerical results are obtained for surfaces patterned with straight pillars and nails, respectively. It is found that on both type of surfaces, wetting occurs via infiltration of the liquid in a single groove. The reentrant geometry of nails creates large energy barrier for the wetting of the solid surface compared to straight pillars. We also study the effect of surface chemistry, pillar height, and inter-pillar spacing on the energy barrier and compare it with nails.

  16. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanan, E-mail: ynzhang@suda.edu.cn [School of Mathematical Sciences, Soochow University, Suzhou 215006 (China); Ren, Weiqing, E-mail: matrw@nus.edu.sg [Department of Mathematics, National University of Singapore, Singapore 119076 (Singapore); Institute of High Performance Computing, Singapore 138632 (Singapore)

    2014-12-28

    Droplets on a solid surface patterned with microstructures can exhibit the composite Cassie-Baxter (CB) state or the wetted Wenzel state. The stability of the CB state is determined by the energy barrier separating it from the wetted state. In this work, we study the CB to Wenzel transition using the string method [E et al., J. Chem. Phys. 126, 164103 (2007); W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 138, 134105 (2013)]. We compute the transition states and energy barriers for a three-dimensional droplet on patterned surfaces. The liquid-vapor coexistence is modeled using the mean field theory. Numerical results are obtained for surfaces patterned with straight pillars and nails, respectively. It is found that on both type of surfaces, wetting occurs via infiltration of the liquid in a single groove. The reentrant geometry of nails creates large energy barrier for the wetting of the solid surface compared to straight pillars. We also study the effect of surface chemistry, pillar height, and inter-pillar spacing on the energy barrier and compare it with nails.

  17. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry.

    Science.gov (United States)

    Zen, Federico; Angione, M Daniela; Behan, James A; Cullen, Ronan J; Duff, Thomas; Vasconcelos, Joana M; Scanlan, Eoin M; Colavita, Paula E

    2016-01-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30-90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562

  18. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    Science.gov (United States)

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-04-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.

  19. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, George W [Columbia University

    2015-02-16

    Executive Summary of Final Report for Award DE-FG02-88ER13937 Project Title: Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and its Precursors on Metal Surfaces Applicant/Institution: Columbia University Principal Investigator: George W. Flynn Objectives: The objectives of this project were to reveal the mechanisms and reaction processes that solid carbon materials undergo when combining with gases such as oxygen, water vapor and hydrocarbons. This research was focused on fundamental chemical events taking place on single carbon sheets of graphene, a two-dimensional, polycyclic carbon material that possesses remarkable chemical and electronic properties. Ultimately, this work is related to the role of these materials in mediating the formation of polycyclic aromatic hydrocarbons (PAH’s), their reactions at interfaces, and the growth of soot particles. Our intent has been to contribute to a fundamental understanding of carbon chemistry and the mechanisms that control the formation of PAH’s, which eventually lead to the growth of undesirable particulates. We expect increased understanding of these basic chemical mechanisms to spur development of techniques for more efficient combustion of fossil fuels and to lead to a concomitant reduction in the production of undesirable solid carbon material. Project Description: Our work treated specifically the surface chemistry aspects of carbon reactions by using proximal probe (atomic scale imaging) techniques to study model systems of graphene that have many features in common with soot forming reactions of importance in combustion flames. Scanning tunneling microscopy (STM) is the main probe technique that we used to study the interfacial structure and chemistry of graphene, mainly because of its ability to elucidate surface structure and dynamics with molecular or even atomic resolution. Scanning tunneling spectroscopy (STS), which measures the local density of quantum states over a single

  20. Thermal chemistry of hydrazine on clean and oxygen- and water-predosed Cu(110) single-crystal surfaces

    Science.gov (United States)

    Yao, Yunxi; Zaera, Francisco

    2016-08-01

    The chemistry of hydrazine on Cu(110) single-crystal surfaces was probed under ultrahigh vacuum (UHV) conditions by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Survey TPD experiments identified molecular nitrogen and ammonia as the main desorbing products from thermal activation of the adsorbate, but small amounts of diazene and NH2· radicals were also detected. At saturation coverage, N2 production leads NH3 desorption by approximately 10 K (with TPD peaks at 350 K versus 360 K, respectively), indicating a preference for dehydrogenation over N-N bond scission steps, and additional nitrogen was seen at even lower temperatures (320 K) in experiments starting with even higher doses of hydrazine. On the other hand, the formation of NH3 and NH2·, which desorb in a wide range of temperatures between approximately 300 K and 700 K, dominates in experiments with low N2H4 doses, presumably because a stronger interaction of the N-N bond with the metal in the flat adsorption geometry expected at such low coverages. Dosing at room temperature seems to also facilitate the dissociative adsorption, albeit via dehydrogenation steps that lead to the subsequent production of more significant amounts of diazene and of molecular hydrogen (in addition to N2, NH3, and NH2·). Preadsorption of oxygen on the Cu(110) surface helps stabilize the hydrazine, increasing its desorption temperature and helping with the low-temperature (320 K) production of N2. Coadsorption of hydrazine with water leads to facile proton exchange, as indicated by the production of NH2D in TPD experiments with N2H4 + D2O. This isotope scrambling must occur at cryogenic temperatures because all water desorbs from the surface below 200 K and no other changes in surface chemistry are observed after that. The implications of all this chemistry to practical applications that may use hydrazine in surface reactions with copper, including its use as a reducing agent in atomic layer

  1. Characterization and stability of gold nanoparticles depending on their surface chemistry: Contribution of capillary zone electrophoresis to a quality control.

    Science.gov (United States)

    Pallotta, Arnaud; Boudier, Ariane; Leroy, Pierre; Clarot, Igor

    2016-08-26

    Four kinds of gold nanoparticles (AuNP) quite similar in terms of gold core size (ca. 5nm) and shape (spherical) but differing by their surface chemistry (either negatively, or positively charged, or neutral) were synthesized. They were analyzed using both the classical physicochemical approach (spectrophotometry, dynamic light scattering coupled or not to electrophoresis and transmission electron microscopy) and capillary zone electrophoresis equipped with photodiode array detection. The results obtained by both methodologies (related to Surface Plasmon Band-maximal absorbance wavelength-, and zeta potential and electrophoretic mobilities) were well correlated. Moreover, taking advantage of the separation method, the sample heterogeneity was evaluated and an impurity profile was extracted. This allowed setting some specifications which were then applied on the one hand to a batch-to-batch survey to declare NP as conform or not after production and on the other hand to a stability study. PMID:27435685

  2. Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Ju

    2014-09-01

    Full Text Available Four kinds of nanosilica particles with different surface modification were employed to fabricate low-density polyethylene (LDPE composites using melt mixing and hot molding methods. The surface chemistry of modified nanosilica was analyzed by X-ray photoelectron spectroscopy. All silica nanoparticles were found to suppress the space charge injection and accumulation, increase the volume resistivity, decrease the permittivity and dielectric loss factor at low frequencies, and decrease the dielectric breakdown strength of the LDPE polymers. The modified nanoparticles, in general, showed better dielectric properties than the unmodified ones. It was found that the carrier mobility, calculated from J–V curves using the Mott-Gurney equation, was much lower for the nanocomposites than for the neat LDPE.

  3. Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries

    DEFF Research Database (Denmark)

    Malmström, Jenny; Shipovskov, Stepan; Christensen, Brian;

    2009-01-01

    was able to bind and cleave the surface bound osteopontin at the hydrophobic surface. The altered levels of osteopontin binding, hydration of the layer, and susceptibility to thrombin cleavage suggest that osteopontin adopts different conformations and/or orientations at the different material surfaces....... with respect to post-translational modifications. Osteopontin adsorbed at all the surfaces formed thin (approximately 2-5 nm) hydrated layers with the highest amount of protein and the highest density layers observed at the hydrophobic surface. Less protein and a higher level of hydration was observed...

  4. The effects of vacuum annealing on the structure and surface chemistry of iron:nickel alloy nanoparticles

    International Nuclear Information System (INIS)

    In order to increase the longevity of contaminant retention on the particle surface, a method is sought to improve the corrosion resistance of bimetallic iron nickel nanoparticles (INNP) used for the remediation of contaminated water, and thereby extend their industrial lifetime. A multi-disciplinary approach was used to investigate changes induced by vacuum annealing (-8 mbar) at 500 oC on the bulk and surface chemistry of INNP. The particle size was determined to increase significantly as a result of annealing and the thickness of the surface oxide increased by 50%. BET analysis recorded a decrease in INP surface area from 44.88 to 8.08 m2 g-1, consistent with observations from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which indicated the diffusion bonding of previously discrete particles at points of contact. X-ray diffraction (XRD) confirmed that recrystallisation of the metallic cores had occurred, converting a significant fraction of initially amorphous iron nickel alloy into crystalline FeNi alloy. X-ray photoelectron spectroscopy (XPS) indicated a reduction in the proportion of surface iron oxide and a change in its stoichiometry related to annealing-induced disproportionation. This was also evidenced by an increased proportion of Fe(0) and Ni(0) to Fe- and Ni-oxides, respectively. The data also indicated the concurrent development of boron oxide at the metal surfaces, which accounts for the overall increase measured in surface oxide thickness. The improved core crystallinity and the presence of passivating impurity phases at the INNP surfaces may act to improve the corrosion resistance and reactive lifespan of the vacuum annealed INNP for environmental applications.

  5. A preliminary analysis of the surface chemistry of atmospheric aerosol particles in a typical urban area of Beijing.

    Science.gov (United States)

    Zhang, Zhengzheng; Li, Hong; Liu, Hongyan; Ni, Runxiang; Li, Jinjuan; Deng, Liqun; Lu, Defeng; Cheng, Xueli; Duan, Pengli; Li, Wenjun

    2016-09-01

    Atmospheric aerosol particle samples were collected using an Ambient Eight Stage (Non-Viable) Cascade Impactor Sampler in a typical urban area of Beijing from 27th Sep. to 5th Oct., 2009. The surface chemistry of these aerosol particles was analyzed using Static Time of Flight-Secondary Ion Mass Spectrometry (Static TOF-SIMS). The factors influencing surface compositions were evaluated in conjunction with the air pollution levels, meteorological factors, and air mass transport for the sampling period. The results show that a variety of organic ion groups and inorganic ions/ion groups were accumulated on the surfaces of aerosol particles in urban areas of Beijing; and hydrophobic organic compounds with short- or middle-chain alkyl as well as hydrophilic secondary inorganic compounds were observed. All these compounds have the potential to affect the atmospheric behavior of urban aerosol particles. PM1.1-2.1 and PM3.3-4.7 had similar elements on their surfaces, but some molecules and ionic groups demonstrated differences in Time of Flight-Secondary Ion Mass Spectrometry spectra. This suggests that the quantities of elements varied between PM1.1-2.1 and PM3.3-4.7. In particular, more intense research efforts into fluoride pollution are required, because the fluorides on aerosol surfaces have the potential to harm human health. The levels of air pollution had the most significant influence on the surface compositions of aerosol particles in our study. Hence, heavier air pollution was associated with more complex surface compositions on aerosol particles. In addition, wind, rainfall, and air masses from the south also greatly influenced the surface compositions of these urban aerosol particles. PMID:27593274

  6. Surface Wettability and Chemistry of Ozone Perfusion Processed Porous Collagen Scaffold

    Institute of Scientific and Technical Information of China (English)

    Chaozong Liu; Shirley Z. Shen; Zhiwu Han

    2011-01-01

    Crosslinking treatment of collagen has often been used to improve the biological stability and mechanical properties of 3D porous collagen scaffolds. However, accompanying these improvements, the collagen fibril surface becomes hydrophobic nature resulting in a reduced surface wettability. The wetting of the collagen fibril by culture medium is reduced and it is difficult for the medium to diffuse into the 3D structure of a porous collagen scaffold. This paper reports a "perfusion processing"strategy using ozone to improve the surface wettability of chemical crosslinked collagen scaffolds. Surface wettability, surface composition and biological stability were analyzed to evaluate the effectiveness of this surface processing strategy. It was observed that ozone perfusion processing improved surface wettability for both exterior and interior surfaces of the porous 3D collagen scaffold. The improvement in wettability is attributed to the incorporation of oxygen-containing functional groups onto the surface of the collagen fibrils, as confirmed by X-ray Photoelectron Spectroscopy (XPS) analysis. This leads to a significant improvement in water taking capability without compromising the bulk biological stability and mechanical properties, and confirms that ozone perfusion processing is an effective tool to modify the wettability both for interior and exterior surfaces throughout the scaffold.

  7. Trends in adsorption characteristics of benzene on transition metal surfaces: Role of surface chemistry and van der Waals interactions

    OpenAIRE

    Yildirim, Handan; Greber, Thomas; Kara, Abdelkader

    2013-01-01

    The accurate description of interface characteristics between organic molecules and metal surfaces has long been debated in theoretical studies. A well-founded description of interface geometry and adsorption energy is highly desirable for these hybrid inorganic/organic interfaces. Using first principles calculations with the inclusion of five van der Waals functionals (vdW-DF family), benzene (C6H6) adsorption on seven transition metal surfaces is studied to explore the performance of these ...

  8. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    Science.gov (United States)

    Shi, Yujun

    2015-02-17

    shown that ring-opening reactions play a vital role in characterizing the reaction chemistry. On the other hand, exocyclic Si-H(CH3) bond cleavages are more important in the less-puckered disilacyclobutane molecules. Metal filaments are essential in HWCVD since they serve as catalysts to decompose precursor gases to reactive species, which initiate gas-phase reaction chemistry and thin film growth. We discuss the structural changes in metal filaments when exposed to various precursor gases. Depending on the nature of the radical intermediates formed from the hot-wire decomposition and subsequent gas-phase reactions, metal silicides and carbides can be formed. Overall, study of the gas-phase reaction chemistry in HWCVD provides important knowledge of the chemical species produced prior to their deposition on a substrate surface. This helps in identifying the major contributor to alloy formation on the filament itself and the film growth, and consequently, in determining the properties of the deposited films. An integrated knowledge of the gas-phase reaction chemistry, filament alloy formation, and thin film deposition is required for an efficient deposition of high-quality thin films and nanomaterials. PMID:25586211

  9. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jiajun [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhai Yunbo, E-mail: ybzhai@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen Hongmei; Li Caiting; Zeng Guangming; Pang Daoxiong; Lu Pei [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The effects of pretreatment on the surface chemistry and pore sizes were studied. Black-Right-Pointing-Pointer Treated GAC was nitrogen functionalized and alkylated GAC also called modified GAC. Black-Right-Pointing-Pointer HNO{sub 3} pretreatment caused a slight decrease in surface area and microporosity. Black-Right-Pointing-Pointer The nitrogen percentage of modified GAC which pretreated by H{sub 2}O{sub 2} was 4.07%. Black-Right-Pointing-Pointer The pyridine of modified GAC which pretreated by urea-formaldehyde resin was 45.88%. - Abstract: In this paper, granular activated carbon (GAC) from coconut shell was pretreated by HNO{sub 3}, H{sub 2}O{sub 2} and urea-formaldehyde resin, respectively. Then the obtained materials were functionalized in the same way for nitrogen group, and then alkylated. Effects of pretreatment on the surface chemistry and pore size of modified GACs were studied. Surface area and micropore volume of modified GAC which pretreated by HNO{sub 3} were 723.88 m{sup 2}/g and 0.229 cm{sup 3}/g, respectively, while virgin GAC were 742.34 m{sup 2}/g and 0.276 cm{sup 3}/g. Surface area and micropore volume decrease of the modified GACs which pretreated by the others two methods were more drastically. The types of groups presented were analyzed by electrophoresis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). N-CH{sub 3} group and C=N group were detected on the surfaces of these three kinds of modified GACs. Results of XPS showed that the nitrogen functions of modified GAC which pretreated by H{sub 2}O{sub 2} was 4.07%, it was more than that of the others two pretreatment methods. However, the modified GAC which pretreated by urea-formaldehyde resin was fixed more pyridine structure, which structure percentage was 45.88%, in addition, there were more basic groups or charge on the surface than the others.

  10. Soil bioassays and the 129I problem

    International Nuclear Information System (INIS)

    Iodine-129 is a very long-lived radionuclide associated with spent nuclear fuel. Because 129I has a 107-year half-life, is very mobile in the environment and is a biologically essential element, it is the most limiting radionuclide affecting disposal of spent fuel. Traditionally, the potential impacts of 129I have been estimated for human receptors, with the implicit assumption that all other organisms are less at risk. Risk is the operative word, the objective for protection of humans is to protect individuals, whereas the objective for other biota is usually to protect populations. Here, 129I poses an interesting problem: the half-life is so long it is barely radioactive. Thus, the chemical toxicity may be more limiting than the radiological impact. A series of soil bioassays were employed, including a life-cycle plant (Brassica rapa) bioassay, a modified earthworm survival bioassay, a microarthropod colonization/survival bioassay, and a series of more common soil and aquatic bioassays. Chemical toxicity was indicated at soil concentrations as low as 5 mg kg-1. At these levels, radiological impact on non-human biota would not be expected, and therefore the chemical toxicity effects are more critical. However, human food-chain model estimates show these levels, as pure 129I, would be unacceptable for human radiological exposure, so that for 129I, protection of the human environment should also be protective of non-human biota

  11. Novel antifouling surface with improved hemocompatibility by immobilization of polyzwitterions onto silicon via click chemistry

    Science.gov (United States)

    Zheng, Sunxiang; Yang, Qian; Mi, Baoxia

    2016-02-01

    A novel procedure is presented to develop an antifouling silicon surface with improved hemocompatibility by using a zwitterionic polymer, poly(sulfobetaine methacrylate) (polySBMA). Functionalization of the silicon surface with polySBMA involved the following three steps: (1) an alkyne terminated polySBMA was synthesized by RAFT polymerization; (2) a self-assembled monolayer with bromine end groups was constructed on the silicon surface, and then the bromine end groups were replaced by azide groups; and (3) the polySBMA was attached to the silicon surface by azide-alkyne cycloaddition click reaction. Membrane characterization confirmed a successful silicon surface modification with almost 100% coverage by polySBMA and an extremely hydrophilic surface after such modification. The polySBMA-modified silicon surface was found to have excellent anti-nonspecific adsorption properties for both bovine serum albumin (BSA) protein and model bacterial cells. Whole blood adsorption experiments showed that the polySBMA-modified silicon surface exhibited excellent hemocompatibility and effective anti-adhesion to blood cells. Silicon membranes with such antifouling and hemocompatible surfaces can be advantageously used to drastically extend the service life of implantable medical devices such as artificial kidney devices.

  12. Results of an in-situ mussel bioassay in the Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Houkal, D.; Rummel, B.; Shephard, B. [URS Consultants, Inc., Seattle, WA (United States)

    1995-12-31

    As part of an ecological evaluation in the Puget Sound, Washington, an in situ bioassay using the blue mussel (Mytilus galloprovincialis) was conducted to determine the effect of sediment-borne chemicals on bioaccumulation and growth of shellfish. The assay included four sample stations from a contaminated embayment (Sinclair Inlet) and one station from a reference site (Holmes Harbor). At each station, 300 mussels were deployed 1 meter above the sediment surface and maintained for a period of 3 months. The length and total weight of each mussel was measured at the beginning of the exposure period and the length, total weight, tissue weight, and shell weight of each mussel was measured at the end of the exposure period. Composite tissue samples from 100 mussels were collected at the beginning and end of the exposure period and analyzed for semivolatile organic chemicals, chlorinated pesticides, polychlorinated biphenyls, inorganic chemicals, organotin, and lipids. Water quality measurements (including temperature, salinity, dissolved oxygen, and chlorophyll a) were made at each station every two weeks during the assay to characterize environmental factors influencing mussel bioaccumulation and growth. Weight growth was similar among stations in Sinclair Inlet, but was significantly greater in all Sinclair Inlet stations compared to the Holmes Harbor reference station. Length growth was statistically indistinguishable among stations in Sinclair Inlet. Only one Sinclair Inlet station had a significantly greater length growth compared to the Holmes Harbor reference station. The influence of water quality on mussel growth is presented. The correlation between sediment chemistry and bioaccumulation is discussed.

  13. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  14. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  15. Plasmonic Hot Electron Transport Driven Site-Specific Surface-Chemistry with Nanoscale Spatial Resolution

    CERN Document Server

    Cortés, Emiliano; Cambiasso, Javier; Jermyn, Adam S; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A

    2016-01-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nanometre resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot carrier transport from...

  16. Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions

    Science.gov (United States)

    Panayotov, Dimitar A.; Morris, John R.

    2016-03-01

    The fascinating particle size dependence to the physical, photophysical, and chemical properties of gold has motivated thousands of studies focused on exploring the ability of supported gold nanoparticles to catalyze chemical transformations. In particular, titanium dioxide-supported gold (Au/TiO2) nanoparticles may provide the right combination of electronic structure, structural dynamics, and stability to affect catalysis in important practical applications from environmental remediation to selective hydrogenation to carbon monoxide oxidation. Harnessing the full potential of Au/TiO2 will require a detailed atomic-scale understanding of the thermal and photolytic processes that accompany chemical conversion. This review describes some of the unique properties exhibited by particulate gold before delving into how those properties affect chemistry on titania supports. Particular attention is given first to thermally driven reactions on single crystal system. This review then addresses nanoparticulate samples in an effort begin to bridge the so-called materials gap. Building on the foundation provided by the large body of work in the field of thermal catalysis, the review describes new research into light-driven catalysis on Au/TiO2. Importantly, the reader should bear in mind throughout this review that thermal chemistry and thermal effects typically accompany photochemistry. Distinguishing between thermally-driven stages of a reaction and photo-induced steps remains a significant challenge, but one that experimentalists and theorists are beginning to decipher with new approaches. Finally, a summary of several state-of-the-art studies describes how they are illuminating new frontiers in the quest to exploit Au/TiO2 as an efficient catalyst and low-energy photocatalyst.

  17. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs.

    NARCIS (Netherlands)

    Davison, N.L.; Su, J.; Yuan, H.; Beucken, J.J.J.P van den; Bruijn, J.D. de; rrere-de Groot, F. Ba

    2015-01-01

    It has been reported that surface microstructural dimensions can influence the osteoinductivity of calcium phosphates (CaPs), and osteoclasts may play a role in this process. We hypothesised that surface structural dimensions of

  18. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  19. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.; Gundel, LaraA.

    2005-05-01

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water mass uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.

  20. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    International Nuclear Information System (INIS)

    Highlights: • Polyacrylate coatings with controlled surface functionalities. • Impact of surface chemistry and morphology on dengue antibody immobilization. • Enhancement of detection signal as a result of bio-activation of polymer surface. - Abstract: Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional “spacers”, hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups

  1. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Center for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Center for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Rothan, Hussin A.; Yusof, Rohana [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Marel, Cees van der [Philips Materials Analysis, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Koole, Leo H. [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Center for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Faculty of Health, Medicine and Life Sciences, Maastricht University (Netherlands)

    2014-10-30

    Highlights: • Polyacrylate coatings with controlled surface functionalities. • Impact of surface chemistry and morphology on dengue antibody immobilization. • Enhancement of detection signal as a result of bio-activation of polymer surface. - Abstract: Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional “spacers”, hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups

  2. In vitro bioassays to evaluate complex chemical mixtures in recycled water.

    Science.gov (United States)

    Jia, Ai; Escher, Beate I; Leusch, Frederic D L; Tang, Janet Y M; Prochazka, Erik; Dong, Bingfeng; Snyder, Erin M; Snyder, Shane A

    2015-09-01

    With burgeoning population and diminishing availability of freshwater resources, the world continues to expand the use of alternative water resources for drinking, and the quality of these sources has been a great concern for the public as well as public health professionals. In vitro bioassays are increasingly being used to enable rapid, relatively inexpensive toxicity screening that can be used in conjunction with analytical chemistry data to evaluate water quality and the effectiveness of water treatment. In this study, a comprehensive bioassay battery consisting of 36 bioassays covering 18 biological endpoints was applied to screen the bioactivity of waters of varying qualities with parallel treatments. Samples include wastewater effluent, ultraviolet light (UV) and/or ozone advanced oxidation processed (AOP) recycled water, and infiltrated recycled groundwater. Based on assay sensitivity and detection frequency in the samples, several endpoints were highlighted in the battery, including assays for genotoxicity, mutagenicity, estrogenic activity, glucocorticoid activity, arylhydrocarbon receptor activity, oxidative stress response, and cytotoxicity. Attenuation of bioactivity was found to be dependent on the treatment process and bioassay endpoint. For instance, ozone technology significantly removed oxidative stress activity, while UV based technologies were most efficient for the attenuation of glucocorticoid activity. Chlorination partially attenuated genotoxicity and greatly decreased herbicidal activity, while groundwater infiltration efficiently attenuated most of the evaluated bioactivity with the exception of genotoxicity. In some cases, bioactivity (e.g., mutagenicity, genotoxicity, and arylhydrocarbon receptor) increased following water treatment, indicating that transformation products of water treatment may be a concern. Furthermore, several types of bioassays with the same endpoint were compared in this study, which could help guide the selection

  3. In vitro bioassays to evaluate complex chemical mixtures in recycled water.

    Science.gov (United States)

    Jia, Ai; Escher, Beate I; Leusch, Frederic D L; Tang, Janet Y M; Prochazka, Erik; Dong, Bingfeng; Snyder, Erin M; Snyder, Shane A

    2015-09-01

    With burgeoning population and diminishing availability of freshwater resources, the world continues to expand the use of alternative water resources for drinking, and the quality of these sources has been a great concern for the public as well as public health professionals. In vitro bioassays are increasingly being used to enable rapid, relatively inexpensive toxicity screening that can be used in conjunction with analytical chemistry data to evaluate water quality and the effectiveness of water treatment. In this study, a comprehensive bioassay battery consisting of 36 bioassays covering 18 biological endpoints was applied to screen the bioactivity of waters of varying qualities with parallel treatments. Samples include wastewater effluent, ultraviolet light (UV) and/or ozone advanced oxidation processed (AOP) recycled water, and infiltrated recycled groundwater. Based on assay sensitivity and detection frequency in the samples, several endpoints were highlighted in the battery, including assays for genotoxicity, mutagenicity, estrogenic activity, glucocorticoid activity, arylhydrocarbon receptor activity, oxidative stress response, and cytotoxicity. Attenuation of bioactivity was found to be dependent on the treatment process and bioassay endpoint. For instance, ozone technology significantly removed oxidative stress activity, while UV based technologies were most efficient for the attenuation of glucocorticoid activity. Chlorination partially attenuated genotoxicity and greatly decreased herbicidal activity, while groundwater infiltration efficiently attenuated most of the evaluated bioactivity with the exception of genotoxicity. In some cases, bioactivity (e.g., mutagenicity, genotoxicity, and arylhydrocarbon receptor) increased following water treatment, indicating that transformation products of water treatment may be a concern. Furthermore, several types of bioassays with the same endpoint were compared in this study, which could help guide the selection

  4. Surface chemistry effects in finite element modeling of heat transfer in (micron)-fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M

    2000-12-07

    Equations for modeling surface chemical kinetics by the interaction of gaseous and surface species are presented. The formulation is embedded in a finite element heat transfer code and an ordinary differential equation package is used to solve the surface system of chemical kinetic equations for each iteration within the heat transfer solver. The method is applied to a flow which includes methane and methanol in a microreactor on a chip. A simpler more conventional method, a plug flow reactor model, is then applied to a similar problem. Initial results for steam reforming of methanol are given.

  5. Recent developments of surface complexation models applied to environmental aquatic chemistry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on numerous latest references, the current developments in surface complexation, surface precipitation and the corresponding models (SCMs and SPMs), were reviewed. The contents involved comparison on surface charge composition and layer-structure of solid-solution interface for the classical 1-pK and 2- pK models, In addition, the fundamental concept and relations of the new models, i.e., multi-site complexation (MUSIC) and charge -distribution (CD) MUSIC models were described as well. To avoid misuse or abuse, it must be emphasized that the applicability nd limitation for each model should be considered carefully when selecting the concerned model(s). In addition, some new powerful techniques for surface characterization and analysis applied to model establishment and modification were also briefly introduced.

  6. Surface Chemistry of Polymers Physical Adsorption of Nitrogen, Argon, Sulfur Dioxide and Neopentane on Polyvinylidene Fluoride

    OpenAIRE

    Houriet, Jean-Philippe; Ghiste, Patrick; Stoeckli, Fritz

    2007-01-01

    The adsorption of nitrogen, argon, sulfur dioxide and neopentane on polyvinylidene fluoride has been measured by static methods and by gas-solid chromatography. The polymer has a homogeneous surface of low energy, which is not significantly affected by heating.

  7. Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler.

    Science.gov (United States)

    Morra, Marco; Giavaresi, Gianluca; Sartori, Maria; Ferrari, Andrea; Parrilli, Annapaola; Bollati, Daniele; Baena, Ruggero Rodriguez Y; Cassinelli, Clara; Fini, Milena

    2015-04-01

    The paper presents results of physico-chemical and biological investigations of a surface-engineered synthetic bone filler. Surface analysis confirms that the ceramic phosphate granules present a collagen nanolayer to the surrounding environment. Cell cultures tests show that, in agreement with literature reports, surface-immobilized collagen molecular cues can stimulate progression along the osteogenic pathway of undifferentiated human mesenchymal cells. Finally, in vivo test in a rabbit model of critical bone defects shows statistically significant increase of bone volume and mineral apposition rate between the biomimetic bone filler and collagen-free control. All together, obtained data confirm that biomolecular surface engineering can upgrade the properties of implant device, by promoting more specific and targeted implant-host cells interactions.

  8. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  9. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei;

    2016-01-01

    investigated. The morphology, size and surface charge of four types of CuO NPs, i.e., CuO-core, CuO-COOH, CuO-NH2 and CuO-PEG NPs, were characterized by TEM, dynamic light scattering (DLS) and zeta-potential measurement, respectively. All of the four CuO NPs had a negative surface charge around -10 m...

  10. A Potential Mechanism for Perchlorate Formation on Mars: Surface-Radiolysis-Initiated Atmospheric Chemistry

    Science.gov (United States)

    Wilson, Eric; Atreya, Sushil K.; Kaiser, Ralf-Ingo; Mahaffy, Paul

    2016-10-01

    Perchlorate (ClO4–) is prevalent on Earth, and with observations of perchlorate on lunar samples and chondrite meteorites, along with recent observations indicating the presence of perchlorate (ClO4–) in the Martian surface by the Phoenix lander and the Sample Analysis at Mars (SAM) on the Mars Science Laboratory (MSL) rover, it appears that the existence of perchlorate is widespread throughout the solar system. However, the abundance and isotopic composition of Martian perchlorate suggest that the perchlorate formation mechanism on Mars may involve a different path than perchlorate found elsewhere in the solar system. Motivated by this, we employ a one-dimensional chemical model to investigate the viability of perchlorate formation in the atmosphere of Mars, instigated by the radiolysis of the Martian surface by galactic cosmic rays. The surface-atmosphere interaction to produce Martian perchlorate involves the sublimation of chlorine oxides into the atmosphere, through surface radiolysis, and their subsequent synthesis to form perchloric acid (HClO4), followed by surface deposition and mineralization to form surface perchlorates. Considering the chlorine oxide, OClO, we find an OClO surface flux as low as 3.2x107 molecules cm–2 s–1, sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  11. Grafting of poly(ethylene glycol) on click chemistry modified Si(100) surfaces.

    Science.gov (United States)

    Flavel, Benjamin S; Jasieniak, Marek; Velleman, Leonora; Ciampi, Simone; Luais, Erwann; Peterson, Joshua R; Griesser, Hans J; Shapter, Joe G; Gooding, J Justin

    2013-07-01

    Poly(ethylene glycol) (PEG) is one of the most extensively studied antifouling coatings due to its ability to reduce protein adsorption and improve biocompatibility. Although the use of PEG for antifouling coatings is well established, the stability and density of PEG layers are often inadequate to provide optimum antifouling properties. To improve on these shortcomings, we employed the stepwise construction of PEG layers onto a silicon surface. Acetylene-terminated alkyl monolayers were attached to nonoxidized crystalline silicon surfaces via a one-step hydrosilylation procedure with 1,8-nonadiyne. The acetylene-terminated surfaces were functionalized via a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction of the surface-bound alkynes with an azide to produce an amine terminated layer. The amine terminated layer was then further conjugated with PEG to produce an antifouling surface. The antifouling surface properties were investigated by testing adsorption of human serum albumin (HSA) and lysozyme (Lys) onto PEG layers from phosphate buffer solutions. Detailed characterization of protein fouling was carried out with X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) combined with principal component analysis (PCA). The results revealed no fouling of albumin onto PEG coatings whereas the smaller protein lysozyme adsorbed to a very low extent. PMID:23790067

  12. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review

    Science.gov (United States)

    Khan, M. A.; Nadeem, M. A.; Idriss, H.

    2016-03-01

    The current efficiency of various photocatalytic processes is limited by the recombination of photogenerated electron-hole pairs in the photocatalyst as well as the back-reaction of intermediate species. This review concentrates on the use of ferroelectric polarization to mitigate electron-hole recombination and back-reactions and therefore improve photochemical reactivity. Ferroelectric materials are considered as wide band gap polarizable semiconductors. Depending on the surface polarization, different regions of the surface experience different extents of band bending and promote different carriers to move to spatially different locations. This can lead to some interesting interactions at the surface such as spatially selective adsorption and surface redox reactions. This introductory review covers the fundamental properties of ferroelectric materials, effect of an internal electric field/polarization on charge carrier separation, effect of the polarization on the surface photochemistry and reviews the work done on the use of these ferroelectric materials for photocatalytic applications such as dye degradation and water splitting. The manipulation of photogenerated charge carriers through an internal electric field/surface polarization is a promising strategy for the design of improved photocatalysts.

  13. Urban and Suburban Influences on Water Chemistry in Washington DC: Impervious Surfaces and Urban Stream Syndrome

    Science.gov (United States)

    MacAvoy, S. E.; Petersen, E.

    2015-12-01

    Among the challenges facing urban rivers are water stormwater runoff problems and changing water chemistry, not only from air and water pollution sources, but also from altered geology with the development of "urban karst". Seventy five percent of the Anacostia River in Washington, D.C. is urban or impervious. The Anacostia River experiences environmental challenges similar to those of other urban industrial rivers (heavy metal, PCB and PAH contamination). It also has Ca/Sr ratios above 200, and Na concentrations higher than Ca, and elevated ionic strength, all associated with extended chemical interaction with concrete. While these chemical characteristics have been documented in the urban areas within DC, they have not been examined in the largely suburban/mixed development tributaries of the Anacostia. Here we examine the base-flow geochemistry of the Anacostia River and its suburban tributaries (6 locations) over a year (November 2014- August 2015), concentrating on the following water chemistry variables: pH, hardness, SAR, alkalinity, Ca, Mg, Na, K, Fe, Mn, Zn, Al, Ba, Ni, total P, S, Sr, NO3-, NH4+, PO43-. NO3- and NH4+ were generally lowest in at all sites in January, but rose to between 0.5 and 2.4 mg/L in June, with highest NO3- concentrations in suburban areas. Na and Cl concentrations were 5x higher in suburban areas than urban areas during the winter months. Ca/Sr concentration ratios, were between 120 and 200 for suburban sites but increased as the sites became more urban (to a high of 240 for the most urban site). These trends have been observed in other urban streams, and correlate with percent impervious area. The data follow patterns expected for "urban stream syndrome" and dissolution of concrete. Suburban areas, with their relatively small streams, show greater winter salting effects than more urban areas down stream. Suburban areas also show higher NO3- (and occasionally higher NH4+) than urban areas except in winter. The data presented here

  14. A two-dimensional atmospheric chemistry modeling investigation of Earth's Phanerozoic O3 and near-surface ultraviolet radiation history

    Science.gov (United States)

    Harfoot, Michael B. J.; Beerling, David J.; Lomax, Barry H.; Pyle, John A.

    2007-04-01

    We use the Cambridge two-dimensional (2-D) chemistry-radiation transport model to investigate the implications for column O3 and near-surface ultraviolet radiation (UV), of variations in atmospheric O2 content over the Phanerozoic (last 540 Myr). Model results confirm some earlier 1-D model investigations showing that global annual mean O3 column increases monotonically with atmospheric O2. Sensitivity studies indicate that changes in temperature and N2O exert a minor influence on O3 relative to O2. We reconstructed Earth's O3 history by interpolating the modeled relationship between O3 and O2 onto two Phanerozoic O2 histories. Our results indicate that the largest variation in Phanerozoic column O3 occurred between 400 and 200 Myr ago, corresponding to a rise in atmospheric O2 to ˜1.5 times the present atmospheric level (PAL) and subsequent fall to ˜0.5 PAL. The O3 response to this O2 decline shows latitudinal differences, thinning most at high latitudes (30-40 Dobson units (1 DU = 0.001 atm cm) at 66°N) and least at low latitudes (5-10 DU at 9°N) where a "self-healing" effect is evident. This O3 depletion coincides with significant increases in the near-surface biologically active UV radiation at high latitudes, +28% as weighted by the Thimijan spectral weighting function. O3 and UV changes were exacerbated when we incorporated a direct feedback of the terrestrial biosphere on atmospheric chemistry, through enhanced N2O production as the climate switched from an icehouse to a greenhouse mode. On the basis of a summary of field and laboratory experimental evidence, we suggest that these UV radiation increases may have exerted subtle rather than catastrophic effects on ecosystem processes.

  15. Assimilation of surface NO2 and O3 observations into the SILAM chemistry transport model

    Science.gov (United States)

    Vira, J.; Sofiev, M.

    2015-02-01

    This paper describes the assimilation of trace gas observations into the chemistry transport model SILAM (System for Integrated modeLling of Atmospheric coMposition) using the 3D-Var method. Assimilation results for the year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the AirBase observation database, which provides the observational data set used in this study. Attention was paid to the background and observation error covariance matrices, which were obtained primarily by the iterative application of a posteriori diagnostics. The diagnostics were computed separately for 2 months representing summer and winter conditions, and further disaggregated by time of day. This enabled the derivation of background and observation error covariance definitions, which included both seasonal and diurnal variation. The consistency of the obtained covariance matrices was verified using χ2 diagnostics. The analysis scores were computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values was improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.

  16. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, George W [Columbia University

    2015-02-16

    Executive Summary of Final Report for Award DE-FG02-88ER13937 Project Title: Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and its Precursors on Metal Surfaces Applicant/Institution: Columbia University Principal Investigator: George W. Flynn Objectives: The objectives of this project were to reveal the mechanisms and reaction processes that solid carbon materials undergo when combining with gases such as oxygen, water vapor and hydrocarbons. This research was focused on fundamental chemical events taking place on single carbon sheets of graphene, a two-dimensional, polycyclic carbon material that possesses remarkable chemical and electronic properties. Ultimately, this work is related to the role of these materials in mediating the formation of polycyclic aromatic hydrocarbons (PAH’s), their reactions at interfaces, and the growth of soot particles. Our intent has been to contribute to a fundamental understanding of carbon chemistry and the mechanisms that control the formation of PAH’s, which eventually lead to the growth of undesirable particulates. We expect increased understanding of these basic chemical mechanisms to spur development of techniques for more efficient combustion of fossil fuels and to lead to a concomitant reduction in the production of undesirable solid carbon material. Project Description: Our work treated specifically the surface chemistry aspects of carbon reactions by using proximal probe (atomic scale imaging) techniques to study model systems of graphene that have many features in common with soot forming reactions of importance in combustion flames. Scanning tunneling microscopy (STM) is the main probe technique that we used to study the interfacial structure and chemistry of graphene, mainly because of its ability to elucidate surface structure and dynamics with molecular or even atomic resolution. Scanning tunneling spectroscopy (STS), which measures the local density of quantum states over a single

  17. Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone

    Directory of Open Access Journals (Sweden)

    J. L. Schnell

    2015-04-01

    Full Text Available We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 and monthly (mid-June peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observed summertime diurnal range (~ 25 ppb is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb is underestimated by about 5 ppb except in the most polluted regions where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80% of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The observed linear relationship showing increases in ozone by up to 6 ppb for larger-sized episodes is also matched.

  18. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.

    Science.gov (United States)

    Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram

    2016-09-01

    Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. PMID:27232305

  19. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 deg. C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH)2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH)2. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  20. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S. [Centro Nacional de Investigaciones Metalurgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)], E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Coy, A.E.; Viejo, F.; Arrabal, R. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2009-01-15

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 deg. C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH){sub 2} and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH){sub 2}. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  1. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    Science.gov (United States)

    Feliu, S., Jr.; Pardo, A.; Merino, M. C.; Coy, A. E.; Viejo, F.; Arrabal, R.

    2009-01-01

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 °C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH) 2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH) 2. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  2. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

    KAUST Repository

    Chan, Candace K.

    2009-04-01

    Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte interphase (SEI) formed on silicon due to the reduction of the electrolyte. Given that a good, passivating SEI layer plays such a crucial role in graphite anodes, we have characterized the surface composition and morphology of the SEI formed on the SiNWs using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). We have found that the SEI is composed of reduction products similar to that found on graphite electrodes, with Li2CO3 as an important component. Combined with electrochemical impedance spectroscopy, the results were used to determine the optimal cycling parameters for good cycling. The role of the native SiO2 as well as the effect of the surface area of the SiNWs on reactivity with the electrolyte were also addressed. © 2009 Elsevier B.V. All rights reserved.

  3. Influence of Structure and Surface Chemistry of Porous Carbon Electrodes on Supercapacitor Performance

    Science.gov (United States)

    Dyatkin, Boris

    Electrochemical double layer capacitors, which rely on electrosorption of ions in nanostructured carbon electrodes, can supplement or even replace traditional batteries in energy harvesting and storage applications. While supercapacitors offer > 10 kW/kg power densities, their ~5 Wh/kg energy densities are insufficient for many automotive and grid storage applications. Most prior efforts have focused on novel high-performing ionic liquid electrolytes and porous carbons with tunable pore diameters and high specific surface areas. However, existing research lacks fundamental understanding of the influence of surface heterogeneity and disorder, such as graphitic defects and functional groups, on key electrosorption properties at electrode-electrolyte interfaces. These interactions significantly impact charge accumulation densities, ion transport mechanisms, and electrolyte breakdown processes. Subsequently, they must be investigated to optimize ion screening, charge mobilities, and operating voltage windows of the devices. The research in this dissertation examined the influence of surface functional groups and structural ordering on capacitance, electrosorption dynamics, and electrochemical stability of external and internal surface of carbon electrodes. High-temperature vacuum annealing, air oxidation, hydrogenation, and amination were used to tune pore surface compositions and decouple key structural and chemical properties of carbide-derived carbons. The approach combined materials characterization by a variety of techniques, neutron scattering studies of ion dynamics, electrochemical testing, and MD simulations to investigate the fundamental intermolecular interactions and dynamics of ions electrosorption in different pore architectures and on planar graphene surfaces. Contrary to expected results and existing theories, defect removal via defunctionalization and graphitization decreased capacitance. Hydrogenated surfaces benefitted electrosorption, while oxygen

  4. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    HOSSAIN, A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices for gamma spectroscopy. Sample preparation and results are discussed. The researachers demonstrated various bulk defects (e.g., dislocations and sub-grain boundaries) and surface defects, and examined their effects on the performance of detectors. A comparison study was made between two chemical etchants to produce non-conductive smooth surfaces. A mixture of bromine and hydrogen peroxide proved more effective than conventional bromine etchant. Both energy resolution and detection efficiency of CZT planar detectors were noticeably increased after processing the detector crystals using improved chemical etchant and processing methods.

  5. Nano-clustered Pd catalysts formed on GaN surface for green chemistry

    Science.gov (United States)

    Hirayama, Motoi; Ueta, Yukiko; Konishi, Tomoya; Tsukamoto, Shiro

    2011-05-01

    We have succeeded in observing Pd nano-clusters, catalytic prime elements, on a GaN(0 0 0 1) surface by a scanning tunneling microscope for the first time. After the sample was reused, we found that nano-clusters (width: 11 nm, height: 2.2 nm) existed on the surface which still kept the catalytic activity, resulting that the neutral Pd atoms formed the nano-cluster. Moreover, the S-termination contributed to the formation of the dense and flat structure consisting of the Pd nano-clusters.

  6. Colloid and surface chemistry a laboratory guide for exploration of the nano world

    CERN Document Server

    Bucak, Seyda

    2013-01-01

    Scientific Research The research processEthics in Science Design of Experiments Fundamentals of Scientific Computing, Nihat Baysal Recording Data: Keeping a Good Notebook Presenting Data: Writing a Laboratory ReportReferencesCharacterization Techniques Surface Tension Measurements, Seyda BucakViscosity/Rheological Measurements, Patrick UnderhillElectrokinetic Techniques, Marek KosmulskiDiffraction (XRD), Deniz RendeScattering, Ulf OlssonMicroscopy, Cem Levent Altan and Nico A.J.M. SommerdijkColloids and Surfaces Experiment 1: SedimentationExperiment 2: Determination of Critical Micelle Concent

  7. The interaction of climate and glacial landforms on subsurface and surface hydrology and chemistry across a heterogeneous boreal plain landscape

    Science.gov (United States)

    Hokanson, Kelly; Carrera-Hernández, Jaime; Devito, Kevin; Mendoza, Carl

    2016-04-01

    The Boreal Plains (BP) region of Canada is experiencing high levels of anthropogenic activity and may be susceptible to climate change to various degrees. The BP is characterized by heterogeneous glacial landforms, with large contrasts in storage and transmissivity, which when coupled with wet-dry climate cycles, results in complex groundwater-surface water interactions. Predicting the impacts of land use change, climate change, and the future performance of constructed and reclaimed landscapes is currently not possible due to our limited knowledge regarding the natural variability of water table fluctuations, geochemistry, and salinity across the various glacial landforms in the BP. We compare isotopes, EC, chemistry (DOC, Ca, Mg, SO4) and water table position between a drought (2003) and a wet (2013) year to examine the interactions between climate, landform, and geology on the variation in landscape connectivity and overall salinity distribution. Data were collected from surface waters to a depth of 40 m, along a 50 km transect encompassing pond-wetland-forestland sequences across the major glacial depositional types typical of the BP (coarse textured glaciofluvial outwash, fine textured stagnant ice moraine, and lacustrine clay plain). Within each landform, sites range from isolated local flow systems to large intermediate scale flow systems. High spatial variability of water table fluctuations and salinity illustrate the strong regional controls that climate and geology exerts over scales of groundwater flow between landforms and surface water bodies across the BP, reinforcing the need to link surface water and groundwater processes when developing conceptual models. Additionally, when coupled with a strong, physical hydrogeologic conceptual model, synoptic chemical and isotopic surveys can be used to confirm scales and directions of flow; however, without an understanding of the climatic and geologic influence of the region, such data cannot be used as a

  8. Chemistry of the sea surface microlayer. 1. Fabrication and testing of the sampler

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.

    A screen sampler fabricated to study the sea surface microlayer (SML) has been described. The screen sampler was tested in the Mandovi estuary and adjacent waters. Physico-chemical parameters of the subsurface waters from a depth of 25 cm was also...

  9. Quorum sensing inhibitory activities of surface immobilized antibacterial dihydropyrrolones via click chemistry.

    Science.gov (United States)

    Ho, Kitty K K; Chen, Renxun; Willcox, Mark D P; Rice, Scott A; Cole, Nerida; Iskander, George; Kumar, Naresh

    2014-02-01

    Device-related infection remains a major barrier to the use of biomaterial implants as life-saving devices. This study aims to examine the effectiveness and mechanism of action of surface attached dihydropyrrolones (DHPs), a quorum sensing (QS) inhibitor, against bacterial colonization. DHPs were covalently attached on glass surfaces via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) click reaction. The covalent attachment of DHP surfaces was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements, and the antimicrobial efficacy of the DHP coatings was assessed by confocal laser scanning microscopy (CLSM) and image analysis. The results demonstrated that covalently bound DHP compounds are effective in reducing the adhesion by up to 97% (p technology, it is demonstrated that surface attached DHPs were able to repress the expression of a lasB-gfp reporter fusion of P. aeruginosa by 72% (p viability. This demonstrates the ability of the covalently bound QS inhibitor to inhibit QS and suggests the existence of a membrane-based pathway(s) for QS inhibition. Hence, strategies based on incorporation of QS inhibitors such as DHPs represent a potential approach for prevention of device-related infections. PMID:24345737

  10. Controlling embedment and surface chemistry of nanoclusters in metal-organic frameworks.

    Science.gov (United States)

    Coupry, D E; Butson, J; Petkov, P S; Saunders, M; O'Donnell, K; Kim, H; Buckley, C; Addicoat, M; Heine, T; Szilágyi, P Á

    2016-04-14

    A combined theoretical and experimental approach demonstrates that nanocluster embedment into the pores of metal-organic frameworks (MOF) may be influenced by the chemical functionalisation of the MOF. Furthermore, this results in the surface functionalisation of the embedded nanoclusters, highlighting the potential of MOF scaffolds for the design and synthesis of novel functional materials.

  11. Phosphate availability in the soil-root system: integration of oxide surface chemistry, transport and uptake.

    NARCIS (Netherlands)

    Geelhoed, J.S.

    1998-01-01

    A study is presented on the adsorption of phosphate on goethite, the interaction of phosphate with other adsorbing ions at the goethite surface, and the resulting availability of phosphate to plants. The plant-availability of sorbed phosphate was determined from phosphorus uptake of plants growing o

  12. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zheng, Di; Zhang, Yitao

    2016-10-01

    A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N2 adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the -NO2 has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  13. Aqueous stabilization of carbon nanotubes: effects of surface oxidization and solution chemistry.

    Science.gov (United States)

    Bai, Yingchen; Wu, Fengchang; Lin, Daohui; Xing, Baoshan

    2014-03-01

    Surface oxygen functional groups can affect the morphological characteristics, aggregation kinetics, and adsorption capacity of multi-walled carbon nanotubes (MWCNTs). However, little is known about the quantitative relationship between oxygen content and the dispersion stability of MWCNTs. To investigate the effects of surface oxidization, MWCNTs were oxidized using concentrated H2SO4/HNO3 acids for 0, 1, 2, 4, and 8 h, respectively. Experimental results showed that the oxygen content of MWCNTs increased with surface oxidization time. Linear correlations were found to exist between the oxygen content, critical coagulation concentration (CCC) for NaCl, and critical coagulation pH values of MWCNTs detected by optical density at 800 nm. The CCC values for CaCl2 increased with oxygen contents for unmodified MWCNTs and lowly oxidized MWCNTs, while which decreased after further increasing the surface oxidization. CCC ratios in the presence of Ca(2+) to Na(+) were consistent with the empirical Schulze-Hardy rule for unmodified MWCNTs and lowly oxidized MWCNTs; however, which were much lower than the expected values for highly oxidized MWCNTs. Fulvic acid can clearly increase the stability of MWCNT suspension with unmodified MWCNTs and lowly oxidized MWCNTs, while it cannot affect the dispersion of highly oxidized MWCNTs. This study implied that the oxidation and presence of fulvic acid will possibly increase the mobility, exposure, bioavailability, and toxicity of MWCNTs. PMID:24323322

  14. Effect of nanoporous carbon surface chemistry on the removal of endocrine disruptors from water phase.

    Science.gov (United States)

    Vidal, Carla B; Seredych, Mykola; Rodríguez-Castellón, Enrique; Nascimento, Ronaldo F; Bandosz, Teresa J

    2015-07-01

    Wood-based activated carbon and its sulfur-doped counterpart were used as adsorbents of endocrine disruptor chemicals (EDC) from aqueous solution. Adsorption process was carried out in dynamic conditions and Thomas model was used to predict the performance of the column. The results showed a good fitting of the theoretical curve to the experimental data. S-doped carbon exhibited a higher adsorption capacity of trimethoprim (TMP) and smaller of sulfamethoxazole (SMX) and diclofenac (DCF) in comparison with the carbon with no sulfur incorporated into the matrix. The surface features of the initial carbons and those exposed to EDC were evaluated in order to derive the adsorption mechanism and elucidate the role of surface features. An increase in the amount of TMP from a low concentration solution (10 mg/L) on sulfur-doped carbon was linked to acid-base interactions and the reactive adsorption/oxidation of TMP. A decrease in SMX and DCF after sulfur doping was explained by a considerable increase in surface hydrophobicity, which does not favor the retention of polar DCF and SMX molecules. When the adsorption was measured from a high concentration solution at equilibrium conditions at the dark or under solar light irradiation different trends in the adsorption capacities were found. This was linked to the photoactivity of carbons and the degradation of EDC in the pore system promoted by visible light followed by the adsorption of the products of surface reactions. PMID:25527089

  15. Cell surface physico chemistry alters biofilm development of Pseudomonas aeruginosa lipopolysaccharide mutants

    NARCIS (Netherlands)

    Flemming, CA; Palmer, RJ; Arrage, AA; Van der Mei, HC; White, DC

    1999-01-01

    The hydrophobic and electrostatic characteristics of bacterial cell surfaces were compared with attachment proclivity and biomass accumulation over time between wildtype Pseudomonas aeruginosa serotype O6 (possesses A and B band LPS), and three LPS-deficient mutants, vi;. A28 (A(+)B(-)), R5 (A(+)B(-

  16. Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis

    International Nuclear Information System (INIS)

    Highlights: • Carbon blacks with lower specific surface area had basic character (electron donor) due to C=O and C-O groups. • Carbon blacks with higher specific surface area had acidic character (acceptor electron) due to OH groups. • Total surface energy and its dispersive component of carbon blacks increased by increasing their specific surface area. (table) - Abstract: Four carbon blacks with different specific surface areas and surface chemistries (C32, C71, C159 and C178) were analyzed by transmission electron microscopy (TEM) and nitrogen adsorption isotherms at 77 K. Their surface chemistries were analyzed by X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis coupled with mass spectrometry (TGA-MS) and inverse gas chromatography (IGC). The carbon blacks contained 2.7–5.8 wt% volatiles corresponding to -OH, C-O, C=O and COO groups. The surface chemistry parameters obtained with the different experimental techniques were inter-related by using chemometric statistical analysis tools. The application of this methodology showed that the carbon blacks with lower specific surface area (C32 and C71) had basic character (electron donor) mainly due to C=O and C-O groups, whereas the carbon black with the highest specific surface area (C178) showed acidic character (acceptor electron) due to its high content of OH groups. Moreover, the total surface energy and the dispersive component of the surface energy of the carbon blacks increased with the increase of their specific surface area. In general the specific interactions of the carbon blacks also increased with the increase of their specific surface area although C71 is exceptional due to higher oxygen content corresponding to C-O groups

  17. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R.; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  18. Coupling between bulk- and surface chemistry in suspensions of charged colloids

    Science.gov (United States)

    Heinen, M.; Palberg, T.; Löwen, H.

    2014-03-01

    The ionic composition and pair correlations in fluid phases of realistically salt-free charged colloidal sphere suspensions are calculated in the primitive model. We obtain the number densities of all ionic species in suspension, including low-molecular weight microions, and colloidal macroions with acidic surface groups, from a self-consistent solution of a coupled physicochemical set of nonlinear algebraic equations and non-mean-field liquid integral equations. Here, we study suspensions of colloidal spheres with sulfonate or silanol surface groups, suspended in demineralized water that is saturated with carbon dioxide under standard atmosphere. The only input required for our theoretical scheme are the acidic dissociation constants pKa, and effective sphere diameters of all involved ions. Our method allows for an ab initio calculation of colloidal bare and effective charges, at high numerical efficiency.

  19. Defect-free Perpendicular Diblock Copolymer Films: The Synergistic Effect of Surface Topography and Chemistry

    CERN Document Server

    Man, Xingkun; Tang, Jiuzhou; Yan, Dadong; Andelman, David

    2016-01-01

    We propose a direct self-assembly mechanism towards obtaining defect-free perpendicular lamellar phases of diblock copolymer (BCP) thin films. In our numerical study, a thin BCP film having a flat top surface is casted on a uni-directional corrugated solid substrate. The substrate is treated chemically and has a weak preference toward one of the two BCP components. Employing self-consistent field theory (SCFT), we find that there is an enhanced synergy between two substrate characteristics: its topography (geometrical roughness) combined with a weak surface preference. This synergy produces the desired perpendicular lamellar phase with perfect inplane ordering. Defect-free BCP lamellar phases are reproducible for several random initial states, and are obtained for a range of substrate roughness and chemical characteristics, even for a uni-directional multi-mode substrate roughness. Our theoretical study suggests possible experiments that will explore the interplay between uni-directional substrate corrugation...

  20. Control of Colloid Surface Chemistry through Matrix Confinement: Facile Preparation of Stable Antibody Functionalized Silver Nanoparticles

    Science.gov (United States)

    Skewis, Lynell R.; Reinhard, Björn M.

    2010-01-01

    Here we describe a simple yet efficient gel matrix assisted preparation method which improves synthetic control over the interface between inorganic nanomaterials and biopolymers and yields stable biofunctionalized silver nanoparticles. Covalent functionalization of the noble metal surface is aided by the confinement of polyethylene glycol acetate functionalized silver nanoparticles in thin slabs of a 1% agarose gel. The gel confined nanoparticles can be transferred between reaction and washing media simply by immersing the gel slab in the solution of interest. The agarose matrix retains nanoparticles but is swiftly penetrated by the antibodies of interest. The antibodies are covalently anchored to the nanoparticles using conventional crosslinking strategies, and the resulting antibody functionalized nanoparticles are recovered from the gel through electroelution. We demonstrate the efficacy of this nanoparticle functionalization approach by labeling specific receptors on cellular surfaces with functionalized silver nanoparticles that are stable under physiological conditions. PMID:20161660

  1. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate

    Science.gov (United States)

    Waychunas, G. A.; Rea, B. A.; Fuller, C. C.; Davis, J. A.

    1993-05-01

    EXAFS spectra were collected on both the As and Fe K-edges from samples of two-line ferrihydrite with adsorbed (ADS) and coprecipitated (CPT) arsenate prepared over a range of conditions and arsenate surface coverages. Spectra also were collected for arsenate adsorbed on the surfaces of three FeOOH crystalline polymorphs, α (goethite), β (akaganeite), and γ (lepidocrocite), and as a free ion in aqueous: solution. Analyses of the As EXAFS show clear evidence for inner sphere bidentate (bridging) arsenate complexes on the ferrihydrite surface and on the surfaces of the crystalline FeOOH polymorphs. The bridging arsenate is attached to adjacent apices of edge-sharing Fe oxyhydroxyl octahedra. The arsenic-iron distance at the interface ( 3.28 ±0.01 Å) is close to that expected for this geometry on the FeOOH polymorph surfaces, but is slightly shorter on the ferrihydrite surfaces ( 3.25 ± 0.02 Å). Mono-dentate arsenate linkages ( 3.60 ± 0.03 Å) also occur on the ferrihydrite, but are not generally observed on the crystalline FeOOH polymorphs. The proportion of monodentate bonds appears largest for adsorption samples with the smallest As/Fe molar ratio. In all cases the arsenate tetrahedral complex is relatively undistorted with As-O bonds of 1.66 ± 0.01 Å. Precipitation of arsenate or scorodite-like phases was not observed for any samples, all of which were prepared at a pH value of 8. The Fe EXAFS results confirm that the Fe-Fe correlations in the ferrihydrite are progressively disrupted in the CPT samples as the As/Fe ratio is increased. Coherent crystallite size is probably no more than 10 Å in diameter and no Fe oxyhydroxyl octahedra corner-sharing linkages (as would be present in FeOOH polymorphs) are observed at the largest As/Fe ratios. Comparison of the number and type of Fe-Fe neighbors with the topological constraints imposed by the arsenate saturation limit in the CPT samples (about 0.7 As/Fe) indicates ferrihydrite units consisting mainly of Fe

  2. Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids

    Science.gov (United States)

    Jin, Shubin; Ma, Xiaowei; Ma, Huili; Zheng, Kaiyuan; Liu, Juan; Hou, Shuai; Meng, Jie; Wang, Paul C.; Wu, Xiaochun; Liang, Xing-Jie

    2012-12-01

    We investigated the penetration and thermotherapy efficiency of different surface coated gold nanorods (Au NRs) in multicellular tumor spheroids. The current data show that negatively charged Au NRs, other than positively charged Au NRs, can penetrate deep into the tumor spheroids and achieve a significant thermal therapeutic benefit.We investigated the penetration and thermotherapy efficiency of different surface coated gold nanorods (Au NRs) in multicellular tumor spheroids. The current data show that negatively charged Au NRs, other than positively charged Au NRs, can penetrate deep into the tumor spheroids and achieve a significant thermal therapeutic benefit. Electronic supplementary information (ESI) available: Materials and methods section. See DOI: 10.1039/c2nr31877f

  3. Surface chemistry of nanoscale Fe3O4 dispersed in magnetic fluids

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The interaction between stabilizers and nanoparticles is one of the important factors to prepare stable magnetic fluids. The magnetic nano-size Fe3O4 core with single domain and the average grain size around 8-12 nm were prepared by chemical precipitation method. The O/Fe molar ratio of the particle surface was measured by X-ray photoelectron spectroscopy (XPS). The heat effects of stabilizers adsorption on nanoparticles were measured by solution calorimetry. The excess amount of oxygen was possibly the result of the hydroxygen formed on the surface of the nanoparticles. The heat effects showed that compounds containing carboxyl groups can be adsorbed chemically on magnetite by forming chemical bonds. The other stabilizers involving NH-groups, such as polyethylene-imine, can be adsorbed physically. The exothermic value is about half of the former case.

  4. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate

    Science.gov (United States)

    Waychunas, G.A.; Rea, B.A.; Fuller, C.C.; Davis, J.A.

    1993-01-01

    EXAFS spectra were collected on both the As and Fe K-edges from samples of two-line ferrihydrite with adsorbed (ADS) and coprecipitated (CPT) arsenate prepared over a range of conditions and arsenate surface coverages. Spectra also were collected for arsenate adsorbed on the surfaces of three FeOOH crystalline polymorphs, ?? (goethite), ?? (akaganeite), and ?? (lepidocrocite), and as a free ion in aqueous: solution. Analyses of the As EXAFS show clear evidence for inner sphere bidentate (bridging) arsenate complexes on the ferrihydrite surface and on the surfaces of the crystalline FeOOH polymorphs. The bridging arsenate is attached to adjacent apices of edge-sharing Fe oxyhydroxyl octahedra. The arsenic-iron distance at the interface (3.28 ??0.01 A ??) is close to that expected for this geometry on the FeOOH polymorph surfaces, but is slightly shorter on the ferrihydrite surfaces (3.25 ?? 0.02 A ??). Mono-dentate arsenate linkages (3.60 ?? 0.03 A ??) also occur on the ferrihydrite, but are not generally observed on the crystalline FeOOH polymorphs. The proportion of monodentate bonds appears largest for adsorption samples with the smallest As Fe molar ratio. In all cases the arsenate tetrahedral complex is relatively undistorted with As-O bonds of 1.66 ?? 0.01 A ??. Precipitation of arsenate or scorodite-like phases was not observed for any samples, all of which were prepared at a pH value of 8. The Fe EXAFS results confirm that the Fe-Fe correlations in the ferrihydrite are progressively disrupted in the CPT samples as the As Fe ratio is increased. Coherent crystallite size is probably no more than 10 A?? in diameter and no Fe oxyhydroxyl octahedra corner-sharing linkages (as would be present in FeOOH polymorphs) are observed at the largest As Fe ratios. Comparison of the number and type of Fe-Fe neighbors with the topological constraints imposed by the arsenate saturation limit in the CPT samples (about 0.7 As Fe) indicates ferrihydrite units consisting mainly

  5. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds

    OpenAIRE

    Alexander Röder; Elena García-Gareta; Christina Theodoropoulos; Nikola Ristovski; Keith A. Blackwood; Woodruff, Maria A.

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface ...

  6. Surface charges and interfaces: implications for mineral roles in prebiotic chemistry

    Directory of Open Access Journals (Sweden)

    PONTES-BUARQUE MILA

    2000-01-01

    Full Text Available There exists an extensive literature on the possible roles of minerals in the prebiotic stages of the chemical evolution of life (Bernal 1951, Cairns-Smith 1982, Wächtershäuser 1992, Vieyra et al. 1995, Tessis et al. 1999, see Lahav (1994 for a review. Among the original proposals, minerals have been considered in: (a processes that would discriminate molecular chirality; (b condensation reactions of biomolecular precursors; (c prebiotic catalysis; (d biochemical templates; and (e autocatalytic metabolism. In this communication it is emphazised the complex properties of both surface reactions and interfaces between minerals and aqueous solutions simulating Archean scenarios. The properties of pyrite surface net charge and of its interface with a solution simulating primitive seawater are discussed and their implications to the autocatalytic model (Wächtershäuser 1988a 1992 are presented in order to demonstrate their relevance. The proposed roles of iron-sulfide minerals (mainly pyrite as physical support for primitive bidimensional metabolism and chiral discriminator (Wächtershäuser 1988a, Huber & Wächtershäuser 1998 are revised. It is shown that: (a the net surface charge can be modulated by the pyrite-aqueous solution interface; (b mononucleotides attachment to pyrite require a cationic bridge; and (c direct absorption of acetate - a molecule proposed as carbon source in primitive aqueous environments - also modulates the interface properties and would have masked pyrite's bulk structure. These results indicate that physicochemical changes of mineral surfaces - caused by environments simulating Archean aqueous scenarios - should be taken into account in the proposals of mineral prebiotic roles.

  7. Chemistry of the interaction between azole type corrosion inhibitor molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, Natasa [Department of Physical and Organic Chemistry, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Kokalj, Anton, E-mail: tone.kokalj@ijs.si [Department of Physical and Organic Chemistry, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2012-11-15

    By means of density functional theory calculations, it has been shown how typical organic corrosion inhibitors-molecules that have the ability to remarkably slow down the corrosion of metals and alloys-interact with bare surfaces of various types of metals. As representative model systems, benzimidazole and benzotriazole inhibitors on iron, copper, and aluminum surfaces are considered. It is found that bonding depends sensitively on the type of metal. On transition metals with open d-band the inhibitor molecules can chemisorb strongly either parallel to the surface with a pronounced {pi}-d hybridization or perpendicularly with unsaturated N atom(s) through {sigma}-molecular orbitals, whereas on transition metals with fully occupied d-band and on sp-metals the molecules weakly chemisorb only with the latter mode. In addition to neutral inhibitor molecules also inhibitors in deprotonated (anionic) and protonated (cationic) forms are considered, because many corrosion inhibitors possess acidic hydrogens as well as basic heteroatoms. It is shown that the chemisorptive bonding is far the strongest for deprotonated inhibitors and, moreover, that even protonated inhibitors may chemisorb, although such bonding is characteristic of more reactive metals. However adsorbed protonated inhibitors are likely to deprotonate on all considered metals, whereas further deprotonation from neutral to deprotonated form is more likely on more reactive metals. Highlights: Black-Right-Pointing-Pointer Bonding of azole corrosion inhibitors onto metal surfaces characterized by DFT calculations. Black-Right-Pointing-Pointer Adsorption bonding depends sensitively on the type of metal. Black-Right-Pointing-Pointer Azoles bond with either {pi}-system or {sigma}-orbitals to transition metals with open d-band. Black-Right-Pointing-Pointer Azoles bond with {sigma}-orbitals to transition metals with fully occupied d-band and to sp-metals. Black-Right-Pointing-Pointer Among various molecular forms

  8. Click chemistry modification of surface-bound peptides towards applications in printable electronics

    OpenAIRE

    Schlageter, Martin

    2015-01-01

    This thesis shows the development of a method for the modification of surface-bound peptides. Initial attempts to functionalize amino acids with ferrocene derivatives led to a post-synthetic click grafting strategy, which could be shown to be feasible. This approach was extended to a two-step consecutive click sequence. Additionally, the grafting of Coordination clusters with the described method was investigated.

  9. The influence of projectile ion induced chemistry on surface pattern formation

    Science.gov (United States)

    Karmakar, Prasanta; Satpati, Biswarup

    2016-07-01

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  10. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-11-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  11. Surface chemistry and catalytic properties of VOX/Ti-MCM-41 catalysts for dibenzothiophene oxidation in a biphasic system

    Science.gov (United States)

    González, J.; Chen, L. F.; Wang, J. A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J. L.

    2016-08-01

    A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H2O2 as oxidant. ODS activity was found to be proportional to the V5+/(V4+ + V5+) values of the catalysts, indicating that the surface vanadium pentoxide (V2O5) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V2O5) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V2O5/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.

  12. Use of North American and European Air Quality Networks to Evaluate Global Chemistry-Climate Modeling of Surface Ozone

    Science.gov (United States)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; Nagashima, T.; Shindell, D. T.; Faluvegi, G.; Strode, S. A.

    2015-01-01

    We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1 degree by 1 degree grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (approximately 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observed summertime diurnal range (25 ppb) is underestimated in all regions by about 7 parts per billion, and the observed seasonal range (approximately 21 parts per billion) is underestimated by about 5 parts per billion except in the most polluted regions, where it is overestimated by about 5 parts per billion. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 percent of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 parts per billion for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.

  13. Brine Shrimp Bioassays: A Useful Technique in Biological Investigations

    Science.gov (United States)

    Rice, Stanley A.; Maness, Ian B.

    2004-01-01

    A technique to measure the potency of leaf compounds against herbivores with the use of a bioassay is described. Bioassays are useful in classes where students have career plans like medicine in which bioassays can be used as tools for screening plants for possible medicinal potency.

  14. Influence of operating and water-chemistry parameters on fuel cladding corrosion and deposition of corrosion products on cladding surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V.G.; Berezina, I.G.; Rodionov, Y.A., E-mail: kritsky@givnipiet.spb.ru, E-mail: alemaskina@givnipiet.ru [Leading Inst. ' VNIPIET' , Saint Petersburg (Russian Federation)

    2010-07-01

    A description of mass transfer mechanism of corrosion products in the primary coolant circuit is a complicated problem. The deposits of crud is to be proportional to the amount of corrosion products circulating in the primary coolant circuit, therefore all models of mass transfer in the circuit include the change of corrosion products concentration and the corrosion rate in time, removing these products by filters and deposition. Decontamination of the circuit equipment and replacement work needs lead to a local change of corrosion rate which results in the increase of corrosion products concentration in the circuit and the increase of deposits on surfaces. If due to incorrect water chemistry conditions for corrosion products deposition in the core are created not only the activity of the coolant increases but the hydraulic resistance of the reactor also grows which results in the increase of the pressure drop at the reactor. The phenomenon of 'pressure drop' which takes place in NPP with VVER reactors was considered. The reasons of this phenomenon are the following: the great removal of corrosion products (CP) from steam generator surfaces after decontamination, change of CP behavior and then consequent deposit of CP on the fuel element surfaces; and, sub-cooled boiling takes place on the some of fuel element and results in the acceleration of corrosion products deposit, the increase of nuclide activation period and coolant radioactivity. A model was developed to explain pressure drop rise in-core and deposits redistribution in the core and in the primary circuit of NPP with VVER-440. The physical-chemical basis of the model is the transport corrosion products dependence on temperature, pH{sub T} value of coolant, and correlation between rates of corrosion products (Fe) formation (after steam generators decontamination) and their removing from the circuit. The aim of our modeling is to predict the growth of pressure difference on the basis of regular

  15. Soil Moisture-Atmosphere Feedbacks on Atmospheric Tracers: The Effects of Soil Moisture on Precipitation and Near-Surface Chemistry

    Science.gov (United States)

    Tawfik, Ahmed B.

    The atmospheric component is described by rapid fluctuations in typical state variables, such as temperature and water vapor, on timescales of hours to days and the land component evolves on daily to yearly timescales. This dissertation examines the connection between soil moisture and atmospheric tracers under varying degrees of soil moisture-atmosphere coupling. Land-atmosphere coupling is defined over the United States using a regional climate model. A newly examined soil moisture-precipitation feedback is identified for winter months extending the previous summer feedback to colder temperature climates. This feedback is driven by the freezing and thawing of soil moisture, leading to coupled land-atmosphere conditions near the freezing line. Soil moisture can also affect the composition of the troposphere through modifying biogenic emissions of isoprene (C5H8). A novel first-order Taylor series decomposition indicates that isoprene emissions are jointly driven by temperature and soil moisture in models. These compounds are important precursors for ozone formation, an air pollutant and a short-lived forcing agent for climate. A mechanistic description of commonly observed relationships between ground-level ozone and meteorology is presented using the concept of soil moisture-temperature coupling regimes. The extent of surface drying was found to be a better predictor of ozone concentrations than temperature or humidity for the Eastern U.S. This relationship is evaluated in a coupled regional chemistry-climate model under several land-atmosphere coupling and isoprene emissions cases. The coupled chemistry-climate model can reproduce the observed soil moisture-temperature coupling pattern, yet modeled ozone is insensitive to changes in meteorology due to the balance between isoprene and the primary atmospheric oxidant, the hydroxyl radical (OH). Overall, this work highlights the importance of soil moisture-atmosphere coupling for previously neglected cold climate

  16. Formation of alkenes and oxygenated VOCs from light mediated surface chemistry of nonanoic acid at the air-seawater interface

    Science.gov (United States)

    Gonzalez, L.; Volkamer, R.; Ciuraru, R.; Bernard, F.; George, C.

    2013-12-01

    Organic carbon is relevant in the atmosphere because it affects oxidative capacity that determines the removal rate of climate active gases and modifies aerosols. The significant presence of organic compounds at the surface of the ocean is a source for primary and secondary aerosol formation that potentially can modify cloud cover. Field observations of glyoxal over the remote marine boundary layer, and the tropical free troposphere remain unexplained by atmospheric models, and indicate missing sources of marine organic carbon species from heterogeneous processes mediated by light. We have studied the light induced surface chemistry of synthetic aqueous -mixtures containing NaCl, NaBr, NaI, photosensitizers (humic acids) and an organic surfactant (nonanoic acid) in a photochemical Quartz flowreactor. The air from the flowreactor was transferred to a dark reactor where the products from photosensitized reactions at the air/sea interface were further exposed to ozone. The products were sampled in the presence/absence of light and ozone by Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF-MS) and Light-Emitting-Diode Cavity-Enhanced Differential Optical Absorption Spectroscopy (LED-CE-DOAS). In the presence of light nonenal formation is observed. Addition of ozone leads to the formation of glyoxal, among other products. Further experiments were conducted in an atmospheric simulation chamber. We discuss first results and atmospheric implications.

  17. Thermal chemistry of Mn2(CO)10 during deposition of thin manganese films on silicon oxide and on copper surfaces

    International Nuclear Information System (INIS)

    The surface chemistry of dimanganese decacarbonyl on the native oxide of Si(100) wafers was characterized with the aid of x-ray photoelectron spectroscopy. Initial experiments in a small stainless-steel reactor identified a narrow range of temperatures, between approximately 445 and 465 K, in which the deposition of manganese could be achieved in a self-limiting fashion, as is desirable for atomic layer deposition. Deposition at higher temperatures leads to multilayer growth, but the extent of this Mn deposition reverses at even higher temperatures (about 625 K), and also ifhydrogen is added to the reaction mixture. Extensive decarbonylation takes place below room temperature, but limited C-O bond dissociation and carbon deposition are still seen after high exposures at 625 K. The films deposited at low (∼450 K) temperatures are mostly in the form of MnO, but at 625 K that converts to a manganese silicate, and upon higher doses a manganese silicide forms at the SiO2/Si(100) interface as well. No metallic manganese could be deposited with this precursor on either silicon dioxide or copper surfaces.

  18. Comparison of surface water chemistry and weathering effects of two lake basins in the Changtang Nature Reserve, China.

    Science.gov (United States)

    Wang, Rui; Liu, Zhaofei; Jiang, Liguang; Yao, Zhijun; Wang, Junbo; Ju, Jianting

    2016-03-01

    The geochemistry of natural waters in the Changtang Nature Reserve, northern Tibet, can help us understand the geology of catchments, and provide additional insight in surface processes that influence water chemistry such as rock weathering on the Qinghai-Tibet Plateau. However, severe natural conditions are responsible for a lack of scientific data for this area. This study represents the first investigation of the chemical composition of surface waters and weathering effects in two lake basins in the reserve (Lake Dogaicoring Qiangco and Lake Longwei Co). The results indicate that total dissolved solids (TDS) in the two lakes are significantly higher than in other gauged lakes on the Qinghai-Tibet Plateau, reaching 20-40g/L, and that TDS of the tectonic lake (Lake Dogaicoring Qiangco) is significantly higher than that of the barrier lake (Lake Longwei Co). Na(+) and Cl(-) are the dominant ions in the lake waters as well as in the glacier-fed lake inflows, with chemical compositions mainly affected by halite weathering. In contrast, ion contents of inflowing rivers fed by nearby runoff are lower and concentrations of dominant ions are not significant. Evaporite, silicate, and carbonate weathering has relatively equal effects on these rivers. Due to their limited scope, small streams near the lakes are less affected by carbonate than by silicate weathering.

  19. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  20. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    International Nuclear Information System (INIS)

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  1. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Lek, Jun Yan; Xi, Lifei; Kardynal, Beata;

    2011-01-01

    For hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device...

  2. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    Science.gov (United States)

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  3. A Surface Chemistry Approach to Enhancing Colloidal Quantum Dot Solids for Photovoltaics

    Science.gov (United States)

    Carey, Graham Hamilton

    Colloidal quantum dot (CQD) photovoltaic devices have improved rapidly over the past decade of research. By taking advantage of the quantum confinement effect, solar cells constructed using films of infrared-bandgap nanoparticles are able to capture previously untapped ranges of the solar energy spectrum. Additionally, films are fabricated using simple, cheap, reproducible solution processing techniques, enabling the creation of low-cost, flexible photovoltaic devices. A key factor limiting the creation of high efficiency CQD solar cells is the short charge carrier diffusion length in films. Driven by a combination of limited carrier mobility, poor nanoparticle surface passivation, and the presence of unexamined electrically active impurities throughout the film, the poor diffusion length limits the active layer thickness in CQD solar cells, leading to lower-than-desired light absorption, and curtailing the photocurrent generated by such devices. This thesis seeks to address poor diffusion length by addressing each of the limiting factors in turn. Electrical transport in quantum dot solids is examined in the context of improved quantum dot packing; methods are developed to improve packing by using actively densifying components, or by dramatically lowering the volume change required between quantum dots in solution and in solid state. Quantum dot surface passivation is improved by introducing a crucial secondary, small halide ligand source, and by surveying the impact of the processing environment on the final quality of the quantum dot surface. A heretofore unidentified impurity present in quantum dot solids is identified, characterized, and chemically eliminated. Finally, lessons learned through these experiments are combined into a single, novel materials system, leading to quantum dot devices with a significantly improved diffusion length (enhanced from 70 to 230 nm). This enabled thick, high current density (30 mA cm -2, compared to typical values in the 20

  4. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation

    Science.gov (United States)

    Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.

    1993-01-01

    The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at the highest As(V) adsorption density. The results suggest that the solid solution model proposed by Fox (1989

  5. Theoretical investigations of metallic surfaces for water chemistry; Theoretische Untersuchungen metallischer Oberflaechen fuer die Wasserstoffchemie

    Energy Technology Data Exchange (ETDEWEB)

    Schnur, Sebastian

    2010-11-19

    Properties of the metal-water interface have been addressed by periodic density functional theory calculations, in particular with respect to the electronic and geometric structures of water bilayers on several transition metal surfaces. The structure and the vibrational spectra of water bilayers at room temperatures have been studied performing ab initio molecular dynamics simulations. In order to model varying electrode potentials, an explicite counter electrode has been implemented in a periodic density functional theory code, and first preliminary results using this implementation will be presented. (orig.)

  6. The effect of nanoparticle size, shape, and surface chemistry on biological systems.

    Science.gov (United States)

    Albanese, Alexandre; Tang, Peter S; Chan, Warren C W

    2012-01-01

    An understanding of the interactions between nanoparticles and biological systems is of significant interest. Studies aimed at correlating the properties of nanomaterials such as size, shape, chemical functionality, surface charge, and composition with biomolecular signaling, biological kinetics, transportation, and toxicity in both cell culture and animal experiments are under way. These fundamental studies will provide a foundation for engineering the next generation of nanoscale devices. Here, we provide rationales for these studies, review the current progress in studies of the interactions of nanomaterials with biological systems, and provide a perspective on the long-term implications of these findings.

  7. Multilayer modeling of porous grain surface chemistry I. The GRAINOBLE model

    CERN Document Server

    Taquet, Vianney; Kahane, Claudine

    2011-01-01

    Mantles of iced water, mixed with CO, H2CO, and CH3OH are formed during the so called prestellar core phase. In addition, radicals are also thought to be formed on the grain surfaces, and to react to form complex organic molecules later on, during the warm-up phase of the protostellar evolution. The aim of this work is to study the formation of the grain mantles during the prestellar core phase and the abundance of H2CO, CH3OH, and radicals trapped in them. We have developed a macrosopic statistic multilayer model that follows the formation of grain mantles with time and that includes two effects that may increase the number of radicals trapped in the mantles: i) at each time of the mantle formation, only the surface layer is chemically active rather than the entire bulk, and ii) the porous structure of grains allows to trap reactive particles. The model considers a network of H, O and CO forming neutral species such as water, CO, formaldehyde, and methanol, plus several radicals. We run a large grid of model...

  8. Analysis of the effects of surface chemistry on the XAS spectra of CdSe nanomaterials

    Science.gov (United States)

    Whitley, Heather; Prendergast, David; Ogitsu, Tadashi; Schwegler, Eric

    2010-03-01

    X-ray absorption spectroscopy (XAS) is an element-specific probe of local electronic structure, and is an ideal method to analyze chemical bonding. We investigate the consistency of theoretically predicted structures of CdSe nanomaterials with recently measured XAS via ab initio calculations. Using plane-wave DFT, the x-ray absorption cross-section for the Cd L3-edge of small CdSe clusters with a variety of surface ligands is calculated. We also highlight the importance of including excitonic effects in our simulations of core excitation spectra. We compare our simulations to existing experimental data on the ligand dependence of XAS for ligated quantum dots up to ˜3nm in diameter. Based on the favorable comparison of our theoretical spectra with experimental measurements, we infer the validity of our DFT-derived structure and surface passivation for these quantum dots and its relevance to understanding optoelectronic properties of solution-synthesized CdSe nanocrystals. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Aqueous bromine etching of InP: a specific surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Causier, A.; Bouttemy, M.; Gerard, I.; Aureau, D.; Vigneron, J.; Etcheberry, A. [Institut Lavoisier de Versailles, Versailles-Saint-Quentin University, UMR CNRS 8180, 45 Av. des Etats-Unis, 78035 Versailles (France)

    2012-06-15

    The n -InP behaviour in HBr (0.1-1.0 M)/Br{sub 2} (1.25 x 10{sup -2}M) aqueous solutions is studied by AAS, XPS and SEM-FEG. Indium AAS-titrations of the HBr/Br{sub 2} solutions demonstrate that InP undergoes an etching mechanism whatever the HBr/Br{sub 2} formulation. The etching process is always linear with time but its rate depends on the HBr concentration. XPS analyses permit to link the apparent slow-down of the dissolution process when decreasing the HBr molarity from 1.0 M to 0.1 M to the presence of a mixed (In,P){sub ox} oxide layer on the surface. Therefore, the dissolution process of InP in HBr/Br{sub 2} solution appears to be ruled by the surface chemical state (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Combining inkjet printing and sol-gel chemistry for making pH-sensitive surfaces.

    Science.gov (United States)

    Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Chauhan, Veeren M; Aylott, Jonathan W; Vozzi, Giovanni

    2015-01-01

    Today biomedical sciences are experiencing the importance of imaging biological parameters with luminescence methods. Studying 2D pH distribution with those methods allows building knowledge about complex cellular processes. Immobilizing pH sensitive nanoparticles inside hydrogel matrixes, in order to guarantee a proper SNR, could easily make stable and biocompatible 2D sensors. Inkjet printing is also well known as tool for printing images onto porous surfaces. Recently it has been used as a free-form fabrication method for building three-dimensional parts, and now is being explored as a way of printing electrical and optical devices. Inkjet printing was used either as a rapid prototyping method for custom biosensors. Sol-gel method is naturally bound with inkjet, because the picoliter-sized ink droplets evaporate quickly, thus allowing quick sol-gel transitions on the printed surface. In this work will be shown how to merge those technologies, in order to make a nanoparticles doped printable hydrogel, which could be used for making 2D/3D smart scaffolds able to monitor cell activities. An automated image analysis system was developed in order to quickly have the pH measurements from pH nanosensors fluorescence images. PMID:25547966

  11. Interpretation of friction and wear in DLC film: role of surface chemistry and test environment

    Science.gov (United States)

    Polaki, S. R.; Kumar, N.; Madapu, K.; Ganesan, K.; Krishna, N. G.; Srivastava, S. K.; Abhaya, S.; Kamruddin, M.; Dash, S.; Tyagi, A. K.

    2016-11-01

    In spite of the large amount of tribological work carried out to explain the friction and wear mechanism in diamond-like carbon (DLC) films, some of the core issues relating to the evolution of reactive species across sliding interfaces and their role on the friction and wear mechanism remain unclear. The phase composition, film density and hydrogen content present in a DLC film can be tailored by substrate biasing during film deposition to achieve a nearly vanishing friction coefficient. Furthermore, nitrogen doping in DLC films significantly improves wear resistance, and sliding occurs in a nearly wearless regime. Undoped and nitrogen-doped DLC films exhibit a nearly frictionless value with ultra-low wear behavior when tests are performed in argon, nitrogen and methane atmospheres. The antifriction and antiwear properties of the DLC films were improved with the reduction of adsorbed oxygen impurities on the film surface. This behavior was understood by correlating the oxygen impurities present at the surface/subsurface region of the DLC film while using x-ray photoelectron spectroscopy and depth-resolved Auger electron spectroscopy.

  12. Immobilized probe and glass surface chemistry as variables in microarray fabrication

    Directory of Open Access Journals (Sweden)

    Muheisen Sanaa

    2004-08-01

    Full Text Available Abstract Background Global gene expression studies with microarrays can offer biological insights never before possible. However, the technology possesses many sources of technical variability that are an obstacle to obtaining high quality data sets. Since spotted microarrays offer design/content flexibility and potential cost savings over commercial systems, we have developed prehybridization quality control strategies for spotted cDNA and oligonucleotide arrays. These approaches utilize a third fluorescent dye (fluorescein to monitor key fabrication variables, such as print/spot morphology, DNA retention, and background arising from probe redistributed during blocking. Here, our labeled cDNA array platform is used to study, 1 compression of array data using known input ratios of Arabidopsis in vitro transcripts and arrayed serial dilutions of homologous probes; 2 how curing time of in-house poly-L-lysine coated slides impacts probe retention capacity; and 3 the retention characteristics of 13 commercially available surfaces. Results When array element fluorescein intensity drops below 5,000 RFU/pixel, gene expression measurements become increasingly compressed, thereby validating this value as a prehybridization quality control threshold. We observe that the DNA retention capacity of in-house poly-L-lysine slides decreases rapidly over time (~50% reduction between 3 and 12 weeks post-coating; p Conclusions High DNA retention rates are necessary for accurate gene expression measurements. Therefore, an understanding of the characteristics and optimization of protocols to an array surface are prerequisites to fabrication of high quality arrays.

  13. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    Science.gov (United States)

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  14. Revisiting 30 years of Biofunctionalization and Surface Chemistry of Inorganic Nanoparticles for Nanomedicine

    Science.gov (United States)

    Conde, João; Dias, Jorge; Grazú, Valeria; Moros, Maria; Baptista, Pedro; De La Fuente, Jesús

    2014-07-01

    In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.

  15. Tailoring the Surface Chemistry of Zeolite Templated Carbon by Electrochemical Methods

    Directory of Open Access Journals (Sweden)

    R. Berenguer

    2013-01-01

    Full Text Available One option to optimize carbon materials forsupercapacitor applications is the generation ofsurface functional groups that contribute to thepseudocapacitance without losing the designedphysical properties. This requires suitablefunctionalization techniques able to selectivelyintroduce a given amount of electroactive oxygengroups. In this work, the influence of the chemical andelectrochemical oxidation methods, on the chemicaland physical properties of a zeolite templated carbon(ZTC, as a model carbon material, have beenstudied and compared. Although both oxidationmethods generally produce a loss of the originalZTC physical properties with increasing amount ofoxidation, the electrochemical method shows muchbetter controllability and, unlike chemical treatments,enables the generation of a large number of oxygengroups (O = 11000- 3300 μmol/g, with a higherproportion of active functionalities, while retaining ahigh surface area (ranging between 1900-3500 m2/g,a high microporosity and an ordered 3-D structure.

  16. Revisiting 30 years of Biofunctionalization and Surface Chemistry of Inorganic Nanoparticles for Nanomedicine

    Directory of Open Access Journals (Sweden)

    João eConde

    2014-07-01

    Full Text Available In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.

  17. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine

    Science.gov (United States)

    Conde, João; Dias, Jorge T.; Grazú, Valeria; Moros, Maria; Baptista, Pedro V.; de la Fuente, Jesus M.

    2014-01-01

    In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles. PMID:25077142

  18. Role of Surface Water-Groundwater Interaction in Regulating Stream Water Chemistry in Urban Streams

    Science.gov (United States)

    Ledford, S. H.; Lautz, L. K.; Holdsworth, M.

    2012-12-01

    Urbanization is a major cause of stream degradation in the United States. Surface water -groundwater interaction may naturally mitigate impaired water quality associated with urbanization. Meadowbrook Creek, in Syracuse, New York, flows along a declining urbanization gradient, from headwaters that are highly channelized with armored banks to an outlet that is unconstrained and meanders through a broad, riparian floodplain. Biweekly, longitudinal stream samples were collected every 100 - 600 m in the summer and every 500 - 1000 m in the winter and analyzed for conductivity and major ions. A five well transect in the downstream floodplain was also sampled. A constant rate tracer test was used to quantify groundwater inflow longitudinally during summer baseflow. Specific conductivity decreased along the urban, channelized reach and then increased along the meandering, unconstrained section during the summer, while the opposite occurred during the winter. Nitrate concentrations along the channelized reach were low to below detection (stream length had uniformly low nitrate concentrations during winter (0.12-0.57 mg/L NO3-). Sodium and chloride concentrations varied greatly between seasons, with stream concentrations similar to groundwater in the summer (93.28 - 176.45 mg/L Na+ in surface water, 94.81 - 227.05 mg/L Na+ in groundwater; 181.97 - 304.71 mg/L Cl- in surface water, 150.72 - 330.60 mg/L Cl- in groundwater) and an order of magnitude higher in winter, during snowmelt events (450 - 1956 mg/L Na+ and 805.12 - 4517.88 mg/L Cl- in stream water). In winter, sodium and chloride concentrations declined by a maximum of 1189 and 3176.21 mg/L respectively with distance in the unconstrained reach, whereas in summer they increased by 10.01 and 16.12 mg/L respectively with distance. The unconstrained, meandering downstream reach has ample riparian vegetation, which is completely absent in the urban reach and may be a source of nitrogen, causing nitrate concentrations to

  19. Analysis of post wet chemistry heat treatment effects on Nb SRF surface resistance

    CERN Document Server

    Dhakal, Pashupati; Kneisel, Peter; Myneni, Ganapati Rao

    2013-01-01

    Most of the current research in superconducting radio frequency (SRF) cavities is focused on ways to reduce the construction and operating cost of SRF based accelerators as well as on the development of new or improved cavity processing techniques. The increase in quality factors is the result of the reduction of the surface resistance of the materials. A recent test on a 1.5 GHz single cell cavity made from ingot niobium of medium purity and heat treated at 1400 C in a ultra-high vacuum induction furnace resulted in a residual resistance of about 1nanoohm and a quality factor at 2.0 K increasing with field up to 5x10^10 at a peak magnetic field of 90 mT. In this contribution, we present some results on the investigation of the origin of the extended Q0-increase, obtained by multiple HF rinses, oxypolishing and heat treatment of all Nb cavities.

  20. Effect of adhesion proteins and surface chemistry on the procoagulant state of adherent platelets

    Science.gov (United States)

    Grunkemeier, John Mark

    Poor hemocompatibility of a blood contacting device can lead to blood clotting, reduced blood flow, and depletion of platelets from the blood. Improved understanding of the processes by which blood-material contact leads to these responses could result in more hemocompatible materials. Platelets accelerate blood clotting by adhesion, aggregation, secretion of proteins and agonists and acceleration of thrombin generation. Platelets are said to be "procoagulant" after phosphatidylserine residues flip from the cytosolic to the extracellular face of the lipid bilayer. This then allows for the assembly of the prothrombinase complex (Xa, Va and calcium) on the platelet membrane, which can rapidly convert prothrombin to thrombin. In this study, three different methods confirmed that adhesion causes platelets to become procoagulant: shortening of clotting times of recalcified plasma, binding of FITC-annexin V, and generation of thrombin in the presence of Va, Xa and prothrombin by adherent platelets. Adherent platelets were 10--23 times more activated than bulk phase unactivated platelets and 10--24 times less activated than bulk phase platelets activated by calcium ionophore. The role of adsorbed fibrinogen, vWF, mixtures of fibrinogen and vWF, fibronectin, whole and dilute plasma, and plasma deficient in adhesion proteins in stimulating platelet procoagulant activity was investigated. The results of these experiments suggested that adhesion proteins affect procoagulant activation to varying degrees and that surfaces preadsorbed with mixtures of adhesion proteins are more activating that surfaces preadsorbed with single adhesion proteins. The hypothesis that materials that affect tightness of binding of adsorbed adhesion proteins affect platelet procoagulant activity was investigated. These studies showed that increasing fluorine content of RFGD polymerized films caused reduced platelet adhesion, but increased procoagulant activity, possibly due to their ability to adsorb

  1. Surface chemistry on small ruthenium nanoparticles: evidence for site selective reactions and influence of ligands.

    Science.gov (United States)

    Novio, Fernando; Monahan, Daniele; Coppel, Yannick; Antorrena, Guillermo; Lecante, Pierre; Philippot, Karine; Chaudret, Bruno

    2014-01-27

    The reactivity of two classes of ruthenium nanoparticles (Ru NPs) of small size, either sterically stabilized by a polymer (polyvinylpyrrolidone, PVP) or electronically stabilized by a ligand (bisdiphenylphosphinobutane, dppb) was tested towards standard reactions, namely CO oxidation, CO2 reduction and styrene hydrogenation. The aim of the work was to identify the sites of reactivity on the nanoparticles and to study how the presence of ancillary ligands can influence the course of these catalytic reactions by using NMR and IR spectroscopies. It was found that CO oxidation proceeds at room temperature (RT) on Ru NPs but that the system deactivates rapidly in the absence of ligands because of the formation of RuO2. In the presence of ligands, the reaction involves exclusively the bridging CO groups and no bulk oxidation is observed at RT under catalytic conditions. The reverse reaction, CO2 reduction, is achieved at 120 °C in the presence of H2 and leads to CO, which coordinates exclusively in a bridging mode, hence evidencing the competition between hydrides and CO for coordination on Ru NPs. The effect of ligands localized on the surface is also evidenced in catalytic reactions. Thus, styrene is slowly hydrogenated at RT by the two systems Ru/PVP and Ru/dppb, first into ethylbenzene and then into ethylcyclohexane. Selectively poisoning the nanoparticles with bridging CO groups leads to catalysts that are only able to reduce the vinyl group of styrene whereas a full poisoning with both terminal and bridging CO groups leads to inactive catalysts. These results are interpreted in terms of location of the ligands on the particles surface, and evidence site selectivity for both CO oxidation and arene hydrogenation. PMID:24458912

  2. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds

    Directory of Open Access Journals (Sweden)

    Alexander Röder

    2015-11-01

    Full Text Available The use of biopolymers as a three dimensional (3D support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1 cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either “low-adhesive” non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies.

  3. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    International Nuclear Information System (INIS)

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH4+ and Ca2+, whereas the main anion was HCO3−, which constituted approximately 69% of the anions, followed by NO3−, SO42− and Cl−. Data analysis suggested that Na+, Cl− and K+ were derived from the long-range transport of marine aerosols. Ca2+, Mg2+ and HCO3− were related to rock and soil dust contributions and the NO3− and SO42− concentrations were derived from anthropogenic sources. Furthermore, NH4+ was derived from gaseous NH3 scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ18O, and from − 0.8 to − 174‰ in δ2H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha−1 y−1) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO3− concentrations in the surface waters (from 2

  4. Role of lattice mismatch and surface chemistry in the formation of epitaxial semiconductor-insulator interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, M.A. (Department of Physics, University of California, Berkeley, Berkeley, California 94720 (USA)); Bringans, R.D. (Xerox Corporation, Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304 (USA))

    1990-04-15

    The formation of SrF{sub 2}/Si(111) and Ge/CaF{sub 2}/Si(111) interfaces is studied with photoemission and compared to previous results for the CaF{sub 2}/Si(111) interface. The interface between SrF{sub 2} and Si(111) is found to be nonstoichiometric, similar to the interface between CaF{sub 2} and Si(111): the bonding is between Si and the cation, with a layer of fluorine missing at the interface. In the case of Ge growth on CaF{sub 2}/Si(111), a variety of effects are noted: The CaF{sub 2}/Si(111) valence-band offset is reduced by about 1 eV upon deposition of Ge at room temperature. The sticking coefficient of the Ge is significantly increased by preparing the CaF{sub 2} surface with electron bombardment to remove the top layer of fluorine. For both the irradiated and nonirradiated cases, annealing of thin room-temperature-deposited films resulted in Ge island formation.

  5. A Nisin Bioassay Based on Bioluminescence

    OpenAIRE

    Wahlström, G.; Saris, P. E. J.

    1999-01-01

    A Lactococcus lactis subsp. lactis strain that can sense the bacteriocin nisin and transduce the signal into bioluminescence was constructed. By using this strain, a bioassay based on bioluminescence was developed for quantification of nisin, for detection of nisin in milk, and for identification of nisin-producing strains. As little as 0.0125 ng of nisin per ml was detected within 3 h by this bioluminescence assay. This detection limit was lower than in previously described methods.

  6. Carbon nanotubes' surface chemistry determines their potency as vaccine nanocarriers in vitro and in vivo

    Science.gov (United States)

    Hassan, Hatem A.F.M.; Smyth, Lesley; Rubio, Noelia; Ratnasothy, Kulachelvy; Wang, Julie T.-W.; Bansal, Sukhvinder S.; Summers, Huw D.; Diebold, Sandra S.; Lombardi, Giovanna; Al-Jamal, Khuloud T.

    2016-01-01

    Carbon nanotubes (CNTs) have shown marked capabilities in enhancing antigen delivery to antigen presenting cells. However, proper understanding of how altering the physical properties of CNTs may influence antigen uptake by antigen presenting cells, such as dendritic cells (DCs), has not been established yet. We hypothesized that altering the physical properties of multi-walled CNTs (MWNTs)-antigen conjugates, e.g. length and surface charge, can affect the internalization of MWNT-antigen by DCs, hence the induced immune response potency. For this purpose, pristine MWNTs (p-MWNTs) were exposed to various chemical reactions to modify their physical properties then conjugated to ovalbumin (OVA), a model antigen. The yielded MWNTs-OVA conjugates were long MWNT-OVA (~ 386 nm), bearing net positive charge (5.8 mV), or short MWNTs-OVA (~ 122 nm) of increasing negative charges (− 23.4, − 35.8 or − 39 mV). Compared to the short MWNTs-OVA bearing high negative charges, short MWNT-OVA with the lowest negative charge demonstrated better cellular uptake and OVA-specific immune response both in vitro and in vivo. However, long positively-charged MWNT-OVA showed limited cellular uptake and OVA specific immune response in contrast to short MWNT-OVA displaying the least negative charge. We suggest that reduction in charge negativity of MWNT-antigen conjugate enhances cellular uptake and thus the elicited immune response intensity. Nevertheless, length of MWNT-antigen conjugate might also affect the cellular uptake and immune response potency; highlighting the importance of physical properties as a consideration in designing a MWNT-based vaccine delivery system. PMID:26802552

  7. Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yeohoon; Du, Yingge; Garcia, Juan C.; Zhu, Zihua; Wang, Zhitao; Petrik, Nikolay G.; Kimmel, Gregory A.; Dohnalek, Zdenek; Henderson, Michael A.; Rousseau, Roger J.; Deskins, N. Aaron; Lyubinetsky, Igor

    2015-02-02

    Using combination of STM, DFT and SIMS, we explored the interplay and relative impact of surface vs. subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO’s) are virtually absent in the vicinity of positively-charged subsurface point-defects. This observation is consistent with DFT calculations of impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 is employed, which is observed to be suppressed around them. DFT results attribute this to a perceived absence of the intrinsic (Ti) (and likely extrinsic) interstitials in the nearest subsurface layer beneath “inhibited” areas. We also postulate that the entire nearest subsurface region could be voided of any charged point-defects, whereas prevalent VO’s are largely responsible for mediation of the redox chemistry at reduced TiO2(110) surface.

  8. Testing grain surface chemistry a survey of deuterated formaldehyde and methanol in low-mass Class 0 protostars

    CERN Document Server

    Parise, B; Caux, E; Ceccarelli, C; Le Floc'h, B; Maret, S; Tielens, A G G M

    2006-01-01

    Context : Despite the low cosmic abundance of deuterium (D/H ~ 1e-5), large degrees of deuterium fractionation in molecules are observed in star forming regions with enhancements that can reach 13 orders of magnitude, which current models have difficulties to account for. Aims : Multi-isotopologue observations are a very powerful constraint for chemical models. The aim of our observations is to understand the processes forming the observed large abundances of methanol and formaldehyde in low-mass protostellar envelopes (gas-phase processes ? chemistry on the grain surfaces ?) and better constrain the chemical models. Methods : Using the IRAM 30m single-dish telescope, we observed deuterated formaldehyde (HDCO and D2CO) and methanol (CH2DOH, CH3OD, and CHD2OH) towards a sample of seven low-mass class 0 protostars. Using population diagrams, we then derive the fractionation ratios of these species (abundance ratio between the deuterated molecule and its main isotopologue) and compare them to the predictions of ...

  9. Green chemistry focus on optimization of silver nanoparticles using response surface methodology (RSM) and mosquitocidal activity: Anopheles stephensi (Diptera: Culicidae).

    Science.gov (United States)

    Ondari Nyakundi, Erick; Padmanabhan, M Nalini

    2015-01-01

    There is an exigent necessity for development of environmental friendly bio-control agent(s) for elimination of mosquito due to increased resistance resurgence against synthetic control agents. Mosquito control strategy will lay a strong foundation to malaria exclusion or it can be curbed to certain level especially in the developing nations. In this study, silver nanoparticles were synthesized by green chemistry approach using Tridax procumbens leaf extract as a reducing agent. The reaction medium involved in the synthesis process was optimized by statistical experimental design using response surface methodology to obtain better yield, uniform size, shape and stability. Further, these synthesized nanoparticles were confirmed through UV-Visible, FT-IR spectroscopy, PSA and SEM Subsequently, the bioefficacy of these particles were investigated on Anopheles stephensi for larvicidal and pupicidal activity. Interestingly, time period of 90 min, temperature of 76±2 °C, pH 7.2±2, 2 mM silver nitrate (AgNO3), 3mM PEG and 2mM PVP showed excellent parameters for bioprocess design for large scale production of stabilized nanoparticles. A concentration of 5 ppm of PVP stabilized nanoparticles exhibited 100% mortality. Thus, the obtained results clearly suggest that silver nanoparticles stabilized by PEG and PVP may have important function as stabilizers, dispersants as well as larvicides for mosquito control.

  10. Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles.

    Science.gov (United States)

    Aruda, Kenneth O; Tagliazucchi, Mario; Sweeney, Christina M; Hannah, Daniel C; Schatz, George C; Weiss, Emily A

    2013-03-12

    This paper describes measurements of the dynamics of hot electron cooling in photoexcited gold nanoparticles (Au NPs) with diameters of ∼3.5 nm, and passivated with either a hexadecylamine or hexadecanethiolate adlayer, using ultrafast transient absorption spectroscopy. Fits of these dynamics with temperature-dependent Mie theory reveal that both the electronic heat capacity and the electron-phonon coupling constant are larger for the thiolated NPs than for the aminated NPs, by 40% and 30%, respectively. Density functional theory calculations on ligand-functionalized Au slabs show that the increase in these quantities is due to an increased electronic density of states near the Fermi level upon ligand exchange from amines to thiolates. The lifetime of hot electrons, which have thermalized from the initial plasmon excitation, increases with increasing electronic heat capacity, but decreases with increasing electron-phonon coupling, so the effects of changing surface chemistry on these two quantities partially cancel to yield a hot electron lifetime of thiolated NPs that is only 20% longer than that of aminated NPs. This analysis also reveals that incorporation of a temperature-dependent electron-phonon coupling constant is necessary to adequately fit the dynamics of electron cooling. PMID:23440215

  11. Green chemistry focus on optimization of silver nanoparticles using response surface methodology (RSM) and mosquitocidal activity: Anopheles stephensi (Diptera: Culicidae).

    Science.gov (United States)

    Ondari Nyakundi, Erick; Padmanabhan, M Nalini

    2015-01-01

    There is an exigent necessity for development of environmental friendly bio-control agent(s) for elimination of mosquito due to increased resistance resurgence against synthetic control agents. Mosquito control strategy will lay a strong foundation to malaria exclusion or it can be curbed to certain level especially in the developing nations. In this study, silver nanoparticles were synthesized by green chemistry approach using Tridax procumbens leaf extract as a reducing agent. The reaction medium involved in the synthesis process was optimized by statistical experimental design using response surface methodology to obtain better yield, uniform size, shape and stability. Further, these synthesized nanoparticles were confirmed through UV-Visible, FT-IR spectroscopy, PSA and SEM Subsequently, the bioefficacy of these particles were investigated on Anopheles stephensi for larvicidal and pupicidal activity. Interestingly, time period of 90 min, temperature of 76±2 °C, pH 7.2±2, 2 mM silver nitrate (AgNO3), 3mM PEG and 2mM PVP showed excellent parameters for bioprocess design for large scale production of stabilized nanoparticles. A concentration of 5 ppm of PVP stabilized nanoparticles exhibited 100% mortality. Thus, the obtained results clearly suggest that silver nanoparticles stabilized by PEG and PVP may have important function as stabilizers, dispersants as well as larvicides for mosquito control. PMID:26010566

  12. Adsorption and thermal chemistry of formic acid on clean and oxygen-predosed Cu(110) single-crystal surfaces revisited

    Science.gov (United States)

    Yao, Yunxi; Zaera, Francisco

    2016-04-01

    The thermal chemistry of formic acid on clean and oxygen-predosed Cu(110) single-crystal surfaces was studied under ultrahigh-vacuum (UHV) conditions by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Key results reported in the past were confirmed, including the partial switchover from H2 to H2O desorption upon oxygen addition on the surface and the development of a second decomposition regime at 420 K, in addition to the one observed at 460 K on the clean substrate. In addition, new observations were added, including the previously missed desorption of H2 at 420 K and the existence of a normal kinetic isotope effect in both TPD peaks. Peak fitting of the XPS data afforded the identification of an asymmetric geometry for the formate intermediate, which was established to form by 200 K, and the presence of coadsorbed molecular formic acid up to the temperatures of decomposition, probably in a second layer and held by hydrogen bonding. Quantitative analysis of the TPD data indicated a one-to-one correspondence between the increase in oxygen coverage beyond θO = 0.5 ML and a decrease in formic acid uptake that mainly manifests itself in a decrease in the decomposition seen in the 460 K TPD peak. All these observations were interpreted in terms of a simple decomposition mechanism involving hydrogen abstraction from adsorbed formate species, possibly aided by coadsorbed oxygen, and a change in reaction activation energy as a function of the structure of the oxygen overlayer, which reverts from a O-c(6 × 2) structure at high oxygen coverages to the O-(2 × 1) order seen at θO = 0.5 ML.

  13. Changes in silver nanoparticles exposed to human synthetic stomach fluid: Effects of particle size and surface chemistry

    International Nuclear Information System (INIS)

    The significant rise in consumer products and applications utilizing the antibacterial properties of silver nanoparticles (AgNPs) has increased the possibility of human exposure. The mobility and bioavailability of AgNPs through the ingestion pathway will depend, in part, on properties such as particle size and the surface chemistries that will influence their physical and chemical reactivities during transit through the gastrointestinal tract. This study investigates the interactions between synthetic stomach fluid and AgNPs of different sizes and with different capping agents. Changes in morphology, size and chemical composition were determined during a 30 min exposure to synthetic human stomach fluid (SSF) using Absorbance Spectroscopy, High Resolution Transmission Electron and Scanning Electron Microscopy (TEM/SEM), Dynamic Light Scattering (DLS), and Nanoparticle Tracking Analysis (NTA). AgNPs exposed to SSF were found to aggregate significantly and also released ionic silver which physically associated with the particle aggregates as silver chloride. Generally, the smaller sized AgNPs (< 10 nm) showed higher rates of aggregation and physical transformation than larger particles (75 nm). Polyvinylpyrrolidone (pvp)-stabilized AgNPs prepared in house behaved differently in SSF than particles obtained from a commercial source despite having similar surface coating and size distribution characteristics. - Highlights: ► Interactions between synthetic stomach fluid (SSF) and silver nanoparticles (AgNPs) are described. ► AgNPs exposed to SSF aggregate and silver chloride are associated with the particle aggregates. ► Smaller AgNPs (< 10 nm) showed higher rates of aggregation and transformation than larger particles (75 nm). ► Polyvinylpyrrolidone-stabilized AgNPs obtained from different sources aggregated at different rates when exposed to SSF

  14. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays

    International Nuclear Information System (INIS)

    Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To

  15. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays

    Science.gov (United States)

    Vergauwe, Nicolas; Witters, Daan; Ceyssens, Frederik; Vermeir, Steven; Verbruggen, Bert; Puers, Robert; Lammertyn, Jeroen

    2011-05-01

    Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To demonstrate

  16. A Unified Monte Carlo Treatment of Gas-Grain Chemistry for Large Reaction Networks. II. A Multiphase Gas-Surface-Layered Bulk Model

    CERN Document Server

    Vasyunin, A I

    2012-01-01

    The observed gas-phase molecular inventory of hot cores is believed to be significantly impacted by the products of chemistry in interstellar ices. In this study, we report the construction of a full macroscopic Monte Carlo model of both the gas-phase chemistry and the chemistry occurring in the icy mantles of interstellar grains. Our model treats icy grain mantles in a layer-by-layer manner, which incorporates laboratory data on ice desorption correctly. The ice treatment includes a distinction between a reactive ice surface and an inert bulk. The treatment also distinguishes between zeroth and first order desorption, and includes the entrapment of volatile species in more refractory ice mantles. We apply the model to the investigation of the chemistry in hot cores, in which a thick ice mantle built up during the previous cold phase of protostellar evolution undergoes surface reactions and is eventually evaporated. For the first time, the impact of a detailed multilayer approach to grain mantle formation on ...

  17. Surface modification of Fe{sub 2}O{sub 3} nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe{sub 2}O{sub 3} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Palimi, M.J. [Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M., E-mail: rostami-m@icrc.ac.ir [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Mahdavian, M.; Ramezanzadeh, B. [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Surface treatment of Fe{sub 2}O{sub 3} with amino propyl tri methoxy silane. • The surface chemistry pigments were affected by the chemical treatment. • Surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. • The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles. - Abstract: Fe{sub 2}O{sub 3} nanoparticles were modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Modified and unmodified nanoparticles were introduced into the polyurethane matrix at different concentrations. Fourier transform infrared radiation (FT-IR) and X-ray photoelectron spectrophotometer (XPS) were employed in order to investigate the APTMS grafting on the nanoparticles field emission-scanning electron microscope (FE-SEM) was utilized in order to investigate nanoparticles dispersion in the polyurethane coating matrix as well as the fracture behavior of the nanocomposites. The mechanical properties of the nanocomposites were investigated by dynamic mechanical thermal analysis (DMTA) and tensile test. The FTIR spectra and XPS analysis clearly showed that APTMS was grafted on the surface of nanoparticles successfully and formed chemical bonds with the surface. Also, surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles.

  18. A New Approach for Detection Improvement of the Creutzfeldt-Jakob Disorder through a Specific Surface Chemistry Applied onto Titration Well

    Directory of Open Access Journals (Sweden)

    Dominique Debarnot

    2012-10-01

    Full Text Available This work illustrates the enhancement of the sensitivity of the ELISA titration for recombinant human and native prion proteins, while reducing other non-specific adsorptions that could increase the background signal and lead to a low sensitivity and false positives. It is achieved thanks to the association of plasma chemistry and coating with different amphiphilic molecules bearing either ionic charges and/or long hydrocarbon chains. The treated support by 3-butenylamine hydrochloride improves the signal detection of recombinant protein, while surface modification with the 3,7-dimethylocta-2,6-dien-1-diamine (geranylamine enhances the sensitivity of the native protein. Beside the surface chemistry effect, these different results are associated with protein conformation.

  19. Study of surface chemistry and microstructure of TiO2 nanostructures on Pt(111)/Si wafer and FTO glass substrates: a comparative approach

    Science.gov (United States)

    Roy Moulik, Samik; Ghatak, Ankita; Ghosh, Barnali

    2016-09-01

    We report, the kinetically controlled growth of the (002)-oriented TiO2 nanorods on fluorine-doped tin oxide (FTO) coated glass substrate via a cost effective hydrothermal synthesis route of binary oxides. In addition to this, the nanoflowered like growth of TiO2 nanorods using cubic structure Pt(111)/SiO2/Si substrate has also been demonstrated. Tuning of shape, crystallographic structure issues has been discussed by controlling the surface chemistry of the substrate on which the nanostructures were grown. The crystallographic structural aspects of the grown nanorods was confirmed both on ensemble and single nanowire level using spatially resolved tools and techniques. Growth mechanism for different shape, size and crystallographic structure depending on the surface chemistry of the substrate has been proposed. Understanding of growth of oriented TiO2 nanorods and interaction mechanism is quite promising and encouraging for designing optoelectronic and photocatalytic devices to enhanced electron transport and lower exciton recombination rates.

  20. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  1. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, Raffaella, E-mail: balestrini@irsa.cnr.it [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Polesello, Stefano [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Sacchi, Elisa [Department of Earth and Environmental Sciences, University of Pavia and IGG-CNR, Via Ferrata 1, 27100 Pavia (Italy)

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH{sub 4}{sup +} and Ca{sup 2+}, whereas the main anion was HCO{sub 3}{sup −}, which constituted approximately 69% of the anions, followed by NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and Cl{sup −}. Data analysis suggested that Na{sup +}, Cl{sup −} and K{sup +} were derived from the long-range transport of marine aerosols. Ca{sup 2+}, Mg{sup 2+} and HCO{sub 3}{sup −} were related to rock and soil dust contributions and the NO{sub 3}{sup −} and SO{sub 4}{sup 2−} concentrations were derived from anthropogenic sources. Furthermore, NH{sub 4}{sup +} was derived from gaseous NH{sub 3} scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ{sup 18}O, and from − 0.8 to − 174‰ in δ{sup 2}H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha{sup −1} y{sup −1

  2. Critical stages of a biodetection platform development from sensor chip fabrication to surface chemistry and assay development

    Science.gov (United States)

    Uludag, Yildiz

    2014-06-01

    Once viewed solely as a tool to analyse biomolecular interactions, biosensors are gaining widespread interest for diagnostics, biological defense, environmental and quality assurance in agriculture/food industries. Advanced micro fabrication techniques have facilitated integration of microfluidics with sensing functionalities on the same chip making system automation more convenient1. Biosensor devices relying on lab-on-a-chip technologies and nanotechnology has attracted much of attention in recent years for biological defense research and development. However, compared with the numerous publications and patents available, the commercialization of biosensors technology has significantly lagged behind the research output. This paper reviews the reasons behind the slow commercialisation of biosensors with an insight to the critical stages of a biosensor development from the sensor chip fabrication to surface chemistry applications and nanotechnology applications in sensing with case studies. In addition, the paper includes the description of a new biodetection platform based on Real-time Electrochemical ProfilingTM (REPTM) that comprises novel electrode arrays and nanoparticle based sensing. The performance of the REPTM platform has been tested for the detection of Planktothrix agardhii, one of the toxic bloom-forming cyanobacteria, usually found in shallow fresh water sources that can be used for human consumption. The optimised REPTM assay allowed the detection of P. agardhii DNA down to 6 pM. This study, showed the potential of REPTM as a new biodetection platform for toxic bacteria and hence further studies will involve the development of a portable multi-analyte biosensor based on REPTM technology for on-site testing.

  3. Study of the Effect of Grafting Method on Surface Polarity of Tempo-Oxidized Nanocellulose Using Polycaprolactone as the Modifying Compound: Esterification versus Click-Chemistry

    OpenAIRE

    Abdelhaq Benkaddour; Khalil Jradi; Sylvain Robert; Claude Daneault

    2013-01-01

    Esterification and click-chemistry were evaluated as surface modification treatments for TEMPO-oxidized nanocelluloses (TONC) using Polycaprolactone-diol (PCL) as modifying compound in order to improve the dispersion of nanofibers in organic media. These two grafting strategies were analyzed and compared. The first consists of grafting directly the PCL onto TONC, and was carried out by esterification between hydroxyl groups of PCL and carboxyl groups of TONC. The second strategy known as clic...

  4. In-situ bioassays using caged bivalves

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.H.; Salazar, S.M.

    1995-12-31

    It is important to make the distinction between chemical measurements to assess bioaccumulation potential versus biological measurements to assess potential bioeffects because bioaccumulation is not a bioeffect. Caging provides a unique opportunity to make synoptic measurements of each and facilitates making these measurements over space and time. Measuring bioaccumulation in resident and transplanted bivalves has probably been the most frequently used form of an in-situ bioassay because bivalves concentrate chemicals in their tissues. They are also easy to collect, cage, and measure. The authors have refined bivalve bioassay methods by minimizing the size range of test animals, making repetitive measurements of the same individuals, and standardizing test protocols for a variety of applications. They are now attempting to standardize criteria for accepting and interpreting data in the same way that laboratory bioassays have been standardized. Growth measurements can serve two purposes in this assessment strategy: (1) An integrated biological response endpoint that is easily quantifiable and with significance to the population, and (2) A means of calibrating bioaccumulation by assessing the relative health and physiological state of tissues that have accumulated the chemicals. In general, the authors have found the highest bioconcentration factors associated with the highest growth rates, the highest concentrations ({micro}g/g) of chemicals in juvenile mussels, and the highest chemical content ({micro}g/animal) in adult mussels. Without accounting for possible dilution of chemical concentrations by tissue growth or magnification through degrowth, contaminant concentrations can be misleading. Examples are provided for the Sudbury River in Massachusetts (Elliptio complanata), San Diego Bay (Mytilus galloprovincialis), and the Harbor Island Superfund Site in Puget Sound (Mytilus trossulus).

  5. A Multichannel Bioluminescence Determination Platform for Bioassays.

    Science.gov (United States)

    Kim, Sung-Bae; Naganawa, Ryuichi

    2016-01-01

    The present protocol introduces a multichannel bioluminescence determination platform allowing a high sample throughput determination of weak bioluminescence with reduced standard deviations. The platform is designed to carry a multichannel conveyer, an optical filter, and a mirror cap. The platform enables us to near-simultaneously determine ligands in multiple samples without the replacement of the sample tubes. Furthermore, the optical filters beneath the multichannel conveyer are designed to easily discriminate colors during assays. This optical system provides excellent time- and labor-efficiency to users during bioassays.

  6. Aspartame bioassay findings portend human cancer hazards.

    Science.gov (United States)

    Huff, James; LaDou, Joseph

    2007-01-01

    The U.S. Food and Drug Administration (FDA) should reevaluate its position on aspartame as being safe under all conditions. Animal bioassay results predict human cancer risks, and a recent animal study confirms that there is a potential aspartame risk to humans. Aspartame is produced and packaged in China for domestic use and global distribution. Japan, France, and the United States are also major producers. No study of long-term adverse occupational health effects on aspartame workers have been conducted. The FDA should consider sponsoring a prospective epidemiologic study of aspartame workers.

  7. A Multichannel Bioluminescence Determination Platform for Bioassays.

    Science.gov (United States)

    Kim, Sung-Bae; Naganawa, Ryuichi

    2016-01-01

    The present protocol introduces a multichannel bioluminescence determination platform allowing a high sample throughput determination of weak bioluminescence with reduced standard deviations. The platform is designed to carry a multichannel conveyer, an optical filter, and a mirror cap. The platform enables us to near-simultaneously determine ligands in multiple samples without the replacement of the sample tubes. Furthermore, the optical filters beneath the multichannel conveyer are designed to easily discriminate colors during assays. This optical system provides excellent time- and labor-efficiency to users during bioassays. PMID:27424912

  8. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins.

    Science.gov (United States)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 ma.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH4(+) and Ca(2+), whereas the main anion was HCO3(-), which constituted approximately 69% of the anions, followed by NO3(-), SO4(2-) and Cl(-). Data analysis suggested that Na(+), Cl(-) and K(+) were derived from the long-range transport of marine aerosols. Ca(2+), Mg(2+) and HCO3(-) were related to rock and soil dust contributions and the NO3(-) and SO4(2-) concentrations were derived from anthropogenic sources. Furthermore, NH4(+) was derived from gaseous NH3 scavenging. The isotopic composition of weekly precipitation ranged from -1.9 to -23.2‰ in δ(18)O, and from -0.8 to -174‰ in δ(2)H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha(-1) y(-1)) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO3(-) concentrations in the surface waters

  9. Self-Induced Surface Texturing of AL2O3 by Means of Inductively Coupled Plasma Reactive Ion Etching in CL2 Chemistry

    Science.gov (United States)

    Batoni, Paolo; Stokes, Edward B.; Shah, Trushant K.; Hodge, Michael D.; Suleski, Thomas J.

    2007-06-01

    In this work we investigate a pseudo-random surface texturing technique of sapphire by means of inductively coupled plasma reacting ion etching in chlorine chemistry, for which no sophisticated lithographic process is required. Such a surface texturing technique, which we believe offers indicative promise for enhanced light extraction in deep ultraviolet light-emitting diodes has allowed us to texture sapphire samples having a surface larger than 1 cm2 with controlled structures. Fabrication parameters have been characterized, and textured Al2O3 surfaces having submicron features, and nano-scale periodicity have been obtained. Performance, and characterization of our textured Al2O3 surfaces is the hinge of addition work in progress.

  10. Influence of Si substrate preparation on surface chemistry and morphology of L-CVD SnO2 thin films studied by XPS and AFM

    International Nuclear Information System (INIS)

    Results of experimental studies of the influence of substrate preparation on the surface chemistry and surface morphology of the laser-assisted chemical vapour deposition (L-CVD) SnO2 thin films are presented in this paper. The native Si(1 0 0) substrate cleaned by UHV thermal annealing (TA) as well as thermally oxidized Si(1 0 0) substrate cleaned by ion bombardment (IBA) have been used as the substrates. X-ray photoemission spectroscopy (XPS) has been used for the control of surface chemistry of the substrates as well as of deposited films. Atomic force microscopy (AFM) has been used to control the surface morphology of the L-CVD SnO2 thin films deposited on differently prepared substrates. Our XPS shows that the L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit the same stoichiometry, i.e. ratio [O]/[Sn] = 1.30 as that of the layers deposited on Si(1 0 0) substrate previously cleaned by UHV prolonged heating. AFM shows that L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit evidently increasing rough surface topography with respect to roughness, grain size range and maximum grain height as the L-CVD SnO2 thin films deposited on atomically clean Si substrate at the same surface chemistry (nonstoichiometry) reflect the higher substrate roughness after cleaning with ion bombardment.

  11. Urine sample collection protocols for bioassay samples

    Energy Technology Data Exchange (ETDEWEB)

    MacLellan, J.A.; McFadden, K.M.

    1992-11-01

    In vitro radiobioassay analyses are used to measure the amount of radioactive material excreted by personnel exposed to the potential intake of radioactive material. The analytical results are then used with various metabolic models to estimate the amount of radioactive material in the subject`s body and the original intake of radioactive material. Proper application of these metabolic models requires knowledge of the excretion period. It is normal practice to design the bioassay program based on a 24-hour excretion sample. The Hanford bioassay program simulates a total 24-hour urine excretion sample with urine collection periods lasting from one-half hour before retiring to one-half hour after rising on two consecutive days. Urine passed during the specified periods is collected in three 1-L bottles. Because the daily excretion volume given in Publication 23 of the International Commission on Radiological Protection (ICRP 1975, p. 354) for Reference Man is 1.4 L, it was proposed to use only two 1-L bottles as a cost-saving measure. This raised the broader question of what should be the design capacity of a 24-hour urine sample kit.

  12. Urine sample collection protocols for bioassay samples

    Energy Technology Data Exchange (ETDEWEB)

    MacLellan, J.A.; McFadden, K.M.

    1992-11-01

    In vitro radiobioassay analyses are used to measure the amount of radioactive material excreted by personnel exposed to the potential intake of radioactive material. The analytical results are then used with various metabolic models to estimate the amount of radioactive material in the subject's body and the original intake of radioactive material. Proper application of these metabolic models requires knowledge of the excretion period. It is normal practice to design the bioassay program based on a 24-hour excretion sample. The Hanford bioassay program simulates a total 24-hour urine excretion sample with urine collection periods lasting from one-half hour before retiring to one-half hour after rising on two consecutive days. Urine passed during the specified periods is collected in three 1-L bottles. Because the daily excretion volume given in Publication 23 of the International Commission on Radiological Protection (ICRP 1975, p. 354) for Reference Man is 1.4 L, it was proposed to use only two 1-L bottles as a cost-saving measure. This raised the broader question of what should be the design capacity of a 24-hour urine sample kit.

  13. A statistical treatment of bioassay pour fractions

    Science.gov (United States)

    Barengoltz, Jack; Hughes, David

    A bioassay is a method for estimating the number of bacterial spores on a spacecraft surface for the purpose of demonstrating compliance with planetary protection (PP) requirements (Ref. 1). The details of the process may be seen in the appropriate PP document (e.g., for NASA, Ref. 2). In general, the surface is mechanically sampled with a damp sterile swab or wipe. The completion of the process is colony formation in a growth medium in a plate (Petri dish); the colonies are counted. Consider a set of samples from randomly selected, known areas of one spacecraft surface, for simplicity. One may calculate the mean and standard deviation of the bioburden density, which is the ratio of counts to area sampled. The standard deviation represents an estimate of the variation from place to place of the true bioburden density commingled with the precision of the individual sample counts. The accuracy of individual sample results depends on the equipment used, the collection method, and the culturing method. One aspect that greatly influences the result is the pour fraction, which is the quantity of fluid added to the plates divided by the total fluid used in extracting spores from the sampling equipment. In an analysis of a single sample’s counts due to the pour fraction, one seeks to answer the question: What is the probability that if a certain number of spores are counted with a known pour fraction, that there are an additional number of spores in the part of the rinse not poured. This is given for specific values by the binomial distribution density, where detection (of culturable spores) is success and the probability of success is the pour fraction. A special summation over the binomial distribution, equivalent to adding for all possible values of the true total number of spores, is performed. This distribution when normalized will almost yield the desired quantity. It is the probability that the additional number of spores does not exceed a certain value. Of course

  14. Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB: oxidation of oleic acid by ozone

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2010-05-01

    Full Text Available We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB based on the PRA framework of gas-particle interactions (Pöschl-Rudich-Ammann, 2007. K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations.

    From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of ~10−11 cm2 s−1 for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

  15. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  16. Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading.

    Science.gov (United States)

    Godino, Neus; Gorkin, Robert; Linares, Ana V; Burger, Robert; Ducrée, Jens

    2013-02-21

    This work for the first time presents the full integration and automation concept for a range of bioassays leveraged by cascading a centrifugo-pneumatic valving scheme to sequentially move several liquids through shared channel segments for multi-step sample preparation into the detection zone. This novel centrifugo-pneumatic liquid handling significantly simplifies system manufacture by obviating the need for complex surface functionalization procedures or hybrid material integration, as it is common in conventional valving methods such as capillary burst valves or sacrificial valves. Based on the centrifugo-pneumatic valving scheme, this work presents a toolkit of operational elements implementing liquid loading/transfer, metering, mixing and sedimentation in a microstructured polymer disc. As a proof of concept for the broad class of homogeneous bioassays, the full integration and automation of a colorimetric nitrate/nitrite test for the detection of clinically relevant nitric oxide (NO) in whole blood is implemented. First, 40 μL of plasma is extracted from a 100 μL sample of human blood, incubated for one hour with the enzymatic mixture (60 μL), and finally reacted with 100 μL of colorimetric (Greiss) reagents. Following just a single loading phase at the beginning of the process, all of these steps are automated through the centrifugo-pneumatic cascade with a high level of flow control and synchronization. Our system shows good correlation with controls up to 50 μM of nitrate, which adequately covers the healthy human range (4 to 45.3 μM). PMID:23250328

  17. Surface chemistry of the preferred (111) and (220) crystal oriented microcrystalline Si films by radio-frequency plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Daisuke; Koshino, Hideto; Tang, Zeguo; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, Sakura (Japan)

    2011-10-15

    The surface chemistry of the preferentially (111) and (220) crystal orientated chlorinated hydrogenated microcrystalline silicon ({mu}c-Si:H:Cl) films was studied using a rf PE-CVD of a dichlorosilane (SiH{sub 2}Cl{sub 2}) and H{sub 2} mixture. The growing surface for the preferentially (220) crystal oriented {mu}c-Si:H:Cl films included much voids and dangling bonds, whereas the growing surface with the preferential (111) crystal orientation was chemically stable relatively. These findings suggest that the sticking process of deposition precursors and/or the reconstruction of Si clusters within the sub-surface determine the preferential crystal orientation. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Synchrotron-based XPS studies of AlGaN and GaN surface chemistry and its relationship to ion sensor behaviour

    International Nuclear Information System (INIS)

    Highlights: • Soft X-ray was used to study the surface chemistry of GaN and AlGaN. • The surface chemistry and sensor behaviour were investigated. • The oxide of aluminum is significantly more reactive than gallium. • The Cl− ions are greater in GaN samples compared to AlGaN samples. - Abstract: Soft X-ray photoelectron spectroscopy was used to investigate the fundamental surface chemistry of both AlGaN and GaN surfaces in the context of understanding the behaviour of AlGaN/GaN heterostructures as chemical field-effect transistor (CHEMFET) ion sensors. AlGaN and GaN samples were subjected to different methods of oxide growth (native oxide and thermally grown oxide) and chemical treatment conditions. Our investigations indicate that the etching of the oxide layer is more pronounced with AlGaN compared to GaN. Also, we observed that chloride ions have a greater tendency to attach to the GaN surface relative to the AlGaN surface. Furthermore, chloride ions are comparatively more prevalent on surfaces treated with 5% HCl acid solution. The concentration of chloride ions is even higher on the HCl treated native oxide surface resulting in a very clear deconvolution of the Cl 2p1/2 and Cl 2p3/2 peaks. For GaN and AlGaN surfaces, a linear response (e.g. source-drain current) is typically seen with variation in pH of buffered solutions with constant reference electrode voltage at the surface gate; however, an inverted bath-tub type response (e.g. a maximum at neutral pH and lower values at pH values away from neutral) and a general tendency to negative charge selectivity has been also widely reported. We have shown that our XPS investigations are consistent with the different sensor response reported in the literature for these CHEMFET devices and may help to explain the differing response of these materials

  19. Synchrotron-based XPS studies of AlGaN and GaN surface chemistry and its relationship to ion sensor behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Khir, Farah Liyana Muhammad, E-mail: 21001899@student.uwa.edu.au [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Myers, Matthew, E-mail: Matt.Myers@csiro.au [School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); CSIRO Earth Science and Resource Engineering, Kensington, Western Australia 6151 (Australia); Podolska, Anna [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Department of Exploration Geophysics, Curtin University of Technology, 26 Dick Perry Avenue, ARRC, Kensington, Western Australia 6151 (Australia); Sanders, Tarun Maruthi [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Baker, Murray V., E-mail: murray.baker@uwa.edu.au [School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Nener, Brett D., E-mail: brett.nener@uwa.edu.au [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Parish, Giacinta, E-mail: giacinta.parish@uwa.edu.au [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia)

    2014-09-30

    Highlights: • Soft X-ray was used to study the surface chemistry of GaN and AlGaN. • The surface chemistry and sensor behaviour were investigated. • The oxide of aluminum is significantly more reactive than gallium. • The Cl{sup −} ions are greater in GaN samples compared to AlGaN samples. - Abstract: Soft X-ray photoelectron spectroscopy was used to investigate the fundamental surface chemistry of both AlGaN and GaN surfaces in the context of understanding the behaviour of AlGaN/GaN heterostructures as chemical field-effect transistor (CHEMFET) ion sensors. AlGaN and GaN samples were subjected to different methods of oxide growth (native oxide and thermally grown oxide) and chemical treatment conditions. Our investigations indicate that the etching of the oxide layer is more pronounced with AlGaN compared to GaN. Also, we observed that chloride ions have a greater tendency to attach to the GaN surface relative to the AlGaN surface. Furthermore, chloride ions are comparatively more prevalent on surfaces treated with 5% HCl acid solution. The concentration of chloride ions is even higher on the HCl treated native oxide surface resulting in a very clear deconvolution of the Cl 2p{sub 1/2} and Cl 2p{sub 3/2} peaks. For GaN and AlGaN surfaces, a linear response (e.g. source-drain current) is typically seen with variation in pH of buffered solutions with constant reference electrode voltage at the surface gate; however, an inverted bath-tub type response (e.g. a maximum at neutral pH and lower values at pH values away from neutral) and a general tendency to negative charge selectivity has been also widely reported. We have shown that our XPS investigations are consistent with the different sensor response reported in the literature for these CHEMFET devices and may help to explain the differing response of these materials.

  20. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions: Part 1 – general equations, parameters, and terminology

    Directory of Open Access Journals (Sweden)

    Y. Rudich

    2005-04-01

    Full Text Available Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It allows to describe mass transport and chemical reactions at the gas-particle interface and to link aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer; straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients; clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion correction, surface and bulk accommodation; clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms; mechanistic description of concentration and time dependencies; flexible inclusion/omission of chemical species and physicochemical processes; flexible convolution/deconvolution of species and processes; and full compatibility with traditional

  1. Chemistry of surface sediment along a north-south transect across the equator in the Central Indian Basin: An assessment of biogenic and detrital influences on elemental burial on the seafloor

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Parthiban, G.; Pattan, J.N.; Jauhari, P.

    The detailed chemistry of the surface sediment collected along a north-south transect across the equator in the Central Indian Ocean suggest that: biogenic sedimentation north of equator is dominated by carbonate ooze and the south of equator...

  2. Signal Amplification of Bioassay Using Zinc Nanomaterials

    Science.gov (United States)

    Cowles, Chad L.

    An emerging trend in the analytical detection sciences is the employment of nanomaterials for bioassay signal transduction to identify analytes critical to public health. These nanomaterials have been specifically investigated for applications which require identification of trace levels of cells, proteins, or other molecules that can have broad ranging impacts to human health in fields such as clinical diagnostics, environmental monitoring, food and drink control, and the prevention of bioterrorism. Oftentimes these nanoparticle-based signal transduction or amplification approaches offer distinct advantages over conventional methods such as increased sensitivity, rapidity, or stability. The biological application of nanoparticles however, does suffer from drawbacks that have limited more widespread adoption of these techniques. Some of these drawbacks are, high cost and toxicity, arduous synthesis methods, functionalization and bioconjugation challenges, and laboratory disposal and environmental hazard issues, all of which have impeded the progression of this technology in some way or another. This work aims at developing novel techniques that offer solutions to a number of these hurdles through the development of new nanoparticle-based signal transduction approaches and the description of a previously undescribed nanomaterial. Zinc-based nanomaterials offer the opportunity to overcome some of the limitations that are encountered when other nanomaterials are employed for bioassay signal transduction. On the other hand, the biological application of zinc nanomaterials has been difficult because in general their fluorescence is in the blue range and the reported quantum yields are usually too low for highly sensitive applications. The advantages of using zinc nanomaterials for biological applications, such as reduced toxicity, simple synthesis, low cost, and straightforward functionalization strategies contribute to the research interest in their application as

  3. Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes

    Science.gov (United States)

    Tracer and indicator microbe runoff experiments were conducted to investigate the influence of solution chemistry on the transport, retention, and release of Escherichia coli D21g. Experiments were conducted in a chamber (2.25 m long, 0.15 m wide, and 0.16 m high) packed with ultrapure quartz sand (...

  4. The atmospheric chemistry general circultation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere

    NARCIS (Netherlands)

    Jöckel, P.; Tost, H.; Pozzer, A.; Brülh, Ch.; Buchholz, J.; Ganzeveld, L.N.; Hoor, P.; Kerkweg, A.; Lawrence, M.G.; Sander, R.; Steil, B.; Stiller, G.; Tanarhte, M.; Taraborrelli, D.; Aardenne, van J.A.; Lelieveld, J.

    2006-01-01

    The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup

  5. Cell-based bioassays in microfluidic systems

    Science.gov (United States)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  6. Defect- and electron-enhanced chemistry at silicon surfaces: Reactivity and thermal desorption of propylene on Si(100)-(2 × 1)

    Science.gov (United States)

    Bozack, M. J.; Choyke, W. J.; Muehlhoff, L.; Yates, J. T.

    1986-11-01

    The reaction of Si(100) with c 3h 6 from a molecular beam source has been studied by Auger spectroscopy and thermal desorption methods. For a thermally annealed and ordered Si(100) surface, 35% of the propylene bonds to the surface as an undissociated molecule which desorbs intact at 550 K. The remainder of the propylene dissociates. Reactivity is enhanced by prebombarding the surface with Ar + ions. Adsorption of C 3H 6 to a disordered, ion-bombarded surface results in nearly complete dissociation of C 3H 6 for Ar + fluences greater than 9 × 10 14{ions}/{cm 2}. By performing the ion irradiation before, rather than during, adsorption, it is possible to conclude that the enhancement in reactivity is due to an increase in dissociative chemisorption, which occurs at defect sites produced by ion bombardment. The increase in reactivity is also independent of gas phase radical processes and other proposed mechanisms which depend on simultaneous action of the ion beam with the chemisorbed layer. Studies of electron-stimulated chemistry of the chemisorbed overlayer showed that decomposition of adsorbed propylene occurs for electron fluences greater than 1 × 10 17{electrons}/{cm 2}. The cross section for the process was calculated to be 4 × 10 -18 cm 2. The effect of preadsorbed hydrogen on silicon surface chemistry was also investigated. Hydrogen passivates the Si(100) surface by occupation of silicon dangling bond sites, which prevents adsorption of C 3H 6. These results have fundamental implications for studies of chemical and plasma vapor deposition and reactive ion etching of semiconductor surfaces.

  7. Final Technical Report. Reactivity of Iron-Bearing Minerals and CO2 Sequestration and Surface Chemistry of Pyrite. An Interdisciplinary Approach

    Energy Technology Data Exchange (ETDEWEB)

    Strongin, Daniel [Temple Univ., Philadelphia, PA (United States)

    2014-12-31

    Over the course of the scientific program, two areas of research were pursued: reactions of iron oxides with supercritical CO2 and sulfide and surface reactivity of pyrite. The latter area of interest was to understand the chemistry that results when supercritical CO2 (scCO2 ) with H2 S and/or SO2 in deep saline formations (DFS) contacts iron bearing minerals. Understanding the complexities the sulfur co-injectants introduce is a critical step in developing CO2 sequestration as a climate-mitigating strategy. The research strategy was to understand macroscopic observations of this chemistry with an atomic/molecular level view using surface analytical techniques. Research showed that the exposure of iron (oxyhdr)oxides (which included ferrihydrite, goethite, and hematite) to scCO2 in the presence of sulfide led to reactions that formed siderite (FeCO3). The results have important implications for the sequestration of CO2 via carbonation reactions in the Earth’s subsurface. An earlier area of focus in the project was to understand pyrite oxidation in microscopic detail. This understanding was used to understand macroscopic observations of pyrite reactivity. Results obtained from this research led to a better understanding how pyrite reacts in a range of chemical environments. Geochemical and modern surface science techniques were used to understand the chemistry of pyrite in important environmental conditions. The program relied on a strong integration the results of these techniques to provide a fundamental understanding to the macroscopic chemistry exhibited by pyrite in the environment. Major achievements during these studies included developing an understanding of the surface sites on pyrite that controlled its reactivity under oxidizing conditions. In particular sulfur anion vacancies and/or ferric sites were sites of reactivity. Studies also showed that the

  8. Immobilization of poly(acrylamide) brushes onto poly(caprolactone) surface by combining ATRP and “click” chemistry: Synthesis, characterization and evaluation of protein adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yuhao; Bian, Xinxiu; He, Liu; Cai, Mengtan; Xie, Xiaoxiong [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Luo, Xianglin, E-mail: luoxl@scu.edu.cn [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065 (China)

    2015-02-28

    Highlights: • Poly(caprolacone) (PCL) film surface was chemically modified by a novel method through combining ATRP and “click” chemistry. • Poly(acrylamide) (PAAm) of tailored chain length were synthesized and “clicked” onto PCL surface. • The modified PCL surface showed reduced BSA and Fg adsorption, and the protein resist ability in terms of chain length through its impact on grafting reaction and modified surface was investigated. - Abstract: Developments of poly(caprolactone) in blood-contacting applications are often restricted due to its intrinsic hydrophobicity. One common way to improve its hemocompatibility is to attach hydrophilic polymers. Here we developed a non-destructive method to graft hydrophilic poly(acrylamide) (PAAm) onto poly(caprolactone) (PCL) surface. In this strategy, azido-ended PCL with low molecular weights was synthesized and blended with PCL to create a surface with “clickable” property. Alkyne-ended poly(acrylamide)s with controlled chain lengths were then synthesized by atom transfer radical polymerization (ATRP), and finally were immobilized onto PCL surface by “click” reaction. The occurrence of immobilization was verified qualitatively by water contact angle measurement and quantitatively by X-ray photoelectron spectroscopy (XPS). The PAAm grafted surface exhibited fouling resistant properties, as demonstrated by reduced bovine serum albumin (BSA) and fibrinogen (Fg) adhesion.

  9. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  10. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    This annual report describes the activities carried out in 1985 by the Chemistry Department in the following fields: Chemistry, Inorganic Chemistry, Physicochemistry (Interphases, Surfaces), General Chemical Analysis, Active Materials Analysis, X Ray Fluorescence Analysis, Mass Spectroscopy (Isotopic Analysis, Instrumentation) and Optical Spectroscopy. A list of publications is enclosed. (M.E.L.)

  11. Química organometálica de superfície aplicada à preparação de catalisadores heterogêneos bem definidos Surface organometallic chemistry applied to the preparation of well defined heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    Silvana I. Wolke

    2002-11-01

    Full Text Available The study of the reactions of organometallic complexes with the surfaces of inorganic oxides, zeolites and metals constitutes the basis of Surface Organometallic Chemistry (SOMC. The basic rules of organometallic chemistry are often valid when applied to surfaces and well-defined surface organometallic complexes can be obtained. These complexes can be used as heterogeneous catalysts or, by controlled reactions, can be transformed in other species useful for a given catalytic reaction. In some cases, these catalysts exhibit higher activity and/or selectivity than their analogous molecular complexes.

  12. 界面超分子化学与响应性功能表面%lnterfacial Supramolecular Chemistry for Stimuli-Responsive Functional Surfaces

    Institute of Scientific and Technical Information of China (English)

    万鹏博; Hill Eric H.; 张希

    2012-01-01

    The combination of supramolecular chemistry with interfaces enhances the development of supramolecular chemistry as well as colloid and interface science. Supramolecular chemistry at interfaces allows for the construction of various smart and soft surfaces that can adapt to environmental changes, such as biomimetic surfaces and self-cleaning surfaces. In this article, we discuss strategies for the transfer of supramolecular complexes of azobenzene and cyclodextrin from solution to surfaces for the fabrication of stimuli-responsive surfaces with novel interfacial functions including tunable surface wettability, reversible protein adsorption and resistance, and photo-switchable bioelectrocatalysis. It is anticipated that these concepts can be extended to other supramolecular systems in order to engineer functional surfaces with designed structures and functions.%超分子化学和界面的结合有效地促进了超分子化学和胶体与界面科学的发展。刺激响应性超分子界面,因在外界刺激作用下能够引起界面物理化学性质的改变并带来新的界面功能,而受到广泛的关注。近年来,溶液中基于偶氮苯.环糊精主客体相互作用的超分子组装体已经得到了广泛的研究。我们将溶液中基于偶氮苯一环糊精主客体作用的可控可逆超分子组装体转移到界面上,构筑了具有刺激响应性的功能化超分子界面,并实现了表面浸润性的可逆调控、生物大分子的可控吸附与脱附、光可控的生物电化学催化等功能。我们期待类似的概念可以拓展到其他超分子体系,构筑具有特定结构的功能界面。

  13. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  14. Final Technical Report for DOE Grant, number DE-FG02-05ER15701; Probing Surface Chemistry Under Catalytic Conditions: Olefin Hydrogenation,Cyclization and Functionalization.

    Energy Technology Data Exchange (ETDEWEB)

    Neurock, Matthew

    2011-05-26

    The specific goal of this work was to understanding the catalytic reactions pathways for the synthesis of vinyl acetate over Pd, Au and PdAu alloys. A combination of both experimental methods (X-ray and Auger spectroscopies, low-energy ion scattering (LEIS), low-energy electron diffraction (LEED) and theory (Density Functional Theory (DFT) calculations and Monte Carlo methods under various different reactions) were used to track the surface chemistry and the influence of alloying. The surface intermediates involved in the various reactions were characterized using reflection-absorption infrared spectroscopy and LEED to identify the nature of the surface species and temperature-programmed desorption (TPD) to follow the decomposition pathways and measure heats of adsorption. These results along with those from density functional theoretical calculations were used determine the kinetics for elementary steps. The results from this work showed that the reaction proceeds via the Samanos mechanism over Pd surfaces whereby the ethylene directly couples with acetate to form an acetoxyethyl intermediate that subsequently undergoes a beta-hydride elimination to form the vinyl acetate monomer. The presence of Au was found to modify the adsorption energies and surface coverages of important surface intermediates including acetate, ethylidyne and ethylene which ultimately influences the critical C-H activation and coupling steps. By controlling the surface alloy composition or structure one can begin to control the steps that control the rate and even the mechanism.

  15. Uranium (VI) chemistry at the interface solution/minerals (quartz and aluminium hydroxide): experiments and spectroscopic investigations of the uranyl surface species

    International Nuclear Information System (INIS)

    This study deals with the understanding of the uranyl chemistry at the 0.1 M NaNO3 solution/mineral (quartz and aluminium hydroxide) interface. The aims are:(i) to identify and to characterize the different uranyl surface species (mononuclear, polynuclear complexes and/or precipitates...), i.e. the coordination environments of sorbed/precipitated uranyl ions, by using X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) and time-resolved laser-induced fluorescence spectroscopy (TRLFS), and;(ii) to investigate the influence of pH, initial uranyl aqueous concentration and hydroxyl ligand concentration on the uranyl surface speciation. Our study on the speciation of uranyl ions at the quartz surface (i) confirms the formation of uranyl polynuclear/oligomers on quartz from moderate (1 μmol/m2) to high (26 μmol/m2) uranyl surface concentrations and (ii) show that theses polynuclear species coexist with uranyl mononuclear surface species over a pH range ≅ 5-8.5 and a wide range of initial uranyl concentration o f the solutions (10-100 μM). The uranyl concentration of these surface species depends on pH and on the initial uranyl aqueous concentration. Hydrate (surface-) precipitates and/or adsorbed polynuclear species and monomeric uranyl surface complexes are formed on aluminium hydroxide. Uranyl mononuclear complexes are predominant at acidic pH, as well as uranyl in solution or on the surface. Besides mononuclear species, precipitates and/or adsorbed polynuclear species are predominantly formed at neutral pH values on aluminium hydroxide. A main contribution of our investigations is that precipitation and/or adsorption of polynuclear species seem to occur at low uranyl surface concentrations (0.01-0.4 μmol/m2). The uranyl surface speciation is mainly dependent on the pH and the aluminol ligand concentration. (author)

  16. Plasmonically amplified bioassay - Total internal reflection fluorescence vs. epifluorescence geometry.

    Science.gov (United States)

    Hageneder, Simone; Bauch, Martin; Dostalek, Jakub

    2016-08-15

    This paper investigates plasmonic amplification in two commonly used optical configurations for fluorescence readout of bioassays - epifluorescence (EPF) and total internal reflection fluorescence (TIRF). The plasmonic amplification in the EPF configuration was implemented by using crossed gold diffraction grating and Kretschmann geometry of attenuated total reflection method (ATR) was employed in the TIRF configuration. Identical assay, surface architecture for analyte capture, and optics for the excitation, collection and detection of emitted fluorescence light intensity were used in both TIRF and EPF configurations. Simulations predict that the crossed gold diffraction grating (EPF) can amplify the fluorescence signal by a factor of 10(2) by the combination of surface plasmon-enhanced excitation and directional surface plasmon-coupled emission in the red part of spectrum. This factor is about order of magnitude higher than that predicted for the Kretschmann geometry (TIRF) which only took advantage of the surface plasmon-enhanced excitation. When applied for the readout of sandwich interleukin 6 (IL-6) immunoassay, the plasmonically amplified EPF geometry designed for Alexa Fluor 647 labels offered 4-times higher fluorescence signal intensity compared to TIRF. Interestingly, both geometries allowed reaching the same detection limit of 0.4pM despite of the difference in the fluorescence signal enhancement. This is attributed to inherently lower background of fluorescence signal for TIRF geometry compared to that for EPF which compensates for the weaker fluorescence signal enhancement. The analysis of the inflammation biomarker IL-6 in serum at medically relevant concentrations and the utilization of plasmonic amplification for the fluorescence measurement of kinetics of surface affinity reactions are demonstrated for both EPF and TIRF readout. PMID:27260457

  17. Plasmonically amplified bioassay - Total internal reflection fluorescence vs. epifluorescence geometry.

    Science.gov (United States)

    Hageneder, Simone; Bauch, Martin; Dostalek, Jakub

    2016-08-15

    This paper investigates plasmonic amplification in two commonly used optical configurations for fluorescence readout of bioassays - epifluorescence (EPF) and total internal reflection fluorescence (TIRF). The plasmonic amplification in the EPF configuration was implemented by using crossed gold diffraction grating and Kretschmann geometry of attenuated total reflection method (ATR) was employed in the TIRF configuration. Identical assay, surface architecture for analyte capture, and optics for the excitation, collection and detection of emitted fluorescence light intensity were used in both TIRF and EPF configurations. Simulations predict that the crossed gold diffraction grating (EPF) can amplify the fluorescence signal by a factor of 10(2) by the combination of surface plasmon-enhanced excitation and directional surface plasmon-coupled emission in the red part of spectrum. This factor is about order of magnitude higher than that predicted for the Kretschmann geometry (TIRF) which only took advantage of the surface plasmon-enhanced excitation. When applied for the readout of sandwich interleukin 6 (IL-6) immunoassay, the plasmonically amplified EPF geometry designed for Alexa Fluor 647 labels offered 4-times higher fluorescence signal intensity compared to TIRF. Interestingly, both geometries allowed reaching the same detection limit of 0.4pM despite of the difference in the fluorescence signal enhancement. This is attributed to inherently lower background of fluorescence signal for TIRF geometry compared to that for EPF which compensates for the weaker fluorescence signal enhancement. The analysis of the inflammation biomarker IL-6 in serum at medically relevant concentrations and the utilization of plasmonic amplification for the fluorescence measurement of kinetics of surface affinity reactions are demonstrated for both EPF and TIRF readout.

  18. Bioassays for the determination of nitrification inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Grunditz, Camilla

    1999-07-01

    Requirements for nitrogen reduction in wastewater treatment plants were introduced in Sweden in the early 1990's. This was a governmental move to reduce the nitrogen discharges to the Baltic and Kattegat in order to prevent eutrophication. The nitrification process in wastewater treatment plants is performed by nitrifying bacteria. These are susceptible to inhibition and it is of great importance that the influent water does not contain toxic compounds. Therefore, there is a need for assays for the determination of nitrification inhibition. This thesis describes the development and applications of such bioassays. Pure cultures of Nitrosomonas sp. and Nitrobacter sp. were isolated from activated sludge of a wastewater treatment plant. These cultures were used as test organisms in the development of bioassays for nitrification inhibition measurements. The assays are based on two different principles; cell suspensions of the bacteria, performed in test tubes, and mediated amperometric biosensors with the bacteria immobilised. Ammonia oxidation and nitrite oxidation are studied separately without interference from other organisms, which makes it easier to interpret the results. The cell suspension assays were applied to samples of industrial and municipal wastewater. The Nitrosomonas and Nitrobacter assays showed to have different inhibition patterns. A large percentage of the Swedish municipal wastewater treatment plants were found to receive inhibitory influent water, but the inhibition level was generally low. Compared to an assay based on activated sludge, the screening method, the pure culture assays found more samples of influent water strongly inhibitory or stimulating. The highest correlation was found between the screening method and the Nitrosomonas assay. The Nitrobacter assay was found to be the most sensitive method. Assessment of toxicity of a number of chemical substances was studied using the biosensors, together with the cell suspension assays

  19. Information for establishing bioassay measurements and evaluations of tritium exposure

    International Nuclear Information System (INIS)

    This report summarizes information and references used in developing regulatory guidance on programs for the bioassay of tritium as well as information useful in planning and conducting tritium bioassay programs and evaluating bioassay data. A review of literature on tritium radiobiology is included to provide a ready source of information useful for estimating internal doses of tritium and risks for the various tritium compounds and forms, including elemental (gaseous) tritium. Simplified and conservative dose conversion factors are derived and tabulated for easy reference in program planning, safety evaluations, and compliance determinations

  20. Collection and control of tritium bioassay samples at Pantex

    International Nuclear Information System (INIS)

    Pantex is the final assembly/disassembly point for US nuclear weapons. The Pantex internal dosimetry section monitors radiation workers once a month for tritium exposure. In order to manage collection and control of the bioassay specimens efficiently, a bar code system for collection of samples was developed and implemented to speed up the process and decrease the number of errors probable when transferring data. In the past, all the bioassay data from samples were entered manually into a computer database. Transferring the bioassay data from the liquid scintillation counter to each individual's dosimetry record required as much as two weeks of concentrated effort

  1. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona—2012–2013

    Science.gov (United States)

    Macy, Jamie P.; Truini, Margot

    2016-03-02

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year.The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2012 to September 2013. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry.In calendar year 2012, total groundwater withdrawals were 4,010 acre-ft, industrial withdrawals were 1,370 acre-ft, and municipal withdrawals were 2,640 acre-ft. Total withdrawals during 2012 were about 45 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a coal slurry pipeline. From 2011 to 2012 total withdrawals decreased by 10 percent; industrial withdrawals decreased by approximately 1 percent, and total municipal withdrawals decreased by 15 percent.From 2012 to 2013, annually measured water levels in the Black Mesa area declined in 6 of 16 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was 0.8 feet. Water levels declined in 5 of 16 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.3 feet. From the prestress period (prior to 1965) to 2013, the median water

  2. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona—2012–2013

    Science.gov (United States)

    Macy, Jamie P.; Truini, Margot

    2016-03-02

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year.The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2012 to September 2013. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry.In calendar year 2012, total groundwater withdrawals were 4,010 acre-ft, industrial withdrawals were 1,370 acre-ft, and municipal withdrawals were 2,640 acre-ft. Total withdrawals during 2012 were about 45 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a coal slurry pipeline. From 2011 to 2012 total withdrawals decreased by 10 percent; industrial withdrawals decreased by approximately 1 percent, and total municipal withdrawals decreased by 15 percent.From 2012 to 2013, annually measured water levels in the Black Mesa area declined in 6 of 16 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was 0.8 feet. Water levels declined in 5 of 16 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.3 feet. From the prestress period (prior to 1965) to 2013, the median water

  3. Decoupling the effects of surface chemistry and humidity on solid-state hydrolysis of aspirin in the presence of dicalcium phosphate dihydrate.

    Science.gov (United States)

    Cassidy, Andrew M; Gardner, Catherine E; Auffret, Tony; Aldous, Barry; Jones, William

    2012-04-01

    Atomic force microscopy (AFM) cantilevers were functionalized with particles of dicalcium phosphate dihydrate (DCP), and AFM, in force-displacement mode, was used to bring these probes into contact with aspirin (100) and (001) surfaces in order to investigate the effect of aspirin surface chemistry on the interaction between the two materials as a function of relative humidity (RH). The force of adhesion measurements showed a strong dependence on RH for the interactions between DCP and the aspirin (100) surface, with stronger interactions occurring at higher humudities. Relatively much weaker interactions were measured between DCP and the aspirin (001) surface under all RH conditions. Topographic imaging showed that contact between DCP and the aspirin (100) surface at high RH led to localised development of etch pits and, in some cases, growth normal to the surface. The methodology allows for the creation of a localised solid-solid interface between pharmaceutically relevant materials, providing a means of studying solid-state excipient-active ingredient decomposition reactions.

  4. In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal & Surface Complexation Using Soft X-Ray

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, Satish, C

    2008-11-30

    Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions.

  5. Study of the Effect of Grafting Method on Surface Polarity of Tempo-Oxidized Nanocellulose Using Polycaprolactone as the Modifying Compound: Esterification versus Click-Chemistry

    Directory of Open Access Journals (Sweden)

    Abdelhaq Benkaddour

    2013-12-01

    Full Text Available Esterification and click-chemistry were evaluated as surface modification treatments for TEMPO-oxidized nanocelluloses (TONC using Polycaprolactone-diol (PCL as modifying compound in order to improve the dispersion of nanofibers in organic media. These two grafting strategies were analyzed and compared. The first consists of grafting directly the PCL onto TONC, and was carried out by esterification between hydroxyl groups of PCL and carboxyl groups of TONC. The second strategy known as click-chemistry is based on the 1,3-dipolar cycloaddition reaction between azides and alkyne terminated moieties to form the triazole ring between PCL and TONC. The grafted samples were characterized by transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and Thermogravimetry analysis (TGA. Further, the effects of the two treatments on the surface hydrophobization of TONC were investigated by contact angle measurements. The results show that both methods confirm the success of such a modification and the click reaction was significantly more effective than esterification.

  6. Oxygen-Induced Restructuring of Rutile TiO(2)(110): Formation Mechanism, Atomic Models, and Influence on Surface Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min; Hebenstreit, Wilhelm; Diebold, Ulrike; Henderson, Michael A.; Jennison, Dwight R.

    1999-07-07

    The rutile TiO{sub 2} (110) (1x1) surface is considered the prototypical ''well-defined'' system in the surface science of metal oxides. Its popularity results partly from two experimental advantages: bulk-reduced single crystals do not exhibit charging, and stoichiometric surfaces--as judged by electron spectroscopes--can be prepared reproducibly by sputtering and annealing in oxygen. We present results that show that this commonly-applied preparation procedure may result in a surface structure that is by far more complex than generally anticipated. Flat, (1x1) terminated surfaces are obtained by sputtering and annealing in ultrahigh vacuum. When re-annealed in oxygen at moderate temperatures (470 K to 660 K), irregular networks of partially-connected, pseudohexagonal rosettes (6.5 x 6 {angstrom} wide), one-unit cell wide strands, and small ({approximately} tens of {angstrom}) (1x1) islands appear. This new surface phase is formed through reaction of oxygen gas with interstitial Ti from the reduced bulk. Because it consists of an incomplete, kinetically-limited (1x1) layer, this phenomenon has been termed restructuring. We report a combined experimental and theoretical study that systematically explores this restructuring process. The influence of several parameters (annealing time, temperature, pressure, sample history, gas) on the surface morphology is investigated using STM. The surface coverage of the added phase as well as the kinetics of the restructuring process are quantified by LEIS and SSIMS measurements in combination with annealing in {sup 18}O-enriched gas. Atomic models of the essential structural elements are presented and are shown to be stable with first-principles density functional calculations. The effect of oxygen-induced restructuring on surface chemistry and its importance for TiO{sub 2} and other bulk-reduced oxide materials is briefly discussed.

  7. Controlling Foam Morphology of Poly(methyl methacrylate via Surface Chemistry and Concentration of Silica Nanoparticles and Supercritical Carbon Dioxide Process Parameters

    Directory of Open Access Journals (Sweden)

    Deniz Rende

    2013-01-01

    Full Text Available Polymer nanocomposite foams have received considerable attention because of their potential use in advanced applications such as bone scaffolds, food packaging, and transportation materials due to their low density and enhanced mechanical, thermal, and electrical properties compared to traditional polymer foams. In this study, silica nanofillers were used as nucleating agents and supercritical carbon dioxide as the foaming agent. The use of nanofillers provides an interface upon which CO2 nucleates and leads to remarkably low average cell sizes while improving cell density (number of cells per unit volume. In this study, the effect of concentration, the extent of surface modification of silica nanofillers with CO2-philic chemical groups, and supercritical carbon dioxide process conditions on the foam morphology of poly(methyl methacrylate, PMMA, were systematically investigated to shed light on the relative importance of material and process parameters. The silica nanoparticles were chemically modified with tridecafluoro-1,1,2,2-tetrahydrooctyl triethoxysilane leading to three different surface chemistries. The silica concentration was varied from 0.85 to 3.2% (by weight. The supercritical CO2 foaming was performed at four different temperatures (40, 65, 75, and 85°C and between 8.97 and 17.93 MPa. By altering the surface chemistry of the silica nanofiller and manipulating the process conditions, the average cell diameter was decreased from 9.62±5.22 to 1.06±0.32 μm, whereas, the cell density was increased from 7.5±0.5×108 to 4.8±0.3×1011 cells/cm3. Our findings indicate that surface modification of silica nanoparticles with CO2-philic surfactants has the strongest effect on foam morphology.

  8. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    International Nuclear Information System (INIS)

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  9. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Dr. X. Geroge Xu

    2011-01-28

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  10. Bioassay-Directed Fractionation of Diesel and Biodiesel Emissions

    Science.gov (United States)

    Biofuels are being developed as alternatives to petroleum-derived products, but published research is contradictory regarding the mutagenic activity of such emissions relative to those from petroleum diesel. We performed bioassay-directed fractionation and analyzed the polycyclic...

  11. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  12. Colour Chemistry

    Science.gov (United States)

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  13. Plant bioassays to assess toxicity of textile sludge compost

    OpenAIRE

    Araújo Ademir Sérgio Ferreira de; Monteiro Regina Teresa Rosim

    2005-01-01

    Composting of industrial wastes is increasing because of recycling requirements set on organic wastes. The evaluation of toxicity of these wastes by biological testing is therefore extremely important for screening the suitability of waste for land application. The toxicity of a textile sludge compost was investigated using seed germination and plant growth bioassays using soybean and wheat. Compost samples were mixed with water (seed germination bioassay) or nutrient solution (plant growth b...

  14. Nanocrystalline Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3−δ} synthesized using a chelating route for use in IT-SOFC cathodes: Microstructure, surface chemistry and electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Scurtu, Rares [“IlieMurgulescu” Institute of Physical Chemistry, Romanian Academy, 202 SplaiulIndependentei, 060021 Bucharest (Romania); Romania National Institute for Research and Development in Microtechnologies(IMT), 023573 Bucharest (Romania); Somacescu, Simona, E-mail: ssimona@icf.ro [“IlieMurgulescu” Institute of Physical Chemistry, Romanian Academy, 202 SplaiulIndependentei, 060021 Bucharest (Romania); Calderon-Moreno, Jose Maria; Culita, Daniela [“IlieMurgulescu” Institute of Physical Chemistry, Romanian Academy, 202 SplaiulIndependentei, 060021 Bucharest (Romania); Bulimestru, Ion; Popa, Nelea; Gulea, Aurelian [Faculty of Chemistry and Chemical Technology State University of Moldova 60 Mateevici, Chisinau MD 2009 Republic of Moldova (Moldova, Republic of); Osiceanu, Petre [“IlieMurgulescu” Institute of Physical Chemistry, Romanian Academy, 202 SplaiulIndependentei, 060021 Bucharest (Romania)

    2014-02-15

    Nanocrystalline Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3−δ} powders were synthesized by a chelating route using different polyfunctional H{sub x}APC acids (APC=aminopolycarboxylate; x=3, 4, 5). Different homologous aminopolycarboxylic acids, namely nitrilotriacetic (H{sub 3}nta), ethylenediaminetetraacetic (H{sub 4}edta), 1,2-cyclohexanediaminetetracetic (H{sub 4}cdta) and diethylenetriaminepentaacetic (H{sub 5}dtpa) acid, were used as chelating agents to combine Sm, Sr, Co elements into a perovskite structure. The effects of the chelating agents on the crystalline structure, porosity, surface chemistry and electrical properties were investigated. The electrical properties of the perovskite-type materials emphasized that their conductivities in the temperature range of interest (600–800 °C) depend on the nature of the precursors as well as on the presence of a residual Co oxide phase as shown by XRD and XPS analysis. The surface chemistry and the surface stoichiometries were determined by XPS revealing a complex chemical behavior of Sr that exhibits a peculiar “surface phase” and “bulk phase” chemistry within the detected volume (<10 nm). - Graphical abstract: Synthesis of nanocrystalline Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3−δ} powders by a chelating route and the investigation of the microstructure, surface chemistry and electrical properties. Display Omitted - Highlights: • Nanocrystalline Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3−δ} obtained by a chelating synthesis route. • Cubic perovskite structures with crystallite sizes ∼23±2 nm. • The porous nature revealed by N{sub 2} adsorption/desorption (BET). • The surface chemistry and the surface stoichiometries highlighted by XPS. • A complex chemical behavior of Sr exhibits a peculiar “surface phase” and “bulk phase” chemistry.

  15. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  16. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  17. Role of disulfide linkages in desulfurization chemistry. The reactions of benzenethiol on a sulfur-covered Mo(110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Weldon, M.K.; Napier, M.E.; Wiegand, B.C.; Friend, C.M. [Harvard Univ., Cambridge, MA (United States); Uvdal, P. [Lund Univ. (Sweden)

    1994-09-07

    The reactions of benzenethiol on a sulfur-covered Mo(110) surface were studied using temperature programmed reaction, X-ray photoelectron, and high resolution electron energy loss spectroscopies. The sulfur overlayer profoundly alters the kinetics and selectivity for desulfurization and dehydrogenation. By using isotopic labeling, we have established that phenyl disulfide (C{sub 6}H{sub 5}S-S-) is formed via S-H bond scission and S-S bond formation on Mo(110) at 100 K. The S-S- linkage is oriented perpendicular and the phenyl ring parallel to the surface. The disulfide subsequently forms an upright phenylthiolate species, bound directly to the Mo(110) surface, prior to the onset of benzene formation at 300 K. In contrast to the clean surface, where only the low-temperature state is observed, a second benzene peak is observed at 500 K on the sulfur-covered surface. This feature is attributed to disproportionation of surface phenyl groups to produce gaseous benzene and surface benzyne. In addition, gaseous phenyl also desorbs from the surface in the same temperature range, due to a lack of available surface hydrogen. The selectivity for gaseous hydrocarbon production is approximately 80%, nearly twice that on the clean surface, while the total amount of reaction remains the same. 40 refs., 5 figs., 2 tabs.

  18. Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process

    DEFF Research Database (Denmark)

    Tshabalala, M.A.; Kingshott, P.; VanLandingham, M.R.;

    2003-01-01

    by polycondensation with surface hydroxyl groups. The surface hydroxyl groups involved in the bonds appear to be located predominantly on the cellulose component of the wood. The sol-gel deposit on the wood substrates lowered the rates of water and water vapor sorption. The low molecular weight MTMOS apparently...... penetrated the outer surface layers of the wood and condensed with hydroxyls that may not be readily accessible to the high molecular weight HDTMOS. Once attached to such sites, it is reasonable to assume that some of these surface derivatives of MTMOS condensed with other molecules of MTMOS and HDTMOS...

  19. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2006-01-01

    Full Text Available The new Modular Earth Submodel System (MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy

  20. Building bio-assays with magnetic particles on a digital microfluidic platform.

    Science.gov (United States)

    Kokalj, Tadej; Pérez-Ruiz, Elena; Lammertyn, Jeroen

    2015-09-25

    Digital microfluidics (DMF) has emerged as a promising liquid handling technology for a variety of applications, demonstrating great potential both in terms of miniaturization and automation. DMF is based on the manipulation of discrete, independently controllable liquid droplets, which makes it highly reconfigurable and reprogrammable. One of its most exclusive advantages, compared to microchannel-based microfluidics, is its ability to precisely handle solid nano- and microsized objects, such as magnetic particles. Magnetic particles have become very popular in the last decade, since their high surface-to-volume ratio and the possibility to magnetically separate them from the matrix make them perfect suitable as a solid support for bio-assay development. The potential of magnetic particles in DMF-based bio-assays has been demonstrated for various applications. In this review we discuss the latest developments of magnetic particle-based DMF bio-assays with the aim to present, identify and analyze the trends in the field. We also discuss the state-of-the art of device integration, current status of commercialization and issues that still need to be addressed. With this paper we intend to stimulate researchers to exploit and unveil the potential of these exciting tools, which will shape the future of modern biochemistry, microbiology and biomedical diagnostics.

  1. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs)

    OpenAIRE

    Malgorzata Adamkiewicz; David O’Hagan; Georg Hähner

    2014-01-01

    C11-Vinyl-terminated self-assembled monolayers (SAMs) on silica surfaces are successfully modified in C–C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo) cyclopropane motifs with about 30% surface coverage.

  2. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Malgorzata Adamkiewicz

    2014-12-01

    Full Text Available C11-Vinyl-terminated self-assembled monolayers (SAMs on silica surfaces are successfully modified in C–C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo cyclopropane motifs with about 30% surface coverage.

  3. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs)

    Science.gov (United States)

    Adamkiewicz, Malgorzata

    2014-01-01

    Summary C11-Vinyl-terminated self-assembled monolayers (SAMs) on silica surfaces are successfully modified in C–C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo) cyclopropane motifs with about 30% surface coverage. PMID:25550756

  4. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    Science.gov (United States)

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pHleather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB).

  5. Site-Targeted Interfacial Solid-Phase Chemistry: Surface Functionalization of Organic Monolayers via Chemical Transformations Locally Induced at the Boundary between Two Solids.

    Science.gov (United States)

    Maoz, Rivka; Burshtain, Doron; Cohen, Hagai; Nelson, Peter; Berson, Jonathan; Yoffe, Alexander; Sagiv, Jacob

    2016-09-26

    Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied. Given the diversity of thin film coatings that may be used as solid reagents/catalysts and the lateral confinement options provided by the use of irradiation masks, conductive AFM probes or stamps, and electron beams in such solid-phase reactions, this approach is suitable for precise targeting of different desired chemical modifications to predefined surface sites spanning the macro- to nanoscale. PMID:27611648

  6. Site-Targeted Interfacial Solid-Phase Chemistry: Surface Functionalization of Organic Monolayers via Chemical Transformations Locally Induced at the Boundary between Two Solids.

    Science.gov (United States)

    Maoz, Rivka; Burshtain, Doron; Cohen, Hagai; Nelson, Peter; Berson, Jonathan; Yoffe, Alexander; Sagiv, Jacob

    2016-09-26

    Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied. Given the diversity of thin film coatings that may be used as solid reagents/catalysts and the lateral confinement options provided by the use of irradiation masks, conductive AFM probes or stamps, and electron beams in such solid-phase reactions, this approach is suitable for precise targeting of different desired chemical modifications to predefined surface sites spanning the macro- to nanoscale.

  7. A study on the relationships between corrosion properties and chemistry of thermally oxidised surface films formed on polished commercial magnesium alloys AZ31 and AZ61

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Sebastián, E-mail: sfeliu@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Samaniego, Alejandro [Centro Nacional de Investigaciones Metalúrgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Barranco, Violeta [Instituto de Ciencias de Materiales de Madrid, ICMM, Consejo Superior de Investigaciones Científicas, CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049, Madrid (Spain); El-Hadad, A.A. [Physics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo (Egypt); Llorente, Irene [Centro Nacional de Investigaciones Metalúrgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Serra, Carmen [Servicio de Nanotecnologia y Análisis de Superficies, CACTI, Universidade de Vigo, 36310 Vigo (Spain); Galván, J.C. [Centro Nacional de Investigaciones Metalúrgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain)

    2014-03-01

    Highlights: • Surface chemistry of heat treated magnesium alloys. • Relation between heat treatment and aluminium subsurface enrichment. • Relation between surface composition and corrosion behaviour. - Abstract: This paper studies the changes in chemical composition of the thin oxide surface films induced by heating in air at 200 °C for time intervals from 5 min to 60 min on the freshly polished commercial AZ31 and AZ61 alloys with a view to better understanding their protective properties. This thermal treatment resulted in the formation of layers enriched in metallic aluminium at the interface between the outer MgO surface films and the bulk material. A strong link was found between the degree of metallic Al enrichment in the subsurface layer (from 10 to 15 at.%) observed by XPS (X-ray photoelectron spectroscopy) in the AZ61 treated samples and the increase in protective properties observed by EIS (electrochemical impedance spectroscopy) in the immersion test in 0.6 M NaCl. Heating for 5–60 min in air at 200 °C seems to be an effective, easy to perform and inexpensive method for increasing the corrosion resistance of the AZ61 alloy by approximately two or three times.

  8. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    Science.gov (United States)

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pHleather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). PMID:25222930

  9. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials

    Science.gov (United States)

    2015-01-01

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP. PMID:25068096

  10. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials.

    Science.gov (United States)

    Punnoose, Alex; Dodge, Kelsey; Rasmussen, John W; Chess, Jordan; Wingett, Denise; Anders, Catherine

    2014-07-01

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP. PMID:25068096

  11. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    Science.gov (United States)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; van der Marel, Cees; Koole, Leo H.

    2014-10-01

    Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional "spacers", hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups from amine-treated surfaces. The application of PEI spacer in comparison to HMDA has shown much higher intensity of detection signal in ELISA experiment, indicating better immobilization efficiency and preservation of antibody activity upon attachment to the

  12. Chemistry data from surface ecosystems in Forsmark and Laxemar-Simpevarp. Site specific data used for estimation of CR and Kd values in SR-Site

    International Nuclear Information System (INIS)

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to compile information from the Forsmark and Laxemar-Simpevarp sites in order to select and provide relevant site data for parameter sed in the Radionuclide Dose Model. This report contains an overview of all available chemistry data from the surface ecosystems at Forsmark and Laxemar-Simpevarp areas, comprising hydrochemistry of shallow groundwater, porewater, lake water, stream water and sea water as well as the chemical composition of the regolith and biota of the terrestrial, limnic and marine ecosystems. Detailed references to data reports are tabulated and all sampling points are shown in a large number of maps in Chapter 2. An explorative analysis in Chapter 3 is the basis for the final selection of site data described in Chapter 4

  13. Surface analytical and electrochemical characterization of oxide film layers formed on Incoloy 800 and carbon steel in simulated secondary water chemistry conditions of PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Rangarajan, Srinivasan; Chandran, Sinu; Balaji, Vadivelu; Narasimhan, Sevilmedu V. [BARC Facilities, Kalpakkam, Tamil Nadu (India). Water and Steam Chemistry Div.

    2011-06-15

    The water chemistry in the steam generator (SG) circuits of Indian pressurized heavy water reactors (PHWRs) is controlled by the all-volatile treatment (AVT) procedure, wherein volatile amines are used to maintain the alkaline pH required for minimizing the corrosion of the structural materials. Earlier, Monel and morpholine were used as the steam generator material and the alkalizing agent respectively. However, currently they have been replaced by Incoloy 800 and ethanolamine (ETA). ETA was chosen because of its beneficial effects due to low pKb and Kd values, loading behavior on the condensate polishing unit (CPU), and also based on cost comparison with other amines. Since we have Incoloy 800 on the tube side and carbon steel (CS) on the shell side in the SG circuits, efforts were taken to study the nature of the oxide films formed on these surfaces and to evaluate the corrosion resistance and electrochemical properties of the same under simulated secondary water chemistry conditions of PHWRs containing different dissolved oxygen (DO) concentrations. In this context, experiments were carried out by exposing finely polished CS and Incoloy 800 coupons to ETA-based medium in the presence and absence of hydrazine (pH: 9.2) at 240 C under two different DO conditions (< 10 {mu}g . L{sup -1} and 300 {mu}g . L{sup -1}) for 24 hours. Oxide films formed under these conditions were characterized using scanning electron microscopy, Raman spectroscopy, electrochemical impedance, polarization and Mott-Schottky techniques. Further, studies at a controlled DO level (< 10 {mu}g . L{sup -1}) were carried out for different time durations, viz., 7 and 30 days. The composition, surface morphology, oxide thickness, resistance, type of semiconductivity and defect density of the oxide films were evaluated and correlated with the DO levels and are discussed elaborately in this paper. (orig.)

  14. Surface analytical and electrochemical characterization of oxide films formed on Incoloy-800 and carbon steel in simulated secondary water chemistry conditions of PHWRs

    International Nuclear Information System (INIS)

    The water chemistry in the Steam Generator (SG) Circuits of Indian Pressurized Heavy Water Reactors (PHWRs) is controlled by the all volatile treatment (AVT) procedure, wherein volatile amines are used to maintain the alkaline pH required for minimizing the corrosion of the structural materials. Earlier, Monel and morpholine were used as the Steam Generator material and the alkalizing agent respectively. However, currently they are replaced by Incoloy-800 and Ethanolamine (ETA). ETA was chosen because of its beneficial effects due to low pKb and Kd values, loading behaviour on condensate polishing unit (CPU) and also on cost comparison with other amines. Since we have Incoloy-800 on the tube side and Carbon steel(CS) on the shell side in the SG circuits, efforts were taken to study the nature of the oxide films formed on these surfaces and to evaluate the corrosion resistance and electrochemical properties of the same, under simulated secondary water chemistry conditions of PHWRs containing different dissolved oxygen (DO) concentration. In this context, experiments were carried out by exposing finely polished CS and Incoloy -800 coupons to ETA based medium in the presence and absence of Hydrazine (pH: 9.2) at 240 oC under two different DO conditions (< 10 ppb and 200 ppb) for 24 hours. Oxide films formed under these conditions were characterized using SEM, Raman spectroscopy, electrochemical impedance, polarization and Mott-Schottky techniques. Further, studies at a controlled DO level ( < 10 ppb) were carried out for different time durations viz., 7- and 30- days. The composition, surface morphology, oxide thickness, resistance, type of semi-conductivity and defect density of the oxide films were evaluated and correlated with the DO levels and discussed elaborately in this paper. (author)

  15. Surface analytical and electrochemical characterization of oxide film layers formed on Incoloy 800 and carbon steel in simulated secondary water chemistry conditions of PHWRs

    International Nuclear Information System (INIS)

    The water chemistry in the steam generator (SG) circuits of Indian pressurized heavy water reactors (PHWRs) is controlled by the all-volatile treatment (AVT) procedure, wherein volatile amines are used to maintain the alkaline pH required for minimizing the corrosion of the structural materials. Earlier, Monel and morpholine were used as the steam generator material and the alkalizing agent respectively. However, currently they have been replaced by Incoloy 800 and ethanolamine (ETA). ETA was chosen because of its beneficial effects due to low pKb and Kd values, loading behavior on the condensate polishing unit (CPU), and also based on cost comparison with other amines. Since we have Incoloy 800 on the tube side and carbon steel (CS) on the shell side in the SG circuits, efforts were taken to study the nature of the oxide films formed on these surfaces and to evaluate the corrosion resistance and electrochemical properties of the same under simulated secondary water chemistry conditions of PHWRs containing different dissolved oxygen (DO) concentrations. In this context, experiments were carried out by exposing finely polished CS and Incoloy 800 coupons to ETA-based medium in the presence and absence of hydrazine (pH: 9.2) at 240 C under two different DO conditions (-1 and 300 μg . L-1) for 24 hours. Oxide films formed under these conditions were characterized using scanning electron microscopy, Raman spectroscopy, electrochemical impedance, polarization and Mott-Schottky techniques. Further, studies at a controlled DO level (-1) were carried out for different time durations, viz., 7 and 30 days. The composition, surface morphology, oxide thickness, resistance, type of semiconductivity and defect density of the oxide films were evaluated and correlated with the DO levels and are discussed elaborately in this paper. (orig.)

  16. Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase

    Science.gov (United States)

    Nasir, Irem; Lundqvist, Martin; Cabaleiro-Lago, Celia

    2015-10-01

    The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence revealed that HCAs adsorb to both hydrophilic and hydrophobic surfaces, however the dynamics of the unfolding at the nanoparticle surfaces drastically vary with the polarity. The size of the nanoparticles has opposite effects depending on the polarity of the nanoparticle surface. The apolar nanoparticles induce seconds timescale structural rearrangements whereas polar nanoparticles induce hours timescale structural rearrangements on the same charged HCA variant. Here, a simple model is proposed where the difference in the timescales of adsorption is correlated with the energy barriers for initial docking and structural rearrangements which are firmly regulated by the surface polarity. Near-UV circular dichorism (CD) further supports that both protein variants undergo structural rearrangements at the nanoparticle surfaces regardless of being ``hard'' or ``soft''. However, the conformational changes induced by the apolar surfaces differ for each HCA isoform and diverge from the previously reported effect of silica nanoparticles.The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino

  17. XPS study of surface chemistry of tungsten carbides nanopowders produced through DC thermal plasma/hydrogen annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Krasovskii, Pavel V., E-mail: krasovskii@gmail.com [A.A Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskii pr. 49, Moscow 119991 (Russian Federation); Malinovskaya, Olga S. [SSC Keldysh Research Centre, Onezhskaya, 8, Moscow 125438 (Russian Federation); Samokhin, Andrey V.; Blagoveshchenskiy, Yury V. [A.A Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskii pr. 49, Moscow 119991 (Russian Federation); Kazakov, Valery A.; Ashmarin, Artem A. [SSC Keldysh Research Centre, Onezhskaya, 8, Moscow 125438 (Russian Federation)

    2015-06-01

    Highlights: • WC nanopowders were produced by a DC thermal plasma/H{sub 2} annealing process. • Air-exposed materials show ultra-thin chemically heterogeneous overlayers. • Carbidic, graphitic, carbon-to-oxygen, and WO{sub 3} surface bonding are involved. • Adsorbed oxygen at coverage above a monolayer is preferentially bonded to carbon. • Surface segregations of carbon are normal, even for sub-stoichiometric carbides. - Abstract: X-ray photoelectron spectroscopy (XPS) has been employed to characterize the surface composition and bonding of the tungsten carbides nanopowders produced through a DC thermal plasma/hydrogen annealing process. The XPS results were complemented with those from Raman spectroscopy, high-resolution transmission electron microscopy, and evolved gas analysis. The products of the DC plasma synthesis are the high-surface-area multicarbide mixtures composed mainly of crystalline WC{sub 1−x} and W{sub 2}C. The materials are contaminated with a pyrolitic carbonaceous deposit which forms ∼1 nm thick graphitic overlayers on the nanoparticles’ surface. The underlying carbides are not oxidized in ambient air, and show no interfacial compounds underneath the graphitic overlayers. When annealed in hydrogen, the multicarbide mixtures undergo transformation into the single-phase WC nanopowders with an average particle size of 50–60 nm. The surface of the passivated and air-exposed WC nanopowders is stabilized by an ultrathin, no more than 0.5 nm in thickness, chemically heterogeneous overlayer, involving graphitic, carbon-to-oxygen, and WO{sub 3} bonding. Oxygen presents at coverages above a monolayer preferentially in the bonding configurations with carbon. The surface segregations of carbon are normally observed, even when the bulk content of carbon is below the stoichiometric level.

  18. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA.

    Science.gov (United States)

    Liu, Yang; Bian, Dong; Wu, Yuanhao; Li, Nan; Qiu, Kejin; Zheng, Yufeng; Han, Yong

    2015-09-01

    Mg-1Ca samples were implanted with biocompatible alloy ions Ag, Fe and Y respectively with a dose of 2×10(17)ionscm(-2) by metal vapor vacuum arc technique (MEVVA). The surface morphologies and surface chemistry were investigated by SEM, AES and XPS. Surface changes were observed after all three kinds of elemental ion implantation. The results revealed that the modified layer was composed of two sublayers, including an outer oxidized layer with mixture of oxides and an inner implanted layer, after Ag and Fe ion implantation. Y ion implantation induced an Mg/Ca-deficient outer oxidized layer and the distribution of Y along with depth was more homogeneous. Both electrochemical test and immersion test revealed accelerated corrosion rate of Ag-implanted Mg-1Ca and Fe-implanted Mg-1Ca, whereas Y ion implantation showed a short period of protection since enhanced corrosion resistance was obtained by electrochemical test, but accelerated corrosion rate was found by long period immersion test. Indirect cytotoxicity assay indicated good cytocompatibility of Y-implanted Mg-1Ca. Moreover, the corresponding corrosion mechanisms involving implanting ions into magnesium alloys were proposed, which might provide guidance for further application of plasma ion implantation to biodegradable Mg alloys.

  19. Toward selective, sensitive, and discriminative detection of Hg(2+) and Cd(2+)via pH-modulated surface chemistry of glutathione-capped gold nanoclusters.

    Science.gov (United States)

    Huang, Pengcheng; Li, Sha; Gao, Nan; Wu, Fangying

    2015-11-01

    Heavy metal pollution can exert severe effects on the environment and human health. Simple, selective, and sensitive detection of heavy metal ions, especially two or more, using a single probe, is thereby of great importance. In this study, we report a new and facile strategy for discriminative detection of Hg(2+) and Cd(2+) with high selectivity and sensitivity via pH-modulated surface chemistry of the glutathione-capped gold NCs (GSH-Au NCs). By simply adjusting pH values of the colloidal solution of the NCs, Hg(2+) could specifically turn off the fluorescence under acidic pH, however, Cd(2+) could exclusively turn on the fluorescence under alkaline pH. This enables the NCs to serve as a dual fluorescent sensor for Hg(2+) and Cd(2+). We demonstrate that these two opposing sensing modes are presumably due to different interaction mechanisms: Hg(2+) induces aggregation by dissociating GSH from the Au surface via robust coordination and, Cd(2+) could passivate the Au surface by forming a Cd-GSH complex with a compact structure. Finally, the present strategy is successfully exploited to separately determine Hg(2+) and Cd(2+) in environmental water samples. PMID:26347906

  20. Semi-Biosynthesis of Magnetite-Gold Composite Nanoparticles Using an Ethanol Extract of Eucalyptus camaldulensis and Study of the Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Emad al din Haratifar

    2009-01-01

    Full Text Available Green synthesis of metal nanoparticles, such as silver or gold nanoparticles, has been attracting increasing attention in recent years. Functionalized magnetite nanoparticles have many uses in various applications, including nanoelectronic devices, molecular recognition, biomedical applications, drug delivery targeting, and optical devices. In this investigation, magnetic cores (Fe3O4 were synthesized using a fabrication method involving coprecipitation of Fe2+ and Fe3+. In the next step, magnetite-gold composite nanoparticles were synthesized with size ranging from 6–20 nm, using an ethanol extract of Eucalyptus camaldulensis as a natural reducing agent. Transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction spectroscopy, and visible absorption spectroscopy confirmed the fabrication of magnetite-gold composite nanoparticles. In the UV spectra diagram, a red-shift of the surface plasmon of the Au was evidence that contact between gold and Fe3O4 had occurred. The surface chemistry of the as-prepared magnetite-gold nanoparticles was studied using infrared spectroscopy. The presence of organic compounds with a carboxyl moiety was confirmed on the surface of the magnetite-gold nanoparticles fabricated by this combined chemical and biological reducing process, which we have designated as a semi-biosynthesis method.

  1. Soil bioassays and the {sup 129}I problem

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, S.C. [Atomic Energy of Canada Ltd., Pinawa, Manitoba (Canada)

    1995-12-31

    Iodine-129 is a very long-lived radionuclide associated with spent nuclear fuel. Because {sup 129}I has a 10{sup 7}-year half-life, is very mobile in the environment and is a biologically essential element, it is the most limiting radionuclide affecting disposal of spent fuel. Traditionally, the potential impacts of {sup 129}I have been estimated for human receptors, with the implicit assumption that all other organisms are less at risk. Risk is the operative word, the objective for protection of humans is to protect individuals, whereas the objective for other biota is usually to protect populations. Here, {sup 129}I poses an interesting problem: the half-life is so long it is barely radioactive. Thus, the chemical toxicity may be more limiting than the radiological impact. A series of soil bioassays were employed, including a life-cycle plant (Brassica rapa) bioassay, a modified earthworm survival bioassay, a microarthropod colonization/survival bioassay, and a series of more common soil and aquatic bioassays. Chemical toxicity was indicated at soil concentrations as low as 5 mg kg{sup {minus}1}. At these levels, radiological impact on non-human biota would not be expected, and therefore the chemical toxicity effects are more critical. However, human food-chain model estimates show these levels, as pure {sup 129}I, would be unacceptable for human radiological exposure, so that for {sup 129}I, protection of the human environment should also be protective of non-human biota.

  2. Influence of Dielectric Surface Chemistry on the Microstructure and Carrier Mobility of an n-Type Organic Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Dhagat, P.; Haverinen, H; Klein, J; Jung, Y; Fischer, D; Delongchamp, D; Jabbour, G

    2009-01-01

    This paper examines the microstructure evolution of 3,4,9,10-perylene-tetracarboxylic bis-benzimidazole (PTCBI) thin films resulting from conditions imposed during film deposition. Modification of the silicon dioxide interface with a hydrophobic monolayer (octadecyltrichlorosilane (OTS-18)) alters the PTCBI growth habit by changing the unit cell contact plane. PTCBI films deposited on oxide surface have an orientation of (011), while films atop OTS-treated oxide surface have a preferred orientation of (001). The quality of the self assembled monolayer does not appear to influence the PTCBI growth preference significantly yet it enhances the carrier mobility, suggesting that charge traps are adequately passivated due to uniform monolayer coverage. High-quality monolayers result in n-type carrier mobility values of 0.05 cm2V-1s-1 Increasing the substrate temperature during PTCBI film deposition correlates with an increase in mobility that is most significant for films deposited on OTS-treated surface.

  3. 粉石英表面化学的表征%The token for surface chemistry of tripoli

    Institute of Scientific and Technical Information of China (English)

    吴宏海; 崔天顺; 黄庆民

    2001-01-01

    The surface sites of tripoli (α-quartz) and its protonation arefirst analyzed and discussed, and then the surface electrochemical properties of tripoli are further investigated. The surface site density and the pHPPZC(pristine of zero charge) of tripoli (α-quartz) were determined in supporting electrolyte solution of NaNO3 to 4.3 sites/nm2,2.8,respectively.The lgKint1 and lgKint2, two surface protonation intrinsic constants of tripoli,are about -1.5, 7.0, respectively. The competing adsorption ability of Cl- and NO-3 ions on quartz surface in sequence was Cl->NO-3.The results show that the surface of tripoli is characteristic of weak acidity.%分析与探讨了粉石英的表面位及其质子化反应,对粉石英的表面电化学性质作了进一步研究。以NaNO3为支持电解质,测得粉石英的表面位密度约为4.3个/nm2,表面零质子电荷原点pHPPZC为2.8;表面质子化本征常数lgKint1约为-1.5和lgKint2约为7.0;Cl-和NO-3对石英的竞争吸附能力大小为Cl->NO-3。粉石英表面显弱酸性。

  4. Bioinorganic Chemistry

    OpenAIRE

    Bertini, Ivano; Gray, Harry B.; Lippard, Stephen J.; Valentine, Joan Selverstone

    1994-01-01

    This book covers material that could be included in a one-quarter or one-semester course in bioinorganic chemistry for graduate students and advanced undergraduate students in chemistry or biochemistry. We believe that such a course should provide students with the background required to follow the research literature in the field. The topics were chosen to represent those areas of bioinorganic chemistry that are mature enough for textbook presentation. Although each chapter presents material...

  5. Organic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  6. Social Chemistry

    OpenAIRE

    Lichtfouse, Eric; Schwarzbauer, Jan; Robert, Didier

    2012-01-01

    International audience This article is both an essay to propose social chemistry as a new scientific discipline, and a preface of the book Environmental Chemistry for a Sustainable World. Environmental chemistry is a fast emerging discipline aiming at the understanding the fate of pollutants in ecosystems and at designing novel processes that are safe for ecosystems. Past pollution should be cleaned, future pollution should be predicted and avoided (Lichtfouse et al., 2005a). Such advices ...

  7. Computational chemistry

    OpenAIRE

    Truhlar, Donald G.; McKoy, Vincent

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  8. Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land use change in response to growing food needs

    Directory of Open Access Journals (Sweden)

    C. J. Hardacre

    2012-12-01

    Full Text Available We quantify the impact of land use change, determined by our growing need for food and biofuel production, on isoprene emissions and subsequent atmospheric oxidant chemistry in 2015 and 2030, relative to 1990, ignoring compound climate change effects over that period. We estimate isoprene emissions from an ensemble (n = 1000 of land use change realizations from 1990–2050, broadly guided by the IPCC AR4/SRES scenarios A1 and B1. We also superimpose land use change required to address projected biofuel usage using two scenarios: (1 assuming that world governments make no changes to biofuel policy after 2009, and (2 assuming that world governments develop biofuel policy with the aim of keeping equivalent atmospheric CO2 at 450 ppm. We present the median and interquartile range (IQR statistics of the ensemble and show that land use change between −1.50 × 1012 m2 to +6.06 × 1012 m2 was found to drive changes in the global isoprene burden of −3.5 to +2.8 Tg yr−1 in 2015 and −7.7 to +6.4 Tg yr−1 in 2030. We use land use change realizations corresponding to the median and IQR of these emission estimates to drive the GEOS-Chem global 3-D chemistry transport model to investigate the perturbation to global and regional surface concentrations of isoprene, nitrogen oxides (NO+NO2, and the atmospheric concentration and deposition of ozone (O3. We show that across sub-continental regions the monthly surface O3 increases by 0.1–0.8 ppb, relative to a zero land-use change calculation, driven by increases (decreases in surface isoprene in high (low NOx environments. At the local scale (4° × 5° we find that surface O3 increases by 5–12 ppb over temperate North America, China and Boreal Eurasia, driven by large increases in isoprene emissions from short-rotation coppice crop cultivation for biofuel

  9. Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land use change in response to growing food needs

    Science.gov (United States)

    Hardacre, C. J.; Palmer, P. I.; Baumanns, K.; Rounsevell, M.; Murray-Rust, D.

    2012-12-01

    We quantify the impact of land use change, determined by our growing need for food and biofuel production, on isoprene emissions and subsequent atmospheric oxidant chemistry in 2015 and 2030, relative to 1990, ignoring compound climate change effects over that period. We estimate isoprene emissions from an ensemble (n = 1000) of land use change realizations from 1990-2050, broadly guided by the IPCC AR4/SRES scenarios A1 and B1. We also superimpose land use change required to address projected biofuel usage using two scenarios: (1) assuming that world governments make no changes to biofuel policy after 2009, and (2) assuming that world governments develop biofuel policy with the aim of keeping equivalent atmospheric CO2 at 450 ppm. We present the median and interquartile range (IQR) statistics of the ensemble and show that land use change between -1.50 × 1012 m2 to +6.06 × 1012 m2 was found to drive changes in the global isoprene burden of -3.5 to +2.8 Tg yr-1 in 2015 and -7.7 to +6.4 Tg yr-1 in 2030. We use land use change realizations corresponding to the median and IQR of these emission estimates to drive the GEOS-Chem global 3-D chemistry transport model to investigate the perturbation to global and regional surface concentrations of isoprene, nitrogen oxides (NO+NO2), and the atmospheric concentration and deposition of ozone (O3). We show that across sub-continental regions the monthly surface O3 increases by 0.1-0.8 ppb, relative to a zero land-use change calculation, driven by increases (decreases) in surface isoprene in high (low) NOx environments. At the local scale (4° × 5°) we find that surface O3 increases by 5-12 ppb over temperate North America, China and Boreal Eurasia, driven by large increases in isoprene emissions from short-rotation coppice crop cultivation for biofuel production.

  10. Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land-use change in response to growing food needs

    Science.gov (United States)

    Hardacre, C. J.; Palmer, P. I.; Baumanns, K.; Rounsevell, M.; Murray-Rust, D.

    2013-06-01

    We quantify the impact of land-use change, determined by our growing demand for food and biofuel production, on isoprene emissions and subsequent atmospheric oxidant chemistry in 2015 and 2030, relative to 1990, ignoring compound climate change effects over that period. We estimate isoprene emissions from an ensemble (n = 1000) of land-use change realizations from 1990-2050, broadly guided by the IPCC AR4/SRES scenarios A1 and B1. We also superimpose land-use change required to address projected biofuel usage using two scenarios: (1) assuming that world governments make no changes to biofuel policy after 2009, and (2) assuming that world governments develop biofuel policy with the aim of keeping equivalent atmospheric CO2 at 450 ppm. We present the median and interquartile range (IQR) statistics of the ensemble and show that land-use change between -1.50 × 1012 m2 to +6.06 × 1012 m2 was found to drive changes in the global isoprene burden of -3.5 to +2.8 Tg yr-1 in 2015 and -7.7 to +6.4 Tg yr-1 in 2030. We use land-use change realizations corresponding to the median and IQR of these emission estimates to drive the GEOS-Chem global 3-D chemistry transport model to investigate the perturbation to global and regional surface concentrations of isoprene, nitrogen oxides (NO+NO2), and the atmospheric concentration and deposition of ozone (O3). We show that across subcontinental regions the monthly surface O3 increases by 0.1-0.8 ppb, relative to a zero land-use change calculation, driven by increases (decreases) in surface isoprene in high (low) NOx environments. At the local scale (4° × 5°) we find that surface O3 increases by 5-12 ppb over temperate North America, China and boreal Eurasia, driven by large increases in isoprene emissions from short-rotation coppice crop cultivation for biofuel production.

  11. Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land-use change in response to growing food needs

    Directory of Open Access Journals (Sweden)

    C. J. Hardacre

    2013-06-01

    Full Text Available We quantify the impact of land-use change, determined by our growing demand for food and biofuel production, on isoprene emissions and subsequent atmospheric oxidant chemistry in 2015 and 2030, relative to 1990, ignoring compound climate change effects over that period. We estimate isoprene emissions from an ensemble (n = 1000 of land-use change realizations from 1990–2050, broadly guided by the IPCC AR4/SRES scenarios A1 and B1. We also superimpose land-use change required to address projected biofuel usage using two scenarios: (1 assuming that world governments make no changes to biofuel policy after 2009, and (2 assuming that world governments develop biofuel policy with the aim of keeping equivalent atmospheric CO2 at 450 ppm. We present the median and interquartile range (IQR statistics of the ensemble and show that land-use change between −1.50 × 1012 m2 to +6.06 × 1012 m2 was found to drive changes in the global isoprene burden of −3.5 to +2.8 Tg yr−1 in 2015 and −7.7 to +6.4 Tg yr−1 in 2030. We use land-use change realizations corresponding to the median and IQR of these emission estimates to drive the GEOS-Chem global 3-D chemistry transport model to investigate the perturbation to global and regional surface concentrations of isoprene, nitrogen oxides (NO+NO2, and the atmospheric concentration and deposition of ozone (O3. We show that across subcontinental regions the monthly surface O3 increases by 0.1–0.8 ppb, relative to a zero land-use change calculation, driven by increases (decreases in surface isoprene in high (low NOx environments. At the local scale (4° × 5° we find that surface O3 increases by 5–12 ppb over temperate North America, China and boreal Eurasia, driven by large increases in isoprene emissions from short-rotation coppice crop cultivation for biofuel production.

  12. The ion chemistry of surface and ground waters in the Taklimakan D