WorldWideScience

Sample records for bioactive peptide-peptoid hybrids

  1. Fiber-reinforced bioactive and bioabsorbable hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, Mikko; Godinho, Pedro; Kellomaeki, Minna [Tampere University of Technology, Institute of Biomaterials, Hermiankatu 12, PO Box 589, FIN-33101 Tampere (Finland); Toermaelae, Pertti [Bioretec Ltd, Hermiankatu 22, PO Box 135, FI-33721 Tampere (Finland)], E-mail: mikko.huttunen@tut.fi

    2008-09-01

    Bioabsorbable polymeric bone fracture fixation devices have been developed and used clinically in recent decades to replace metallic implants. An advantage of bioabsorbable polymeric devices is that these materials degrade in the body and the degradation products exit via metabolic routes. Additionally, the strength properties of the bioabsorbable polymeric devices decrease as the device degrades, which promotes bone regeneration (according to Wolff's law) as the remodeling bone tissue is progressively loaded. The most extensively studied bioabsorbable polymers are poly-{alpha}-hydroxy acids. The major limitation of the first generation of bioabsorbable materials and devices was their relatively low mechanical properties and brittle behavior. Therefore, several reinforcing techniques have been used to improve the mechanical properties. These include polymer chain orientation techniques and the use of fiber reinforcements. The latest innovation for bioactive and fiber-reinforced bioabsorbable composites is to use both bioactive and bioresorbable ceramic and bioabsorbable polymeric fiber reinforcement in the same composite structure. This solution of using bioactive and fiber-reinforced bioabsorbable hybrid composites is examined in this study.

  2. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities

    International Nuclear Information System (INIS)

    Yu, Liang; Gong, Jie; Zeng, Changfeng; Zhang, Lixiong

    2013-01-01

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20–55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation–gelation–hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca 2+ -exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag + -exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca 2+ -exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag + -exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9 × 10 6 CFU mL −1 E. coli concentration to zero within 4 h of incubation time with the Ag + -exchanged hybrid composite amount of 0.4 g L −1 . The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca 2+ and then with Ag + . These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. - Graphical abstract: Zeolite A/chitosan hybrid composites were prepared by in situ transformation of precursors in the chitosan matrix, which possess macroporous structures and exhibit superior bioactivity and antimicrobial activity and potential biomedical application. Highlights: • Zeolite A

  3. A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration.

    Science.gov (United States)

    Akbari Dourbash, Fakhraddin; Alizadeh, Parvin; Nazari, Shahram; Farasat, Alireza

    2017-09-01

    The field of tissue engineering constantly calls for novel biomaterials that possess intrinsically multifunctional properties such as bioactivity, bioimaging ability and antibacterial properties. In this paper, poly (amido amine) generation 5/bioactive glass inorganic-organic hybrids have been developed through direct hybridization by 3-glycidoxypropyltrimethoxysilane (GPTMS) as coupling agent. Results indicated that the degree of covalent coupling by GPTMS and the weight percent of inorganic and organic constituents highly influence hybrids properties. It was found that nanoscale integration of inorganic and organic chains by GPTMS significantly endows hybrids with high thermal stability. Furthermore, hybrids exhibited photoluminescent ability (emission 400-600nm and 700nm) without incorporating of any organic dyes or quantum dots. In addition, hydrophilicity of our hybrids indicated good cell/material interaction. The biological apatite was formed on the surface of calcium containing hybrids when soaked in simulated body fluid (SBF) for 1week. Hybrids also showed linear biodegradation behavior in SBF that could be controlled by the degree of covalent crosslinking which was indicative of their stable biodegradation ability. High inherent antibacterial properties against Staphylococcus aureus was also observed from poly (amido amine)/silica hybrids. No adverse cytotoxicity for human gingival fibroblast cell lines (HGF) was detected after 4days. It is envisaged that our novel multifunctional hybrid system will confer intriguing potential in advancing the field of tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Antioxidant activity and bioactive compound contents before and after in vitro digestion of new tomato hybrids.

    Science.gov (United States)

    Tommonaro, Giuseppina; Speranza, Giovanna; De Prisco, Rocco; Iodice, Carmine; Crudele, Egle; Abbamondi, Gennaro Roberto; Nicolaus, Barbara

    2017-12-01

    The antioxidant properties and bioactive compound contents of fresh new tomato hybrids before and after in vitro digestion were investigated. To this aim, the antioxidant activities of lipophilic, hydrophilic and polyphenolic extracts of tomato hybrids were determined by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DMPD (N,N-dimethyl-p-phenylenediamine dihydrochloride) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods respectively, while the bioactive compound contents were estimated via Folin-Ciocalteu (polyphenols), pH differential (anthocyanins) and high-performance liquid chromatography (lycopene and β-carotene) methods. After the digestion process, a marked loss (ranging from 37 to 77%) of antioxidant capacity linked to the hydrophilic fraction was observed. In contrast, the lipophilic and methanolic fractions showed an increase in antioxidant activity (ranging from 9 to 40%) after gastric digestion, and a rapid decrease was observed after total digestion. Moreover, the presence of anthocyanins and carotenoids after simulated digestion was a notable result. The bioavailability of bioactive metabolites from nutraceutical food and their healthful properties in humans are strictly dependent on the digestion process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel

    Directory of Open Access Journals (Sweden)

    Dipankar Das

    2017-11-01

    Full Text Available In this article, a hybrid gel has been developed using sodium alginate (Alg and α-tricalcium phosphate (α-TCP particles through ionic crosslinking process for the application in bone tissue engineering. The effects of pH and composition of the gel on osteoblast cells (MC3T3 response and bioactive molecules release have been evaluated. At first, a slurry of Alg and α-TCP has been prepared using an ultrasonicator for the homogeneous distribution of α-TCP particles in the Alg network and to achieve adequate interfacial interaction between them. After that, CaCl2 solution has been added to the slurry so that ionic crosslinked gel (Alg-α-TCP is formed. The developed hybrid gel has been physico-chemically characterized using Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM and a swelling study. The SEM analysis depicted the presence of α-TCP micro-particles on the surface of the hybrid gel, while cross-section images signified that the α-TCP particles are fully embedded in the porous gel network. Different % swelling ratio at pH 4, 7 and 7.4 confirmed the pH responsiveness of the Alg-α-TCP gel. The hybrid gel having lower % α-TCP particles showed higher % swelling at pH 7.4. The hybrid gel demonstrated a faster release rate of bovine serum albumin (BSA, tetracycline (TCN and dimethyloxalylglycine (DMOG at pH 7.4 and for the grade having lower % α-TCP particles. The MC3T3 cells are viable inside the hybrid gel, while the rate of cell proliferation is higher at pH 7.4 compared to pH 7. The in vitro cytotoxicity analysis using thiazolyl blue tetrazolium bromide (MTT, bromodeoxyuridine (BrdU and neutral red assays ascertained that the hybrid gel is non-toxic for MC3T3 cells. The experimental results implied that the non-toxic and biocompatible Alg-α-TCP hybrid gel could be used as scaffold in bone tissue engineering.

  6. Novel bioactive materials: silica aerogel and hybrid silica aerogel/pseudowollastonite

    Directory of Open Access Journals (Sweden)

    Reséndiz-Hernández, P. J.

    2014-10-01

    Full Text Available Silica aerogel and hybrid silica aerogel/pseudowollastonite materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS using also methanol (MeOH and pseudowollastonite particles. The gels obtained were dried using a novel process based on an ambient pressure drying. Hexane and hexamethyl-disilazane (HMDZ were the solvents used to chemically modify the surface. In order to assess bioactivity, aerogels, without and with pseudowollastonite particles, were immersed in simulated body fluid (SBF for 7 and 14 days. The hybrid silica aerogel/pseudowollastonite showed a higher bioactivity than that observed for the single silica aerogel. However, as in both cases a lower bioactivity was observed, a biomimetic method was also used to improve it. In this particular method, samples of both materials were immersed in SBF for 7 days followed by their immersion in a more concentrated solution (1.5 SBF for 14 days. A thick and homogeneous bonelike apatite layer was formed on the biomimetically treated materials. Thus, bioactivity was successfully improved even on the aerogel with no pseudowollastonite particles. As expected, the hybrid silica aerogel/pseudowollastonite particles showed a higher bioactivity.Se sintetizaron aerogel de sílice y aerogel híbrido de sílice/partículas de pseudowollastonita por hidrólisis controlada de tetraetoxisilano (TEOS usando metanol (MeOH y partículas de pseudowollastonita. Los geles obtenidos se secaron utilizando un novedoso proceso basado en una presión de secado ambiental. Hexano y hexametil-disilazano fueron los solventes usados para modificar químicamente la superficie. Para evaluar la bioactividad, los aerogeles con y sin partículas de pseudowollastonita se sumergieron en un fluido fisiológico simulado (SBF por 7 y 14 días. El aerogel híbrido de sílice/partículas de pseudowollastonita mostró más alta bioactividad que la observada por el aerogel solo. Sin embargo, en ambos casos, se

  7. Mechanical Behavior of Nanostructured Hybrids Based on Poly(Vinyl Alcohol/Bioactive Glass Reinforced with Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    H. S. Mansur

    2012-01-01

    Full Text Available This study reports the synthesis and characterization of novel tridimensional porous hybrids based on PVA combined with bioactive glass and reinforced by chemically functionalized carbon nanotubes (CNT for potential use in bone tissue engineering. The functionalization of CNT was performed by introducing carboxylic groups in multiwall nanotubes. This process aimed at enhancing the affinity of CNTs with the water-soluble PVA polymer derived by the hydrogen bonds formed among alcohol (PVA and carboxylic groups (CNT–COOH. In the sequence, the CNT–COOH (0.25 wt% were used as the nanostructure modifier for the hybrid system based on PVA associated with the bioactive glass (BaG. The mechanical properties of the nanostructured hybrids reinforced with CNT–COOH were evaluated by axial compression tests, and they were compared to reference hybrid. The averaged yield stresses of macroporous hybrids were (2.3 ± 0.9 and (4.4 ± 1.0 MPa for the reference and the CNT reinforced materials, respectively. Moreover, yield strain and Young's modulus were significantly enhanced by about 30% for the CNT–COOH hybrids. Hence, as far as the mechanical properties are concerned, the results have clearly showed the feasibility of utilizing these new hybrids reinforced with functionalized CNT in repairing cancellous bone tissues.

  8. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength

    Science.gov (United States)

    Zima, A.

    2018-03-01

    Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42 - and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17 wt% and 23 wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.

  9. Hybrid aerogels and bioactive aerogels under uniaxial compression: an in situ SAXS study

    Directory of Open Access Journals (Sweden)

    Esquivias, L.

    2010-12-01

    Full Text Available The complex structure of hybrid organic/inorganic aerogels is composed by an inorganic phase covalently bonded to an organic chain forming a copolymer. Conventional hybrid aerogels were studied as well as bioactive hybrid aerogels, that is, aerogels with a calcium active phase added. In this work, the relationship between mechanical response and nanostructure was studied, using a specifically designed sample-holder for in situ uniaxial compression obtaining at the same time the small-angle X-ray pattern from synchrotron radiation (SAXS. Structural elements can be described as a particulated silica core surrounded by the organic chains. These chains are compressed on the direction parallel to the load, and a relationship between macroscopic uniaxial compression and particle and pore deformations can be established.

    La compleja estructura de los aerogeles híbridos orgánico/inorgánicos está compuesta por una fase inorgánica de sílice, unida mediante enlaces covalentes a una red de cadenas orgánicas. Se han estudiado composites híbridos convencionales y bioactivos, esto es, con una fase activa de calcio añadida. En este trabajo se ha investigado la relación entre la respuesta mecánica y la nanoestructura, con ayuda de un portamuestras específicamente diseñado para el estudio in situ de muestras bajo compresión uniaxial, a la vez que se obtiene el espectro de rayos-X a bajo-ángulo de radiación sincrotrón (SAXS. Los elementos estructurales se pueden describir como núcleos particulados de sílice rodeados de las cadenas orgánicas. Estas, se comprimen en la dirección paralela a la carga pudiéndose establecer una relación entre la compresión uniaxial macroscópica y la deformación de las partículas y poros que forman la estructura.

  10. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules.

    Science.gov (United States)

    Kudryavtseva, Valeriya L; Zhao, Li; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-09-01

    We propose the use of polylactic acid/calcium carbonate (PLA/CaCO 3 ) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO 3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO 3 systems. We used CaCO 3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO 3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO 3 /PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis of Bioactive Chlorogenic Acid-Silica Hybrid Materials via the Sol-Gel Route and Evaluation of Their Biocompatibility.

    Science.gov (United States)

    Catauro, Michelina; Pacifico, Severina

    2017-07-21

    Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based materials, the sol-gel method was used to embed different content of the phenolic antioxidant chlorogenic acid (CGA) within silica matrices to obtain organic-inorganic hybrid materials. Fourier transform infrared (FTIR) measurements were used to characterize the prepared materials. The new materials were screened for their bioactivity and antioxidant potential. To this latter purpose, direct DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) methods were applied: radical scavenging capability appeared strongly dependent on the phenol amount in investigated hybrids, and became pronounced, mainly toward the ABTS radical cation, when materials with CGA content equal to 15 wt% and 20 wt% were analyzed. The in vitro biocompatibility of the synthetized materials was estimated by using the MTT assay towards fibroblast NIH 3T3 cells, human keratinocyte HaCaT cells, and the neuroblastoma SH-SY5Y cell line. As cell viability and morphology of tested cell lines seemed to be unaffected by new materials, the attenuated total reflectance (ATR)-FTIR method was applied to deeply measure the effects of the hybrids in the three different cell lines.

  12. Polyetheretherketone Hybrid Composites with Bioactive Nanohydroxyapatite and Multiwalled Carbon Nanotube Fillers

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2016-12-01

    Full Text Available Polyetheretherketone (PEEK hybrid composites reinforced with inorganic nanohydroxyapatite (nHA and multiwalled carbon nanotube (MWNT were prepared by melt-compounding and injection molding processes. The additions of nHA and MWNT to PEEK were aimed to increase its elastic modulus, tensile strength, and biocompatibility, rendering the hybrids suitable for load-bearing implant applications. The structural behavior, mechanical property, wettability, osteoblastic cell adhesion, proliferation, differentiation, and mineralization of the PEEK/nHA-MWNT hybrids were studied. X-ray diffraction and SEM observation showed that both nHA and MWNT fillers are incorporated into the polymer matrix of PEEK-based hybrids. Tensile tests indicated that the elastic modulus of PEEK can be increased from 3.87 to 7.13 GPa by adding 15 vol % nHA and 1.88 vol % MWNT fillers. The tensile strength and elongation at break of the PEEK/(15% nHA-(1.88% MWNT hybrid were 64.48 MPa and 1.74%, respectively. Thus the tensile properties of this hybrid were superior to those of human cortical bones. Water contact angle measurements revealed that the PEEK/(15% nHA-(1.88% MWNT hybrid is hydrophilic due to the presence of nHA. Accordingly, hydrophilic PEEK/(15% nHA-(1.88% MWNT hybrid promoted the adhesion, proliferation, differentiation, and mineralization of murine MC3T3-E1 osteoblasts on its surface effectively on the basis of cell culture, fluorescence microscopy, MTT assay, WST-1 assay, alkaline phosphatase activity, and Alizarin red staining tests. Thus the PEEK/(15% nHA-(1.88% MWNT hybrid has the potential to be used for fabricating load-bearing bone implants.

  13. Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Cheisy D.F.; Carvalho, Sandhra M.; Mansur, Herman S., E-mail: hmansur@demet.ufmg.br; Pereira, Marivalda M., E-mail: mpereira@demet.ufmg.br

    2016-01-01

    Recently, stimuli-responsive nanocomposite-derived hydrogels have gained prominence in tissue engineering because they can be applied as injectable scaffolds in bone and cartilage repair. Due to the great potential of these systems, this study aimed to synthesize and characterize novel thermosensitive chitosan-based composites, chemically modified with collagen and reinforced by bioactive glass nanoparticles (BG) on the development of injectable nanohybrids for regenerative medicine applications. Thus, the composite hydrogels were extensively characterized by structural, morphological, rheological, and biological testing. The composites showed thermosensitive response with the gelation temperature at approximately 37 °C, which is compatible with the human body temperature. In addition, scanning electron microscopy (SEM) analysis indicated that the chitosan hydrogels exhibited 3D-porous structures, and the incorporation of collagen in the system caused increase on the average pore size. Fourier transform infrared spectroscopy (FTIR) analysis indicated the main functional groups of each component of the composite system and their chemical interactions forming the scaffold. Moreover, rheological measurements were employed to assess the viscoelastic behavior of the hydrogels as a function of the temperature. The results demonstrated that the addition of collagen and bioactive glass increases the mechanical properties after the gelation process. The addition of 2 wt.% of BG nanoparticles caused an increase of approximately 39% on stiffness compared to pure chitosan and the addition of 30 wt.% collagen caused a further increase on the stiffness by 95%. The cytotoxicity and cell viability of the hydrogels were assessed by MTT and LIVE/DEAD® assays, where the results demonstrated no toxic effect of the composites on the human osteosarcoma cell culture (SAOS) and kidney cells line of human embryo (HEK 293T). Hence, it can be stated that innovative composites were

  14. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    International Nuclear Information System (INIS)

    Torres, A.L.; Gaspar, V.M.; Serra, I.R.; Diogo, G.S.; Fradique, R.; Silva, A.P.; Correia, I.J.

    2013-01-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine

  15. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.

    Science.gov (United States)

    Ding, Yaping; Li, Wei; Müller, Teresa; Schubert, Dirk W; Boccaccini, Aldo R; Yao, Qingqing; Roether, Judith A

    2016-07-13

    Electrospinning of biopolymer and inorganic substances is one of the efficient ways to combine various advantageous properties in one single fibrous structure with potential for tissue engineering applications. In the present study, to integrate the high stiffness of polyhydroxybutyrate (PHB), the flexibility of poly(ε-caprolactone) (PCL) and the bioactivity of 58S bioactive glass, PHB/PCL/58S sol-gel bioactive glass hybrid scaffolds were fabricated using combined electrospinning and sol-gel method. Physical features such as fiber diameter distribution, mechanical strength and Young's modulus were characterized thoroughly. FTIR analysis demonstrated the successful incorporation of 58S bioactive glass into the blend polymers, which greatly improved the hydrophilicity of PHB/PCL fibermats. The primary biological response of MG-63 osteoblast-like cells on the prepared fibrous scaffolds was evaluated, proving that the 58S glass sol containing hybrid scaffold were not only favorable to MG-63 cell adhesion but also slightly enhanced cell viability and significantly increased alkaline phosphate activity .

  16. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery.

    Science.gov (United States)

    Mohammed, Leena; Ragab, Doaa; Gomaa, Hassan

    2016-01-01

    Engineered magnetic nanoparticles (MNPs) possess unique properties and hold great potential in biomedicine and clinical applications. With their magnetic properties and their ability to work at cellular and molecular level, MNP have been applied both in-vitro and in-vivo in targeted drug delivery and imaging. Focusing on Iron Oxide Superparamagnetic nanoparticles (SPIONs), this paper elaborates on the recent advances in development of hybrid polymeric-magnetic nanoparticles. Their main applications in drug delivery include Chemotherapeutics, Hyperthermia treatment, Radio-therapeutics, Gene delivary, and Biotheraputics. Physiochemical properties such as size, shape, surface and magnetic properties are key factors in determining their behavior. Additionally tailoring SPIONs surface is often vital for desired cell targetting and improved efficiency. Polymer coating is specifically reviewed with brief discussion of SPIONs administration routes. Commonly used drug release models for describing release mechanisms and the nanotoxicity aspects are also discussed. This review focus on superparamagnetic nanoparticles coated with different types of polymers starting with the key physiochemical features that dominate their behavior. The importance of surface modification is addressed. Subsequently, the major classes of polymer modified iron oxide nanoparticles is demonstrated according to their clinical use and application. Clinically approved nanoparticles are then addressed and the different routes of administration are mentioned. Lastly, mathematical models of drug release profile of the common used nanoparticles are addressed. MNPs emerging in recent medicine are remarkable for both imaging and therapeutics, particularly, as drug carriers for their great potential in targeted delivery and cancer treatment. Targeting ability and biocompatibility can be improved though surface coating which provides a mean to alter the surface features including physical characteristics and

  17. Engineered Hybrid Scaffolds of Poly(vinyl alcohol/Bioactive Glass for Potential Bone Engineering Applications: Synthesis, Characterization, Cytocompatibility, and Degradation

    Directory of Open Access Journals (Sweden)

    Hermes S. Costa

    2012-01-01

    Full Text Available The synthesis, characterization, preliminary cytocompatibility, and degradation behavior of the hybrids based on 70% Poly(vinyl alcohol and 30% bioactive glass (58SiO2–33CaO–9P2O5, BaG with macroporous tridimensional structure is reported for the first time. The effect of glutaraldehyde covalent crosslinker in the organic-inorganic nanostructures produced and, as a consequence, tailoring the hybrids properties was investigated. The PVA/BaG hybrids scaffolds are characterized by Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, X-ray diffraction (XRD, and X-ray Microcomputed tomography analysis (μCT. Cytotoxicity assessment is performed by the MTT method with VERO cell culture. Additionally, the hybrid in vitro degradation assay is conducted by measuring the mass loss by soaking in deionized water at 37°C for up to 21 days. The results have clearly shown that it is possible to modify the PVA/BaG hybrids properties and degradation behavior by engineering the structure using different concentrations of the chemical crosslinker. Moreover, these hybrid crosslinked nanostructures have presented 3D hierarchical pore size architecture varying within 10–450 μm and a suitable cytocompatibility for potential use in bone tissue engineering applications.

  18. Influence of the polymer amount on bioactivity and biocompatibility of SiO{sub 2}/PEG hybrid materials synthesized by sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-03-01

    SiO{sub 2}/PEG organic–inorganic hybrid materials, which differ in polyethylene glycol (PEG) content, were synthesized by sol–gel technique and the characterization of their structure and biological properties was carried out in order to evaluate the possible use in biomedical field. FT-IR spectroscopy detected that the two components of the hybrids (SiO{sub 2} and PEG) are linked by hydrogen bonds between the Si–OH groups of the inorganic phase and the terminal alcoholic groups and/or the ethereal oxygen atoms in the repeating units of polymer. X-ray diffraction analysis ascertained the amorphous nature of the gels and the observation of their morphology by SEM microscopy confirmed that the interpenetration of the two phases (organic and inorganic) occurs on nanometric scale. The biological characterization was carried out as a function of the polymer amount to study its influence on material behavior. The results showed that the synthesized materials were bioactive and biocompatible. The formation of a hydroxyapatite layer, indeed, was observed on their surface by SEM/EDX analysis after soaking in simulated body fluid. Moreover, the biocompatibility of SiO{sub 2}/PEG hybrids was assessed performing MTT and SRB cytotoxicity tests on fibroblast cell NIH 3T3 after 24 and 48 h of exposure, as well as Trypan Blue dye exclusion test. The response to the presence of the investigated materials was positive. The cell growth and proliferation showed dependence on polymer amount and time of exposure to the material extracts. Therefore, the obtained results are encouraging for the use of the obtained hybrids in dental or orthopedic applications. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Chemical and morphological characterization of hybrid materials • Chemical interactions between inorganic and organic components • Biological characterizations with MTT and SRB cytotoxicity tests

  19. Influence of PCL on mechanical properties and bioactivity of ZrO{sub 2}-based hybrid coatings synthesized by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Veronesi, Paolo [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Lamanna, Giuseppe [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy)

    2014-06-01

    The biological properties of medical implants can be enhanced through surface modifications such as to provide a firm attachment of the implant. In this study, organic–inorganic hybrid coatings have been synthesized via sol–gel dip coating. They consist of an inorganic ZrO{sub 2} matrix in which different amounts of poly(ε-caprolactone) have been entrapped to improve the mechanical properties of the films. The influence of the PCL amount on the microstructural, biological and mechanical properties of the coating has been investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses have shown that the hybrids used for the coating are homogenous and totally amorphous materials; Fourier transform infrared spectroscopy (FT-IR) has demonstrated that hydrogen bonds arise between the organic and inorganic phases. SEM and atomic force microscopy (AFM) have highlighted the nanostructured nature of the film. SEM and EDS analyses, after soaking the samples in a simulated body fluid (SBF), have pointed out the apatite formation on the coating surface, which proves the bone-bonding ability of the nanocomposite bioactive films. Scratch and nano-indentation tests have shown that the coating hardness, stiffness and Young's modulus decrease in the presence of large amounts of the organic phase. - Highlights: • ZrO{sub 2}/PCL organic-inorganic hybrid coatings synthesis via sol-gel dip coating. • Coatings porosity and bioactivity increase in presence of high PCL amount. • Coatings Hardness and Young’s modulus decrease in presence of high PCL amount.

  20. Influence of PCL on mechanical properties and bioactivity of ZrO2-based hybrid coatings synthesized by sol-gel dip coating technique.

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Veronesi, Paolo; Lamanna, Giuseppe

    2014-06-01

    The biological properties of medical implants can be enhanced through surface modifications such as to provide a firm attachment of the implant. In this study, organic-inorganic hybrid coatings have been synthesized via sol-gel dip coating. They consist of an inorganic ZrO2 matrix in which different amounts of poly(ε-caprolactone) have been entrapped to improve the mechanical properties of the films. The influence of the PCL amount on the microstructural, biological and mechanical properties of the coating has been investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses have shown that the hybrids used for the coating are homogenous and totally amorphous materials; Fourier transform infrared spectroscopy (FT-IR) has demonstrated that hydrogen bonds arise between the organic and inorganic phases. SEM and atomic force microscopy (AFM) have highlighted the nanostructured nature of the film. SEM and EDS analyses, after soaking the samples in a simulated body fluid (SBF), have pointed out the apatite formation on the coating surface, which proves the bone-bonding ability of the nanocomposite bioactive films. Scratch and nano-indentation tests have shown that the coating hardness, stiffness and Young's modulus decrease in the presence of large amounts of the organic phase. Copyright © 2014. Published by Elsevier B.V.

  1. Synthesis of organic motif tailored hybrid nanoframes: Exploiting in vitro bioactivity and heavy metal ion extraction applications

    Energy Technology Data Exchange (ETDEWEB)

    Tayade, Kundan C. [School of Environmental and Earth Sciences, North Maharashtra University, Jalgaon, MS (India); Kuwar, Anil S. [School of Chemical Sciences, North Maharashtra University, Jalgaon, MS (India); Ingle, Sopan T. [School of Environmental and Earth Sciences, North Maharashtra University, Jalgaon, MS (India); Attarde, Sanjay B., E-mail: sb.attarde@yahoo.co.in [School of Environmental and Earth Sciences, North Maharashtra University, Jalgaon, MS (India)

    2017-02-15

    Hybrid nanoparticles (NPs) were designed by adsorbing a (13E,19E)-N{sub 1}′,N{sub 3}′-bis[4-(diethylamino)-2-hydroxybenzylidene]malonohydrazide (L) motif, on Fe{sub 3}O{sub 4}@SiO{sub 2} distorted hexagonal and cubic NPs. Electronic images of the synthesized hybrid NPs revealed distorted topographies with size of ∼50–70 nm. We exploited key in vitro features, topographies, thermal behaviours, spectroscopic data, magnetic properties and heavy metal ion extraction efficiencies of the prepared hybrids. Additionally, the discrete discussion on the surface areas of the synthesized NPs tackled with BET, are introduced. Characterization with FT-IR, SEM, TEM, XRD, BET, VSM, TGA, particle size analysis and Raman spectroscopic techniques revealed that the organic scaffold L is attached to the prepared Fe{sub 3}O{sub 4}@SiO{sub 2} NPs surface via adsorption or covalent interactions or some sort of charge/proton transfer. Antibacterial tests depicted that, L and Fe{sub 3}O{sub 4}@SiO{sub 2} NPs exhibited moderate to good antifungal activity against C. albicans, while synthesized key hybrids has shown good to high antibacterial activity against Gram-positive bacterium, S. aureus, two Gram-negative bacteria's, E. coli and P. aeruginosa, and antifungal activity against C. albicans. Also, the Zn{sup 2+} ion extraction efficiency of the key hybrids was tackled and validated with commercial pharmaceutical tablet analysis. - Highlights: • New hybrid nanoparticles (NPs) shown good to high antibacterial activity. • NPs showed barely compromised magnetism and thermal stability. • Macroporous NPs depicted harmonious Zn(II) ion extraction efficiency. • Extraction of Zn(II) ions by NPs exhibited no matrix interference.

  2. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  3. Synthesis, structural and spectroscopic features, and investigation of bioactive nature of a novel organic-inorganic hybrid material 1H-1,2,4-triazole-4-ium trioxonitrate

    Science.gov (United States)

    Gatfaoui, Sofian; Issaoui, Noureddine; Mezni, Ali; Bardak, Fehmi; Roisnel, Thierry; Atac, Ahmet; Marouani, Houda

    2017-12-01

    The novel inorganic-organic hybrid material 1H-1,2,4-triazole-4-ium trioxonitrate (TAN) have been elaborated and crystallized to the monoclinic system with space group P21/c and the lattice parameters obtained are a = 8.8517(15) Å, b = 8.3791(15) Å, c = 7.1060(11) Å, β = 103.776(7)°, V = 511.89(15) Å3 and Z = 4. In order to enhance (TAN) on the applied plan, biophysicochemical characterization of the title compound have been obtained with experimentally and theoretically. The crystal structure exposed substantial hydrogen bonding stuck between the protonated 1,2,4-triazole ring and the nitrate forming thus sheets parallel to the plans (-1 0 1). The three-dimensional supramolecular network is formed through the π … π interactions involving heterocyclic rings in these sheets. Assessment of intermolecular contacts in the crystal arrangement was quantified by Hirshfeld surface analysis and interactions were analyzed by orbital NBO and topological AIM approaches. This compound was also investigated by means of infrared spectroscopy, electrical conductivity, thermal analysis TG-DTA, and DSC. Moreover, the antioxidant properties of TAN were determined via the DPPH radical scavenging, the ABTS radical scavenging, hydroxyl radical scavenging, and ferric reducing power (FRP). Obtained results confirm the functionality of antioxidant potency of TAN. The molecular structure and vibrational spectral analysis of TAN have been reported by using density functional theory calculations at B3LYP/6-311++G(d,p) level of theory. Molecular docking behaviors of TAN along with well-known triazole antifungal agents (fluconazole, itraconazole, posaconazole, and voriconazole) with saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) were investigated. The potent of TAN as an inhibitor was discussed on the basis of noncovalent interaction profile. Furthermore, protonic conduction of this compound has been intentional in the temperature range of 295-373 K.

  4. Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer.

    Science.gov (United States)

    Araújo, M; Viveiros, R; Philippart, A; Miola, M; Doumett, S; Baldi, G; Perez, J; Boccaccini, A R; Aguiar-Ricardo, A; Verné, E

    2017-08-01

    In this work, hybrid melanin-coated bioactive glass-ceramic multifunctional scaffolds were developed and characterized in terms of mechanical strength, in vitro bioactivity in simulated body fluid (SBF) and ability to load ibuprofen. The coated scaffolds exhibited an accelerated bioactivity in comparison with the uncoated ones, being able of developing hydroxyapatite-like crystals after 7days soaking in simulated body fluid (SBF). Besides its positive influence on the scaffolds bioactivity, the melanin coating was able to enhance their mechanical properties, increasing the initial compressive strength by a factor of >2.5. Furthermore, ibuprofen was successfully loaded on this coating, allowing a controlled drug release of the anti-inflammatory agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Tea Polysaccharides and Their Bioactivities

    Directory of Open Access Journals (Sweden)

    Ling-Ling Du

    2016-10-01

    Full Text Available Tea (Camellia sinensis is a beverage beneficial to health and is also a source for extracting bioactive components such as theanine, tea polyphenols (TPP and tea polysaccharides (TPS. TPS is a group of heteropolysaccharides bound with proteins. There is evidence showing that TPS not only improves immunity but also has various bioactivities, such as antioxidant, antitumor, antihyperglycemia, and anti-inflammation. However, inconsistent results concerning chemical composition and bioactivity of TPS have been published in recent years. The advances in chemical composition and bioactivities of TPS are reviewed in the present paper. The inconsistent and controversial results regarding composition and bioactivities of TPS are also discussed.

  6. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  7. Bioactive Lipids in Dairy Fat

    DEFF Research Database (Denmark)

    Hellgren, Lars; Nordby, Pernille

    2017-01-01

    Milk fat is the most important energy source for the newborn infant beside its important role as energy source, milk fat also contain a range of bioactive lipids, that potentially can modulate the immune response and metabolic regulation in the child. In this chapter we review the literature...... on bioactive dairy fatty acids: conjugated linoleic acid, branched chained and odd chained fatty acids, as well as bioactive complex lipids such as sphingomyelin and gangliosides....

  8. CEC of phytochemical bioactive compounds.

    Science.gov (United States)

    Yang, Feng-qing; Zhao, Jing; Li, Shao-ping

    2010-01-01

    Although there are many publications related to technological or methodological developments of CEC, few focus on the analysis of natural products, especially phytochemical bioactive compounds. This review summarized the application of CEC in the analysis of phytochemical bioactive components, including flavonoids, nucleosides, steroids, lignans, quinones and coumarins, as well as fingerprint analysis of herbs. The strategies for optimization of CEC conditions and detection were also discussed.

  9. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  10. Major Australian tropical fruits biodiversity: bioactive compounds and their bioactivities.

    Science.gov (United States)

    Pierson, Jean T; Dietzgen, Ralf G; Shaw, Paul N; Roberts-Thomson, Sarah J; Monteith, Gregory R; Gidley, Michael J

    2012-03-01

    The plant kingdom harbours many diverse bioactive molecules of pharmacological relevance. Temperate fruits and vegetables have been highly studied in this regard, but there have been fewer studies of fruits and vegetables from the tropics. As global consumers demand and are prepared to pay for new appealing and exotic foods, tropical fruits are now being more intensively investigated. Polyphenols and major classes of compounds like flavonoids or carotenoids are ubiquitously present in these fruits, as they are in the temperate ones, but particular classes of compounds are unique to tropical fruits and other plant parts. Bioactivity studies of compounds specific to tropical fruit plants may lead to new drug discoveries, while the synergistic action of the wide range of diverse compounds contained in plant extracts underlies nutritional and health properties of tropical fruits and vegetables. The evidence for in vitro and animal bioactivities is a strong indicator of the pharmacological promise shown in tropical fruit plant biodiversity. In this review, we will discuss both the occurrence of potential bioactive compounds isolated and identified from a selection of tropical fruit plants of importance in Australia, as well as recent studies of bioactivity associated with such fruits and other fruit plant parts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  12. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, H.T.; Huang, L.F.; Lu, P.S.; Chang, H.F.; Chang, I.L.

    2010-01-01

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO 2 -CaO-P 2 O 5 mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  13. Formation of carrageenan-CaCO{sub 3} bioactive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Lucas F.B.; Maniglia, Bianca C.; Pereira, Lourivaldo S.; Tapia-Blácido, Delia R.; Ramos, Ana P., E-mail: anapr@ffclrp.usp.br

    2016-01-01

    The high biocompatibility and resorbability of polymeric membranes have encouraged their use to manufacture medical devices. Here, we report on the preparation of membranes consisting of carrageenan, a naturally occurring sulfated polysaccharide that forms helical structures in the presence of calcium ions. We incorporated CaCO{sub 3} particles into the membranes to enhance their bioactivity and mechanical properties. Infrared spectroscopy and X-ray diffraction data confirmed CaCO{sub 3} incorporation into the polymeric matrix. We tested the bioactivity of the samples by immersing them in a solution that mimics the ionic composition and pH of the human body fluid. The hybrid membranes generated hydroxyapatite, as attested by X-ray diffraction data. Scanning electron and atomic force microscopies aided investigation of membrane topography before and after CaCO{sub 3} deposition. The wettability and surface free energy, evaluated by contact angle measures, increased in the presence of CaCO{sub 3} particles. These parameters are important for membrane implantation in the body. Moreover, membrane stiffness was up to 110% higher in the presence of the inorganic particles, as revealed by Young's modulus. - Highlights: • Hybrid kappa and iota carrageenan-CaCO{sub 3} membranes were formed. • The hybrid membrane's origin hydroxyapatite after exposure to simulated body fluid • The carrageenan's specificity to bind Ca{sup 2+} ions tailors the surface properties.

  14. Synthesis, characterization and antimicrobial screening of hybrid ...

    Indian Academy of Sciences (India)

    sants.20 Comparative structure of drugs and reported bio-active quinoline derivatives shown in figure 1. As a result of remarkable pharmacological efficiency of quinoline, pyrimidine and morpholine derivatives, our studies have been focused towards the synthesis and bio-evaluation of these derivatives by hybrid approach.

  15. Production of bioactive secondary metabolites by marine Vibrionaceae

    DEFF Research Database (Denmark)

    Månsson, Maria; Gram, Lone; Larsen, Thomas Ostenfeld

    2011-01-01

    for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS...... also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential...

  16. Bioactive glasses potential biomaterials for future therapy

    CERN Document Server

    Kaur, Gurbinder

    2017-01-01

    This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.

  17. Bio-actives and Drug

    Indian Academy of Sciences (India)

    Bio-actives. have an effect on or elicit a response from living tissue. Refer to a substance that can be acted upon by a living organism or by an extract from a living organism. are constituents in foods or dietary supplements, other than those needed to meet basic nutritional needs, that are responsible for changes in health ...

  18. Bioactive factors in human milk.

    Science.gov (United States)

    Hamosh, M

    2001-02-01

    This article reviews the bioactive components of human milk. Special emphasis is given to immune and nonimmune protective function of major and minor nutrients in human milk. Immune modulating components, such as cytokines, nucleotides, hormones, and growth factors, are discussed. Milk enzymes with digestive function in the newborn are reviewed.

  19. Hybrid Warfare

    Science.gov (United States)

    2013-08-01

    Office, Title 10, U.S. Code ; Act of 5 May 1960. 3. 2010 Quadrennial Defense Review Report, February 2010, 8. 4. Hybrid Warfare, Global Accountability...Rise of Hybrid Wars.” Proceedings 132 (November 2005); William J. Nemeth , Future War and Chechnya: A Case for Hybrid War- fare (master’s thesis, U.S...William J. Nemeth which represents the earliest scholarly work on the subject, in which the emergence of devolved hybrid societies gives rise to hybrid

  20. Fine-tuning of bioactive glass for root canal disinfection.

    Science.gov (United States)

    Waltimo, T; Mohn, D; Paqué, F; Brunner, T J; Stark, W J; Imfeld, T; Schätzle, M; Zehnder, M

    2009-03-01

    An ideal preparation of 45S5 bioactive glass suspensions/slurries for root canal disinfection should combine high pH induction with capacity for continuing release of alkaline species. The hypothesis of this study was that more material per volume of bioactive glass slurry is obtained with a micrometric material (< 5 microm particle size) or a micrometric/ nanometric hybrid, rather than a solely nanometric counterpart. This should correlate with alkaline capacity and antimicrobial effectiveness. Slurries at the plastic limit were prepared with test and reference materials in physiological saline. Total mass and specific surface area of glass material per volume were determined. Continuous titration with hydrochloric acid was performed, and antimicrobial effectiveness was tested in extracted human premolars mono-infected with E. faecalis ATTC 29212 (N = 12 per material). While the nanometric slurry had a 12-fold higher specific surface area than the micrometric counterpart, the latter had a considerably higher alkaline capacity and disinfected significantly better (Fisher's exact test, P < 0.05). The hybrid slurry behaved similarly to the micrometric preparation.

  1. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  2. Bactericidal and Bioactive Dental Composites.

    Science.gov (United States)

    Chatzistavrou, Xanthippi; Lefkelidou, Anna; Papadopoulou, Lambrini; Pavlidou, Eleni; Paraskevopoulos, Konstantinos M; Fenno, J Christopher; Flannagan, Susan; González-Cabezas, Carlos; Kotsanos, Nikos; Papagerakis, Petros

    2018-01-01

    Aim: Antimicrobial and bioactive restorative materials are needed to develop a bacteria free environment and tight bond with the surrounding tissue, preventing the spread of secondary caries and thus extending the lifetime of dental restorations. The characteristic properties of new dental bioactive and antibacterial composites are presented in this work. The new composites have been microstructurally characterized and both long and short term properties have been studied. Methods: The Ag-doped sol-gel derived bioactive glass (Ag-BG) was incorporated into resin composite in concentrations 5, 10, and 15 wt.%, to fabricate new Ag-doped bioactive and antibacterial dental composites (Ag-BGCOMP). The microstructural properties and elemental analysis of the developed Ag-BGCOMP was observed. The total bond strength (TBS) was measured immediately and after long term of immersion in medium using microtensile testing. The capability of Ag-BGCOMPs to form apatite layer on their surface after immersion in Simulated Body Fluid (SBF) as well as the bacteria growth inhibition in a biofilm formed by Streptococcus mutans ( S. mutans ) were evaluated. Results: Homogeneous distribution of Ag-BG particles into the resin composite was observed microstructurally for all Ag-BGCOMPs. The TBS measurements showed non-statistically significant difference between control samples (Ag-BG 0 wt.%) and Ag-BGCOMP specimens. Moreover, the total bond strength between the surrounding tooth tissue and the material of restoration does not present any statistically significant change for all the cases even after 3 months of immersion in the medium. The bioactivity of the Ag-BGCOMPs was also shown by the formation of a calcium-phosphate layer on the surface of the specimens after immersion in SBF. Antibacterial activity was observed for all Ag-BGCOMPs, statistically significant differences were observed between control samples and Ag-BGCOMPs. Accordingly, the number of dead bacteria in the biofilm found

  3. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  4. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  5. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    Abstract Every year, thousands of infants are born prematurely (before the completion of 37 weeks of gestation). These preterm infants have immature gastrointestinal tract and immune system, which lead to high risks of infection, sepsis, and intestinal inflammation with high mortality rate...... several steps of thermal processing, which are known to decrease/abolish bioactivity of milk constituents. This may explain for high NEC incidence in formula-fed preterm infants. We therefore in this PhD project investigated whether gentle thermal processing conditions increase the bioavailability...

  6. Bioactive Egg Components and Inflammation

    Directory of Open Access Journals (Sweden)

    Catherine J. Andersen

    2015-09-01

    Full Text Available Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk.

  7. Bioactivity of plasma implanted biomaterials

    International Nuclear Information System (INIS)

    Chu, Paul K.

    2006-01-01

    Plasma immersion ion implantation and deposition (PIII and D) is an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification of biomedical materials is described. NiTi alloys have unique super-elastic and shape memory properties and are suitable for orthopedic implants but the leaching of toxic Ni may pose health hazards in humans. We have recently investigated the use of acetylene, oxygen and nitrogen PIII and D to prevent out-diffusion of nickel and good results have been obtained. Silicon is the most important material in the microelectronics industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PIII into silicon to improve the surface bioactivity and observed biomimetic growth of apatite on the surface in simulated body fluids. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness and by incorporation of elements such as nitrogen and phosphorus, the surface blood compatibility can be improved. The properties as well as in vitro biological test results are discussed in this article

  8. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  9. Bioactive Egg Components and Inflammation

    Science.gov (United States)

    Andersen, Catherine J.

    2015-01-01

    Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk. PMID:26389951

  10. Investigation of bioactivity, biocompatibility and thermal behavior of sol–gel silica glass containing a high PEG percentage

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Renella, R.A.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Vecchio Ciprioti, S. [Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, Building RM017, I-00161 Rome (Italy)

    2016-04-01

    SiO{sub 2}/PEG organic–inorganic hybrid materials, which contain 60 or 70 weight percentage of PEG, were synthesized by the sol–gel technique. The materials were characterized and subjected to various tests to assess their application in the biomedical field. The evaluation of their morphology by scanning electron microscopy (SEM) confirms the homogeneity of the samples on the nanometer scale. Fourier transform infrared spectroscopy (FT-IR) indicated that the two components of the hybrids (SiO{sub 2} and PEG) are linked by hydrogen bonds. This feature makes them class I hybrids. Simultaneous thermogravimetry/differential thermal analysis (TG/DTA) was used to investigate their thermal behavior and to establish the best temperatures for their pre-treatment. The fundamental properties that a material must have to be used in the biomedical field are biocompatibility and bioactivity. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid. This indicates that the materials are able to bond to bone tissue. Moreover, the biocompatibility of SiO{sub 2}/PEG hybrids was assessed by performing WST-8 cytotoxicity tests on fibroblast cell NIH 3T3 after 24 h of exposure. The cytotoxicity tests highlight that the cell viability is affected by the polymer percentage. The results showed that the synthesized materials were bioactive and biocompatible. Therefore, the results obtained are encouraging for the use of the obtained hybrids in dental or orthopedic applications. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at high PEG percentage • Chemical, thermal and morphological characterization of hybrid materials • Biological characterizations with WST-8 cytotoxicity tests • Bioactivity characterizations of hybrid materials with high PEG percentage.

  11. Synthesis, characterization and evaluation of bioactivity and ...

    Indian Academy of Sciences (India)

    Bioactive glass; zinc; bioactivity; antibacterial activity; tissue engineering. ... Biomaterials Group, Faculty of Biomedical Engineering (Centre of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran; Department of Biotechnology and Cellular and Molecular Research Centre, Faculty of Applied ...

  12. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  13. Enhanced Stem Cell Osteogenic Differentiation by Bioactive Glass Functionalized Graphene Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Xiaoju Mo

    2016-01-01

    Full Text Available An unmet need in engineered bone regeneration is to develop scaffolds capable of manipulating stem cells osteogenesis. Graphene oxide (GO has been widely used as a biomaterial for various biomedical applications. However, it remains challenging to functionalize GO as ideal platform for specifically directing stem cell osteogenesis. Herein, we report facile functionalization of GO with dopamine and subsequent bioactive glass (BG to enhance stem cell adhesion, spreading, and osteogenic differentiation. On the basis of graphene, we obtained dopamine functionalized graphene oxide/bioactive glass (DGO/BG hybrid scaffolds containing different content of DGO by loading BG nanoparticles on graphene oxide surface using sol-gel method. To enhance the dispersion stability and facilitate subsequent nucleation of BG in GO, firstly, dopamine (DA was used to modify GO. Then, the modified GO was functionalized with bioactive glass (BG using sol-gel method. The adhesion, spreading, and osteoinductive effects of DGO/BG scaffold on rat bone marrow mesenchymal stem cells (rBMSCs were evaluated. DGO/BG hybrid scaffolds with different content of DGO could influence rBMSCs’ behavior. The highest expression level of osteogenic markers suggests that the DGO/BG hybrid scaffolds have great potential or elicit desired bone reparative outcome.

  14. Polyhedral oligomeric silsesquioxane (POSS)–poly(ethylene glycol) (PEG) hybrids as injectable biomaterials

    International Nuclear Information System (INIS)

    Engstrand, Johanna; López, Alejandro; Engqvist, Håkan; Persson, Cecilia

    2012-01-01

    One of the major issues with the currently available injectable biomaterials for hard tissue replacement is the mismatch between their mechanical properties and those of the surrounding bone. Hybrid bone cements that combine the benefits of tough polymeric and bioactive ceramic materials could become a good alternative. In this work, polyhedral oligomeric silsesquioxane (POSS) was copolymerized with poly(ethylene glycol) (PEG) to form injectable in situ cross-linkable hybrid cements. The hybrids were characterized in terms of their mechanical, rheological, handling and in vitro bioactive properties. The results indicated that hybridization improves the mechanical and bioactive properties of POSS and PEG. The Young moduli of the hybrids were lower than those of commercial cements and more similar to those of cancellous bone. Furthermore, the strength of the hybrids was similar to that of commercial cements. Calcium deficient hydroxyapatite grew on the surface of the hybrids after 28 days in PBS, indicating bioactivity. The study showed that PEG–POSS-based hybrid materials are a promising alternative to commercial bone cements. (paper)

  15. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2011-08-01

    Full Text Available Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS. Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.

  16. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  17. Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity

    Science.gov (United States)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2013-06-01

    Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

  18. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities

    Directory of Open Access Journals (Sweden)

    Maria Hayes

    2015-09-01

    Full Text Available Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  19. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities

    OpenAIRE

    Maria Hayes; Brijesh K. Tiwari

    2015-01-01

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which ma...

  20. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  1. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...

  2. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  3. Bioactivities of Plectranthus ecklonii constituents.

    Science.gov (United States)

    Nyila, Monde A; Leonard, Carmen M; Hussein, Ahmed A; Lall, Namrita

    2009-09-01

    Plectranthus ecklonii Benth. is traditionally used in South Africa for treating stomach aches, nausea, vomiting and meningitis. Bioassay-guided fractionation of the ethyl acetate extract of the plant led to the isolation of two known compounds, parvifloron D and parvifloron F, neither of which has been previously reported for this species. The compounds exhibited minimum inhibitory concentrations of 15.6 and 31.2 microg/mL, respectively against Listeria monocytogenes, whereas the values against a drug-sensitive strain of Mycobacterium tuberculosis were 190 and 95 microg/mL, respectively. The ethyl acetate extract of P. ecklonii and its isolated compounds were tested for their activity on tyrosinase inhibition. The concentration at which half the tyrosinase activity was inhibited (IC50) by the extract was found to be 61.7 +/- 2.7 microg/mL. The antibacterial activity of the extract and its isolated compounds correlates with the traditional use of the plant for various ailments such as stomach aches, diarrhea and skin diseases. The fifty percent inhibitory concentrations of parvifloron D and parvifloron F against vero cell lines were found to be 2.9 microg/mL and 1.6 microg/mL, respectively. This is the first report of the bioactivity of P. ecklonii extract and its constituents.

  4. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  5. In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase

    Directory of Open Access Journals (Sweden)

    Oréfice Rodrigo L.

    2000-01-01

    Full Text Available Composites that can mimic the in vitro bioactive behavior of bioactive glasses were designed to fulfill two main features of bioactive glasses that are responsible for their high bond-to-bone rates: (1 capability of providing ions such as calcium and phosphate to the nearby environment and (2 ideal surface structure that allows fast heterogeneous precipitation of hydroxy-carbonate-apatite (HCA. The novel composites were prepared by incorporating bioactive glass particles into polymer matrices. The in vitro bioactivity test was performed by introducing samples into a buffered solution as well as into a simulated body fluid solution. FTIR was used to evaluate the kinetics of HCA (hydroxy-carbonate-apatite precipitation. The results showed that the obtained composites can supply ions, such as silicates and phosphates in rates and concentrations comparable or superior than bulk bioactive glasses. Moreover, the surface chemistry of the composites was altered to mimic the surface of bioactive glasses. It was demonstrated that the in vitro bioactivity of the composites was enhanced by chemically modifying polymer surfaces through the introduction of special alkoxysilane groups.

  6. Benzopyranones from the Endophytic Fungus Hyalodendriella sp. Ponipodef12 and Their Bioactivities

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2012-09-01

    Full Text Available The endophytic fungus Hyalodendriella sp. Ponipodef12 was isolated from the hybrid ‘Neva’ of Populus deltoides Marsh × P. nigra L. In this study, four benzopyranones were isolated from the ethyl acetate extract of Hyalodendriella sp. Ponipodef12, and identified as palmariol B (1, 4-hydroxymellein (2, alternariol 9-methyl ether (3, and botrallin (4 by means of physicochemical and spectroscopic analysis. All the compounds were evaluated for their antibacterial, antifungal, antinematodal and acetylcholinesterase inhibitory activities. 4-Hydroxymellein (2 exhibited stronger antibacterial activity than the other compounds. Palmariol B (1 showed stronger antimicrobial, antinematodal and acetylcholinesterase inhibitory activities than alternariol 9-methyl ether (3 which indicated that the chlorine substitution at position 2 may contribute to its bioactivity. The results indicate the potential of this endophytic fungus as a source of bioactive benzopyranones.

  7. Microencapsulation of bioactives for food applications.

    Science.gov (United States)

    Dias, Maria Inês; Ferreira, Isabel C F R; Barreiro, Maria Filomena

    2015-04-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this context, microencapsulation emerges as a potential approach to overcome these problems and, additionally, to provide controlled or targeted delivery or release. This work intends to contribute to the field of functional food development by performing a comprehensive review on the microencapsulation methods and materials, the bioactives used (extracts and isolated compounds) and the final application development. Although several studies dealing with microencapsulation of bioactives exist, they are mainly focused on the process development and the majority lack proof of concept for final applications. These factors, together with the lack of regulation, in Europe and in the United States, delay the development of new functional foods and, consequently, their market entry. In conclusion, the potential of microencapsulation to protect bioactive compounds ensuring their bioavailability is shown, but further studies are required, considering both its applicability and incentives by regulatory agencies.

  8. Microbial biotransformation of bioactive flavonoids.

    Science.gov (United States)

    Cao, Hui; Chen, Xiaoqing; Jassbi, Amir Reza; Xiao, Jianbo

    2015-01-01

    The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at

  9. Bioactive Proteins and Peptides from Soybeans.

    Science.gov (United States)

    Agyei, Dominic

    2015-01-01

    Dietary proteins from soybeans have been shown to offer health benefits in vivo and/or in vitro either as intact proteins or in partially digested forms also called bioactive peptides. Upon oral administration and absorption, soy-derived bioactive peptides may induce several physiological responses such as antioxidative, antimicrobial, antihypertensive, anticancer and immunomodulatory effects. There has therefore been a mounting research interest in the therapeutic potential of soy protein hydrolysates and their subsequent incorporation in functional foods and 'Food for Specified Health Uses' (FOSHU) related products where their biological activities may assist in the promotion of good health or in the control and prevention of diseases. This mini review discusses relevant patents and gives an overview on bioactive proteins and peptides obtainable from soybeans. Processes for the production and formulation of these peptides are given, together with specific examples of their therapeutic potential and possible areas of application.

  10. Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shruti, S., E-mail: biotech.shruti@gmail.com; Andreatta, F.; Furlani, E.; Marin, E.; Maschio, S.; Fedrizzi, L.

    2016-08-15

    Highlights: • Mesoporous bioactive glass substituted with Ce, Ga or Zn coated on Ti6Al4 V alloy. • Ce, Ga and Zn play vital role in bone metabolism. • Coating was homogenous and crack free retaining the characteristics of glass samples. • Apatite layer formed on unsubstituted, Ce and Ga substituted samples by 15 d. • Zn substituted samples lack apatite layer formation ability. - Abstract: Surface modification is one of the methods for improving the performance of medical implants in biological environment. In this study, cerium, gallium and zinc substituted 80%SiO{sub 2}-15%CaO-5%P{sub 2}O{sub 5} mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 V substrates by dip-coating method in order to obtain an inorganic—organic hybrid coating (MBG-PCL). Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 μm. Glass and polymer phases were detected in the coating along with the presence of biologically potent elements cerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samples in simulated body fluid (SBF) for up to 30 days at 37 °C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In this way, an attempt was made to develop a new biomaterial with improved in vitro bioactive response due to bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biological properties of cerium, gallium and zinc.

  11. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Structure, bioactivity, and synthesis of methylated flavonoids.

    Science.gov (United States)

    Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao

    2017-06-01

    Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.

  13. Preparation of hybrid biomaterials for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Vilma Conceição Costa

    2007-03-01

    Full Text Available Tissue engineering has evolved from the use of biomaterials for bone substitution that fulfill the clinical demands of biocompatibility, biodegradability, non-immunogeneity, structural strength and porosity. Porous scaffolds have been developed in many forms and materials, but few reached the need of adequate physical, biological and mechanical properties. In the present paper we report the preparation of hybrid porous polyvinyl alcohol (PVA/bioactive glass through the sol-gel route, using partially and fully hydrolyzed polyvinyl alcohol, and perform structural characterization. Hybrids containing PVA and bioactive glass with composition 58SiO2-33CaO-9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass sol-gel precursor solution. Sol-gel solution was prepared from mixing tetraethoxysilane (TEOS, triethylphosphate (TEP, and calcium chloride as chemical precursors. The hybrid composites obtained after aging and drying at low temperature were chemically and morphologically characterized through infrared spectroscopy and scanning electron microscopy. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioglass composition ratios affect the synthesis procedure. Synthesis parameters must be very well combined in order to allow foaming and gelation. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm.

  14. Hybrid stars

    Indian Academy of Sciences (India)

    physics pp. 753-756. Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... be composed of normal nuclear matter with hyperons and/or condensed mesons. The matter at ...

  15. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available balance between the inherent advantages and disadvantages. Also, using a hybrid composite that contains two or more types of fibre, the advantages of one type of fibre could complement with what are lacking in the other. As a consequence, a balance in cost...

  16. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...

  17. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  18. Effect of substrate on the growth, nutritional and bioactive ...

    African Journals Online (AJOL)

    The bioactive components analysis revealed the presence of major bioactive compounds such as flavonoids, polyphenols, saponins, triterpenoids and steroids. Oyster mushroom cultivated on sawdust possesses better growth and nutritional properties than those cultivated on corn cobs. Keywords: Bioactive components ...

  19. Encapsulation for preservation of functionality and targeted delivery of bioactive food components

    NARCIS (Netherlands)

    de Vos, Paul; Faas, Marijke M.; Spasojevic, Milica; Sikkema, Jan

    There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive

  20. Natural bioactive compounds: antibiotics | Dezfully | Journal of ...

    African Journals Online (AJOL)

    Antibiotics are powerful therapeutic agents that are produced by diverse living organisms. Over the last several decades, natural bioactive products particularly antibiotics have continued to play a significant role in drug discovery and has expanded the process for developing drugs with high degree of therapeutic index and ...

  1. Bioactive alkaloids in vertically transmitted fungal endophytes

    Science.gov (United States)

    Plants form mutualistic symbioses with a variety of microorganisms, including endophytic fungi that live inside the plant and cause no symptoms of infection. Some endophytic fungi form defensive mutualisms based on the production of bioactive metabolites that protect the plant from herbivores in exc...

  2. Ultraviolet spectroscopic evaluation of bioactive saponin fraction ...

    African Journals Online (AJOL)

    Ultraviolet spectroscopic evaluation of bioactive saponin fraction from the aqueous extract of Vernonia amygdalina [Esteraeceae] leaf. Paul Chukwuemeka ADIUKWU 1*, Martina BONSU 1, Inemesit OKON-BEN 1,. Paul PEPRAH 1, Paapa MENSAH-KANE 1, Jonathan JATO 1 and Grace NAMBATYA 2. 1School of Pharmacy ...

  3. Isolation and bioactivity of endophytic filamentous actinobacteria ...

    African Journals Online (AJOL)

    mineral salts agar. Of the 280 isolates recovered, 154 were from roots, 73 from stems and 53 from leaves. Bioactivity test of crude fermentation extracts were performed on all the isolates. About 41.1% of the extracts showed activity against liver ...

  4. Ultraviolet spectroscopic evaluation of bioactive saponin fraction ...

    African Journals Online (AJOL)

    The separation and chromatogram development of resulting pure saponin components was carried out using a HPLC with UV-vis detection at 365 nm. Data for the antipyretic study agrees with previous bioactivity report for the saponin. Chromatographic and spectroscopic evaluation indicated the presence of three pure ...

  5. Bioactive Terpenes from Marine-Derived Fungi

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elissawy

    2015-04-01

    Full Text Available Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years’ reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  6. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much

  7. Antimicrobial Activity and Bioactive Constituents of Alectra ...

    African Journals Online (AJOL)

    Chromatographic fractionation of the methanol extract through non-polar D101 macroporous resin beads yielded three bioactive compounds: two phenolic compounds, p-coumaric acid and 3,4-dihydroxybenzoic acid, and a flavonoid, luteolin. The compounds exhibited appreciable activities against tested bacteria and fungi ...

  8. Marine Bioactives and Potential Application in Sports

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2014-04-01

    Full Text Available An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP, such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB, macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  9. Comparative evaluation of bioactive compounds in Hibiscus ...

    African Journals Online (AJOL)

    There is growing interest in the chemical composition of plants towards discovery of more effective biotherapeutic agents. Six bioactive compounds were evaluated from Hibiscus sabdariffa and Syzygium samarangense juice extracts. Both juices had high amounts of saponins, with Syzygium samarangense having higher ...

  10. Bioactive polymeric scaffolds for tissue engineering

    Science.gov (United States)

    Stratton, Scott; Shelke, Namdev B.; Hoshino, Kazunori; Rudraiah, Swetha; Kumbar, Sangamesh G.

    2016-01-01

    A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D) scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined. PMID:28653043

  11. Bioactive Compounds And Encapsulation Of Yanang ( Tiliacora ...

    African Journals Online (AJOL)

    Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability ...

  12. Legume bioactive compounds: influence of rhizobial inoculation

    Directory of Open Access Journals (Sweden)

    Luis R. Silva

    2017-04-01

    Full Text Available Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

  13. COMPARATIVE EVALUATION OF BIOACTIVE COMPOUNDS IN ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    remedy for after-effects of drunkenness (Morton,. 1987a). The calyx extract is used in the treatment ... Comparative evaluation of bioactive compounds. 181 to room/ambient temperature before analysis. The .... steam-distillation with saturated sodium bicarbonate solution contained in a 50 ml conical flask for 60 min.

  14. Marine bioactives and potential application in sports.

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  15. Marine Bioactives and Potential Application in Sports

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D’Orazio, Nicolantonio

    2014-01-01

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports. PMID:24796298

  16. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  17. Multifunctional bioactive and improving the performance durability nanocoatings for finishing PET/CO woven fabrics by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, Dorota, E-mail: dkowalczyk@iw.lodz.pl; Brzeziński, Stefan; Kamińska, Irena

    2015-11-15

    The paper presents the results of studies on multifunctional thin-coatings of textiles, simultaneously imparting to them bioactive properties in relations to bacteria and fungi as well as an increased abrasion resistance and anti-pilling effect with the use of modified hybrid materials produced by the sol–gel method from two precursors: (3-glycidoxypropyl)trimethoxysilane (GPTMS) and aluminum isopropoxide (ALIPO). The sol obtained was modified with bioactive particles in the form of nanopowder of metallic silver and copper alloy (Ag/Cu). Al{sub 2}O{sub 3}/SiO{sub 2} sol containing nanoparticles of Ag/Cu alloy was deposited on a polyester/cotton blend woven fabric (PET/CO 67/33) by the padding method. After drying and curing process, a thin and elastic bioactive silica coating was obtained on the fabric fibers surfaces. The fabrics with deposited nanocoatings were characterized by very good bioactive properties and increased resistance to abrasion and formation of pilling. - Highlights: • Multifunctional thin coating layer was prepared on the fabric using sol–gel method. • Modification of the hybrid Al{sub 2}O{sub 3}/SiO{sub 2} sol by Ag/Cu alloy nanoparticles. • Bioactive fabric created by deposition of Al{sub 2}O{sub 3}/SiO{sub 2} sol with Ag/Cu. • 30% increase the abrasion resistance of the thin coating fabric.

  18. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrou, Xanthippi, E-mail: x.chatzistavrou@imperial.ac.uk [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kantiranis, Nikolaos, E-mail: kantira@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, Eleana, E-mail: kont@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, Konstantinos, E-mail: hrisafis@physics.auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, Labrini, E-mail: lambrini@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, Petros, E-mail: pkoidis@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, Aldo R., E-mail: a.boccaccini@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, SW7 2AZ London (United Kingdom); Paraskevopoulos, Konstantinos M., E-mail: kpar@auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-01-15

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

  19. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    International Nuclear Information System (INIS)

    Chatzistavrou, Xanthippi; Kantiranis, Nikolaos; Kontonasaki, Eleana; Chrissafis, Konstantinos; Papadopoulou, Labrini; Koidis, Petros; Boccaccini, Aldo R.; Paraskevopoulos, Konstantinos M.

    2011-01-01

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 o C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al 2 O 3 can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: → Isostatically pressed glass-alumina composites presented apatite-forming ability. → The interaction with SBF resulted in an aluminium phosphate phase formation. → The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

  20. Optical Biosensor with Multienzyme System Immobilized onto Hybrid Membrane for Pesticides Determination

    OpenAIRE

    Lyubov Yotova; Nourelhoda Medhat

    2011-01-01

    A construction of optical biosensor based on simultaneous immobilization of acetylcholinesterase and choline oxidase enzymes for the detection of pesticides residues is described. Different kinds of novel SiO2 hybrid membranes were synthesized to be suitable for optical biosensors using sol-gel techniques. The bioactive component of the sensor consists of a multi-enzyme system including acetylcholinesterase and choline oxidase covalently immobilized on new hybrid membranes. The sensor exhibit...

  1. A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ivan Hernandez

    2017-07-01

    Full Text Available In this study, a hybrid system consisting of 3D printed polycaprolactone (PCL filled with hydrogel was developed as an application for reconstruction of long bone defects, which are innately difficult to repair due to large missing segments of bone. A 3D printed gyroid scaffold of PCL allowed a larger amount of hydrogel to be loaded within the scaffolds as compared to 3D printed mesh and honeycomb scaffolds of similar volumes and strut thicknesses. The hydrogel was a mixture of alginate, gelatin, and nano-hydroxyapatite, infiltrated with human mesenchymal stem cells (hMSC to enhance the osteoconductivity and biocompatibility of the system. Adhesion and viability of hMSC in the PCL/hydrogel system confirmed its cytocompatibility. Biomineralization tests in simulated body fluid (SBF showed the nucleation and growth of apatite crystals, which confirmed the bioactivity of the PCL/hydrogel system. Moreover, dissolution studies, in SBF revealed a sustained dissolution of the hydrogel with time. Overall, the present study provides a new approach in bone tissue engineering to repair bone defects with a bioactive hybrid system consisting of a polymeric scaffold, hydrogel, and hMSC.

  2. A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering

    Science.gov (United States)

    Hernandez, Ivan; Kumar, Alok; Joddar, Binata

    2018-01-01

    In this study, a hybrid system consisting of 3D printed polycaprolactone (PCL) filled with hydrogel was developed as an application for reconstruction of long bone defects, which are innately difficult to repair due to large missing segments of bone. A 3D printed gyroid scaffold of PCL allowed a larger amount of hydrogel to be loaded within the scaffolds as compared to 3D printed mesh and honeycomb scaffolds of similar volumes and strut thicknesses. The hydrogel was a mixture of alginate, gelatin, and nano-hydroxyapatite, infiltrated with human mesenchymal stem cells (hMSC) to enhance the osteoconductivity and biocompatibility of the system. Adhesion and viability of hMSC in the PCL/hydrogel system confirmed its cytocompatibility. Biomineralization tests in simulated body fluid (SBF) showed the nucleation and growth of apatite crystals, which confirmed the bioactivity of the PCL/hydrogel system. Moreover, dissolution studies, in SBF revealed a sustained dissolution of the hydrogel with time. Overall, the present study provides a new approach in bone tissue engineering to repair bone defects with a bioactive hybrid system consisting of a polymeric scaffold, hydrogel, and hMSC. PMID:29354645

  3. Health Promoting Bioactive Compounds in Plants

    DEFF Research Database (Denmark)

    El-Houri, Rime Bahij

    which includes a variety of side effects, efforts are being made to find suitable antidiabetic therapies. Ethnopharmacological surveys indicate that more than 1200 plants are used in traditional medical systems for their potential hypoglycemic activity. As the use of natural products for biological...... and medicinal investigation is getting more attention, many methods have been developed to scientifically validate the bioactivity of the plants and their bioactive metabolites. All steps in investigating plants of interest are important, such as correct identification, preparation, storage, and choice...... different procedures are recommended. This PhD thesis is based on three papers and revolves around identification of secondary metabolites from plant extracts with influence on glucose uptake and the activation of the nuclear receptor PPARγ. In the experimental part related to this thesis, which...

  4. [Bioactive lipids in kidney physiology and pathophysiology].

    Science.gov (United States)

    Sałata, Daria; Dołęgowska, Barbara

    2014-01-24

    Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  5. Microgreens: Production, shelf life, and bioactive components.

    Science.gov (United States)

    Mir, Shabir Ahmad; Shah, Manzoor Ahmad; Mir, Mohammad Maqbool

    2017-08-13

    Microgreens are emerging specialty food products which are gaining popularity and increased attention nowadays. They are young and tender cotyledonary leafy greens that are found in a pleasing palette of colors, textures, and flavors. Microgreens are a new class of edible vegetables harvested when first leaves have fully expanded and before true leaves have emerged. They are gaining popularity as a new culinary ingredient. They are used to enhance salads or as edible garnishes to embellish a wide variety of other dishes. Common microgreens are grown mainly from mustard, cabbage, radish, buckwheat, lettuce, spinach, etc. The consumption of microgreens has nowadays increased due to higher concentrations of bioactive components such as vitamins, minerals, and antioxidants than mature greens, which are important for human health. However, they typically have a short shelf life due to rapid product deterioration. This review aimed to evaluate the postharvest quality, potential bioactive compounds, and shelf life of microgreens for proper management of this specialty produce.

  6. Bioactive Compounds in Functional Meat Products

    Directory of Open Access Journals (Sweden)

    Ewelina Pogorzelska-Nowicka

    2018-01-01

    Full Text Available Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional constituents were chosen: (i fatty acids; (ii minerals; (iii vitamins; (iv plant antioxidants; (v dietary fibers; (vi probiotics and (vii bioactive peptides. Each of them is discussed in term of their impact on human health as well as some quality attributes of the final products.

  7. Bioactive calcium phosphate coatings on metallic implants

    Science.gov (United States)

    Sedelnikova, M. B.; Komarova, E. G.; Sharkeev, Yu. P.; Tolkacheva, T. V.; Khlusov, I. A.; Sheikin, V. V.

    2017-09-01

    Biocomposites based on bioinert metals or alloys and bioactive calcium phosphate coatings are a promising tendency of the new-generation implants development. In recent years, the approach of regenerative medicine based on the use of biodegradable biomaterials has been priority direction. Such materials are capable of initiating the bone tissue regeneration and replaced by the newly formed bone. The microarc oxidation (MAO) method allows obtaining the bioactive coatings with a porous structure, special functional properties, and modified by the essential elements. During the last decade, the investigations in the field of the nanostructured biocomposites based on bioinert Ti, Zr, Nb and their alloys with a calcium phosphate coatings deposited by the MAO method have been studied in the Institute of Strength Physics and Materials Science SB RAS, Tomsk. In this article the possibility to produce the bioactive coatings with high antibacterial and osseoconductive properties due to the introduction in the coatings of Zn, Cu, Ag, La, Si elements and wollastonite CaSiO3 was shown. The high hydrophilic and bioresorbed coatings stimulate the processes of osseointegration of the implant into the bone tissue. A promising direction in the field of the medical material science is a development of the metallic implants with good biomechanical compatibility to the bone, such as Ti-Nb alloys with a low elastic modulus that can be classified as biomaterials of the second generation. Zr and its alloys are promising materials for the dentistry and orthopedic surgery due to their high strength and corrosion resistance. Biodegradable Mg alloys are biomaterials of third generation. Such materials can dissolve with a certain speed in human body and excreted from the body thereby excluding the need for reoperation. This article presents the analysis of the study results of bioactive MAO coatings on Ti, Ti-Nb, Zr-Nb and Mg alloys and their promising medical application.

  8. Triterpene Composition and Bioactivities of Centella asiatica

    OpenAIRE

    Hashim, Puziah; Sidek, Hamidah; Helan, Mohd Helme M.; Sabery, Aidawati; Palanisamy, Uma Devi; Ilham, Mohd

    2011-01-01

    Leaves of Centella asiatica (Centella) were analysed for their triterpene composition and bioactivity such as collagen enhancement, antioxidant, anticellulite and UV protection capacity properties. Triterpenes of Centella were measured using HPLC-PAD on an Excil ODS 5 mm (C18) column for the simultaneous determination of asiatic acid, madecassic acid, asiaticoside and madecassoside. Centella was found to contain significant amounts of madecassoside (3.10 ± 4.58 mg/mL) and asiaticoside (1.97 ±...

  9. Secondary metabolites and bioactivities of Myrtus communis

    OpenAIRE

    Mahmoud I Nassar; El-Sayed A Aboutabl; Rania F Ahmed; Ezzel-Din A El-Khrisy; Khaled M Ibrahim; Amany A Sleem

    2010-01-01

    Background: Myrtus species are characterized by the presence of phenolic acids, flavonoids, tannins, volatile oils and fatty acids. They are remedies for variety of ailments. This study therefore investigated medicinal effects of Myrtus communis L. Methods: Bioactivity studies of Myrtus communis L. leaves were carried out on volatile oil, 7% methanol and aqueous extracts and the isolated compounds myricetin 3-O-β-glucopyranoside, myricetin 3-O-∝-rhamnopyranoside and gallic acid. Results: Dete...

  10. Burchellin: study of bioactivity against Aedes aegypti

    OpenAIRE

    Narciso, Juliana Oliveira Abreu; Soares, Renata Oliveira de Araújo; Reis dos Santos Mallet, Jacenir; Guimarães, Anthony Érico; de Oliveira Chaves, Maria Célia; Barbosa-Filho, José Maria; Maleck, Marise

    2014-01-01

    Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of th...

  11. Promiscuity progression of bioactive compounds over time

    OpenAIRE

    Hu, Ye; Jasial, Swarit; Bajorath, J?rgen

    2015-01-01

    In the context of polypharmacology, compound promiscuity is rationalized as the ability of small molecules to specifically interact with multiple targets. To study promiscuity progression of bioactive compounds in detail, nearly 1 million compounds and more than 5.2 million activity records were analyzed. Compound sets were assembled by applying different data confidence criteria and selecting compounds with activity histories over many years. On the basis of release dates, compounds and acti...

  12. Aspects of bioactivity and toxicity of nitrocompounds

    OpenAIRE

    PAULAI, Fávero Reisdorfer; SERRANO, Silvia Helena Pires; TAVARES, Leoberto Costa

    2009-01-01

    Nitrocompounds are bioactive molecules used as antibacterial, antiparasitic and antitumoral agents. In the past of years, these molecules have been broadly studied in several fields, such as medicinal chemistry, organic chemistry, biochemical, toxicology and electrochemistry. The nitrocompounds mode of action involves the biotransformation of the nitro group, releasing intermediates in the redox process. Some of those intermediates attack enzymes, membranes and DNA, providing the basis for th...

  13. Synthesis, characterization and evaluation of bioactivity and ...

    Indian Academy of Sciences (India)

    Abstract. Bioactive glasses in the systems SiO2–CaO–P2O5–MgO (BGZn0) and SiO2–CaO–P2O5–MgO–ZnO. (BGZn5), were prepared by sol–gel method and then characterized. Surface reactivity was studied in simulated body fluid (SBF) to determine the effect of zinc (Zn) addition as a trace element. The effect of Zn ...

  14. Nanotech: propensity in foods and bioactives.

    Science.gov (United States)

    Kuan, Chiu-Yin; Yee-Fung, Wai; Yuen, Kah-Hay; Liong, Min-Tze

    2012-01-01

    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.

  15. [Multiple emulsions; bioactive compounds and functional foods].

    Science.gov (United States)

    Jiménez-Colmenero, Francisco

    2013-01-01

    The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  16. Adhesive Bioactive Coatings Inspired by Sea Life.

    Science.gov (United States)

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  17. Human Milk Composition: Nutrients and Bioactive Factors

    Science.gov (United States)

    Ballard, Olivia; Morrow, Ardythe L.

    2013-01-01

    Synopsis The composition of human milk is the biologic norm for infant nutrition. Human milk also contains many hundreds to thousands of distinct bioactive molecules that protect against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Some of these molecules, e.g., lactoferrin, are being investigated as novel therapeutic agents. A dynamic, bioactive fluid, human milk changes in composition from colostrum to late lactation, and varies within feeds, diurnally, and between mothers. Feeding infants with expressed human milk is increasing. Pasteurized donor milk is now commonly provided to high risk infants and most mothers in the U.S. express and freeze their milk at some point in lactation for future infant feedings. Many milk proteins are degraded by heat treatment and freeze-thaw cycles may not have the same bioactivity after undergoing these treatments. This article provides an overview of the composition of human milk, sources of its variation, and its clinical relevance. PMID:23178060

  18. Promiscuity progression of bioactive compounds over time.

    Science.gov (United States)

    Hu, Ye; Jasial, Swarit; Bajorath, Jürgen

    2015-01-01

    In the context of polypharmacology, compound promiscuity is rationalized as the ability of small molecules to specifically interact with multiple targets. To study promiscuity progression of bioactive compounds in detail, nearly 1 million compounds and more than 5.2 million activity records were analyzed. Compound sets were assembled by applying different data confidence criteria and selecting compounds with activity histories over many years. On the basis of release dates, compounds and activity records were organized on a time course, which ultimately enabled monitoring data growth and promiscuity progression over nearly 40 years, beginning in 1976. Surprisingly low degrees of promiscuity were consistently detected for all compound sets and there were only small increases in promiscuity over time. In fact, most compounds had a constant degree of promiscuity, including compounds with an activity history of 10 or 20 years. Moreover, during periods of massive data growth, beginning in 2007, promiscuity degrees also remained constant or displayed only minor increases, depending on the activity data confidence levels. Considering high-confidence data, bioactive compounds currently interact with 1.5 targets on average, regardless of their origins, and display essentially constant degrees of promiscuity over time. Taken together, our findings provide expectation values for promiscuity progression and magnitudes among bioactive compounds as activity data further grow.

  19. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture

    Science.gov (United States)

    Sachot, N.; Mateos-Timoneda, M. A.; Planell, J. A.; Velders, A. H.; Lewandowska, M.; Engel, E.; Castaño, O.

    2015-09-01

    Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials.Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed

  20. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  1. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity.

    Science.gov (United States)

    Niemelä, T; Niiranen, H; Kellomäki, M; Törmälä, P

    2005-03-01

    Spherical bioactive glass 13-93 particles, with a particle size distribution of 50-125 microm, were combined with bioabsorbable poly-L,DL-lactide 70/30 using twin-screw extrusion. The composite rods containing 0, 20, 30, 40 and 50 wt% of bioactive glass were further self-reinforced by drawing to a diameter of approximately 3 mm. The bioactive glass spheres were well dispersed and the open pores were formed on the composite surface during drawing. The initial mechanical properties were studied. The addition of bioactive glass reduced the bending strength, bending modulus, shear strength, compression strength and torsion strength of poly-L,DL-lactide. However, the strain at maximum bending load increased in self-reinforced composites. Initially brittle composites became ductile in self-reinforcing. The bioactivity was studied in phosphate buffered saline for up to 12 days. The formation of calcium phosphate precipitation was followed using scanning electron microscopy and energy dispersive X-ray analysis. Results showed that the bioactive glass addition affected the initial mechanical properties and bioactivity of the composites. It was concluded that the optimal bioactive glass content depends on the applications of the composites.

  2. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  3. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  4. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Martina [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Corazzari, Ingrid [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Centro Interdipartimentale “G. Scansetti” per lo studio degli amianti e di altri particolati nocivi, Via Pietro Giuria 9, 10125 Torino (Italy); Prenesti, Enrico [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Bertone, Elisa [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Vernè, Enrica, E-mail: enrica.verne@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Ferraris, Sara [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy)

    2016-03-30

    Graphical abstract: - Highlights: • Surface functionalization of bioactive glass with biomolecules has been optimized. • Biomolecules are present and active on the glass surface after functionalization. • Biomolecules affect deposition kinetics and morphology of hydroxyapatite. • Free radical scavenging activity is seen for the first time on bioactive glasses. - Abstract: Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H{sub 2}O{sub 2} highlighting scavenging activity of the bioactive glass.

  5. Bioactivity and properties of a dental adhesive functionalized with polyhedral oligomeric silsesquioxanes (POSS) and bioactive glass.

    Science.gov (United States)

    Rizk, Marta; Hohlfeld, Lisa; Thanh, Loan Tao; Biehl, Ralf; Lühmann, Nicole; Mohn, Dirk; Wiegand, Annette

    2017-09-01

    This study aimed to analyze the effect of infiltrating a commercial adhesive with nanosized bioactive glass (BG-Bi) particles or methacryl-functionalized polyhedral oligomeric silsesquioxanes (POSS) on material properties and bioactivity. An acetone-based dental adhesive (Solobond Plus adhesive, VOCO GmbH, Cuxhaven, Germany) was infiltrated with nanosized bioactive glass particles (0.1 or 1wt%), or with monofunctional or multifunctional POSS particles (10 or 20wt%). Unfilled adhesive served as control. Dispersion and hydrodynamic radius of the nanoparticles were studied by dynamic light scattering. Set specimens were immersed for 28days in artificial saliva at 37°C, and surfaces were mapped for the formation of calcium phospate (Ca/P) precipitates (scanning electron microscopy/energy-dispersive X-ray spectroscopy). Viscosity (rheometry) and the structural characteristic of the networks were studied, such as degree of conversion (FTIR spectroscopy), sol fraction and water sorption. POSS particles showed a good dispersion of the particles for both types of particles being smaller than 3nm, while the bioactive glass particles had a strong tendency to agglomerate. All nanoparticles induced the formation of Ca/P precipitates. The viscosity of the adhesive was not or only slightly increased by POSS particle addition but strongly increased by the bioactive glass particles. The degree of conversion, water sorption and sol fraction showed a maintained or improved network structure and properties when filled with BG-Bi and multifunctional POSS, however, less polymerization was found when loading a monofunctional POSS. Multifunctional POSS may be incorporated into dental adhesives to provide a bioactive potential without changing material properties adversely. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Pourhaghgouy, Masoud, E-mail: m.pourhaghgouy@merc.ac.ir [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of); Zamanian, Ali, E-mail: a-zamanian@merc.ac.ir [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of); Shahrezaee, Mostafa, E-mail: moshahrezaee@yahoo.com [Department of Orthopedic Surgery, AJA University of Medical Sciences, Tehran (Iran, Islamic Republic of); Masouleh, Milad Pourbaghi, E-mail: miladpourbaghi@gmail.com [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of)

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO{sub 2}.28CaO.8P{sub 2}O{sub 5}) prepared by sol–gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. - Highlights: • Particle size of synthesized bioactive glass was approximately less than 20 nm. • Increase in BGNP content did not change the pore channels size. • Addition of 10 wt.% of BGNP led to absence of the pores located on chitosan walls. • Mechanical properties of chitosan scaffold significantly improved by addition of BGNPs. • Chi-BGNPs30 scaffold indicated acceptable absorption capacity and bioactivity behavior.

  7. The Correlation of Pore Size and Bioactivity of Spray-Pyrolyzed Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chou

    2017-05-01

    Full Text Available SiO2–CaO–P2O5-based mesoporous bioactive glasses (MBGs were synthesized by spray pyrolysis in this study. Three commonly used non-ionic tri-block copolymers (L121, P123, and F127 with various lengths of hydrophilic chains were applied as structural templates to achieve different pore sizes. A mesoporous structure was observed in each as-prepared specimen, and the results showed that the L121-treated MBG had the largest pore size. The results of bioactivity tests indicated that the growth of hydroxyapatite is related to the pore size of the materials.

  8. Combination of multiple resistance traits from wild relative species in Chrysanthemum via trigeneric hybridization.

    Directory of Open Access Journals (Sweden)

    Yanming Deng

    Full Text Available BACKGROUND: With the objective of combining multiple resistant traits from wild relative species in florist's chrysanthemums, trigeneric hybridization was conducted by crossing two intergeneric F(1 hybrids Chrysanthemum grandiflorum × Artemisia vulgaris and Chrysanthemum crassum × Crossostephium chinense. METHODOLOGY/PRINCIPAL FINDINGS: To assess post-pollination phenomena, we investigated pollen germination on the stigma and embryo development, using fluorescence and scanning electron microscopy and paraffin-embedded sections, respectively. We selected eight putative trigeneric hybrid lines that showed the greatest morphological differences from the parents from among the progeny derived via embryo rescue. The hybridity of one trigeneric hybrid was further confirmed by fluorescent genomic in situ hybridization; in addition, the aphid resistance and salt tolerance of this hybrid were higher than those of the chrysanthemum parent and the C. grandiflorum × A. vulgaris F(1 hybrid, respectively. CONCLUSIONS/SIGNIFICANCE: The enhanced aphid resistance of the hybrid line reflects the inheritance of chromosomes from A. vulgaris, which carries genes that encode bioactive components. The enhanced salt tolerance of the trigeneric hybrid is attributable to inheritance of genetic materials from Chrysanthemum crassum and Crossostephium chinense, which act to maintain the compartmentation of Na(+ and K(+ ions and their selective transportation among different organs to avert deleterious effects and protect the photosynthetic apparatus. The results indicate that trigeneric hybridization between different bigeneric hybrids is a promising method for combination of multiple stress-resistance traits for improvement of chrysanthemum.

  9. Combination of Multiple Resistance Traits from Wild Relative Species in Chrysanthemum via Trigeneric Hybridization

    Science.gov (United States)

    Deng, Yanming; Jiang, Jiafu; Chen, Sumei; Teng, Nianjun; Song, Aiping; Guan, Zhiyong; Fang, Weimin; Chen, Fadi

    2012-01-01

    Background With the objective of combining multiple resistant traits from wild relative species in florist’s chrysanthemums, trigeneric hybridization was conducted by crossing two intergeneric F1 hybrids Chrysanthemum grandiflorum × Artemisia vulgaris and Chrysanthemum crassum × Crossostephium chinense. Methodology/Principal Findings To assess post-pollination phenomena, we investigated pollen germination on the stigma and embryo development, using fluorescence and scanning electron microscopy and paraffin-embedded sections, respectively. We selected eight putative trigeneric hybrid lines that showed the greatest morphological differences from the parents from among the progeny derived via embryo rescue. The hybridity of one trigeneric hybrid was further confirmed by fluorescent genomic in situ hybridization; in addition, the aphid resistance and salt tolerance of this hybrid were higher than those of the chrysanthemum parent and the C. grandiflorum × A. vulgaris F1 hybrid, respectively. Conclusions/Significance The enhanced aphid resistance of the hybrid line reflects the inheritance of chromosomes from A. vulgaris, which carries genes that encode bioactive components. The enhanced salt tolerance of the trigeneric hybrid is attributable to inheritance of genetic materials from Chrysanthemum crassum and Crossostephium chinense, which act to maintain the compartmentation of Na+ and K+ ions and their selective transportation among different organs to avert deleterious effects and protect the photosynthetic apparatus. The results indicate that trigeneric hybridization between different bigeneric hybrids is a promising method for combination of multiple stress-resistance traits for improvement of chrysanthemum. PMID:22952958

  10. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  11. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    Unknown

    bioactive glasses is about 35 GPa, hence implants from these materials are stiffer than cortical bone (15–25 GPa). Main disadvantages of the bio-active glasses are their poor mechanical properties. The fracture toughness of bio-active glass ceramics (1⋅2–2⋅25 MN/m3/2) is lower than that of cortical bone (2⋅2–5⋅7 ...

  12. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.

  13. Bioactive Hierarchical Structures for Genetic Control of Bone Morphogenesis

    Directory of Open Access Journals (Sweden)

    Pilar Sepulveda

    2002-09-01

    Full Text Available For thirty years it has been known that certain compositions of Na2O-CaO-P2O5-SiO 2 glasses will form a mechanically strong, chemical bond to bone. These materials have become known as bioactive glasses and the process of bonding is called bioactive fixation. Bioactive glasses are widely used clinically in the repair of bone defects. Recent research at the Imperial College Tissue Engineering Centre has now established that there is a genetic control of the cellular response to bioactive materials. Seven families of genes are up-regulated when primary human osteoblasts are exposed to the ionic dissolution products of bioactive glasses. The gene expression occurs very rapidly, within two days, and includes enhanced expression of cell cycle regulators. The consequence is rapid differentiation of the osteoblasts into a mature phenotype and formation of large three-dimensional bone nodules within six days in vitro. These cell culture results correlate with extensive human clinical results using the same bioactive material. The new genetic theory of bioactive materials provides a scientific foundation for molecular design of new generation of resorbable bioactive materials for tissue engineering and in situ tissue regeneration and repair. Application of this theory to the synthesis of bioactive foams for tissue engineering of bone is described.

  14. Bioactivity of flours of seeds of leguminous crops Pisum sativum ...

    African Journals Online (AJOL)

    Bioactivity of flours of seeds of leguminous crops Pisum sativum, Phaseolus vulgaris and Glycine max used as botanical insecticides against Sitophilus oryzae Linnaeus (Coleoptera: Curculionidae) on sorghum grains.

  15. Fruit and cereal bioactives: sources, chemistry, and applications

    National Research Council Canada - National Science Library

    Tokusoglu, Ozlem; Hall, Clifford, III

    2011-01-01

    .... It provides detailed information on both beneficial bioactives such as phenolics, flavonoids, tocols, carotenoids, phytosterols, and avenanthramides and toxicant compounds including mycotoxins...

  16. Bioactive Peptides from Muscle Sources: Meat and Fish

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-08-01

    Full Text Available Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE inhibitory and antioxidant peptides.

  17. Bioactive compounds: historical perspectives, opportunities, and challenges.

    Science.gov (United States)

    Patil, Bhimanagouda S; Jayaprakasha, G K; Chidambara Murthy, K N; Vikram, Amit

    2009-09-23

    Mom's conventional wisdom of eating fruits and vegetables to lead a healthy life has evolved with scientific, fact-finding research during the past four decades due to advances in science of "Foods for Health". Epidemiological and prospective studies have demonstrated the vital role of fruits, vegetables, and nuts in reducing the risk of cancer and cardiovascular diseases. In recent years, several meta-analyses strongly suggested that by adding one serving of fruits and vegetables to daily diet, the risk of cardiovascular diseases will be decreased up to 7%. The multidisciplinary and partnership efforts of agriculture and medical scientists across the globe stimulated interest in establishing certain interdisciplinary centers and institutes focusing on "Foods for Health". While the consumption of various healthy foods continues, several questions about toxicity, bioavailability, and food-drug interactions of bioactive compounds are yet to be fully understood on the basis of scientific evidence. Recent research on elucidation of the molecular mechanisms to understand the "proof of the concept" will provide the perfect answer when consumers are ready for a "consumer-to-farm" rather than the current "farm-to-consumer" approach. The multidisciplinary research and educational efforts will address the role of healthy foods to improve eye, brain, and heart health while reducing the risk of cancer. Through this connection, this review is an attempt to provide insight and historical perspectives on some of the bioactive compounds from the day of discovery to their current status. The bioactive compounds discussed in this review are flavonoids, carotenoids, curcumin, ascorbic acid, and citrus limonoids.

  18. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  19. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Science.gov (United States)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  20. In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites.

    Science.gov (United States)

    Ji, Lijun; Wang, Wenjun; Jin, Duo; Zhou, Songtao; Song, Xiaoli

    2015-01-01

    Nanoparticles of bioactive glass (NBG) with a diameter of 50-90 nm were synthesized using the Stöber method. NBG/PCL composites with different NBG contents (0 wt.%, 10 wt.%, 20 wt.%, 30 wt.% and 40 wt.%) were prepared by a melt blending and thermal injection moulding technique, and characterized with XRD, FTIR, and SEM to study the effect of NBG on the mechanical properties and in vitro bioactivity of the NBG/PCL composites. In spite of the high addition up to 40 wt.%, the NBG could be dispersed homogeneously in the PCL matrix. The elastic modulus of the NBG/PCL composites was improved remarkably from 198±13 MPa to 851±43 MPa, meanwhile the tensile strength was retained in the range of 19-21.5 MPa. The hydrophilic property and degradation behavior of the NBG/PCL composites were also improved with the addition of the NBG. Moreover, the composites with high NBG content showed outstanding in vitro bioactivity after being immersed in simulated body fluid, which could be attributed to the excellent bioactivity of the synthesized NBG. Copyright © 2014. Published by Elsevier B.V.

  1. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass.

    Science.gov (United States)

    Pourhaghgouy, Masoud; Zamanian, Ali; Shahrezaee, Mostafa; Masouleh, Milad Pourbaghi

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO2.28CaO.8P2O5) prepared by sol-gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. Copyright © 2015. Published by Elsevier B.V.

  2. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S P

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1-X) SiO2--24.3 Na2O-26.9 CaO-2.6 P2O5, where X=0, 0.4, 0.8, 1.2 and 1.6mol% of BaO was chosen and melted in an electric furnace at 1400±5°C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. LASER-INDUCED BIOACTIVITY IN DENTAL PORCELAIN MODIFIED BY BIOACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    ANASTASIA BEKETOVA

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of laser-liquid-solid interaction method in the bioactivity of dental porcelain modified by bioactive glass. Forty sol-gel derived specimens were immersed in Dulbecco's Modified Eagle's Medium, 31 and 9 specimens of which were treated with Er:YAG and Nd:YAG laser respectively. Untreated specimens served as controls. Incubation of specimens followed. Bioactivity was evaluated, using Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM/Energy Dispersive Spectroscopy (EDS and Transmission Electron Microscopy (TEM. FTIR detected peaks associated with hydroxyapatite on 1 Nd:YAG- and 4 Er:YAG-treated specimens. SEM analysis revealed that Er:YAG-treated specimens were covered by granular hydroxyapatite layer, while Nd:YAG treated specimen presented growth of flake-like hydroxyapatite. TEM confirmed the results. The untreated controls presented delayed bioactivity. In conclusion, Nd:YAG and Er:YAG laser treatment of the material, under certain fluencies, accelerates hydroxyapatite formation. Nd:YAG laser treatment of specific parameters causes the precipitation of flake-like hydroxyapatite in nano-scale.

  4. Marine Nucleosides: Structure, Bioactivity, Synthesis and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Ri-Ming Huang

    2014-12-01

    Full Text Available Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds.

  5. Effect of bioactive aldehydes on gelatin properties

    OpenAIRE

    I. P. Krysyuk; N. D. Dzvonkevych; T. T. Volodina; N. N. Popova; S. G. Shandrenko

    2015-01-01

    Bioactive aldehydes are among main factors of proteins postsynthetic modifications, which are the cause and consequence of many diseases. Comparative study of some aldehydes modifying action on gelatin was carried out in vitro. Gelatin samples (20 mM) were incubated with: ribose, deoxyribose, glyoxal, methylglyoxal, formaldehyde, acrolein (20 mM each) and their combinations in 0.1 M Na-phosphate buffer (pH 7.4) containing 0.02% sodium azide at 37 °C in the dark for 30 days. We investigated t...

  6. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  7. Novel hybrid materials for preparation of bone tissue engineering scaffolds.

    Science.gov (United States)

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Łatkiewicz, Anna; Nowakowska, Maria

    2015-09-01

    The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.

  8. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation

  9. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  10. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Furqan A., E-mail: furqan.ali.shah@biomaterials.gu.se

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F{sup −}) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F{sup −} ions may be incorporated into the glass in the form of calcium fluoride (CaF{sub 2}) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F{sup −} incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. - Highlights: • Fluoride ions form charged CaF{sup +} species rather than Si–F bonds. • Fluoride incorporation lowers glass transition and crystallisation temperatures. • Oxynitride and oxyfluoronitride glasses with superior mechanical properties • Mixed-alkali and alkali-free compositions with better processing characteristics.

  11. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Bioactive Alkaloids from the Sea: A Review

    Directory of Open Access Journals (Sweden)

    Makoto Kuramoto

    2004-02-01

    Full Text Available Abstract: In our ongoing search for bioactive substances from marine organisms, novel alkaloids have been isolated. Pinnatoxins and pinnamine, potent shellfish poisons, were purified from the Okinawan bivalve Pinna muricata. Pinnatoxins activate Ca2+ channels. Halichlorine was isolated from the marine sponge Halichondria okadai. This compound inhibits the induction of VCAM-1. Drugs that block VCAM-1 may be useful for treating coronary artery diseases, angina, and noncardiovascular inflammatory diseases. Pinnaic acids, which are cPLA2 inhibitors, were also obtained from P. muricata. Interestingly, the structures of pinnaic acids are closely related to that of halichlorine. Norzoanthamine hydrochloride, isolated from the colonial zoanthid Zoanthus sp., suppresses decreases in bone weight and strength in ovariectomized mice, and could be a good candidate for an osteoporotic drug. Ircinamine, purified from the marine sponge Ircinia sp., has a reactive thioester. Aburatubolactams, inhibitors of superoxide anion generation, were isolated from Streptomyces sp. This article covers the bioactive marine alkaloids that have been recently isolated by this research group.

  13. Bioactive Alkaloids from the Sea: A Review

    Science.gov (United States)

    Kuramoto, Makoto; Arimoto, Hirokazu; Uemura, Daisuke

    2004-01-01

    In our ongoing search for bioactive substances from marine organisms, novel alkaloids have been isolated. Pinnatoxins and pinnamine, potent shellfish poisons, were purified from the Okinawan bivalve Pinna muricata. Pinnatoxins activate Ca2+ channels. Halichlorine was isolated from the marine sponge Halichondria okadai. This compound inhibits the induction of VCAM-1. Drugs that block VCAM-1 may be useful for treating coronary artery diseases, angina, and noncardiovascular inflammatory diseases. Pinnaic acids, which are cPLA2 inhibitors, were also obtained from P. muricata. Interestingly, the structures of pinnaic acids are closely related to that of halichlorine. Norzoanthamine hydrochloride, isolated from the colonial zoanthid Zoanthus sp., suppresses decreases in bone weight and strength in ovariectomized mice, and could be a good candidate for an osteoporotic drug. Ircinamine, purified from the marine sponge Ircinia sp., has a reactive thioester. Aburatubolactams, inhibitors of superoxide anion generation, were isolated from Streptomyces sp. This article covers the bioactive marine alkaloids that have been recently isolated by this research group.

  14. Bioactive Peptides in Animal Food Products

    Directory of Open Access Journals (Sweden)

    Marzia Albenzio

    2017-05-01

    Full Text Available Proteins of animal origin represent physiologically active components in the human diet; they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes endogenous to raw food materials, and enzymes from microorganisms added during food processing. Milk proteins have different polymorphisms for each dairy species that influence the amount and the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation of the protein. Milk from other species alternative to cow has been exploited for their role in children with cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status. Different mechanisms concur for bioactive peptides generation from meat and meat products, and their functionality and application as functional ingredients have proven effects on consumer health. Animal food proteins are currently the main source of a range of biologically-active peptides which have gained special interest because they may also influence numerous physiological responses in the organism. The addition of probiotics to animal food products represent a strategy for the increase of molecules with health and functional properties.

  15. Bioactive borate glass coatings for titanium alloys.

    Science.gov (United States)

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  16. Bioactive Peptides: Applications and Relevance for Cosmeceuticals

    Directory of Open Access Journals (Sweden)

    Tamyres Nassa Lima

    2018-03-01

    Full Text Available Peptides found in skin can act by different mechanisms of action, being able to function as epidermal or nervous growth factors or even as neurotransmitters. Due to the vast functionality of these compounds, there is growing research on bioactive peptides aimed at investigating their uses in products developed for stimulating collagen and elastin synthesis and improving skin healing. Thus, a literature search on applications of the most common bioactive peptides used in cosmeceuticals was carried out. There is a lack of proper reviews concerning this topic in scientific literature. Nine peptides with specific actions on body and facial dysfunctions were described. It could be noted while searching scientific literature that studies aimed at investigating peptides which prevent aging of the skin are overrepresented. This makes searching for peptides designed for treating other skin dysfunctions more difficult. The use of biomimetic peptides in cosmetic formulations aimed at attenuating or preventing different types of skin dysfunctions is a topic where information is still lackluster. Even though research on these compounds is relatively common, there is still a need for more studies concerning their practical uses so their mechanisms of action can be fully elucidated, as they tend to be quite complex.

  17. Bioactivity and biotechnological production of punicic acid.

    Science.gov (United States)

    Holic, Roman; Xu, Yang; Caldo, Kristian Mark P; Singer, Stacy D; Field, Catherine J; Weselake, Randall J; Chen, Guanqun

    2018-04-01

    Punicic acid (PuA; 18: 3Δ 9cis,11trans,13cis ) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid. While both PuA and pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further exploration. Unfortunately, the availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds. In addition, efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a promising and emerging method with the potential to resolve this predicament. In this paper, we provide a comprehensive review of this unusual fatty acid, covering topics ranging from its natural sources, biosynthesis, extraction and analysis, bioactivity, health benefits, and industrial applications, to recent efforts and future perspectives on the production of PuA in engineered plants and microorganisms.

  18. Bioactive Peptides in Animal Food Products.

    Science.gov (United States)

    Albenzio, Marzia; Santillo, Antonella; Caroprese, Mariangela; Della Malva, Antonella; Marino, Rosaria

    2017-05-09

    Proteins of animal origin represent physiologically active components in the human diet; they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes endogenous to raw food materials, and enzymes from microorganisms added during food processing. Milk proteins have different polymorphisms for each dairy species that influence the amount and the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation) of the protein. Milk from other species alternative to cow has been exploited for their role in children with cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status. Different mechanisms concur for bioactive peptides generation from meat and meat products, and their functionality and application as functional ingredients have proven effects on consumer health. Animal food proteins are currently the main source of a range of biologically-active peptides which have gained special interest because they may also influence numerous physiological responses in the organism. The addition of probiotics to animal food products represent a strategy for the increase of molecules with health and functional properties.

  19. Germinated grains--sources of bioactive compounds.

    Science.gov (United States)

    Donkor, O N; Stojanovska, L; Ginn, P; Ashton, J; Vasiljevic, T

    2012-12-01

    Germination of seven selected commercially important grains was studied to establish its effects on the nutritional and chemical composition. The changes in the concentration of the nutrients, bioactive compounds and the inhibitory effect of extracts on α-glucosidase and α-amylase activities were investigated. These were measured through proximate analysis, inhibition assays and HPLC. Germinated sorghum and rye extracts inhibited (pGerminated grains contained substantial amounts of total phenolics with rye having significantly higher content compared with the non-germinated grains. Radical scavenging activities of the phenolic extracts were between 13% and 73% for non-germinated and 14% and 53% for germinated. Inositol phosphate (InsP) 4, 5 and 6 were noted in all the grains, but InsP 6 was significantly lower in concentration. This study indicates the potential of germinated barley, sorghum and rye for the development of effective physiologically bioactive compounds for the reduction of the risk of diabetic agents and colon cancer. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Dietary Sources and Bioactivities of Melatonin

    Directory of Open Access Journals (Sweden)

    Xiao Meng

    2017-04-01

    Full Text Available Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action.

  1. Bioactive Peptides in Milk Products. | Tirelli | Journal of Food ...

    African Journals Online (AJOL)

    Some peptides produced in vitro or in vivo by enzymatic hydrolysis of caseins and whey protein can affect some biological functions of the body and therefore they are called bioactive peptides. In this paper the physiological significance of bioactive peptides is reviewed and the analytical methods for their purification and ...

  2. Effect of nickel oxide substitution on bioactivity and mechanical ...

    Indian Academy of Sciences (India)

    39]. This is also in agreement with density results shown in figure 9 that increase in density and decrease in the volume of the glass. This can be sim- ply understood that bioactive glass doped with nickel oxide. Figure 8. FTIR of the bioactive ...

  3. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  4. Bioactivity and mechanical behaviour of cobalt oxide-doped ...

    Indian Academy of Sciences (India)

    and 1 per min, respec- tively, was used in the present investigation. The JCPDS-. International Centre for diffraction Data Cards were used as a reference. 2.4 Structural analysis of bioactive glass by Fourier transform infrared (FTIR) reflectance spectrometry. The structure of bioactive glass were measured at room in the.

  5. Effect of nickel oxide substitution on bioactivity and mechanical ...

    Indian Academy of Sciences (India)

    glass revealed that isomorphic substitution of nickel in the silicate network in tetrahedral coordination or as modifier in higher coordination do not adversely affect the existing glass structure. The present work aims to measure the bioactivity and mechanical properties of base glass and nickel oxide substi- tute bioactive glass ...

  6. Bioactive compounds: Safety and efficacy (Consensus Meeting - Part II)

    NARCIS (Netherlands)

    Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.R.; Schrenk, D.; Walter, P.; Weber, P.

    2009-01-01

    The efficacy and safety of bioactive compounds depend on a few known and unknown parameters. What is a physiologic dose and how can that dose be defined in cases of bioactive compounds with a poor knowledge of supply and distribution? What safety sets are needed? How can individual aspects such as

  7. Effect of nickel oxide substitution on bioactivity and mechanical ...

    Indian Academy of Sciences (India)

    But it has low fracture toughness and mechanical weakness due to an amorphous glass network andit is not compatible for load-bearing applications. In the present work, the effect of addition of nickel oxide that annualizes the improvement in its mechanical strength and bioactivity is studied. Bioactivity of base glass and ...

  8. calcium sulphate hemihydrate and bioactive glass composites for ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 2. In vitro bioactivity evaluation of α -calcium sulphate hemihydrate and bioactive glass composites for their potential use in bone regeneration. YANYAN ZHENG CHENGDONG XIONG DUJUAN ZHANG LIFANG ZHANG. Volume 41 Issue 2 April 2018 Article ID ...

  9. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by.

  10. Nutrient reference values for bioactives: new approaches needed?

    DEFF Research Database (Denmark)

    Biesalski, Hans Konrad; Erdman Jr., John W.; Hathcock, John

    2013-01-01

    Nutrients can be classified as either "essential" or "non-essential," the latter are also termed bioactive substances. Whereas the absence of essential nutrients from the diet results in overt deficiency often times with moderate to severe physiological decrements, the absence of bioactive substa...

  11. The ecological dynamics and trajectories of bioactive compounds in ...

    African Journals Online (AJOL)

    Result revealed seven bioactive compounds with anthraquinone totally absent from all the species in the four locations. The seven bioactive compounds were apparently more in the leaves than other parts of the plants. Among the four locations alkaloid, triterpene, glycoside, carbohydrate, flavonoid and tannin were high in ...

  12. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    Science.gov (United States)

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  13. Mannich reaction: A versatile and convenient approach to bioactive ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 3. Mannich ... Mannich reaction; Mannich bases; bioactive molecules; antimalarial; antitumour; antitubercular. Abstract. This review gives an insight into the recent applications of Mannich reaction and its variants in the construction of bioactive molecules.

  14. Indication of bioactive candidates among body volatiles of ...

    African Journals Online (AJOL)

    Gregarious adult locusts are believed to release many bioactive volatiles from their bodies for the mediation of their biological characteristics. The determination of these bioactive body volatiles can contribute to the development of new, environmentally benign methods of locust control. An important locust, Locusta ...

  15. Effect of nickel oxide substitution on bioactivity and mechanical ...

    Indian Academy of Sciences (India)

    In the present work, the effect of addition of nickel oxide that annualizes the improvement in its mechanical strength and bioactivity is studied. Bioactivity of base glass and doped glass samples were tested through their HCA abilities by immersing them in simulated body fluid (SBF) for different days. The formation of HCA ...

  16. Anti-inflammatory properties of bioactive titanium metals.

    Science.gov (United States)

    Yang, Bangcheng; Gan, Lu; Qu, Yang; Yue, Chongxia

    2010-09-01

    Anti-inflammatory properties of bioactive titanium metals prepared by anodic oxidation (AO-Ti) and alkali-heat (AH-Ti) treatments were studied by bacterial adhesion test and myeloperoxidase (MPO) activity assay methods. The bioactivities of the metals were also evaluated by apatite formation ability and osteoblasts culture experiments. Both metals could induce apatite formation and support osteoblasts proliferation. At the condition with normal incandescent light shine, both bioactive titanium metals had antibacterial adhesion properties compared with the titanium metal without treatment. The MPO activity assay proved that they both showed anti-inflammatory properties in vivo. The bioactive AO-Ti had better anti-inflammatory properties than the AH-Ti. It indicated that it is possible to optimize the anti-inflammatory properties of the bioactive titanium metals by different preparation methods. (c) 2010 Wiley Periodicals, Inc.

  17. Bioactive properties of honey with propolis.

    Science.gov (United States)

    Osés, S M; Pascual-Maté, A; Fernández-Muiño, M A; López-Díaz, T M; Sancho, M T

    2016-04-01

    Nowadays, propolis is used as an innovative preservative and as a bioactive food supplement. Due to its bitter and astringent flavour, propolis is hardly accepted by consumers. The aim of this study was to obtain a likeable food product made with honey and propolis, whose antimicrobial, antioxidant and anti-inflammatory properties were enhanced in comparison with those of the base honeys used. 0.1%, 0.3% and 0.5% soft propolis extracts were added to honeys and the products that most appealed to the users were subjected to further research. Total phenolics, flavonoids, ABTS free radical and hydroxyl radicals scavenging and anti-inflammatory activities increased in all mixtures. Antimicrobial activity of the combined products showed synergic effects, resulting in higher results than those of the base honeys and propolis extracts. Therefore, honeys enriched with small amounts of propolis extracts are promising functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Bioactivity of certain Egyptian Ficus species.

    Science.gov (United States)

    Mousa, O; Vuorela, P; Kiviranta, J; Wahab, S A; Hiltunen, R; Vuorela, H

    1994-01-01

    The fruit extracts of Ficus sycomorus L., F. benjamina L., F. bengalensis L. and F. religiosa L. were screened for bioactivity. F. bengalensis and F. religiosa demonstrated activity in the brine shrimp test (Artemia salina) which indicates toxicity, whereas F. sycomorus and F. benjamina showed no activity. All the fruit extracts exhibited antitumor activity in the potato disc bioassay. None of the tested extracts showed any marked inhibition on the uptake of calcium into rat pituitary cells GH4C1. The extracts of the four tested Ficus species had significant antibacterial activity, but no antifungal activity. The results of this preliminary investigation support the traditional use of these plants in folk medicine for respiratory disorders and certain skin diseases.

  19. [EFFECT OF BIOACTIVE ALDEHYDES ON GELATIN PROPERTIES].

    Science.gov (United States)

    Krysyuk, I P; Dzvonkevych, N D; Volodina, T T; Popova, N N; Shandrenko, S G

    2015-01-01

    Bioactive aldehydes are among main factors of proteins postsynthetic modifications, which are the cause and consequence of many diseases. Comparative study of some aldehydes modifying action on gelatin was carried out in vitro. Gelatin samples (20 mM) were incubated with: ribose, deoxyribose, glyoxal, methylglyoxal, formaldehyde, acrolein (20 mM each) and their combinations in 0.1 M Naphosphate buffer (pH 7.4) containing 0.02% sodium azide at 37 °C in the dark for 30 days. We investigated the fluorescent properties of these samples and their molecular weight distribution by electrophoresis. It has been revealed that formed adducts had different fluorescence spectra. According to fluorescence intensity these aldehydes were put in order: formaldehyde acrolein acrolein test of a patients' skin surface for collagen crosslinks determination has to be verified by other tests for proteins postsynthetic modifications.

  20. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Directory of Open Access Journals (Sweden)

    Elisa Flávia Luiz Cardoso Bailão

    2015-10-01

    Full Text Available Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi, Dipteryx alata Vog. (baru, Eugenia dysenterica DC. (cagaita, Eugenia uniflora L. (pitanga, Genipa americana L. (jenipapo, Hancornia speciosa Gomes (mangaba, Mauritia flexuosa L.f. (buriti, Myrciaria cauliflora (DC Berg (jabuticaba, Psidium guajava L. (goiaba, Psidium spp. (araçá, Solanum lycocarpum St. Hill (lobeira, Spondias mombin L. (cajá, Annona crassiflora Mart. (araticum, among others are reported here.

  1. Chemistry and bioactivity of Gardenia jasminoides

    Directory of Open Access Journals (Sweden)

    Wenping Xiao

    2017-01-01

    Full Text Available Gardenia jasminoides, grown in multiple regions in China, was commonly used as a natural yellow dye but has been one of the popular traditional Chinese medicines since the discovery of its biological property a few decades ago. It has been reported that G. jasminoides possess multiple biological activities, such as antioxidant properties, hypoglycemic effect, inhibition of inflammation, antidepression activity, and improved sleeping quality. In this review, our aim was to have a comprehensive summary of its phytochemistry including the extraction, isolation, and characterization of volatiles and bioactive molecules in G. jasminoides, focusing on the two major phytochemicals, genipin and crocin, which possess potent medicinal properties. Furthermore, this study attempted to establish a structure–activity relationship between the two major series of molecules with two pharmcophores and their biological activities, which would serve further exploration of the properties of phytocompounds in G. jasminoides as potential functional foods and medicines.

  2. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-01-01

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here. PMID:26473827

  3. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-10-09

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here.

  4. Bioactive Triterpenes from the Fungus Piptoporus betulinus

    Directory of Open Access Journals (Sweden)

    Zeyad Alresly

    2016-01-01

    Full Text Available Phytochemical investigation of the ethyl acetate extract of the fruiting bodies from the basidiomycete Piptoporus betulinus led to the isolation of a new bioactive lanostane triterpene identified as 3 b -acetoxy-16-hydroxy-24-oxo-5α-lanosta-8- ene-21-oic acid (1. In addition, ten known triterpenes, polyporenic acid A (5, polyporenic acid C (4, three derivatives of polyporenic acid A (8, 10, 11, betulinic acid (3, betulin (2, ergosterol peroxide (6, 9,11-dehydroergosterol peroxide (7, and fomefficinic acid (9, were also isolated from the fungus. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against a fungal strain. The new triterpene and some of the other compounds showed antimicrobial activity against Gram-positive bacteria.

  5. Bioactivity and Functionality of Bonghwa Sweetfish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-15

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  6. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  7. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds

    International Nuclear Information System (INIS)

    Zhang Hua; Ye Xiaojian; Li Jiashun

    2009-01-01

    An apatite/wollastonite-derived (A/W) porous glass ceramic scaffold with highly interconnected pores was successfully fabricated by adding a plastic porosifier. The morphology, porosity and mechanical strength were characterized. The results showed that the glass ceramic scaffold with controllable pore size and porosity displayed open macropores. In addition, good in vitro bioactivity was found for the scaffold obtained by soaking it in simulated body fluid. Mesenchymal stem cells (MSCs) were cultured, expanded and seeded on the scaffold, and the adhesion and proliferation of MSCs were determined using MTT assay and environmental scanning electron microscopy (ESEM). The results revealed that the scaffold was biocompatible and had no negative effects on the MSCs in vitro. The in vivo biocompatibility and osteogenicity were investigated by implanting both the pure scaffold and the MSC/scaffold construct in rabbit mandibles and studying histologically. The results showed that the glass ceramic scaffold exhibited good biocompatibility and osteoconductivity. Moreover, the introduction of MSCs into the scaffold observably improved the efficiency of new bone formation, especially at the initial stage after implantation. However, the glass ceramic scaffold showed the same good biocompatibility and osteogenicity as the hybrid one at the later stage. These results indicate that porous bioactive scaffolds based on the original apatite-wollastonite glass ceramic fulfil the basic requirements of a bone tissue engineering scaffold.

  8. Bioactive Metabolites from Spilanthes acmella Murr.

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2009-02-01

    Full Text Available Spilanthes acmella Murr. (Compositae has been used as a traditional medicine for toothache, rheumatism and fever. Its extracts had been shown to exhibit vasorelaxant and antioxidant activities. Herein, its antimicrobial, antioxidant and cytotoxic activities were evaluated. Agar dilution method assays against 27 strains of microorganisms were performed. Results showed that fractions from the chloroform and methanol extracts inhibited the growth of many tested organisms, e.g. Corynebacterium diphtheriae NCTC 10356 with minimum inhibitory concentration (MIC of 64-256 mg/mL and Bacillus subtilis ATCC 6633 with MIC of 128-256 mg/mL. The tested fractions all exhibited antioxidant properties in both DPPH and SOD assays. Potent radical scavenging activity was observed in the DPPH assay. No cytotoxic effects of the extracts against KB and HuCCA-1 cell lines were evident. Bioassay-guided isolation resulted in a diverse group of bioactive compounds such as phenolics [vanillic acid (2, trans-ferulic acid (5 and trans-isoferulic acid (6], coumarin (scopoletin, 4 and triterpenoids like 3-acetylaleuritolic acid (1, b-sitostenone (3, stigmasterol and stigmasteryl-3-O-b-D-glucopyranosides, in addition to a mixture of stigmasteryl-and b-sitosteryl-3-O-b-D-glucopyranosides. The compounds 1–6 represent bioactive metabolites of S. acmella Murr. that were never previously reported. Our findings demonstrate for the first time the potential benefits of this medicinal plant as a rich source of high therapeutic value compounds for medicines, cosmetics, supplements and as a health food.

  9. Bioactivity of herb-enriched beef patties.

    Science.gov (United States)

    Ryan, Eileen; Aherne, S Aisling; O'Grady, Michael N; McGovern, Laura; Kerry, Joseph P; O'Brien, Nora M

    2009-08-01

    Interest exists in the manufacture of meat products with added functional ingredients to enhance consumer health. Because experimental evidence suggests that many herbs and spices, particularly those of the Lamiaceae family such as Salvia officinalis L. (sage) and Origanum vulgare L. (oregano), possess a wide range of biological and pharmacological activities, they represent promising functional ingredients for incorporation into meat and meat products. The present study aimed to determine the bioactivity of cooked beef patties that were enriched with or without sage or oregano extracts (1,200 microg/g). Cooked beef patties were subjected to an in vitro digestion procedure, and the resulting micelles isolated from the digested meats were added to human intestinal Caco-2 cells. The antioxidant potential (ferric reducing antioxidant power [FRAP] value) of enriched beef patties was significantly higher than the FRAP value of non-enriched beef patties, both before and after in vitro digestion. Cell viability significantly increased following treatment with certain concentrations of the micelle fractions from digested sage- or oregano-enriched beef patties. Pretreatment with micelles derived from sage- or oregano-enriched beef patties did not significantly protect against cell injury or DNA damage induced by H(2)O(2). However, micelles derived from digested sage-enriched beef patties (10% vol/vol) significantly increased cellular reduced glutathione (GSH) content. In addition, micelles derived from both sage- and oregano-enriched beef patties (10% vol/vol) significantly protected against H(2)O(2)-induced GSH depletion. Thus, it appears that sage and oregano exhibit some bioactivity within a meat system. Our findings suggest that herbal extracts have potential as possible functional ingredients in meat products.

  10. Characterization,Mechanical, and In Vitro Bioactivity Properties of Hydroxyapatite/Bioactive Glass Composite

    Directory of Open Access Journals (Sweden)

    Israa Kahatan Sabree

    2016-12-01

    Full Text Available Bioactive ceramic materials can help bone reparation and regeneration by offering support to bone growth. Biological hydroxyapatite powder was prepared by burning animal bone followed by studying the mechanical properties of hydroxyapatite (HA/ (20wt.%, and 40wt.% of binary bioactive glass (70% SiO2- 30% CaO in order to evaluate the influence of composition on the compressive strength and hardness. HA-composite material exhibited increasing density, microhardness, and compressive strength with increasing amount of glass addition. X-ray diffraction after sintering at 1200°C showed no alter of HA to secondary phases while the hydroxyapatite/ bioactive glass composites contained a HA phase and different amounts of wollastonite phase, depending on the amount of bioglass added. In vitro tests, the samples were soaked in simulated body fluid (SBF for ten days in order to evaluate the change in compression strength, weight loss, and pH. The HA composite reinforced with 40 wt % bioglass showed highest compression strength, and lowest weight loss

  11. Characterization and Bioactivity Evaluation of (Polyetheretherketone/Polyglycolicacid-Hydroyapatite Scaffolds for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2016-11-01

    Full Text Available Bioactivity and biocompatibility are crucial for tissue engineering scaffolds. In this study, hydroxyapatite (HAP was incorporated into polyetheretherketone/polyglycolicacid (PEEK/PGA hybrid to improve its biological properties, and the composite scaffolds were developed via selective laser sintering (SLS. The effects of HAP on physical and chemical properties of the composite scaffolds were investigated. The results demonstrated that HAP particles were distributed evenly in PEEK/PGA matrix when its content was no more than 10 wt %. Furthermore, the apatite-forming ability became better with increasing HAP content after immersing in simulated body fluid (SBF. Meanwhile, the composite scaffolds presented a greater degree of cell attachment and proliferation than PEEK/PGA scaffolds. These results highlighted the potential of (PEEK/PGA-HAP scaffolds for tissue regeneration.

  12. A review of the bioactivity of hydraulic calcium silicate cements

    Science.gov (United States)

    Niu, Li-na; Jiao, Kai; Wang, Tian-da; Zhang, Wei; Camilleri, Josette; Bergeron, Brian E.; Feng, Hai-lan; Mao, Jing; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.

    2014-01-01

    Objectives In tissue regeneration research, the term “bioactivity” was initially used to describe the resistance to removal of a biomaterial from host tissues after intraosseous implantation. Hydraulic calcium silicate cements (HCSCs) are putatively accepted as bioactive materials, as exemplified by the increasing number of publications reporting that these cements produce an apatite-rich surface layer after they contact simulated body fluids. Methods In this review, the same definitions employed for establishing in vitro and in vivo bioactivity in glass–ceramics, and the proposed mechanisms involved in these phenomena are used as blueprints for investigating whether HCSCs are bioactive. Results The literature abounds with evidence that HCSCs exhibit in vitro bioactivity; however, there is a general lack of stringent methodologies for characterizing the calcium phosphate phases precipitated on HCSCs. Although in vivo bioactivity has been demonstrated for some HCSCs, a fibrous connective tissue layer is frequently identified along the bone–cement interface that is reminiscent of the responses observed in bioinert materials, without accompanying clarifications to account for such observations. Conclusions As bone-bonding is not predictably achieved, there is insufficient scientific evidence to substantiate that HCSCs are indeed bioactive. Objective appraisal criteria should be developed for more accurately defining the bioactivity profiles of HCSCs designed for clinical use. PMID:24440449

  13. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  14. Hybrid Management in Hospitals

    DEFF Research Database (Denmark)

    Byrkjeflot, Haldor; Jespersen, Peter Kragh

    2010-01-01

    Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...

  15. The Hybrid Museum: Hybrid Economies of Meaning

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2013-01-01

    this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....

  16. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  17. Pre-treated bioactive composite in rat soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Tirri, T.; Jaakkola, T.; Naerhi, T.; Yli-Urpo, A. [Turku Univ. (Finland). Biomaterials Research and Inst. of Dentistry; Rich, J.; Seppaelae, J. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Chemical Technology

    2001-07-01

    Effect of in vitro formed calcium phosphate surface on a bioactive composite was studied in rat subcutaneous tissue. Pre-treatment in simulated body fluid (SBF) for 14 days resulted in the formation of calcium phosphate deposites on the composite surface whereas no formation was observed on the copolymer without bioactive glass. Pre-treatment had no effect on short term soft tissue reactions around the copolymer without bioactive glass granules whereas the calcium phosphate surface formed on the composite resulted in delayed healing of the surgical wound. This may be due to mechanical stress caused by rough calcium phosphate surface. (orig.)

  18. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  19. Hybridization with synthetic oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Szostak, J.W.; Stiles, J.I.; Tye, B.K.; Sherman, F.; Wu, R.

    1978-01-01

    Procedures are described for the use of synthetic oligonucleotides for Southern blot experiments and gene bank screening, and the effect of various mismatches on the efficiency of hybridization is demonstrated. The following topics are discussed: sensitivity vs. specificity, hybridization of a 12-mer to the lambda endolysin gene; hybridization of oligonucleotide probes to the E. coli lac operator; hybridization of synthetic probes to the CYC1 gene of yeast; and cloning eucaryotic genes. (HLW)

  20. Biomimetic bonelike composites and novel bioactive glasscoatings

    Energy Technology Data Exchange (ETDEWEB)

    Tomsia, A.P.; Saiz, E.; Song, J.; Bertozzi, C.R.

    2005-06-01

    Metallic orthopaedic implants have been successfully used for decades but they have serious shortcomings related to their osseointegration and the fact that their mechanical properties do not match those of bone. This paper reviews recent advances in the fabrication of novel coatings to improve implant osseointegration and in the development of a new generation of hybrid organic-inorganic implant materials specifically designed for orthopaedic applications.

  1. Thermoluminescence as a probe in bioactivity studies; the case of 58S sol-gel bioactive glass

    International Nuclear Information System (INIS)

    Polymeris, George S; Tsirliganis, Nestor C; Goudouri, Ourania Menti; Paraskevopoulos, Konstantinos M; Kontonasaki, Eleana; Kitis, George

    2011-01-01

    The formation of a carbonated hydroxyapatite (HCAp) layer on the surface of bioactive materials is the main reaction that takes place upon their immersion in physiological fluids. To date, all techniques used for the identification of this HCAp formation are rather time consuming and not well suited to detailed and rapid monitoring of changes in the bioactivity response of the material. The aim of this work is to explore the possibility of using thermoluminescence (TL) for the discrimination between different bioactive responses in the case of the 58S bioactive glass. Results provided strong indications that the 110 deg. C TL peak of quartz can be used effectively in the study of the bioactive behaviour of 58S bioactive glass, since it is unambiguously present in all samples and does not require deconvolution analysis. Furthermore, the intensity of the 110 deg. C TL peak is proven to be very sensitive to the different bioactive responses, identifying the loss of silica which takes place at the first stages of the sequence. The discontinuities of the 110 deg. C TL peak intensity plot versus immersion time at 8 and 1440 min provide experimental indications regarding the timescale for both the beginning of amorphous CaP formation as well as the end of crystalline hydroxyl-apatite formation respectively, while the spike in the sensitization of the 110 deg. C TL peak, which was observed for immersion times ranging between 20 and 40 min, could be an experimental feature indicating the beginning of the crystalline HCAp formation.

  2. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  3. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  4. Biomaterials and Bioactive Agents in Spinal Fusion.

    Science.gov (United States)

    Duarte, Rui M; Varanda, Pedro; Reis, Rui L; Duarte, Ana Rita C; Correia-Pinto, Jorge

    2017-12-01

    Management of degenerative spine pathologies frequently leads to the need for spinal fusion (SF), where bone growth is induced toward stabilization of the interventioned spine. Autologous bone graft (ABG) remains the gold-standard inducer, whereas new bone graft substitutes attempt to achieve effective de novo bone formation and solid fusion. Limited fusion outcomes have driven motivation for more sophisticated and multidisciplinary solutions, involving new biomaterials and/or biologics, through innovative delivery platforms. The present review will analyze the most recent body of literature that is focused on new approaches for consistent bone fusion of spinal vertebrae, including the development of new biomaterials that pursue physical and chemical aptitudes; the delivery of growth factors (GF) to accelerate new bone formation; and the use of cells to improve functional bone development. Bone graft substitutes currently in clinical practice, such as demineralized bone matrix and ceramics, are still used as a starting point for the study of new bioactive agents. Polyesters such as polycaprolactone and polylactic acid arise as platforms for the development of composites, where a mineral element and cell/GF constitute the delivery system. Exciting fusion outcomes were obtained in several small and large animal models with these. On what regards bioactive agents, mesenchymal stem cells, preferentially derived from the bone marrow or adipose tissue, were studied in this context. Autologous and allogeneic approaches, as well as osteogenically differentiated cells, have been tested. These cell sources have further been genetically engineered for specific GF expression. Nevertheless, results on fusion efficacy with cells have been inconsistent. On the other hand, the delivery of GF (most commonly bone morphogenetic protein-2 [BMP-2]) has provided favorable outcomes. Complications related to burst release and dosing are still the target of research through the development

  5. Bioactive compounds in berries relevant to human health

    NARCIS (Netherlands)

    Battino, M.; Beekwilder, M.J.; Denoyes-Rothan, B.; Laimer, M.

    2009-01-01

    Berries contain powerful antioxidants, potential allergens, and other bioactive compounds. Genetic and environmental factors affect production and storage of such compounds. For this reason breeding and biotechnological approaches are currently used to control or to increase the content of specific

  6. Fruit and cereal bioactives: sources, chemistry, and applications

    National Research Council Canada - National Science Library

    Tokusoglu, Ozlem; Hall, Clifford, III

    2011-01-01

    "Presenting up-to-date data in an easy-to-use format, this comprehensive overview of the chemistry of bioactive components of fruits and cereals addresses the role of these compounds in determining...

  7. Bioactive focus in conformational ensembles: a pluralistic approach

    Science.gov (United States)

    Habgood, Matthew

    2017-12-01

    Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment's Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre's conformation generator software.

  8. Identifying bioactive components in natural products through chromatographic fingerprint.

    Science.gov (United States)

    Xu, Jian; Xu, Qing-Song; Chan, Chi-On; Mok, Daniel Kam-Wah; Yi, Lun-Zhao; Chau, Foo-Tim

    2015-04-22

    Bioactive component identification is a crucial issue in search for new drug leads. We provide a new strategy to search for bioactive components based on Sure Independence Screening (SIS) and interval PLS (iPLS). The method, which is termed as SIS-iPLS, is not only able to find out the chief bioactive components, but also able to judge how many components should be there responsible for the total bioactivity. The method is totally "data-driven" with no need for prior knowledge about the unknown mixture analyzed, therefore especially suitable for effect-directed work like bioassay-guided fractionation. Two data sets, a synthetic mixture system of twelve components and a suite of Radix Puerariae Lobatae extracts samples, are used to test the identification ability of the SIS-iPLS method. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Current Strategies to Improve the Bioactivity of PEEK

    Science.gov (United States)

    Ma, Rui; Tang, Tingting

    2014-01-01

    The synthetic thermoplastic polymer polyetheretherketone (PEEK) is becoming a popular component of clinical orthopedic and spinal applications, but its practical use suffers from several limitations. Although PEEK is biocompatible, chemically stable, radiolucent and has an elastic modulus similar to that of normal human bone, it is biologically inert, preventing good integration with adjacent bone tissues upon implantation. Recent efforts have focused on increasing the bioactivity of PEEK to improve the bone-implant interface. Two main strategies have been used to overcome the inert character of PEEK. One approach is surface modification to activate PEEK through surface treatment alone or in combination with a surface coating. Another strategy is to prepare bioactive PEEK composites by impregnating bioactive materials into PEEK substrate. Researchers believe that modified bioactive PEEK will have a wide range of orthopedic applications. PMID:24686515

  10. Design of foods with bioactive lipids for improved health.

    Science.gov (United States)

    Chen, Bingcan; McClements, David Julian; Decker, Eric Andrew

    2013-01-01

    Numerous studies have found an association between the consumption of certain bioactive lipids and improved human health, e.g., the prevention, delay, or treatment of chronic and acute diseases, such as cancer, cardiovascular disease (CVD), osteoporosis, and immune disorders. In this review, we discuss food-based sources and potential beneficial attributes of major dietary bioactive lipids: polyunsaturated fatty acids; carotenoids; phytosterols and phytostanols; and fat-soluble vitamins. We summarize the various challenges associated with incorporating these bioactive lipids into foods and beverages, such as poor water solubility, high melting point, and low chemical stability. Finally, we propose several techniques that have been used to solve the challenges and integrate dietary bioactive lipids into foods for improved health.

  11. SYNTHESIS AND BIOACTIVITY OF ROTENONE OXIME O-ETHER ...

    African Journals Online (AJOL)

    Admin

    mail: g.cao@mail.scut.edu.cn. SYNTHESIS AND BIOACTIVITY OF ROTENONE OXIME O-ETHER DERIVATIVES. Gao Cao*, Zhen Zhou and Ying Wang. School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University,.

  12. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties

    Science.gov (United States)

    Whole wheat provides a rich source of bioactive phytochemicals namely, phenolic acids, carotenoids, tocopherols, alkylresorcinols, arabinoxylans, benzoxazinoids, phytosterols, and lignans. This review provides information on the distribution, extractability, analysis, and nutraceutical properties of...

  13. Bioactive foods in promoting health: probiotics and prebiotics

    National Research Council Canada - National Science Library

    Watson, Ronald R; Preedy, Victor R

    2010-01-01

    "Bioactive Foods in Health Promotion: Probiotics and Prebiotics brings together experts working on the different aspects of supplementation, foods, and bacterial preparations, in health promotion and disease prevention, to provide...

  14. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development. © 2016 Wiley Periodicals, Inc.

  15. Accelerated bone ingrowth by local delivery of Zinc from bioactive ...

    African Journals Online (AJOL)

    2015-10-19

    , University of Gabes,. Gabes, Tunisia; 4Histology, Orthopaedic and Traumatology Laboratory, Sfax Faculty of Medicine,. University of Sfax, Sfax, Tunisia. Background: Synthetic bone graft substitutes such as bioactive glass ...

  16. Bioactive and rheological properties of rose hip marmalade

    OpenAIRE

    Sagdic, Osman; Toker, Omer Said; Polat, Busra; Arici, Muhammet; Yilmaz, Mustafa Tahsin

    2015-01-01

    In this study, bioactive (total phenolic, antioxidant and antiradical activity) and rheological properties (steady and dynamic) of rose hip marmalade were investigated. Bioactive properties were determined in rose hip marmalade and extract. Extract had higher total phenolic content (38.5 mg GAE/g dry extract), antioxidant activity (124 mg AAE/g dry extract) and antiradical activity (49.98 %) than marmalade. Steady and dynamic rheological properties of the marmalade were determined at differen...

  17. Recent advances in research of natural and synthetic bioactive quinolines.

    Science.gov (United States)

    Chung, Po-Yee; Bian, Zhao-Xiang; Pun, Ho-Yuen; Chan, Dessy; Chan, Albert Sun-Chi; Chui, Chung-Hin; Tang, Johnny Cheuk-On; Lam, Kim-Hung

    2015-01-01

    Many natural products that consist of quinoline core are found to be bioactive and the versatility of quinoline and its derivatives have attracted great attention in the field of drug development. As a result, in recent years, many green and sustainable synthetic approaches for the synthesis of structurally diverse quinolines have been developed. This review covers four main aspects, namely bioactive quinoline alkaloids, the biological activity and mechanism of action of quinoline-based compounds as well as various quinoline syntheses.

  18. Microalgae as a source of high-value bioactive compounds.

    Science.gov (United States)

    Bule, Mohammed Hussen; Ahmed, Ishtiaq; Maqbool, Faheem; Bilal, Muhammad; Iqbal, Hafiz M N

    2018-01-01

    Microalgae are one of the oldest microorganisms, that grow in various hostile environments, ranging from deserts to Antarctica. The microalgae sustain life in such harsh environments through generation of secondary metabolites. Microalgae biosynthesize a large number of diverse bioactive metabolites with activities on cancer, neurodegenerative diseases, and infectious diseases. Here, we highlight the bioactive compounds that are isolated from microalgae for the purpose of using them as food, and as chemicals in pharmaceutical industry as new agents with therapeutic benefits.

  19. Modeling of Viscosity and Thermal Expansion of Bioactive Glasses

    OpenAIRE

    Farid, Saad B. H.

    2012-01-01

    The behaviors of viscosity and thermal expansion for different compositions of bioactive glasses have been studied. The effect of phosphorous pentoxide as a second glass former in addition to silica was investigated. Consequently, the nonlinear behaviors of viscosity and thermal expansion with respect to the oxide composition have been modeled. The modeling uses published data on bioactive glass compositions with viscosity and thermal expansion. -regression optimization technique has been uti...

  20. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity.

    Science.gov (United States)

    Ye, Xiaotong; Leeflang, Sander; Wu, Chengtie; Chang, Jiang; Zhou, Jie; Huan, Zhiguang

    2017-10-27

    Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  1. Enhanced bioactive properties of BiodentineTM modified with bioactive glass nanoparticles

    Directory of Open Access Journals (Sweden)

    Camila CORRAL NUÑEZ

    Full Text Available Abstract Objective To prepare nanocomposite cements based on the incorporation of bioactive glass nanoparticles (nBGs into BiodentineTM (BD, Septodent, Saint-Maur-des-Fosses Cedex, France and to assess their bioactive properties. Material and Methods nBGs were synthesised by the sol-gel method. BD nanocomposites (nBG/BD were prepared with 1 and 2% nBGs by weight; unmodified BD and GC Fuji IX (GIC, GC Corporation, Tokyo, Japan were used as references. The in vitro ability of the materials to induce apatite formation was assessed in SBF by X-ray diffraction (XRD, attenuated total reflectance with Fourier transform infrared spectroscopy (ATR-FTIR, and scanning electron microscopy (SEM with energy dispersive X-ray (EDX analysis. BD and nBG/BD were also applied to dentine discs for seven days; the morphology and elemental composition of the dentine-cement interface were analysed using SEM-EDX. Results One and two percent nBG/BD composites accelerated apatite formation on the disc surface after short-term immersion in SBF. Apatite was detected on the nBG/BD nanocomposites after three days, compared with seven days for unmodified BD. No apatite formation was detected on the GIC surface. nBG/BD formed a wider interfacial area with dentine than BD, showing blockage of dentine tubules and Si incorporation, suggesting intratubular precipitation. Conclusions The incorporation of nBGs into BD improves its in vitro bioactivity, accelerating the formation of a crystalline apatite layer on its surface after immersion in SBF. Compared with unmodified BD, nBG/BD showed a wider interfacial area with greater Si incorporation and intratubular precipitation of deposits when immersed in SBF.

  2. Enhanced bioactive properties of BiodentineTM modified with bioactive glass nanoparticles

    Science.gov (United States)

    CORRAL NUÑEZ, Camila; COVARRUBIAS, Cristian; FERNANDEZ, Eduardo; de OLIVEIRA, Osmir Batista

    2017-01-01

    Abstract Objective To prepare nanocomposite cements based on the incorporation of bioactive glass nanoparticles (nBGs) into BiodentineTM (BD, Septodent, Saint-Maur-des-Fosses Cedex, France) and to assess their bioactive properties. Material and Methods nBGs were synthesised by the sol-gel method. BD nanocomposites (nBG/BD) were prepared with 1 and 2% nBGs by weight; unmodified BD and GC Fuji IX (GIC, GC Corporation, Tokyo, Japan) were used as references. The in vitro ability of the materials to induce apatite formation was assessed in SBF by X-ray diffraction (XRD), attenuated total reflectance with Fourier transform infrared spectroscopy (ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. BD and nBG/BD were also applied to dentine discs for seven days; the morphology and elemental composition of the dentine-cement interface were analysed using SEM-EDX. Results One and two percent nBG/BD composites accelerated apatite formation on the disc surface after short-term immersion in SBF. Apatite was detected on the nBG/BD nanocomposites after three days, compared with seven days for unmodified BD. No apatite formation was detected on the GIC surface. nBG/BD formed a wider interfacial area with dentine than BD, showing blockage of dentine tubules and Si incorporation, suggesting intratubular precipitation. Conclusions The incorporation of nBGs into BD improves its in vitro bioactivity, accelerating the formation of a crystalline apatite layer on its surface after immersion in SBF. Compared with unmodified BD, nBG/BD showed a wider interfacial area with greater Si incorporation and intratubular precipitation of deposits when immersed in SBF. PMID:28403358

  3. Inducing bioactivity of dental ceramic/bioactive glass composites by Nd:YAG laser.

    Science.gov (United States)

    Beketova, Anastasia; Poulakis, Nikolaos; Bakopoulou, Athina; Zorba, Triantafillia; Papadopoulou, Lambrini; Christofilos, Dimitrios; Kantiranis, Nikolaos; Zachariadis, George A; Kontonasaki, Eleana; Kourouklis, Gerasimos A; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2016-11-01

    Aims of this study were to investigate the optimal conditions of laser irradiation of a novel Bioactive Glass/Dental Ceramic-BP67 composite for acceleration of hydroxyapatite-HA formation and to assess cellular responses on the precipitated HA region. BP67 (Bioactive Glass: 33.3%, Dental Ceramic: 66.7%) was fabricated by the sol-gel method. A laser assisted biomimetic-LAB process was applied to BP67 sintered specimens immersed in 1.5-times concentrated simulated body fluid-1.5×-SBF. The effect of various energy densities of pulsed nanosecond Nd-YAG (1064nm) laser and irradiation exposure times (30min, 1 and 3h) were evaluated for HA precipitation. The HA film was characterized by FTIR, XRD, SEM and micro Raman techniques. ICP-AES was used for revealing changes in chemical composition of the 1.5×-SBF during irradiation. Cell viability and morphological characteristics of periodontal ligament fibroblasts-PDLFs, human gingival fibroblasts-HGFs and SAOS-2 osteoblasts on the HA surface were evaluated by MTT assays and SEM. At optimal energy fluence of 1.52J/cm 2 and irradiation time for 3h followed by immersion in 1.5×-SBF at 60°C, a dense HA layer was formed on laser-irradiated BP67 within 7 days. The resulting HA film was tightly bonded to the underlying substrate and had mineral composition similar to cementum. MTT assay showed a consistent reduction of cell proliferation on the HA layer in comparison to conventional control ceramic and BP67 for all 3 cell lines studied. These findings suggest LAB is an effective method for acceleration of HA formation on materials with low bioactivity, while cellular responses need further investigation. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity

    Directory of Open Access Journals (Sweden)

    Xiaotong Ye

    2017-10-01

    Full Text Available Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM, having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  5. Bioactive Glasses: Where Are We and Where Are We Going?

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2018-03-01

    Full Text Available Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today’s achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  6. Bioactivation of zearalenone by porcine hepatic biotransformation.

    Science.gov (United States)

    Malekinejad, Hassan; Maas-Bakker, Roel Franciscus; Fink-Gremmels, Johanna

    2005-01-01

    Zearalenone (ZEA) is a resorcylic acid lactone derivative produced by various Fusarium species that are widely found in food and feeds. The structure of zearalenone is flexible enough to allow a conformation able to bind to mammalian oestrogen receptors, where it acts as an agonist. Using oestrogen-dependent Human Breast Cancer (MCF-7) cells, the oestrogenic activity of zearalenone and its derivatives were compared using 17 beta-oestradiol as a positive control. The results obtained demonstrate that the oestrogenic potency of ZEA derivatives could be ranked in the following order: alpha-zearalenol > alpha-zearalanol > zearalenone > beta-zearalenol. Since pigs have been reported to be among the most sensitive animal species, biotransformation studies with pig liver subcellular fractions were conducted. These studies indicated that alpha-zearalenol is the main hepatic metabolite of zearalenone in pigs, and it is assumed that 3 alpha- and 3 beta-hydroxysteroid dehydrogeneases are involved in the hepatic biotransformation, since the formation of alpha-zearalenol and beta-zearalenol could be inhibited by prototypic substrates for either enzyme. The bioactivation of ZEA into the more active alpha-zearalenol seems to provide a possible explanation for the observed high sensitivity of pigs towards feeding-stuffs contaminated with the mycotoxin.

  7. Triterpene composition and bioactivities of Centella asiatica.

    Science.gov (United States)

    Hashim, Puziah; Sidek, Hamidah; Helan, Mohd Helme M; Sabery, Aidawati; Palanisamy, Uma Devi; Ilham, Mohd

    2011-01-28

    Leaves of Centella asiatica (Centella) were analysed for their triterpene composition and bioactivity such as collagen enhancement, antioxidant, anticellulite and UV protection capacity properties. Triterpenes of Centella were measured using HPLC-PAD on an Excil ODS 5 mm (C18) column for the simultaneous determination of asiatic acid, madecassic acid, asiaticoside and madecassoside. Centella was found to contain significant amounts of madecassoside (3.10 ± 4.58 mg/mL) and asiaticoside (1.97 ± 2.65 mg/mL), but was low in asiatic and madecassic acid. The highest collagen synthesis was found at 50 mg/mL of Centella extracts. The antioxidant activity of Centella (84%) was compared to grape seed extract (83%) and Vitamin C (88%). Its lipolytic activity was observed by the release of glycerol (115.9 µmol/L) at 0.02% concentration. Centella extracts exhibited similar UV protection effect to OMC at 10% concentration. In view of these results, the potential application of Centella in food and pharmaceutical industries is now widely open.

  8. Triterpene Composition and Bioactivities of Centella asiatica

    Directory of Open Access Journals (Sweden)

    Uma Devi Palanisamy

    2011-01-01

    Full Text Available Leaves of Centella asiatica (Centella were analysed for their triterpene composition and bioactivity such as collagen enhancement, antioxidant, anticellulite and UV protection capacity properties. Triterpenes of Centella were measured using HPLC-PAD on an Excil ODS 5 mm (C18 column for the simultaneous determination of asiatic acid, madecassic acid, asiaticoside and madecassoside. Centella was found to contain significant amounts of madecassoside (3.10 ± 4.58 mg/mL and asiaticoside (1.97 ± 2.65 mg/mL, but was low in asiatic and madecassic acid. The highest collagen synthesis was found at 50 mg/mL of Centella extracts. The antioxidant activity of Centella (84% was compared to grape seed extract (83% and Vitamin C (88%. Its lipolytic activity was observed by the release of glycerol (115.9 µmol/L at 0.02% concentration. Centella extracts exhibited similar UV protection effect to OMC at 10% concentration. In view of these results, the potential application of Centella in food and pharmaceutical industries is now widely open.

  9. Bioactivities of Traditional Medicinal Plants in Alexandria

    Directory of Open Access Journals (Sweden)

    Hosam O. Elansary

    2018-01-01

    Full Text Available In traditional folklore, medicinal herbs play a vital role in the prevention and treatment of microbial diseases. In the present study, the phenolic profiles of the medicinal plants Asparagus aethiopicus L., Citrullus colocynthis L., Senna alexandrina L., Kalanchoe delagoensis L., Gasteria pillansii L., Cymbopogon citratus, Brassica juncea, and Curcuma longa L. were determined by high-performance liquid chromatography with a diode-array detector method. The results revealed rich sources of important compounds such as robinin in the fruits and leaves of A. aethiopicus; caffeic acid in the tubers of A. aethiopicus and quercitrin in the leaves of G. pillansii. Further, relatively high antioxidant, antibacterial, and antifungal activities were observed in C. colocynthis fruit coat, S. alexandrina pods, and A. aethiopicus leaves, respectively. The relatively higher the bioactivities of plants extracts associated with the phenols in these plants, in particular, the more abundant the phenols. Therefore, it was concluded that the fruit coat of C. colocynthis, pods of S. alexandrina, and leaves of A. aethiopicus might be excellent sources of natural products. These plant extracts also have a wide spectrum of antimicrobial activities that could be used in the pharmaceutical industries and to control diseases.

  10. Screening for bioactivity of Mutinus elegans extracts

    Science.gov (United States)

    Gajendiran, A.; Cyriac, RE; Abraham, J.

    2017-11-01

    Mutinus elegans is a species of fungi that is commonly called as Elegant Stinkhorn. The aim of this study was to screen the crude extracts of the fungus for phytochemical analysis, antimicrobial activity, antioxidant assay and anticancer activity. Extraction of the fungal sample in Soxhlet apparatus was done with n-hexane and methanol as the solvent. Stock solutions of the crude methanol extract were prepared and used for microbiological assay. Thin layer chromatography was performed in order to determine the number of active components in n-hexane, and methanol solvent system for the fungus Mutinus elegans. Further, antioxidant assay was performed using DPPH radical scavenging assay. The fungal sample was then tested for cytotoxicity assay against MG63 osteosarcoma cell lines. The antimicrobial assay of Mutinus elegans extract exhibited activity against five pathogens. The zone of inhibition was measured with respect to standard antibiotics. Gas chromatography and Mass spectrometry (GC/MS analysis), revealed the presence of dibromo-tetradecan-1-ol-acetate, 2-myristynoyl-glycinamide, fumaric acid, and cyclohexylmethyldecyl ester compounds were presented in methanol and n-hexane extract of Mutinus elegans. The present study concludes the presence of bioactive compound in the extract which exhibited antimicrobial and antioxidant activity in Mutinus elegans.

  11. Bioactivities examination of Cinchona leaves ethanol extracts

    Science.gov (United States)

    Artanti, Nina; Udin, Linar Z.; Hanafi, M.; Jamilah, Kurniasih, Ida Rahmi; Primahana, Gian; Anita, Yulia; Sundowo, Andini; Kandace, Yoice Sri

    2017-01-01

    Cinchona species especially the barks are commonly known for commercial production of quinine as antimalarial. Although it is also reported for treatment of depurative, whooping cough, influenza and dysentery. In this paper we reported in vitro examination of other bioactivities (antidiabetes, antioxidant and in vitro cytotoxicity) of 70% ethanol extract of Cinchona ledgeriana and C. succirubra leaves as well as qunine, quinidine, and cinchonine the major alkaloids found in Cinchona species. Antidiabetes was conducted using α-glucosidase inhibitory activity assay. Antioxidant was conducted using DPPH free radical scavenging activity assay. In vitro cytotoxic activity was concucted by microscopic observation on growth of breast cancer cell line MCF-7. The results showed that at concentration of 100 µg/ml, C. ledgeriana leaves ethanol extracts showed the best activity as antidiabetes (98% inhibitory of α-glucosidase activity) and antioxidant (92% DPPH free radical scavenging activity), whereas at the same concentration C. succirubra, quinine, quinidine and cinchonine showed very low activities of antidiabetes and antioxidant. Microscopic observation of in vitro cytotoxicity showed that C. ledgeriana also has excellent cytotoxicity to breast cancer cell line MCF-7 which better than quinine, quinidine and cinchonine, whereas C. succirubra showed low cytotoxicity. These results suggest that cinchona species have many potential as the source of drugs discovery and development other than just for malaria treatment. Therefore it is important to conduct further studies and to maintain the available Cinchona plantation in Indonesia.

  12. Clinical applications of bioactive milk components.

    Science.gov (United States)

    Hill, David R; Newburg, David S

    2015-07-01

    Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications.

  13. Effect of bioactive aldehydes on gelatin properties

    Directory of Open Access Journals (Sweden)

    I. P. Krysyuk

    2015-04-01

    Full Text Available Bioactive aldehydes are among main factors of proteins postsynthetic modifications, which are the cause and consequence of many diseases. Comparative study of some aldehydes modifying action on gelatin was carried out in vitro. Gelatin samples (20 mM were incubated with: ribose, deoxyribose, glyoxal, methylglyoxal, formaldehyde, acrolein (20 mM each and their combinations in 0.1 M Na-phosphate buffer (pH 7.4 containing 0.02% sodium azide at 37 °C in the dark for 30 days. We investigated the fluorescent properties of these samples and their molecular weight distribution by electrophoresis. It has been revealed that formed adducts had different fluorescence spectra. According to fluorescence intensity these aldehydes were put in order: formaldehyde < methylglyoxal < acrolein < ribose < deoxy­ribose < glyoxal. The electrophoresis results showed fragments of gelatin molecular weight redistribution. By this index, the aldehydes rating was as follows: ribose < deoxyribose < acrolein < glyoxal < formaldehyde < methylglyoxal. Comparison of these two ratings indicates that aldehydes with a lower ability to form fluorescent adducts have higher abili­ty to form intermolecular crosslinks. Therefore, the traditional clinical fluorescent test of a patients’ skin surface for collagen crosslinks determination has to be verified by other tests for proteins postsynthetic modifications.

  14. Beneficial Oral Biofilms as Smart Bioactive Interfaces

    Directory of Open Access Journals (Sweden)

    Beatrice Gutt

    2018-01-01

    Full Text Available Periodontitis is a very common health problem caused by formation of pathogenic bacterial biofilm that triggers inflammation resulting in either reversible gingivitis or irreversible periodontal hard and soft tissue damages, leading to loss of teeth when left untreated. Commensal bacteria play an important role in oral health in many aspects. Mainly by colonizing oral tissues, they (i contribute to maturation of immune response, and (ii foreclose attachment of pathobiont and, therefore, prevent from infection. The main goal of the study was to investigate if blocking of receptors on a commensal biofilm can prevent or reduce the attachment of pathogenic strains. To do so, biofilm produced by commensal Streptococcus sanguinis was treated with whole cell lysate of pathobionts Fusobacterium nucleatum or Porphyromonas gingivalis, followed by incubation with respective strain(s. The study revealed significant reduction in pathobiont adhesion to lysate-treated commensal biofilm. Therefore, adhesion of pathobionts onto the lysate-blocked biofilm was hindered; however, not completely eliminated supporting the idea that such approach in the oral cavity would benefit the production of a well-balanced and healthy bioactive interface.

  15. Burchellin: study of bioactivity against Aedes aegypti.

    Science.gov (United States)

    Narciso, Juliana Oliveira Abreu; Soares, Renata Oliveira de Araújo; Reis dos Santos Mallet, Jacenir; Guimarães, Anthony Érico; de Oliveira Chaves, Maria Célia; Barbosa-Filho, José Maria; Maleck, Marise

    2014-04-08

    The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti.

  16. Bioactivities of Traditional Medicinal Plants in Alexandria

    Science.gov (United States)

    Szopa, Agnieszka; Kubica, Paweł; Ekiert, Halina; Elshikh, Mohamed S.; Abdel-Salam, Eslam M.; El-Ansary, Diaa O.

    2018-01-01

    In traditional folklore, medicinal herbs play a vital role in the prevention and treatment of microbial diseases. In the present study, the phenolic profiles of the medicinal plants Asparagus aethiopicus L., Citrullus colocynthis L., Senna alexandrina L., Kalanchoe delagoensis L., Gasteria pillansii L., Cymbopogon citratus, Brassica juncea, and Curcuma longa L. were determined by high-performance liquid chromatography with a diode-array detector method. The results revealed rich sources of important compounds such as robinin in the fruits and leaves of A. aethiopicus; caffeic acid in the tubers of A. aethiopicus and quercitrin in the leaves of G. pillansii. Further, relatively high antioxidant, antibacterial, and antifungal activities were observed in C. colocynthis fruit coat, S. alexandrina pods, and A. aethiopicus leaves, respectively. The relatively higher the bioactivities of plants extracts associated with the phenols in these plants, in particular, the more abundant the phenols. Therefore, it was concluded that the fruit coat of C. colocynthis, pods of S. alexandrina, and leaves of A. aethiopicus might be excellent sources of natural products. These plant extracts also have a wide spectrum of antimicrobial activities that could be used in the pharmaceutical industries and to control diseases. PMID:29636772

  17. Flaxseeds: Nutritional Potential and Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Tatiana PANAITE

    2017-11-01

    Full Text Available The objective of this work was to study the nutritional and bioactive composition of commercially available flaxseeds with the aim to develop new alternatives for their use as functional and nutraceutical food ingredient. The samples of flaxseed contained 20.86% protein, 31.16% fat, 29.07% crude fiber and 3.75% ash. Essential amino acids represented 34% of total protein. The amino acids profile showed that glutamic acid was the most abundant (3.87 g 100 g-1, followed by arginine (1.93 g 100 g-1 and aspartic acid (1.52 g 100 g-1. Fatty acids analysis indicated that alpha-linolenic acid represents the major fatty acid (54.51% of the total fatty acids. The ratio of unsaturated to saturated fatty acids was 8.67 while the n-3/n-6 PUFA ratio was 3.2. Total phenolics showed average contents of 295.92 mg GAE 100 g-1, of which flavonoids accounted for 25.85 mg QE 100 g-1. The results confirmed that, in addition to being one of the richest sources of alpha-linolenic acid, flaxseed is an essential source of high quality protein, soluble fiber and potent natural antioxidants.

  18. Radiation technology for immobilization of bioactive materials

    International Nuclear Information System (INIS)

    1988-12-01

    Within the framework of the Agency's coordinated research programme on ''Application of Radiation Technology in Immobilization of Bioactive Materials'', the third and final research coordination meeting was held at Beijing University, Beijing, People's Republic of China, 15-18 June 1987. The present publication compiles all presentations made at the meeting. Fundamental processes for the immobilization of enzymes, antibodies, cells and drugs were developed and established using gamma radiation, electron beams and plasma discharge. Applications of various biofunctional components, immobilized by radiation techniques in different processes, were studied. A range of backbone polymers has been examined together with various monomers. Coupling procedures have been developed which are relevant to our particular requirements. Enzymes of various types and characteristics have been immobilized with considerable efficiency. The immobilized biocatalysts have been shown to possess significant activity and retention of activity on storage. There appears to be a high degree of specificity associated with the properties of the immobilised biocatalysts, their activity and the ease of their preparation. Novel additives which lower the total radiation dose in grafting have been discovered and their value in immobilization processes assessed. Potential applications include: medical (diagnostic, therapeutic), and industrial processes (fermentation, bioseparation, etc.). Refs, figs and tabs

  19. Lack of effect of bioactive-rich extracts of pomegranate, persimmon, nettle, dill, kale and Sideritis and isolated bioactives on platelet function.

    Science.gov (United States)

    Hollands, Wendy J; Saha, Shikha; Hayran, Osman; Boyko, Nadiya; Glibetic, Maria; Konic-Ristic, Aleksandra; Jorjadze, Mariam; Kroon, Paul A

    2013-11-01

    The health benefits of fruit and vegetable-rich diets may be partly due to modulation of platelet activity by bioactive phytochemicals. The aim of this study was to investigate the effects of bioactive-rich plant extracts and isolated bioactive metabolites on platelet function. Blood samples (n =15 subjects) were treated with extracts of bioactive-rich plants consumed as traditional foods in the Black Sea region, or with human metabolites of the bioactives quercetin and sulforaphane. Platelet function was assessed using the PFA-100. None of the extracts containing various flavonoids, glucosinolates and other bioactives, or isolated bioactive metabolites of quercetin or sulforaphane, caused significant changes in PFA-100 closure time (CT). In contrast, the positive controls (aspirin and Abciximab) consistently caused significant increases in CT for the platelet agonists epinephrine and ADP, respectively. These data do not support the notion that these plant bioactives can improve human platelet function. © 2013 Society of Chemical Industry.

  20. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  1. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: potential and limitations.

    Science.gov (United States)

    Cottier, Stéphanie; Mönig, Timon; Wang, Zheming; Svoboda, Jiří; Boland, Wilhelm; Kaiser, Markus; Kombrink, Erich

    2011-01-01

    Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time-consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H) technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx). In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA-binding domain (encoded in the yeast strain), and the bioactive molecule part binding to its potential protein target fused to a DNA-activating domain (encoded on a cDNA expression vector). During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discuss the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules.

  2. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: Potential and limitations

    Directory of Open Access Journals (Sweden)

    Stéphanie eCottier

    2011-12-01

    Full Text Available Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx. In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA binding domain (encoded in the yeast strain, and the bioactive molecule part binding to its potential protein target fused to a DNA activating domain (encoded on a cDNA expression vector. During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discussed the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules.

  3. Characterization of the bioactive and mechanical behavior of dental ceramic/sol-gel derived bioactive glass mixtures.

    Science.gov (United States)

    Abbasi, Zahra; Bahrololoum, Mohammad E; Bagheri, Rafat; Shariat, Mohammad H

    2016-02-01

    Dental ceramics can be modified by bioactive glasses in order to develop apatite layer on their surface. One of the benefits of such modification is to prolong the lifetime of the fixed dental prosthesis by preventing the formation of secondary caries. Dental ceramic/sol-gel derived bioactive glass mixture is one of the options for this modification. In the current study, mixtures of dental ceramic/bioactive glass with different compositions were successfully produced. To evaluate their bioactive behavior, prepared samples were immersed in a simulated body fluid at various time intervals. The prepared and soaked specimens were characterized using Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. Since bioactive glasses have deleterious effects on the mechanical properties of dental ceramics, 3-point bending tests were used to evaluate the flexural strength, flexural strain, tangent modulus of elasticity and Weibull modulus of the specimens in order to find the optimal relationship between mechanical and bioactive properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida Charoensuk

    2015-12-01

    Full Text Available Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES spectroscopy. This magnetic phase was introduced by adding Fe(NO33 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks.

  5. Biotransformation and bioactivation reactions - 2016 literature highlights.

    Science.gov (United States)

    Khojasteh, S Cyrus; Rietjens, Ivonne M C M; Dalvie, Deepak; Miller, Grover

    2017-08-01

    We are pleased to present a second annual issue highlighting a previous year's literature on biotransformation and bioactivation. Each contributor to this issue worked independently to review the articles published in 2016 and proposed three to four articles, which he or she believed would be of interest to the broader research community. In each synopsis, the contributing author summarized the procedures, analyses and conclusions as described in the original manuscripts. In the commentary sections, our authors offer feedback and highlight aspects of the work that may not be apparent from an initial reading of the article. To be fair, one should still read the original article to gain a more complete understanding of the work conducted. Most of the articles included in this review were published in Drug Metabolism and Disposition or Chemical Research in Toxicology, but attempts were made to seek articles in 25 other journals. Importantly, these articles are not intended to represent a consensus of the best papers of the year, as we did not want to make any arbitrary standards for this purpose, but rather they were chosen by each author for their notable findings and descriptions of novel metabolic pathways or biotransformations. I am pleased that Drs. Rietjens and Dalvie have again contributed to this annual review. We would like to welcome Grover P Miller as an author for this year's issue, and we thank Tom Baillie for his contributions to last year's edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. Finally, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. This article is dedicated to Professor Thomas Baillie for his exceptional contributions to the field of drug metabolism.

  6. Sol-gel synthesis and characterization of SiO{sub 2}/PEG hybrid materials containing quercetin as implants with antioxidant properties

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Gloria, Antonio [Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, V.le J. F. Kennedy 54 - Mostra d’Oltremare Pad. 20, 80125 Naples (Italy)

    2016-05-18

    In the present work, Silica/Polyethylene glycol (PEG) hybrid nanocomposites containing an antioxidant agent, the quercetin, were synthesized via sol-gel to be used as implants with antioxidant properties. Fourier transform infrared (FT-IR) analysis proved that a modification of both polymer and quercetin occurs due to synthesis process. Scanning electron microscope (SEM) showed that the proposed materials were hybrid nanocomposites. The bioactivity was ascertained by soaking the samples in a simulated body fluid (SBF).

  7. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests.The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.Our findings suggested a new bioactive

  8. Bioactive Peptides in Milk and Dairy Products: A Review.

    Science.gov (United States)

    Park, Young Woo; Nam, Myoung Soo

    2015-01-01

    Functionally and physiologically active peptides are produced from several food proteins during gastrointestinal digestion and fermentation of food materials with lactic acid bacteria. Once bioactive peptides (BPs) are liberated, they exhibit a wide variety of physiological functions in the human body such as gastrointestinal, cardiovascular, immune, endocrine, and nervous systems. These functionalities of the peptides in human health and physiology include antihypertensive, antimicrobial, antioxidative, antithrombotic, opioid, anti-appetizing, immunomodulatory and mineral-binding activities. Most of the bioactivities of milk proteins are latent, being absent or incomplete in the original native protein, but full activities are manifested upon proteolytic digestion to release and activate encrypted bioactive peptides from the original protein. Bioactive peptides have been identified within the amino acid sequences of native milk proteins. Due to their physiological and physico-chemical versatility, milk peptides are regarded as greatly important components for health promoting foods or pharmaceutical applications. Milk and colostrum of bovine and other dairy species are considered as the most important source of natural bioactive components. Over the past a few decades, major advances and developments have been achieved on the science, technology and commercial applications of bioactive components which are present naturally in the milk. Although the majority of published works are associated with the search of bioactive peptides in bovine milk samples, some of them are involved in the investigation of ovine or caprine milk. The advent of functional foods has been facilitated by increasing scientific knowledge about the metabolic and genomic effects of diet and specific dietary components on human health.

  9. Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants

    Science.gov (United States)

    Kirsten, A.; Hausmann, A.; Weber, M.; Fischer, J.

    2015-01-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58·10–6 K–1) than that of the zirconia (11.67·10–6 K–1). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839

  10. Bioactive and thermally compatible glass coating on zirconia dental implants.

    Science.gov (United States)

    Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H

    2015-02-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. © International & American Associations for Dental

  11. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  12. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  13. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  14. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of synthesis and processing conditions on the release behavior and stability of sol-gel derived silica xerogels embedded with bioactive compounds.

    Science.gov (United States)

    Morpurgo, M; Teoli, D; Palazzo, B; Bergamin, E; Realdon, N; Guglielmi, M

    2005-08-01

    The influence of processing parameters and synthetic strategies in the properties of sol-gel derived silica matrices intended for the release of bioactive compounds was investigated. The time-evolution of the matrix properties during its aging at room temperature in the dry and wet forms was investigated by measuring some of its physical and drug retaining properties. The results indicate that long term gel aging in the wet form is fundamental for the obtainment of dry matrices that are stable upon storage, a fundamental requirement for any practical application. In the case of hybrid matrices obtained by replacing part of the tetraethoxysilane precursor with mono-methyl trimethoxysilane, the order of addition of the reaction component is also important in determining the properties of the final dry gel, probably by influencing the polymer structural properties. This parameter acts synergistically with the matrix composition in determining the release properties of xerogels embedded with bioactive compounds.

  16. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  17. Hybrid Warfare and Lawfare

    OpenAIRE

    Bachmann, Sascha-Dominik; Mosquera, Andres B Munoz

    2015-01-01

    Hybrid Warfare as a method of war is not new. The change today appears to be that Hybrid Warfare “has the potential to transform the strategic calculations of potential belligerents [it has become] increasingly sophisticated and deadly”. This short paper presents Hybrid Warfare and one of its methods, lawfare. For this, we provide a current, comprehensive definition of hybrid warfare and examine different areas where law has been/is being used as a method of war. This paper focuses on the fol...

  18. Toronto hybrid taxi pilot

    International Nuclear Information System (INIS)

    Stevens, M.; Marans, B.

    2009-10-01

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO 2 ) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO 2 emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  19. Hybrid FOSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...

  20. Colchicine prodrugs and codrugs: Chemistry and bioactivities.

    Science.gov (United States)

    Ghawanmeh, Abdullah A; Chong, Kwok Feng; Sarkar, Shaheen M; Bakar, Muntaz Abu; Othaman, Rizafizah; Khalid, Rozida M

    2018-01-20

    Antimitotic colchicine possesses low therapeutic index due to high toxicity effects in non-target cell. However, diverse colchicine analogs have been derivatized as intentions for toxicity reduction and structure-activity relationship (SAR) studying. Hybrid system of colchicine structure with nontoxic biofunctional compounds modified further affords a new entity in chemical structure with enhanced activity and selectivity. Moreover, nanocarrier formulation strategies have been used for colchicine delivery. This review paper focuses on colchicine nanoformulation, chemical synthesis of colchicine prodrugs and codrugs with different linkers, highlights linker chemical nature and biological activity of synthesized compounds. Additionally, classification of colchicine prodrugs based on type of conjugates is discussed, as biopolymers prodrugs, fluorescent prodrug, metal complexes prodrug, metal-labile prodrug and bioconjugate prodrug. Finally, we briefly summarized the biological importance of colchicine nanoformulation, colchicine prodrugs and codrugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    International Nuclear Information System (INIS)

    Goudouri, O.-M.; Kontonasaki, E.; Papadopoulou, L.; Kantiranis, N.; Lazaridis, N.K.; Chrissafis, K.; Chatzistavrou, X.; Koidis, P.; Paraskevopoulos, K.M.

    2014-01-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  2. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.-M. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, L.; Kantiranis, N. [Department of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lazaridis, N.K. [Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K.; Chatzistavrou, X. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M., E-mail: kpar@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  3. Plant-derived bioactive compounds produced by endophytic fungi.

    Science.gov (United States)

    Zhao, J; Shan, T; Mou, Y; Zhou, L

    2011-02-01

    Plant endophytic fungi are an important and novel resource of natural bioactive compounds with their potential applications in agriculture, medicine and food industry. In the past two decades, many valuable bioactive compounds with antimicrobial, insecticidal, cytotoxic, and anticancer activities have been successfully discovered from endophytic fungi. During the long period of co-evolution, a friendly relationship was formed between each endophyte and its host plant. Some endophytes have the ability to produce the same or similar bioactive compounds as those originated from their host plants. This review mainly deals with the research progress on endophytic fungi for producing plant-derived bioactive compounds such as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin, and diosgenin. The relations between endophytic fungi and their host plants, biological activities and action mechanisms of these compounds from endophytic fungi, some available strategies for efficiently promoting production of these bioactive compounds, as well as their potential applications in the future will also be discussed. It is beneficial for us to better understand and take advantage of plant endophytic fungi.

  4. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  5. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ira Bhatnagar

    2010-10-01

    Full Text Available Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  6. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H 2 SO 4 and CaCl 2 . Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H 2 SO 4 and CaCl 2 ; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    Directory of Open Access Journals (Sweden)

    Nora Khaldi

    2012-10-01

    Full Text Available ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational biology, and efficient genome mining, is appearing as the long awaited solution to this problem. By quickly mining food genomes for characteristics of certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics in mining for food bioactives.The absence of food specific bioinformatic mining tools, the slow integration of both experimental mining and bioinformatics, and the important difference between different experimental platforms are some of the reasons for the slow progress of bioinformatics in the field of functional food and more specifically in bioactive peptide discovery.In this paper I discuss some methods that could be easily translated, using a rational peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an integrated food peptide database. I also discuss how to better integrate experimental work with bioinformatics in order to improve the mining of food for bioactive peptides, therefore achieving a higher success rates.

  8. [Cytocompatibility of two porous bioactive glass-ceramic in vitro].

    Science.gov (United States)

    Zhang, Yan; Jiang, Xinquan; Zhang, Xiuli; Wang, Deping; Zhen, Lei

    2013-06-01

    To compare the cytocompatibility of two kinds porous bioactive glass-ceramic made by same raw materials. Apatite/wollastonite bioactive glass-ceramic (4006) were prepared by sol-gel method, and bioactive glass (45S5) were prepared by melting method. Bone marrow stromal cells (BMSCs) were cultivated, differentiated and proliferated into osteoblasts, from a rabbit's marrow in the differentiatiofn culture medium with active function. The viability of BMSCs cultivated with extraction of these two kinds of biomaterial, which could represent the cytotoxicity effect of 4006 and 45S5 against BMSCs, was evaluated by the MTp assay. BMSCs were seeded and cocultivated with two kinds of biomaterial scaffolds respectively in vitro. The proliferation and biological properties of cells adhered to scaffolds were observed by inverted phase contrast microscope, scanning electron microscope (SEM), and environmental scanning electron microscope (ESEM), and a suitable cell amount for seeding on the scaffold was searched. There was no difference on the viability of BMSCs only cultured for one day by complete extract of 4006 and culture medium (P>0.05), but there was significant difference between them when the cells had been cultured for 3 days(Pglass-ceramic has good bioactivity and cytocompatibility. Therefore, it may have the potential to be a new cell vehicle for bone tissue engineering. And the suitable seeding cell amount of apatite/wollastonite bioactive glass-ceramic should be 2x10(7) cells.mL-1 or even more than that.

  9. Mechanisms underlying the antihypertensive effects of garlic bioactives.

    Science.gov (United States)

    Shouk, Reem; Abdou, Aya; Shetty, Kalidas; Sarkar, Dipayan; Eid, Ali H

    2014-02-01

    Cardiovascular disease remains the leading cause of death worldwide with hypertension being a major contributing factor to cardiovascular disease-associated mortality. On a population level, non-pharmacological approaches, such as alternative/complementary medicine, including phytochemicals, have the potential to ameliorate cardiovascular risk factors, including high blood pressure. Several epidemiological studies suggest an antihypertensive effect of garlic (Allium sativum) and of many its bioactive components. The aim of this review is to present an in-depth discussion regarding the molecular, biochemical and cellular rationale underlying the antihypertensive properties of garlic and its bioactive constituents with a primary focus on S-allyl cysteine and allicin. Key studies, largely from PubMed, were selected and screened to develop a comprehensive understanding of the specific role of garlic and its bioactive constituents in the management of hypertension. We also reviewed recent advances focusing on the role of garlic bioactives, S-allyl cysteine and allicin, in modulating various parameters implicated in the pathogenesis of hypertension. These parameters include oxidative stress, nitric oxide bioavailability, hydrogen sulfide production, angiotensin converting enzyme activity, expression of nuclear factor-κB and the proliferation of vascular smooth muscle cells. This review suggests that garlic and garlic derived bioactives have significant medicinal properties with the potential for ameliorating hypertension and associated morbidity; however, further clinical and epidemiological studies are required to determine completely the specific physiological and biochemical mechanisms involved in disease prevention and management. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  11. New hybrid systems; Le cas des hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, B. [CEA/Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    New hybrid systems are made up of a subcritical core, a spallation target and a proton accelerator. The neutrons that are produced in the target by the flux of protons are necessary to maintain the chain reaction of fission. Some parameters that are important for a classical nuclear reactor like doppler coefficient or delayed neutron fraction do not matter in a hybrid system. In a PWR-type reactor or in a fast reactor the concentration of actinides has a bad impact on these 2 parameters, so it is justified to study hybrid systems as actinide transmuters. The hybrid system, because of its external source of neutrons can put aside an important reactivity margin. This reactivity margin can be used to design safer nuclear reactors (particularly in some situations of reactivity accidents) or to irradiate fuel elements containing high concentrations of minor actinides that could not be allowed in a classical reactor. This article reviews various ways of integrating hybrid systems in a population of already existing nuclear reactors in order to manage quantities of plutonium, of minor actinides or of long-life fission products. (A.C.)

  12. Bioactive steroidal saponins from Agave offoyana flowers.

    Science.gov (United States)

    Pérez, Andy J; Calle, Juan M; Simonet, Ana M; Guerra, José O; Stochmal, Anna; Macías, Francisco A

    2013-11-01

    Bioguided studies of flowers of Agave offoyana allowed the isolation of five steroidal saponins never described previously, Magueyosides A-E (1-5), along with six known steroidal saponins (6-11). The structures of compounds were determined as (25R)-spirost-5-en-2α,3β-diol-12-one 3-O-{β-d-xylopyranosyl-(1→3)-O-β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (1), (25R)-spirost-5-en-2α,3β-diol-12-one 3-O-{β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (2), (25R)-spirost-5-en-2α,3β,12β-triol 3-O-{β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (3), (25R)-5α-spirostan-2α,3β-diol-12-one 3-O-{β-d-xylopyranosyl-(1→3)-O-β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (4), and (25R)-5α-spirostan-2α,3β-diol-9(11)-en-12-one 3-O-{β-d-xylopyranosyl-(1→3)-O-β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (5), by comprehensive spectroscopic analysis, including one- and two-dimensional NMR techniques, mass spectrometry and chemical methods. The bioactivities of the isolated compounds on the standard target species Lactuca sativa were evaluated. A dose-dependent phytotoxicity and low dose stimulation were observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Natural pesticides and bioactive components in foods.

    Science.gov (United States)

    Beier, R C

    1990-01-01

    In this review, some common food plants and their toxic or otherwise bioactive components and mycotoxin contaminants have been considered. Crucifers contain naturally occurring components that are goitrogenic, resulting from the combined action of allyl isothiocyanate, goitrin, and thiocyanate. Although crucifers may provide some protection from cancer when taken prior to a carcinogen, when taken after a carcinogen they act as promoters of carcinogenesis. The acid-condensed mixture of indole-3-carbinol (a component of crucifers) binds to the TCDD receptor and causes responses similar to those of TCDD. Herbs contain many biologically active components, with more than 20% of the commercially prepared human drugs coming from these plants. Onion and garlic juices can help to prevent the rise of serum cholesterol. Most herbs used in treatments may have many natural constituents that act oppositely from their intended use. Some herbs like Bishop's week seed contain carcinogens, and many contain pyrrolizidine alkaloids that can cause cirrhosis of the liver. The general phytoalexin response in plants (including potatoes, tomatoes, peppers, eggplant, celery, and sweet potatoes) induced by external stimuli can increase the concentrations of toxic chemical constituents in those plants. In potatoes, two major indigenous compounds are alpha-solanine and alpha-chaconine, which are human plasma cholinesterase inhibitors and teratogens in animals. Because of its toxicity, the potato variety Lenape was withdrawn from the market. Celery, parsley, and parsnips contain the linear furanocoumarin phytoalexins psoralen, bergapten, and xanthotoxin that can cause photosensitization and also are photomutagenic and photocarcinogenic. Celery field workers and handlers continually have photosensitization problems as a result of these indigenous celery furanocoumarins. A new celery cultivar (a result of plant breeding to produce a more pest-resistant variety) was responsible for significant

  14. Silicon Utilizing Microbial Bioactivities in the Biosphere

    Science.gov (United States)

    Sen, M. M.; Das, S.

    2012-12-01

    potential as a source of biomass for the production of biofuels, due to their high growth rates and high cellular lipid content. Petroleum pollutant degradation can also be done by these organisms-Achanthes minutissima has degradable effects involving petroleum hydocarbons. Stephanopyxis turris a silicon utilizing organism releases a blend of chlorinated C8 hydrocarbons. This adds a fundamentally new pathway to the limited set of halogenating enzymatic activities known from nature. Many silicon utilizing organisms can produce PUFA from saturated fatty acids which ultimately produce many important bioactive chemicals like hormosirene, finaverrene, heptadienal, dietyopterene, cystophorene, decadienal. Trienoic acid, octadiene and many other important agents. Similarly terpenoid biosynthetic pathway is activated by them with formation of diterpenoids, sesterpenoids, triterpenoids and sterols.

  15. Ensemble learning method for the prediction of new bioactive molecules.

    Directory of Open Access Journals (Sweden)

    Lateefat Temitope Afolabi

    Full Text Available Pharmacologically active molecules can provide remedies for a range of different illnesses and infections. Therefore, the search for such bioactive molecules has been an enduring mission. As such, there is a need to employ a more suitable, reliable, and robust classification method for enhancing the prediction of the existence of new bioactive molecules. In this paper, we adopt a recently developed combination of different boosting methods (Adaboost for the prediction of new bioactive molecules. We conducted the research experiments utilizing the widely used MDL Drug Data Report (MDDR database. The proposed boosting method generated better results than other machine learning methods. This finding suggests that the method is suitable for inclusion among the in silico tools for use in cheminformatics, computational chemistry and molecular biology.

  16. Marine-Derived Bioactive Peptides with Pharmacological Activities- A Review

    Directory of Open Access Journals (Sweden)

    Sana Rabiei

    2017-10-01

    Full Text Available Some nutritional factors are related to chronic disease. In response to increased concern regarding nutrition and health, the functional and nutraceuticals food markets have been developed. During food digestion, proteins are hydrolyzed and a wide range of peptides are formed. Some of these peptides have special structures which permit them to confer particular biological functions. Marine animals which involve more than half of the world biological varieties are a wide source of bioactive proteins and peptides. Marine derived peptides show various physiologic functions such as anti-oxidant, antimicrobial, anti-cancer, Angiotensin1-Converting Enzyme (ACE glucosidase and a-amylase inhibitory effects in vitro. Before application of marine bioactive peptides as nutraceuticals or functional food ingredients, their efficacy should be approved through pre-clinical animal and then clinical studies. The aim of this study was to review the studies conducted on the pharmacological effect of marine bioactive peptides in animal models and humans.

  17. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    Directory of Open Access Journals (Sweden)

    Sona Skrovankova

    2015-10-01

    Full Text Available Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry, and Ericaceae (blueberry, cranberry, belong to the best dietary sources of bioactive compounds (BAC. They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  18. In vitro bioactivity of glass-ceramic/fibroin composites

    Directory of Open Access Journals (Sweden)

    Lachezar Radev

    2017-06-01

    Full Text Available Bioactive composite materials were prepared by mixing 20 wt.% of silk fibroin (SF and 80 wt.% of glassceramics from CaO-SiO2-P2O5-MgO system. In vitro bioactivity of the prepared composites was evaluated in 1.5 simulated body fluid (1.5 SBF in static conditions. The obtained samples before and after in vitro tests were characterized by X-ray diffraction (XRD analysis, Fourier transform infrared spectroscopy (FTIR, and X-ray photoelectron spectroscopy (XPS. The changes in 1.5 SBF solutions after soaking the samples were evaluated by inductively coupled plasma atomic emission spectroscopy (ICP-AES. MG63 osteosarcoma cells were used for the biological experiments. The obtained experimental data proved that the synthesized composites exhibit excellent in vitro bioactivity.

  19. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  20. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    International Nuclear Information System (INIS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-01-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity. (letter)

  1. Endophytic actinomycetes: promising source of novel bioactive compounds.

    Science.gov (United States)

    Matsumoto, Atsuko; Takahashi, Yōko

    2017-05-01

    Endophytic actinomycetes associated with plant roots are a relatively untapped source of potential new bioactive compounds. This is becoming increasingly important, as the returns from discovery research on soil-dwelling microbes, have been continuously diminishing. We have isolated more than 1000 strains of actinomycetes from plant roots in our search for novel bioactive compounds, identified and assayed their bioactive metabolites, as well as investigated their biosynthetic genes for generating secondary metabolites. This has resulted in the discovery of several interesting compounds. Creation of plant root clone libraries enabled us to confirm that we had, indeed, isolated endophytes. In this paper, we introduce our approach to this promising line of research, incorporating data from other publications, and illustrate the potential that endophytic actinomycetes offer as a new source of novel lead compounds.

  2. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    Science.gov (United States)

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.

  3. Synthesis of nano-bioactive glass-ceramic powders and its in vitro bioactivity study in bovine serum albumin protein

    Science.gov (United States)

    Nabian, Nima; Jahanshahi, Mohsen; Rabiee, Sayed Mahmood

    2011-07-01

    Bioactive glasses and ceramics have proved to be able to chemically bond to living bone due to the formation of an apatite-like layer on its surface. The aim of this work was preparation and characterization of bioactive glass-ceramic by sol-gel method. Nano-bioglass-ceramic material was crushed into powder and its bioactivity was examined in vitro with respect to the ability of hydroxyapatite layer to form on the surface as a result of contact with bovine serum albumin (BSA) protein. The obtained nano-bioactive glass-ceramic was analyzed before and after contact with BSA solution. This study used scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis to examine its morphology, crystallinity and composition. The TEM images showed that the NBG particles size were 10-40 nm. Bioactivity of nanopowder was confirmed by SEM and XRD due to the presence of a rich bone-like apatite layer. Therefore, this nano-BSA-bioglass-ceramic composite material is promising for medical applications such as bone substitutes and drug carriers.

  4. Hybrid trajectory spaces

    NARCIS (Netherlands)

    P.J. Collins (Pieter)

    2005-01-01

    textabstractIn this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space

  5. Hybrid job shop scheduling

    NARCIS (Netherlands)

    Schutten, Johannes M.J.

    1995-01-01

    We consider the problem of scheduling jobs in a hybrid job shop. We use the term 'hybrid' to indicate that we consider a lot of extensions of the classic job shop, such as transportation times, multiple resources, and setup times. The Shifting Bottleneck procedure can be generalized to deal with

  6. Hybrid Shipboard Microgrids

    DEFF Research Database (Denmark)

    Othman @ Marzuki, Muzaidi Bin; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    Strict regulation on emissions of air pollutants imposed by the maritime authorities has led to the introduction of hybrid microgrids to the shipboard power systems (SPSs) which acts toward energy efficient ships with less pollution. A hybrid energy system can include different means of generation...

  7. Teelt van hybride wintertarwerassen

    NARCIS (Netherlands)

    Timmer, R.D.

    2007-01-01

    Om de mogelijkheden van de teelt van hybride wintertarwerassen onder Nederlandse omstandigheden in beeld te brengen zijn er van 2000 t/m 2002 proeven uitgevoerd op het PPO-proefbedrijf te Lelystad. Hoewel de hybride rassen een hogere opbrengst gaven en iets minder zaaizaad nodig hadden, was dit niet

  8. Hybridization in geese

    NARCIS (Netherlands)

    Ottenburghs, Jente; Hooft, van Pim; Wieren, van Sipke E.; Ydenberg, Ronald C.; Prins, Herbert H.T.

    2016-01-01

    The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large

  9. Hybrid Maritime Warfare

    DEFF Research Database (Denmark)

    Schaub Jr, Gary John; Murphy, Martin; Hoffman, Frank

    2017-01-01

    Russia’s use of hybrid warfare techniques has raised concerns about the security of the Baltic States. Gary Schaub, Jr, Martin Murphy and Frank G Hoffman recommend a series of measures to augment NATO’s Readiness Action Plan in the Baltic region, including increasing the breadth and depth of naval...... of a larger hybrid campaign...

  10. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  11. Hybrid Universities in Malaysia

    Science.gov (United States)

    Lee, Molly; Wan, Chang Da; Sirat, Morshidi

    2017-01-01

    Are Asian universities different from those in Western countries? Premised on the hypothesis that Asian universities are different because of hybridization between Western academic models and local traditional cultures, this paper investigates the hybrid characteristics in Malaysian universities resulting from interaction between contemporary…

  12. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  13. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  14. Bioactivities and Health Benefits of Mushrooms Mainly from China

    Directory of Open Access Journals (Sweden)

    Jiao-Jiao Zhang

    2016-07-01

    Full Text Available Many mushrooms have been used as foods and medicines for a long time. Mushrooms contain polyphenols, polysaccharides, vitamins and minerals. Studies show that mushrooms possess various bioactivities, such as antioxidant, anti-inflammatory, anticancer, immunomodulatory, antimicrobial, hepatoprotective, and antidiabetic properties, therefore, mushrooms have attracted increasing attention in recent years, and could be developed into functional food or medicines for prevention and treatment of several chronic diseases, such as cancer, cardiovascular diseases, diabetes mellitus and neurodegenerative diseases. The present review summarizes the bioactivities and health benefits of mushrooms, and could be useful for full utilization of mushrooms.

  15. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Ferrara, C.; Mustarelli, P. [Department of Chemistry, University of Pavia and INSTM, Via Taramelli 12, 27100 Pavia (Italy)

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol–gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol–gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO{sub 2}/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Hybrid coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of hybrids and coating • Biocompatibility improvement of coated titanium with high

  16. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Ferrara, C.; Mustarelli, P.

    2015-01-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol–gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol–gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO 2 /PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. - Highlights: • SiO 2 /PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Hybrid coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of hybrids and coating • Biocompatibility improvement of coated titanium with high PEG

  17. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO₂ Hybrid Materials Synthesized via Sol-Gel Technique.

    Science.gov (United States)

    Catauro, Michelina; Tranquillo, Elisabetta; Illiano, Michela; Sapio, Luigi; Spina, Annamaria; Naviglio, Silvio

    2017-10-17

    Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic-inorganic hybrids. Among those, poly(e-caprolactone)/zirconia (PCL/ZrO₂) hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO₂ hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO₂ hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones) enhance cell proliferation when compared to pure ZrO₂ by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO₂ hybrids differently supports cell proliferation suggests that PCL/ZrO₂ hybrids could be useful tools with different potential clinical applications.

  18. Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols

    NARCIS (Netherlands)

    Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Quinones, M.; Bravo, F.I.; Arola-Arnal, A.; Muguerza, B.

    2017-01-01

    SCOPE: Studying the flavanol metabolism is essential to identify bioactive compounds, as beneficial effects of flavanols have been attributed to their metabolic products. However, host-related factors, including pathological conditions, may affect flavanol metabolism and, thus, their bioactivity.

  19. Cell-based screening assay for anti-inflammatory activity of bioactive compounds

    NARCIS (Netherlands)

    Meijer, Kees; Vonk, Roel J.; Priebe, Marion G.; Roelofsen, Han

    2015-01-01

    Excess dietary intake may induce metabolic inflammation which is associated with insulin resistance and cardiovascular disease. Recent evidence indicates that dietary bioactive compounds may diminish metabolic inflammation. To identify anti-inflammatory bioactives, we developed a screening assay

  20. Bioactivity of Neem (Azadirachta indica) callus extract

    International Nuclear Information System (INIS)

    Ahmed, I.M.

    2008-04-01

    This study was conducted in order to explore the possibility of utilizing plant tissue culture techniques for production of secondary metabolites from callus culture of Azadirachta indica (Neem) and to investigate the bioactivity of the established callus extract in comparison with the extract from the intact leaves. The presence of secondary metabolites in the extracts was detected by Thin Layer Chromatography (TLC). Both the callus and leaf extracts eluted five fraction of compounds and it were observed that callus extract had a good resolution. various extract concentration (5.10. and 20 mg/ml) were determined for the rate and extent of inhibition kinetics against staphylococcus aureus. Escherichia coli, and candida albicans. Results showed that callus extract of A. indica wiped out all viable cells of C. albicans within 18 hours and the subsequent concentration 5 and 10 mg/ m1 retard the growth after 24 h. A higher concentration of 20 mg/ ml had the same effect on S. aureus after 6 h and the E. coli cells were completely inhibited by the extracts after 24 h. Similar kinetics were showed by leaf extract but in slight rate as compared to the callus extract. In general both extract posses antimicrobial activity with notable efficient rates. For assaying of the inhibitory effect on some phyto pathogens the effect of different concentrations of the callus and leaf extracts on the radial growth of Drechslera rostrata. Fusarium oxysporum and Alterneria alternata were in vitro assessed. Obvious inhibitory effect was observed on the mycelia radial growth of the three treated fungi. The level of inhibition increased with the increase of te extract concentration. The maximum inhibitory effect (84%) was recorded with Drechslera rostrata when inoculated in media contain 20 mg/ ml of callus while the inhibition rate of mycelia growth of the same species reaches 61% when inoculated in a medium contain the same concentration of the neem leaf extract. The subsequent

  1. A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations.

    Science.gov (United States)

    Fujimura, Yoshinori; Kawano, Chihiro; Maeda-Murayama, Ayaka; Nakamura, Asako; Koike-Miki, Akiko; Yukihira, Daichi; Hayakawa, Eisuke; Ishii, Takanori; Tachibana, Hirofumi; Wariishi, Hiroyuki; Miura, Daisuke

    2017-05-23

    Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. This employed the matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component information. The bioactivity could be easily evaluated by calculating the summed abundance of a few selected components that contributed most to constructing the prediction model. 1,5-DAN-MALDI-MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical combinations for crude multicomponent systems.

  2. The Biocompatibility and Bioactivity of Biodentine in Contact with Cementoblast Cells

    Science.gov (United States)

    2016-07-18

    Bioactivity of Biodentine in Contact with Cementoblast Cells", is appropriately acknowledged and, beyond brief excerpts , is with the permission of the...Workshops _Abstract _Other 6. Title: The Biocompatibility and Bioactivity of Biodentine in Contact with Cementoblast Cells 7. Intended...modification by the appropriate approving authority. External Affairs Approval Date:_ __ The Biocompatibility and Bioactivity of Biodentine in

  3. Artificial mismatch hybridization

    Science.gov (United States)

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  4. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time-derivatives in modell......In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time...... to the differential action, thus, allowing stepwise development of hybrid systems Udgivelsesdato: JAN 1...

  5. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  6. Bioactivity and mechanical behaviour of cobalt oxide-doped ...

    Indian Academy of Sciences (India)

    evaluation through scanning electron microscopy. Densities and mechanical properties of the samples were found to increase considerably with an increase in the concentration of cobalt oxide. Keywords. Bioactive glass; cobalt oxide; FTIR spectrometry; SEM and mechanical properties. 1. Introduction. Some materials like ...

  7. GC/MS determination of bioactive components and antibacterial ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... Full Length Research Paper. GC/MS determination of bioactive components and antibacterial properties of Goniothalamus umbrosus extracts. Siddig Ibrahim Abdelwahab1, Ahmad Bustamam Abdul1*, Manal Mohamed Elhassan1, Syam. Mohan1, Mohamed Yousif Ibrahim1, Abdelbasit Adam Mariod3, ...

  8. Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids

    Directory of Open Access Journals (Sweden)

    Benoît Schoefs

    2013-09-01

    Full Text Available Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects, alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation. Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section.

  9. Edible flowers as sources of phenolic compounds with bioactive potential.

    Science.gov (United States)

    Pires, Tânia C S P; Dias, Maria Inês; Barros, Lillian; Calhelha, Ricardo C; Alves, Maria José; Oliveira, M Beatriz P P; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2018-03-01

    The edible flowers are widely used, but there is still a lot to be done in relation to its bioactive potential and its correlation with the presence of phenolic compounds. The aim of this study was determined the individual phenolic profile in the hydromethanolic extracts and infusion preparations of four different flower samples (Dahlia mignon, Rosa damascena 'Alexandria' and R. gallica 'Francesa' draft in R. canina, Calendula officinalis L., and Centaurea cyanus L.) and their bioactive potential (antioxidant, antiproliferative, and antibacterial capacity). All the studied flowers presented different profiles regarding their phenolic composition and revealed biological potential. The bioactive potential of the studied flowers was moderate, the hydromethanolic extracts of rose petals showed the best results for antioxidant and antibacterial assays, while the antiproliferative properties were only present in some of the tested cell lines, for the hydromethanolic extracts, in which dahlia and rose showed the best results. These results demonstrate that edible flowers can be used as a source of phenolic compounds with bioactive potential, which can be applied in the food sector, as foods and as sources natural ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mannich reaction: A versatile and convenient approach to bioactive ...

    Indian Academy of Sciences (India)

    The development of new drugs and target specific delivery agents with enhanced efficacy is essential to counter the multi-drug resistant (MDR) tumours1a,b and microbial strains. The modification of an existing drug molecules offers a cost and time effective conve- nient strategy to achieve new bioactive skeletons. Man-.

  11. Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin

    DEFF Research Database (Denmark)

    Thuan, Nguyen Huy; Malla, Sailesh; Trung, Nguyen Thanh

    2017-01-01

    Flavonoids are plant-based polyphenolic biomolecules with a wide range of biological activities. Glycosylated flavonoids have drawn special attention in the industries as it improves solubility, stability, and bioactivity. Herein, we report the production of astilbin (ATN) from taxifolin (TFN) in...

  12. Bioactive compounds from the alga Dictyopteris undulata | Koker ...

    African Journals Online (AJOL)

    X-ray crystallography of zonarol confirmed the gross structure of this compound and also gave the relative stereochemistry at C- 9 and C- 10 as trans. All of these compounds were found to exhibit antimicrobial activity. Some also showed activity against L1210 cells and antiviral activity. Keywords: Bioactivity-guided isolation; ...

  13. Effects of bioactive principles from stem bark extract of Quassia ...

    African Journals Online (AJOL)

    Chigo Okwuosa

    Effects of bioactive principles from stem bark extract of Quassia amara, Quassin and 2-methoxycanthine-6-one, on haematological parameters in albino rats. Raji Yinusa. Department of Physiology, College of Medicine, University of Ibadan. Nigeria. Summary:The effect of Quassia amara extract and two isolated compounds ...

  14. Screening and identification of potential bioactive constituents in a ...

    African Journals Online (AJOL)

    ... of lung cancer, liver cancer and digestive cancer. Materials and Methods: In this study, the potential bioactive constituents of SCP were isolated and identified by chromatographic and spectroscopic methods. The immunomodulatory and DPPH radical scavenging activities of the constituents were also evaluated in vitro.

  15. Bioactive Secondary Metabolites from the Marine Sponge Genus Agelas

    OpenAIRE

    Zhang, Huawei; Dong, Menglian; Chen, Jianwei; Wang, Hong; Tenney, Karen; Crews, Phillip

    2017-01-01

    The marine sponge genus Agelas comprises a rich reservoir of species and natural products with diverse chemical structures and biological properties with potential application in new drug development. This review for the first time summarized secondary metabolites from Agelas sponges discovered in the past 47 years together with their bioactive effects.

  16. Therapeutic potential of dairy bioactive peptides: A contemporary perspective.

    Science.gov (United States)

    Sultan, Saira; Huma, Nuzhat; Butt, Masood Sadiq; Aleem, Muhammad; Abbas, Munawar

    2018-01-02

    Dairy products are associated with numerous health benefits. These are a good source of nutrients such as carbohydrates, protein (bioactive peptides), lipids, minerals, and vitamins, which are essential for growth, development, and maintenance of the human body. Accordingly, dairy bioactive peptides are one of the targeted compounds present in different dairy products. Dairy bioactive compounds can be classified as antihypertensive, anti-oxidative, immmunomodulant, anti-mutagenic, antimicrobial, opoid, anti-thrombotic, anti-obesity, and mineral-binding agents, depending upon biological functions. These bioactive peptides can easily be produced by enzymatic hydrolysis, and during fermentation and gastrointestinal digestion. For this reason, fermented dairy products, such as yogurt, cheese, and sour milk, are gaining popularity worldwide, and are considered excellent source of dairy peptides. Furthermore, fermented and non-fermented dairy products are associated with lower risks of hypertension, coagulopathy, stroke, and cancer insurgences. The current review article is an attempt to disseminate general information about dairy peptides and their health claims to scientists, allied stakeholders, and, certainly, readers.

  17. Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-fan; Akram, Muhammad; Alshemary, Ammarz [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@comsats.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2016-11-30

    Highlights: • PLA/Chitosan nanofibers were coated with functional bioglass. • Polymer/ceramic composite fibers exhibited good in-vitro bioactivity. • Nanofibers coated with Ag doped bioglass exhibited good antibacterial activity. - Abstract: In this study, we have presented the structural and in vitro characterization of electrospun polylactic acid (PLA)/Chitosan nanofibers coated with cerium, copper or silver doped bioactive glasses (CeBG/CuBG/AgBG). Bead-free, smooth surfaced nanofibers were successfully prepared by using electrospinning technique. The nanocomposite fibers were obtained using a facile dip-coating method, their antibacterial activities against E. coliE. coli (ATCC 25922 strains) were measured by the disk diffusion method after 24 h of incubation at 37 °C. CeBG and CuBG decorated PLA/Chitosan nanofibers did not develop an inhibition zone against the bacteria. On the other hand, nanofibers coated with AgBG developed an inhibition zone against the bacteria. The as-prepared nanocomposite fibers were immersed in SBF for 1, 3 and 7 days in Simulated Body Fluid (SBF) for evaluation of in vitro bioactivity. All samples induced the formation of crystallites with roughly ruffled morphology and the pores of fibers were covered with the extensive growth of crystallites. Energy Dispersive X-ray (EDX) composition analysis showed that the crystallites possessed Ca/P ratio close to 1.67, confirming the good in-vitro bioactivity of the fibers.

  18. Incorporation of bioactive glass in calcium phosphate cement: An evaluation

    NARCIS (Netherlands)

    Renno, A.C.; Watering, F.C.J. van de; Nejadnik, M.R.; Crovace, M.C.; Zanotto, E.D.; Wolke, J.G.C.; Jansen, J.A.; Beucken, J.J.J.P van den

    2013-01-01

    Bioactive glasses (BGs) are known for their unique ability to bond to living bone. Consequently, the incorporation of BGs into calcium phosphate cement (CPC) was hypothesized to be a feasible approach to improve the biological performance of CPC. Previously, it has been demonstrated that BGs can

  19. Molecular Dynamics and Bioactivity of a Novel Mutated Human ...

    African Journals Online (AJOL)

    Purpose: To design and evaluate a novel human parathyroid hormone (hPTH) analog. Methods: Mutation stability prediction was processed on hPTH, docked the mutant hPTH with its receptor, and then proceeded with molecular dynamics using Discovery Studio 3.5 software package for the complex. The bioactivity of the ...

  20. Analysis of bioactive chemical components of two medicinal plants ...

    African Journals Online (AJOL)

    The main objective of this study was to determine the phytochemical composition in the leaves of Coriandrum sativum, using methanolic extraction and report the main functional components by using IR technique. The phytochemical compounds in the extract were then screened by GC-MS method. Seven bioactive ...

  1. Synthesis and evaluation of some bioactive compounds having ...

    Indian Academy of Sciences (India)

    Some new 3,4-disubstituted isocoumarins were synthesized having bioactive pyrazole molecule at 3rd position of isocoumarin moiety (5a,b), from isocoumarin -3- carboxylic acid hydrazide (4a,b) followed by cyclization with acetyl acetone. A series of isocoumarin derivative having Schiff base as lateral side chain at 3rd ...

  2. Isolation and identification of bioactive compounds from kernel seed ...

    African Journals Online (AJOL)

    The ethanol extract and ethyl acetate fraction of Mangifera indica kernel seed cake inhibited the growth of Staphylococcus aureus and Pseudomonas aeruginosa. The bioactive compounds were isolated and identified by NMR, UV and mass spectrometry as methyl gallate, gallic acid and penta-O-galloylglucose. The

  3. Elemental Analysis and Bioactivities of Ripe and Unripe Pericarp of ...

    African Journals Online (AJOL)

    Polyalthia longifolia (Annonaceae) is an ornamental street tree having several medicinal values. The plant is used in traditional systems of medicine. The present study was conducted with an aim of estimating the content of minerals and determining bioactivities viz., antibacterial, cytotoxic and larvicidal activity of ripe and ...

  4. Accelerated bone ingrowth by local delivery of Zinc from bioactive ...

    African Journals Online (AJOL)

    Background: Synthetic bone graft substitutes such as bioactive glass (BG) material are developed in order to achieve successful bone regeneration. Zn plays an important role in the proper bone growth, development, and maintenance of healthy bones. Aims: This study aims to evaluate in vivo the performance therapy of ...

  5. The effect of ruminal incubation of bioactive yeast ( Saccharomyces ...

    African Journals Online (AJOL)

    In vivo rumen potential degradability studies, using the nylon bag technique was performed using Panicum maximum and Centrosema pubescens in all the groups. The result of the study showed that bioactive yeast improved the potential rumen degradability of crude protein, crude fibre and organic matter fractions of ...

  6. Fatty Acid Profile and Bioactivity from Annona hypoglauca Seeds Oil ...

    African Journals Online (AJOL)

    Plants from Annona (Annonaceae) genus are present in tropical regions, where they have economic and medicinal potential. Information on the fatty acids profile and bioactivity from seed oil of Annona species are incipient. The objective of this work was to investigate Annona hypoglauca seeds oil in terms of its yield, ...

  7. Evaluation of the Bioactivity of Some Traditional Medicinal Plants ...

    African Journals Online (AJOL)

    The purpose of this experiment was to evaluate the bioactivity of extracts of Chrysanthemum cinerariaefolium Vis Albizia antihelmintica A. Brogn, Maerua edulis (Gilg) De Wolf, Maerua subcordata (Gilg & Bened) De Wolf and Myrsine Africana L. which are used traditionally as antihelmintic by using brine shrimp lethality test.

  8. Greener and Expeditious Synthesis of Bioactive Heterocycles using Microwave Irradiation

    Science.gov (United States)

    The utilization of green chemistry techniques is dramatically reducing chemical waste and reaction times as has recently been proven in several organic syntheses and chemical transformations. To illustrate these advantages in the synthesis of bio-active heterocycles, we have stud...

  9. In vitro bioactivity and cytocompatibility of tricalcium silicate

    Indian Academy of Sciences (India)

    ability in SBF. In vitro cytocompatible evaluation reveals that osteoblasts adhere and spread well on the Ca3SiO5 ceramics, indicating good bioactivity and cytocompatibility. Keywords. .... and the pellets were resuspended in Ham's F-12 culture medium supplemented with 10% fetal bovine serum (FBS) and maintained in a ...

  10. In Vitro studies of bioactive glass/polyhydroxybutyrate composites

    Directory of Open Access Journals (Sweden)

    André Oliveira Paiva

    2006-12-01

    Full Text Available Bioactive materials can help bone reparation and regeneration by offering support to bone growth. In vitro studies of bioactive glass/polyhydroxybutyrate composites were carried out to evaluate the influence of the composition on the bioactivity through the presence of calcium phosphate (Ca-P on the layer formed when the substrates were immerse in simulated body fluid (SBF. The in vitro tests were carried out by soaking the composites bioactive glass/polyhydroxybutyrate 30/70 and 40/60 in SBF. The surface of the composites was analyzed by Scanning Electron Microscopy (SEM with Energy Dispersive Spectroscopy (EDS and also via x ray Diffraction (XRD. The solutions were analyzed by Inductively Couple Plasma (ICP. SEM images show a formation of a Ca-P rich layer on surface of composites. XRD results characterized the layer as calcium hydrogen phosphate. Ca/P ratios found via EDS results show a value close to 1.67. According to ICP results, the Ca e P ions are from SBF.

  11. "Allohormones" : a class of bioactive substances favoured by sexual selection

    NARCIS (Netherlands)

    Koene, J M; ter Maat, A

    During close bodily contact, many species transfer substances that influence the behaviour or physiology of conspecifics. Such transfer is especially common during courtship and copulation. When this is the case the involved bioactive substances are favoured by sexual selection because their effects

  12. Mannich reaction: A versatile and convenient approach to bioactive ...

    Indian Academy of Sciences (India)

    ent analogue, against HeLa cell line. The studies con- firm the fact that the presence of Mannich side chain improves the activity of an existing bioactive molecule. The semi-synthetic lactone analogue 44 obtained from the natural product 6α,7β-dihydroxyvouacapan-. 17β-oic acid, showed better anticancer activity than ...

  13. Bioactive proanthocyanidins from the root bark of Cassia abbreviata ...

    African Journals Online (AJOL)

    Cassia abbreviata is an important medicinal plant used in the treatment of various infectious diseases. The ethnomedical efficacy of extracts of this plant species is attributed to its phytochemical constituents most of which are phenolics and anthraquinones. The aim of this study was to isolate and elucidate bioactive phenolic ...

  14. Bioactive Milk Peptides: Redefining the Food-Drug Interphase ...

    African Journals Online (AJOL)

    Whether these derivatives will replace drugs entirely in the immediate future is still unclear, but the increasing appreciation of nutraceuticals will play a complementary rather than a substitutional role to the synthetic pharmacological drugs. This paper is the first part and seeks to review the bioactive milk peptides with ...

  15. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The calcination temperature was optimized based on the thermal analysis of the precursor. The bioactivity of wollastonite was investigated by immersing the scaffold in a simulated body fluid for 15 days at 37°C and intermediate analysis of the surface by XRD shows the deposition of hydroxyapatite layer after 5 days.

  16. Synthesis and evaluation of some bioactive compounds having ...

    Indian Academy of Sciences (India)

    Synthesis and evaluation of some bioactive compounds having oxygen and nitrogen heteroatom. Poonam Yadav Nalini V ... by dehydration. The chemical structures of all the compounds were determined by analytical and spectral method. The lead compounds were screened for antimicrobial and analgesic activities.

  17. In vitro assessment of bioactive components of Mirabilis jalapa ...

    African Journals Online (AJOL)

    ajl yemi

    2011-08-22

    Aug 22, 2011 ... spectrometry (GC-MS) analyses of the bioactive fraction were carried out on the analyte under ... The ethanolic extract was screened for its phytochemical .... 16008 Afr. J. Biotechnol. Table 1. Phytochemical constituents of ethanolic extract of leaves of. M. jalapa. Phytochemical. Crude ethanolic extract.

  18. Wealth of bioactive molecules from marine bacteria and their applications

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    By the term, "Bioactive molecules" we generally mean a range of compounds produced by living fauna and flora the effect of which tend to improve the status of man�s health, wealth and overall welfare These molecules could be proteins...

  19. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration

    NARCIS (Netherlands)

    Mota, J.; Yu, N.; Caridade, S.G.; Luz, G.M.; Gomes, M.E.R.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F.

    2012-01-01

    Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided

  20. Optimization of media for production of bioactive compounds by ...

    African Journals Online (AJOL)

    ... media for production of bioactive compounds from Streptomyces parvullus SS23/2 isolated from marine algae (Dictyota dichotoma) at the Bay of Bengal, India. Suitable medium was selected and optimized under different chemical and physical parameters for maximum production following one-factor- at- a time approach.

  1. The bioactive potentials of two medicinal plants commonly used as ...

    African Journals Online (AJOL)

    The bioactive potentials of two medicinal plants commonly used as folklore remedies among some tribes in West Africa. ... Phytochemical compounds present in the extract of J. curcas include alkaloids, saponins, steroids and tannins, while those present in N. laevis extract includes alkaloids, flavonoids and tannins.

  2. Effect of substrate on the growth, nutritional and bioactive ...

    African Journals Online (AJOL)

    rosemary

    2016-07-06

    Jul 6, 2016 ... 3Department of Botany and Plant Physiology, Faculty of Science, University of Buea, P. O. Box 63, South West Region,. Cameroon. ... Key words: Bioactive components, cultivation, nutritional analysis, oyster mushroom. ..... This was done using the Shinoda test (Magnesium Hydrochloride reduction test).

  3. Safety evaluation of water-soluble palm fruit bioactives.

    Science.gov (United States)

    Lynch, Barry S; West, Spencer; Roberts, Ashley

    2017-08-01

    Water-soluble palm fruit bioactives, derived from the aqueous stream of palm oil processing, have shown anti-diabetogenic effects in rodent models. To assess the safety of potential incorporation of this polyphenol-containing material in food, in vitro bacterial reverse mutation and in vitro chromosome aberration assays were conducted along with a 90-day subchronic toxicity study in Sprague-Dawley rats. Water-soluble palm fruit bioactives were inactive in the Ames and in vitro chromosome aberration assays up to the limit doses of 5000 μg/plate and 5000 μg/mL, respectively. In the 90-day feeding study, water-soluble palm fruit bioactives were administered via gavage at doses 0, 500, 1000 or 2000 mg/kg body weight/day. No significant effects were noted on body weight, food consumption, hematology, clinical chemistry, organ weights, and histopathological examination. The No Observable Adverse Effect Level was considered to be 2000 mg/kg body weight/day, the highest dose tested. These data provide evidence to support the safe use of water-soluble palm fruit bioactives in food or food ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of substrate on the growth, nutritional and bioactive ...

    African Journals Online (AJOL)

    A completely randomized block design with two treatments replicated three times was done and a laboratory analysis was carried out on the nutritional and bioactive components. The results obtained indicated that the growth and yield of P. ostreatus and P. florida varied widely depending on the kind of substrate used.

  5. Bioactivity of mangrove humic materials on Rizophora mangle and ...

    African Journals Online (AJOL)

    leonardo

    Brasileira de Bioquímica e Biologia Molecular (SBBQ 2008). Águas de Lindóia, SP, Brasil. Anais, SBBQ 2008. CD-ROM. Dobbss LB, Canellas LP, Olivares FL, Aguiar NO, Peres LEP, Azevedo. M, Spaccini R, Piccolo A, Façanha AR (2010). Bioactivity of chemically transformed humic matter from vermicompost on plant.

  6. Bioactive Diterpenes and Sesquiterpenes from the Rhizomes of Wild ...

    African Journals Online (AJOL)

    Wild ginger (Siphonochilus aethiopicus (Schweinf) B.L Burtt) is used in traditional medicines in the West and South of Africa. In the present study, the crude hexane extract of wild ginger was evaluated for in vitro bioactivity. The components isolated from the plant for the first time are: epi-curzerenone, furanodienone ...

  7. Bioactive Extracellular Matrix Scaffold Promotes Adaptive Cardiac Remodeling and Repair

    Directory of Open Access Journals (Sweden)

    Holly E.M. Mewhort, MD, PhD

    2017-08-01

    Full Text Available Structural cardiac remodeling after ischemic injury can induce a transition to heart failure from progressive loss of cardiac function. Cellular regenerative therapies are promising but face significant translational hurdles. Tissue extracellular matrix (ECM holds the necessary environmental cues to stimulate cell-based endogenous myocardial repair pathways and promote adaptive remodeling toward functional recovery. Heart epicardium has emerged as an important anatomic niche for endogenous repair pathways including vasculogenesis and cardiogenesis. We show that acellular ECM scaffolds surgically implanted on the epicardium following myocardial infarction (MI can attenuate structural cardiac remodeling and improve functional recovery. We assessed the efficacy of this strategy on post-MI functional recovery by comparing intact bioactive scaffolds with biologically inactivated ECM scaffolds. We confirm that bioactive properties within the acellular ECM biomaterial are essential for the observed functional benefits. We show that interaction of human cardiac fibroblasts with bioactive ECM can induce a robust cell-mediated vasculogenic paracrine response capable of functional blood vessel assembly. Fibroblast growth factor-2 is uncovered as a critical regulator of this novel bioinductive effect. Acellular bioactive ECM scaffolds surgically implanted on the epicardium post-MI can reprogram resident fibroblasts and stimulate adaptive pro-reparative pathways enhancing functional recovery. We introduce a novel surgical strategy for tissue repair that can be performed as an adjunct to conventional surgical revascularization with minimal translational challenges.

  8. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation products — bioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  9. Bioactivity and fluoride release of strontium and fluoride modified Biodentine.

    Science.gov (United States)

    Simila, Hazel O; Karpukhina, Natalia; Hill, Robert G

    2018-01-01

    Biodentine™ is a novel tricalcium silicate based material used both as a coronal dentine replacement and in pulp therapy. Its multiple use in sealing perforations, pulp capping and as a temporary restoration arises from its ability to promote dentine formation and to confer an excellent marginal seal. However, there is still room for improvement of this cement as it lacks the anticariogenic effect typically conferred by fluoride ion release as seen in glass ionomer cement based dental materials. Therefore, this study was conducted to investigate the impact of bioactive glass addition to Biodentine™. was to compare the apatite formation capacity, specificity of the apatite type formed and fluoride ion release by Biodentine™ cements that have been modified by three different compositions of bioactive glasses. High fluoride, high strontium and high fluoride plus strontium containing bioactive glasses were synthesized, incorporated into Biodentine™ powder and four types of cements prepared. These cements were immersed in phosphate buffered saline solution and incubated for a period of 3 and 24h, 3, 7 and 14 days. Fourier transform infra-red spectroscopy, X-ray diffraction, magic angle spinning nuclear magnetic resonance and fluoride ion release studies were performed. Bioactive glass addition to Biodentine™ led to pronounced formation of apatite. Where the bioactive glass contained fluoride, fluorapatite and fluoride ion release were demonstrated. Eliciting fluorapatite formation and fluoride ion release from Biodentine™ is an important development as fluoride is known to have antibacterial and anticariogenic effects. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. The impact of gallium content on degradation, bioactivity, and antibacterial potency of zinc borate bioactive glass.

    Science.gov (United States)

    Rahimnejad Yazdi, Alireza; Torkan, Lawrence; Stone, Wendy; Towler, Mark R

    2018-01-01

    Zinc borate glasses with increasing gallium content (0, 2.5, 5, 10, and 15 Wt % Ga) were synthesized and their degradation, bioactivity in simulated body fluid (SBF), and antibacterial properties were investigated. ICP measurements showed that increased gallium content in the glass resulted in increased gallium ion release and decreased release of other ions. Degradability declined with the addition of gallium, indicating the formation of more symmetric BO 3 units with three bridging oxygens and asymmetric BO 3 units with two bridging oxygens in the glass network as the gallium content in the series increased. The formation of amorphous CaP on the glass surface after 24 h of incubation in SBF was confirmed by SEM, XRD, and FTIR analyses. Finally, antibacterial evaluation of the glasses using the agar disc-diffusion method demonstrated that the addition of gallium increased the antibacterial potency of the glasses against P. aeruginosa (Gram-negative) while decreasing it against S. epidermidis (Gram-positive); considering the ion release trends, this indicates that the gallium ion is responsible for the glasses' antibacterial behavior against P. aeruginosa while the zinc ion controls the antibacterial activity against S. epidermidis. The statistical significance of the observed trends in the measurements were confirmed by applying the Kruskal-Wallis H Test. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 367-376, 2018. © 2017 Wiley Periodicals, Inc.

  11. Concept of hybrid embankment

    Directory of Open Access Journals (Sweden)

    Fukue Masaharu

    2015-06-01

    Full Text Available An innovative technique which is similar to a natural process, i.e., biogeochemical (carbonate diagenesis, is proposed to construct a hybrid embankment. In this study, the hybrid embankment is defined as a soil embankment which has a microbially induced framework structure of sand sheets and columns in the soft soil matrix. The sand materials are cemented with magnesium-calcite or dolomite, induced by ureolytic microbes. To design and construct hybrid embankments, fundamental problems, such as feasibility in terms of stability, geoenvironmental engineering practices, etc., are examined and discussed. It was shown that the hybrid embankment can be environmentally friendly and also can contribute solving technical and financial problems encountered in actual practice.

  12. Formula hybrid SAE.

    Science.gov (United States)

    2013-09-01

    User-friendly tools are needed for undergraduates to learn about component sizing, powertrain integration, and control : strategies for student competitions involving hybrid vehicles. A TK Solver tool was developed at the University of Idaho for : th...

  13. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  14. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  15. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  16. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  17. Requirements for Hybrid Cosimulation

    Science.gov (United States)

    2014-08-16

    Systems, supported by IBM and United Technologies), and the Center for Hybrid and Embedded Software Systems ( CHESS ) at UC Berkeley (supported by NSF...Center (Industrial Cyber-Physical Systems, supported by IBM and United Technologies), and the Center for Hybrid and Embedded Software Systems ( CHESS ) at...of models given in the Modelica language [15, 20], together with a specification of submodels that should be exported by a tool as FMUs, and re

  18. Human hybrid hybridoma

    International Nuclear Information System (INIS)

    Tiebout, R.F.; van Boxtel-Oosterhof, F.; Stricker, E.A.M.; Zeijlemaker, W.P.

    1987-01-01

    Hybrid hybridomas are obtained by fusion of two cells, each producing its own antibody. Several authors have reported the construction of murine hybrid hybridomas with the aim to obtain bispecific monoclonal antibodies. The authors have investigated, in a model system, the feasibility of constructing a human hybrid hybridoma. They fused two monoclonal cell lines: an ouabain-sensitive and azaserine/hypoxanthine-resistant Epstein-Barr virus-transformed human cell line that produces an IgG1kappa antibody directed against tetanus toxiod and an azaserine/hypoxanthine-sensitive and ouabain-resistant human-mouse xenohybrid cell line that produces a human IgG1λ antibody directed against hepatitis-B surface antigen. Hybrid hybridoma cells were selected in culture medium containing azaserine/hypoxanthine and ouabain. The hybrid nature of the secreted antibodies was analyzed by means of two antigen-specific immunoassay. The results show that it is possible, with the combined use of transformation and xenohybridization techniques, to construct human hybrid hybridomas that produce bispecific antibodies. Bispecific antibodies activity was measured by means of two radioimmunoassays

  19. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration.

    Science.gov (United States)

    Chung, Justin J; Fujita, Yuki; Li, Siwei; Stevens, Molly M; Kasuga, Toshihiro; Georgiou, Theoni K; Jones, Julian R

    2017-05-01

    Hybrids that are molecular scale co-networks of organic and inorganic components are promising biomaterials, improving the brittleness of bioactive glass and the strength of polymers. Methacrylate polymers have high potential as the organic source for hybrids since they can be produced, through controlled polymerization, with sophisticated polymer architectures that can bond to silicate networks. Previous studies showed the mechanical properties of hybrids can be modified by polymer architecture and molar mass (MM). However, biodegradability is critical if hybrids are to be used as tissue engineering scaffolds, since the templates must be remodelled by host tissue. Degradation by-products have to either completely biodegrade or be excreted by the kidneys. Enzyme, or bio-degradation is preferred to hydrolysis by water uptake as it is expected to give a more controlled degradation rate. Here, branched and star shaped poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (poly(MMA-co-TMSPMA)) were synthesized with disulphide based dimethacrylate (DSDMA) as a biodegradable branching agent. Biodegradability was confirmed by exposing the copolymers to glutathione, a tripeptide which is known to cleave disulphide bonds. Cleaved parts of the star polymer from the hybrid system were detected after 2weeks of immersion in glutathione solution, and MM was under threshold of kidney filtration. The presence of the branching agent did not reduce the mechanical properties of the hybrids and bone progenitor cells attached on the hybrids in vitro. Incorporation of the DSDMA branching agent has opened more possibilities to design biodegradable methacrylate polymer based hybrids for regenerative medicine. Bioactive glasses can regenerate bone but are brittle. Hybrids can overcome this problem as intimate interactions between glass and polymer creates synergetic properties. Implants have previously been made with synthetic polymers that degrade by water, however, they

  20. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.

    Science.gov (United States)

    Mamo, Gashaw

    Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these

  1. Alkali-free bioactive glasses for bone regeneration =

    Science.gov (United States)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass

  2. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium

    Science.gov (United States)

    Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro

    2011-01-01

    Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO2 nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow–derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%–50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl−anions. A thin TiO2 coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium

  3. Study of Antibacterial Efficacy of Hybrid Chitosan-Silver Nanoparticles for Prevention of Specific Biofilm and Water Purification

    Directory of Open Access Journals (Sweden)

    Somnath Ghosh

    2011-01-01

    Full Text Available Antibacterial efficacy of silver nanoparticles (Ag NPs deposited alternatively layer by layer (LBL on chitosan polymer in the form of a thin film over a quartz plate and stainless steel strip has been studied. An eight-bilayer chitosan/silver (Cs/Ag8 hybrid was prepared having a known concentration of silver. Techniques such as UV-visible spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES, and atomic force microscopy (AFM were carried out to understand and elucidate the physical nature of the film. Gram-negative bacteria, Escherichia coli (E. coli, were used as a test sample in saline solution for antibacterial studies. The growth inhibition at different intervals of contact time and, more importantly, the antibacterial properties of the hybrid film on repeated cycling in saline solution have been demonstrated. AFM studies are carried out for the first time on the microbe to know the morphological changes affected by the hybrid film. The hybrid films on aging (3 months are found to be as bioactive as before. Cytotoxicity experiments indicated good biocompatibility. The hybrid can be a promising bioactive material for the prevention of biofilms specific to E. coli and in purification of water for safe drinking.

  4. Enhanced Antifungal Bioactivity of Coptis Rhizome Prepared by Ultrafining Technology

    Directory of Open Access Journals (Sweden)

    Ping-Chung Kuo

    2014-01-01

    Full Text Available The aim of this study was to identify and quantify the bioactive constituents in the methanol extracts of Coptis Rhizome prepared by ultrafining technology. The indicator compound was identified by spectroscopic method and its purity was determined by HPLC. Moreover, the crude extracts and indicator compound were examined for their ability to inhibit the growth of Rhizoctonia solani Kühn AG-4 on potato dextrose agar plates. The indicator compound is a potential candidate as a new plant derived pesticide to control Rhizoctonia damping-off in vegetable seedlings. In addition, the extracts of Coptis Rhizome prepared by ultrafining technology displayed higher contents of indicator compound; they not only improve their bioactivity but also reduce the amount of the pharmaceuticals required and, thereby, decrease the environmental degradation associated with the harvesting of the raw products.

  5. Bioactive Milk for Intestinal Maturation in Preterm Neonates

    DEFF Research Database (Denmark)

    Li, Yanqi

    of stage of lactation (e.g. colostrum versus mature milk), milk processing (e.g. homogenization, pasteurization, fractionation, spray-drying), and supplementation of a bioactive protein in intestinal maturation using preterm pigs as the model for preterm infants. We hope the results are able to contribute...... inflammatory response. This immaturity predisposes preterm infants to various nutritional challenges and clinical conditions, including feeding intolerance, growth restriction, necrotizing enterocolitis (NEC), sepsis and long-term consequences. The quality of milk fed to preterm infants during the first...... reduction or a loss in the levels/activities of various bioactive proteins (e.g. Igs, lactoferrin, IGF, TGF-β) throughout the lactation or during milk processing (e.g. homogenization, pasteurization, fractionation, spray-drying). We therefore made our effects in the PhD project to investigate the influences...

  6. Azadirachta indica Mediated Bioactive Lyocell Yarn: Chemical and Colour Characterization

    Directory of Open Access Journals (Sweden)

    B. H. Patel

    2014-01-01

    Full Text Available The study deals with preparing aesthetic textiles using methanolic extract of Azadirachta indica leaves. The extract with metallic and natural mordents was utilized to create various shades on lyocell yarn using exhaust technique of dyeing. Aesthetic values of dyed yarns were analyzed in terms of colourimetric parameters, that is, CIE L*  a*  b* and colour fastness. The attachment of Azadirachta indica compounds has been confirmed by using infrared spectroscopy (IR analysis. The dyed samples exhibit moderate to good fastness properties. The study showed that lyocell yarn treated at 15% (owf methanolic extract of Azadirachta indica leaves can be utilized as effective bioactive textiles. Azadirachta indica is an alternative to synthetic antimicrobial agents. This bioactive yarn can be used in fashion as well as in medicinal industry.

  7. In vitro bioactivity of a tricalcium silicate cement

    International Nuclear Information System (INIS)

    Morejon-Alonso, L.; Bareiro, O.; Santos, L.A. dos; Carrodeguas R, Garcia

    2009-01-01

    Tricalcium silicate is the major constituent of Portland cement and the responsible for their mechanical strength at early stages. In order to be used as and additive of conventional calcium phosphate cement (CPC), in vitro bioactivity of a calcium silicate cement (CSC) after soaking in simulated body fluid (SBF) for 14 days was study. The cement was obtained by mixing Ca 3 SiO 5 , obtained by sol-gel process, and a Na 2 HPO 4 solution. The morphological and structural changes of the material before and after soaking were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the formation of a layer of a Hydroxyapatite (HA) onto the CSC cement after soaking for 1h in SBF that became denser with the increase of soaking time. The study suggests that Ca 3 SiO 5 would be an effective additive to improve the bioactivity and long term strength of conventional CPC. (author)

  8. Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Saeid Kargozar

    2017-12-01

    Full Text Available Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers, in regards to repair and regenerate injured tissues of cardiac and pulmonary systems.

  9. Review: Mycoendophytes in medicinal plants: Diversity and bioactivities

    Directory of Open Access Journals (Sweden)

    MUDASIR DAR

    2012-07-01

    Full Text Available Rai M, Gade A, Rathod D, Dar M, Varma A. 2012. Review: Mycoendophytes in medicinal plants: Diversity and bioactivities. Nusantara Bioscience 4: 86-96. Endophytes are microorganisms that reside in internal tissues of living plants without causing any negative effect. These offer tremendous potential for the exploitation of novel and eco-friendly secondary metabolites used in medicine, the pharmaceutical industry and agriculture. The present review is focused on diversity of endophytes, current national and international bioactive secondary metabolite scenario and future prospects. Endophytic fungi as novel source of potentially useful medicinal compounds are discussed along with the need to search for new and more effective agents from endophytes to combat disease problems.

  10. Chemistry and Functionality of Bioactive Compounds Present in Persimmon

    Directory of Open Access Journals (Sweden)

    Shazia Yaqub

    2016-01-01

    Full Text Available Extensive research has related the consumption of persimmon with the reduced risk of various diseases and particularly highlighted the presence of bioactive phenolic compounds for their therapeutic properties. Major phenolic compounds present in persimmon are ferulic acid, p-coumaric acid, and gallic acid. β-Cryptoxanthin, lycopene, β-carotene, zeaxanthin, and lutein are important carotenoids having antioxidant potential. They are important to prevent oxidation of low-density lipoproteins, safeguard beta cells of the pancreas, and reduce cardiovascular diseases, cancer, diabetes mellitus, and damage caused by chronic alcohol consumption. In this paper, the chemistry and health benefits of bioactive compounds present in persimmon are reviewed to encourage impending applications and to facilitate further research activities.

  11. Sulfated polysaccharides as bioactive agents from marine algae.

    Science.gov (United States)

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Bioactive Materials in Endodontics: An Evolving Component of Clinical Dentistry.

    Science.gov (United States)

    Mohapatra, Satyajit; Patro, Swadheena; Mishra, Sumita

    2016-06-01

    Achieving biocompatibility in a material requires an interdisciplinary approach that involves a sound knowledge of materials science, bioengineering, and biotechnology. The host microbial-material response is also critical. Endodontic treatment is a delicate procedure that must be planned and executed properly. Despite major advances in endodontic therapy in recent decades, clinicians are confronted with a complex root canal anatomy and a wide selection of endodontic filling materials that, in turn, may not be well tolerated by the periapical tissues and may evoke an immune reaction. This article discusses published reports of various bioactive materials that are used in endodontic therapy, including calcium hydroxide, mineral trioxide aggregate, a bioactive dentin substrate, calcium phosphate ceramics, and calcium phosphate cements.

  13. Bioactivity Assessment of Water Soluble Calix[4]arene Derivative

    Directory of Open Access Journals (Sweden)

    Ali Muhammad Soomro

    2012-06-01

    Full Text Available The present study deals with the bioactivity assessment of 5,11,17,28-tetrakismorpholinomethyl-25,26,27,28-tetrahydroxycalix[4]arene (3 against a variety of microorganisms including Gram Positive; Staphylococcus albus ATCC 10231, Streptococcus viridans ATCC 12392, Gram Negative: Bacillus procynous ATCC 51189, Enterobacter aerogenes ATCC 13048, Klebsiella aerogenous ATCC 10031, Escherichia coli ATCC 8739, Sallmonella ATCC 6017 and Fungi: Aspergillus Niger ATCC 16404, Aspergillus fumagatus ATCC 90906, Penicillium ATCC 32333. The antimicrobial activity was found by using a modified disc diffusion method. All microorganisms were obtained from the American Type Culture Collection (ATCC and selective agar media were employed for the growth of microbial strains. Results show that all the tested microorganisms are highly susceptible to compound 3. The MIC of 4 μg/μL and 8 μg/μL was determined against most of the bacterial and fungal strains. The bioactivity of 3 could be a valuable addition in therapeutic index.

  14. Naturally Occurring Diterpenoid Dimers: Source, Biosynthesis, Chemistry and Bioactivities.

    Science.gov (United States)

    Lin, Li-Gen; Ung, Carolina Oi Lam; Feng, Zhe-Ling; Huang, Li; Hu, Hao

    2016-10-01

    Diterpenoid dimers are rare in nature and mainly found in higher plants including the families Acanthaceae, Annonaceae, Asteraceae, Calceolariaceae, Chrysobalanaceae, Cupressaceae, Euphorbiaceae, Fabaceae, Lamiaceae, Liliaceae, Meliaceae, Rhizophoraceae, Taxaceae, Velloziaceae, and Zingiberaceae. In addition, a few diterpenoid dimers have been also reported from fungi (Psathyrellaceae), liverworts (Scapaniaceae), and a gorgonian (Gorgoniidae). They feature a wide variety of structures due to different core skeletons, linkage patterns, substituents, and configurations. Accordingly, diterpenoid dimers exhibit a broad range of bioactivities, including cytotoxic, anti-inflammatory, antimicrobial, antimalarial, and antifouling properties, which have attracted more and more research interests in the past decades. This review with 176 metabolites from 109 references provides a comprehensive and up-to-date overview of the source, biosynthesis, structure, synthesis, and bioactivities of diterpenoid dimers. Georg Thieme Verlag KG Stuttgart · New York.

  15. Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas

    DEFF Research Database (Denmark)

    Vynne, Nikolaj Grønnegaard

    -associated strains were significantly more likely to possess stable antibacterial activity and be pigmented. Pseudoalteromonas strains are known as prolific producers of bioactive secondary metabolites; hence screening the global strain collection for production of novel antibiotics was initiated. Novel quinolone...... collection, in part because of its production of an intense black pigment in contrast to its phylogenetic placement within the non-pigmented clade. This strain was subsequently shown to represent a new bacterial species named Pseudoalteromonas galatheae. Initial studies revealed the potential production......The purpose of this Ph.D. project was to evaluate a global collection of marine Pseudoalteromonas bacteria as a source of novel bioactive compounds, and to investigate the distribution and production of such compounds among different species within the Pseudoalteromonas genus. The strain collection...

  16. Natural bioactive compounds of Citrus limon for food and health.

    Science.gov (United States)

    González-Molina, E; Domínguez-Perles, R; Moreno, D A; García-Viguera, C

    2010-01-20

    Citrus genus is the most important fruit tree crop in the world and lemon is the third most important Citrus species. Several studies highlighted lemon as an important health-promoting fruit rich in phenolic compounds as well as vitamins, minerals, dietary fiber, essential oils and carotenoids. Lemon fruit has a strong commercial value for the fresh products market and food industry. Moreover, lemon productive networks generate high amounts of wastes and by-products that constitute an important source of bioactive compounds with potential for animal feed, manufactured foods, and health care. This review focuses on the phytochemistry and the analytical aspects of lemon compounds as well as on the importance for food industry and the relevance of Citrus limon for nutrition and health, bringing an overview of what is published on the bioactive compounds of this fruit.

  17. Evaluation of bioactivity in vitro of endodontic calcium aluminate cement

    International Nuclear Information System (INIS)

    Oliveira, I.R.; Andrade, T.L.; Santos, G.L.; Pandolfelli, V.C.

    2011-01-01

    Bioactivity is referred to as the capacity of a material to develop a stable bond with living tissue via the deposition of hydroxyapatite. Materials which exhibit this property can be used to repair diseased or damaged bone tissue and can be designed to remain in situ indefinitely. An indication of bioactivity can be obtained by the formation of a hydroxyapatite layer on the surface of a substrate in simulated body fluids (SBF) in vitro. Therefore, set samples of calcium aluminate endodontic cement were maintained in contact with SBF solutions (Kokubo and Rigo) and their surfaces were later evaluated by means of SEM, EDX and DRX. Measurements of pH and ionic conductivity were also carried out for SBF solutions in contact with set samples of endodontic cement. The ideal conditions of precipitation were obtained in SBF Rigo been observed a surface layer with spherical morphology characteristic of stoichiometric hydroxyapatite.(author)

  18. PMMA/Ca2+ bone cements. Hydrolytic properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Mónica L. Hernández

    2012-01-01

    Full Text Available Bone cements of poly (methyl methacrylate (PMMA have been used for about 40 years to fix artificial prosthesis to bone structure. The aim of this study was to evaluate the absorption, solubility, degradation and bioactivity of novel formulations of PMMA/Ca2+ bone cements. These properties were evaluated using a fractional experimental design. Hydrolytic parameters were determined, from which we found that 7/8 of the formulations for absorption and 6/8 for solubility fulfill the ISO 4049:2000 requirements. The final degradation values ranged between 1 and 5%, except for one of the formulations. Besides, some formulations showed bioactivity after seven days of immersion in SBF solution.

  19. Chemical constituents and bioactivity of Formosan lauraceous plants

    Directory of Open Access Journals (Sweden)

    Hsun-Shuo Chang

    2016-04-01

    Full Text Available Taiwan is rich in lauraceous plants. A review of 197 references based on the chemical analysis and bioactivity of indigenous lauraceous plants carried out by native scientists from 1963 to 2014 has been compiled. About 303 new compounds and thousands of known compounds comprising alkaloids and non-alkaloids with diverse structures have been isolated or identified from indigenous plants belonging to the 11 lauraceous genera. The volatile components, however, have been excluded from this review. This review provides an overview of the past efforts of Taiwan scientists working on secondary metabolites and their bioactivity in native lauraceous plants. The potential of lauraceous plants worthy of further study is also noted. The contents will be helpful for the chemotaxonomy of Lauraceae and be of value for the development of native Formosan lauraceous plants.

  20. New hybrid systems

    International Nuclear Information System (INIS)

    Bernardin, B.

    2001-01-01

    New hybrid systems are made up of a subcritical core, a spallation target and a proton accelerator. The neutrons that are produced in the target by the flux of protons are necessary to maintain the chain reaction of fission. Some parameters that are important for a classical nuclear reactor like doppler coefficient or delayed neutron fraction do not matter in a hybrid system. In a PWR-type reactor or in a fast reactor the concentration of actinides has a bad impact on these 2 parameters, so it is justified to study hybrid systems as actinide transmuters. The hybrid system, because of its external source of neutrons can put aside an important reactivity margin. This reactivity margin can be used to design safer nuclear reactors (particularly in some situations of reactivity accidents) or to irradiate fuel elements containing high concentrations of minor actinides that could not be allowed in a classical reactor. This article reviews various ways of integrating hybrid systems in a population of already existing nuclear reactors in order to manage quantities of plutonium, of minor actinides or of long-life fission products. (A.C.)

  1. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  2. Antibacterial and Bioactive Coatings on Titanium Implant Surfaces

    OpenAIRE

    Aranya, Anupama Kulkarni; Pushalkar, Smruti; Zhao, Minglei; LeGeros, Racquel Z.; Zhang, Yu; Saxena, Deepak

    2017-01-01

    Various surface modifications have been tried for enhancing osseointegration of the dental implants like mechanical and/or chemical treatments and deposition of calcium phosphate coatings. The objective of this research was to develop calcium-phosphate based thin coatings with antibacterial and bioactive properties for potential application in dental implants. Titanium (Ti) discs were immersed in different calcifying solutions: CaP (positive control), F-CaP, Zn-CaP and FZn-CaP and incubated f...

  3. Cranberries and Their Bioactive Constituents in Human Health12

    Science.gov (United States)

    Blumberg, Jeffrey B.; Camesano, Terri A.; Cassidy, Aedin; Kris-Etherton, Penny; Howell, Amy; Manach, Claudine; Ostertag, Luisa M.; Sies, Helmut; Skulas-Ray, Ann; Vita, Joseph A.

    2013-01-01

    Recent observational and clinical studies have raised interest in the potential health effects of cranberry consumption, an association that appears to be due to the phytochemical content of this fruit. The profile of cranberry bioactives is distinct from that of other berry fruit, being rich in A-type proanthocyanidins (PACs) in contrast to the B-type PACs present in most other fruit. Basic research has suggested a number of potential mechanisms of action of cranberry bioactives, although further molecular studies are necessary. Human studies on the health effects of cranberry products have focused principally on urinary tract and cardiovascular health, with some attention also directed to oral health and gastrointestinal epithelia. Evidence suggesting that cranberries may decrease the recurrence of urinary tract infections is important because a nutritional approach to this condition could lower the use of antibiotic treatment and the consequent development of resistance to these drugs. There is encouraging, but limited, evidence of a cardioprotective effect of cranberries mediated via actions on antioxidant capacity and lipoprotein profiles. The mixed outcomes from clinical studies with cranberry products could result from interventions testing a variety of products, often uncharacterized in their composition of bioactives, using different doses and regimens, as well as the absence of a biomarker for compliance to the protocol. Daily consumption of a variety of fruit is necessary to achieve a healthy dietary pattern, meet recommendations for micronutrient intake, and promote the intake of a diversity of phytochemicals. Berry fruit, including cranberries, represent a rich source of phenolic bioactives that may contribute to human health. PMID:24228191

  4. Bioactive kaurane diterpenes and coumarins from Fortunella margarita.

    Science.gov (United States)

    el-Shafae, A M; Ibrahim, M A

    2003-02-01

    Two bioactive pyranocoumarins 1 (sesselin) and 3 (xanthyletin) and one prenylated coumarin 2 (suberosin), beside three rare kaurene diterpenes 5-7 were isolated from the roots of Fortunella margarita. Their structures were determined from their spectroscopic data, including 1H/13C 2D NMR experiments. The kaurene diterpenes 5-7 are reported in Rutaceae for the first time. Diterpene 5 was found to be a potent stimulator of uterine contraction; it also caused stimulation of brain activity.

  5. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi

    OpenAIRE

    Vasundhara, M.; Kumar, Anil; Reddy, M. Sudhakara

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain...

  6. Bioactive compounds of fresh and dehydrated green pepper

    Directory of Open Access Journals (Sweden)

    Ana Marinho do Nascimento

    2017-07-01

    Full Text Available Pepper Capsicum annuum L., belongs to the Solanaceae family, which contains approximately 31 species. Bioactive compounds also known as phytochemicals are chemical and biochemical components that are present in most fruits and vegetables. The objective of the present study was to verify if the bioactive compounds of the green pepper remain after being submitted to the drying process. The experiment was conducted in a completely randomized design with 2 treatments and 5 replicates. Green peppers were used from the (Economic Center of Supply Corporation of the city of Patos, Paraíba. The peppers were packed in plastic boxes and transported to the Laboratory of Chemistry, Biochemistry and Food Analysis of the Federal University of Campina Grande, Campus Pombal. Where they were selected, washed and sanitized. After that, the minimum processing was done and the drying was carried out in a circulation oven at 60 ºC. At the end of the drying, the samples were crushed and sieved. After this process, the analyzes of ascorbic acid, chlorophylls, carotenoids, anthocyanin flavonoids and phenolic compounds. It was found that there was a significant difference between treatments. The bioactive properties of green pepper were not lost after the heat treatment. Some phytochemicals as ascorbic acid, carotenoids and phenolic compounds were concentrated. Therefore the loss of water during the drying process increased the concentration of the bioactive compounds of dehydrated pepper, the product obtained with this method exhibited high levels of phytochemicals, the use of drying may be an alternative to prolong the shelf life of the vegetable.

  7. Coriander (Coriandrum sativum L.) and its bioactive constituents.

    Science.gov (United States)

    Laribi, Bochra; Kouki, Karima; M'Hamdi, Mahmoud; Bettaieb, Taoufik

    2015-06-01

    Coriander (Coriandrum sativum L.), a member of the Apiaceae family, is among most widely used medicinal plant, possessing nutritional as well as medicinal properties. Thus, the aim of this updated review is to highlight the importance of coriander as a potential source of bioactive constituents and to summarize their biological activities as well as their different applications from data obtained in recent literature, with critical analysis on the gaps and potential for future investigations. A literature review was carried out by searching on the electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies focusing on the biological and pharmacological activities of coriander seed and herb bioactive constituents. All recent English-language articles published between 2000 and 2014 were searched using the terms 'C. sativum', 'medicinal plant', 'bioactive constituents', and 'biological activities'. Subsequently, coriander seed and herb essential oils have been actively investigated for their chemical composition and biological activities including antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anxiolytic, analgesic, anti-inflammatory, anti-convulsant and anti-cancer activities, among others. Although coriander has been reported to possess a wide range of traditional medicinal uses, no report is available in its effectiveness use in reactive airway diseases such as asthma and bronchiolitis. In brief, the information presented herein will be helpful to create more interest towards this medicinal species by defining novel pharmacological and clinical applications and hence, may be useful in developing new drug formulations in the future or by employing coriander bioactive constituents in combination with conventional drugs to enhance the treatment of diseases such as Alzheimer and cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Phytochemicals and bioactivity in wild German and Roman chamomiles infusions

    OpenAIRE

    Guimarães, Rafaela; Barros, Lillian; Calhelha, Ricardo C.; Carvalho, Ana Maria; Queiroz, Maria João R.P.; Ferreira, Isabel C.F.R.

    2013-01-01

    Natural matrices represent a rich source of biologically active compounds and are an example of molecular diversity, with recognized potential in drug discovery. In the present work, the infusions of Matricaria recutita L. (German chamomile) and Chamaemelum nobile L. (Roman chamomile) were submitted to an analysis of phenolic compounds and evaluation of bioactivity. Phenolic compounds were characterized by reversed-phase high performance liquid chromatography coupled to diode a...

  9. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios

    OpenAIRE

    Nourhan Hisham Shady; Ebaa M. El-Hossary; Mostafa A. Fouad; Tobias A. M. Gulder; Mohamed Salah Kamel; Usama Ramadan Abdelmohsen

    2017-01-01

    Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classe...

  10. Unbiased Evaluation of Bioactive Secondary Metabolites in Complex Matrices

    Science.gov (United States)

    Inui, Taichi; Wang, Yuehong; Pro, Samuel M.; Franzblau, Scott G.; Pauli, Guido F.

    2012-01-01

    The majority of bioactive principles in a complex matrix such as natural products and botanical medicines are secondary rather than primary metabolites. In addition to being chemically diverse, the bioactivity of an ethnobotanical can comprise from one to several bioactive compounds, present in a complex mixture. Conventional discovery efforts utilize bioassay-guided fractionation (BGF) to isolate individual active compounds. When applied to complex natural products, BGF is often challenged by an apparent loss of activity during fractionation, resulting in weakly active isolated compounds. Metabolomic analysis can potentially complement existing the BGF paradigm by capturing the chemical complexity of the metabolites. The proposed biochemometric approach establishes a link between the chemistry of a secondary metabolome and a deserved health impact, using a high-throughput, high-resolution capable biological endpoint. The proof of principle is demonstrated for the anti-tuberculosis (TB) activity of the Alaskan ethnobotanical, Oplopanax horridus. Biochemometric analysis identified the 100 most active constituents from thousands of metabolites in the active extract by means of 2D orthogonal chromatography using countercurrent and GC-MS methods. Previously isolated O. horridus phytoconstituents were used as reference markers of known structure and bio(in)activity. Positive correlations allowed distinction of anti-TB actives from inactive compounds. A total of 29 bioactives from 3 main structural classes were assigned based on MS data. Biochemometric analysis is a new tool for the standardization of herbal medicines and ethnobotanicals, as well as for drug discovery from nature. The method can assign multiple active compounds in complex mixtures without their prior isolation or structure elucidation, while still providing an interface to structural information. PMID:22766306

  11. Cell Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath

    Science.gov (United States)

    2017-07-01

    supplement with each medium change. This has tremendous potential for targeted therapy of focal meniscal lesions . Building on these in vitro results, we...of biomaterials capable of promoting endogenous MSC recruitment to the meniscal lesion . Additionally, the GelMA hydrogel itself possesses good...AWARD NUMBER: W81XWH-15-1-0104 TITLE: Cell-Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath PRINCIPAL INVESTIGATOR

  12. Bioactivity of Malva Sylvestris L., a Medicinal Plant from Iran

    OpenAIRE

    Razavi, Seyed Mehdi; Zarrini, Gholamreza; Molavi, Ghader; Ghasemi, Ghader

    2011-01-01

    Objective(s) Malva sylvestris L. (Malvaceae), an annual plant, has been already commonly used as a medicinal plant in Iran. In the present work, we evaluate some bioactivities of the plant extracts. Materials and Methods The aired-dried plant flowers and leaves were extracted by soxhlet apparatus with n-hexane, dichloromethane and methanol. The antimicrobial, cytotoxic, and phytotoxic of the plant extracts were evaluated using disk diffusion method, MTT, and Lettuce assays, respectively. Resu...

  13. Dental applications of nanostructured bioactive glass and its composites

    OpenAIRE

    Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.

    2013-01-01

    To improve treatments for bone or dental trauma, and for diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among th...

  14. Bioactive lipids as radioprotectors and potentiators of radiotherapy

    International Nuclear Information System (INIS)

    Das, Undurti N.

    2016-01-01

    Selective elimination of tumor cells with little or no effects on normal cells is desirable for the treatment of cancer. Radiotherapy, a well accepted form of cancer therapy, is associated with significant side effects that need to be eliminated or dampened. Our studies revealed that radiation can produce significant changes in the metabolism of essential fatty acids that could be related to its actions and side effects. It was noted that UVB exposed skin produced PGE2, PGF2a and PGE3 that accompany the erythema in the first 24-48 h, associated with increased COX-2 expression at 24 h. Leukocyte chemoattractants 11-, 12- and 8-monohydroxy-eicosatetraenoic acid (HETE) are elevated from 4 to 72 h, in association with peak dermal neutrophil influx at 24 h, and increased dermal CD3 + lymphocytes and 12- and 15-LOX expression from 24 to 72 h. On the other hand, anti-inflammatory metabolite 15-HETE shows later expression, peaking at 72 h. Thus, skin lesions are characterized by overlapping sequential profiles of increases in COX products followed by LOX products that may regulate subsequent events and ultimately its resolution. The enhanced expression of 15-HETE at 72 h is interesting since it forms the precursor to antiinflammatory bioactive lipids. We and others also showed that the anti-cancer action of radiation and chemotherapeutic drugs can be augmented by certain polyunsaturated fatty acids with little or no action on normal cells. Even tumor cell drug resistance could be reversed by these bioactive lipids. Our recent studies revealed that these bioactive lipids also prevent genetic damage induced by radiation and other drugs. These studies imply that employing certain bioactive lipids may be exploited as radiation protective molecules and as enhancers of the anti-cancer action of radiation in the therapy of cancer. (author)

  15. Neutral atom beam technique enhances bioactivity of PEEK

    International Nuclear Information System (INIS)

    Khoury, Joseph; Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C.

    2013-01-01

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants

  16. Marine Bioactives: Pharmacological Properties and Potential Applications against Inflammatory Diseases

    Science.gov (United States)

    D’Orazio, Nicolantonio; Gammone, Maria Alessandra; Gemello, Eugenio; De Girolamo, Massimo; Cusenza, Salvatore; Riccioni, Graziano

    2012-01-01

    Inflammation is a hot topic in medical research, because it plays a key role in inflammatory diseases: rheumatoid arthritis (RA) and other forms of arthritis, diabetes, heart diseases, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, even cancer and many others. Over the past few decades, it was realized that the process of inflammation is virtually the same in different disorders, and a better understanding of inflammation may lead to better treatments for numerous diseases. Inflammation is the activation of the immune system in response to infection, irritation, or injury, with an influx of white blood cells, redness, heat, swelling, pain, and dysfunction of the organs involved. Although the pathophysiological basis of these conditions is not yet fully understood, reactive oxygen species (ROS) have often been implicated in their pathogenesis. In fact, in inflammatory diseases the antioxidant defense system is compromised, as evidenced by increased markers of oxidative stress, and decreased levels of protective antioxidant enzymes in patients with rheumatoid arthritis (RA). An enriched diet containing antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic substances, has been suggested to improve symptoms by reducing disease-related oxidative stress. In this respect, the marine world represents a largely untapped reserve of bioactive ingredients, and considerable potential exists for exploitation of these bioactives as functional food ingredients. Substances such as n-3 oils, carotenoids, vitamins, minerals and peptides provide a myriad of health benefits, including reduction of cardiovascular diseases, anticarcinogenic and anti-inflammatory activities. New marine bioactives are recently gaining attention, since they could be helpful in combating chronic inflammatory degenerative conditions. The aim of this review is to examine the published studies concerning the potential pharmacological properties and

  17. Exploiting the borono-Mannich reaction in bioactive alkaloid synthesis

    OpenAIRE

    Pyne, Stephen G.; Au, Christopher W. G.; Davis, Andrew S.; Morgan, Ian Rhys; Ritthiwigrom, Thunwadee; Yazici, Arife

    2008-01-01

    We have demonstrated that the borono-Mannich reaction is a versatile and efficient reaction for the diastereoselective preparation of chiral 1,2-amino alcohols. These Mannich products are valuable starting materials as shown in this report by the synthesis of bioactive polyhydroxylated pyrrolizidine and indolizidine alkaloids. Initial studies, directed at the more complex Stemona alkaloids and using the borono-Mannich reaction on cyclic N-acyliminium ions, are encouraging, as demonstrated by ...

  18. Electrochemistry and Spectroelectrochemistry of Bioactive Hydroxyquinolines: A Mechanistic Study

    Czech Academy of Sciences Publication Activity Database

    Sokolová, Romana; Nycz, J. E.; Ramešová, Šárka; Fiedler, Jan; Degano, I.; Szala, M.; Kolivoška, Viliam; Gál, M.

    2015-01-01

    Roč. 119, č. 20 (2015), s. 6074-6080 ISSN 1520-6106 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR M200401201 Program:M Institutional support: RVO:61388955 Keywords : electrochemistry * spectroelectrochemistry * Bioactive Hydroxyquinolines Subject RIV: CG - Electrochemistry Impact factor: 3.187, year: 2015

  19. Phytoestrogens as Bioactive Compounds with Beneficial Effects for Human Health

    OpenAIRE

    Silva, Ana Cristina Ferrão; Guiné, Raquel

    2017-01-01

    Phytoestrogens, also called estrogens, are bioactive compounds original from plants. They are similar in structure and functionality to the estrogenic hormones in animals. It has been documented that these compounds have several effects on the human body, namely in terms of carbohydrate, protein, lipid and mineral metabolism. Some of the most known effects of these substances are related to their roles in the women’s reproductive system. The dietary phytoestrogens are present in vegetable...

  20. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Tania Rescigno

    2017-01-01

    Full Text Available The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

  1. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Science.gov (United States)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  2. Bioactive compounds and antioxidant potential fruit of Ximenia americana L.

    Science.gov (United States)

    Almeida, Maria Lucilania Bezerra; Freitas, Wallace Edelky de Souza; de Morais, Patrícia Lígia Dantas; Sarmento, José Dárcio Abrantes; Alves, Ricardo Elesbão

    2016-02-01

    The caatinga ecoregion in northeast Brazil presents a wide variety in plant species. However, the potential of these species as a source of energy, carbohydrates, vitamins, minerals and bioactive properties beneficial to health is still unknown. Among these species we can find the wild plum (Ximenia americana). Due to its various phytotherapeutic properties and absence of studies on the chemical composition of the fruit this article aimed to evaluate the bioactive compounds and antioxidant potential of the X. americana in different stages of maturation. The fruits of X. americana showed considerable amounts of bioactive compounds, as well as antioxidant activity and antioxidant enzymes. The fruits at green maturity stage showed higher content of yellow flavonoids (22.07 mg/100g), anthocyanins (1.92 mg/100 g), polyphenols (3051.62 mg/100 g), starch (4.22%), antioxidant activity (489.40 g fruit/g DPPH and 198.77 μmol Trolox/g) and activity of antioxidant enzymes; the antioxidant activity allocated to the fruit was shown to be related to the contents of extractable polyphenols, yellow flavonoids, total anthocyanins and antioxidant enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives.

    Science.gov (United States)

    Roberts, Joseph L; Moreau, Régis

    2016-08-10

    Overwhelming evidence indicates that diets rich in fruits and vegetables are protective against common chronic diseases, such as cancer, obesity and cardiovascular disease. Leafy green vegetables, in particular, are recognized as having substantial health-promoting activities that are attributed to the functional properties of their nutrients and non-essential chemical compounds. Spinach (Spinacia oleracea L.) is widely regarded as a functional food due to its diverse nutritional composition, which includes vitamins and minerals, and to its phytochemicals and bioactives that promote health beyond basic nutrition. Spinach-derived phytochemicals and bioactives are able to (i) scavenge reactive oxygen species and prevent macromolecular oxidative damage, (ii) modulate expression and activity of genes involved in metabolism, proliferation, inflammation, and antioxidant defence, and (iii) curb food intake by inducing secretion of satiety hormones. These biological activities contribute to the anti-cancer, anti-obesity, hypoglycemic, and hypolipidemic properties of spinach. Despite these valuable attributes, spinach consumption remains low in comparison to other leafy green vegetables. This review examines the functional properties of spinach in cell culture, animals and humans with a focus on the molecular mechanisms by which spinach-derived non-essential phytochemicals and bioactives, such as glycolipids and thylakoids, impart their health benefits.

  4. Silver-containing mesoporous bioactive glass with improved antibacterial properties.

    Science.gov (United States)

    Gargiulo, Nicola; Cusano, Angela Maria; Causa, Filippo; Caputo, Domenico; Netti, Paolo Antonio

    2013-09-01

    The aim of the present work is the study of the bacteriostatic/bactericidal effect of a silver-containing mesoporous bioactive glass obtained by evaporation-induced self-assembly and successive thermal stabilization. Samples of the manufactured mesophase were characterized by means of transmission electron microscopy and N₂ adsorption/desorption at 77 K, revealing structural and textural properties similar to SBA-15 mesoporous silica. Glass samples used for bioactivity experiments were put in contact with a standardized, commercially available cell culture medium instead of lab-produced simulated body fluid, and were then characterized by means of X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. All these analyses confirmed the development of a hydroxyl carbonate apatite layer on glass particles. Moreover, the investigated mesostructure showed a very good antibacterial effect against S. aureus strain, with a strong evidence of bactericidal activity already registered at 0.5 mg/mL of glass concentration. A hypothesis about the mechanism by which Ag affects the bacterial viability, based on the intermediate formation of crystalline AgCl, was also taken into account. With respect to what already reported in the literature, these findings claim a deeper insight into the possible use of silver-containing bioactive glasses as multifunctional ceramic coatings for orthopedic devices.

  5. Effects of Bioactive Compounds on Odontogenic Differentiation and Mineralization.

    Science.gov (United States)

    Phung, S; Lee, C; Hong, C; Song, M; Yi, J K; Stevenson, R G; Kang, M K; Shin, K-H; Park, N-H; Kim, R H

    2017-01-01

    Direct pulp capping involves the placement of dental materials directly onto vital pulp tissues after deep caries removal to stimulate the regeneration of reparative dentin. This physical barrier will serve as a "biological seal" between these materials and the pulp tissue. Although numerous direct pulp capping materials are available, the use of small bioactive compounds that can potently stimulate and expedite reparative dentin formation is still underexplored. Here, the authors compared and evaluated the pro-osteogenic and pro-odontogenic effects of 4 small bioactive compounds- phenamil (Phen), purmorphamine (Pur), genistein (Gen), and metformin (Met). The authors found that these compounds at noncytotoxic concentrations induced differentiation and mineralization of preosteoblastic MC3T3-E1 cells and preodontoblastic dental pulp stem cells (DPSCs) in a dose-dependent manner. Among them, Phen consistently and potently induced differentiation and mineralization in vitro. A single treatment with Phen was sufficient to enhance the mineralization potential of DPSCs in vitro. More importantly, Phen-treated DPSCs showed enhanced odontogenic differentiation and mineralization in vivo. Our study suggests that these small bioactive compounds merit further study for their potential clinical use as pulp capping materials.

  6. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

    Directory of Open Access Journals (Sweden)

    Laura Cornara

    2017-06-01

    Full Text Available Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs, and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA, with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  7. Stem cell homing-based tissue engineering using bioactive materials

    Science.gov (United States)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  8. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05).

  9. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    Science.gov (United States)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  10. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products.

    Science.gov (United States)

    Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno

    2017-01-01

    Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  11. Nocardiopsis species: a potential source of bioactive compounds.

    Science.gov (United States)

    Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V

    2016-01-01

    Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications. © 2015 The Society for Applied Microbiology.

  12. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Abstract Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations’ setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  13. Microencapsulation as a tool for incorporating bioactive ingredients into food.

    Science.gov (United States)

    Kuang, S S; Oliveira, J C; Crean, A M

    2010-11-01

    Microencapsulation has been developed by the pharmaceutical industry as a means to control or modify the release of drug substances from drug delivery systems. In drug delivery systems microencapsulation is used to improve the bioavailability of drugs, control drug release kinetics, minimize drug side effects, and mask the bitter taste of drug substances. The application of microencapsulation has been extended to the food industry, typically for controlling the release of flavorings and the production of foods containing functional ingredients (e.g. probiotics and bioactive ingredients). Compared to the pharmaceutical industry, the food industry has lower profit margins and therefore the criteria in selecting a suitable microencapsulation technology are more stringent. The type of microcapsule (reservoir and matrix systems) produced and its resultant release properties are dependent on the microencapsulation technology, in addition to the physicochemical properties of the core and the shell materials. This review discusses the factors that affect the release of bioactive ingredients from microcapsules produced by different microencapsulation technologies. The key criteria in selecting a suitable microencapsulation technology are also discussed. Two of the most common physical microencapsulation technologies used in pharmaceutical processing, fluidized-bed coating, and extrusion-spheronization are explained to highlight how they might be adapted to the microencapsulation of functional bioactive ingredients in the food industry.

  14. BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY FROM FIVE TYPES OF SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Maria Copaciu

    2016-10-01

    Full Text Available After germination process, the green seedlings accumulate important quantities of bioactive compounds such as: enzymes, vitamins, minerals, chlorophylls and nutrients. The current study presents a comparison between different bioactive compounds and their antioxidant capacity, after the seedling germination and growth of five seeds (arugula, lentil, wheat, beans and mustard both on soil, in a pot (natural system, and directly on cotton wool soaked, in water (artificial system. In this study the carotenoids content and the antioxidant capacity were analysed. The data of the present study showed that the highest amount of zeaxanthin and β - carotene was found in cultivars of wheat grown in natural system, while the highest antioxidant activity was found in cultivars of wheat, lentils and beans, though in this case with no statistical differences between the systems. The results show statistical differences between the values of bioactive compounds in the five types of seedlings but also in the values obtained for the same seedlings in different systems. The best cultivars for improving the nutritional quality for human consumption are wheat seedlings followed by lentil ones.

  15. PLA-Based Hybrid and Composite Electrospun Fibrous Scaffolds as Potential Materials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anna Magiera

    2017-01-01

    Full Text Available The aim of the study was to manufacture poly(lactic acid- (PLA- based nanofibrous nonwovens that were modified using two types of modifiers, namely, gelatin- (GEL- based nanofibres and carbon nanotubes (CNT. Hybrid nonwovens consisting of PLA and GEL nanofibres (PLA/GEL, as well as CNT-modified PLA nanofibres with GEL nanofibres (PLA + CNT/GEL, in the form of mats, were manufactured using concurrent-electrospinning technique (co-ES. The ability of such hybrid structures as potential scaffolds for tissue engineering was studied. Both types of hybrid samples and one-component PLA and CNTs-modified PLA mats were investigated using scanning electron microscopy (SEM, water contact angle measurements, and biological and mechanical tests. The morphology, microstructure, and selected properties of the materials were analyzed. Biocompatibility and bioactivity in contact with normal human osteoblasts (NHOst were studied. The coelectrospun PLA and GEL nanofibres retained their structures in hybrid samples. Both types of hybrid nonwovens were not cytotoxic and showed better osteoinductivity in comparison to scaffolds made from pure PLA. These samples also showed significantly reduced hydrophobicity compared to one-component PLA nonwovens. The CNT-contained PLA nanofibres improved mechanical properties of hybrid samples and such a 3D system appears to be interesting for potential application as a tissue engineering scaffold.

  16. The Correlation of Surfactant Concentrations on the Properties of Mesoporous Bioactive Glass

    Directory of Open Access Journals (Sweden)

    Shao-Ju Shih

    2016-01-01

    Full Text Available Bioactive glass (BG, a potential biomaterial, has received increasing attention since the discovery of its superior bioactivity. One of the main research objectives is to improve the bioactive property of BGs; therefore, surfactant-derived mesoporous bioactive glasses (MBGs were developed to provide a high specific surface area for achieving higher bioactivity. In this study, various concentrations of typical triblock F127 surfactant were used to manipulate the morphology, specific surface area, and bioactivity of MBG particles. Two typical morphologies of smooth (Type I and wrinkled (Type II spheres were observed, and the population of Type II particles increased with an increase in the surfactant concentration. A direct correlation between specific surface area and bioactivity was observed by comparing the data obtained using the nitrogen adsorption-desorption method and in vitro bioactive tests. Furthermore, the optimal surfactant concentration corresponding to the highest bioactivity revealed that the surfactant aggregated to form Type II particles when the surface concentration was higher than the critical micelle concentration, and the high population of Type II particles may reduce the specific surface area because of the loss of bioactivity. Moreover, the formation mechanism of SP-derived MBG particles is discussed.

  17. Hybridization in geese: a review.

    Science.gov (United States)

    Ottenburghs, Jente; van Hooft, Pim; van Wieren, Sipke E; Ydenberg, Ronald C; Prins, Herbert H T

    2016-01-01

    The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large knowledge gap in geese. In this review, we assemble the available information on hybrid geese by focusing on three main themes: (1) incidence and frequency, (2) behavioural mechanisms leading to hybridization, and (3) hybrid fertility. Hybridization in geese is common on a species-level, but rare on a per-individual level. An overview of the different behavioural mechanisms indicates that forced extra-pair copulations and interspecific nest parasisitm can both lead to hybridization. Other sources of hybrids include hybridization in captivity and vagrant geese, which may both lead to a scarcity of conspecifics. The different mechanisms are not mutually exclusive and it is currently not possible to discriminate between the different mechanisms without quantitative data. Most hybrid geese are fertile; only in crosses between distantly related species do female hybrids become sterile. This fertility pattern, which is in line with Haldane's Rule, may facilitate interspecific gene flow between closely related species. The knowledge on hybrid geese should be used, in combination with the information available on hybridization in ducks, to study the process of avian speciation.

  18. The tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.; Rose, R.P.

    1981-01-01

    At a time when the potential benefits of various energy options are being seriously evaluated in many countries through-out the world, it is both timely and important to evaluate the practical application of fusion reactors for their economical production of nuclear fissile fuels from fertile fuels. The fusion hybrid reactor represents a concept that could assure the availability of adequate fuel supplies for a proven nuclear technology and have the potential of being an electrical energy source as opposed to an energy consumer as are the present fuel enrichment processes. Westinghouse Fusion Power Systems Department, under Contract No. EG-77-C-02-4544 with the Department of Energy, Office of Fusion Energy, has developed a preliminary conceptual design for an early twenty-first century fusion hybrid reactor called the commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) Plants. To the depth this study has been performed, no insurmountable technical problems have been identified. The study has provided a basis for reasonable cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources. A nearer-term concept is also defined using a beam driven fusion driver in lieu of the longer term ignited operating mode. (orig.)

  19. Hybrid Broadcast Broadband TV

    OpenAIRE

    Vaala, Jere

    2014-01-01

    Tämän insinöörityön tarkoituksena oli tutustua Hybrid Broadcast Broadband TV:een sekä TV:n nykytilaan ja tulevaisuuteen. Työ on tehty Metropolia Ammattikorkeakoululle. Media-alalla on menossa murros, joka pakottaa printtimedian ja TV-yhtiöt jatkuviin uudistuksiin. Mainosrahoitteinen TV on myös ongelmissa. Digitalisoituminen on tuonut laajakaistan perinteisten jakelutapojen rinnalle, mikä syö mainostuloja. Käyttöön tulossa oleva Hybrid Broadcast Broadband TV perustuu jo olemassa olevii...

  20. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  1. Doubts about hybrids

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The natural draught wet cooling tower with a height of 160 m is considerably taller than the 80 m high hybrid cooling tower, but the latter has a considerably larger diameter. Spray losses for both types are about 4.5 kg/sec for a thermal output of 2500 MW. Apart from the pump load, the natural cooling tower requires no power. Apart from higher pump loads, the hybrid cooling tower requires power for the fans. The energy demand for this purpose is 1.5 to 3% of the nett powerstation output. For the Isar 2 nuclear powerstation this would mean a reduction in puput of about 35 MW. (orig.) [de

  2. Bioactivities of six sterols isolated from marine invertebrates.

    Science.gov (United States)

    Zhou, Xuefeng; Sun, Jianfan; Ma, Wanlei; Fang, Wei; Chen, Zhefan; Yang, Bin; Liu, Yonghong

    2014-02-01

    Epidioxy sterols and sterols with special side chains, such as hydroperoxyl sterols, usually obtained from marine natural products, are attractive for bioactivities. To isolate and screen bioactive and special sterols from China Sea invertebrates. Two hydroperoxyl sterols (1 and 2) from the sponge Xestospongia testudinaria Lamarck (Petrosiidae), three epidioxy sterols (3-5) from the sea urchin Glyptocidaris crenularis A. Agassiz (Glyptocidaridae), sponge Mycale sp. (Mycalidae) and gorgonian Dichotella gemmacea Milne Edwards and Haime (Ellisellidae) and an unusual sterol with 25-acetoxy-19-oate (6) also from D. gemmacea were obtained and identified. Using high-throughput screening, their bioactivities were tested toward Forkhead box O 3a (Foxo3a), 3-hydroxy-3-methylglutaryl CoA reductase gene fluorescent protein (HMGCR-GFP), nuclear factor kappa B (NF-κB) luciferase, peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α), protein-tyrosine phosphatase 1B (PTP1B), mitochondrial membrane permeabilization (MMP) and adenosine monophosphate-activated protein kinase. Their structures were determined by comparing their nuclear magnetic resonance data with those reported in the literature. Three epidioxy sterols (3-5) showed inhibitory activities toward Foxo3a, HMGCR-GFP and NF-κB-luciferase with the IC50 values 4.9-6.8 μg/mL. The hydroperoxyl sterol 29-hydroperoxystigmasta-5,24(28)-dien-3-ol (2) had diverse inhibitory activities against Foxo3a, HMGCR-GFP, NF-κB-luciferase, PGC-1α, PTP1B and MMP, with IC50 values of 3.8-19.1 μg/mL. The bioactivities of 3-5 showed that 5α,8α-epidioxy is the active group. Otherwise, the most plausible biosynthesis pathway for 1 and 2 in sponge involves the abstraction of an allylic proton by an activated oxygen, such as O2, along with migration of carbon-carbon double bond. Therefore, the bioactive and unstable steroid should be biosynthesized in sponge under a special ecological environment to act as a defensive

  3. Rhombohedrel Hybrid Crystal Semiconductor Device

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a new high speed and high efficiency hybrid crystal structure semiconductor device based on the the recent invention of rhombohedral hybrid crystal...

  4. Composites made of flame-sprayed bioactive glass 45S5 and polymers: bioactivity and immediate sealing properties.

    Science.gov (United States)

    Mohn, D; Bruhin, C; Luechinger, N A; Stark, W J; Imfeld, T; Zehnder, M

    2010-11-01

    To engineer systems using polyisoprene (PI) or polycaprolactone (PCL) and nanometric bioactive glass 45S5 (BG) that could create a hydroxyapatite interface and thus ultimately make the use of an endodontic sealer unnecessary. Different composites using PI or PCL as matrix material were prepared with BG contents of up to 30 wt%. Unfilled PI and PCL, commercially available filled PI (Obtura gutta-percha) and PCL pellets (Resilon) served as control materials. Bioactivity (in vitro precipitate formation in simulated body fluid) was investigated using scanning electron microscopy and X-ray diffraction analysis. To test immediate sealing ability, simulated root canals were filled with heated materials, and dye leakage was assessed. Leakage was statistically compared between groups using Kruskal-Wallis analysis of variance followed by Mann-Whitney U tests and Bonferroni correction. The alpha-type error was set at 0.05. Both composite systems revealed hydroxyapatite formation on their surface. This was not observed on control materials. Incorporating 30 wt% BG into PI and PCL significantly (P polymers, so that dye leakage in simulated root canals was prevented completely. Polyisoprene and PCL composites with BG showed promising results as single root canal filling materials. Incorporation of BG fillers into the polymers under investigation made the resulting composite materials bioactive and improved their immediate sealing ability. © 2010 International Endodontic Journal.

  5. Bioactive edible films for food applications:Influence of the bioactive compounds on film structure and properties.

    Science.gov (United States)

    Benbettaïeb, Nasreddine; Karbowiak, Thomas; Debeaufort, Frédéric

    2017-10-17

    Nowadays, a new generation of edible films is being especially designed for incorporating antimicrobials, antioxidants, enzymes or functional ingredients. Edible films made from natural biopolymers become the focus of many research works as an alternative to synthetic food packaging due to their edibility, biodegradability and compostability as well as to their use as active packaging. Active compounds incorporated in edible films could protect foods against deterioration during storage and therefore extend their shelf life. These active films were mainly studied for the bioactivity, as antimicrobial or antioxidant. However, they could also improve the structure and the physicochemical properties of films through chemical linkage with reactive groups of the polymer chains for instance. Moreover, changing the film structure under cross-linking reaction may increase the cohesion between polymer chains and active compounds, and therefore their retention in the polymer network to better control their release. This manuscript provides an overview on the effect of bio-active compounds incorporation on the film structure and functional properties. Depending on their structure, concentration, reactive groups,.., active compounds can act as plasticizer, but also as anti-plasticizer or cross-linking agents in the biopolymer matrix, and can thus ameliorate the water vapour and gas permeability. Therefore, the retention of bioactive compounds in the polymer network and their release can be better controlled. They can also provide a negative plasticizing effect on the film structure. Hence, the improvement of edible active film functionalities has been investigated to achieve suitable applications on foods.

  6. Diterpenylquinone Hybrids: Synthesis and Assessment of Gastroprotective Mechanisms of Action in Human Cells

    Directory of Open Access Journals (Sweden)

    Mariano Walter Pertino

    2013-09-01

    Full Text Available A modern approach in the search for new bioactive molecules is the synthesis of novel chemical entities combining molecules of different biosynthetic origin presenting biological effects as single compounds. Gastroprotective compounds from South American medicinal plants, namely quinones and diterpenes, were used as building blocks to obtain hybrid diterpenylquinones. Starting from the labdane diterpene junicedric acid and two isomers, as well as from three quinones, including lapachol, 18 hybrid molecules were synthesized. Six of them are described for the first time. The potential gastroprotective mechanisms of action of the compounds were assessed in dose-response experiments using human gastric epithelial cells (AGS and human lung fibroblasts (MRC-5. The following studies were carried out: stimulation of cell proliferation, cytoprotection against sodium taurocholate (NaT-induced damage, synthesis of PGE2 and total reduced sulfhydryl (GSH content. The antioxidant capacity of the compounds was determined on the inhibition of the lipoperoxidation in human erythrocyte membranes. Hybrid compounds presented activities different from those shown by the starting compounds, supporting the potential of this approach in the search for new bioactive molecules. The effects might be modulated by selective modification in the terpene or quinone moieties of the new molecules. Structure-activity relationships are discussed.

  7. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  8. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  9. Hybridization of biomedical circuitry

    Science.gov (United States)

    Rinard, G. A.

    1978-01-01

    The design and fabrication of low power hybrid circuits to perform vital signs monitoring are reported. The circuits consist of: (1) clock; (2) ECG amplifier and cardiotachometer signal conditioner; (3) impedance pneumobraph and respiration rate processor; (4) hear/breath rate processor; (5) temperature monitor; and (6) LCD display.

  10. Teelt van hybride wintertarwerassen

    NARCIS (Netherlands)

    Timmer, R.D.; Paauw, J.G.M.

    2003-01-01

    Om de mogelijkheden van de teelt van hybride wintertarwerassen onder Nederlandse omstandigheden in beeld te brengen zijn er van 2000-2002 proeven uitgevoerd op het PPO-proefbedrijf te Lelystad. In deze proeven zijn een 4-tal hybriderassen (Hybnos, Hyno-braba, Hyno-esta, Mercury) vergeleken met een

  11. Indexical Hybrid Tense Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin

    2012-01-01

    In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now...

  12. Hybrid FSAE Vehicle Realization

    Science.gov (United States)

    2010-12-01

    The goal of this multi-year project is to create a fully functional University of Idaho entry in the hybrid FSAE competition. Vehicle integration is underway as part of a variety of 2010-11 senior design projects. This leverages a variety of analytic...

  13. Glueballs, Hybrids and Exotics

    International Nuclear Information System (INIS)

    Reyes, M. A.; Moreno, G.

    2006-01-01

    We comment on the physics analysis carried out by the Experimental High Energy Physics (EHEP) group of the Instituto de Fisica of the University of Guanajuato (IFUG), Mexico. In particular, this group has been involved in analysis carried out to search for glueball, hybrid and exotic candidates

  14. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  15. Hybrid keyword search auctions

    KAUST Repository

    Goel, Ashish

    2009-01-01

    Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1. We show that risk-seeking advertisers will choose only a per-impression bid whereas risk-averse advertisers will choose only a per-click bid, and argue that both kind of advertisers arise naturally. Hence, the ability to bid in a hybrid fashion is important to account for the risk characteristics of the advertisers. 2. For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, we show that having the extra information from the advertisers in the form of a per-impression bid can result in significantly higher revenue. 3. An advertiser who believes that its click-probability is much higher than the auctioneer\\'s estimate can use per-impression bids to correct the auctioneer\\'s prior without incurring any extra cost. 4. The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies to deal with the uncertainty in the click-probability using the same basic auction. The per-click and per-impression bidding schemes can only be used to implement two extreme cases of these strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction. The

  16. Surface functionalization of bioactive glasses with natural molecules of biological significance

    OpenAIRE

    Zhang, Xin

    2014-01-01

    Natural or artificial materials used for replacement or supplement the functions of living tissues, termed as biomaterials, may be bioinert (i.e. alumina and zorconia,) resorbable (i.e. tricalcium phosphate), bioactive (i.e. hydroxyapatite, bioactive glasses, and glass-ceramics) or porous for tissue ingrowth (i.e. hydroxyapatite-coated metals). Among all the biomaterials, bioactive glass and glass-ceramics are widely used in orthopedic and dental applications and are being developed for tissu...

  17. Ants exhibit asymmetric hybridization in a mosaic hybrid zone.

    Science.gov (United States)

    Purcell, Jessica; Zahnd, Sacha; Athanasiades, Anouk; Türler, Rebecca; Chapuisat, Michel; Brelsford, Alan

    2016-10-01

    Research on hybridization between species provides unparalleled insights into the pre- and postzygotic isolating mechanisms that drive speciation. In social organisms, colony-level incompatibilities may provide additional reproductive barriers not present in solitary species, and hybrid zones offer an opportunity to identify these barriers. Here, we use genotyping-by-sequencing to sequence hundreds of markers in a hybrid zone between two socially polymorphic ant species, Formica selysi and Formica cinerea. We characterize the zone, determine the frequency of hybrid workers, infer whether hybrid queens or males are produced and investigate whether hybridization is influenced by colony social organization. We also compare cuticular hydrocarbon profiles and aggression levels between the two species. The hybrid zone exhibits a mosaic structure. The asymmetric distribution of hybrids skewed towards F. cinerea suggests a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. The occurrence of backcrossed individuals indicates that hybrid queens and/or males are fertile, and the presence of the F. cinerea mitochondrial haplotype in 97% of hybrids shows that successful F1 hybrids will generally have F. cinerea mothers and F. selysi fathers. We found no evidence that social organization contributes to speciation, because hybrids occur in both single-queen and multiple-queen colonies. Strongly differentiated cuticular hydrocarbon profiles and heightened interspecific aggression further reveal that species recognition cues are both present and perceived. The discovery of fertile hybrids and asymmetrical gene flow is unusual in ants, and this hybrid zone will therefore provide an ideal system with which to investigate speciation in social insects. © 2016 John Wiley & Sons Ltd.

  18. A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Wacha, András [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117 (Hungary); Gomes, Pedro S. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal); Alves, Luís C. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N.10, 2695-066 Bobadela LRS (Portugal); Fernandes, M. Helena Vaz [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Salvado, Isabel M. Miranda, E-mail: isabelmsalvado@ua.pt [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Fernandes, M. Helena R. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal)

    2016-05-01

    The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS–SiO{sub 2} have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS–SiO{sub 2}–CaO–SrO, was prepared with the incorporation of 0.05 mol of titanium per mol of SiO{sub 2}. Calcium and strontium were added using the respective acetates as sources, following a sol–gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity. - Highlights: • A hybrid PDMS–SiO{sub 2}–CaO–SrO material was prepared with the incorporation of Ti. • Sr was released in concentrations suitable for the induction of bone tissue repair. • The material demonstrated to be cytocompatible when tested with osteoblastic cells.

  19. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation

    Directory of Open Access Journals (Sweden)

    Qiong Wang

    2017-06-01

    Full Text Available Mushrooms are widely distributed around the world and are heavily consumed because of their nutritional value and medicinal properties. Polysaccharides (PSs are an important component of mushrooms, a major factor in their bioactive properties, and have been intensively studied during the past two decades. Monosaccharide composition/combinations are important determinants of PS bioactivities. This review summarizes: (i monosaccharide composition/combinations in various mushroom PSs, and their relationships with PS bioactivities; (ii possible biosynthetic pathways of mushroom PSs and effects of key enzymes on monosaccharide composition; (iii regulation strategies in PS biosynthesis, and prospects for controllable biosynthesis of PSs with enhanced bioactivities.

  20. Salinity Inhibits Rice Seed Germination by Reducing α-Amylase Activity via Decreased Bioactive Gibberellin Content

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs, such as GA1 and GA4, and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment. These results suggest that NaCl-induced bioactive GA deficiency is caused by up-regulated expression of GA-inactivated genes, and the up-regulated expression of GA biosynthetic genes might be a consequence of negative feedback regulation of the bioactive GA deficiency. Moreover, we provide evidence that NaCl-induced bioactive GA deficiency inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression. Additionally, exogenous bioactive GA rescues NaCl-inhibited seed germination by enhancing α-amylase activity. Thus, NaCl treatment reduces bioactive GA content through promotion of bioactive GA inactivation, which in turn inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression.

  1. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review.

    Science.gov (United States)

    Liu, Ming; Wang, Yunpu; Liu, Yuhuan; Ruan, Roger

    2016-11-01

    There is an urgent treat of numerous chronic diseases including heart disease, stroke, cancer, chronic respiratory diseases and diabetes, which have a significant influence on the health of people worldwide. In addition to numerous preventive and therapeutic drug treatments, important advances have been achieved in the identification of bioactive peptides that may contribute to long-term health. Although bioactive peptides with various biological activities received unprecedented attention, as a new source of bioactive peptides, the significant role of bioactive peptides from traditional Chinese medicine and traditional Chinese food has not fully appreciated compared to other bioactive components. Hence, identification and bioactivity assessment of these peptides could benefit the pharmaceutical and food industry. Furthermore, the functional properties of bioactive peptides help to demystify drug properties and health benefits of traditional Chinese medicine and traditional Chinese food. This paper reviews the generation and biofunctional properties of various bioactive peptides derived from traditional Chinese medicine and traditional Chinese food. Mechanisms of digestion, bioavailability of bioactive peptides and interactions between traditional Chinese medicine and traditional Chinese food are also summarized in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA

    Directory of Open Access Journals (Sweden)

    Nabian Nima

    2013-01-01

    Full Text Available The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%. We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer’s solution with bovine serum albumin (BSA for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, surface electron microscope (SEM and transmission electron microscope (TEM. The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.

  3. Mirror hybrid reactor optimization studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1976-01-01

    A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U

  4. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  5. Isolation and characterization of bioactive polyacetylenes Panax ginseng Meyer roots.

    Science.gov (United States)

    Yeo, Chia-Rou; Yong, Jin-Jie; Popovich, David G

    2017-05-30

    Panax ginseng has been studied for its chemo-preventive properties and pharmaceutical potential. Polyacetylenic compounds isolated from Panax ginseng root typically comprised of non-polar C 17 compound have been reported to exhibit bioactive properties. The objective of this project is to extract, isolate, and characterize bioactive polyacetylenes from Panax ginseng root using various extraction and separation methods Ginseng was extracted by reflux using methanol, ethanol, hexane, ethyl acetate, methanolic ultrasonication. The extracts were partitioned with hexane to obtain water-soluble portion and hexane-soluble portion. Hexane was subsequently removed under vacuum, and formed a crude polyacetylenes extract (crude PA). Silica gel chromatography and semi-preparative HPLC were utilized to prepare 5 fractions and the polyacetylenes were measure by HPLC and molecular weights confirm my APCI-MS and MNR. The bioactive effect was measured by MTT viability assay using murine 3T3-L1 cells. Extraction with methanol under reflux produced significantly larger amount of polyacetylenes (p<0.05). Liquid-liquid extraction and column chromatography were used to separate polyacetylenic compounds into five different fractions. Major polyacetylenes, panaxynol and panaxydol were found in fraction 1 and 2 respectively. Dose-response relationships were observed in 3T3-L1 cells and LC50 were 13.52±3.05μg/mL (fraction 1), 3.69±1.09μg/mL (fraction 2), 52.88±11.16μg/mL (fraction 3), 85.91±27.37μg/mL (fraction 4) and 135.52±32.91μg/mL (fraction 5). Fraction 2 containing panaxydol was found to have exhibited the greatest anti-proliferative effects on 3T3-L1 preadipocytes. Extraction with methanol under reflux produced significantly more polyacetylenes. Fractions that contain panaxydol was the most cytotoxic. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Estrogen and progestin bioactivity of foods, herbs, and spices.

    Science.gov (United States)

    Zava, D T; Dollbaum, C M; Blen, M

    1998-03-01

    In this study we report on the content and bioactivity of plant (phyto) estrogens and progestins in various foods, herbs, and spices, before and after human consumption. Over 150 herbs traditionally used by herbalists for treating a variety of health problems were extracted and tested for their relative capacity to compete with estradiol and progesterone binding to intracellular receptors for progesterone (PR) and estradiol (ER) in intact human breast cancer cells. The six highest ER-binding herbs that are commonly consumed were soy, licorice, red clover, thyme, tumeric, hops, and verbena. The six highest PR-binding herbs and spices commonly consumed were oregano, verbena, tumeric, thyme, red clover and damiana. Some of the herbs and spices found to contain high phytoestrogens and phytoprogestins were further tested for bioactivity based on their ability to regulate cell growth rate in ER (+) and ER (-) breast cancer cell lines and to induce or inhibit the synthesis of alkaline phosphatase, an end product of progesterone action, in PR (+) cells. In general, we found that ER-binding herbal extracts were agonists, much like estradiol, whereas PR-binding extracts, were neutral or antagonists. The bioavailability of phytoestrogens and phytoprogestins in vivo were studied by quantitating the ER-binding and PR-binding capacity of saliva following consumption of soy milk, exogenous progesterone, medroxyprogesterone acetate, or wild mexican yam products containing diosgenin. Soy milk caused a dramatic increase in saliva ER-binding components without a concomitant rise in estradiol. Consumption of PR-binding herbs increased the progestin activity of saliva, but there were marked differences in bioactivity. In summary, we have demonstrated that many of the commonly consumed foods, herbs, and spices contain phytoestrogens and phytoprogestins that act as agonists and antagonists in vivo.

  7. Identification of potent antioxidant bioactive peptides from goat milk proteins.

    Science.gov (United States)

    Ahmed, Ahmed S; El-Bassiony, Tawfik; Elmalt, Laila M; Ibrahim, Hisham R

    2015-08-01

    Goat milk proteins have gained increasing attention especially the bioactive peptides released from the parent proteins by digestive enzymes. Specifically, the interest in bioactives of goat milk is intensifying due to its reduced allergenicity compared to bovine milk. In this study, proteins of goat milk were fractionated into caseins (GCP) and whey proteins (GWP), hydrolyzed by pepsin and the generated peptides were examined for radical scavenging activities. The hydrolysates of whey (P-GWP) and casein (P-GCP) proteins exhibited potent superoxide anion (O 2 ・- ) scavenging activity in a dose-dependent manner, as investigated using the natural xanthine/xanthine oxidase (X/XOD) system. The P-GWP and P-GCP dramatically quenched the O 2 ・- flux but had negligible effect on the catalytic function of the enzyme, indicating specificity to scavenge O 2 ・- but not oxidase inhibition. Further, both P-GWP and P-GCP were able to remarkably quench the chemical DPPH radical. Fractionation of hydrolysates by size-exclusion chromatography produced four fractions (F1-F4) from both hydrolysates, with variable O 2 ・- scavenging activities. However, the slow eluting fractions (F4) of both hydrolysates and fast eluting fraction (F2) of P-GCP contained peptides with the highest scavenging activities. Peptides in the active fractions of P-GWP and P-GCP, isolated by reversed phase-HPLC, exhibited significantly strong O 2 ・- scavenging activities. MALDI-TOF-MS allowed the identification of several antioxidant peptides derived from both caseins and whey proteins, with β-casein and β-lactoglobulin being the major contributors, respectively. The results demonstrate that digestion with pepsin generates multiple soluble peptides from goat milk protein fractions with remarkable ability to scavenge superoxide radicals and thus providing a fascinating opportunity for their potential candidacy as antioxidant bioactive peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Preclinical evaluation of strontium-containing bioactive bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhaoyang, E-mail: lizy@hku.hk [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong (China); Yuan, Ning [Department of Laboratory Medicine, Tianjin Chest Hospital, Tianjin 300051 (China); Lam, Raymond Wing Moon [Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong (China); Cui, Zhenduo; Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Lu, William Weijia, E-mail: wwlu@hku.hk [Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong (China)

    2013-12-01

    Strontium (Sr) has become more attractive for orthopaedic applications as they can simultaneously stimulate bone formation and prevent bone loss. A Sr-containing bioactive bone cement (Sr-BC) has been designed to fix osteoporotic bone fracture. Sr is a trace element, so the safety of containing Sr is concerned when Sr-BC is implanted in human body. The preclinical assessment of biocompatibility of Sr-BC was conducted according to ISO 10993 standards. MTT assay showed that this bioactive bone cement was non-toxic to mouse fibroblasts, and it met the basic requirement for the orthopaedic implant. The three independent genetic toxicity studies including Ames, chromosome aberration and bone marrow micronucleus assays demonstrated absence of genotoxic components in Sr-BC, which reassured the safety concerns of this novel bone cement. The muscle implantation results in present study were also encouraging. The acute inflammation around the cement was observed at 1 week post-implantation; however, no significant difference was observed between control and Sr-BC groups. These responses may be attributed to the presence of the foreign body, but the tissue healed after 12 weeks implantation. In summary, the above preclinical results provide additional assurance for the safety of this implant. Sr-BC can be used as a potential alternative to the traditional bone cement. - Highlights: • Strontium-containing bioactive bone cement (Sr-BC) was designed. • The biocompatibility of Sr-BC was evaluated according ISO 10993 standards. • Preclinical results provide additional assurance for the safety of Sr-BC.

  9. Sea urchin: toxinology, bioactive compounds and its treatment management

    Directory of Open Access Journals (Sweden)

    Gholamhossein Mohebbi

    2016-09-01

    Full Text Available Background: The sea urchins are classified in the echinoderms category because of their spiny skin. Saponins are the major responsible metabolites for Echinodermata biological activities . As mentioned before, about 80 species of sea urchins are venomous for human. Their spine, pedicellariae, and some other organs such as gonads and coelomic fluids contain different toxins and bioactive compounds. This review study have evaluated toxinology and bioactive compounds from the extracts, and treatment management of these venomous animals. Results: Contractin A, echinochrome A, echinometrin, major yolk protein (MYP, centrocins (I, II(, cathepsin B/X, strongylostatins (I,II, vitellogenin, UT841 toxin, spinochrome, and pedoxin as the prosthetic group of peditoxin are the most important compounds obtained from these animals. Some people show poisoning symptoms following the ingestion of sea urchin gonads, especially during the breeding season. Some of these symptoms included allergies symptoms, as the first symptoms, nausea, diarrhea, vomiting, epigastric distress, severe headache, swelling of the lips and mouth, salivation, abdominal pain and some systemic symptoms such as hypotension, numbness and weakness. The most injuries by sea urchin can cause by contact to spines, which can create the various complications such as granuloma, synovitis, arthritis, edema, hyperkeratosis and even neuroma. Injuries by pedicellaria may cause severe pain, local edema, bleeding, lethargy, weakness, tingling, joint pain, aphonia, dizziness, syncope, general muscle paralysis, respiratory distress, hypotension and, infrequently death. After the injury by sea urchin, removing the spines and pedicellariae should be done to minimize the contact with the venom source, and subsequently the management of wounds and poisoning symptoms, as quickly as possible. Conclusion: The venoms of some sea urchins have toxins and bioactive molecules that produce toxicity effects on their

  10. Production and characterisation of the intergeneric hybrids between Dendranthema morifolium and Artemisia vulgaris exhibiting enhanced resistance to chrysanthemum aphid (Macrosiphoniella sanbourni).

    Science.gov (United States)

    Deng, Yanming; Chen, Sumei; Lu, Aimin; Chen, Fadi; Tang, Fangping; Guan, Zhiyong; Teng, Nianjun

    2010-02-01

    Aphids represent the most destructive of chrysanthemum pests to cultivation. Reliable variety sources of resistance and control methods are limited, so development of highly resistant breeding lines is desirable. An intergeneric hybrid between Dendranthema morifolium (chrysanthemum) variety 'Zhongshanjingui' and Artemisia vulgaris (mugwort) 'Variegata' was attempted. Most of the hybrid embryos aborted at an early developmental stage. Embryo rescue allowed the generation of hybrid plants, whose hybridity was confirmed by a combination of morphological, cytological and GISH analysis. The hybrids were vigorous, flowered normally, and their flower and leaf shape resembled those of the chrysanthemum more than those of the mugwort parent. The hybrids showed much higher resistance to chrysanthemum aphid (Macrosiphoniella sanbourni) than maternal chrysanthemum by inoculation test. The leaves of the hybrid developed a higher density of trichomes and secretory glands compared to the maternal chrysanthemum. GC-MS analysis revealed that approximately 51% of the essential oil in the hybrid leaves were monoterpenoids and sesquiterpenoids, while the proportion in the chrysanthemum was approximately 37%, and in the mugwort was approximately 90%. It is inferred that higher aphid resistance in the hybrid mainly owed to the leaf micromorphology and bioactive essential oil content.

  11. Bioprospecting Potential of the Soil Metagenome: Novel Enzymes and Bioactivities

    Directory of Open Access Journals (Sweden)

    Myung Hwan Lee

    2013-09-01

    Full Text Available The microbial diversity in soil ecosystems is higher than in any other microbial ecosystem. The majority of soil microorganisms has not been characterized, because the dominant members have not been readily culturable on standard cultivation media; therefore, the soil ecosystem is a great reservoir for the discovery of novel microbial enzymes and bioactivities. The soil metagenome, the collective microbial genome, could be cloned and sequenced directly from soils to search for novel microbial resources. This review summarizes the microbial diversity in soils and the efforts to search for microbial resources from the soil metagenome, with more emphasis on the potential of bioprospecting metagenomics and recent discoveries.

  12. Bioactivities from Marine Algae of the Genus Gracilaria

    Directory of Open Access Journals (Sweden)

    José M. Barbosa-Filho

    2011-07-01

    Full Text Available Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS, inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted.

  13. Bioactive type glass-ceramics within incorporated aluminium

    International Nuclear Information System (INIS)

    Volzone, C.; Stabile, F.M.; Ortiga, J.

    2012-01-01

    Bioactive glass-ceramics are used as biomaterials for the reparation of bone tissue. They are prepared, generally, by bioglass of specific composition for each particular use. The aluminium addition in the formulation at very small quantities influences on the structural properties. Two glass-ceramics obtained by P 2 O 5 -Na 2 O-CaO-SiO 2 formulation within aluminium (0.5 % in Al 2 O 3 base) added through a reactive alumina and purified feldspar were analyzed. The results showed structural differences between both glass-ceramics. (author)

  14. Induced sclerotium formation exposes new bioactive metabolites from Aspergillus sclerotiicarbonarius

    DEFF Research Database (Denmark)

    Petersen, Lene Maj; Frisvad, Jens Christian; Knudsen, Peter Boldsen

    2015-01-01

    Sclerotia are known to be fungal survival structures, and induction of sclerotia may prompt production of otherwise undiscovered metabolites. Aspergillus sclerotiicarbonarius (IBT 28362) was investigated under sclerotium producing conditions, which revealed a highly altered metabolic profile. Four...... carbonarins; carbonarins I and J. We have identified the three latter as true sclerotial metabolites. All metabolites were tested for antifungal and antiinsectan activity, and sclerolizine and carbonarin I displayed antifungal activity against Candida albicans, while all four showed antiinsectan activity....... These results demonstrate induction of sclerotia as an alternative way of triggering otherwise silent biosynthetic pathways in filamentous fungi for the discovery of novel bioactive secondary metabolites....

  15. Health promoting effects of bioactive compounds in plants

    DEFF Research Database (Denmark)

    Kotowska, Dorota Ewa

    While type 2 diabetes is an increasing problem worldwide, there is still no cure and therefore search for the new insulin sensitizer continues. Plants are a natural source of bioactive compounds and have been used to improve human health and wellbeing for centuries. Today, several studies...... concentrate on screening plant extracts commonly used in folk medicine for pure compounds, exploiting promising results in treatment of, among others, type 2 diabetes. Another area of diabetes research, focused on the complex biology of adipose tissue and its influence on the development of insulin resistance...... compounds and their influence on adipocyte differentiation, lipid storage, glucose uptake and gut microbiota....

  16. Fungal endophytes - secret producers of bioactive plant metabolites.

    Science.gov (United States)

    Aly, A H; Debbab, A; Proksch, P

    2013-07-01

    The potential of endophytic fungi as promising sources of bioactive natural products continues to attract broad attention. Endophytic fungi are defined as fungi that live asymptomatically within the tissues of higher plants. This overview will highlight the uniqueness of endophytic fungi as alternative sources of pharmaceutically valuable compounds originally isolated from higher plants, e.g. paclitaxel, camptothecin and podophyllotoxin. In addition, it will shed light on the fungal biosynthesis of plant associated metabolites as well as new approaches developed to improve the production of commercially important plant derived compounds with the involvement of endophytic fungi.

  17. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios

    Directory of Open Access Journals (Sweden)

    Nourhan Hisham Shady

    2017-05-01

    Full Text Available Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.

  18. Bioactivity And Bone Formation In Silicon-Substituted Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Ulvan Ozad

    2012-06-01

    Full Text Available Bioactivity and successful bone formation in silicon-substituted hydroxyapatite bone grafts were investigated by using scanning electron microscopy and electron dispersive x-ray spectroscopy. Areas of bone formation have been detected in scanning electron microscopy; and, arranged lamellar collagen has been observed. 20.8% average carbon content rise has been detected between bone graft and the produced bone; and, this has been confirmed to be a gradual increase throughout the interphase. Obvious bone formation and maturation were observed in the samples. Carbon content gradually increased from bone graft to the bone formed, confirming formation of new bone and dissociation of silicon-substituted bone graft.

  19. Advances in Chemistry and Bioactivity of the Genus Chisocheton Blume.

    Science.gov (United States)

    Shilpi, Jamil A; Saha, Sanjib; Chong, Soon-Lim; Nahar, Lutfun; Sarker, Satyajit D; Awang, Khalijah

    2016-05-01

    Chisocheton is one of the genera of the family Meliaceae and consists of ca. 53 species; the distribution of most of those are confined to the Indo-Malay region. Species of broader geographic distribution have undergone extensive phytochemical investigations. Previous phytochemical investigations of this genus resulted in the isolation of mainly limonoids, apotirucallane, tirucallane, and dammarane triterpenes. Reported bioactivities of the isolated compounds include cytotoxic, anti-inflammatory, antifungal, antimalarial, antimycobacterial, antifeedant, and lipid droplet inhibitory activities. Aside from chemistry and biological activities, this review also deals briefly with botany, distribution, and uses of various species of this genus. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Preheating in Hybrid Inflation

    CERN Document Server

    García-Bellido, J; Garcia-Bellido, Juan; Linde, Andrei

    1998-01-01

    We investigate a possibility of preheating in hybrid inflation. This scenario involves at least two scalar fields, the inflaton field $\\phi$, and the symmetry breaking field $\\sigma$. We found that the behavior of these fields after inflation, as well as the possibility of preheating, depends crucially on the ratio of the coupling constant $\\lambda$ (self-interaction of the field For $\\lambda \\gg g^2$, oscillations of the field $\\sigma$ soon after inflation become very small, and all energy is concentrated in the oscillating field light scalar (or vector) fields~$\\chi$. For $\\lambda \\sim g^2$ both fields motion stabilizes, and parametric resonance with production of $\\chi$ particles becomes possible. For $\\lambda \\ll g^2$ parametric resonance typically does not occur, though some exceptions from this rule are possible. In the recently proposed hybrid models with a second stage of inflation after the phase transition, both preheating and usual reheating are inefficient. Therefore for a very long time the unive...

  1. Hybrid-secure MPC 

    DEFF Research Database (Denmark)

    Lucas, Christoph; Raub, Dominik; Maurer, Ueli

    2010-01-01

    of the adversary, without being aware of the actual adversarial setting. Thus, hybrid-secure MPC protocols allow for graceful degradation of security. We present a hybrid-secure MPC protocol that provides an optimal trade-off between IT robustness and computational privacy: For any robustness parameter ρ ... obtain one MPC protocol that is simultaneously IT secure with robustness for up to t ≤ ρ actively corrupted parties, IT secure with fairness (no robustness) for up to t ... in the universal composability (UC) framework (based on a network of secure channels, a broadcast channel, and a common reference string). It achieves the bound on the trade-off between robustness and privacy shown by Ishai et al. [CRYPTO'06] and Katz [STOC'07], the bound on fairness shown by Cleve [STOC'86...

  2. A Hybrid Imagination

    DEFF Research Database (Denmark)

    Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars

    an alternative approach, devoting special attention to the role played by social and cultural movements in the making of science and technology. They show how social and cultural movements, from the Renaissance of the late 15th century to the environmental and global justice movements of our time, have provided...... contexts, or sites, for mixing scientific knowledge and technical skills from different fields and social domains into new combinations, thus fostering what the authors term a “hybrid imagination”. Such a hybrid imagination is especially important today, as a way to counter the competitive and commercial......This book presents a cultural perspective on scientific and technological development. As opposed to the “story-lines” of economic innovation and social construction that tend to dominate the both the popular and scholarly literature on science, technology and society (or STS, the authors offer...

  3. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-09-01

    A report on one year of study of a tokamak hybrid reactor is presented. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  4. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-01-01

    A report on one year of study of a tokamak hybrid reactor is given. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  5. The Power of Hybridization

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Programming languages always seem to do some things well but not others: Python punts when it comes to user interfaces, Java’s artificial complexity prevents rapid development and produces tangles, and it will be awhile before we see benefits from C++ concurrency work. The cognitive load of languages and their blind spots increases the cost of experimentation, impeding your ability to fail fast and iterate. If you use a single language to solve your problem, you are binding yourself to the worldview limitations and the mistakes made by the creator of that language. Consider increasing your wiggle room by crossing language boundaries, complementing a language that is powerful in one area with a different language powerful in another. Language hybridization can speed development to quickly discover your real problems, giving you more time to fix them. After making a case for hybridizing your thinking in general, I will present a number of simple examples; first showing the benefits of using other languages...

  6. Ac Hybrid Charge Controller

    OpenAIRE

    Shalini S. Durgam; Anuradha B. Musale

    2015-01-01

    One of the primary needs for socio-economic development in any nation in the world is the provision of reliable electricity supply systems with lower carbon footprint levels. The purpose of this work is the development of a hybrid Power system that harnesses the renewable energy in sun and electricity to generate electricity. The working model can able to run on dual mode- solar and electricity. It can also be driven independently either by solar or electricity. The battery can be...

  7. Hybrid Solar Cooking

    OpenAIRE

    Prasanna, UR; Umanand, L

    2010-01-01

    In the existing traditional solar cookers, the cooking is performed near the collector which may be at an inconvenient location for cooking purposes. This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is very common in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid like oil. The transfer of ...

  8. Hybrid electroluminescent devices

    Science.gov (United States)

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  9. Hybrid undulator numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Hairetdinov, A.H. [Kurchatov Institute, Moscow (Russian Federation); Zukov, A.A. [Solid State Physics Institute, Chernogolovka (Russian Federation)

    1995-12-31

    3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.

  10. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  11. Hybrid BioMicromotors

    Science.gov (United States)

    Schwarz, Lukas; Medina-Sánchez, Mariana; Schmidt, Oliver G.

    2017-09-01

    Micromotors are devices that operate at the microscale and convert energy to motion. Many micromotors are microswimmers, i.e., devices that can move freely in a liquid at a low Reynolds number, where viscous drag dominates over inertia. Hybrid biomicromotors are microswimmers that consist of both biological and artificial components, i.e., one or several living microorganisms combined with one or many synthetic attachments. Initially, living microbes were used as motor units to transport synthetic cargo at the microscale, but this simple allocation has been altered and extended gradually, especially considering hybrid biomicromotors for biomedical in vivo applications, i.e., for non-invasive microscale operations in the body. This review focuses on these applications, where other properties of the microbial component, for example, the capability of chemotaxis, biosensing, and cell-cell interactions, have been exploited in order to realize tasks like localized diagnosis, drug delivery, or assisted fertilization in vivo. In the biohybrid approach, biological and artificially imposed functionalities act jointly through a microrobotic device that can be controlled or supervised externally. We review the development and state-of-the-art of such systems and discuss the mastery of current and future challenges in order to evolve hybrid biomicromotors from apt swimmers to adapted in vivo operators.

  12. Printed hybrid systems

    Science.gov (United States)

    Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo

    2012-04-01

    This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.

  13. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  14. Antibacterial and bioactive coatings on titanium implant surfaces.

    Science.gov (United States)

    Kulkarni Aranya, Anupama; Pushalkar, Smruti; Zhao, Minglei; LeGeros, Racquel Z; Zhang, Yu; Saxena, Deepak

    2017-08-01

    Various surface modifications have been tried for enhancing osseointegration of the dental implants like mechanical and/or chemical treatments and deposition of calcium phosphate coatings. The objective of this research was to develop calcium-phosphate based thin coatings with antibacterial and bioactive properties for potential application in dental implants. Titanium (Ti) discs were immersed in different calcifying solutions: CaP (positive control), F-CaP, Zn-CaP, and FZn-CaP and incubated for 24 h. Negative control was uncoated Ti discs. Coated surfaces were characterized using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Antibacterial properties were tested using Porphyromonas gingivalis because of its strong association with periodontal and peri-implant infections. Bacterial adhesion and colonization were studied at different timepoints. The coated surfaces had compositional characteristics similar to that of bone mineral and they inhibited the growth, colonization and adherence of P. gingivalis, resulted in reduced thickness of biofilms and bacterial inhibition in the culture medium as compared to the positive and negative controls (p  0.05). It has been previously demonstrated that these coatings have excellent in vitro bioactivity (formed carbonate hydroxyapatite when immersed in a simulated body fluid). Such coatings can enhance osseointegration and prevent infection in implants, thereby improving the success rates of implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2218-2227, 2017. © 2017 Wiley Periodicals, Inc.

  15. Electrochemically induced bioactivity of porous silicon functionalized by acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, Jarno; Lehto, Vesa-Pekka [University of Turku, Department of Physics, 20014 Turku (Finland); Matveeva, Eugenia [Nanophotonics Technology Center, Technical University of Valencia, C/Camino de Vera s/n, 46022 Valencia (Spain); Pastor, Ester

    2009-06-15

    In order to improve the bioactivity of porous silicon chemically functionalized by acetylene (PSi-C) and stimulate the calcium-phosphorous (hydroxyapatite) deposition on this material from a simulated body fluid, electrochemical oxidation of the PSi-C templates has been employed. The initial functionalization by acetylene was done at 500 C in a N{sub 2}+C{sub 2}H{sub 2} gas stream of 1:1 ratio for 15 minutes; further electrochemical oxidation was performed in 80% phosphoric acid. The morphology and chemical composition of initial and oxidized porous structures were studied by the high resolution SEM technique and FTIR spectroscopy. Initial chemical functionalization leads to a very stable (practically bio-inert) material that after electrochemical oxidation becomes bioactive. We observed that the hydroxyapatite phase has been homogeneously deposited on the electrochemically oxidized PSi-C material immersed in the SBF of Kokubo formulae at 36.5 C just after two weeks. The layer of hydroxyapatite grown on the surface after 30 days of immersion was compact, crystalline and as thick as 5 {mu}m. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Bioactive and rheological properties of rose hip marmalade.

    Science.gov (United States)

    Sagdic, Osman; Toker, Omer Said; Polat, Busra; Arici, Muhammet; Yilmaz, Mustafa Tahsin

    2015-10-01

    In this study, bioactive (total phenolic, antioxidant and antiradical activity) and rheological properties (steady and dynamic) of rose hip marmalade were investigated. Bioactive properties were determined in rose hip marmalade and extract. Extract had higher total phenolic content (38.5 mg GAE/g dry extract), antioxidant activity (124 mg AAE/g dry extract) and antiradical activity (49.98 %) than marmalade. Steady and dynamic rheological properties of the marmalade were determined at different temperature levels (5, 25 and 45 °C). Rose hip marmalade exhibited shear thinning behavior and Ostwald de Waele model best described flow behavior of the sample (R (2)  ≥ 0.9880) at different temperature levels. Consistency index and apparent viscosity values (η 50 ) at shear rate 50 s(-1) decreased with increase in temperature level. Viscoelastic properties were determined by oscillatory shear measurements and G' (storage modulus) values were found to be higher than G'' (loss modulus) values, indicating that the rose hip marmalade had a weak gel-like structure with solid-like behavior. G', G'', G (*) (complex modulus) and η* (complex viscosity) values decreased with increase in temperature level. Modified Cox-Merz rule was satisfactorily applied to correlate apparent and complex viscosity values of the rose hip marmalade at all temperatures studied.

  17. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi.

    Science.gov (United States)

    Vasundhara, M; Kumar, Anil; Reddy, M Sudhakara

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s). Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel), podophyllotoxin, and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are discussed.

  19. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties.

    Science.gov (United States)

    Correia, Cristina O; Leite, Álvaro J; Mano, João F

    2015-06-05

    We propose a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce CHT/BG-NPs scaffolds that combine the shape memory properties of chitosan and the biomineralization ability of BG-NPs for applications in bone regeneration. The addition of BG-NPs prepared by a sol-gel route to the CHT polymeric matrix improved the bioactivity of the nanocomposite scaffold, as seen by the precipitation of bone-like apatite layer upon immersion in simulated body fluid (SBF). Shape memory tests were carried out while the samples were immersed in varying compositions of water/ethanol mixtures. Dehydration with ethanol enables to fix a temporary shape of a deformed scaffold that recovers the initial geometry upon water uptake. The scaffolds present good shape memory properties characterized by a recovery ratio of 87.5% for CHT and 89.9% for CHT/BG-NPs and a fixity ratio of 97.2% for CHT and 98.2% for CHT/BG-NPs (for 30% compressive deformation). The applicability of such structures was demonstrated by a good geometrical accommodation of a previously compressed scaffold in a bone defect. The results indicate that the developed CHT/BG-NPs nanocomposite scaffolds have potential for being applied in bone tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. In vitro bioactivity of a tricalcium silicate cement

    Energy Technology Data Exchange (ETDEWEB)

    Morejon-Alonso, L.; Bareiro, O.; Santos, L.A. dos, E-mail: loreley.morejon@ufrgs.b [Universidade Federal do Rio Grande do Sul (UFRG), Porto Alegre, RS (Brazil). Escola de Engenharia. Dep. de Materiais; Carrodeguas R, Garcia [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio. Dept. de Ceramica

    2009-07-01

    Tricalcium silicate is the major constituent of Portland cement and the responsible for their mechanical strength at early stages. In order to be used as and additive of conventional calcium phosphate cement (CPC), in vitro bioactivity of a calcium silicate cement (CSC) after soaking in simulated body fluid (SBF) for 14 days was study. The cement was obtained by mixing Ca{sub 3}SiO{sub 5}, obtained by sol-gel process, and a Na{sub 2}HPO{sub 4} solution. The morphological and structural changes of the material before and after soaking were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the formation of a layer of a Hydroxyapatite (HA) onto the CSC cement after soaking for 1h in SBF that became denser with the increase of soaking time. The study suggests that Ca{sub 3}SiO{sub 5} would be an effective additive to improve the bioactivity and long term strength of conventional CPC. (author)

  1. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  2. Design and characterization of protein-quercetin bioactive nanoparticles

    Directory of Open Access Journals (Sweden)

    Leng Xiaojing

    2011-05-01

    Full Text Available Abstract Background The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA, lysozyme (Lys, or myoglobin (Mb used to load hydrophobic drugs such as quercetin (Q and other flavonoids. Results Induced by dimethyl sulfoxide (DMSO, BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated. Conclusions BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.

  3. Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark

    Directory of Open Access Journals (Sweden)

    Nellie Francezon

    2017-12-01

    Full Text Available Reported for its antioxidant, anti-inflammatory and non-toxicity properties, the hot water extract of Picea mariana bark was demonstrated to contain highly valuable bioactive polyphenols. In order to improve the recovery of these molecules, an optimization of the extraction was performed using water. Several extraction parameters were tested and extracts obtained analyzed both in terms of relative amounts of different phytochemical families and of individual molecules concentrations. As a result, low temperature (80 °C and low ratio of bark/water (50 mg/mL were determined to be the best parameters for an efficient polyphenol extraction and that especially for low molecular mass polyphenols. These were identified as stilbene monomers and derivatives, mainly stilbene glucoside isorhapontin (up to 12.0% of the dry extract, astringin (up to 4.6%, resveratrol (up to 0.3%, isorhapontigenin (up to 3.7% and resveratrol glucoside piceid (up to 3.1% which is here reported for the first time for Picea mariana. New stilbene derivatives, piceasides O and P were also characterized herein as new isorhapontin dimers. This study provides novel information about the optimal extraction of polyphenols from black spruce bark, especially for highly bioactive stilbenes including the trans-resveratrol.

  4. Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive Constituents

    Science.gov (United States)

    Viladomiu, Monica; Hontecillas, Raquel; Lu, Pinyi; Bassaganya-Riera, Josep

    2013-01-01

    Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Many beneficial effects are related to the presence of ellagic acid, ellagitannins (including punicalagins), punicic acid and other fatty acids, flavonoids, anthocyanidins, anthocyanins, estrogenic flavonols, and flavones, which seem to be its most therapeutically beneficial components. However, the synergistic action of the pomegranate constituents appears to be superior when compared to individual constituents. Promising results have been obtained for the treatment of certain diseases including obesity, insulin resistance, intestinal inflammation, and cancer. Although moderate consumption of pomegranate does not result in adverse effects, future studies are needed to assess safety and potential interactions with drugs that may alter the bioavailability of bioactive constituents of pomegranate as well as drugs. The aim of this review is to summarize the health effects and mechanisms of action of pomegranate extracts in chronic inflammatory diseases. PMID:23737845

  5. Synthesis of bioactive microcapsules using a microfluidic device.

    Science.gov (United States)

    Kim, Byeong Il; Jeong, Soon Woo; Lee, Kyoung G; Park, Tae Jung; Park, Jung Youn; Song, Jae Jun; Lee, Seok Jae; Lee, Chang-Soo

    2012-01-01

    Bioactive microcapsules containing Bacillus thuringiensis (BT) spores were generated by a combination of a hydro gel, microfluidic device and chemical polymerization method. As a proof-of-principle, we used BT spores displaying enhanced green fluorescent protein (EGFP) on the spore surface to spatially direct the EGFP-presenting spores within microcapsules. BT spore-encapsulated microdroplets of uniform size and shape are prepared through a flow-focusing method in a microfluidic device and converted into microcapsules through hydrogel polymerization. The size of microdroplets can be controlled by changing both the dispersion and continuous flow rate. Poly(N-isoproplyacrylamide) (PNIPAM), known as a hydrogel material, was employed as a biocompatible material for the encapsulation of BT spores and long-term storage and outstanding stability. Due to these unique properties of PNIPAM, the nutrients from Luria-Bertani complex medium diffused into the microcapsules and the microencapsulated spores germinated into vegetative cells under adequate environmental conditions. These results suggest that there is no limitation of transferring low-molecular-weight-substrates through the PNIPAM structures, and the viability of microencapsulated spores was confirmed by the culture of vegetative cells after the germinations. This microfluidic-based microencapsulation methodology provides a unique way of synthesizing bioactive microcapsules in a one-step process. This microfluidic-based strategy would be potentially suitable to produce microcapsules of various microbial spores for on-site biosensor analysis.

  6. Bioactive fractions from cantabrian anchovy (Engraulis encrarischolus viscera

    Directory of Open Access Journals (Sweden)

    Armando BURGOS-HERNÁNDEZ

    2016-01-01

    Full Text Available Abstract The potential of cantabrian anchovy (Engraulis encrarischolus viscera as a source of bioactive compounds is of interest for both, pharmaceutical and food industries. Cantabrian anchovy guts and heads were freeze-dried, extracted with methanol and subjected to fractionation by solvent partitioning using hexane, ethyl acetate, and butanol. Fractions were tested for antimutagenic, antioxidant, antifungal, and antibacterial activity using the Ames test; DPPH, ABTS, and FRAP assays; the radial grown inhibition assay; and the microbroth dilution method, respectively. Five fractions were obtained from the anchovy gut methanolic extract, in addition to the hexane- (HF, ethyl acetate- (EAF, and butanol-soluble (BF fractions, an aqueous-soluble fraction (ALF and precipitated crystals (ACF in this were also obtained. HF and EAF resulted to be antimutagenic, HF and ALF showed antifungal activity, BF and ACF showed the highest antioxidant potential, and HF and BF were antibacterial against several strains. Anchovy gut, which to the present study had not been reported for any bioactivity, has antimutagenic, antifungal, antioxidant, and antibacterial compounds, which need to be isolated for full characterization and study.

  7. Bioactive compounds and quality characteristics of five apples cultivars

    Directory of Open Access Journals (Sweden)

    Moises Zucoloto

    2015-11-01

    Full Text Available The aim of this study was to evaluate bioactive compounds in five apple cultivars and to analyze correlation of their quality characteristics with concentration of bioactive compounds. Phenolic compounds measurements were made in a spectrophotometer compared to a standard curve of gallic acid and expressed as gallic acid equivalent (GAE per 100g of dry weight. Sugar and organics acids in five cultivars were quantified using high-performance liquid chromatograph (HPLC. Antioxidant activities were evaluated using three complementary tests 2,2-diphenyl-1-picrylhidrazyl (DPPH scavenging activity, ferric reducing antioxidant power (FRAP, and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid (ABTS. 'GoldRush' had the highest total phenolic compared to the other four cultivars. Additionally, 'GoldRush' had slightly higher, DPPH activity followed by 'Crimson Crisp' and 'Wine Crisp'. 'GoldRush' and 'Crimson Crisp' cultivars also have higher antioxidant capacity based on the ABTS and FRAP methods. The antioxidant capacity was significantly correlated with total polyphenols present in the different cultivars, while organic acids and fruit color showed slightly significant correlation to total phenols

  8. In vivo bone regeneration using a novel porous bioactive composite

    Energy Technology Data Exchange (ETDEWEB)

    Xie En [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Hu Yunyu [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China)], E-mail: orth1@fmmn.edu.cn; Chen Xiaofeng [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Bai Xuedong; Li Dan [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ren Li [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Zhang Ziru [Foreign Languages School, Northwest University Xi' an (China)

    2008-11-15

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  9. Molecular approaches to screen bioactive compounds from endophytic fungi

    Directory of Open Access Journals (Sweden)

    M Vasundhara

    2016-11-01

    Full Text Available Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s. Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel, podophyllotoxin and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are also discussed.

  10. The major bioactive components of seaweeds and their mosquitocidal potential.

    Science.gov (United States)

    Yu, Ke-Xin; Jantan, Ibrahim; Ahmad, Rohani; Wong, Ching-Lee

    2014-09-01

    Seaweeds are one of the most widely studied natural resources for their biological activities. Novel seaweed compounds with unique chemical structures have been reported for their pharmacological properties. The urge to search for novel insecticidal compound with a new mode of action for development of botanical insecticides supports the relevant scientific research on discovering the bioactive compounds in seaweeds. The mosquitocidal potential of seaweed extracts and their isolated compounds are documented in this review paper, along with the discussion on bioactivities of the major components of seaweeds such as polysaccharides, phenolics, proteins, terpenes, lipids, and halogenated compounds. The effects of seaweed extracts and compounds toward different life stages of mosquito (egg, larva, pupa, and adult), its growth, development, and reproduction are elaborated. The structure-activity relationships of mosquitocidal compounds are discussed to extrapolate the possible chemical characteristics of seaweed compounds responsible for insecticidal properties. Furthermore, the possible target sites and mode of actions of the mosquitocidal seaweed compounds are included in this paper. The potential synergistic effects between seaweeds and commercial insecticides as well as the toxic effects of seaweed extracts and compounds toward other insects and non-target organisms in the same habitat are also described. On top of that, various factors that influence the mosquitocidal potential of seaweeds, such as abiotic and biotic variables, sample preparation, test procedures, and considerations for a precise experimental design are discussed. The potential of active seaweed extracts and compounds in the development of effective bioinsecticide are also discussed.

  11. Interstitial fluid contains higher in vitro IGF bioactivity than serum

    DEFF Research Database (Denmark)

    Espelund, Ulrick; Søndergaard, Klaus; Bjerring, Peter

    2012-01-01

    CONTEXT: Circulating insulin-like growth factors (IGFs) are bound in complexes which affect their tissue-accessibility. Interstitial fluid is in close proximity to target cells, but the IGF-system is not well-described herein. OBJECTIVE: To perform a thorough comparison of the IGF-system in sucti...... relate to an increased enzymatic IGFBP-degradation and an altered IGFBP-composition in SBF, making more IGF-I and -II accessible to the IGF-IR. The impact of food intake on the IGF system differs between serum and interstitial fluid....... blister fluid (SBF) vs. in serum, with emphasis on bioactive IGF levels. DESIGN: Eight hour study including samples collected in the fasting state (20h) and after a meal. SETTING: Clinical research facility. PARTICIPANTS: Six healthy males (age 37.0±8.8years, BMI 22.5±1.4kg/m(2)) (mean±SD). MAIN OUTCOME...... was observed, including 3-fold elevated amounts of IGFBP-3 fragments in SBF (Pfood intake differed between serum and SBF (all P≤0.03). CONCLUSION: Despite lower concentrations, the in vitro IGF bioactivity was higher in SBF than in serum. This may...

  12. Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina

    Science.gov (United States)

    Cares, M. G.; Vargas, Y.; Gaete, L.; Sainz, J.; Alarcón, J.

    2010-01-01

    A study of ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina (Quillay) is presented. To address the problem it was studied the effects that could influence the extraction process through a two-level Factorial Design. The effects considered in the Experimental Design were: Granulometry, Extraction time, Acoustic Power and Acoustic Impedance. The production of the quillaja extracts is done with an aqueous extraction and the process is assisted by an ultrasonic field; no other solvents are used in its production. The final product only incorporates natural ingredients and raw materials, authorized for their use in food manufacturing processes. The principal factors affecting the ultrasonic extraction process were: Granulometry and Extraction time. The enhanced of ultrasonic assisted extraction ratio was measuring the increasing yield of extracted components, the extraction ratio was increased by ultrasonic effect and a reduction in extraction time was verified. In addition the process can be carried out at temperatures lower than the traditional way. The influence of ultrasound on the quality of bioactive principles was examined by HPLC technique and no influence of ultrasound on natural components was found.

  13. Marine actinomycetes: an ongoing source of novel bioactive metabolites.

    Science.gov (United States)

    Subramani, Ramesh; Aalbersberg, William

    2012-12-20

    Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1-2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.

    Science.gov (United States)

    Wei, Jie; Chen, Fangping; Shin, Jung-Woog; Hong, Hua; Dai, Chenglong; Su, Jiancan; Liu, Changsheng

    2009-02-01

    A well-defined mesoporous structure of wollastonite with high specific surface area was synthesized using surfactant P123 (triblock copolymer) as template, and its composite scaffolds with poly(epsilon-caprolactone) (PCL) were fabricated by a simple method of solvent casting-particulate leaching. The measurements of the water contact angles suggest that the incorporation of either mesoporous wollastonite (m-WS) or conventional wollastonite (c-WS) into PCL could improve the hydrophilicity of the composites, and the former was more effective than the later. The bioactivity of the composite scaffold was evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the m-WS/PCL composite (m-WPC) scaffolds can induce a dense and continuous layer of apatite after soaking for 1 week, as compared with the scattered and discrete apatite particles on the c-WS/PCL composite (c-WPC) scaffolds. The m-WPC had a significantly enhanced apatite-forming bioactivity compared with the c-WPC owing to the high specific surface area and pore volume of m-WS. In addition, attachment and proliferation of MG(63) cells on m-WPC scaffolds were significantly higher than that of c-WPC, revealing that m-WPC scaffolds had excellent biocompatibility. Such improved properties of m-WPC should be helpful for developing new biomaterials and may have potential use in hard tissue repair.

  15. Mung bean proteins and peptides: nutritional, functional and bioactive properties

    Directory of Open Access Journals (Sweden)

    Zhu Yi-Shen

    2018-02-01

    Full Text Available To date, no extensive literature review exists regarding potential uses of mung bean proteins and peptides. As mung bean has long been widely used as a food source, early studies evaluated mung bean nutritional value against the Food and Agriculture Organization of the United Nations (FAO/the World Health Organization (WHO amino acids dietary recommendations. The comparison demonstrated mung bean to be a good protein source, except for deficiencies in sulphur-containing amino acids, methionine and cysteine. Methionine and cysteine residues have been introduced into the 8S globulin through protein engineering technology. Subsequently, purified mung bean proteins and peptides have facilitated the study of their structural and functional properties. Two main types of extraction methods have been reported for isolation of proteins and peptides from mung bean flours, permitting sequencing of major proteins present in mung bean, including albumins and globulins (notably 8S globulin. However, the sequence for albumin deposited in the UniProt database differs from other sequences reported in the literature. Meanwhile, a limited number of reports have revealed other useful bioactivities for proteins and hydrolysed peptides, including angiotensin-converting enzyme inhibitory activity, anti-fungal activity and trypsin inhibitory activity. Consequently, several mung bean hydrolysed peptides have served as effective food additives to prevent proteolysis during storage. Ultimately, further research will reveal other nutritional, functional and bioactive properties of mung bean for uses in diverse applications.

  16. Preparation of Phytic Acid/Silane Hybrid Coating on Magnesium Alloy and Its Corrosion Resistance in Simulated Body Fluid

    Science.gov (United States)

    Wang, Fengwu; Cai, Shu; Shen, Sibo; Yu, Nian; Zhang, Feiyang; Ling, Rui; Li, Yue; Xu, Guohua

    2017-09-01

    In order to decrease the corrosion rate and improve the bioactivity of magnesium alloy, phytic acid/saline hybrid coatings were synthesized on AZ31 magnesium alloys by sol-gel dip-coating method. It was found that the mole ratio of phytic acid to γ-APS had a great influence on coating morphology and the corresponding corrosion resistance of the coated magnesium alloys. When the mole ratio of phytic acid to γ-APS was 1:1, the obtained hybrid coating was integral and without cracks, which was ascribed to the strong chelate capability of phytic acid and Si-O-Si network derived from silane. Electrochemical test result indicated that the corrosion resistance of the coated magnesium alloy was about 27 times larger than that of the naked counterpart. In parallel, immersion test showed that the phytic acid/silane hybrid coating could induce CaP-mineralized product deposition, which offered another protection for magnesium alloy.

  17. Electrochemical Behavior Of Bioactive Coatings On Cp-ti Surface For Dental Application.

    OpenAIRE

    Marques, Isabella da Silva Vieira; Barão, Valentim Adelino Ricardo; da Cruz, Nilson Cristino; Yuan, Judy Chia-Chun; Mesquita, Marcelo Ferraz; Ricomini-Filho, Antonio Pedro; Sukotjo, Cortino; Mathew, Mathew T

    2016-01-01

    The surface characteristics and electrochemical properties of bioactive coatings produced by plasma electrolytic oxidation (PEO) with calcium, phosphorous, silicon and silver on commercially pure titanium were evaluated. PEO treatment produced a porous oxide layer, which improved the surface topography, and enriched the surface chemistry with bioactive elements, responsible for mimicking bone surface. The surfaces with higher calcium concentration presented antibacterial and biocompatibility ...

  18. In vitro bioactivity studies of larnite and larnite/chitin composites ...

    Indian Academy of Sciences (India)

    bioactive glasses for hard tissue engineering as they actively participate in physiological reactions at implant site to form tight bonding with host bone tissues [5]. Superior mechanical strength comparing to calcium phosphate biomaterials made silicates as a primary choice among biomaterials. Bioactivity studies carried out ...

  19. Effects of co-medicated drugs on cyclophosphamide bioactivation in human liver microsomes

    NARCIS (Netherlands)

    de Jonge, Milly E.; Huitema, Alwin D. R.; van Dam, Selma M.; Rodenhuis, Sjoerd; Beijnen, Jos H.

    2005-01-01

    The alkylating agent cyclophosphamide (CP) is a prodrug requiring cytochrome P-450-mediated bioactivation to form the active 4-hydroxycyclophosphamide (4OHCP). Modifications in the rate of CP bioactivation may have implications for the effectiveness of CP therapy, especially in high-dose regimens.

  20. Outlook on the Application of Metal-Liganded Bioactives for Stimuli-Responsive Release

    Directory of Open Access Journals (Sweden)

    Gretta C. M’bitsi-Ibouily

    2017-11-01

    Full Text Available Direct metal-liganded bioactive coordination complexes are known to be sensitive to stimuli such as pH, light, ion activation, or redox cues. This results in the controlled release of the bioactive(s. Compared to other drug delivery strategies based on metal complexation, this type of coordination negates a multi-step drug loading methodology and offers customized physiochemical properties through judicious choice of modulating ancillary ligands. Bioactive release depends on simple dissociative kinetics. Nonetheless, there are challenges encountered when translating the pure coordination chemistry into the biological and physiological landscape. The stability of the metal–bioactive complex in the biological milieu may be compromised, disrupting the stimuli-responsive release mechanism, with premature release of the bioactive. Research has therefore progressed to the incorporation of metal-liganded bioactives with established drug delivery strategies to overcome these limitations. This review will highlight and critically assess current research interventions in order to predict the direction that pharmaceutical scientists could pursue to arrive at tailored and effective metal-liganded bioactive carriers for stimuli-responsive drug release.