WorldWideScience

Sample records for bioactive peptide amphiphile

  1. Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles

    OpenAIRE

    ZHOU, MI; Ulijn, Rein V.; Gough, Julie E

    2014-01-01

    The hitherto inconsistency in clinical performance for engineered skin drives the current development of novel cell-scaffolding materials; one challenge is to only extract essential characteristics from the complex native ECM (extracellular matrix) and incorporate them into a scaffold with minimal complexity to support normal cell functions. This study involved small-molecule-based bioactive hydrogels produced by the co-assembly of two aromatic peptide amphiphiles: Fmoc-FF (Fluorenylmethoxyca...

  2. Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles.

    Science.gov (United States)

    Zhou, Mi; Ulijn, Rein V; Gough, Julie E

    2014-01-01

    The hitherto inconsistency in clinical performance for engineered skin drives the current development of novel cell-scaffolding materials; one challenge is to only extract essential characteristics from the complex native ECM (extracellular matrix) and incorporate them into a scaffold with minimal complexity to support normal cell functions. This study involved small-molecule-based bioactive hydrogels produced by the co-assembly of two aromatic peptide amphiphiles: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine-glycine-aspartic acid). Three-dimensionally cultured human dermal fibroblasts deposited dense ECM networks including fibronectin and collagen I within the hydrogels in a 14-day culture. The fibroblasts organized the fibrous ECM and contracted the gel without differentiating into myofibroblasts. The stiffness of the cell-gel constructs increased dramatically due to ECM formation and gel contraction. This created an economical biomimetic model-scaffold to further understand skin reconstruction in vitro and supplied a design pathway to create versatile cell-scaffolds with varied bioactivities and simplicity. PMID:24812581

  3. Multi-Composite Bioactive Osteogenic Sponges Featuring Mesenchymal Stem Cells, Platelet-Rich Plasma, Nanoporous Silicon Enclosures, and Peptide Amphiphiles for Rapid Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Dongmei Fan

    2011-06-01

    Full Text Available A novel bioactive sponge was created with a composite of type I collagen sponges or porous poly(e-caprolactone (PCL scaffolds, platelet-rich plasma (PRP, BMP2-loaded nanoporous silicon enclosure (NSE microparticles, mineralizing peptide amphiphiles (PA, and mesenchymal stem cells (MSC. Primary MSC from cortical bone (CB  tissue proved to form more and larger colony units, as well as produce more mineral matrix under osteogenic differentiation, than MSC from bone marrow (BM. Coating pre-treatments were optimized for maximum cell adhesion and mineralization, while a PRP-based gel carrier was created to efficiently deliver and retain MSC and  microparticles within a porous scaffold while simultaneously promoting cell recruitment, proliferation, and angiogenesis. Components and composite sponges were evaluated for osteogenic differentiation in vitro. Osteogenic sponges were loaded with MSC, PRP, PA, and NSE and implanted subcutaneously in rats to evaluate the formation of bone tissue and angiogenesis in vivo. It was found that the combination of a collagen sponge with CB MSC, PRP, PA, and the BMP2-releasing NSE formed the most bone and was most vascularized by four weeks compared to analogous composites featuring BM MSC or PCL or lacking PRP, PA, and NSE. This study indicates that CB MSC should be considered as an alternative to marrow as a source of stem cells, while the PRP-PA cell and microparticle delivery system may be utilized for diverse tissue engineering applications.

  4. Self-Assembly and Hydrogelation of Peptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Wahyudi Priyono Suwarso

    2012-04-01

    Full Text Available Seven peptide amphiphiles were successfully synthesized using solid phase peptide synthesis method. Peptide amphiphiles were characterized using matrix assisted laser desorption/ionization (MALDI. Atomic force microscopy (AFM study showed that peptide amphiphiles having glycine, valine, or proline as linker, self-assembled into 100-200 nm nanofibers structure. According to our research, both peptide amphiphile with positive and negative charges bear similar self-assembly properties. Peptide amphiphile also showed its capability as low molecular weight gelator (LMWG. Peptide amphiphiles bearing C-16 and C-12 as alkyl showed better hydrogelation properties than C-8 alkyl. Five out of seven peptide amphiphiles have minimum gelation concentration (MGC lower than 1% (w/v.

  5. Peptide Amphiphiles in Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Martina Miotto

    2015-08-01

    Full Text Available The increasing interest in effort towards creating alternative therapies have led to exciting breakthroughs in the attempt to bio-fabricate and engineer live tissues. This has been particularly evident in the development of new approaches applied to reconstruct corneal tissue. The need for tissue-engineered corneas is largely a response to the shortage of donor tissue and the lack of suitable alternative biological scaffolds preventing the treatment of millions of blind people worldwide. This review is focused on recent developments in corneal tissue engineering, specifically on the use of self-assembling peptide amphiphiles for this purpose. Recently, peptide amphiphiles have generated great interest as therapeutic molecules, both in vitro and in vivo. Here we introduce this rapidly developing field, and examine innovative applications of peptide amphiphiles to create natural bio-prosthetic corneal tissue in vitro. The advantages of peptide amphiphiles over other biomaterials, namely their wide range of functions and applications, versatility, and transferability are also discussed to better understand how these fascinating molecules can help solve current challenges in corneal regeneration.

  6. Bioactive peptides in dairy products

    Directory of Open Access Journals (Sweden)

    Donata Marletta

    2010-01-01

    Full Text Available Bioactive peptides are specific protein fragments that have a positive impact on body functions and conditions and may ultimately influence health. Most of the biological activities are encrypted within the primary sequence of the native protein and can be released by enzymatic hydrolysis and proteolysis or by food processing. Milk is a rich source of bioactive peptides which may contribute to regulate the nervous, gastrointestinal and cardiovascular systems as well as the immune system, confirming the added value of dairy products that, in certain cases, can be considered functional foods. The main biological activities of these peptides and their bioavailability in dairy products are reviewed. The natural concentration of these biomolecules is quite low and, to date one of the main goals has been to realize products enriched with bioactive peptides that have beneficial effects on human health and proven safety. Even though several health-enhancing products have already been launched and their integration in the diet could help in the prevention of chronic diseases such as hypertension, cancer and osteoporosis, more clinical trials are required in order to develop a deeper understanding of the activity of biopeptides on the human physiological mechanisms and also to assess the efficacy of their effects in a long term view. New scientific data are also needed to support their commercialisation in compliance with current regulations.

  7. Rational design of purely peptidic amphiphiles for drug delivery applications

    OpenAIRE

    Bruyn Ouboter, Dirk de

    2011-01-01

    A broad range of new properties is emerging from supramolecular aggregates. Self-assembled structures of purely peptidic amphiphiles exploit these properties to produce biocompatible, biodegradable, smart materials for drug administration. This thesis explores the design, synthesis, purification, characterization of purely peptidic amphiphiles, and evaluates potential applications. The first chapter provides a general introduction to the field of self-assembly, and of drug delivery as com...

  8. Design of nanostructures based on aromatic peptide amphiphiles.

    Science.gov (United States)

    Fleming, Scott; Ulijn, Rein V

    2014-12-01

    Aromatic peptide amphiphiles are gaining popularity as building blocks for the bottom-up fabrication of nanomaterials, including gels. These materials combine the simplicity of small molecules with the versatility of peptides, with a range of applications proposed in biomedicine, nanotechnology, food science, cosmetics, etc. Despite their simplicity, a wide range of self-assembly behaviours have been described. Due to varying conditions and protocols used, care should be taken when attempting to directly compare results from the literature. In this review, we rationalise the structural features which govern the self-assembly of aromatic peptide amphiphiles by focusing on four segments, (i) the N-terminal aromatic component, (ii) linker segment, (iii) peptide sequence, and (iv) C-terminus. It is clear that the molecular structure of these components significantly influences the self-assembly process and resultant supramolecular architectures. A number of modes of assembly have been proposed, including parallel, antiparallel, and interlocked antiparallel stacking conformations. In addition, the co-assembly arrangements of aromatic peptide amphiphiles are reviewed. Overall, this review elucidates the structural trends and design rules that underpin the field of aromatic peptide amphiphile assembly, paving the way to a more rational design of nanomaterials based on aromatic peptide amphiphiles. PMID:25199102

  9. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    Science.gov (United States)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  10. Tuning peptide amphiphile supramolecular structure for biomedical applications

    Science.gov (United States)

    Pashuck, Eugene Thomas, III

    The use of biomaterials in regenerative medicine has been an active area of research for more than a decade. Peptide amphiphiles, which are short peptide sequences coupled to alkyl tails, have been studied in the Stupp group since the beginning of the decade and been used for a variety of biomedical applications. Most of the work has focused on the bioactive epitopes places on the periphery of the PA molecules, but the interior amino acids, known as the beta-sheet region, give the PA nanofiber gel much of its mechanical strength. To study the important parameters in the beta-sheet region, six PA molecules were constructed to determine the influence of beta-sheet length and order of the amino acids in the beta-sheet. It was found that having beta-sheet forming amino acids near the center of the fiber improves PA gel stiffness, and that having extra amino acids that have preferences for other secondary structures, like alpha-helix decreased the gels stiffness. Using FTIR and circular dichroism it was found that the mechanical properties are influenced by the amount of twist in the beta-sheet, and PAs that have more twisted beta-sheets form weaker gels. The effect amino acid properties have on peptide amphiphile self-assembly where studied by synthesizining molecules with varying side group size and hydrophobicity. It was found that smaller amino acids lead to stiffer gels and when two amino acids had the same size the amino acid with the larger beta-sheet propensity lead to a stiffer gel. Furthermore, small changes in peptide structure were found to lead to big changes in nanostructure, as leucine and isoleucine, which have the same size but slightly different structures, form flat ribbons and cylindrical nanofibers, respectively. Phenylalanine and alanine were studied more indepth because they represent the effects of adding an aromatic group to amino acids in the beta-sheet regon. These phenylalanine PAs formed short, twisted ribbons when freshly dissolved in water

  11. Self-assembling peptide amphiphile nanostructures for cancer therapy

    Science.gov (United States)

    Soukasene, Stephen

    The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially

  12. Purification, structure and function of bioactive peptides

    OpenAIRE

    Eriste, Elo

    2004-01-01

    Peptides are vitally important molecules and many evoke cellular responses. The completion of several genome sequencing projects has revealed a number of new genes. However, as functional peptides often contain posttranslational modifications and/or occur at various lengths, it is of great importance to detect, purify and characterize novel bioactive peptides. To achieve these goals, new methods for peptide detection, isolation and functional characterization have to be d...

  13. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.

    Science.gov (United States)

    Garifullin, Ruslan; Guler, Mustafa O

    2015-08-11

    Induced supramolecular chirality was investigated in the self-assembled peptide amphiphile (PA) nanosystems. Having shown that peptide chirality can be transferred to the covalently-attached achiral pyrene moiety upon PA self-assembly, the chiral information is transferred to molecular pyrene via weak noncovalent interactions. In the first design of a supramolecular chiral system, the chromophore was covalently attached to a peptide sequence (VVAGH) via an ε-aminohexanoic acid spacer. Covalent attachment yielded a PA molecule self-assembling into nanofibers. In the second design, the chromophore was encapsulated within the hydrophobic core of self-assembled nanofibers of another PA consisting of the same peptide sequence attached to lauric acid. We observed that supramolecular chirality was induced in the chromophore by PA assembly into chiral nanostructures, whether it was covalently attached, or noncovalently bound. PMID:26146021

  14. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    Science.gov (United States)

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  15. Composition and method for self-assembly and mineralization of peptide amphiphiles

    Science.gov (United States)

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  16. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    OpenAIRE

    Shrestha, Sanjib K.; Cheng-Wei T Chang; Meissner, Nicole; Oblad, John; Shrestha, Jaya P.; Sorensen, Kevin N.; Michelle M. Grilley; Jon Y Takemoto

    2014-01-01

    K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20′s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were de...

  17. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    OpenAIRE

    Shrestha, Sanjib K.; Cheng-Wei Tom Chang; Nicole eMeissner; John eOblad; Shrestha, Jaya P.; Sorensen, Kevin N.; Michelle M. Grilley; Jon Y Takemoto

    2014-01-01

    K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were d...

  18. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  19. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    the well-known, highly cationic CPPs, such as TAT and Arg9, which do not translocate across phospholipid bilayers, and enter cells mostly by active endocytosis. Alternatively, researchers have found that an effective cellular delivery vector can be improved developed by conjugating a CPP with a fatty acid chain. Amphiphilic peptides have also become a subject of major interest as potent antibacterial agents. Antimicrobial peptides (AMPs) are produced naturally by bacteria and are considered as the first line of host defense protecting living organisms from microorganisms. Various types of AMPs has been discovered, such as defensins, cecropins, magainins and cathelicidins, with significant different structures and bioactivity profiles. The mechanism of actions for these peptides were reported as effectors and regulators of the innate immune system by increasing production and release of chemokine, and enhancing wound healing and angiogenesis. They were able to suppress biofilm formation and induce the dissolution of existing biofilms. Thus, design of new AMPs and more cost effective sequences with highly activity are urgently needed. Although a number of cyclic peptides were discovered and reported as efficient cellular delivery agents or antimicrobial agent, a more systematic investigation is required to identify design rules for optimal entrapment, drug loading, and stability. The balance of many small forces determines the overall morphology, size, and functionality of the structures. A deeper understanding of these factors is required for guiding future research, and for customizing cyclic peptides for drug loading and cellular delivery applications. Thus, additional amphiphilic cyclic and linear peptides were designed with variable electrostatic and hydrophobic residues to optimize drug encapsulation. The diversity in ring size, amino acid number, position and sequences, number of rings, net charge, and hydrophobicity of side chains in cyclic peptides will allow

  20. Tissue Regeneration through Self-Assembled Peptide Amphiphile Nanofibers

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinkhani

    2006-01-01

    Full Text Available Introduction: In the present study, we hypothesized that a novelapproach to promote vascularization would be to create injectablethree dimensional (3-D scaffolds within growth factor that enhancethe sustained release of growth factor and induce the angiogenesis.Material and Methods: We demonstrate that a 3-D scaffold can beformed by mixing of peptide-amphiphile (PA aqueous solution withhepatocyte growth factor (HGF solution. PA was synthesized bystandard solid phase chemistry that ends with the alkylation of theNH2 terminus of the peptide. The sequence of arginine-glycineasparticacid (RGD was included in peptide design as well. A 3-Dnetwork of nanofibers was formed by mixing HGF suspensions withdilute aqueous solution of PA.Results: Scanning electron microscopy (SEM examination revealedthe formation of fibrous assemblies with an extremely high aspectratio and high surface areas with mean diameter of less than 200 nm.In vitro HGF release profile of 3-D nanofibers was investigated whileangiogenesis induced by the released HGF was being assessed. Invivo potential ability of PA nanofibers to induce angiogenesis wasassessed through subcutaneous injection of PA solution, HGFsolution, and PA in combination with HGF solutions. Injection of PAwith HGF induced significant angiogenesis around the injected site,in marked contrast to HGF injection alone and PA injection alone.Conclusion: The combination of HGF-induced angiogenesis is apromising procedure to improve tissue regeneration.

  1. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  2. Bioactive Peptides from Muscle Sources: Meat and Fish

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-08-01

    Full Text Available Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE inhibitory and antioxidant peptides.

  3. Synthesis and Bioactivities of Kanamycin B-Derived Cationic Amphiphiles.

    Science.gov (United States)

    Fosso, Marina Y; Shrestha, Sanjib K; Green, Keith D; Garneau-Tsodikova, Sylvie

    2015-12-10

    Cationic amphiphiles derived from aminoglycosides (AGs) have been shown to exhibit enhanced antimicrobial activity. Through the attachment of hydrophobic residues such as linear alkyl chains on the AG backbone, interesting antibacterial and antifungal agents with a novel mechanism of action have been developed. Herein, we report the design and synthesis of seven kanamycin B (KANB) derivatives. Their antibacterial and antifungal activities, along with resistance/enzymatic, hemolytic, and cytotoxicity assays were also studied. Two of these compounds, with a C12 and C14 aliphatic chain attached at the 6″-position of KANB through a thioether linkage, exhibited good antibacterial and antifungal activity, were poorer substrates than KANB for several AG-modifying enzymes, and could delay the development of resistance in bacteria and fungi. Also, they were both relatively less hemolytic than the known membrane targeting antibiotic gramicidin and the known antifungal agent amphotericin B and were not toxic at their antifungal MIC values. Their oxidation to sulfones was also demonstrated to have no effect on their activities. Moreover, they both acted synergistically with posaconazole, an azole currently used in the treatment of human fungal infections. PMID:26592740

  4. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tambralli, Ajay; Blakeney, Bryan; Anderson, Joel; Kushwaha, Meenakshi; Andukuri, Adinarayana; Jun, Ho-Wook [Department of Biomedical Engineering, University of Alabama at Birmingham, 801 Shelby Building, 1825 University Boulevard, Birmingham, AL 35294 (United States); Dean, Derrick [Department of Materials Science and Engineering, University of Alabama at Birmingham, BEC 254, 1150 10th Ave South, Birmingham, AL 35294 (United States)], E-mail: hwjun@uab.edu

    2009-06-01

    Nanofibrous electrospun poly ({epsilon}-caprolactone) (ePCL) scaffolds have inherent structural advantages, but lack of bioactivity has limited their usefulness in biomedical applications. Thus, here we report the development of a hybrid, nanostructured, extracellular matrix (ECM) mimicking scaffold by a combination of ePCL nanofibers and self-assembled peptide amphiphile (PA) nanofibers. The PAs have ECM mimicking characteristics including a cell adhesive ligand (RGDS) and matrix metalloproteinase-2 (MMP-2) mediated degradable sites. Transmission electron microscope imaging verified successful PA self-assembly into nanofibers (diameters of 8-10 nm) using a solvent evaporation method. This evaporation method was then used to successfully coat PAs onto ePCL nanofibers (diameters of 300-400 nm), to develop hybrid, bioactive scaffolds. Scanning electron microscope characterization showed that the PA coatings did not interfere with the porous ePCL nanofiber network. Human mesenchymal stem cells (hMSCs) were seeded onto the hybrid scaffolds to evaluate their bioactivity. Significantly greater attachment and spreading of hMSCs were observed on ePCL nanofibers coated with PA-RGDS as compared to ePCL nanofibers coated with PA-S (no cell adhesive ligand) and uncoated ePCL nanofibers. Overall, this novel strategy presents a new solution to overcome the current bioactivity challenges of electrospun scaffolds and combines the unique characteristics of ePCL nanofibers and self-assembled PA nanofibers to provide an ECM mimicking environment. This has great potential to be applied to many different electrospun scaffolds for various biomedical applications.

  5. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

    Science.gov (United States)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty

  6. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-01-01

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  7. Long-Circulating 15 nm Micelles Based on Amphiphilic 3-Helix Peptide-PEG Conjugates

    OpenAIRE

    Dong, He; Dube, Nikhil; Shu, Jessica Y.; Seo, Jai W.; Mahakian, Lisa M; Ferrara, Katherine W.; Xu, Ting

    2012-01-01

    Generating stable, multi-functional organic nanocarriers will have a significant impact on drug formulation. However, it remains a significant challenge to generate organic nanocarriers with a long circulation half-life, effective tumor penetration and efficient clearance of metabolites. We have advanced this goal by designing a new family of amphiphiles based on coiled-coil 3-helix bundle forming peptide-poly(ethylene glycol) conjugates. The amphiphiles self-assemble into monodisperse micell...

  8. High Selective Performance of Designed Antibacterial and Anticancer Peptide Amphiphiles.

    Science.gov (United States)

    Chen, Cuixia; Chen, Yucan; Yang, Cheng; Zeng, Ping; Xu, Hai; Pan, Fang; Lu, Jian Ren

    2015-08-12

    Short designed peptide amphiphiles are attractive at killing bacteria and inhibiting cancer cell growth, and the flexibility in their structural design offers a great potential for improving their potency and biocompatibility to mammalian host cells. Amino acid sequences such as G(IIKK)nI-NH2 (n≥3) have been shown to be membrane lytic, but terminal amino acid modifications could impose a huge influence on their performance. We report in this work how terminal amino acid modifications to G(IIKK)3I-NH2 influence its α-helical structure, membrane penetrating ability, and selective actions against different cell types. Deletion of an N-terminal Gly or a C-terminal Ile did not affect their antibacterial activity much, an observation consistent with their binding behavior to negatively charged membrane lipid monolayers. However, the cytotoxicity against mammalian cells was much worsened by the N-terminal Gly deletion, consistent with an increase in its helical content. Despite little impact on the antibacterial activity of G(IIKK)3I-NH2, deletion of both terminal amino acids greatly reduced its antitumor activity. Cholesterol present in tumor cell membrane-mimic was thought to constrain (IIKK)3-NH2 from penetrating into the cancerous membranes, evident from its lowest surface physical activity at penetrating model lipid membranes. On the other hand, its low toxicity to normal mammalian cells and high antibacterial activity in vitro and in vivo made it an attractive antibacterial agent. Thus, terminal modifications can help rebalance the different interactions involved and are highly effective at manipulating their selective membrane responses.

  9. Self-assembly mechanisms of nanofibers from peptide amphiphiles in solution and on substrate surfaces

    Science.gov (United States)

    Liao, Hsien-Shun; Lin, Jing; Liu, Yang; Huang, Peng; Jin, Albert; Chen, Xiaoyuan

    2016-08-01

    We report the investigation of the self-assembly mechanism of nanofibers, using a small peptide amphiphile (NapFFKYp) as a model. Combining experimental and simulation methods, we identify the self-assembly pathways in the solution and on the substrates, respectively. In the solution, peptide amphiphiles undergo the nucleation process to grow into nanofibers. The nanofibers can further twist into high-ordered nanofibers with aging. On the substrates, peptide amphiphiles form nanofibers and nanosheet structures simultaneously. This surface-induced nanosheet consists of rod-like structures, and its thickness is substrate-dependent. Most intriguingly, water can transform the nanosheet into the nanofiber. Molecular dynamic simulation suggests that hydrophobic and ion-ion interactions are dominant forces during the self-assembly process.We report the investigation of the self-assembly mechanism of nanofibers, using a small peptide amphiphile (NapFFKYp) as a model. Combining experimental and simulation methods, we identify the self-assembly pathways in the solution and on the substrates, respectively. In the solution, peptide amphiphiles undergo the nucleation process to grow into nanofibers. The nanofibers can further twist into high-ordered nanofibers with aging. On the substrates, peptide amphiphiles form nanofibers and nanosheet structures simultaneously. This surface-induced nanosheet consists of rod-like structures, and its thickness is substrate-dependent. Most intriguingly, water can transform the nanosheet into the nanofiber. Molecular dynamic simulation suggests that hydrophobic and ion-ion interactions are dominant forces during the self-assembly process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04672j

  10. Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress

    OpenAIRE

    Subhadeep Chakrabarti; Forough Jahandideh; Jianping Wu

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and...

  11. Effect of Gastrointestinal Protease Digestion on Bioactivity of Marine Peptides

    DEFF Research Database (Denmark)

    Jensen, Ida-Johanne; Andersen, Lisa Lystbæk; Ossum, Carlo Gunnar;

    2014-01-01

    Focus in nutritional science has turned towards components in, or added to, foods that may possess health beneficial activities beyond the classical nutritional value, namely functional food. Bioactive peptides are examples of such components. In vitro studies on bioactivities have mainly been...... executed without concerning subsequent digestion after intake and the aim of this work was hence to investigate how the in vitro antioxidative, antihypertensive and caspase activating activities of peptides are affected by digestion with gastrointestinal (GI) proteases. Five different fish protein...

  12. Biomimetic Self-Templated Hierarchical Structures of Collagen-Like Peptide Amphiphiles.

    Science.gov (United States)

    Jin, Hyo-Eon; Jang, Jaein; Chung, Jinhyo; Lee, Hee Jung; Wang, Eddie; Lee, Seung-Wuk; Chung, Woo-Jae

    2015-10-14

    Developing hierarchically structured biomaterials with tunable chemical and physical properties like those found in nature is critically important to regenerative medicine and studies on tissue morphogenesis. Despite advances in materials synthesis and assembly processes, our ability to control hierarchical assembly using fibrillar biomolecules remains limited. Here, we developed a bioinspired approach to create collagen-like materials through directed evolutionary screening and directed self-assembly. We first synthesized peptide amphiphiles by coupling phage display-identified collagen-like peptides to long-chain fatty acids. We then assembled the amphiphiles into diverse, hierarchically organized, nanofibrous structures using directed self-assembly based on liquid crystal flow and its controlled deposition. The resulting structures sustained and directed the growth of bone cells and hydroxyapatite biominerals. We believe these self-assembling collagen-like amphiphiles could prove useful in the structural design of tissue regenerating materials. PMID:26392232

  13. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    Directory of Open Access Journals (Sweden)

    Nora Khaldi

    2012-10-01

    Full Text Available ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational biology, and efficient genome mining, is appearing as the long awaited solution to this problem. By quickly mining food genomes for characteristics of certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics in mining for food bioactives.The absence of food specific bioinformatic mining tools, the slow integration of both experimental mining and bioinformatics, and the important difference between different experimental platforms are some of the reasons for the slow progress of bioinformatics in the field of functional food and more specifically in bioactive peptide discovery.In this paper I discuss some methods that could be easily translated, using a rational peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an integrated food peptide database. I also discuss how to better integrate experimental work with bioinformatics in order to improve the mining of food for bioactive peptides, therefore achieving a higher success rates.

  14. Bioactive Peptides in Milk and Dairy Products: A Review

    Science.gov (United States)

    Park, Young Woo; Nam, Myoung Soo

    2015-01-01

    Functionally and physiologically active peptides are produced from several food proteins during gastrointestinal digestion and fermentation of food materials with lactic acid bacteria. Once bioactive peptides (BPs) are liberated, they exhibit a wide variety of physiological functions in the human body such as gastrointestinal, cardiovascular, immune, endocrine, and nervous systems. These functionalities of the peptides in human health and physiology include antihypertensive, antimicrobial, antioxidative, antithrombotic, opioid, anti-appetizing, immunomodulatory and mineral-binding activities. Most of the bioactivities of milk proteins are latent, being absent or incomplete in the original native protein, but full activities are manifested upon proteolytic digestion to release and activate encrypted bioactive peptides from the original protein. Bioactive peptides have been identified within the amino acid sequences of native milk proteins. Due to their physiological and physico-chemical versatility, milk peptides are regarded as greatly important components for health promoting foods or pharmaceutical applications. Milk and colostrum of bovine and other dairy species are considered as the most important source of natural bioactive components. Over the past a few decades, major advances and developments have been achieved on the science, technology and commercial applications of bioactive components which are present naturally in the milk. Although the majority of published works are associated with the search of bioactive peptides in bovine milk samples, some of them are involved in the investigation of ovine or caprine milk. The advent of functional foods has been facilitated by increasing scientific knowledge about the metabolic and genomic effects of diet and specific dietary components on human health. PMID:26877644

  15. Intrinsically disordered amphiphilic peptides as potential targets in drug delivery vehicles.

    Science.gov (United States)

    Vincenzi, Marian; Accardo, Antonella; Costantini, Susan; Scala, Stefania; Portella, Luigi; Trotta, Annamaria; Ronga, Luisa; Guillon, Jean; Leone, Marilisa; Colonna, Giovanni; Rossi, Filomena; Tesauro, Diego

    2015-11-01

    Intrinsically disordered proteins/peptides play a crucial role in many physiological and pathological events and may assume a precise conformation upon binding to a specific target. Recently, we have described the conformational and functional properties of two linear ester peptides provided with the following sequences: Y-G-E-C-P-C-K-OAllyl (PepK) and Y-G-E-C-P-C-E-OAllyl (PepE). Both peptides are characterized by the presence of the "CPC" motif together with a few amino acids able to promote disorder. The CPC sequence is a binding motif for the CXCR4 receptor that represents a well-known target for cancer therapies. In this paper, we report on synthetic amphiphilic peptides that consist of lipophilic derivatives of PepE and PepK bearing two stearic alkyl chains and/or an ethoxylic spacer. These peptide amphiphiles form stable supramolecular aggregates; they present conformational features that are typical of intrinsically disordered molecules as shown by CD spectroscopy. Solution fluorescence and DLS studies have been performed to evaluate Critical Micellar Concentrations and the dimension of supramolecular aggregates. Moreover, preliminary in vitro cell-based assays have been conducted to investigate the molecular recognition processes involving the CXCR4 receptor. In the end, the results obtained have been compared with the previous data generated by the corresponding non-amphiphilic peptides (PepE and PepK). PMID:26263446

  16. Intrinsically disordered amphiphilic peptides as potential targets in drug delivery vehicles.

    Science.gov (United States)

    Vincenzi, Marian; Accardo, Antonella; Costantini, Susan; Scala, Stefania; Portella, Luigi; Trotta, Annamaria; Ronga, Luisa; Guillon, Jean; Leone, Marilisa; Colonna, Giovanni; Rossi, Filomena; Tesauro, Diego

    2015-11-01

    Intrinsically disordered proteins/peptides play a crucial role in many physiological and pathological events and may assume a precise conformation upon binding to a specific target. Recently, we have described the conformational and functional properties of two linear ester peptides provided with the following sequences: Y-G-E-C-P-C-K-OAllyl (PepK) and Y-G-E-C-P-C-E-OAllyl (PepE). Both peptides are characterized by the presence of the "CPC" motif together with a few amino acids able to promote disorder. The CPC sequence is a binding motif for the CXCR4 receptor that represents a well-known target for cancer therapies. In this paper, we report on synthetic amphiphilic peptides that consist of lipophilic derivatives of PepE and PepK bearing two stearic alkyl chains and/or an ethoxylic spacer. These peptide amphiphiles form stable supramolecular aggregates; they present conformational features that are typical of intrinsically disordered molecules as shown by CD spectroscopy. Solution fluorescence and DLS studies have been performed to evaluate Critical Micellar Concentrations and the dimension of supramolecular aggregates. Moreover, preliminary in vitro cell-based assays have been conducted to investigate the molecular recognition processes involving the CXCR4 receptor. In the end, the results obtained have been compared with the previous data generated by the corresponding non-amphiphilic peptides (PepE and PepK).

  17. Design of amphiphilic oligopeptides as models for fine tuning peptide assembly with plasmid DNA.

    Science.gov (United States)

    Goparaju, Geetha N; Gupta, Pardeep K

    2014-08-01

    We discuss the design of novel amphiphilic oligopeptides with hydrophobic and cationic amino acids to serve as models to understand peptide-DNA assembly. Biophysical and thermodynamic characterization of interaction of these amphiphilic peptides with plasmid DNA is presented. Peptides with at least +4 charges favor stable complex formation. Surface potential is dependent on the type of hydrophobic amino acid for a certain charge. Thermodynamically it is a spontaneous interaction between most of the peptides and plasmid DNA. Lys(7) and Tyr peptides with +4/+5 charges indicate cooperative binding with pDNA without saturation of interaction while Val(2)-Gly-Lys(4), Val-Gly-Lys(5), and Phe-Gly-Lys(5) lead to saturation of interaction indicating condensed pDNA within the range of N/Ps studied. We show that the biophysical properties of DNA-peptide complexes could be modulated by design and the peptides presented here could be used as building blocks for creating DNA-peptide complexes for various biomedical applications, mainly nucleic acid delivery.

  18. Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Subhadeep Chakrabarti

    2014-01-01

    Full Text Available Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  19. A designed amphiphilic peptide containing the silk fibroin motif as a potential carrier of hydrophobic drugs

    Institute of Scientific and Technical Information of China (English)

    Qinghan Zhou; Juan Lin; Jing Wang; Feng Li; Fushan Tang; Xiaojun Zhao

    2009-01-01

    The amphiphilic peptide is becoming attractive as a potential drug carder to improve the dissolvability of hydrophobic drugs in an aqueous system; thus, facilitating drug uptake by target cells. Here, we report a novel designed amphiphilic peptide, Ac-RADAGAGA-RADAGAGA-NH_2, which was able to stabilize pyrene, a hydrophobic model drug we chose to study in aqueous solution. This designed peptide formed a colloidal suspension by encapsulating pyrene inside the peptide-pyrene complex. Egg phosphatidylcholine (EPC) ves-icles were used to mimic cell bilayer membranes. We found that pyrene was released from the peptide coating into the EPC vesicles by mixing the colloidal suspension with EPC vesicles, which was followed by steady fluorescence spectra as a function of time. A calibration curve for the amount of pyrene released into the EPC vesicles at a given time was used to determine the final concentration of pyrene released into the lipid vesicles from the peptide-pyrene complex. The release rate of the peptide pyrene complex was calculated to quan-tify the transfer of pyrene into EPC vesicles.

  20. Self-Assembling Peptide Amphiphiles for Therapeutic Delivery of Proteins, Drugs, and Stem Cells

    Science.gov (United States)

    Lee, Sungsoo Seth

    Biomaterials are used to help regenerate or replace the structure and function of damaged tissues. In order to elicit desired therapeutic responses in vivo, biomaterials are often functionalized with bioactive agents, such as growth factors, small molecule drugs, or even stem cells. Therefore, the strategies used to incorporate these bioactive agents in the microstructures and nanostructures of biomaterials can strongly influence the their therapeutic efficacy. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures with improved interaction with three types of therapeutic agents: bone morphogenetic protein 2 (BMP-2) which promotes osteogenic differentiation and bone growth, anti-inflammatory drug naproxen which is used to treat osteo- and rheumatoid arthritis, and neural stem cells that could differentiate into neurons to treat neurodegenerative diseases. For BMP-2 delivery, two specific systems were investigated with affinity for BMP-2: 1) heparin-binding nanofibers that display the natural ligand of the osteogenic protein, and 2) nanofibers that display a synthetic peptide ligand discovered in our laboratory through phage display to directly bind BMP-2. Both systems promoted enhanced osteoblast differentiation of pluripotent C2C12 cells and augmented bone regeneration in two in vivo models, a rat critical-size femur defect model and spinal arthrodesis model. The thesis also describes the use of PA nanofibers to improve the delivery of the anti-inflammatory drug naproxen. To promote a controlled release, naproxen was chemically conjugated to the nanofiber surface via an ester bond that would only be cleaved by esterases, which are enzymes found naturally in the body. In the absence of esterases, the naproxen remained conjugated to the nanofibers and was non-bioactive. On the other hand, in the presence of esterases, naproxen was slowly released and inhibited cyclooxygenase-2 (COX-2) activity, an enzyme responsible

  1. The interaction of bioactive peptides with an immobilized phosphatidylcholine monolayer.

    OpenAIRE

    Mozsolits, H; Lee, T. H.; Wirth, H J; Perlmutter, P; Aguilar, M I

    1999-01-01

    The interaction of three bioactive peptides, bombesin, beta-endorphin, and glucagon with a phosphatidylcholine monolayer that was immobilized to porous silica particles and packed into a stainless steel column cartridge, has been studied using dynamic elution techniques. This immobilized lipid monolayer provides a biophysical model system with which to study the binding of peptides to a lipid membrane. In particular, the influence of temperature and methanol concentration on the affinity of e...

  2. Hierarchical Self-Assembly of Peptide Amphiphiles: Form and Function at Multiple Length Scales

    Science.gov (United States)

    Zha, Runye Helen

    Hierarchical self-assembly, the organization of molecules into supramolecular structures of increasing size and complexity, is a potent tool for materials synthesis and requires understanding the connections of structure across multiple length scales. Herein, self-assembly of peptide amphiphiles (PAs) into nanoscopic and macroscopic materials is explored, and their anti-cancer applications are investigated. First, nanoscale assembly is examined in the context of an anti-angiogenic PA bearing the G-helix motif of maspin, a tumor suppressor protein. Assembly of this maspin-mimetic PA (MMPA) stabilizes the native G-helix conformation and improves binding to endothelial cells. Furthermore, PA nanostructures significantly increase cell adhesion to fibronectin as compared to G-helix peptide alone. Combined with its inhibitory effect on cell migration, MMPA nanostructures thus show anti-angiogenic activity on par with maspin protein in vitro and in vivo. Second, assembly of cationic PAs with hyaluronic acid (HA), an anionic polyelectrolyte, into macroscopic membranes is explored using PAs with identical formal charge but systematically varied self-assembly domains. Results suggest that membrane formation is dictated by the initial moments of component aggregation and is highly sensitive to PA molecular structure via nanoscale assembly. Specifically, PAs with beta-sheet forming residues are nanofibrous and have high surface charge density, leading to robust membranes with aligned-fiber microstructure. PAs without beta-sheet forming residues are nanospherical and have low surface charge density, leading to weak membranes with non-fibrous finger-like microstructure. Lastly, the principles of PA-HA membrane assembly are applied towards development of anti-cancer therapeutic biomaterials. Here, cytotoxic PAs bearing the epitope (KLAKLAKbeta)2 are co-assembled with non-bioactive cationic PA in order to achieve varying nanoscale morphology. These nanostructures are then

  3. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres

    Science.gov (United States)

    da Silva, Ricardo M. P.; van der Zwaag, Daan; Albertazzi, Lorenzo; Lee, Sungsoo S.; Meijer, E. W.; Stupp, Samuel I.

    2016-05-01

    The dynamic behaviour of supramolecular systems is an important dimension of their potential functions. Here, we report on the use of stochastic optical reconstruction microscopy to study the molecular exchange of peptide amphiphile nanofibres, supramolecular systems known to have important biomedical functions. Solutions of nanofibres labelled with different dyes (Cy3 and Cy5) were mixed, and the distribution of dyes inserting into initially single-colour nanofibres was quantified using correlative image analysis. Our observations are consistent with an exchange mechanism involving monomers or small clusters of molecules inserting randomly into a fibre. Different exchange rates are observed within the same fibre, suggesting that local cohesive structures exist on the basis of β-sheet discontinuous domains. The results reported here show that peptide amphiphile supramolecular systems can be dynamic and that their intermolecular interactions affect exchange patterns. This information can be used to generate useful aggregate morphologies for improved biomedical function.

  4. Bioactive peptides and proteins in disease

    OpenAIRE

    Refai, Essam

    2004-01-01

    Regulatory peptides and marker proteins are important to study in order to understand disease mechanisms. This applies of course also to our common diseases where all relationships are not yet known. Cancer and diabetes are two such complex diseases that affect hundreds of millions of people worldwide. This thesis addresses particular aspects of these two diseases, regarding one regulatory peptide (VIP, vasoactive intestinal polypeptide) that may be useful for tumor tracing ...

  5. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan, Melis; Tekinay, Turgay; Guler, Mustafa O; Tekinay, Ayse B

    2015-05-01

    A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonucleotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonucleotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R4 and R8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R8-PA and KRSR-PA. R8 and R8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs. PMID:25828697

  6. Synthesis and In Vitro Evaluation of Amphiphilic Peptides and Their Nanostructured Conjugates

    Directory of Open Access Journals (Sweden)

    Samaneh Mohammadi

    2015-03-01

    Full Text Available Purpose: Breast cancer is the second leading cancer type among people of advanced countries. Various methods have been used for cancer treatment such as chemotherapy and radiotherapy. In the present study we have designed and synthesized a new group of drug delivery systems (DDS containing a new class of Cell Penetrating Peptides (CPPs named Peptide Amphiphiles (PAs. Methods: Two PAs and anionic peptides were synthesized using solid phase peptide synthesis (SPPS, namely [KW]4, [KW]5, E4 and E8. Then nano-peptides were synthesized by non-covalent binding between PAs and poly anions as [KW]4-E4, [KW]4-E8, [KW]5-E4 and [KW]5-E8. Results: Flow cytometry studies showed that increased chain length of PAs with a higher ratio between hydrophobicity and net charge results in increased intracellular uptake by MCF7 cells after 2h incubation. Moreover, nano-peptides showed greater intracellular uptake compared to PAs. Anti-proliferative assay revealed that by increasing chain length of PAs, the toxicity effect on MCF7 cells is reduced, however nano-peptides did not show significant toxicity on MCF7 cells even at high concentration levels. Conclusion: These data suggest that due to the lack of toxicity effect at high concentration levels and also high cellular uptake, nano-peptides are more suitable carrier compared to PAs for drug delivery.

  7. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    OpenAIRE

    Nora Khaldi

    2012-01-01

    ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational b...

  8. Control over Structure and Function of Peptide Amphiphile Supramolecular Assemblies through Molecular Design and Energy Landscapes

    Science.gov (United States)

    Tantakitti, Faifan

    Supramolecular chemistry is a powerful tool to create a material of a defined structure with tunable properties. This strategy has led to catalytically active, bioactive, and environment-responsive materials, among others, that are valuable in applications ranging from sensor technology to energy and medicine. Supramolecular polymers formed by peptide amphiphiles (PAs) have been especially relevant in tissue regeneration due to their ability to form biocompatible structures and mimic many important signaling molecules in biology. These supramolecular polymers can form nanofibers that create networks which mimic natural extracellular matrices. PA materials have been shown to induce growth of blood vessels, bone, cartilage, and nervous tissue, among others. The work described in this thesis not only studied the relationship between molecular structure and functions of PA assemblies, but also uncovered a powerful link between the energy landscape of their supramolecular self-assembly and the ability of PA materials to interact with cells. In chapter 2, it is argued that fabricating fibrous nanostructures with defined mechanical properties and decoration with bioactive molecules is not sufficient to create a material that can effectively communicate with cells. By systemically placing the fibronectin-derived RGDS epitope at increasing distances from the surface of PA nanofibers through a linker of one to five glycine residues, integrin-mediated RGDS signaling was enhanced. The results suggested that the spatial presentation of an epitope on PA nanofibers strongly influences the bioactivity of the PA substrates. In further improving functionality of a PA-based scaffold to effectively direct cell growth and differentiation, chapter 3 explored the use of a cell microcarrier to compartmentalize and simultaneously tune insoluble and soluble signals in a single matrix. PA nanofibers were incorporated at the surface of the microcarrier in order to promote cell adhesion, while

  9. Marine algae-derived bioactive peptides for human nutrition and health.

    Science.gov (United States)

    Fan, Xiaodan; Bai, Lu; Zhu, Liang; Yang, Li; Zhang, Xuewu

    2014-09-24

    Within the parent protein molecule, most peptides are inactive, and they are released with biofunctionalities after enzymatic hydrolysis. Marine algae have high protein content, up to 47% of the dry weight, depending on the season and the species. Recently, there is an increasing interest in using marine algae protein as a source of bioactive peptides due to their health promotion and disease therapy potentials. This review presents an overview of marine algae-derived bioactive peptides and especially highlights some key issues, such as in silico proteolysis and quantitative structure-activity relationship studies, in vivo fate of bioactive peptides, and novel technologies in bioactive peptides studies and production. PMID:25179496

  10. A molecular model for membrane fusion based on solution studies of an amphiphilic peptide from HIV gp41.

    OpenAIRE

    Fujii, G; Horvath, S.; Woodward, S.; Eiserling, F.; Eisenberg, D.

    1992-01-01

    The mechanism of protein-mediated membrane fusion and lysis has been investigated by solution-state studies of the effects of peptides on liposomes. A peptide (SI) corresponding to a highly amphiphilic C-terminal segment from the envelope protein (gp41) of the human immunodeficiency virus (HIV) was synthesized and tested for its ability to cause lipid membranes to fuse together (fusion) or to break open (lysis). These effects were compared to those produced by the lytic and fusogenic peptide ...

  11. Food Derived Bioactive Peptides and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Olga Martínez-Augustin

    2014-12-01

    Full Text Available A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  12. Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment

    Directory of Open Access Journals (Sweden)

    Accardo A

    2014-05-01

    Full Text Available Antonella Accardo,1 Mariateresa Vitiello,2,3 Diego Tesauro,1 Marilena Galdiero,2 Emiliana Finamore,2 Francesca Martora,2 Rosalba Mansi,1 Paola Ringhieri,1 Giancarlo Morelli11Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy; 2Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy; 3Department of Clinical Pathology and Transfusion Medicine, University Hospital “Ruggi d'Aragona”, Salerno, ItalyAbstract: The use of micelle aggregates formed from peptide amphiphiles (PAs as potential synthetic self-adjuvant vaccines to treat Herpes simplex virus (HSV infection are reported here. The PAs were based on epitopes gB409-505 and gD301-309, selected from HSV envelope glycoprotein B (gB and glycoprotein D (gD, that had their N-terminus modified with hydrophobic moieties containing two C18 hydrocarbon chains. Pure and mixed micelles of gB and/or gD peptide epitopes were easily prepared after starting with the synthesis of corresponding PAs by solid phase methods. Structural characterization of the aggregates confirmed that they were sufficiently stable and compatible with in vivo use: critical micelle concentration values around 4.0 · 10-7 mol · Kg-1; hydrodynamic radii (RH between 50–80 nm, and a zeta potential (ζ around – 40 mV were found for all aggregates. The in vitro results indicate that both peptide epitopes and micelles, at 10 µM, triggered U937 and RAW 264.7 cells to release appreciable levels of cytokines. In particular, interleukin (IL-23-, IL-6-, IL-8- or macrophage inflammatory protein (MIP-2-, and tumor necrosis factor (TNF-α-release increased considerably when cells were treated with the gB-micelles or gD-micelles compared with the production of the same cytokines when the stimulus was the single gB or gD peptide

  13. Identification of bioactive peptide from Oreochromis niloticus skin gelatin.

    Science.gov (United States)

    Choonpicharn, Sadabpong; Tateing, Suriya; Jaturasitha, Sanchai; Rakariyatham, Nuansri; Suree, Nuttee; Niamsup, Hataichanoke

    2016-02-01

    Fish skin, one type of wastes generated from Nile tilapia processing, is still a good source of collagen and gelatin. Bioactive peptides can be obtained from Nile tilapia skin gelatin by trypsin digestion. Trypsin hydrolysate was subsequently purified by gel filtration chromatography. Trypsin A fraction showed the greatest reducing power (5.138 ± 1.060 μM trolox/mg peptide) among all hydrolysate fractions, while trypsin B fraction from gel filtration column was found to exhibit the best radical scavenging and angiotensin-I-converting enzyme (ACE) inhibitory activities 8.16 ± 2.18 μg trolox/mg peptide and 59.32 ± 9.97 % inhibition, respectively. The most active fraction was subjected to MALDI-TOF/TOF MS/MS. After annotation by Mascot sequence matching software (Matrix Science) with Ludwig NR Database, two peptide sequences were identified; GPEGPAGAR (MW 810.87 Da) and GETGPAGPAGAAGPAGPR (MW 1490.61 Da). The docking analysis suggested that the shape of the shorter peptide may be slightly more proper, to fit into the binding cleft of the ACE. However, the binding affinities calculated from the docking showed no significant difference between the two peptides. In good agreement with the in silico data, results from the in vitro ACE inhibitory activity with synthetic peptides also showed no significant difference. Both peptides are thus interesting novel candidates suitable for further development as ACE inhibitory and antioxidant agents from the natural source. PMID:27162402

  14. Peptide-based gemini amphiphiles: phase behavior and rheology of wormlike micelles.

    Science.gov (United States)

    Shrestha, Rekha Goswami; Nomura, Kazuyuki; Yamamoto, Masashi; Yamawaki, Yukio; Tamura, Yoshinaga; Sakai, Kenichi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko

    2012-11-01

    Aqueous binary phase behavior of a peptide-based gemini amphiphile with glutamic acid and lysine as spacer group, acylglutamyllysilacylglutamate (m-GLG-m where m = 12, 14, and 16), has been reported over a wide range of concentration and temperature. Lauroylglutamyllysillauroylglutamate, 12-GLG-12, self-assembles into spherical micelles above critical micelle concentration (CMC). The micellar region extends up to 32 wt %, and an ordering of spherical micelles into micellar cubic phase, I(1), takes place at 33 wt % at 25 °C. The phase transition, I(1) - hexagonal liquid crystal, (H(1)) - lamellar liquid crystal, (L(α)) has been observed with further increase in concentration; moreover, mixed phases are also observed between the pure liquid crystal domains. Similar phases were observed with 16-GLG-16 above 50 °C (Krafft temperature). The partial ternary phase behavior shows that the micellar solutions of m-GLG-m can solubilize a large amount of cationic amphiphile, alkyltrimethylammonium bromide, C(n)TAB, (where n = 14 (TTAB) and 16 (CTAB)) at 25 °C. An addition of C(n)TAB to the aqueous solutions of 16-GLG-16 in a dilute region forms a transparent solution of viscoelastic wormlike micelles at very low concentration (0.25 wt %) even at ambient condition. A mixture of oppositely charged amphiphiles, m-GLG-m and C(n)TAB, exhibits synergism as a result the amphiphile layer curvature, becomes less positive, and favors the transition from sphere to rod to transient networks (wormlike micelles). The gemini amphiphile, 16-GLG-16, forms wormlike micelles at relatively low concentrations compared to others reported so far. Viscosity increases by six orders of magnitude compared to that of pure solvent. The hydrophobic chain length of m-GLG-m and coamphiphile affects the rheology; the maximum viscosity achieved with 16-GLG-16/H(2)O/CTAB is higher than that of 14-GLG-14/H(2)O/CTAB, 12-GLG-12/H(2)O/CTAB, and 16-GLG-16/H(2)O/TTAB systems. These temperature-sensitive systems

  15. Bioactive peptides generated from meat industry by-products

    OpenAIRE

    Mora, Leticia; Reig, Milagro; Toldrá, Fidel

    2014-01-01

    There is a large generation of meat by-products, not only from slaughtering but also in the meat industry from trimming and deboning during further processing. This results in extraordinary volumes of by-products that are primarily used as feeds with low returns or, more recently, to biodiesel generation. The aim of this work was to review the state of the art to generate bioactive peptides from meat industry by-products giving them an added value. Hydrolysis with commercial proteases constit...

  16. A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste

    Science.gov (United States)

    Lemes, Ailton Cesar; Sala, Luisa; Ores, Joana da Costa; Braga, Anna Rafaela Cavalcante; Egea, Mariana Buranelo; Fernandes, Kátia Flávia

    2016-01-01

    Bioactive peptides are considered the new generation of biologically active regulators that not only prevent the mechanism of oxidation and microbial degradation in foods but also enhanced the treatment of various diseases and disorders, thus increasing quality of life. This review article emphasizes recent advances in bioactive peptide technology, such as: (i) new strategies for transforming bioactive peptides from residual waste into added-value products; (ii) nanotechnology for the encapsulation, protection and release of controlled peptides; and (iii) use of techniques of large-scale recovery and purification of peptides aiming at future applications to pharmaceutical and food industries. PMID:27322241

  17. Structural transformation of peptide amphiphile self-assembly induced by headgroup charge and size regulation

    Science.gov (United States)

    Gao, Changrui; Bedzyk, Michael; Olvera, Monica; Kewalramani, Sumit; Palmer, Liam

    The ability to control the nano and the meso-scale architecture of molecular assemblies is one of the major challenges in nanoscience. Significantly, structural transformations of amphiphilic aggregates induced by variations in environmental conditions have attracted attention due to their biotechnological relevance. Here, we study the assembly in aqueous solution for a modular series of peptide amphiphiles with 3, 2 or 1 lysine groups conjugated to a C16 carbon tail (C16K3, C16K2 and C16K1) . This system design allow us to probe how the equilibrium structure of the self-assembly can be tuned by controlling the coupling between steric (via choice of headgroup: K3, K2, or K1) and electrostatic (via solution pH) interactions. Solution small- and wide-angle X-ray scattering (SAXS/WAXS) and transmission electron microscopy (TEM) studies reveal that depending on pH and number of lysines in the lipid headgroup, amphiphiles can assemble into a range of structures: spherical micelles, bilayer ribbons and vesicles. We also perform detailed phase space mapping of pH-and headgroup size dependency of the structures of assembly over 0.1-100 nm length scales via SAXS/WAXS. The experimental results in conjunction with molecular dynamics (MD) simulations deduce quantitative relations between pH-dependent molecular charges, steric constraints and self-assembly morphologies, which is significant for developing experimental routes to obtain assembly structures with specific nano- and meso-scale features through controlled external stimuli.

  18. Formation of size-controlled, denaturation-resistant lipid nanodiscs by an amphiphilic self-polymerizing peptide.

    Science.gov (United States)

    Kondo, Hiroaki; Ikeda, Keisuke; Nakano, Minoru

    2016-10-01

    Nanodiscs are discoidal particles with a planar phospholipid bilayer enwrapped by proteins such as apolipoprotein A-I. Nanodiscs have been widely used for analyzing structures and functions of membrane proteins by dispersing them in solution. They are expected to be used as drug carriers and therapeutic agents. Amphiphilic peptides are known to form nanodiscs. However, the lipid-peptide nanodiscs are relatively unstable in solution, making them unsuitable for many applications. Here, we report the synthesis of an amphiphilic self-polymerizing peptide termed ASPP1, which polymerizes by intermolecular native chemical ligation reactions. ASPP1 spontaneously formed nanodiscs when added to phospholipid vesicles without using detergents. The diameter of the planar lipid bilayer in the nanodiscs was controlled by the lipid:peptide molar ratio. ASPP1-nanodiscs exhibited greater stability at high temperatures or in the presence of urea than nanodiscs formed by the non-polymerizing amphiphilic peptide or apolipoprotein A-I. Average and maximal degrees of ASPP1 polymerization were 2.4 and 12, respectively. Self-polymerization of the peptide appears to be responsible for stabilization of the nanodiscs. Our results open a new avenue for the development of nanodisc technology. PMID:27393815

  19. Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide.

    Science.gov (United States)

    Zhang, Yi; Schulten, Klaus; Gruebele, Martin; Bansal, Paramjit S; Wilson, David; Daly, Norelle L

    2016-04-26

    Disulfide bridges are commonly found covalent bonds that are usually believed to maintain structural stability of proteins. Here, we investigate the influence of disulfide bridges on protein dynamics through molecular dynamics simulations on the cysteine-rich trypsin inhibitor MCoTI-II with three disulfide bridges. Correlation analysis of the reduced cyclic peptide shows that two of the three disulfide distances (Cys(11)-Cys(23) and Cys(17)-Cys(29)) are anticorrelated within ∼1 μs of bridge formation or dissolution: when the peptide is in nativelike structures and one of the distances shortens to allow bond formation, the other tends to lengthen. Simulations over longer timescales, when the denatured state is less structured, do not show the anticorrelation. We propose that the native state contains structural elements that frustrate one another's folding, and that the two bridges are critical for snapping the frustrated native structure into place. In contrast, the Cys(4)-Cys(21) bridge is predicted to form together with either of the other two bridges. Indeed, experimental chromatography and nuclear magnetic resonance data show that an engineered peptide with the Cys(4)-Cys(21) bridge deleted can still fold into its near-native structure even in its noncyclic form, confirming the lesser role of the Cys(4)-Cys(21) bridge. The results highlight the importance of disulfide bridges in a small bioactive peptide to bring together frustrated structure in addition to maintaining protein structural stability. PMID:27119635

  20. Molecular dynamics simulation of {beta}-sheet formation in self-assembled peptide amphiphile fibers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, One-Sun; Liu Yamei; Schatz, George C., E-mail: schatz@chem.northwestern.edu [Northwestern University, Department of Chemistry (United States)

    2012-08-15

    The influence of amino acid sequence on the secondary structure of peptide amphiphile (PAs) cylindrical micelles and fibers that are self-assembled in solution is studied using molecular dynamics simulations. Simulations for two choices of PAs were performed, starting with structures that have the correct overall shape, but which restructure considerably during the simulation, with one fiber being composed of valine rich PAs and the other of alanine rich PAs. Self-assembly is similar in both simulations, with stable fibers (diameter is 7.7-8 nm) obtained after 40 ns. We find that the valine rich PA fiber has a higher {beta}-sheet population than the alanine rich fiber, and that the number of hydrogen bonds is higher. This behavior of the valine rich fiber is consistent with experimental measurements of higher stiffness, and it shows that stiffness can be varied while still maintaining self-assembly.

  1. Cytocompatibility of Self-assembled Hydrogel from IKVAV-containing Peptide Amphiphile with Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    SONG Yulin; ZHENG Qixin; GUO Xiaodong; ZHENG Jianfeng

    2009-01-01

    Neural Stem Cells(NSCs)were incubated with self-assembled hydrogel from IKVAV-containing peptide amphiphile(IKVAV-PA)for one week.The cytocompatibility of hydrogel was evaluated.NSCs were seeded in three-dimensional(3D)hydrogels(Experimental Group,EG)or surface of coverslips(Control Group,CG),double-labeled with Calcein-AM and PI.A growth curve of cells was obtained according to CCK-8.TEM study of hydrogel revealed a network of nanofibers. NSCs began to proliferate after 24 h of incubation,and formed bigger neurospheres at 48 h in EG than in CG.Cell proliferation activity was higher in EG than in CG(P<0.05).The self-assembled Hydrogel had good cytocompatibility and promoted the proliferation of NSCs.

  2. Tipping the Scale from Disorder to Alpha-helix: Folding of Amphiphilic Peptides in the Presence of Macroscopic and Molecular Interfaces

    OpenAIRE

    Cahit Dalgicdir; Christoph Globisch; Christine Peter; Mehmet Sayar

    2015-01-01

    RESEARCH ARTICLE Tipping the Scale from Disorder to Alpha-helix: Folding of Amphiphilic Peptides in the Presence of Macroscopic and Molecular Interfaces Cahit Dalgicdir1, Christoph Globisch2, Christine Peter2*, Mehmet Sayar1* 1 College of Engineering, Koç University, Istanbul, Turkey, 2 Theoretical Chemistry, University of Konstanz, Konstanz, Germany * (CP); (MS) Abstract Secondary amphiphilicity is inherent to the...

  3. Heparin-binding peptide amphiphile supramolecular architectures as platforms for angiogenesis and drug delivery

    Science.gov (United States)

    Chow, Lesleyann W.

    A fascinating phenomenon in nature is the self-assembly of molecules into a functional, hierarchical structure. In the past decade, the Stupp Laboratory has developed several classes of self-assembling biomaterials, one of which is the synthetic peptide amphiphile (PA). Self-assembling PAs are attractive and versatile biomolecules that can be customized for specific applications in regenerative medicine. In particular, a heparin-binding peptide amphiphile (HBPA) containing a specific heparin-binding peptide sequence was used here to induce angiogenesis and serve as a delivery vehicle for growth factors and small hydrophobic molecules. Throughout this dissertation, the HBPA/heparin system is used in different architectures for a variety of regenerative medicine applications. In one aspect of this work, hybrid scaffolds made from HBPA/heparin gelled on a poly(L-lactic acid) (PLLA) fiber mesh were used to promote angiogenesis to facilitate pancreatic islet transplantation for the treatment of type 1 diabetes. Delivery of growth factors with HBPA/PLLA scafflolds increased vessel density in vivo and correlated with improved transplant outcomes in a streptozotocin-induced diabetic mouse model. Soluble HBPA nanofiber architectures were also useful for islet transplantation applications. These nanofibers were used at concentrations below gelation to deliver growth factors into the dense islet cell aggregate, promoting cell survival and angiogenesis in vitro. The nanostructures infiltrated the islets and promoted the retention of heparin and growth factors within the islet. Another interesting growth factor release system discussed here is the HBPA membrane structure. HBPA was found to self-assemble with hyaluronic acid, a large biopolymer found in the body, into macroscopic, hierarchically-ordered membranes. Heparin was incorporated into these membranes and affected the membrane's mechanical properties and growth factor release. Human mesenchymal stem cells were also shown

  4. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    Science.gov (United States)

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    The hairpin RNA motif is one of the most frequently observed secondary structures and is often targeted by therapeutic agents. An amphiphilic peptide with seven lysine and eight leucine residues and its derivatives were designed for use as ligands against RNA hairpin motifs. We hypothesized that variations in both the hydrophobic leucine-rich and hydrophilic lysine-rich spheres of these amphiphilic peptides would create extra attractive interactions with hairpin RNA targets. A series of alanine-scanned peptides were probed to identify the most influential lysine residues in the hydrophilic sphere. The binding affinities of these modified peptides with several hairpins, such as RRE, TAR from HIV, a short hairpin from IRES of HCV, and a hairpin from the 16S A-site stem from rRNA, were determined. Since the hairpin from IRES of HCV was the most susceptible to the initial series of alanine-scanned peptides, studies investigating how further variations in the peptides effect binding employed the IRES hairpin. Next, the important Lys residues were substituted by shorter chain amines, such as ornithine, to place the peptide deeper into the hairpin groove. In a few cases, a 70-fold improved binding was observed for peptides that contained the specifically located shorter amine side chains. To further explore changes in binding affinities brought about by alterations in the hydrophobic sphere, tryptophan residues were introduced in place of leucine. A few peptides with tryptophan in specific positions also displayed 70-fold improved binding affinities. Finally, double mutant peptides incorporating both specifically located shorter amine side chains in the hydrophilic region and tryptophan residues in the hydrophobic region were synthesized. The binding affinities of peptides containing the simple double modification were observed to be 80 times lower, and their binding specificities were increased 40-fold. The results of this effort provide important information about

  5. A redox-responsive mesoporous silica nanoparticle capped with amphiphilic peptides by self-assembly for cancer targeting drug delivery

    Science.gov (United States)

    Xiao, Dong; Jia, Hui-Zhen; Ma, Ning; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2015-05-01

    A redox-responsive mesoporous silica nanoparticle (RRMSN) was developed as a drug nanocarrier by noncovalent functionalization of MSNs with amphiphilic peptides containing the RGD ligand. The alkyl chain stearic acid (C18) with a thiol terminal group was anchored on the surface of MSNs via a disulfide bond, and the amphiphilic peptide (AP) C18-DSDSDSDSRGDS was coated by self-assembly through hydrophobic interactions between the octadecyl groups of MSNs and alkyl chains of AP, which played the role of a gatekeeper collectively. In vitro drug release profiles demonstrated that the anticancer drug (DOX) could be entrapped with nearly no leakage in the absence of dithiothreitol (DTT) or glutathione (GSH). With the addition of DTT or GSH, the entrapped drug released quickly due to the cleavage of the disulfide bond. It was found that after the internalization of MSNs by cancer cells via the receptor-mediated endocytosis, the surface amphiphilic peptides and alkyl chain of RRMSN/DOX were removed to induce rapid drug release intracellularly after the cleavage of the disulfide bond, triggered by GSH secreted in cancer cells. This novel intelligent RRMSN/DOX drug delivery system using self-assembly of amphiphilic peptides around the MSNs provides a facile, but effective strategy for the design and development of smart drug delivery for cancer therapy.A redox-responsive mesoporous silica nanoparticle (RRMSN) was developed as a drug nanocarrier by noncovalent functionalization of MSNs with amphiphilic peptides containing the RGD ligand. The alkyl chain stearic acid (C18) with a thiol terminal group was anchored on the surface of MSNs via a disulfide bond, and the amphiphilic peptide (AP) C18-DSDSDSDSRGDS was coated by self-assembly through hydrophobic interactions between the octadecyl groups of MSNs and alkyl chains of AP, which played the role of a gatekeeper collectively. In vitro drug release profiles demonstrated that the anticancer drug (DOX) could be entrapped with

  6. Gastrointestinal endogenous proteins as a source of bioactive peptides--an in silico study.

    Directory of Open Access Journals (Sweden)

    Lakshmi A Dave

    Full Text Available Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation, the total number of bioactive peptides predicted to be released ranged from 1 (gliadin to 55 (myosin for the selected dietary proteins and from 1 (secretin to 39 (mucin-5AC for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides, while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides. Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein.

  7. Purely peptidic amphiphiles : understanding and controlling their self-assembled structures

    OpenAIRE

    Schuster, Thomas Bernhard

    2011-01-01

    Amphiphilic molecules spontaneously self-assemble into a variety of structures in solution. The term amphiphilic indicates that one part of the molecule is attracted to the solvent, while the other is not. Interactions such as between solute-solvent and solute-solute thus determine the organization. Understanding the self-assembly means understanding those interactions and their driving forces. In the first chapter an overview of the self-organization of amphiphilic molecules into supermolecu...

  8. Bio-fabrication and physiological self-release of tissue equivalents using smart peptide amphiphile templates.

    Science.gov (United States)

    Gouveia, Ricardo M; Hamley, Ian W; Connon, Che J

    2015-10-01

    In this study we applied a smart biomaterial formed from a self-assembling, multi-functional synthetic peptide amphiphile (PA) to coat substrates with various surface chemistries. The combination of PA coating and alignment-inducing functionalised substrates provided a template to instruct human corneal stromal fibroblasts to adhere, become aligned and then bio-fabricate a highly-ordered, multi-layered, three-dimensional tissue by depositing an aligned, native-like extracellular matrix. The newly-formed corneal tissue equivalent was subsequently able to eliminate the adhesive properties of the template and govern its own complete release via the action of endogenous proteases. Tissues recovered through this method were structurally stable, easily handled, and carrier-free. Furthermore, topographical and mechanical analysis by atomic force microscopy showed that tissue equivalents formed on the alignment-inducing PA template had highly-ordered, compact collagen deposition, with a two-fold higher elastic modulus compared to the less compact tissues produced on the non-alignment template, the PA-coated glass. We suggest that this technology represents a new paradigm in tissue engineering and regenerative medicine, whereby all processes for the bio-fabrication and subsequent self-release of natural, bio-prosthetic human tissues depend solely on simple template-tissue feedback interactions. PMID:26411438

  9. Selected adjunct cultures remarkably increase the content of bioactive peptides in Bulgarian white brined cheese

    OpenAIRE

    Dimitrov, Zhechko; Chorbadjiyska, Elena; Gotova, Irina; Pashova, Kalinka; Ilieva, Svetla

    2014-01-01

    Some lactic acid bacteria strains in milk media are capable of releasing bioactive peptides. In this study, we evaluated the angiotensin-converting enzyme (ACE)inhibitory activity of 180 lactic acid bacteria and selected several Lactobacillus helveticus, L. delbrueckii subsp. bulgaricus and L. casei strains that demonstrated strong ACE-inhibitory activity. The aim was to carry out a molecular study on the bioactive peptides released by the strains with the best ACE-inhibitory properties and b...

  10. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.

    Science.gov (United States)

    Ryder, Kate; Bekhit, Alaa El-Din; McConnell, Michelle; Carne, Alan

    2016-10-01

    Five commercially available food-grade microbial protease preparations were evaluated for their ability to hydrolyse meat myofibrillar and connective tissue protein extracts to produce bioactive peptides. A bacterial-derived protease (HT) extensively hydrolysed both meat protein extracts, producing peptide hydrolysates with significant in vitro antioxidant and ACE inhibitor activities. The hydrolysates retained bioactivity after simulated gastrointestinal hydrolysis challenge. Gel permeation chromatography sub-fractionation of the crude protein hydrolysates showed that the smaller peptide fractions exhibited the highest antioxidant and ACE inhibitor activities. OFFGEL electrophoresis of the small peptides of both hydrolysates showed that low isoelectric point peptides had antioxidant activity; however, no consistent relationship was observed between isoelectric point and ACE inhibition. Cell-based assays indicated that the hydrolysates present no significant cytotoxicity towards Vero cells. The results indicate that HT protease hydrolysis of meat myofibrillar and connective tissue protein extracts produces bioactive peptides that are non-cytotoxic, should be stable in the gastrointestinal tract and may contain novel bioactive peptide sequences. PMID:27132822

  11. Immobilization of lipid vesicles on polymer support via an amphiphilic peptidic anchor: application to a membrane enzyme.

    Science.gov (United States)

    Percot, A; Zhu, X X; Lafleur, M

    2000-01-01

    To immobilize lipid vesicles on a polymer support, we have used a peptidic anchor with the following sequence: Ala-Ala-Leu-Leu-Leu-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-A la-Ala-Ala-Ala-Ala-Ala-Ala-Trp-Lys-Lys-Lys-Lys-Lys-Lys. This amphiphilic peptide was previously designed in our group to interact spontaneously and strongly with vesicles without perturbing their permeability. At the end of the solid-phase peptide synthesis, the peptide was left on the polymer beads and this novel polymer-peptide system was used for vesicle immobilization. It was shown that this polymer-peptide system could immobilize as much as 200 micromol of lipids per gram of dry resin. The amount of immobilized vesicles was decreased by a reduction of the proportion of the negatively charged lipids in the vesicles, indicating the importance of electrostatic interactions in the immobilization of the vesicles. The integrity of the vesicles was mostly preserved after the immobilization. This new polymer-peptide system was used easily and successfully to immobilize a membrane-bound enzyme, gamma-glutamyl transpeptidase. The activity of the membrane-bound enzyme was studied by monitoring the release of p-nitroaniline. The activity of the enzyme was still retained, even after being re-used eight times, indicating the strong immobilization of the enzyme in its active form. The polymer-peptide support could be regenerated by washing with ethanol and reused.

  12. Enzymatic Release and Characterization of Novel Bioactive Peptides from Milk Proteins

    DEFF Research Database (Denmark)

    De Gobba, Cristian

    a positive impact on body functions or conditions and may ultimately influence health. Bioactivities such as ACE-inhibitory, antioxidant, opioid, antimicrobial and anti-inflammatory have been identified in milk derived peptides. The purpose of this project is to identify novel bioactive peptides (ACE......Milk is considered the most complete food, providing most of the nutrients needed. Milk proteins are not only important for their function as a source of amino acids, but they are also a source of bioactive peptides. These are short amino acid sequences with different activities that have...... commercial enzymes. The bovine casein was hydrolysed using the supernatant of a Greenlandic bacterium (Arsukibacterium ikkense), produced in the NOVENIA project, which contains cold-active proteolytic enzymes. The hydrolysates were tested for the relevant bioactivities and active fractions were fractionated...

  13. Tipping the scale from disorder to alpha-helix: Folding of amphiphilic peptides in the presence of macroscopic and molecular interfaces

    OpenAIRE

    Dalgıçdır, Cahit; Sayar, Mehmet; Globisch, Christoph; Peter, Christine

    2015-01-01

    Secondary amphiphilicity is inherent to the secondary structural elements of proteins. By forming energetically favorable contacts with each other these amphiphilic building blocks give rise to the formation of a tertiary structure. Small proteins and peptides, on the other hand, are usually too short to form multiple structural elements and cannot stabilize them internally. Therefore, these molecules are often found to be structurally ambiguous up to the point of a large degree of intrinsic ...

  14. Extraction and characterization of naturally occurring bioactive peptides from different tissues from Salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Nielsen, Henrik Hauch

    2011-01-01

    (Free Radical Scavenging assay). A number of extracts showed high ACE inhibiting and anti-oxidative activity. The extracts were then size fractionated by ultrafiltration using a 10 kDa filter, and relevant fractions below 10 kDa from gills, skin and belly flap were further fractionated by gel...... number of bio-components such as bioactive peptides for this purpose. Tissue and proteins from e.g. fish gills, skin and viscera could be a new source of peptides that could have a nutritional and pharmaceutical value, and be used in health and functional foods and thereby increasing the value adding...... is therefore to extract and identify naturally occurring bioactive peptides from different tissues from salmon. A number of aqueous extracts were made from gills, skin and belly flap. In order to preserve the bioactivity of the peptides mild extraction procedures as acidic, basic and aqueous solutions were...

  15. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles

    Science.gov (United States)

    Deshmukh, Sanket A.; Solomon, Lee A.; Kamath, Ganesh; Fry, H. Christopher; Sankaranarayanan, Subramanian K. R. S.

    2016-08-01

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  16. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity.

    Directory of Open Access Journals (Sweden)

    Catherine Mooney

    Full Text Available The conventional wisdom is that certain classes of bioactive peptides have specific structural features that endow their particular functions. Accordingly, predictions of bioactivity have focused on particular subgroups, such as antimicrobial peptides. We hypothesized that bioactive peptides may share more general features, and assessed this by contrasting the predictive power of existing antimicrobial predictors as well as a novel general predictor, PeptideRanker, across different classes of peptides.We observed that existing antimicrobial predictors had reasonable predictive power to identify peptides of certain other classes i.e. toxin and venom peptides. We trained two general predictors of peptide bioactivity, one focused on short peptides (4-20 amino acids and one focused on long peptides (> 20 amino acids. These general predictors had performance that was typically as good as, or better than, that of specific predictors. We noted some striking differences in the features of short peptide and long peptide predictions, in particular, high scoring short peptides favour phenylalanine. This is consistent with the hypothesis that short and long peptides have different functional constraints, perhaps reflecting the difficulty for typical short peptides in supporting independent tertiary structure.We conclude that there are general shared features of bioactive peptides across different functional classes, indicating that computational prediction may accelerate the discovery of novel bioactive peptides and aid in the improved design of existing peptides, across many functional classes. An implementation of the predictive method, PeptideRanker, may be used to identify among a set of peptides those that may be more likely to be bioactive.

  17. Milk derived bioactive peptides and their impact on human health - A review.

    Science.gov (United States)

    Mohanty, D P; Mohapatra, S; Misra, S; Sahu, P S

    2016-09-01

    Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care. PMID:27579006

  18. Milk derived bioactive peptides and their impact on human health – A review

    Directory of Open Access Journals (Sweden)

    D.P. Mohanty

    2016-09-01

    Full Text Available Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care.

  19. Synthesis of Electroneutralized Amphiphilic Copolymers with Peptide Dendrons for Intramuscular Gene Delivery.

    Science.gov (United States)

    Pu, Linyu; Wang, Jiali; Li, Na; Chai, Qiuxia; Irache, Juan M; Wang, Gang; Tang, James Zhenggui; Gu, Zhongwei

    2016-06-01

    Intramuscular gene delivery materials are of great importance in plasmid-based gene therapy system, but there is limited information so far on how to design and synthesize them. A previous study showed that the peptide dendron-based triblock copolymer with its components arranged in a reversed biomembrane architecture could significantly increase intramuscular gene delivery and expression. Herein, we wonder whether copolymers with biomembrane-mimicking arrangement may have similar function on intramuscular gene delivery. Meanwhile, it is of great significance to uncover the influence of electric charge and molecular structure on the function of the copolymers. To address the issues, amphiphilic triblock copolymers arranged in hydrophilic-hydrophobic-hydrophilic structure were constructed despite the paradoxical characteristics and difficulties in synthesizing such hydrophilic but electroneutral molecules. The as-prepared two copolymers, dendronG2(l-lysine-OH)-poly propylene glycol2k(PPG2k)-dendronG2(l-lysine-OH) (rL2PL2) and dendronG3(l-lysine-OH)-PPG2k-dendronG3(l-lysine-OH) (rL3PL3), were in similar structure but had different hydrophilic components and surface charges, thus leading to different capabilities in gene delivery and expression in skeletal muscle. rL2PL2 was more efficient than Pluronic L64 and rL3PL3 when mediating luciferase, β-galactosidase, and fluorescent protein expressions. Furthermore, rL2PL2-mediated growth-hormone-releasing hormone expression could significantly induce mouse body weight increase in the first 21 days after injection. In addition, both rL2PL2 and rL3PL3 showed good in vivo biosafety in local and systemic administration. Altogether, rL2PL2-mediated gene expression in skeletal muscle exhibited applicable potential for gene therapy. The study revealed that the molecular structure and electric charge were critical factors governing the function of the copolymers for intramuscular gene delivery. It can be concluded that, combined

  20. Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity.

    Science.gov (United States)

    Walter, Merlin N M; Dehsorkhi, Ashkan; Hamley, Ian W; Connon, Che J

    2016-02-01

    C16-YEALRVANEVTLN, a peptide amphiphile (PA) incorporating a biologically active amino acid sequence found in lumican, has been examined for its influence upon collagen synthesis by human corneal fibroblasts in vitro, and the roles of supra-molecular assembly and activin receptor-like kinase ALK receptor signaling in this effect were assessed. Cell viability was monitored using the Alamar blue assay, and collagen synthesis was assessed using Sirius red. The role of ALK signaling was studied by receptor inhibition. Cultured human corneal fibroblasts synthesized significantly greater amounts of collagen in the presence of the PA over both 7-day and 21-day periods. The aggregation of the PA to form nanotapes resulted in a notable enhancement in this activity, with an approximately two-fold increase in collagen production per cell. This increase was reduced by the addition of an ALK inhibitor. The data presented reveal a stimulatory effect upon collagen synthesis by the primary cells of the corneal stroma, and demonstrate a direct influence of supra-molecular assembly of the PA upon the cellular response observed. The effects of PA upon fibroblasts were dependent upon ALK receptor function. These findings elucidate the role of self-assembled nanostructures in the biological activity of peptide amphiphiles, and support the potential use of a self-assembling lumican derived PA as a novel biomaterial, intended to promote collagen deposition for wound repair and tissue engineering purposes. PMID:26626506

  1. Antimicrobial potential of lycosin-I, a cationic and amphiphilic peptide from the venom of the spider Lycosa singorensis.

    Science.gov (United States)

    Tan, H; Ding, X; Meng, S; Liu, C; Wang, H; Xia, L; Liu, Z; Liang, S

    2013-07-01

    Antimicrobial peptides (AMPs) are significant components of the innate immune system and play indispensable roles in the resistance to bacterial infection. Here, we investigated the antimicrobial activity of lycosin-I, a 24-residue cationic anticancer peptide derived from Lycosa singorensis with high structural similarity to several cationic and amphiphilic antimicrobial peptides. The antimicrobial activity of lycosin-I against 27 strains of microbes including bacteria and fungi was examined and compared with that of the Xenopus-derived AMP magainin 2 using a microdilution assay. Lycosin-I inhibited the growth of most microorganisms at low micromolar concentrations, and was a more potent inhibitor than magainin 2. Lycosin-I showed rapid, selective and broad-spectrum bactericidal activity and a synergistic effect with traditional antibiotics. In vivo, it showed potent bactericidal activity in a mouse thigh infection model. High Mg2+ concentrations reduced the antibacterial effect of lycosin-I, implying that the peptide might directly interact with the bacterial cell membrane. Uptake of the fluorogenic dye SYTOX and changes in the surface of lycosin-Itreated bacterial cells observed by scanning electron microscopy confirmed that lycosin-I permeabilized the cell membrane, resulting in the rapid bactericidal effect. Taken together, our findings indicate that lycosin-I is a promising peptide with the potential for the development of novel antibacterial agents.

  2. Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective.

    Science.gov (United States)

    Horner, Katy; Drummond, Elaine; Brennan, Lorraine

    2016-06-01

    Milk protein-derived peptides have been reported to have potential benefits for reducing the risk of type 2 diabetes. However, what the active components are and whether intact peptides exert this bioactivity has received little investigation in human subjects. Furthermore, potentially useful bioactive peptides can be limited by low bioavailability. Various peptides have been identified in the gastrointestinal tract and bloodstream after milk-protein ingestion, providing valuable insights into their potential bioavailability. However, these studies are currently limited and the structure and sequence of milk peptides exerting bioactivity for glycaemic management has received little investigation in human subjects. The present article reviews the bioavailability of milk protein-derived peptides in human studies to date, and examines the evidence on milk proteins and glycaemic management, including potential mechanisms of action. Areas in need of advancement are identified. Only by establishing the bioavailability of milk protein-derived peptides, the active components and the mechanistic pathways involved can the benefits of milk proteins for the prevention or management of type 2 diabetes be fully realised in future.

  3. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samaneh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vali, Hojatollah [Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7 (Canada); Faghihi, Shahab, E-mail: sfaghihi@nigeb.ac.ir [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-02-14

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  4. Structures of self-assembled amphiphilic peptide-heterodimers: effects of concentration, pH, temperature and ionic strength

    KAUST Repository

    Luo, Zhongli

    2010-01-01

    The amphiphilic double-tail peptides AXG were studied regarding secondary structure and self-assembly in aqueous solution. The two tails A = Ala 6 and G = Gly6 are connected by a central pair X of hydrophilic residues, X being two aspartic acids in ADG, two lysines in AKG and two arginines in ARG. The peptide AD (Ala6Asp) served as a single-tail reference. The secondary structure of the four peptides was characterized by circular dichroism spectroscopy under a wide range of peptide concentrations (0.01-0.8 mM), temperatures (20-98 °C), pHs (4-9.5) and ionic strengths. In salt-free water both ADG and AD form a β-sheet type of structure at high concentration, low pH and low temperature, in a peptide-peptide driven assembly of individual peptides. The transition has a two-state character for ADG but not for AD, which indicates that the added tail in ADG makes the assembly more cooperative. By comparison the secondary structures of AKG and ARG are comparatively stable over the large range of conditions covered. According to dynamic light scattering the two-tail peptides form supra-molecular aggregates in water, but high-resolution AFM-imaging indicate that ordered (self-assembled) structures are only formed when salt (0.1 M NaCl) is added. Since the CD-studies indicate that the NaCl has only a minor effect on the peptide secondary structure we propose that the main role of the added salt is to screen the electrostatic repulsion between the peptide building blocks. According to the AFM images ADG and AKG support a correlation between nanofibers and a β-sheet or unordered secondary structure, whereas ARG forms fibers in spite of lacking β-sheet structure. Since the AKG and ARG double-tail peptides self-assemble into distinct nanostructures while their secondary structures are resistant to environment factors, these new peptides show potential as robust building blocks for nano-materials in various medical and nanobiotechnical applications. © 2010 The Royal Society

  5. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexa-peptide

    International Nuclear Information System (INIS)

    An amphiphilic hexa-peptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexa-peptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to 'Hofmeister' but different from volume and valency. (authors)

  6. Bioactive peptides released during of digestion of processed milk

    Science.gov (United States)

    Most of the proteins contained in milk consist of alpha-s1-, alpha-s2-, beta- and kappa-casein, and some of the peptides contained in these caseins may impart health benefits. To determine if processing affected release of peptides, samples of raw (R), homogenized (H), homogenized and pasteurized (...

  7. Bioactive Mimetics of Conotoxins and other Venom Peptides

    OpenAIRE

    Duggan, Peter J.; Kellie L Tuck

    2015-01-01

    Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will incl...

  8. Bioactive Mimetics of Conotoxins and other Venom Peptides.

    Science.gov (United States)

    Duggan, Peter J; Tuck, Kellie L

    2015-10-01

    Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties. PMID:26501323

  9. Bioactive Mimetics of Conotoxins and other Venom Peptides

    Directory of Open Access Journals (Sweden)

    Peter J. Duggan

    2015-10-01

    Full Text Available Ziconotide (Prialt®, a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties.

  10. Lysine-tagged peptide coupling onto polylactide nanoparticles coated with activated ester-based amphiphilic copolymer: a route to highly peptide-functionalized biodegradable carriers.

    Science.gov (United States)

    Handké, Nadège; Ficheux, Damien; Rollet, Marion; Delair, Thierry; Mabrouk, Kamel; Bertin, Denis; Gigmes, Didier; Verrier, Bernard; Trimaille, Thomas

    2013-03-01

    Efficient biomolecule conjugation to the surface of biodegradable colloidal carriers is crucial for their targeting efficiency in drug/vaccine delivery applications. We here propose a potent strategy to drastically improve peptide immobilization on biodegradable polylactide (PLA) nanoparticles (NPs). Our approach particularly relies on the use of an amphiphilic block copolymer PLA-b-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (PLA-b-P(NAS-co-NVP)) as NP surface modifier, whose the N-succinimidyl (NS) ester functions of the NAS units along the polymer chain ensure N-terminal amine peptide coupling. The well-known immunostimulatory peptide sequence derived from the human interleukin 1β (IL-1β), VQGEESNDK, was coupled on the NPs of 169 nm mean diameter in phosphate buffer (pH 8, 10 mM). A maximum amount of 2 mg immobilized per gram of NPs (i.e. 0.042 peptidenm(-2)) was obtained. Introduction of a three lysine tag at the peptide N-terminus (KKKVQGEESNDK) resulted in a dramatic improvement of the immobilized peptide amounts (27.5 mg/g NP, i.e. 0.417 peptidenm(-2)). As a comparison, the density of tagged peptide achievable on surfactant free PLA NPs of similar size (140 nm), through classical EDC or EDC/NHS activation of the surface PLA carboxylic end-groups, was found to be 6 mg/g NP (i.e. 0.075 peptidenm(-2)), showing the decisive impact of the P(NAS-co-NVP)-based hairy corona for high peptide coupling. These results demonstrate that combined use of lysine tag and PLA-b-P(NAS-co-NVP) surfactant represents a valuable platform to tune and optimize surface bio-functionalization of PLA-based biodegradable carriers. PMID:23277324

  11. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects

    Directory of Open Access Journals (Sweden)

    Bartłomiej Dziuba

    2014-03-01

    Full Text Available Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specifi c biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may infl uence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  12. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects.

    Science.gov (United States)

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specific biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may influence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  13. B-type Natriuretic Peptide circulating forms: Analytical and bioactivity issues.

    Science.gov (United States)

    Yandle, Tim G; Richards, A Mark

    2015-08-25

    B-type Natriuretic Peptide (BNP), A-type and C-type Natriuretic Peptides (ANP and CNP) comprise a family of peptides that retain a common ring structure and conserved amino acid sequences. All are present in the heart, but only BNP and ANP are regarded as primarily cardiac secretory products. BNP and ANP, acting through a guanylyl cyclase receptor, increase sodium and water excretion by the kidney, induce vasodilation, reduce blood pressure, counteract the bioactivity of the renin-angiotensin-aldosterone and sympathetic nervous systems and possess anti-hypertrophic and anti-fibrotic properties. BNP is synthesised in cardiomyocytes first as the precursor peptide preproBNP. Removal of the signal peptide from preproBNP produces proBNP which is cleaved to produce the biologically active carboxy-terminal BNP peptide and the inactive N-terminal fragment, NT-proBNP. BNP, NT-proBNP, proBNP and the C-terminal portion of the BNP signal peptide have been detected in human plasma as well as multiple sub-forms including truncated forms of BNP and NT-proBNP, as well as variable glycosylation of NT-proBNP and proBNP. The origin of these circulating forms, their potential bioactivity and their detection by current analytical methods are presented in this review. PMID:26160054

  14. Programming microenvironmental signals with bioactive peptide amphiphiles for skeletal and cardiac myogenesis

    OpenAIRE

    Garip, İmmihan Ceren

    2014-01-01

    Ankara : The Materials Science and Nanotechnology Program and the Graduate School of Engineering and Science of Bilkent University, 2014. Thesis (Master's) -- Bilkent University, 2014. Includes bibliographical references leaves 76-83. Garip, İmmihan Ceren Master's

  15. Peptidomic Analysis of Amniotic Fluid for Identification of Putative Bioactive Peptides in Ventricular Septal Defect

    Directory of Open Access Journals (Sweden)

    Xing Li

    2016-05-01

    Full Text Available Background: Ventricular septal defect (VSD is one of the most common congenital heart diseases and to date the role of peptides in human amniotic fluid in the pathogenesis of VSD have been rarely investigated. Methods: To gain insight into the mechanisms of protein and peptides in cardiovascular development, we constructed a comparative peptidomic profiling of human amniotic fluid between normal and VSD fetuses using a stable isobaric labeling strategy involving tandem mass tag reagents, followed by nano liquid chromatography tandem mass spectrometry. Results: We identified and quantified 692 non-redundant peptides, 183 of which were differentially expressed in the amniotic fluid of healthy and VSD fetuses; 69 peptides were up regulated and 114 peptides were down regulated. These peptides were imported into the Ingenuity Pathway Analysis (IPA and identified putative roles in cardiovascular system morphogenesis and cardiogenesis. Conclusion: We concluded that 35 peptides located within the functional domains of their precursor proteins could be candidate bioactive peptides for VSD. The identified peptide changes in amniotic fluid of VSD fetuses may advance our current understanding of congenital heart disease and these peptides may be involved in the etiology of VSD.

  16. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  17. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families. PMID:26988505

  18. Amphiphilic Peptide Interactions with Complex Biological Membranes : Effect of peptide properties on antimicrobial and anti-inflammatory effects

    OpenAIRE

    Singh, Shalini

    2016-01-01

    With increasing problem of resistance development in bacteria against conventional antibiotics, as well as problems associated with diseases either triggered or enhanced by infection, there is an urgent need to identify new types of effective therapeutics for the treatment of infectious diseases and its consequences. Antimicrobial and anti-inflammatory peptides have attracted considerable interest as potential new antibiotics in this context. While antimicrobial function of such peptides is b...

  19. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects

    Directory of Open Access Journals (Sweden)

    Marco Malaguti

    2014-11-01

    Full Text Available Cereals and legumes are key components of a healthy and balanced diet. Accordingly, many national nutritional guidelines emphasize their health promoting properties by placing them at the base of nutritional food pyramids. This concept is further validated by the observed correlation between a lower risk and occurrence of chronic diseases and the adherence to dietary patterns, like the Mediterranean diet, in which cereal grains, legumes and derived products represent a staple food. In the search for a dietary approach to control/prevent chronic degenerative diseases, protein derived bioactive peptides may represent one such source of health-enhancing components. These peptides may already be present in foods as natural components or may derive from hydrolysis by chemical or enzymatic treatments (digestion, hydrolysis or fermentation. Many reports are present in the literature regarding the bioactivity of peptides in vitro and a wide range of activities has been described, including antimicrobial properties, blood pressure-lowering (ACE inhibitory effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption/bioavailability, cyto- or immunomodulatory effects, and opioid-like activities. However it is difficult to translate these observed effects to human. In fact, the active peptide may be degraded during digestion, or may not be absorbed or reach the target tissues at a concentration necessary to exert its function. This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo.

  20. Gastrointestinal Endogenous Protein-Derived Bioactive Peptides: An in Vitro Study of Their Gut Modulatory Potential

    Science.gov (United States)

    Dave, Lakshmi A.; Hayes, Maria; Mora, Leticia; Montoya, Carlos A.; Moughan, Paul J.; Rutherfurd, Shane M.

    2016-01-01

    A recently proposed paradigm suggests that, like their dietary counterparts, digestion of gastrointestinal endogenous proteins (GEP) may also produce bioactive peptides. With an aim to test this hypothesis, in vitro digests of four GEP namely; trypsin (TRYP), lysozyme (LYS), mucin (MUC), serum albumin (SA) and a dietary protein chicken albumin (CA) were screened for their angiotensin-I converting (ACE-I), renin, platelet-activating factor-acetylhydrolase (PAF-AH) and dipeptidyl peptidase-IV inhibitory (DPP-IV) and antioxidant potential following simulated in vitro gastrointestinal digestion. Further, the resultant small intestinal digests were enriched to obtain peptides between 3–10 kDa in size. All in vitro digests of the four GEP were found to inhibit ACE-I compared to the positive control captopril when assayed at a concentration of 1 mg/mL, while the LYS < 3-kDa permeate fraction inhibited renin by 40% (±1.79%). The LYS < 10-kDa fraction inhibited PAF-AH by 39% (±4.34%), and the SA < 3-kDa fraction inhibited DPP-IV by 45% (±1.24%). The MUC < 3-kDa fraction had an ABTS-inhibition antioxidant activity of 150 (±24.79) µM trolox equivalent and the LYS < 10-kDa fraction inhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) by 54% (±1.62%). Moreover, over 190 peptide-sequences were identified from the bioactive GEP fractions. The findings of the present study indicate that GEP are a significant source of bioactive peptides which may influence gut function. PMID:27043546

  1. Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel

    DEFF Research Database (Denmark)

    Briuglia, Maria-Lucia; Urquhart, Andrew; Lamprou, Dimitrios A.

    2014-01-01

    Materials which undergo self-assembly to form supramolecular structures can provide alternative strategies to drug loading problems in controlled release application. RADA 16 is a simple and versatile self-assembling peptide with a designed structure formed of two distinct surfaces, one hydrophilic...

  2. Self-Assembly of Peptide Amphiphiles Designed as Imaging Probes for 19F and Relaxation-Enhanced 1H imaging

    Science.gov (United States)

    Preslar, Adam Truett

    This work incorporates whole-body imaging functionality into peptide amphiphile (PA) nanostructures used for regenerative medicine to facilitate magnetic resonance imaging (MRI). Two strategies were employed: 1. Conjugation of gadolinium chelates to peptide nanostructures to monitor biomaterial degradation in vivo with MRI and inductively-coupled plasma-mass spectroscopy (ICP-MS) 2. Synthesis of perfluorinated moiety-bearing peptide amphiphiles for 19F-MRI. The Gd(III) chelate gadoteridol was conjugated by copper-catalyzed "click" chemistry to a series of PAs known to form cylindrical nanostructures. By fitting nuclear magnetic resonance dispersion (NMRD) profiles to the Solomon-Bloembergen-Morgan (SBM) equations, it was observed that the water exchange parameter (tauM) depended on thermal annealing or calcium ion cross-linking. The sequence C16V 3A3E3G(Gd) exhibited an acceleration of nearly 100 ns after thermal annealing and calcium addition. These gadolinium-labeled PAs were used to track in vivo degradation of gels within the tibialis anterior muscle in a murine model. The half-life of biomaterial degradation was determined to be 13.5 days by inductively coupled plasma mass spectrometry (ICP-MS) of Gd(III). Gel implants could be monitored by MRI for eight days before the signal dispersed due to implant degradation and dilution. Additionally, nanostructures incorporating highly fluorinated domains were investigated for use as MRI contrast agents. Short, perfluoroalkyane tails of seven or eight carbon atoms in length were grafted to PA sequences containing a V2A2 beta-sheet forming sequence. The V2A2 sequence is known to drive 1D nanostructure assembly. It was found that the sequences C7F13V2A 2E2 and C7F13V2A 2K3 formed 1D assemblies in water which transition from ribbon-like to cylindrical shape as pH increases from 4.5 to 8.0. Ribbon-like nanostructures had reduced magnetic resonance signal by T 2 relaxation quenching, whereas their cylindrical counterparts

  3. Transparent, conductive, and SERS-active Au nanofiber films assembled on an amphiphilic peptide template

    Science.gov (United States)

    Vinod, T. P.; Zarzhitsky, Shlomo; Morag, Ahiud; Zeiri, Leila; Levi-Kalisman, Yael; Rapaport, Hanna; Jelinek, Raz

    2013-10-01

    The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications.The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications. Electronic supplementary information (ESI) available: AFM analysis of the

  4. Endogenous Bioactive Peptides as Potential Biomarkers for Atherosclerotic Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    Tsutomu Hirano

    2012-04-01

    Full Text Available Cardiovascular disease is the leading cause of death worldwide, with high medical costs and rates of disability. It is therefore important to evaluate the use of cardiovascular biomarkers in the early diagnosis of coronary artery disease (CAD. We have screened a variety of recently identified bioactive peptides candidates in anticipation that they would allow detection of atherosclerotic CAD. Especially, we have focused on novel anti-atherogenic peptides as indicators and negative risk factors for CAD. In vitro, in vivo and clinical studies indicated that human adiponectin, heregulin-β1, glucagon-like peptide-1 (GLP-1, and salusin-α, peptides of 244, 71, 30, and 28 amino acids, respectively, attenuate the development and progression of atherosclerotic lesions by suppressing macrophage foam cell formation via down-regulation of acyl-coenzyme A: cholesterol acyltransferase-1. Circulating levels of these peptides in the blood are significantly decreased in patients with CAD compared to patients without CAD. Receiver operating characteristic analyses showed that salusin-α is a more useful biomarker, with better sensitivity and specificity, compared with the others for detecting CAD. Therefore, salusin-α, heregulin-β1, adiponectin, and/or GLP-1, alone or in various combinations, may be useful as biomarkers for atherosclerotic CAD.

  5. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    Science.gov (United States)

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  6. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines.

    Science.gov (United States)

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  7. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    International Nuclear Information System (INIS)

    Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the β-position of the serine moiety ([2-2H]DOPS) or at the 11-position of the acyl chains ([11,11-2H2]DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both [2-2H]DOPS and [11,11-2H2]DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine)100, which were included for reasons of comparison, reveal increased Δvq values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component 2H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. 2H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides

  8. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    Energy Technology Data Exchange (ETDEWEB)

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B. (Univ. of Utrecht (Netherlands))

    1991-01-29

    Deuterium nuclear magnetic resonance ({sup 2}H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the {beta}-position of the serine moiety ((2-{sup 2}H)DOPS) or at the 11-position of the acyl chains ((11,11-{sup 2}H{sub 2})DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both (2-{sup 2}H)DOPS and (11,11-{sup 2}H{sub 2})DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine){sub 100}, which were included for reasons of comparison, reveal increased {Delta}v{sub q} values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component {sup 2}H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. {sup 2}H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides.

  9. Discovery and characterization of novel bioactive peptides from marine secondary products

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup

    antioxidative, antihypertensive, antimicrobial, immunomodulatory, anticancer and diabetes 2 effects among others. However, majority of the research has been focusing on the peptides derived from hydrolysis with commercial industrial enzymes and the usefulness of these hydrolysates.It could be interesting......) and intestinal dipeptidyl peptidase (DPP-IV) inhibiting properties and protease inhibiting activity in tissue of secondary products such as gills, belly flap muscle and skin from salmon (Salmo salar). This was conducted in extracts from untreated and heattreated tissue by using in vitro assays. Furthermore......, if any detected, an aim was to characterize the corresponding candidate bioactive molecules. Part II was to investigate peptides in hydrolysates from salmon (Salmo salar) belly flap muscle and skin generated by gastrointestinal proteases for radical scavenging activity, DPP-IV and ACE inhibiting...

  10. Application of Collagen-Model Triple-Helical Peptide-Amphiphiles for CD44-Targeted Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Margaret W. Ndinguri

    2012-01-01

    Full Text Available Cancer treatment by chemotherapy is typically accompanied by deleterious side effects, attributed to the toxic action of chemotherapeutics on proliferating cells from nontumor tissues. The cell surface proteoglycan CD44 has been recognized as a cancer stem cell marker. The present study has examined CD44 targeting as a way to selectively deliver therapeutic agents encapsulated inside colloidal delivery systems. CD44/chondroitin sulfate proteoglycan binds to a triple-helical sequence derived from type IV collagen, α1(IV1263–1277. We have assembled a peptide-amphiphile (PA in which α1(IV1263–1277 was sandwiched between 4 repeats of Gly-Pro-4-hydroxyproline and conjugated to palmitic acid. The PA was incorporated into liposomes composed of DSPG, DSPC, cholesterol, and DSPE-PEG-2000 (1 : 4 : 5 : 0.5. Doxorubicin-(DOX-loaded liposomes with and without 10% α1(IV1263–1277 PA were found to exhibit similar stability profiles. Incubation of DOX-loaded targeted liposomes with metastatic melanoma M14#5 and M15#11 cells and BJ fibroblasts resulted in IC50 values of 9.8, 9.3, and >100 μM, respectively. Nontargeted liposomes were considerably less efficacious for M14#5 cells. In the CD44+ B16F10 mouse melanoma model, CD44-targeted liposomes reduced the tumor size to 60% of that of the untreated control, whereas nontargeted liposomes were ineffective. These results suggest that PA targeted liposomes may represent a new class of nanotechnology-based drug delivery systems.

  11. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites

    Directory of Open Access Journals (Sweden)

    Javad Hamedi

    2015-10-01

    Full Text Available Background and Objective: Due to the evolution of multidrug-resistant strains, screening of natural resources, especially actinomycetes, for new therapeutic agents discovery has become the interests of researchers. In this study, molecular, chemical and biological screening of soil actinomycetes was carried out in order to search for peptide-producing actinomycetes.Materials and Methods: 60 actinomycetes were isolated from soils of Iran. The isolates were subjected to molecular screening for detection NRPS (non-ribosomal peptide synthetases gene. Phylogenic identification of NRPS containing isolates was performed. Chemical screening of the crude extracts was performed using chlorine o-dianisidine as peptide detector reagent and bioactivity of peptide producing strains was determined by antimicrobial bioassay. High pressure liquid chromatography- mass spectrometry (HPLC-MS with UV-visible spectroscopy was performed for detection of the metabolite diversity in selected strain.Results: Amplified NRPS adenylation gene (700 bp was detected among 30 strains. Phylogenic identification of these isolates showed presence of rare actinomycetes genera among the isolates and 10 out of 30 strains were subjected to chemical screening. Nocardia sp. UTMC 751 showed antimicrobial activity against bacterial and fungal test pathogens. HPLC-MSand UV-visible spectroscopy results from the crude extract showed that this strain has probably the ability to produce new metabolites.Conclusion: By application of a combined approach, including molecular, chemical and bioactivity analysis, a promising strain of Nocardia sp. UTMC 751 was obtained. This strain had significant activity against Staphylococcus aureus and Pseudomonas aeruginosa. Strain Nocardia sp. UTMC 751 produce five unknown and most probably new metabolites with molecular weights of 274.2, 390.3, 415.3, 598.4 and 772.5. This strain had showed 99% similarity to Nocardia ignorata DSM 44496 T.

  12. Immobilization of Trypsin in Lignocellulosic Waste Material to Produce Peptides with Bioactive Potential from Whey Protein

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Bassan

    2016-05-01

    Full Text Available In this study, trypsin (Enzyme Comission 3.4.21.4 was immobilized in a low cost, lignocellulosic support (corn cob powder—CCP with the goal of obtaining peptides with bioactive potential from cheese whey. The pretreated support was activated with glyoxyl groups, glutaraldehyde and IDA-glyoxyl. The immobilization yields of the derivatives were higher than 83%, and the retention of catalytic activity was higher than 74%. The trypsin-glyoxyl-CCP derivative was thermally stable at 65 °C, a value that was 1090-fold higher than that obtained with the free enzyme. The trypsin-IDA-glyoxyl-CCP and trypsin-glutaraldehyde-CCP derivatives had thermal stabilities that were 883- and five-fold higher, respectively, then those obtained with the free enzyme. In the batch experiments, trypsin-IDA-glyoxyl-CCP retained 91% of its activity and had a degree of hydrolysis of 12.49%, while the values for trypsin-glyoxyl-CCP were 87% and 15.46%, respectively. The stabilized derivative trypsin-glyoxyl-CCP was also tested in an upflow packed-bed reactor. The hydrodynamic characterization of this reactor was a plug flow pattern, and the kinetics of this system provided a relative activity of 3.04 ± 0.01 U·g−1 and an average degree of hydrolysis of 23%, which were suitable for the production of potentially bioactive peptides.

  13. Bioactive vegetable proteins and peptides in lipid-lowering: nutraceutical potential

    Directory of Open Access Journals (Sweden)

    Jorge Carlos Ruiz Ruiz

    2014-04-01

    Full Text Available As the last century saw a decline in the burden of nutritional deficiency and infectious disease, the global burden of chronic disease, cardiovascular disease (CVD in particular, is increasing. CVD is the leading cause of death in the developed countries. Significant research efforts on the prevention and treatment of this disease have identified elevated plasma cholesterol as a primary risk factor for CVD. Although CVD progresses with hypercholesterolemia, it seems possibility to delay and prevent its development through improvement of diet. Recent findings demonstrate that protein concentrates, protein hydrolysates, and peptides derived from vegetables may promote a significant decrease in blood cholesterol concentration. This reduction in cholesterol and lipid levels by protein, protein hydrolysates, and peptides can be the result of dietary changes, reduced cholesterol biosynthesis, changes in bile acid synthesis, and reduced absorption of lipid cholesterol and bile acid. Combination drug/diet therapies may reduce the number of drug prescriptions, the progressive rise in "optimal" drug dosage and costs associated with pharmaceutical management of disease. These bioactive vegetable proteins, hydrolysates and peptides may be used in formulation of functional foods, nutraceuticals, and natural drugs because of their health benefit effects suggesting their use as an alternative in treatment of various dyslipidemias, and a potential agent for reducing cardiovascular diseases risk factors.

  14. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    Directory of Open Access Journals (Sweden)

    Marwa Yousr

    2015-12-01

    Full Text Available Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF. Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y and tryptophan (W, in sequences identified by LC-MS as WYGPD (EYGF-23 and KLSDW (EYGF-33, contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56 was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69% and IC50 value (3.35 mg/mL. The SDNRNQGY peptide (10 mg/mL had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL. In addition, YPSPV in (EYGF-33 (10 mg/mL had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  15. PEPTIDE BIOACTIVE ALGALE ŞI PERSPECTIVA DE UTILIZARE A LOR ÎN CALITATE DE AGENŢI TERAPEUTICI

    Directory of Open Access Journals (Sweden)

    Valentina BULIMAGA

    2015-12-01

    Full Text Available Dezvoltarea şi aplicarea tehnologiilor de inginerie enzimatică, folosind enzimele pentru hidroliza ficocianinei şi producerea peptidelor bioactive, deschide noi perspective de utilizare a lor în calitate de agenţi anticancer, antimicro-bieni, antioxidativi, antihipertensivi etc. Lărgirea spectrului de peptide produse în baza enzimolizei ficocianinei poate fi efectuată prin utilizarea în acest scop a enzimelor proteolitice cu specificitate diferită. În lucrare sunt analizate spectrele UV ale hidrolizatelor triptice sumare ale ficocianinei şi descrise unele metode de separare şi analiză a fracţiilor peptidice din hidrolizat.ALGAL BIOACTIVE PEPTIDES AND THEIR PERSPECTIVE USE AS THERAPEUTIC AGENTSDevelopment and application of enzyme engineering technologies using enzymes for the hydrolysis of Phycocyanin and production of bioactive peptides opens up new prospects for their use as anticancer, antimicrobial, antioxidant, hypotensive agents. Diversification of the range of produced peptides can be performed by the enzymolysis and using of the proteolytic enzymes with diverse specificity for this purpose. The paper presents the UV spectra of summary tryptic phycocyanin hydrolysates and some methods of separation and analyzing of peptide fractions.

  16. Development of an effective gene delivery system: a study of complexes composed of a peptide-based amphiphilic DNA compaction agent and phospholipid

    Science.gov (United States)

    Murphy, Eric A.; Waring, Alan J.; Murphy, Jason C.; Willson, Richard C.; Longmuir, Kenneth J.

    2001-01-01

    We recently described a basic technology to efficiently combine compacted DNA with phospholipids and hydrophobic peptides, to produce homogenous complexes that are completely resistant to nuclease. We have developed this technology further to form gene delivery complexes that transfect cells effectively in vitro. In addition to plasmid DNA, the complexes contained two basic components: (i) a DNA compacting peptide (-CGKKKFKLKH), either conjugated to lipid or extended to contain (WLPLPWGW-) and (ii) either phosphatidylethanolamine or phosphatidylcholine. Complexes containing a 5.5-fold charge equivalence (peptide charge/DNA charge) of WLPLPWGWCGKKKFKLKH and 5 nmol dimyristoleoylphosphatidylethanolamine/µg DNA produced the highest luciferase gene expression, exceeding 1 × 109 relative light units/s/mg protein (>3 µg luciferase per mg protein). These complexes transfected OVCAR-3, COS-7 and HeLa cells at either similar or superior levels when compared to polyethylenimine or lipofectamine complexes. With green fluorescent protein reporter gene, >50% of HeLa cells were positive 30 h after addition of these complexes. Furthermore, these optimal complexes were the least sensitive to pre-treatment of cells with chloroquine, indicating efficient endosomal escape. Our results indicated that self-assembling complexes of plasmid DNA, amphiphilic peptide and phosphatidylethanolamine are highly effective non-viral gene delivery systems. PMID:11522841

  17. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    Science.gov (United States)

    van Oosten, Luuk N.; Pieterse, Mervin; Pinkse, Martijn W. H.; Verhaert, Peter D. E. M.

    2015-12-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides.

  18. Co-adsorption of peptide amphiphile V(6)K and conventional surfactants SDS and C(12)TAB at the solid/water interface.

    Science.gov (United States)

    Jayawardane, Dharana; Pan, Fang; Lu, Jian R; Zhao, Xiubo

    2015-10-28

    Recent research has reported many attractive benefits from short peptide amphiphiles. A practical route for them to enter the real world of applications is through formulation with conventional surfactants. This study reports the co-adsorption of the surfactant-like peptide, V6K, with conventional anionic and cationic surfactants at the solid/water interface. The time-dependant adsorption behaviour was examined using spectroscopic ellipsometry whilst adsorbed layer composition and structural distribution of the components were investigated by neutron reflection with the use of hydrogen/deuterium labelling of the surfactant molecules. Both binary (surfactant/peptide mixtures) and sequential (peptide followed by surfactant) adsorption have been studied. It was found that at the hydrophilic SiO2/water interface, the peptide was able to form a stable, flat, defected bilayer structure however both the structure and adsorbed amount were highly dependent on the initial peptide concentration. This consequently affected surfactant adsorption. In the presence of a pre-adsorbed peptide layer anionic sodium dodecyl sulfate (SDS) could readily co-adsorb at the interface; however, cationic dodecyl trimethyl ammonium bromide (C12TAB) could not co-adsorb due to the same charge character. However on a trimethoxy octyl silane (C8) coated hydrophobic surface, V6K formed a monolayer, and subsequent exposure to cationic and anionic surfactants both led to some co-adsorption at the interface. In binary surfactant/peptide mixtures, it was found that adsorption was dependent on the molar ratio of the surfactant and peptide. For SDS mixtures below molar unity and concentrations below CMC for C12TAB, V6K was able to dominate adsorption at the interface. Above molar unity, no adsorption was detected for SDS/V6K mixtures. In contrast, C12TAB gradually replaced the peptide and became dominant at the interface. These results thus elucidate the adsorption behaviour of V6K, which was found to

  19. Determination of nutritional and bioactive properties of peptides in enzymatic pea, chickpea, and mung bean protein hydrolysates.

    Science.gov (United States)

    Aluko, Rotimi E

    2008-01-01

    Within the primary structure of many pea and mung bean proteins are peptide sequences that can potentially be used in the formulation of therapeutic products for the treatment and prevention of human diseases. However, these peptide sequences need protease treatments before they can be released free of the parent proteins. Unlike chemical hydrolysis, enzymatic treatment enables more efficient tailoring of peptide products without formation of toxic by-products or destruction of amino acids. This review provides information on current methods that have been used to convert inactive pea and mung bean proteins into bioactive peptides. It focuses on 3 main bioactive properties, such as inhibitions of (1) angiotensin converting enzyme (ACE) activity; (2) calmodulin (CaM)-dependent enzymes; and (3) copper-chelating activity. ACE is an established marker for hypertension, high levels of some CaM-dependent enzymes are risk factors for various human diseases including cancer and Alzheimer's disease, and high vascular copper concentrations may potentiate atherosclerosis. Also reviewed are the production and evaluation of activity of hypoallergenic peptides that may offer protection against anaphylactic reactions. The 3 main proteins discussed are chickpea, mung bean, and field pea.

  20. Effect of bioactive peptides (BPs) on the development of Pacific white shrimp ( Litopenaeus vannamei Boone, 1931)

    Science.gov (United States)

    Wang, Guangjun; Yu, Ermeng; Li, Zhifei; Yu, Deguang; Wang, Haiying; Gong, Wangbao

    2016-06-01

    The present study was conducted to evaluate the feasibility of replacing fish meal (FM) with bioactive peptides (BPs) in diet of white shrimp ( Litopenaeus vannamei). The changes in growth performance, body composition, non-specific immunity, and water quality were examined after the shrimp were fed four diets, in which 0% (control), 33.3%, 66.7% and 100% of FM was replaced by BPs, respectively. The groups were designated as Con, 1/3BPs, 2/3BPs, and 3/3BPs. A total of 720 shrimp with an initial body weight of 1.46 ± 0.78 g were fed the experimental diets for 56 days. The results revealed that: 1) the weight gain rate (WGR) in 1/3BPs, 2/3BPs, and 3/3BPs was significantly higher than that in Con ( P body crude protein (CP) and crude lipids (CL) were significantly different among groups, while there was no significant difference between crude ash and phosphorus contents; 3) the levels of acid phosphatase (ACP), lysozyme (LZM), superoxide dismutase (SOD), phenol oxidase (PO) and bactericidal activity increased significantly with the inclusion of BPs; 4) in terms of water quality, no significant difference was found in pH and dissolved oxygen among diets during the whole experimental period. Moreover, even though nitrite and ammonium levels tended to increase with time, there was no significant difference among groups. The results indicated that BPs is an applicable alternative of protein source, which can substitute FM in the diets of L. vannamei; it is able to effectively promote growth performance and improve immunity. Moreover, BPs in the diets had no negative impact on water quality.

  1. PEPTIDE BIOACTIVE ALGALE ŞI PERSPECTIVA DE UTILIZARE A LOR ÎN CALITATE DE AGENŢI TERAPEUTICI

    OpenAIRE

    Valentina BULIMAGA; Maria PISOVA; Liliana ZOSIM; Angela RUDAKOVA; Natalia CLIMOVA; Veaceslav REVA

    2015-01-01

    Dezvoltarea şi aplicarea tehnologiilor de inginerie enzimatică, folosind enzimele pentru hidroliza ficocianinei şi producerea peptidelor bioactive, deschide noi perspective de utilizare a lor în calitate de agenţi anticancer, antimicro-bieni, antioxidativi, antihipertensivi etc. Lărgirea spectrului de peptide produse în baza enzimolizei ficocianinei poate fi efectuată prin utilizarea în acest scop a enzimelor proteolitice cu specificitate diferită. În lucrare sunt analizate spectrele UV ale h...

  2. THE CHARACTERISTICS OF BIOACTIVE PEPTIDES AND ANTIBACTERIAL ACTIVITY OF HONEY BEE (Apis nigrocincta SMITH VENOM, ENDEMIC TO SULAWESI

    Directory of Open Access Journals (Sweden)

    Mokosuli Yermia Semuel

    2015-11-01

    Full Text Available Apis nigrocincta Smith is a species of honey bee cavity nesting, endemic to Sulawesi. Research that aims to find the composition of the bioactive content of peptides and antibacterial activity of honey bee venom A. nigrocincta Smith has been conducted. Honey bee venom composition was analyzed using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE Method and Spectrophotometer UV-Vis Method. Analysis of antibacterial activity, was conducted using a modified agar diffusion method. The results showed that the venom of the honey bee Apis nigrocincta Smith has five bands of molecules with a molecular weight i.e. 33.54kDa; 21 kDa and 15.43 kDa. The peptide detected were hyaluronidase, fosfolipase A, mellitin, lysofosfolipase or antigen 5. Antibacterial activity was higher than the control ampisilin and antibiotic streptomycin.

  3. Novel insights into appropriate encapsulation methods for bioactive compounds into polymers: a study with peptides and HDAC inhibitors.

    Science.gov (United States)

    Hennig, Dorle; Schubert, Stephanie; Dargatz, Harald; Kostenis, Evi; Fahr, Alfred; Schubert, Ulrich S; Heinzel, Thorsten; Imhof, Diana

    2014-01-01

    The use of different nanoparticles (NPs) for successful encapsulation of bioactive substances is discussed. The inclusion efficiency into liposomes, acetalated dextran (Ac-Dex), and variants of poly[(lactic acid)-co-(glycolic acid)] (PLGA) NPs is analyzed after chemical degradation. Efficient inclusion of SIRT1 inhibitor Ex527 in liposomes, Ac-Dex- and PLGA-NPs is observed for all procedures used. Activity of Ex527 is demonstrated by monitoring the acetylation status of SIRT1-target p53. In contrast, small peptides are only incorporated into acid-terminated PLGA-NPs and marginally into Ac-Dex-NPs. The yield depends on peptide sequence and terminal modifications. Activity is exemplified for angiotensin II using the dynamic mass redistribution technology.

  4. Advances in bioactive peptides research of dairy products%乳制品中生物活性肽的研究进展

    Institute of Scientific and Technical Information of China (English)

    顾浩峰; 张富新; 张怡; 孙翔宇

    2013-01-01

    Different bioactive peptides that exert significantly physiological functions may be released during processing and gastrointestinal digestion of dairy products. The methods of bioactive peptides generation .their species in dairy products and physiological functions were reviewed along with the commercial applications and safety aspects,which laid the foundation for the further development and utilization of bioactive peptides.%乳制品在生产加工和体内消化过程中会产生一系列生理功能显著的生物活性肽本文综述了乳制品中生物活性肽的产生途径、生物活性肽的种类和生理功能、生物活性肽的商业化应用以及其安全性,为进一步开发和利用生物活性肽奠定基础.

  5. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    OpenAIRE

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the ma...

  6. The synthesis of new amphiphilic p-tert-butylthiacalix[4]arenes containing peptide fragments and their interaction with DNA.

    Science.gov (United States)

    Padnya, Pavel L; Andreyko, Elena A; Mostovaya, Olga A; Rizvanov, Ildar Kh; Stoikov, Ivan I

    2015-06-01

    New water-soluble p-tert-butylthiacalix[4]arenes containing peptide and quaternary ammonium fragments in cone and 1,3-alternate conformations were synthesized and characterized. The interaction of the macrocycles with DNA was studied by UV-spectroscopy, DLS and TEM. It was shown that the interaction of the self-associates based on p-tert-butylthiacalix[4]arenes tetrasubstituted at the lower rim with glycine and quaternary ammonium fragments in cone and 1,3-alternate conformations with DNA led to the formation of particles of about 99-192 nm in size.

  7. Discovery and characterization of novel bioactive peptides from marine secondary products

    OpenAIRE

    Falkenberg, Susan Skanderup; Nielsen, Henrik Hauch; Jessen, Flemming; Stagsted, Jan; Joensen, Hóraldur

    2014-01-01

    Der er en stigende interesse i bioaktive peptider fra marine sekundære produkter, idet de er i besiddelse af et stort potentiale for at blive inkorporeret til funktionelle fødevarer og til medicinale formål. Bioaktive peptider fra det marine område er observeret værende i besiddelse af et bredt spekter af fysiologiske funktioner bl.a. antioxidative, blodtrykssænkende, antimikrobielle, anticancer samt effekt mod diabetes 2. Størstedelen af forskningen har dog fokuseret på peptider genereret fr...

  8. Production of Bioactive Peptides from Soybean Meal by Solid State Fermentation with Lactic Acid Bacteria and Protease

    Directory of Open Access Journals (Sweden)

    Naifu Wang

    2014-10-01

    Full Text Available In this study, soybean meal was first solid state fermented with different strains of Lactic Acid Bacteria (LAB. Among the strains used, Lactobacillus plantarum Lp6 was selected for further studies because of its highest Degree of Hydrolysis (DH of protein (2.49±0.08% in soybean meal after 72 h fermentation. Soybean meal fermented with L. plantarum Lp6 can also improve its DPPH radical scavenging and Angiotensin Converting Enzyme (ACE inhibitory activities. The addition of protease into soybean meal during the fermentation resulted in lowered IC50 of DPPH radical scavenging and ACE inhibitory activities, indicating more bioactive peptides were produced during fermentation. Molecular weight distribution analysis revealed the Extracts from Fermented Soybean Meal (EFSM was mainly composed of oligopeptides. These results indicated that soybean meal fermented with L. plantarum Lp6 and protease could be an easy and cheap method to produce functional food.

  9. Generation of bioactive peptide hydrolysates from cattle plasma using plant and fungal proteases.

    Science.gov (United States)

    Bah, Clara S F; Bekhit, Alaa El-Din A; McConnell, Michelle A; Carne, Alan

    2016-12-15

    Four protease preparations from plant and fungal sources (papain, bromelain, FP400 and FPII) were used to hydrolyse plasma which was separated from slaughterhouse cattle blood. The o-phthaldialdehyde assay was used to follow the release of TCA-soluble peptides over a 24h period. Hydrolysis profiles were displayed using SDS-PAGE. The in vitro antioxidant and antimicrobial activities of the hydrolysates were determined. The results showed that hydrolysates of cattle plasma generated with fungal protease FPII had higher antioxidant activities. Overall than hydrolysates generated with papain, bromelain and FP400. None of the hydrolysates demonstrated antimicrobial activity. The FPII peptide hydrolysate was fractionated using gel permeation chromatography, OFFGEL isoelectric focusing and RP-HPLC. The RP-HPLC fraction with highest antioxidant activity contained 15 novel peptide sequences. The use of protease FPII to hydrolyse cattle plasma resulted in a hydrolysate with high antioxidant properties and unique peptide sequences. PMID:27451160

  10. Valorisation of smooth hound (Mustelus mustelus) waste biomass through recovery of functional, antioxidative and antihypertensive bioactive peptides.

    Science.gov (United States)

    Sayari, Nadhem; Sila, Assaâd; Haddar, Anissa; Balti, Rafik; Ellouz-Chaabouni, Semia; Bougatef, Ali

    2016-01-01

    Concerns over the environmental and waste disposal problems created by the large amounts of by-products generated from fish processing industries are increasing worldwide. The bioconversion of those marine waste by-products through the enzymatic hydrolysis of their protein content offers the possibility for the development of bioactive peptides for use in various biotechnological applications. The present study aimed to investigate and evaluate the biological and functional properties of smooth hound (Mustelus mustelus) protein hydrolysates (SHPHs) obtained by treatment with intestinal and gastric enzyme preparations from M. mustelus viscera and porcine pancreatin. The results revealed that the SHPHs exhibited different degrees of hydrolysis and antioxidant activity. The hydrolysate produced by the intestinal crude extract presented the highest rate of antioxidative activity, showing an IC50 value of 1.47 ± 0.07 mg/mL in 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assays. The alkaline protease extract from the intestine of M. mustelus produced hydrolysate with the highest angiotensin I-converting enzyme (ACE) inhibitory activity (82 ± 1.52% at 2 mg/mL). All the protein hydrolysates showed excellent solubility and interfacial properties that were governed by pH. The major amino acids detected in SHPHs were glutamic acid/glutamine, aspartic acid/asparagine, histidine and arginine, followed by methionine, phenylalanine, serine, valine and leucine. Overall, the results indicated that smooth hound by-products can be used to generate high value-added products, thus offering a valuable source of bioactive peptides for application in wide range of biotechnological and functional food applications. PMID:26308921

  11. 生物活性肽对端粒长度的影响%Effect of bioactive peptides on telomere length

    Institute of Scientific and Technical Information of China (English)

    王志萍; 范圣刚; 唐永和; 张磊

    2015-01-01

      结论生物活性肽有延缓端粒缩短的作用。%Objective To evaluate the effect of bioactive peptides on telomere length. Methods A multicenter, double-blind, randomized and placebo controlled trial of bioactive peptides on telomere length was conducted. The subjects were divided into 4 groups:trial group A (n=50), trial group B (n=50), trial group C (n=50) and placebo group (group D, n = 50), and then treated with bioactive peptides 2, 4, 6 g/d and placebo, respectively. The treatment lasted for 9 months. Real-time quantitative PCR was used to measure the telomere length, before and after treatment for 3, 6 and 9 months in the peripheral blood, to evaluate the effect of bioactive peptides on telomere length. Results FAS (full analysis set) analysis showed that reduction of telomere length rate were 1.42‰, 1.42‰, 1.48‰ and 1.48‰, respectively, after 3 months trial. And 2.55‰, 2.20‰, 1.66‰ and 2.91‰, respectively, after 6 months trial. And 3.44‰, 2.97‰, 1.90‰and 4.15‰, respectively, after 9 months trial in group A, group B, group C, and group D. Analysis showed that the telomere length in the four groups were shortened without significant difference after 3 months (P=0.0678). However, the difference between the four groups is obvious after 6 months and significant after 9 months (P Conclusions The long-term use of bioactive peptides may delay the reduction of telomere length.

  12. Identification of bioactive peptides in hypoallergenic infant milk formulas by CE-TOF-MS assisted by semiempirical model of electromigration behavior.

    Science.gov (United States)

    Català-Clariana, Sergio; Benavente, Fernando; Giménez, Estela; Barbosa, José; Sanz-Nebot, Victoria

    2013-07-01

    Biologically active peptides derived from complex bovine milk protein hydrolysates are of particular interest in food science and nutrition because they have been shown to play different physiological roles, providing benefits in human health. In this study, we used CE-TOF-MS for separation and identification of bioactive peptides in three hypoallergenic infant milk formulas. An appropriate sample cleanup using a citrate buffer with DTT and urea followed by SPE with Sep-Pack® C18 and StrataX™ cartridges allowed the detection of a large number of low molecular mass bioactive peptides. This preliminary identification was solely based on the measured experimental monoisotopic molecular mass values (M(exp)). Later, we evaluated the classical semiempirical relationships between electrophoretic mobility and charge-to-mass ratio (m(e) vs. q/M(α), α = 1/2 for the classical polymer model) to describe their migration behavior. The assistance of migration prediction proved to be useful to improve reliability of the identification, avoiding misinterpretations and solving some identity conflicts. After revision, the identity of 24, 30, and 38 bioactive peptides was confirmed in each of the three infant milk formulas. A significant number of these peptides were reported as inhibitors of angiotensin-converting enzyme, however, the presence of sequences with other biological activities such as antihypertensive, antithrombotic, hypocholesterolemic, immunomodulation, cytotoxicity, antioxidant, antimicrobial, antigenic, or opioid was also confirmed.

  13. Synthesis, Structural Characterization, and Bioactivity of the Stable Peptide RCB-1 from Ricinus communis.

    Science.gov (United States)

    Boldbaatar, Delgerbat; Gunasekera, Sunithi; El-Seedi, Hesham R; Göransson, Ulf

    2015-11-25

    The Ricinus communis biomarker peptides RCB-1 to -3 comprise homologous sequences of 19 (RCB-1) or 18 (RCB-2 and -3) amino acid residues. They all include four cysteine moieties, which form two disulfide bonds. However, neither the 3D structure nor the biological activity of any of these peptides is known. The synthesis of RCB-1, using microwave-assisted, Fmoc-based solid-phase peptide synthesis, and a method for its oxidative folding are reported. The tertiary structure of RCB-1, subsequently established using solution-state NMR, reveals a twisted loop fold with antiparallel β-sheets reinforced by the two disulfide bonds. Moreover, RCB-1 was tested for antibacterial, antifungal, and cytotoxic activity, as well as in a serum stability assay, in which it proved to be remarkably stable.

  14. One-pot nanoparticulation of potentially bioactive peptides and gallic acid encapsulation.

    Science.gov (United States)

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2016-11-01

    Whey protein isolate was hydrolyzed to an in vitro antioxidative hydrolysate, followed by transglutaminase-induced cross-linking and microemulsification in an oil phase. The obtained microemulsion was then dispersed in a gallic acid-rich model wastewater which caused gallic acid transportation into internal nanodroplets. Whey peptides were consequently gelled, yielding nanoparticles. Electrophoresis showed that β-lactoglobulin and low molecular weight peptides were cross-linked by transglutaminase. Protein hydrolysis and subsequent enzymatic cross-linking increased the ζ-potential value. Microscopic investigation indicated that most particles were non-spherical. Non-cross-linked and cross-linked peptides underwent a form of heat-triggered self-assembly in the dry state, while nanoparticles did not show such behavior. Peptide crystallites size was increased by cross-linking and acid-induced particle formation. The latter also caused a reduction in intensity of C-H stretching and C-N bending peaks in infra-red spectrum. Gallic acid release from particles to simulated gastrointestinal fluids was through diffusion from swollen particles, and reached almost 70% release. PMID:27211653

  15. Study of Two Bioactive Peptides in Vacuum and Solvent by Molecular Modeling

    Science.gov (United States)

    Yaşar, F.; Demir, K.

    The thermodynamic and structural properties of Tyrosine-Glycine-Leusine-Phenylalanine (YGLF, in a one letter code) and Lysine-Valine-Leusine-Proline-Valine-Proline-Glutamine (KVLPVPQ) peptide sequences were studied by three-dimensional molecular modeling in vacuum and solution. All the three-dimensional conformations of each peptide sequences were obtained by multicanonical simulations with using ECEPP/2 force field and each simulation started from completely random initial conformation. Solvation contributions are included by a term that is proportional to solvent-accessible surface areas of peptides. In the present study, we calculated the average values of total energy, specific heat, fourth-order cumulant and end-to-end distance for two peptide sequences of milk protein as a function of temperature. With using major advantage of this simulation technique, Ramachandran plots were prepared and analysed to predict the relative occurrence probabilities of β-turn, γ-turn and helical structures. Although structural predictions of these sequences indicate both the presence of high level of γ-turns and low level of β-turns in vacuum and solvent, it was observed that these probabilities in vacuum were higher than the ones in solvent model.

  16. Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Qiangqiang Wang

    2016-01-01

    Full Text Available Since excessive reactive oxygen species (ROS is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps, which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.

  17. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk.

    Science.gov (United States)

    Chaves-López, Clemencia; Serio, Annalisa; Paparella, Antonello; Martuscelli, Maria; Corsetti, Aldo; Tofalo, Rosanna; Suzzi, Giovanna

    2014-09-01

    This study aimed at evaluating co-cultures of selected microorganisms for their proteolytic activity and capability to produce fermented milk enriched with ACE-inhibitory (ACEI) peptides. Selected yeasts (Torulaspora delbruekii KL66A, Galactomyces geotrichum KL20B, Pichia kudriavzevii KL84A and Kluyveromyces marxianus KL26A) and lactic acid bacteria strains (Lactobacillus plantarum LAT03, Lb. plantarum KLAT01 and the not virulent Enterococcus faecalis KE06) were screened as single cultures for their capacity of releasing ACEI peptides without producing bitter taste. Three strains cultures (yeast, Lb. plantarum and E. faecalis) were performed to evaluate the combined impact on microbial growth, lactic acid production, citric acid consumption, proteolysis, ACEI activity, and bitter taste after 36 h of fermentation at 28 °C. While G. geotrichum KL20B showed a strong stimulating effect on Lb. plantarum strains and the production of peptides with ACEI activity, the presence of T. delbruekii KL26A in the cultures was deleterious both to ACEI activity and product taste. The most effective combination was P. kudriavzevii KL84A, Lb. plantarum LAT3, E. faecalis KL06, which showed the highest ACEI activity (IC50 = 30.63 ± 1.11 μg ml(-1)) and gave no bitter taste for 7 days at 6 °C. Our results highlight the importance of choosing the strains combination carefully, to obtain a high yield of ACEI activity without bitter taste.

  18. Screening of protease-producing marine yeasts for production of the bioactive peptides

    Institute of Scientific and Technical Information of China (English)

    NI Xiumei; CHI Zhenming; LIU Zhiqiang; YUE Lixi

    2008-01-01

    Over 400 yeast strains from seawater and sediments were obtained,but only five strains named HN2-3,N13d,N13C,Mb5 and HN3-2 among them could form clear zones around their colonies on the double plates with 2.0% casein.Peptides in the hydroly-sate produced by the proteases from strains HN2-3 and N13d had higher angiotensin Ⅰ-converting-enzyme (ACE)-inhibitory ac-tivity.The two marine yeast strains were identified to be Aureobasidium pullulans according to the results of routine yeast identifi-cation and molecular methods.After purification of the proteases from the two marine yeast strains,it was found that the optimal pH for them was both 9.0,both of them were serine alkaline protease.However,the optimal temperature for the protease from the strain HN2-3 was 52℃ while that from strain N13d was 48℃.ACE-inhibitory activity of the peptides in the hydrolysate of shrimp protein produced by the purified protease from the strain HN2-3 was the highest while antioxidant activity in the hydroly-sate of spirulina protein produced by the purified protease from the strain N13d was the highest.

  19. Angiotensin I-converting enzyme inhibitory activity of gelatin hydrolysates and identification of bioactive peptides.

    Science.gov (United States)

    Herregods, Griet; Van Camp, John; Morel, Nicole; Ghesquière, Bart; Gevaert, Kris; Vercruysse, Lieselot; Dierckx, Stephan; Quanten, Erwin; Smagghe, Guy

    2011-01-26

    In this project we report on the angiotensin I-converting enzyme (ACE)-inhibitory activity of a bovine gelatin hydrolysate (Bh2) that was submitted to further hydrolysis by different enzymes. The thermolysin hydrolysate (Bh2t) showed the highest in vitro ACE inhibitory activity, and interestingly a marked in vivo blood pressure-lowering effect was demonstrated in spontaneously hypertensive rats (SHR). In contrast, Bh2 showed no effect in SHR, confirming the need for the extra thermolysin hydrolysis. Hence, an angiotensin I-evoked contractile response in isolated rat aortic rings was inhibited by Bh2t, but not by Bh2, suggesting ACE inhibition as the underlying antihypertensive mechanism for Bh2t. Using mass spectrometry, seven small peptides, AG, AGP, VGP, PY, QY, DY and IY or LY or HO-PY were identified in Bh2t. As these peptides showed ACE inhibitory activity and were more prominent in Bh2t than in Bh2, the current data provide evidence that these contribute to the antihypertensive effect of Bh2t.

  20. Acute Toxicity and Genotoxicity of Bioactive Peptide Powders%生物活性肽粉的急性毒性和致突变性试验

    Institute of Scientific and Technical Information of China (English)

    周雯; 李慧; 陈敏

    2009-01-01

    BACKGROUND AND AIM: To study the safety of bioactive peptide powders. MATERIALS AND METHODS: Acute toxicity test of mice, Ames test, micronucleus test of bone marrow PCE cell in mice, sperm shape abnormality test of mice were used. RESULTS: Bioactive peptides revealed a LD50> 10 gAg in mice. The results of genetic toxicity test were all negative, including Ames test, micronucleus test and sperm shape abnormality test. CONCLUSION: The bioactive peptide powders was a substance with no toxicity and no genotoxicity under our experimental conditions.%背景与目的:研究生物活性肽粉的急性毒性与致突变性.材料与方法:采用小鼠经口急性毒性试验、Ames试验、小鼠骨髓嗜多染红细胞微核试验和小鼠精子畸形试验检测生物活性肽粉的急性毒性与致突变性. 结果:生物活性肽粉对小鼠的经口急性毒性LD50大于10 g/kg.Ames试验、微核试验和精子畸形试验结果均为阴性.结论:在本实验条件下,生物活性肽粉属于实际无毒物质,未显示致突变性.

  1. Bibliometric Analysis on the Research Literatures about Bioactive Peptides in China%我国生物活性肽研究文献的定量分析

    Institute of Scientific and Technical Information of China (English)

    王欣莹; 张冬冬; 曹冰

    2012-01-01

    According to the data of bioactive peptides in China collected by China Journal Full-text Database (2001 -2010) , the quantity of annual published papers, core authors, author' s collaboration degree, research groups and regional distribution, journal distribution, etc. a-bout the bioactive peptides in the journals were analyzed statistically by the method of bibliometrics. The research provides reference for the research and information communication of bioactive peptides.%以2001~2010年的《中国期刊全文数据库》作为数据来源,运用文献计量学方法对有关生物活性肽研究的年度载文量、核心作者群、合作度、主要产出单位及区域、期刊分布等进行统计分析,为我国生物活性肽研究及信息交流提供参考依据.

  2. Application of the marine bioactive peptides in shampoo%海洋活性肽在洗发香波中的应用

    Institute of Scientific and Technical Information of China (English)

    何忠东; 庞秀枰; 陈忻; 孙恢礼; 刘冬龙; 陈智刚

    2012-01-01

    研究了海洋活性肽在洗发香波中的应用。结果表明,烫发前经活性肽洗发香波处理的头发跟对照组相比,平均最大载荷增加0.26N;烫发后经活性肽洗发香波处理的头发跟对照组相比,平均最大载荷增加0.14N。并得出海洋活性肽在洗发香波中的最佳添加质量分数为1.0%。%Marine bioactive peptides was introduced into elementary formulations for producing shampoo. Results showed that hair which was dealt with bioactive peptides before perming, the quantity of average maximum load increased by 0.26 N compared to control group; and hair dealt after penning, the quantity of average maximum load increased by 0.14 N compared to control group. The optimum content of marine bioactive peptides was 1.0%.

  3. Selection of a high-affinity and in vivo bioactive ssDNA aptamer against angiotensin II peptide.

    Science.gov (United States)

    Heiat, Mohammad; Ranjbar, Reza; Latifi, Ali Mohammad; Rasaee, Mohammad Javad

    2016-08-01

    Unique features of aptamers have attracted interests for a broad range of applications. Aptamers are able to specifically bind to targets and inhibit their functions. This study, aimed to isolate the high affinity ssDNA aptamers against bio-regulator peptide angiotensin II (Ang II) and investigate their bioactivity in cellular and animal models. To isolate ssDNA aptamers, 12 rounds of affinity chromatography SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure were carried out. The SPR (surface plasmon resonance) and ELONA (enzyme linked oligonucleotide assay) analysis were used to determine the affinity and specificity of aptamers. The ability of selected aptamers to inhibit the proliferative effect of Ang II on human aortic vascular smooth muscle cells (HA-VSMCs) and their performance on Wistar rat urinary system and serum electrolyte levels were investigated. Two full-length aptamers (FLC112 and FLC125) with high affinity of respectively 7.52±2.44E-10 and 5.87±1.3E-9M were isolated against Ang II. The core regions of these aptamers (CRC112 and CRC125) also showed affinity of 5.33±1.15E-9 and 4.11±1.09E-9M. In vitro analysis revealed that FLC112 and FLC125 can inhibit the proliferative effect of Ang II on HA-VSMCs (Psodium level and increased the urine volume (Pbioactive aptamers may lead to excellent results in blocking Ang II activity. PMID:27298205

  4. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    Science.gov (United States)

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area.

  5. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    Science.gov (United States)

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area. PMID:25797209

  6. Inhibition of VEGF mediated corneal neovascularization by anti-angiogenic peptide nanofibers.

    Science.gov (United States)

    Senturk, Berna; Cubuk, M Ozgur; Ozmen, M Cuneyt; Aydin, Bahri; Guler, Mustafa O; Tekinay, Ayse B

    2016-11-01

    Atypical angiogenesis is one of the major symptoms of severe eye diseases, including corneal neovascularization, and the complex nature of abnormal vascularization requires targeted methods with high biocompatibility. The targeting of VEGF is the most common approach for preventing angiogenesis, and the LPPR peptide sequence is known to strongly inhibit VEGF activity by binding to the VEGF receptor neuropilin-1. Here, the LPPR epitope is presented on a peptide amphiphile nanofiber system to benefit from multivalency and increase the anti-angiogenic function of the epitope. Peptide amphiphile nanofibers are especially useful for ocular delivery applications due to their ability to remain on the site of interest for extended periods of time, facilitating the long-term presentation of bioactive sequences. Consequently, the LPPR sequence was integrated into a self-assembled peptide amphiphile network to increase its efficiency in the prevention of neovascularization. Anti-angiogenic effects of the peptide nanofibers were investigated by using both in vitro and in vivo models. LPPR-PA nanofibers inhibited endothelial cell proliferation, tube formation, and migration to a greater extent than the soluble LPPR peptide in vitro. In addition, the LPPR-PA nanofiber system led to the prevention of vascular maturation and the regression of angiogenesis in a suture-induced corneal angiogenesis model. These results show that the anti-angiogenic activity exhibited by LPPR peptide nanofibers may be utilized as a promising approach for the treatment of corneal angiogenesis. PMID:27616429

  7. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-06-01

    Full Text Available Host defense peptides (HDPs are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs.

  8. Mitochondria-acting hexokinase II peptides carried by short-length carbon nanotubes with increased cellular uptake, endosomal evasion, and enhanced bioactivity against cancer cells

    Science.gov (United States)

    Yoong, Sia Lee; Lau, Wei Liang; Liu, Ang Yu; Prendergast, D'arcy; Ho, Han Kiat; Yu, Victor Chun Kong; Lee, Chengkuo; Ang, Wee Han; Pastorin, Giorgia

    2015-08-01

    Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs.Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study

  9. Control of the orientational order and nonlinear optical response of the "push-pull" chromophore RuPZn via specific incorporation into densely packed monolayer ensembles of an amphiphilic 4-helix bundle peptide: second harmonic generation at high chromophore densities.

    Science.gov (United States)

    Gonella, Grazia; Dai, Hai-Lung; Fry, H Christopher; Therien, Michael J; Krishnan, Venkata; Tronin, Andrey; Blasie, J Kent

    2010-07-21

    The macroscopic nonlinear optical response of the "push-pull" chromophore RuPZn incorporated into a single monolayer of the amphiphilic 4-helix bundle peptide (AP0) covalently attached to a solid substrate at high in-plane density has been measured. The second-order susceptibility, chi(zzz), was found to be in the range of approximately 15 x 10(-9) esu, consistent with a coherent sum of the nonlinear contributions from the individual chromophores (beta) as previously measured in isotropic solution through hyper-Rayleigh scattering as well as estimated from theoretical calculations. The microscopic hyperpolarizability of the RuPZn chromophore is preserved upon incorporation into the peptide monolayer, suggesting that the chromophore-chromophore interactions in the densely packed ensemble do not substantially affect the first-order molecular hyperpolarizability. The polarization angle dependence of the second harmonic signal reveals that the chromophore is vectorially oriented in the two-dimensional ensemble. Analysis of the order parameter together with information obtained from grazing incidence X-ray diffraction help in determining the chromophore orientation within the AP0-RuPZn monolayer. Taking into account an average pitch angle of approximately 20 degrees characterizing the coiled-coil structure of the peptide bundle, the width of the bundle's tilt angle distribution should be sigma < or = 20 degrees, resulting in a mean value of the tilt angle 23 degrees < or = theta(0) < or = 37 degrees. PMID:20578696

  10. Computational Amphiphilic Materials for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naresh eThota

    2015-10-01

    Full Text Available Amphiphilic materials can assemble into a wide variety of morphologies and have emerged as a novel class of candidates for drug delivery. Along with a large number of experiments reported, computational studies have been also conducted in this field. At an atomistic/molecular level, computations can facilitate quantitative understanding of experimental observations and secure fundamental interpretation of underlying phenomena. This review summarizes the recent computational efforts on amphiphilic copolymers and peptides for drug delivery. Atom-resolution and time-resolved insights are provided from bottom-up to microscopically elucidate the mechanisms of drug loading/release, which are indispensable in the rational screening and design of new amphiphiles for high-efficacy drug delivery.

  11. The role of amphiphiles

    NARCIS (Netherlands)

    Hoekstra, F.A.; Golovina, E.A.

    2002-01-01

    This paper reviews our work on the partitioning of amphiphilic compounds from the cytoplasm into membranes during drying of plant systems, and discusses how relevant this phenomenon might be for anhydrobiosis. Amphiphilic guest molecules do partition into membranes and oil bodies, as demonstrated by

  12. Self-assembly of small peptide amphiphiles, the structures formed and their applications. (A foods and home and personal care perspective).

    Science.gov (United States)

    Frith, W J

    2016-07-28

    In this opinion piece, some specific challenges in the field of peptide self-assembly and gel formation are discussed. One major hurdle to finding functional small peptides is that there are a huge number of compounds to explore, which increases exponentially with the peptide size. This in itself creates a barrier to the discovery and application of materials, both through the difficulty of finding the peptides, and because protecting inventions also becomes more difficult. Recent work has shown that computer simulations may provide us a route to explore such a huge compound space; this is discussed along with the prospect for future developments. At the microscopic scale, many fibril-forming peptides form gels, apparently through a process of lateral association of primary self-assembled filaments, which leads to a relatively coarse-grained structure of rigid interconnects. However, recent data obtained on Fmoc-tyrosine gels appear to indicate that the gel microstructure is both more flexible and finer grained than previously believed. As such, it is clear that there is a considerable amount that is still not understood regarding this class of gel.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298432

  13. Characterization of the Pattern of αs1- and β-Casein Breakdown and Release of a Bioactive Peptide by a Cell Envelope Proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581▿

    OpenAIRE

    Hebert, Elvira María; Mamone, Gianfranco; Picariello, Gianluca; Raya, Raúl R.; Savoy, Graciela; Ferranti, Pasquale; Addeo, Francesco

    2008-01-01

    The cell envelope-associated proteinases (CEPs) of the lactobacilli have key roles in bacterial nutrition and contribute to the development of the organoleptic properties of fermented milk products as well, as they can release bioactive health-beneficial peptides from milk proteins. The influence of the peptide supply, carbohydrate source, and osmolites on the CEP activity of the cheese starter Lactobacillus delbrueckii subsp. lactis CRL 581 was investigated. The CEP activity levels were cont...

  14. Morphogenic Peptides in Regeneration of Load Bearing Tissues.

    Science.gov (United States)

    Moeinzadeh, Seyedsina; Jabbari, Esmaiel

    2015-01-01

    Morphogenic proteins due to their short half-life require high doses of growth factors in regeneration of load bearing tissues which leads to undesirable side effects. These side effects include bone overgrowth, tumor formation and immune reaction. An alternative approach to reduce undesirable side effects of proteins in regenerative medicine is to use morphogenic peptides derived from the active domains of morphogenic proteins or soluble and insoluble components of the extracellular matrix of mineralized load bearing tissues to induce differentiation of progenitor cells, mineralization, maturation and bone formation. In that regard, many peptides with osteogenic activity have been discovered. These include peptides derived from bone morphogenic proteins (BMPs), those based on interaction with integrin and heparin-binding receptors, collagen derived peptides, peptides derived from other soluble ECM proteins such as bone sialoprotein and enamel matrix proteins, and those peptides derived from vasculoinductive and neuro-inductive proteins. Although these peptides show significant osteogenic activity in vitro and increase mineralization and bone formation in animal models, they are not widely used in clinical orthopedic applications as an alternative to morphogenic proteins. This is partly due to the limited availability of data on structure and function of morphogenic peptides in physiological medium, particularly in tissue engineered scaffolds. Due to their amphiphilic nature, peptides spontaneously self-assemble and aggregate into micellar structures in physiological medium. Aggregation alters the sequence of amino acids in morphogenic peptides that interact with cell surface receptors thus affecting osteogenic activity of the peptide. Aggregation and micelle formation can dramatically reduce the active concentration of morphogenic peptides with many-fold increase in peptide concentration in physiological medium. Other factors that affect bioactivity are the non

  15. Effect of processing on polyamine content and bioactive peptides released after in vitro gastrointestinal digestion of infant formulas.

    Science.gov (United States)

    Gómez-Gallego, C; Recio, I; Gómez-Gómez, V; Ortuño, I; Bernal, M J; Ros, G; Periago, M J

    2016-02-01

    This study examined the influence of processing on polyamines and peptide release after the digestion of a commercial infant formula designed for children during the first months of life. Polyamine oxidase activity was not suppressed during the manufacturing process, which implicates that polyamine concentrations were reduced over time and during infant formula self-life. In gel electrophoresis, in vitro gastrointestinal digestion of samples with reduced amount of enzymes and time of digestion shows an increase in protein digestibility, reflected in the increase in nonprotein nitrogen after digestion and the disappearance of β-lactoglobulin and α-lactalbumin bands in gel electrophoresis. Depending on the sample, between 22 and 87 peptides were identified after gastrointestinal digestion. A peptide from β-casein f(98-105) with the sequence VKEAMAPK and antioxidant activity appeared in all of the samples. Other peptides with antioxidant, immunomodulatory, and antimicrobial activities were frequently found, which could have an effect on infant health. The present study confirms that the infant formula manufacturing process determines the polyamine content and peptidic profile after digestion of the infant formula. Because compositional dissimilarity between human milk and infant formula in polyamines and proteins could be responsible for some of the differences in health reported between breast-fed and formula-fed children, these changes must be taken into consideration because they may have a great effect on infant nutrition and development.

  16. MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell

    Directory of Open Access Journals (Sweden)

    C Chaussain

    2009-11-01

    Full Text Available Dentin Matrix Protein 1 (DMP1 plays a regulatory role in dentin mineralization and can also function as a signaling molecule. MMP-2 (matrix metalloproteinase-2 is a predominant protease in the dentin matrix that plays a prominent role in tooth formation and a potential role during the carious process. The possibility that MMP-2 can cleave DMP1 to release biologically active peptides was investigated in this study. DMP1, both in the recombinant form and in its native state within the dentin matrix, was shown to be a substrate for MMP-2. Proteolytic processing of DMP1 by MMP-2 produced two major peptides, one that contains the C-terminal region of the protein known to carry both the ASARM (aspartic acid and serine rich domain domain involved in biomineralization and the DNA binding site of DMP1. In vitro experiments with recombinant N- and C-terminal polypeptides mimicking the MMP-2 cleavage products of DMP1 demonstrated an effect of the C-polypeptide on the differentiation of dental pulp stem/progenitor cells to a putative odontoblast phenotype. In vivo implantation of this peptide in a rat injured pulp model induced a rapid formation of a homogeneous dentin bridge covered by a palisade of orientated cells expressing dentin sialoprotein (DSP and DMP1, attesting an efficient repair process. These data suggest that a peptide generated through the proteolytic processing of DMP1 by MMP-2 can regulate the differentiation of mesenchymal cells during dentinogenesis and thus sustain reparative dentin formation in pathological situations such as carious decay. In addition, these data open a new therapeutic possibility of using this peptide to regenerate dentin after an injury.

  17. MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell.

    Science.gov (United States)

    Chaussain, Catherine; Eapen, Asha Sarah; Huet, Eric; Floris, Caroline; Ravindran, Sriram; Hao, Jianjun; Menashi, Suzanne; George, Anne

    2009-01-01

    Dentin Matrix Protein 1 (DMP1) plays a regulatory role in dentin mineralization and can also function as a signaling molecule. MMP-2 (matrix metalloproteinase-2) is a predominant protease in the dentin matrix that plays a prominent role in tooth formation and a potential role during the carious process. The possibility that MMP-2 can cleave DMP1 to release biologically active peptides was investigated in this study. DMP1, both in the recombinant form and in its native state within the dentin matrix, was shown to be a substrate for MMP-2. Proteolytic processing of DMP1 by MMP-2 produced two major peptides, one that contains the C-terminal region of the protein known to carry both the ASARM (aspartic acid and serine rich domain) domain involved in biomineralization and the DNA binding site of DMP1. In vitro experiments with recombinant N- and C-terminal polypeptides mimicking the MMP-2 cleavage products of DMP1 demonstrated an effect of the C-polypeptide on the differentiation of dental pulp stem/progenitor cells to a putative odontoblast phenotype. In vivo implantation of this peptide in a rat injured pulp model induced a rapid formation of a homogeneous dentin bridge covered by a palisade of orientated cells expressing dentin sialoprotein (DSP) and DMP1, attesting an efficient repair process. These data suggest that a peptide generated through the proteolytic processing of DMP1 by MMP-2 can regulate the differentiation of mesenchymal cells during dentinogenesis and thus sustain reparative dentin formation in pathological situations such as carious decay. In addition, these data open a new therapeutic possibility of using this peptide to regenerate dentin after an injury. PMID:19908197

  18. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations.

    Science.gov (United States)

    Bah, Clara S F; Bekhit, Alaa El-Din A; Carne, Alan; McConnell, Michelle A

    2015-06-01

    Plasma separated from deer, sheep and pig blood, obtained from abattoirs, was hydrolysed using protease preparations from plant (papain and bromelain) and fungal (FP400 and FPII) sources. Antioxidant and antimicrobial activities of the peptide hydrolysates obtained after 1, 2, 4 and 24h of hydrolysis, were investigated. The release of trichloroacetic acid-soluble peptides over the hydrolysis period was monitored using the o-phthaldialdehyde (OPA) assay, while the hydrolysis profiles were visualised using SDS-PAGE. The major plasma proteins in the animal plasmas were identified using MALDI-TOF-TOF MS. Hydrolysates of plasma generated with fungal proteases exhibited higher DPPH radical-scavenging, oxygen radical-scavenging capacity (ORAC) and ferric reducing antioxidant power (FRAP) than those generated with plant proteases for all three animal plasmas. No antimicrobial activity was detected in the hydrolysates. The results indicated that proteolytic hydrolysis of animal blood plasmas, using fungal protease preparations in particular, produces hydrolysates with high antioxidant properties. PMID:25624206

  19. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations.

    Science.gov (United States)

    Bah, Clara S F; Bekhit, Alaa El-Din A; Carne, Alan; McConnell, Michelle A

    2015-06-01

    Plasma separated from deer, sheep and pig blood, obtained from abattoirs, was hydrolysed using protease preparations from plant (papain and bromelain) and fungal (FP400 and FPII) sources. Antioxidant and antimicrobial activities of the peptide hydrolysates obtained after 1, 2, 4 and 24h of hydrolysis, were investigated. The release of trichloroacetic acid-soluble peptides over the hydrolysis period was monitored using the o-phthaldialdehyde (OPA) assay, while the hydrolysis profiles were visualised using SDS-PAGE. The major plasma proteins in the animal plasmas were identified using MALDI-TOF-TOF MS. Hydrolysates of plasma generated with fungal proteases exhibited higher DPPH radical-scavenging, oxygen radical-scavenging capacity (ORAC) and ferric reducing antioxidant power (FRAP) than those generated with plant proteases for all three animal plasmas. No antimicrobial activity was detected in the hydrolysates. The results indicated that proteolytic hydrolysis of animal blood plasmas, using fungal protease preparations in particular, produces hydrolysates with high antioxidant properties.

  20. LC-MS/MS quantification of bioactive angiotensin I-converting enzyme inhibitory peptides in rye malt sourdoughs.

    Science.gov (United States)

    Hu, Ying; Stromeck, Achim; Loponen, Jussi; Lopes-Lutz, Daise; Schieber, Andreas; Gänzle, Michael G

    2011-11-23

    This study quantified antiotensin I-converting enzyme (ACE) inhibitory peptides in rye malt sourdoughs supplemented with gluten proteins and fermented with six strains of Lactobacillus spp. Bioinformatic analysis of prolamins from barley, rye, and wheat demonstrated that the ACE inhibitory peptides LQP, LLP, VPP, and IPP are frequently encrypted in their primary sequence. These tripeptides were quantified by liquid chromatography-tandem mass spectrometry. Tripeptide levels in sourdoughs were generally higher as compared to the chemically acidified controls. Sourdoughs fermented with different strains showed different concentrations of LQP and LLP. These differences corresponded to strain-specific differences in PepO and PepN activities. The highest levels of peptides VPP, IPP, LQP, and LLP, 0.23, 0.71, 1.09, and 0.09 mmol (kg DM)(-1), respectively, were observed in rye malt: gluten sourdoughs fermented with Lactobacillus reuteri TMW 1.106 and added protease. These concentrations were 6-7 times higher as compared to sourdough without fungal protease and exceed the IC(50) by 100-1000-fold. PMID:21985248

  1. Research progress on implant surface bioactive peptide/protein%种植体表面活性肽/蛋白修饰的研究进展

    Institute of Scientific and Technical Information of China (English)

    曹馨

    2012-01-01

    Implant denture has been widely used in the clinic due to its features of comfort and beauty. Besides, it brings a good recovery of masticatory function and a successful avoidance or reduction of the natural teeth's preparation. The fine bone union(osseointegration) formed between the titanium matrix implant and its surrounding tissue is key to the clinical success of implant denture. It is quite important to achieve better osseointegration as early as possible'so as to realize the early loading, even immediate loading and long-term stability of the implant. The modification of the implant surface is an important means to improve osseointegration. Various kinds of bioactive peptides/proteins have been the research focus in implant surface modification by the material experts owing to their certain bone growth. A review of the research progress is given in this paper concerning the bioactive peptide/protein-modification of the implant surface.%种植义齿因其舒适美观、咀嚼功能恢复良好以及能够避免或减少天然牙的磨除,越来越多地应用于临床.钛基种植体与周围组织形成良好的骨性愈合即骨整合是种植义齿临床成功的关键.尽快达到良好的骨整合,对于实现种植体的早期负载甚至即刻负载和长期稳定十分重要.种植体表面生物化学修饰改性是提高骨整合的重要途径,各种活性肽/蛋白因其确切的成骨效果,近年来一直是国内外材料专家种植体表面修饰的研究热点.本文就种植体表面活性肽/蛋白修饰的研究进展作一综述.

  2. 米糠蛋白抗氧化活性肽的制备%Preparation of Anti-oxidation Bioactive Peptide of Rice Bran Protein

    Institute of Scientific and Technical Information of China (English)

    周梅; 张敏

    2012-01-01

    This study screened the most suitable prolease oi preparation of bioactive peptide with the indexes of Hydrolysis (DH% ) and the eliminating rate of DPPH free radical. In order to find the most suitable zymohydrolysis condition of prolease,effects of concentration of substrate,pH, addition of protease and dissociation-time on the hydrolysis (DH% ) and the elirninating rate of DPPH freeradical in hydrolyzing were investigated. Based on the single-factor experiment,the optimum conditions of extraction of bioactive peptide from rice bran by the Box-Behnken response surface methodology design of Design-Expert 7.0 were determined as follows; addition amount of enzyme 13970.82 U/g, dissociation-time 3 h and concentration 4.97%. The results showed that degree of hydrolysis of rice bran protein was 23.67% and the eliminating rate of DPPH free radical could reach 64.26% under the optimum conditions.%以水解度(DH%)和对DPPH自由基清除率为指标,筛选出制备米糠蛋白抗氧化活性肽的最适蛋白酶.研究最适蛋白酶的酶解条件,探讨底物浓度、蛋白酶的加入量、pH值、酶解时间等因素对水解度(DH%)和DPPH自由基清除率的影响;在单因素基础上采用Box-Behnken响应曲面中心组合设计法,对酶解米糠蛋白的工艺进行优化.试验结果表明,在加酶量13970.82 U/g,时间3.05h,底物浓度4.97%的水解条件下,米糠蛋白的水解度能够达到23.67%,活性肽对DPPH自由基清除率达到64.26%.

  3. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    Science.gov (United States)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the

  4. MMP2-CLEAVAGE OF DMP1 GENERATES A BIOACTIVE PEPTIDE PROMOTING DIFFERENTIATION OF DENTAL PULP STEM/PROGENITOR CELLS

    OpenAIRE

    Chaussain, C.; AS Eapen; E Huet; Floris, C; Ravindran, S.; Hao, J.; S Menashi; George, A.

    2009-01-01

    Dentin Matrix Protein 1 (DMP1) plays a regulatory role in dentin mineralization and can also function as a signaling molecule. MMP-2 (matrix metalloproteinase-2) is a predominant protease in the dentin matrix that plays a prominent role in tooth formation and a potential role during the carious process. The possibility that MMP-2 can cleave DMP1 to release biologically active peptides was investigated in this study. DMP1, both in the recombinant form and in its native state within the dentin ...

  5. Anxiolytic-Like Effect of a Salmon Phospholipopeptidic Complex Composed of Polyunsaturated Fatty Acids and Bioactive Peptides

    Science.gov (United States)

    Belhaj, Nabila; Desor, Frédéric; Gleizes, Céline; Denis, Frédéric M.; Arab-Tehrany, Elmira; Soulimani, Rachid; Linder, Michel

    2013-01-01

    A phospholipopeptidic complex obtained by the enzymatic hydrolysis of salmon heads in green conditions; exert anxiolytic-like effects in a time and dose-dependent manner, with no affection of locomotor activity. This study focused on the physico-chemical properties of the lipidic and peptidic fractions from this natural product. The characterization of mineral composition, amino acid and fatty acids was carried out. Stability of nanoemulsions allowed us to realize a behavioral study conducted with four different tests on 80 mice. This work highlighted the dose dependent effects of the natural complex and its various fractions over a period of 14 days compared to a conventional anxiolytic. The intracellular redox status of neural cells was evaluated in order to determine the free radicals scavenging potential of these products in the central nervous system (CNS), after mice sacrifice. The complex peptidic fraction showed a strong scavenging property and similar results were found for the complex as well as its lipidic fraction. For the first time, the results of this study showed the anxiolytic-like and neuroprotective properties of a phospholipopeptidic complex extracted from salmon head. The applications on anxiety disorders might be relevant, depending on the doses, the fraction used and the chronicity of the supplementation. PMID:24177675

  6. Bioactivity of a Rice Bran-Derived Peptide and its Sensory Evaluation and Storage Stability in Orange Juice.

    Science.gov (United States)

    Graves, Amanda M; Hettiarachchy, Navam; Rayaprolu, Srinivas; Li, Ruiqi; Horax, Ronny; Seo, Han-Seok

    2016-04-01

    A pentapeptide prepared from rice bran demonstrated growth inhibition on human lung, liver, breast, and colon cancer cell lines. The objectives of this study were to evaluate the human prostate cancer growth inhibition by the pentapeptide and its 6-mo storage stability by incorporating spray-dried orange juice, and determining sensory acceptability. The pentapeptide showed inhibition of human prostate cancer cells by 45% at 460 μg/mL concentration. When incorporated in spray-dried orange juice, and reconstituted with water and tested, there was an approximately 10% degradation of the peptide at 620 μg/mL concentration under refrigerated conditions over a 6 mo storage period, whereas at ambient temperature the degradation was 30%. Larger degradation was observed when 240 or 460 μg/mL pentapeptide was used. Overall, consumer panelists liked sensory aspect of the reconstituted pentapeptide incorporated orange juice beverage. Also consumer panelists liked the color and mouthfeel attributes, their hedonic impression of flavor attribute was slightly low due to unpalatable bitter note caused by the presence of the peptide. Incorporation of the pentapeptide in spray-dried orange juice has the potential to serve as a functional food ingredient that can offer health benefits to consumers. It is possible that the structural instability can be minimized by encapsulation. PMID:26894442

  7. Synthesis of amphiphilic aminated inulin via 'click chemistry' and evaluation for its antibacterial activity.

    Science.gov (United States)

    Dong, Fang; Zhang, Jun; Yu, Chunwei; Li, Qing; Ren, Jianming; Wang, Gang; Gu, Guodong; Guo, Zhanyong

    2014-09-15

    Inulins are a group of abundant, water-soluble, renewable polysaccharides, which exhibit attractive bioactivities and natural properties. Improvement such as chemical modification of inulin is often performed prior to further utilization. We hereby presented a method to modify inulin at its primary hydroxyls to synthesize amphiphilic aminated inulin via 'click chemistry' to facilitate its chemical manipulation. Additionally, its antibacterial property against Staphylococcus aureus (S. aureus) was also evaluated and the best inhibitory index against S. aureus was 58% at 1mg/mL. As the amphiphilic aminated inulin is easy to prepare and exhibits improved bioactivity, this material may represent as an attractive new platform for chemical modifications of inulin.

  8. Research progress on application of bioactive peptides in anticancer area%生物活性肽在抗癌领域的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    陈彩霞; 韩瑞兰; 苏秀兰

    2015-01-01

    Although chemotherapy drugs have made great progress in the treatment of cancer in recent decades, the current chemotherapy drugs are still within many problems, such as the existence of toxicity, low specificity and poor resistence. Therefore, exploring new therapies has become the focus in the current. Bioactive peptide, a kind of life ac-tivities of organisms peptide compounds with special physiological functions, is made up of two to moreamino acids, and are called dipeptides or polypeptides. Diverse biological function has been found, such as immune regulation, antihy-pertensive, anticancer, antibacterial, anti-inflammatory and others. Its anticancer activity especially is the hot spot in the world today. In addition, the peptides have advantages to traditional chemotherapy drugs to a large extent. Also, it lay the foundation for the research of new therapy.%尽管近几十年来化疗药物在治疗癌症方面取得了很大的进展,但当前化疗药物存在的问题仍然很多,如存在的毒性、特异性较低以及易产生耐药性,探讨新型疗法成为当前的研究热点。生物活性肽是一类对生物机体的生命活动有特殊生理功能的肽类化合物,是由二至多个氨基酸组成的二肽或多肽。它们的生物学功能多样,如免疫调节、抗高血压、抗癌、抗菌、抗炎以及其他作用,其抗癌活性尤为突出,且在很大程度上优于传统的化疗药物,所以成为当今世界范围关注的热点,从而为抗癌新型疗法的研究奠定基础。

  9. Characterization of the pattern of alphas1- and beta-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581.

    Science.gov (United States)

    Hebert, Elvira María; Mamone, Gianfranco; Picariello, Gianluca; Raya, Raúl R; Savoy, Graciela; Ferranti, Pasquale; Addeo, Francesco

    2008-06-01

    The cell envelope-associated proteinases (CEPs) of the lactobacilli have key roles in bacterial nutrition and contribute to the development of the organoleptic properties of fermented milk products as well, as they can release bioactive health-beneficial peptides from milk proteins. The influence of the peptide supply, carbohydrate source, and osmolites on the CEP activity of the cheese starter Lactobacillus delbrueckii subsp. lactis CRL 581 was investigated. The CEP activity levels were controlled by the peptide content of the growth medium. The maximum activity was observed in a basal minimal defined medium, whereas in the presence of Casitone, Casamino Acids, or yeast extract, the synthesis of CEP was inhibited 99-, 70-, and 68-fold, respectively. The addition of specific di- or tripeptides containing branched-chain amino acids, such as leucylleucine, prolylleucine, leucylglycylglycine, or leucylproline, to the growth medium negatively affected CEP activity, whereas dipeptides without branched-chain amino acids had no effect on the enzyme's production. The carbon source and osmolites did not affect CEP activity. The CEP of L. delbrueckii subsp. lactis CRL 581 exhibited a mixed-type CEP(I/III) variant caseinolytic specificity. Mass-spectrometric screening of the main peptide peaks isolated by reverse-phase high-pressure liquid chromatography allowed the identification of 33 and 32 peptides in the alpha(s1)- and beta-casein hydrolysates, respectively. By characterizing the peptide sequence in these hydrolysates, a pattern of alpha(s1)- and beta-casein breakdown was defined and is reported herein, this being the first report for a CEP of L. delbrueckii subsp. lactis. In this pattern, a series of potentially bioactive peptides (antihypertensive and phosphopeptides) which are encrypted within the precursor protein could be visualized. PMID:18424544

  10. Competitive Binding of Natural Amphiphiles with Graphene Derivatives

    Science.gov (United States)

    Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng

    2013-07-01

    Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment.

  11. Preparation of bioactive peptides with high angiotensin converting enzyme inhibitory activity from winged bean [Psophocarpus tetragonolobus (L.) DC.] seed.

    Science.gov (United States)

    Wan Mohtar, Wan Abd Al-Qadr Imad; Hamid, Azizah Abdul; Abd-Aziz, Suraini; Muhamad, Sharifah Kharidah Syed; Saari, Nazamid

    2014-12-01

    Winged bean [Psophocarpus tetragonolobus (L.) DC.] seed is a potential underexploited source of vegetable protein due to its high protein content. In the present work, undefatted and defatted winged bean seed hydrolysates, designated as UWBSH and DWBSH, respectively were produced separately by four proteolytic enzymes namely Flavourzyme, Alcalase, Bromelain, and Papain using pH-stat method in a batch reactor. Enzymatic hydrolysis was carried out over a period of 0.5 to 5 h. UWBSH and DWBSH produced were tested for their ACE inhibitory activity in relation to the hydrolysis time and degree of hydrolysis (DH). Maximum ACE inhibitory activity, both for UWBSH and DWBSH, were observed during 3 to 5 h of hydrolysis. Both, UWBSH (DH 91.84 %), and DWSBH (DH 18.72 %), produced by Papain at 5 h hydrolysis, exhibited exceptionally high ACE inhibitory activity with IC50 value 0.064 and 0.249 mg mL(-1), respectively. Besides, papain-produced UWBSH and DWBSH were further fractionated into three fractions based on molecular weight (UWBSH-I, <10 kDa; UWBSH-II, <5 kDa; UWBSH-III, <2 kDa) and (DWBSH-I, <10 kDa; DWBSH-II, <5 kDa; DWBSH-III, <2 kDa). UWBSH-III revealed the highest ACE inhibitory activity (IC50 0.003 mg mL(-1)) compared with DWBSH-III (IC50 0.130 mg mL(-1)). The results of the present investigation revealed that winged bean seed hydrolysates can be explored as a potential source of ACE inhibitory peptides suggesting their uses for physiological benefits as well as for other functional food applications. PMID:25477632

  12. Efficient Production of a Bioactive Bevacizumab Monoclonal Antibody Using the 2A Self-cleavage Peptide in Transgenic Rice Callus.

    Science.gov (United States)

    Chen, Lei; Yang, Xiaoyu; Luo, Da; Yu, Weichang

    2016-01-01

    Bevacizumab, a humanized monoclonal antibody (mAb) targeting to the vascular endothelial growth factor (VEGF), has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC) and Bevacizumab heavy chain (BHC) genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme-linked immunosorbent assay (ELISA) analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7-242.8 mg/Kg) in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target human VEGF (hVEGF) antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin) were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment. PMID:27555853

  13. Efficient production of a bioactive Bevacizumab monoclonal antibody using the 2A self-cleavage peptide in transgenic rice callus

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2016-08-01

    Full Text Available Bevacizumab, a humanized monoclonal antibody (mAb targeting to the vascular endothelial growth factor (VEGF, has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC and heavy chain (BHC genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus (FMDV, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme linked immunosorbent assay (ELISA analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7-242.8 mg kg-1FW in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target hVEGF antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment.

  14. Efficient Production of a Bioactive Bevacizumab Monoclonal Antibody Using the 2A Self-cleavage Peptide in Transgenic Rice Callus

    Science.gov (United States)

    Chen, Lei; Yang, Xiaoyu; Luo, Da; Yu, Weichang

    2016-01-01

    Bevacizumab, a humanized monoclonal antibody (mAb) targeting to the vascular endothelial growth factor (VEGF), has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC) and Bevacizumab heavy chain (BHC) genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme-linked immunosorbent assay (ELISA) analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7–242.8 mg/Kg) in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target human VEGF (hVEGF) antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin) were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment. PMID:27555853

  15. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  16. Amphiphilic dendronized homopolymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of second generation of amphiphilic dendronized homopolymers are efficiently synthesized,and their thermoresponsiveness in aqueous solutions and secondary structures in methanol solutions are described.These polymers are constructed in each repeat unit with various generations of hydrophobic 4-aminoproline and hydrophilic oligoethylene glycol (OEG)-based dendrons,and their over-all hydrophilicity is tuned by varying these dendron generations.Polymers with or without the first generation of proline dendron show good water solubility at room temperature,but exhibit typical thermoresponsive behaviors at elevated temperatures as characterized by turbidity measurements using UV-vis spectroscopy,while the polymer with the secondary generation of proline dendron is not soluble in water.All polymers show ordered secondary structures as evidenced by the optical rotation and circular dichroism experiments.Finally,assembly of these amphiphilic homopolymers into porous films via breath figure (BF) technique is described,and polymer structures are found to show significant influence on the morphology of porous film.

  17. Effect of amino acid substitution in the hydrophobic face of amphiphilic peptides on membrane curvature and perturbation: N-terminal helix derived from adenovirus internal protein VI as a model.

    Science.gov (United States)

    Murayama, Tomo; Pujals, Sílvia; Hirose, Hisaaki; Nakase, Ikuhiko; Futaki, Shiroh

    2016-11-01

    The N-terminal amphipathic helical segment of adenovirus internal protein VI (AdVpVI) plays a critical role in viral infection. Here, we report that the peptide segment corresponding to AdVpVI (positions 33-55) can induce positive membrane curvature together with membrane perturbation. The enhanced perturbation ability of the peptide was observed for membranes containing negatively charged phospholipids. Based on the liposome leakage assay, substitution of leucine at position 40 to other aliphatic (isoleucine) and aromatic (phenylalanine and tryptophan) residues yielded a similar degree of membrane perturbation by the peptides, which was considerably diminished by the substitution to glutamine. Further studies using the wild-type AdVpVI (33-55) (WT) and phenylalanine-substituted peptides (L40F) demonstrated that both peptides have positive membrane-curvature-inducing ability. These peptides showed higher binding affinity to 50-nm large unilamellar vesicles (LUVs) than to 200-nm LUVs. However, no enhanced perturbation by these peptides was observed for 50-nm LUVs compared to 200-nm LUVs, suggesting that both the original membrane curvature and the additional strain due to peptide insertion affect the membrane perturbation ability of these peptides. In the case of L40F, this peptide rather had a lower membrane perturbation ability for 50-nm LUVs than for 200-nm LUVs, which can be attributed to possible shallower binding of L40F on membranes. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 430-439, 2016. PMID:27271816

  18. High-Capacity Drug Carriers from Common Polymer Amphiphiles.

    Science.gov (United States)

    Zhou, Zhun; Munyaradzi, Oliver; Xia, Xin; Green, Da'Sean; Bong, Dennis

    2016-09-12

    We report herein a dual-purpose role for polyacidic domains in an aqueous-phase polymer amphiphile assembly. In addition to their typical role as ionized water-solubilizing and self-repulsive motifs, we find that polycarboxylic acid domains uniquely enable high levels of hydrophobic drug encapsulation. By attenuated total reflectance infrared spectroscopy, we find significant differences in the carbonyl stretching region of the nanoparticles formed by polyacidic amphiphiles relative to those in soluble, single-domain poly(acrylic acid), suggesting that stabilization may be derived from limited ionization of the carboxylate groups upon assembly. Acidic-hydrophobic diblock polyacrylates were prepared and coassembled with up to 60 wt % camptothecin (CPT) into nanoparticles, the highest loading reported to date. Controlled release of bioactive CPT from polymer nanoparticles is observed, as well as protection from human serum albumin-induced hydrolysis. Surface protection with PEG limits uptake of the CPT-loaded nanoparticles by MCF-7 breast cancer cells, as expected. Acidic-hydrophobic polymer amphiphiles thus have the hallmarks of a useful and general drug delivery platform and are readily accessible from living radical polymerization of cheap, commercially available monomers. We highlight here the potential utility of this common polymer design in high-capacity, controlled-release polymer nanoparticle systems. PMID:27476544

  19. Experimental Investigation of Bioactive Peptides from the Skin of Rana chensinensis on Immune Function in Mice%林蛙皮活性肽对小鼠免疫功能影响的试验研究

    Institute of Scientific and Technical Information of China (English)

    巢警殳; 杜鹃; 刘雅娟

    2012-01-01

    [Objective] To observe the effects of bioactive peptide from the Skin of Rana chensinensis on immune function in normal mice. [Method] Mice were randomly divided into five groups, including negative group, positive group, low-dose group, rniddle-dose group and high-dose group, each group of ten. The mice were administrated for 28 days. Cellular immunity was detected by T-cell-proliferation MTT assay , humoral immunity was assessed by plaque forming ceil assay (PFC) and number of antibody-producing cells. [ Result] Bioactive peptide from the skin of Rana cheminen&is could obviously promote lymphocyte proliferation induced by ConA, increased antibody production in ceil number, and enhanced serum hemolyain antibody titer. [ Conclusion] Bioactive peptide from the skin of Rana ckensinensis could enhance cellular immunity and humoral immunity of mice.%[目的]探讨林蛙皮生物活性肽对正常小鼠免疫功能的影响.[方法]将小鼠随机分为阴性对照组、阳性对照组、林蛙皮活性肽低、中、高剂量组,每组10只,连续灌胃给药28d后,采用ConA诱导的小鼠脾淋巴细胞转化试验,检测T淋巴细胞增值,并通过溶血空斑试验和血清溶血素试验检测林蛙皮活性肽对小鼠体液免疫功能的影响.[结果]林蛙皮生物活性肽可明显促进ConA诱导的淋巴细胞增值,增加抗体生成细胞数量,增强血清溶血素抗体效价水平.[结论]林蛙蛙皮生物活性肽对小鼠的细胞免疫和体液免疫功能均具有增强作用.

  20. A High-Protein Soybean Cultivar Contains Lower Isoflavones and Saponins but Higher Minerals and Bioactive Peptides than a Low-Protein Cultivar

    Science.gov (United States)

    Consumption of soybean products has increased considerably in the last few years, possibly due to the functional properties and the presence of bioactive compounds which bring health benefits to consumers. The process of germination has been shown to increase the concentration of a number of these ...

  1. Amphiphiles for protein solubilization and stabilization

    Science.gov (United States)

    Gellman, Samuel Helmer; Chae, Pil Seok; Laible, Philip D.; Wander, Marc J.

    2012-09-11

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can feature carbohydrate-derived hydrophilic groups and branchpoints in the hydrophilic moiety and/or in a lipophilic moiety. Such amphiphiles are useful as detergents for solubilization and stabilization of membrane proteins, including photosynthetic protein superassemblies obtained from bacterial membranes.

  2. Structure and Bioactivity of a Modified Peptide Derived from the LPS-Binding Domain of an Anti-Lipopolysaccharide Factor (ALF of Shrimp

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2016-05-01

    Full Text Available The lipopolysaccharide binding domain (LBD in anti-lipopolysaccharide factor (ALF is the main functional element of ALF, which exhibits antimicrobial activities. Our previous studies show that the peptide LBDv, synthesized based on the modified sequence of LBD (named LBD2 from FcALF2, exhibited an apparently enhanced antimicrobial activity. To learn the prospect of LBDv application, the characteristics of LBDv were analyzed in the present study. The LBDv peptide showed higher antimicrobial and bactericidal activities compared with LBD2. These activities of the LBDv peptide were stable after heat treatment. LBDv could also exhibit in vivo antimicrobial activity to Vibrio harveyi. The LBDv peptide was found to bind bacteria, quickly cause bacterial agglutination, and kill bacteria by damaging their membrane integrity. Structure analysis showed that both LBDv and LBD2 held the β-sheet structure, and the positive net charge and amphipathicity characteristic were speculated as two important components for their antimicrobial activity. The cytotoxicity of LBDv was evaluated in cultured Spodoptera frugiperda (Sf9 cells and Cherax quadricarinatus hemocytes. More than 80% cells could survive with the LBDv concentration up to 16 μM. Collectively, these findings highlighted the potential antimicrobial mechanism of LBD peptides, and provided important information for the commercial use of LBDv in the future.

  3. Technologies for the Synthesis of mRNA-Encoding Libraries and Discovery of Bioactive Natural Product-Inspired Non-Traditional Macrocyclic Peptides

    Directory of Open Access Journals (Sweden)

    Hiroaki Suga

    2013-03-01

    Full Text Available In this review, we discuss emerging technologies for drug discovery, which yields novel molecular scaffolds based on natural product-inspired non-traditional peptides expressed using the translation machinery. Unlike natural products, these technologies allow for constructing mRNA-encoding libraries of macrocyclic peptides containing non-canonical sidechains and N-methyl-modified backbones. The complexity of sequence space in such libraries reaches as high as a trillion (>1012, affording initial hits of high affinity ligands against protein targets. Although this article comprehensively covers several related technologies, we discuss in greater detail the technical development and advantages of the Random non-standard Peptide Integration Discovery (RaPID system, including the recent identification of inhibitors against various therapeutic targets.

  4. 鱿鱼皮胶原蛋白肽生理功能的研究进展%Research Progress of the Bioactive Functions of Proteins and Peptides from Squid Skin

    Institute of Scientific and Technical Information of China (English)

    夏克东; 刘振锋; 田少君; 马燕

    2015-01-01

    Squid skin contains low fat and high protein,and the level of proteins from squid skin is the same as squid body.Its rich nutritional value has been commonly recognized.This paper mainly introduces the study about the bioactive functions of squid skin peptide,such as antioxidant activity,ACE inhibitory activity,inhibition of tumor cell activity and anti-aging active suppression.These will provide some reference for the exploitation and application of proteins and peptides extracted from squid skin.%鱿鱼皮是一种高蛋白低脂肪的物质,蛋白组成与本体基本一致,而且胶原蛋白含量相对较高,其丰富的营养价值已经被大家所认可.主要介绍了国内外对鱿鱼皮蛋白肽的生物活性功能,如抗氧化活性、ACE抑制活性、抑制肿瘤细胞活性以及抗衰老等的研究,为鱿鱼皮蛋白肽的开发利用提供参考.

  5. 鱿鱼皮胶原蛋白肽生理功能的研究进展%Research Progress of the Bioactive Functions of Proteins and Peptides from Squid Skin

    Institute of Scientific and Technical Information of China (English)

    夏克东; 刘振锋; 田少君; 马燕

    2015-01-01

    鱿鱼皮是一种高蛋白低脂肪的物质,蛋白组成与本体基本一致,而且胶原蛋白含量相对较高,其丰富的营养价值已经被大家所认可.主要介绍了国内外对鱿鱼皮蛋白肽的生物活性功能,如抗氧化活性、ACE抑制活性、抑制肿瘤细胞活性以及抗衰老等的研究,为鱿鱼皮蛋白肽的开发利用提供参考.%Squid skin contains low fat and high protein,and the level of proteins from squid skin is the same as squid body.Its rich nutritional value has been commonly recognized.This paper mainly introduces the study about the bioactive functions of squid skin peptide,such as antioxidant activity,ACE inhibitory activity,inhibition of tumor cell activity and anti-aging active suppression.These will provide some reference for the exploitation and application of proteins and peptides extracted from squid skin.

  6. Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery.

    Science.gov (United States)

    Seleci, Muharrem; Seleci, Didem Ag; Ciftci, Mustafa; Demirkol, Dilek Odaci; Stahl, Frank; Timur, Suna; Scheper, Thomas; Yagci, Yusuf

    2015-04-21

    A robust drug delivery system based on nanosized amphiphilic star-hyperbranched block copolymer, namely, poly(methyl methacrylate-block-poly(hydroxylethyl methacrylate) (PMMA-b-PHEMA) is described. PMMA-b-PHEMA was prepared by sequential visible light induced self-condensing vinyl polymerization (SCVP) and conventional vinyl polymerization. All of the synthesis and characterization details of the conjugates are reported. To accomplish tumor cell targeting property, initially cell-targeting (arginylglycylaspactic acid; RGD) and penetrating peptides (Cys-TAT) were binding to each other via the well-known EDC/NHS chemistry. Then, the resulting peptide was further incorporated to the surface of the amphiphilic hyperbranched copolymer via a coupling reaction between the thiol (-SH) group of the peptide and the hydroxyl group of copolymer by using N-(p-maleinimidophenyl) isocyanate as a heterolinker. The drug release property and targeting effect of the anticancer drug (doxorobucin; DOX) loaded nanostructures to two different cell lines were evaluated in vitro. U87 and MCF-7 were chosen as integrin αvβ3 receptor positive and negative cells for the comparison of the targeting efficiency, respectively. The data showed that drug-loaded copolymers exhibited enhanced cell inhibition toward U87 cells in compared to MCF-7 cells because targeting increased the cytotoxicity of drug-loaded copolymers against integrin αvβ3 receptor expressing tumor cells. PMID:25816726

  7. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth;

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...

  8. Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer's Beta-Amyloid Peptide 25-35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds.

    Directory of Open Access Journals (Sweden)

    Balakrishnan Shanmuganathan

    Full Text Available Inhibition of β-amyloid (Aβ aggregation in the cerebral cortex of the brain is a promising therapeutic and defensive strategy in identification of disease modifying agents for Alzheimer's disease (AD. Since natural products are considered as the current alternative trend for the discovery of AD drugs, the present study aims at the evaluation of anti-amyloidogenic potential of the marine seaweed Padina gymnospora. Prevention of aggregation and disaggregation of the mature fibril formation of Aβ 25-35 by acetone extracts of P. gymnospora (ACTPG was evaluated in two phases by Thioflavin T assay. The results were further confirmed by confocal laser scanning microscopy (CLSM analysis and Fourier transform infrared (FTIR spectroscopic analysis. The results of antiaggregation and disaggregation assay showed that the increase in fluorescence intensity of aggregated Aβ and the co-treatment of ACTPG (250 μg/ml with Aβ 25-35, an extensive decrease in the fluorescence intensity was observed in both phases, which suggests that ACTPG prevents the oligomers formation and disaggregation of mature fibrils. In addition, ACTPG was subjected to column chromatography and the bioactivity was screened based on the cholinesterase inhibitory activity. Finally, the active fraction was subjected to LC-MS/MS analysis for the identification of bioactive compounds. Overall, the results suggest that the bioactive compound alpha bisabolol present in the alga might be responsible for the observed cholinesterase inhibition with the IC50 value < 10 μg/ml for both AChE and BuChE when compared to standard drug donepezil (IC50 value < 6 μg/ml and support its use for the treatment of neurological disorders.

  9. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system.

    Science.gov (United States)

    Inostroza-Brito, Karla E; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H; Monge-Marcet, Amàlia; Ferreira, Daniela S; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S; Mata, Alvaro

    2015-11-01

    Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering. PMID:26492010

  10. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system

    Science.gov (United States)

    Inostroza-Brito, Karla E.; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H.; Monge-Marcet, Amàlia; Ferreira, Daniela S.; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L.; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S.; Mata, Alvaro

    2015-11-01

    Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.

  11. 大鲵皮肤分泌液中抗菌肽的鉴定及生物活性研究%Characterization and bioactivity of antimicrobial peptides from the skin secretions of the Andrias davidianus

    Institute of Scientific and Technical Information of China (English)

    王利锋; 李学英; 王大忠

    2011-01-01

    目的:鉴定大鲵皮肤分泌液中抗菌肽,研究其部分生物活性.方法:5%醋酸浸提和Sephadex G-50、G-25凝胶过滤色谱等方法分离纯化抗菌肤;采用抑菌圈法检测抗菌活性,Tricine-SDS-PAGE电泳和等电聚焦电泳鉴定其抗菌活性成份.结果:大鲵皮肤分泌液中舍有抗菌活性物质.对革兰阴性菌、革兰阳性菌和真菌均具有较强的抗菌活性;电泳检测显示该小分子多肽相对分子质量约为4300,具有较强的碱性.结论:首次从大鲵皮肤分泌液中分离纯化到一种抗菌肽,此抗菌肽可能是一个具有较强阳离子特征的碱性肽.%Purpose To characterize the antimicrobial peptides from the skin secretions of the Andrias davidianus and to study its bioactivity. Methods This antimicrobial peptide was purified by 5% acetic acid extraction and Sephadex G-50, G-25 gel filtration chromatography. The antimicrobial ability was characterized by inhibiting zone determination. The antimicrobial active substance was identified by tricineSDS-PAGE electrophoresis and isoelectric focusing(IEF) electrophoresis. Results The skin secretions of the Andrias davidianus contain antibiotic active substance. It strongly inhibited Gram-negative, Gram-positive bacteria and fungus. The electrophoresis results showed that its molecular weight was about 4 300 with a strong alkaline property. Conclusion An antibacterial peptide was isolated from the skin secretions of the Andrias davidianus for the first time and this antimicrobial peptide may be a strong feature of the basic peptide cation.

  12. Sequence-defined bioactive macrocycles via an acid-catalysed cascade reaction

    Science.gov (United States)

    Porel, Mintu; Thornlow, Dana N.; Phan, Ngoc N.; Alabi, Christopher A.

    2016-06-01

    Synthetic macrocycles derived from sequence-defined oligomers are a unique structural class whose ring size, sequence and structure can be tuned via precise organization of the primary sequence. Similar to peptides and other peptidomimetics, these well-defined synthetic macromolecules become pharmacologically relevant when bioactive side chains are incorporated into their primary sequence. In this article, we report the synthesis of oligothioetheramide (oligoTEA) macrocycles via a one-pot acid-catalysed cascade reaction. The versatility of the cyclization chemistry and modularity of the assembly process was demonstrated via the synthesis of >20 diverse oligoTEA macrocycles. Structural characterization via NMR spectroscopy revealed the presence of conformational isomers, which enabled the determination of local chain dynamics within the macromolecular structure. Finally, we demonstrate the biological activity of oligoTEA macrocycles designed to mimic facially amphiphilic antimicrobial peptides. The preliminary results indicate that macrocyclic oligoTEAs with just two-to-three cationic charge centres can elicit potent antibacterial activity against Gram-positive and Gram-negative bacteria.

  13. Bioactive peptide from bee venom for adjuvant-induced arthritis in rats%蜂毒活性肽对大鼠佐剂性关节炎的作用

    Institute of Scientific and Technical Information of China (English)

    余晓东; 李博

    2005-01-01

    BACKGROUND: Traditionally, bee venom can treat rheumatic arthritis,rheumatoid arthritis(RA) and so on, but it has strong side effects. So it has been hoped for a long time that the effective angle component could be screened from bee venom, which can be used for the treatment of arthritis perfectly than bee venom.OBJECTIVE: To investigate whether bioactive peptide from bee venom could inhibit infection of arthritis by regulating immunological function so as to probe into a new treatment for RADESIGN: Completely randomized controlled experimental trial based on experimental animalsMETHODS: A municipal key laboratory of animal biology.MATERIALS: The experiment was carried out in the Chongqing Key Laboratory of animal biology from January 2001 to May 2002. Totally 80 rats of clean grade aged 2 to 3 months old with the body mass of 180 to 200 g were provided by Animal Experiment Center of Third Military Medical University of Chinese PLA. The experimental animal certification number was SYXK1 (army) 2002 -007. The animals were divided into 3 groups: normal control group( 10 cases), arthritis group( 10 cases), bioactive peptide group(30 cases).METHODS: Adjuvant-induced arthritis animal models were used and bioactive peptide were given to the animals by muscle injection to observe the knuckle volume and knuckle index changes.MAIN OUTCOME MEASURES: The effect of bioactive peptide from bee venom on the change of knuckle volume and knuckle index in adjuvant-induced arthritis ratsRESULTS: Ten days after injection of 0. 15 mg for each rat, the volume of the paw was (4.72 ±0. 58) mL and the knuckle index was (4.47 ±0.46) mL,which there was significant difference compared with the control group (P< 0. 05).CONCLUSION: P-peptide possibly has certain inhibitory effect on the development of the adjuvant-induced arthritis in Wistar rat, and will possibly be a potential therapeutic drug.%背景:传统上用蜜蜂粗毒治疗风湿性关节炎、类风湿性关节炎等,但有很

  14. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    Science.gov (United States)

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides. PMID:26919457

  15. Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations.

    Science.gov (United States)

    Bah, Clara S F; Carne, Alan; McConnell, Michelle A; Mros, Sonya; Bekhit, Alaa El-Din A

    2016-07-01

    Protease preparations from plant (papain and bromelain) and fungal (FP400 and FPII) sources were used to hydrolyze the red blood cell fractions (RBCFs) separated from deer, sheep, pig, and cattle abattoir-sourced blood. After 1, 2, 4 and 24h of hydrolysis, the antioxidant and antibacterial activities of the peptide hydrolysates obtained were investigated. The increase in trichloroacetic acid-soluble peptides over the hydrolysis period was examined using the o-phthaldialdehyde (OPA) assay and the hydrolysis profiles were illustrated using SDS-PAGE. Papain generated RBCF hydrolysates exhibited higher ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) compared to those generated with bromelain, FP400 and FPII. At certain concentrations, 24h hydrolysates of RBCF using FP400 and FPII were able to inhibit the growth of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The results indicated that the use of proteases from plant or fungal sources can produce animal blood hydrolysates with antioxidant and antimicrobial activities. PMID:26920319

  16. Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations.

    Science.gov (United States)

    Bah, Clara S F; Carne, Alan; McConnell, Michelle A; Mros, Sonya; Bekhit, Alaa El-Din A

    2016-07-01

    Protease preparations from plant (papain and bromelain) and fungal (FP400 and FPII) sources were used to hydrolyze the red blood cell fractions (RBCFs) separated from deer, sheep, pig, and cattle abattoir-sourced blood. After 1, 2, 4 and 24h of hydrolysis, the antioxidant and antibacterial activities of the peptide hydrolysates obtained were investigated. The increase in trichloroacetic acid-soluble peptides over the hydrolysis period was examined using the o-phthaldialdehyde (OPA) assay and the hydrolysis profiles were illustrated using SDS-PAGE. Papain generated RBCF hydrolysates exhibited higher ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) compared to those generated with bromelain, FP400 and FPII. At certain concentrations, 24h hydrolysates of RBCF using FP400 and FPII were able to inhibit the growth of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The results indicated that the use of proteases from plant or fungal sources can produce animal blood hydrolysates with antioxidant and antimicrobial activities.

  17. Bioactive proteins from pipefishes

    Institute of Scientific and Technical Information of China (English)

    E. Rethna Priya; S. Ravichandran; R. Ezhilmathi

    2013-01-01

    Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment.Methods:Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains.Results:Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm) and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm). In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm) and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm). Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups.Conclusions:It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  18. MS approaches to select peptides with post-translational modifications from amphibian defense secretions prior to full sequence elucidation

    NARCIS (Netherlands)

    Pinkse, M.W.H.; Evaristo, G.; Pieterse, M.M.; Yu, Y.; Verhaert, P.D.E.M.

    2014-01-01

    Peptide families are characterized by structural motifs, which often comprise specific post-translational modifications (PTMs) required for biological activity. In conventional bioactivity-based peptidomics studies natural peptide mixtures are chromatographically separated and the bioactive fraction

  19. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer;

    2010-01-01

    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles....

  20. A Study of Bioactivity of Corn Peptides with Low Molecular Weight Ⅱ: Effect on Plasma Free Amino Acid Concentrations in Rats

    Institute of Scientific and Technical Information of China (English)

    XU Li; ZHANG Li-qiang; WU Xiao-xia; WANG Na; ZHANG Xue-zhong

    2003-01-01

    The effects of the ingestion of corn peptides with a low molecular weight(LMCP) prepared from zein on some plasma free amino acid concentrations in rats that had taken ethanol were investigated. LMCP(1.0 g/kg body weight) in 15% ethanol(10 mL/kg body weight) was given to Wister rats by intragastrical administration. The amino acid analysis showed that the concentrations of alanine, leucine, and proline in the plasma reached their maximum levels at 30 min for the LMCP-intake group. They are 582.39, 99.60 and 272.51 μg/L, respectively. But in the control group, the plasma free amino acid levels were not changed obviously. Therefore, LMCP could cause an increase in concentration of some free amino acids such as alanine, leucine and proline etc. in plasma of the rats that have taken ethanol.

  1. 抗菌肽的生物学功能及应用前景的研究进展%Bioactivity and application prospect of antimicrobial peptide

    Institute of Scientific and Technical Information of China (English)

    何麒; 沈奇骢; 黄宁

    2012-01-01

    抗微生物肽(简称抗菌肽)是天然免疫系统的重要组成成分.它是一类分子量小、两亲性、带正电、进化上保守的小分子肽类物质.细菌、真菌、植物、无脊椎动物、脊椎动物以及人类等几乎所有生物中均可找到其的存在.在多细胞生物中,抗菌肽通过发挥一系列膜杀伤作用展示出了广谱抗微生物效应,从而扮演着一个重要的机体防御角色.这些防御效应包括抗细菌效应、抗真菌效应、抗寄生虫效应、抗病毒效应以及抗肿瘤效应.除了这些防御效应以外,抗菌肽也参与了机体的一系列生理和病理生理过程,包括免疫调节、伤口愈合、生殖过程以及决定犬类动物毛色等.近年来,随着微生物耐药现象越来越普遍,人们面临着日益严重的挑战,而对抗菌肽各种生物学功能的深入阐释,给我们带来了一种新的控制感染的有效途径.抗菌肽的这些生物学功能以及其潜在应用前景将在这篇综述中予以讨论.%Antimicrobial peptide (AMP) is a key component of the innate immune system.They are small molecular mass,amphipathicity,cationic charge,evolutionary conserved and produced by almost all living organisms,include bacteria,fungi,plants,invertebrates,vertebrates,as well as humans.In multicellular organisms,antimicrobial peptide plays a crucial role in host defense system by showing broad antimicrobial activities through several membrane killing effects.These multiple defensive activities of antimicrobial peptides conclude antibacterial,antifungal,antiparasitic,antiviral and antitumor activities.Besides serving the host defense function,AMPs also take part in some physiological and pathophysiological processes,such as immune modulation,wound healing,reproduction and even determination of canine coat color.In recent years,people faced a grave challenge of the microorganism drug-resistant problem.However,the in-depth clarify of the biological functions of

  2. A Study on Bioactivity of Corn Peptides with Low Molecular Weight(Ⅰ) --Effect of an Intake of them on Alcohol Metabolism in Rats

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This study aims at the effects of an intake of low molecular weight corn peptides(LMCPs) prepared from zein on alcohol metablism in rats. LMCPs(1.0 g/kg body weight) in 15% ethanol(10 mL/kg body weight) were given to Wister rats by intragastric gavage. The assay of blood ethanol was conducted by using the enzyme-based assay kit. The amino acid analysis was made with an amino acid analyzer. The data of the animal experiments showed that LMCPs could accelerate the metabolism of alcohol in rats. In the control group, the blood ethanol concentration reached the maximum level of (827.0±77.3) mg/L after ethanol loading for 30 min, then gradually decreased. In contrast, the blood ethanol concentration only reached (527.25±47.0) mg/L after 30 min in the group of LMCPs taken. These results indicate that LMCPs could decrease ethanol concentration in blood rapidly.

  3. A Study on bioactivity of Corn Peptides with Low Molecular Weight(Ⅰ)——Effect of an Intake of them on Alcohol Metabolism in Rats

    Institute of Scientific and Technical Information of China (English)

    XULi; FEIXiao-fang; ZHANGLi-qiang; ZHANGXue-zhong

    2003-01-01

    This study aims at the effects of an intake of low molecular weight corn peptides(LMCP5)prepared from zein on alcohol mentablism in rats.LMCPs(1.0g/kg dody weight)in 15% ethanol(10mL/kg body weight) were given to Wister rats by intragastric gavage.The assay of blood ethanol was conducted by using the enzyme-based assay kit.The amino acid analysis was made with an amino acid analyzer.The data of the animal experiments showed that LMCPs could accelerate the metabolism of alcohol in rats.In the control group,the blood ethanol concentration reached the maximun level of (827.0±77.3)mg/L after ethanol loading for 30min,then gradually decreased.In contrast,the blood ethanol concentration only reached (527.25±47.0)mg/L after 30 min in the group of LMCPs taken.These results indicate that LMCPs could decrease ethanol concentration in blood rapidly.

  4. Screening Nylon-3 Polymers, a New Class of Cationic Amphiphiles, for siRNA Delivery

    OpenAIRE

    Nadithe, Venkatareddy; Liu, Runhui; Killinger, Bryan A.; Movassaghian, Sara; Kim, Na Hyung; Moszczynska, Anna B.; Masters, Kristyn S.; Gellman, Samuel H.; Merkel, Olivia M

    2014-01-01

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, an...

  5. Amphiphilic Soft Janus Particles as Interfacial Stabilizers

    Science.gov (United States)

    Wang, Wenda; Niu, Sunny; Sosa, Chris; Prud'Homme, Robert; Priestley, Rodney; Priestley Polymer group Team; Prud'homme Research Group Team

    Janus particles, which incorporate two or more ``faces'' with different chemical functionality, have attracted great attention in scientific research. Amphiphilic Janus particles have two faces with distinctly different hydrophobicity. This can be thought of as colloidal surfactants. Theoretical studies on the stabilization of emulsions using Janus particles have confirmed higher efficiency. Herein we synthesize the narrow distributed amphiphilic polymeric Janus particles via Precipitation-Induced Self-Assembly (PISA). The efficiency of the amphiphilic Janus particles are tested on different oil/water systems. Biocompatible polymers can also be used on this strategy and may potentially have wide application for food emulsion, cosmetics and personal products.

  6. Preparation and Properties of Vesicles from Condensable Amphiphilic Amino Acids

    Institute of Scientific and Technical Information of China (English)

    熊向源; 何巍; 李子臣; 李福绵

    2001-01-01

    Three double-chain amphiphiles with amino acid groups as hydrphilic moiety were synthesized. These amphiphiles can be easily dispersed in buffer solution to form transparent dispersion. Examination of the dispersion by transmission electron microscopy (TEM) showed the formation of stable vesicular aggregates, which was also confirmed by the ability to encapsulate water-soluble dyes. Since amino acid groups are located on the surface of the vesicles, water-soluble carbodiimide can induce the condensation of these groups to form peptide. The phase transition temperatures of these vesicles were estimated by differential scanning calorimetry (DSC), and a decrease of phase transition temperature was observed after polycondensation due to the disturbance of the ordered arrangement of the hydrophobic chains. The leakage rate of the vesicles before and after condensation was studied by monitoring the increase of fluorescence intensity of water-soluble dye. These vesicles belong to the least permeable ones and the leakage rate can be controlled by varying the degree of condensation or the temperature.

  7. [Study of novel artificial lung surfactants incorporating partially fluorinated amphiphiles].

    Science.gov (United States)

    Nakahara, Hiromichi

    2012-01-01

    Lung surfactants (LS), a complex of ∼90 wt% lipids (mainly dipalmitoylphosphatidylcholine or DPPC) and ∼10 wt% surfactant proteins (SP-A, -B, -C, and -D), adsorb to an air-alveolar fluid interface and then lower its surface tension down to near zero during expiration. Intratracheal instillation of exogenous LS preparations can effectively compensate for surfactant deficiency in premature infants with respiratory distress syndrome (RDS). Surfacten® (Mitsubishi Tanabe Pharma Corporation, Osaka, Japan), a modified bovine lung extract and an effective surfactant replacement in treatment for RDS patients, is supplemented with DPPC, palmitic acid, and tripalmitin. For the premature infants suffering from RDS, instillation of Surfacten® leads to a dramatic improvement in lung function and compliance. Herein, the author reviews potential use of newly designed preparations containing a mimicking peptide of SP-B and also introduces the current research on the preparations incorporated with partially fluorinated amphiphiles to improve their efficacy. PMID:22790027

  8. Self-assembled IKVAV Peptide Nanofibers Promote Adherence of PC12 Cells

    Institute of Scientific and Technical Information of China (English)

    WU Yongchao; ZHENG Qixin; DU Jingyuan; SONG Yulin; WU Bin; GUO Xiaodong

    2006-01-01

    Lack of biocompatibility and bioactivity is a big problem for the synthetic materials that have been generated for neural tissue engineering. To get around the problem and generate better scaffold for neural tissue repair, we intended to generate nano-fibers by self-assembly of polypeptide IKVAV. Bioactive IKVAV Peptide-Amphiphile (IKVAV-PA) was first synthesized and purified, the property of which was analyzed and determined by high-performance liquid chromatography (HPLC)and mass spectrometry (MS). Then, by addition of hydrogen chloride (HCl), self-assembly of IKVAV-PA was induced in vitro and nano-fibers formed as shown by transmission electron microscopy (TEM). The effect of IKVAV nanofibers on adherence of PC12 cells was assayed in cell culture and the results showed that the rates of adherence of PC12 increased significantly when the density of IKVAV was within a certain range (0.58 μg/cm2 to 15.6 μg/cm2). However, its effect on the rates of adherence did not significantly alter with time, whether after 1 hour or 3 hours of culture. In general,we showed that IKVAV-PA can successfully self-assemble to form nanofiber, and promote rapid and stable adherence of PC12 cells, and the effect of the self-assembled IKVAV to promote PC12 cells adherence is dosage-dependent within a certain range of densities.

  9. Planctomycetes as novel source of bioactive molecules

    Directory of Open Access Journals (Sweden)

    Ana Patrícia Graça

    2016-08-01

    Full Text Available Marine environments are a fruitful source of bioactive compounds some of which are the newest leading drugs in medicinal therapeutics. Of particular importance are organisms like sponges and macroalgae and their associated microbiome. Planctomycetes, abundant in macroalgae biofilms, are promising producers of bioactive compounds since they share characteristics, like large genomes and complex life cycles, with the most bioactive bacteria, the Actinobacteria. Furthermore, genome mining revealed the presence of secondary metabolite pathway genes or clusters in 13 analyzed Planctomycetes genomes.In order to assess the antimicrobial production of a large and diverse collection of Planctomycetes isolated from macroalgae from the Portuguese coast, molecular and bioactivity assays were performed in 40 bacteria from several taxa. Two genes commonly associated with the production of bioactive compounds, nonribosomal peptide synthetases (NRPS and polyketide synthases (PKS genes were screened. Molecular analysis revealed that 95 % of the planctomycetes potentially have one or both secondary bioactive genes; 85 % amplified with PKS-I primers and 55 % with NRPS primers. Some of the amplified genes were confirmed to be involved in secondary metabolite pathways. Using bioinformatic tools their biosynthetic pathways were predicted. The secondary metabolite genomic potential of strains LF1, UC8 and FC18 was assessed using in silico analysis of their genomes. Aqueous and organic extracts of the Planctomycetes were evaluated for their antimicrobial activity against an environmental Escherichia coli, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633 and a clinical isolate of Candida albicans. The screening assays showed a high number of planctomycetes with bioactive extracts revealing antifungal (43 % and antibacterial (54 % activity against C. albicans and B. subtilis, respectively

  10. Planctomycetes as Novel Source of Bioactive Molecules.

    Science.gov (United States)

    Graça, Ana P; Calisto, Rita; Lage, Olga M

    2016-01-01

    Marine environments are a fruitful source of bioactive compounds some of which are the newest leading drugs in medicinal therapeutics. Of particular importance are organisms like sponges and macroalgae and their associated microbiome. Planctomycetes, abundant in macroalgae biofilms, are promising producers of bioactive compounds since they share characteristics, like large genomes and complex life cycles, with the most bioactive bacteria, the Actinobacteria. Furthermore, genome mining revealed the presence of secondary metabolite pathway genes or clusters in 13 analyzed Planctomycetes genomes. In order to assess the antimicrobial production of a large and diverse collection of Planctomycetes isolated from macroalgae from the Portuguese coast, molecular, and bioactivity assays were performed in 40 bacteria from several taxa. Two genes commonly associated with the production of bioactive compounds, nonribosomal peptide synthetases (NRPS), and polyketide synthases (PKS) genes were screened. Molecular analysis revealed that 95% of the planctomycetes potentially have one or both secondary bioactive genes; 85% amplified with PKS-I primers and 55% with NRPS primers. Some of the amplified genes were confirmed to be involved in secondary metabolite pathways. Using bioinformatic tools their biosynthetic pathways were predicted. The secondary metabolite genomic potential of strains LF1, UC8, and FC18 was assessed using in silico analysis of their genomes. Aqueous and organic extracts of the Planctomycetes were evaluated for their antimicrobial activity against an environmental Escherichia coli, E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, and a clinical isolate of Candida albicans. The screening assays showed a high number of planctomycetes with bioactive extracts revealing antifungal (43%) and antibacterial (54%) activity against C. albicans and B. subtilis, respectively. Bioactivity was observed in

  11. Planctomycetes as Novel Source of Bioactive Molecules

    Science.gov (United States)

    Graça, Ana P.; Calisto, Rita; Lage, Olga M.

    2016-01-01

    Marine environments are a fruitful source of bioactive compounds some of which are the newest leading drugs in medicinal therapeutics. Of particular importance are organisms like sponges and macroalgae and their associated microbiome. Planctomycetes, abundant in macroalgae biofilms, are promising producers of bioactive compounds since they share characteristics, like large genomes and complex life cycles, with the most bioactive bacteria, the Actinobacteria. Furthermore, genome mining revealed the presence of secondary metabolite pathway genes or clusters in 13 analyzed Planctomycetes genomes. In order to assess the antimicrobial production of a large and diverse collection of Planctomycetes isolated from macroalgae from the Portuguese coast, molecular, and bioactivity assays were performed in 40 bacteria from several taxa. Two genes commonly associated with the production of bioactive compounds, nonribosomal peptide synthetases (NRPS), and polyketide synthases (PKS) genes were screened. Molecular analysis revealed that 95% of the planctomycetes potentially have one or both secondary bioactive genes; 85% amplified with PKS-I primers and 55% with NRPS primers. Some of the amplified genes were confirmed to be involved in secondary metabolite pathways. Using bioinformatic tools their biosynthetic pathways were predicted. The secondary metabolite genomic potential of strains LF1, UC8, and FC18 was assessed using in silico analysis of their genomes. Aqueous and organic extracts of the Planctomycetes were evaluated for their antimicrobial activity against an environmental Escherichia coli, E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, and a clinical isolate of Candida albicans. The screening assays showed a high number of planctomycetes with bioactive extracts revealing antifungal (43%) and antibacterial (54%) activity against C. albicans and B. subtilis, respectively. Bioactivity was observed in

  12. Bioactive peptide nanofibers for tissue regeneration

    OpenAIRE

    Uzunallı, Gözde

    2016-01-01

    Cataloged from PDF version of thesis. Includes bibliographical references (leaves 155-170). Thesis (Ph. D.): Bilkent University, Materials Science and Nanotechnology Program, İhsan Doğramacı Bilkent University, 2016. Defects in the tissues or organs caused by trauma or diseases can have detrimental effects on all aspects of patients’ life quality. During the last three decades, considerable developments have been made in tissue engineering and regenerative medicine in order to find a...

  13. Nanostructured assemblies from amphiphilic ABC multiblock polymers

    Science.gov (United States)

    Hillmyer, Marc A.

    2012-02-01

    Amphiphilic AB diblock copolymers containing a water compatible segment can self-assemble in aqueous media to give supramolecular structures that include simple spherical micelles and macromolecular vesicles termed polymersomes. Amphiphilic ABA triblocks with hydrophobic end blocks can adopt analogous structures but can also form gels at high polymer concentrations. The structural and chemical diversity demonstrated in block copolymer micelles and gels makes them attractive for applications ranging from drug delivery to personal care products to nanoreactors. The inclusion of a third block in amphiphilic ABC triblock systems can lead to a much wider array of self-assembled structures that depend not only on composition but also on block sequence, architecture and incompatibility considerations. I will present our recent efforts on tuning micelle and gel structure and behavior using controlled architecture ABC triblocks. The combination of diverse polymer segments into a single macromolecule is a powerful method for development of self-assembled structures with both new form and new function.

  14. Prediction on amphiphilicity of hypocrellin derivatives

    Institute of Scientific and Technical Information of China (English)

    谢杰; 马江华; 赵井泉

    2002-01-01

    Hypocrellins are most suitable for photodynamic therapy (PDT) of the diseases occurring in the superficial layer, such as microvascular diseases, because of their special absorption spectral properties. However, hypocrellins and most of their derivatives are basically lipophilic, while the hydrophilic derivatives lose the PDT activity in vivo. Therefore, the key problem for practical application of PDT of microvascular diseases focuses on finding the derivatives which possess optimized amphiphilicity. Herein, we developed a theoretical method to estimate the amphi-philicity of a molecule by the calculated average polarity. Compared with the experimentally measured results, the method is proved to be applicable. Based on the computation and available experimental results, it can be concluded that the derivative must have the polarities around C.22 for optimized amphiphilicity.

  15. Prediction on amphiphilicity of hypocrellin derivatives

    Institute of Scientific and Technical Information of China (English)

    谢杰; 马江华; 赵井泉

    2002-01-01

    Hypocrellins are most suitable for photodynamic therapy (PDT) of the diseases occurring in the superficial layer, such as microvascular diseases, because of their special absorption spectral properties. However, hypocrellins and most of their derivatives are basically lipophilic, while the hydrophilic derivatives lose the PDT activity in vivo. Therefore, the key problem for practical application of PDT of microvascular diseases focuses on finding the derivatives which possess optimized amphiphilicity. Herein, we developed a theoretical method to estimate the amphiphilicity of a molecule by the calculated average polarity. Compared with the experimentally measured results, the method is proved to be applicable. Based on the computation and available experimental results, it can be concluded that the derivative must have the polarities around 0.22 for optimized amphiphilicity.

  16. Ratiometric fluorescence sensing of sugars via a reversible disassembly and assembly of the peptide aggregates mediated by sugars.

    Science.gov (United States)

    Neupane, Lok Nath; Han, Song Yee; Lee, Keun-Hyeung

    2014-06-01

    An amphiphilic dipeptide (1) bearing pyrene and phenylboronic acid was demonstrated as a unique example of a ratiometric sensing system for sugars by reversibly converting the peptide aggregates into the monomer form of the complex with sugars in aqueous solutions.

  17. Bioactive components in fish venoms.

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-05-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  18. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  19. Amphiphilic Beads as Depots for Sustained Drug Release Integrated into Fibrillar Scaffolds

    Science.gov (United States)

    Gaharwar, Akhilesh K.; Mihaila, Silvia M.; Kulkarni, Ashish A.; Patel, Alpesh; Di Luca, Andrea; Reis, Rui L.; Gomes, Manuela E.; van Blitterswijk, Clemens; Moroni, Lorenzo; Khademhosseini, Ali

    2014-01-01

    Native extracellular matrix (ECM) is a complex fibrous structure loaded with bioactive cues that affects the surrounding cells. A promising strategy to mimicking native tissue architecture for tissue engineering applications is to engineer fibrous scaffolds using electrospinning. By loading appropriate bioactive cues within these fibrous scaffolds, various cellular functions such as cell adhesion, proliferation and differentiation can be regulated. Here, we report on the encapsulation and sustained release of model hydrophobic drug (dexamethasone (Dex)) within beaded fibrillar scaffold of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT), a polyether-ester multiblock copolymer to direct differentiation of human mesenchymal stem cells (hMSCs). The amphiphilic beads act as depots for sustained drug release that is integrated into the fibrillar scaffolds. The entrapment of Dex within the beaded structure results in sustained release of drug over the period of 28 days. This is mainly attributed to the diffusion driven release of Dex from the amphiphilic electrospun scaffolds. In vitro results indicate that hMSCs cultured on Dex containing beaded fibrillar scaffolds exhibit an increase in osteogenic differentiation potential, as evidenced by increased alkaline phosphatase (ALP) activity, compared to the direct infusion of Dex in culture medium. The formation of mineralized matrix is also significantly enhanced due to the controlled Dex release from the fibrous scaffolds. This approach can be used to engineer scaffolds with appropriate chemical cues to direct tissue regeneration. PMID:24794894

  20. Three independent techniques localize expression of transcript afp-11 and its bioactive peptide products to the paired AVK neurons in Ascaris suum: in situ hybridization, immunocytochemistry, and single cell mass spectrometry.

    Science.gov (United States)

    Jarecki, Jessica L; Viola, India R; Andersen, Kari M; Miller, Andrew H; Ramaker, Megan A; Vestling, Martha M; Stretton, Antony O

    2013-03-20

    We utilized three independent techniques, immunocytochemistry (ICC), single cell mass spectrometry (MS), and in situ hybridization (ISH), to localize neuropeptides and their transcripts in the nervous system of the nematode Ascaris suum . AF11 (SDIGISEPNFLRFa) is an endogenous peptide with potent paralytic effects on A. suum locomotory behavior. A highly specific antibody to AF11 showed robust immunostaining for AF11 in the paired AVK neurons in the ventral ganglion. We traced the processes from the AVK neurons into the ventral nerve cord and identified them as ventral cord interneurons. MS and MS/MS of single dissected AVKs detected AF11, two previously characterized peptides (AF25 and AF26), seven novel sequence-related peptides, including several sharing a PNFLRFamide C-terminus, and peptide NY, a peptide with an unrelated sequence. Also present in a subset of AVKs was AF2, a peptide encoded by the afp-4 transcript. By sequencing the afp-11 transcript, we discovered that it encodes AF11, all the AF11-related peptides detected by MS in AVK, and peptide NY. ISH detected the afp-11 transcript in AVK neurons, consistent with other techniques. ISH did not detect afp-11 in the ALA neuron, although both ICC and MS found AF11 in ca. 30% of ALAs. All 10 AF11-related peptides reduced acetylcholine-induced muscle contraction, but they differed in their rate of reversal of inhibition after removal of the peptide.

  1. Bioactivity and Functionality of Bonghwa Sweetfish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-15

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  2. Bioactivity and Functionality of Bonghwa Sweetfish

    International Nuclear Information System (INIS)

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  3. Designing new symmetrical facial oligothiophene amphiphiles

    NARCIS (Netherlands)

    Janeliunas, Dainius; Eelkema, Rienk; Nieto-Ortega, Belén; Ramírez Aguilar, Francisco J; López Navarrete, Juan T; van der Mee, Lars; Stuart, Marc C A; Casado, Juan; van Esch, Jan H

    2013-01-01

    In this study we designed a new class of symmetrical facial oligothiophene amphiphiles, which could be obtained in fewer steps than for previously reported analogues, but still possess the specific substituent sequence to control their backbone curvature. This novel design allows the late-stage intr

  4. Bola-amphiphile self-assembly

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    Bola-amphiphiles are rod-like molecules where both ends of the molecule likes contact with water, while the central part of the molecule dislikes contact with water. What do such molecules do when they are dissolved in water? They self-assemble into micelles. This is a Dissipartive particle dynam...

  5. Synthesis and Self-Assembly of a Mikto-Arm Star Dual Drug Amphiphile Containing both Paclitaxel and Camptothecin

    OpenAIRE

    Cheetham, A.G.; Zhang, P.; Lin, Y.-A; Lin, R; Cui, H

    2014-01-01

    Self-assembly of anticancer therapeutics into discrete nanostructures provides an innovative way to develop a self-delivering nanomedicine with a high, quantitative drug loading. We report here the synthesis and assembly of a mikto-arm star dual drug amphiphile (DA) containing both a bulky paclitaxel (PTX) and a planar camptothecin (CPT). The two anti-cancer drugs of interest were stochastically conjugated to a β-sheet forming peptide (Sup35) and under physiologically-relevant conditions the ...

  6. Intestinal histomorphology in Pseudoplatystoma fasciatum fed bovine colostrum as source of protein and bioactive peptides Histomorfologia intestinal de Pseudoplatystoma fasciatum alimentado com colostro bovino como fonte de proteína e peptídeos bioativos

    Directory of Open Access Journals (Sweden)

    Ana Paula Oeda Rodrigues

    2010-10-01

    Full Text Available Histological responses of the intestine are key for evaluating nutritional value of feed ingredients, since the organ is not only the chief site of feed digestion and nutrient absorption but also plays an important immunological function. Histomorphological alterations were evaluated in the intestine of juvenile striped catfish, Pseudoplatystoma fasciatum, fed diets containing 0 (control, 10 or 20% inclusion of lyophilized bovine colostrum (LBC, as source of protein or bioactive peptides, for either 30 or 60 days. Fish fed 20LBC presented at 60d a distinct pattern of macrophages and, some of them, higher number of vacuoles in rectum mucosa. The thickness of the muscle layer (TML in fish fed diets with LBC was higher in the first portion of medium intestine than fish fed 0LBC. All fish presented significant increase of TML in the second portion of medium intestine along feeding period, but fish fed 20LBC had smaller values of TML than those of fish fed 0 and 10LBC which might be related to the higher intestinal coefficient found for this group. The TML of rectum was higher just for fish fed 10LBC. Dietary LBC altered morphometrical features of juvenile striped catfish intestine and possibly induced inflammatory reaction in the rectal mucosa, as a function of level of inclusion, feeding period and segment of intestine analyzed.Respostas histológicas do intestino são fundamentais para avaliar o valor nutritivo de ingredientes alimentares, uma vez que o órgão não é só o principal local de digestão e absorção dos nutrientes, mas também exerce uma importante função imunológica. Alterações histomorfológicas foram avaliadas no intestino de juvenis de cachara, Pseudoplatystoma fasciatum, alimentado com dietas contendo 0 (controle, 10 e 20% de inclusão de colostro bovino liofilizado (CBL como fonte de proteína e peptídeos bioativos, aos 30 e 60 dias. Aos 60 dias, peixes alimentados com 20CBL apresentaram macrófagos de aspecto distinto

  7. 反相液相色谱-串联质谱法鉴定油菜蜂花粉中的蛋白质及活性肽%Application of reversed-phase liquid chromatography-tandem mass spectrometry in the identification of protein and bioactivity peptides from rape bee pollen

    Institute of Scientific and Technical Information of China (English)

    郭静; 晏嘉泽; 郭明; 靳艳

    2014-01-01

    Based on the shotgun proteomic method,rape bee pollen protein was prepared with ultrasonic extraction and digested by trypsin,then separated and sequenced by reversed-phase liquid chromatography-tandem mass spectrometry( RPLC-MS / MS),followed by protein data-base searching. After the above analysis,353 peptides were identified and the molecular biolog-ical functions of 239 proteins have been known. The identified molecular biological functions of these proteins mainly included binding activity,enzyme activity,transporter activity,inhibitor activity and so on. Five peptides were obtained after the screening and appropriate amino acid modification among the identified 353 peptides,according to the relationship between the sequence structure of the bioactivity peptide and angiotensin converting enzyme( ACE)inhibi-tor activity. The five peptides were speculated to have ACE inhibitor activity and synthesized to detect ACE inhibitor activity. The results showed that all of the five peptides had good ACE inhibitor activity. The peptides of AELDIVLALF and LAVNLIPFP among the five peptides dis-played especially good ACE inhibition with half maximal inhibitory concentration( IC 50 ) of (10. 65±0. 50)μmol / L and(23. 66±1. 08)μmol / L,respectively. This method is rapid,low-cost and achieves the goal of high-throughput screening of bioactivity peptides that greatly shorten the period of identification compared with traditional methods.%基于鸟枪法蛋白质组学分析方法,使用反相液相色谱-串联质谱(RPLC-MS / MS)系统分析油菜蜂花粉蛋白质的胰蛋白酶酶解产物,结合数据库检索,共鉴定到353条肽段。鉴定到的肽段所归属的蛋白质中有239个蛋白质可检索到其分子生物学功能,主要功能为结合活性、酶活性、运输活性、抑制活性等。根据血管紧张素转化酶( ACE)抑制肽活性与多肽构效之间的关系,从鉴定到的肽段中筛选并适当修饰后得到5

  8. Foams Stabilized by Tricationic Amphiphilic Surfactants

    OpenAIRE

    Heerschap, Seth; Marafino, John N.; McKenna, Kristin; Caran, Kevin L.; Feitosa, Klebert

    2015-01-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. Novel surfactant architectures with multi-cephalic and multi-tailed molecules have reportedly enhanced their anti-bacterial activity in connection with tail length and the nature of the head group, but their ability to produce and stabilize foam is mostly unknown. Here we report on experiments with tris-cationic, triple-headed, double- a...

  9. Amphiphilic Fullerenes for Biomedical and Optoelectronical Applications

    OpenAIRE

    Witte, Patrick

    2009-01-01

    Fullerenes have an enormous potential in applications to physics and biology. Specifically [60]fullerene with its unique electronic, optical and structural properties has attracted considerable attention for its application in biomedical materials and optoelectronic devices. In this context the selective functionalization of C60, which allows to combine the parent properties with new attributes like water-solubility or amphiphilicity is still a challenging topic for the synthetic chemist. In ...

  10. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth

    OpenAIRE

    Michele Fiore; Peter Strazewski

    2016-01-01

    It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of ...

  11. Protective effect of bioactive peptides from taihe black-bone silky fowls on human skin fibroblasts injured by 5-fluorouracil%泰和乌骨鸡活性肽对5-氟尿嘧啶诱导HSF细胞损伤的保护作用

    Institute of Scientific and Technical Information of China (English)

    田颖刚; 王春艳; 黄宇玫; 廖春艳; 张盼; 朱胜; 乔娟娟

    2012-01-01

    目的:用单细胞凝胶电泳技术(SCGE)研究泰和乌骨鸡活性肽对5-氟尿嘧啶(5-FU)损伤细胞DNA的保护作用。方法:传代培养人皮肤成纤维细胞(HSF),随机分为正常对照组,5-FU组,5-FU+泰和乌骨鸡活性肽组。应用MTT法检测细胞存活率,单细胞凝胶电泳法(SCGE)检测5-FU引起HSF细胞DNA损伤程度,羟脯氨酸试剂盒检测细胞培养液中羟脯氨酸含量。结果:与正常对照组比较:5-FU组HSF细胞DNA的损伤程度较严重,且尾长、尾距、Olive尾距和尾部DNA百分含量显著增加(P〈0.001),细胞培养液中羟脯氨酸含量显著性减少(P〈0.05)。与5-FU组比较,泰和乌骨鸡活性肽组细胞的尾长、尾距、Olive尾距和尾部DNA百分含量均显著性减少(P〈0.001),而细胞培养液上清中羟脯氨酸含量升高(P〈0.01)。结论:泰和乌骨鸡活性肽对HSF细胞DNA损伤具有保护作用,泰和乌骨鸡活性肽可以剂量依赖性地降低5-FU诱导的HSF细胞DNA的断裂损伤。%Objective : A DNA injury model was established by using 5- fluorouracil ( 5- FU ) in this study. Methods : A series of experiments ( MTT assay, single cell gel electrophoresis ( SCGE), and hydroxyproline assay kits) were designed to investigate the effect of bioactive peptides from Taihe Black-Bone Silky FowI(TBSF)on Human Skin Fibroblasts (HSF) against 5- FU- induced DNA damage.Cultured HSF were randomly divided into three groups : the control group,5-fluorouracil group and 5-fluorouracil + bioactive peptides from TBSF.Cell viability was measured by MTT assay, DNA damage was detected by SCGE assay, and hydroxyproline levels in HSF culture medium were measured by hydroxyproline assay kits. Results: compared with the control group,5-FU group exacerbated the DNA damage,in which the tail length,the tail moment,the Olive tail moment,and the tail DNA content significantly increased ( p 〈 0.001 ), whereas the

  12. Function of Amphiphilic Biomolecular Machines: Elastic Protein-based Polymers

    Science.gov (United States)

    Urry, Dan W.

    2000-03-01

    Elastic protein-based polymers function as biomolecular machines due to inverse temperature transitions of hydrophobic folding and assembly. The transitions occur either on raising the temperature from below to above the transition temperature, Tt, or on isothermally lowering Tt from above to below an operating temperature. The inverse temperature transition involves a decrease in entropy of the polymer component of the system on raising the temperature and a larger increase in solvent entropy on hydrophobic association. Tt depends on the quantity of hydrophobic hydration that undergoes transition to bulk water. Designed amphiphilic polymers perform free energy transductions involving the intensive variables of mechanical force, pressure, temperature, chemical potential, electrochemical potential and electromagnetic radiation and define a set of five axioms for their function as machines. The physical basis for these diverse energy conversions is competition for hydration between apolar (hydrophobic) and polar (e.g., charged) moieties. The effectiveness of these Tt-type entropic elastic protein-based machines is due to repeating peptide sequences that form regular, dynamic repeating structures and exhibit damping of backbone torsional oscillations on extension.

  13. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives

    Directory of Open Access Journals (Sweden)

    Laura Salvia-Trujillo

    2016-01-01

    Full Text Available The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article.

  14. Amphiphilic, hydrophilic, or hydrophobic synthetic bacteriochlorins in biohybrid light-harvesting architectures: consideration of molecular designs.

    Science.gov (United States)

    Jiang, Jianbing; Reddy, Kanumuri Ramesh; Pavan, M Phani; Lubian, Elisa; Harris, Michelle A; Jiao, Jieying; Niedzwiedzki, Dariusz M; Kirmaier, Christine; Parkes-Loach, Pamela S; Loach, Paul A; Bocian, David F; Holten, Dewey; Lindsey, Jonathan S

    2014-11-01

    Biohybrid light-harvesting architectures can be constructed that employ native-like bacterial photosynthetic antenna peptides as a scaffold to which synthetic chromophores are attached to augment overall spectral coverage. Synthetic bacteriochlorins are attractive to enhance capture of solar radiation in the photon-rich near-infrared spectral region. The effect of the polarity of the bacteriochlorin substituents on the antenna self-assembly process was explored by the preparation of a bacteriochlorin-peptide conjugate using a synthetic amphiphilic bacteriochlorin (B1) to complement prior studies using hydrophilic (B2, four carboxylic acids) or hydrophobic (B3) bacteriochlorins. The amphiphilic bioconjugatable bacteriochlorin B1 with a polar ammonium-terminated tail was synthesized by sequential Pd-mediated reactions of a 3,13-dibromo-5-methoxybacteriochlorin. Each bacteriochlorin bears a maleimido-terminated tether for attachment to a cysteine-containing analog of the Rhodobacter sphaeroides antenna β-peptide to give conjugates β-B1, β-B2, and β-B3. Given the hydrophobic nature of the β-peptide, the polarity of B1 and B2 facilitated purification of the respective conjugate compared to the hydrophobic B3. Bacteriochlorophyll a (BChl a) associates with each conjugate in aqueous micellar media to form a dyad containing two β-peptides, two covalently attached synthetic bacteriochlorins, and a datively bonded BChl-a pair, albeit to a limited extent for β-B2. The reversible assembly/disassembly of dyad (β-B2/BChl)2 was examined in aqueous detergent (octyl glucoside) solution by temperature variation (15-35 °C). The energy-transfer efficiency from the synthetic bacteriochlorin to the BChl-a dimer was found to be 0.85 for (β-B1/BChl)2, 0.40 for (β-B2/BChl)2, and 0.85 for (β-B3/BChl)2. Thus, in terms of handling, assembly and energy-transfer efficiency taken together, the amphiphilic design examined herein is more attractive than the prior hydrophilic or

  15. Steps Towards the Formation of A Protocell: The Possible Role of Short Peptides

    Science.gov (United States)

    Fishkis, Maya

    2007-12-01

    The paper deals with molecular self-organization leading to formation of a protocell. Plausible steps towards a protocell include: polymerization of peptides and oligonucleotides on mineral surfaces; coevolution of peptides and oligonucleotides with formation of collectively autocatalytic sets; self-organization of short peptides into vesicles; entrapment of the peptide/oligonucleotide systems in mixed peptide and simple amphiphile membranes; and formation of functioning protocells with metabolism and cell division. The established propensity of short peptides to self-ordering and to formation of vesicles makes this sequence plausible. We further suggest that evolution of a protocell produced cellular ancestors of viruses as well as ancestors of cellular organisms.

  16. Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions.

    Science.gov (United States)

    Di Bernardini, Roberta; Mullen, Anne Maria; Bolton, Declan; Kerry, Joseph; O'Neill, Eileen; Hayes, Maria

    2012-01-01

    The main objective was to investigate the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of sarcoplasmic proteins isolated from the brisket muscle (Pectoralis profundus) of 3 (Bos taurus) cattle and hydrolysed with papain for 24 h at 37°C. Sarcoplasmic protein hydrolysates were ultra-filtered using molecular weight cut off (MWCO) membranes and 10-kDa and 3-kDa filtrates were obtained. The total sarcoplasmic protein extracts and the 3-kDa filtrates were tested for angiotensin I-converting enzyme inhibitory (ACE-I) activities. The total hydrolysates, 10-kDa and 3-kDa filtrates were also tested for their associated antioxidant activities using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay, the ferric ion reducing antioxidant power (FRAP) assay and the Fe(2+) metal chelating ability assay. The peptidic content of the total hydrolysates, the 10-kDa and the 3-kDa filtrates were analysed using an ORBITRAP mass spectrometer, and mass spectral data obtained were analysed using TurboSEQUEST. Eleven peptides were characterised from the total hydrolysates, fifteen from the 10-kDa filtrate fractions, whilst nine peptides were characterised from the 3-kDa filtrate fractions. Similarities between the amino acid sequences of the peptides identified in this study and previously identified antioxidant and ACE-I inhibitory peptides detailed in the BIOPEP database were outlined. PMID:21880436

  17. Marine Bioactives and Potential Application in Sports

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2014-04-01

    Full Text Available An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP, such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB, macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  18. Marine bioactives and potential application in sports.

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  19. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  20. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH

    1996-07-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  1. Water Diffusion Dependence on Amphiphilic Block Design in (Amphiphilic-Hydrophobic) Diblock Copolymer Membranes.

    Science.gov (United States)

    Dorenbos, Gert

    2016-06-30

    Polyelectrolyte membranes (PEMs) are applied in polyelectrolyte fuel cells (PEFC). The proton conductive pathways within PEMs are provided by nanometer-sized water containing pores. Large-scale application of PEFC requires the production of low-cost membranes with high proton conductivity and therefore good connected pore networks. Pore network formation within four alternative model diblock (hydrophobic_amphiphilic) copolymers in the presence of water is studied by dissipative particle dynamics. Each hydrophobic block contains 50 consecutively connected hydrophobic (A) fragments, and amphiphilic blocks contain 40 hydrophobic A beads and 10 hydrophilic C beads. For one amphiphilic block the C beads are distributed uniformly along the backbone. For the other architectures C beads are located at the end of the side chains attached at regular intervals along the backbone. Water diffusion through the pores is modeled by Monte Carlo tracer diffusion through mapped morphologies. Diffusion is highest for the grafted architectures and increases with increase of length of the side chains. A consistent picture emerges in which diffusion strongly increases with the value of ⟨Nbond⟩ within the amphiphilic block, where ⟨Nbond⟩ is the average number of bonds between hydrophobic A beads and the nearest C bead. PMID:27266679

  2. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rana, Rohini R; Gotfryd, Kamil;

    2013-01-01

    The development of a new class of surfactants for membrane protein manipulation, "GNG amphiphiles", is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et...

  3. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications.

    Science.gov (United States)

    Ramanathan, Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Qingmin; Hill, Jonathan P; Ariga, Katsuhiko

    2013-07-14

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  4. Incorporation of Amphiphilic Cyclodextrins into Liposomes as Artificial Receptor Units

    NARCIS (Netherlands)

    Kauscher, Ulrike; Stuart, Marc C. A.; Druecker, Patrick; Galla, Hans-Joachim; Ravoo, Bart Jan

    2013-01-01

    In this article, we describe the introduction of amphiphilic beta-cyclodextrins into liposomes to act as artificial receptor units. Using dynamic light scattering, dye encapsulation, and cryogenic transmission electron microscopy, we show that amphiphilic beta-cyclodextrins can be mixed in any propo

  5. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    Science.gov (United States)

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  6. Bioactive compounds in dairy products and their relation to neurodegenerative disease

    Science.gov (United States)

    Enhancement of nervous system function and cognitive ability may be aided by bioactive compounds found in dairy products, including calcium-binding phosphopeptides and peptides derived from casein and beta-lactoglobulin. These peptides inhibit angiotensin converting enzyme I, scavenge radicals, red...

  7. Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants

    Science.gov (United States)

    Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration

    2015-03-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.

  8. The Behavior of Amphiphile at Oil-Water Interface by Monte Carlo Simulation

    Institute of Scientific and Technical Information of China (English)

    潘海华; 李啸风; 李浩然; 刘迪霞; 韩世钧

    2003-01-01

    A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this model, the oil-water interface is fixed, And amphiphile molecules will be enriched at the oil-water interface. The interfacial concentration of amphiphile calculated by Monte Carlo method shows that it is easier for the hydrophilic-hydrophobic balanced amphiphile to stay at the interface. And the adsorption of amphiphile increases with the increase of amphiphile concentration and the decrease with temperature.

  9. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Nathan Muruganathan [ORNL; Shrestha, Lok Kumar [International Center for Materials Nanoarchitectonics (MANA); Mori, Taizo [International Center for Materials Nanoarchitectonics (MANA); Ji, Dr. Qingmin [National Institute for Materials Science, Tsukuba, Japan; Hill, Dr. Jonathan P [National Institute for Materials Science, Tsukuba, Japan; Ariga, Katsuhiko [National Institute for Materials Science, Tsukuba, Japan

    2013-01-01

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as, assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments on nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this pespective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological technique, this perspective attempts to mirro this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  10. Bioactive molecules from sea hares.

    Science.gov (United States)

    Kamiya, H; Sakai, R; Jimbo, M

    2006-01-01

    Sea hares, belonging to the order Opisthobranchia, subclass Gastropoda, are mollusks that have attracted many researchers who are interested in the chemical defense mechanisms of these soft and "shell-less" snails. Numbers of small molecules of dietary origin have been isolated from sea hares and some have ecologically relevant activities, such as fish deterrent activity or toxicity. Recently, however, greater attention has been paid to biomedically interesting sea hare isolates such as dolastatins, a series of antitumor peptide/macrolides isolated from Dolabella auricularia. Another series of bioactive peptide/macrolides, as represented by aplyronines, have been isolated from sea hares in Japanese waters. Although earlier studies indicated the potent antitumor activity of aplyronines, their clinical development has never been conducted because of the minute amount of compound available from the natural source. Recent synthetic studies, however, have made it possible to prepare these compounds and analogs for a structure-activity relationship study, and started to uncover their unique action mechanism towards their putative targets, microfilaments. Here, recent findings of small antitumor molecules isolated from Japanese sea hares are reviewed. Sea hares are also known to produce cytotoxic and antimicrobial proteins. In contrast to the small molecules of dietary origin, proteins are the genetic products of sea hares and they are likely to have some primary physiological functions in addition to ecological roles in the sea hare. Based on the biochemical properties and phylogenetic analysis of these proteins, we propose that they belong to one family of molecule, the "Aplysianin A family," although their molecular weights are apparently divided into two groups. Interestingly, the active principles in Aplysia species and Dolabella auricularia were shown to be L-amino acid oxidase (LAAO), a flavin enzyme that oxidizes an alpha-amino group of the substrate with

  11. Neomycin-phenolic conjugates: polycationic amphiphiles with broad-spectrum antibacterial activity, low hemolytic activity and weak serum protein binding.

    Science.gov (United States)

    Findlay, Brandon; Zhanel, George G; Schweizer, Frank

    2012-02-15

    Here we present a proof-of-concept study, combining two known antimicrobial agents into a hybrid structure in order to develop an emergent cationic detergent-like interaction with the bacterial membrane. Six amphiphilic conjugates were prepared by copper (I)-catalyzed 1,3-dipolar cycloaddition between a neomycin B-derived azide and three alkyne-modified phenolic disinfectants. Three conjugates displayed good activity against a variety of clinically relevant Gram positive and Gram negative bacteria, including MRSA, without the high level of hemolysis or strong binding to serum proteins commonly observed with other cationic antimicrobial peptides and detergents.

  12. Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers.

    Science.gov (United States)

    Gabriel, Gregory J; Maegerlein, Janet A; Nelson, Christopher F; Dabkowski, Jeffrey M; Eren, Tarik; Nüsslein, Klaus; Tew, Gregory N

    2009-01-01

    A direct comparison of two strategies for designing antimicrobial polymers is presented. Previously, we published several reports on the use of facially amphiphilic (FA) monomers which led to polynorbornenes with excellent antimicrobial activities and selectivities. Our polymers obtained by copolymerization of structurally similar segregated monomers, in which cationic and non-polar moieties reside on separate repeat units, led to polymers with less pronounced activities. A wide range of polymer amphiphilicities was surveyed by pairing a cationic oxanorbornene with eleven different non-polar monomers and varying the comonomer feed ratios. Their properties were tested using antimicrobial assays and copolymers possessing intermediate hydrophobicities were the most active. Polymer-induced leakage of dye-filled liposomes and microscopy of polymer-treated bacteria support a membrane-based mode of action. From these results there appears to be profound differences in how a polymer made from FA monomers interacts with the phospholipid bilayer compared with copolymers from segregated monomers. We conclude that a well-defined spatial relationship of the whole polymer is crucial to obtain synthetic mimics of antimicrobial peptides (SMAMPs): charged and non-polar moieties need to be balanced locally, for example, at the monomer level, and not just globally. We advocate the use of FA monomers for better control of biological properties. It is expected that this principle will be usefully applied to other backbones such as the polyacrylates, polystyrenes, and non-natural polyamides. PMID:19021176

  13. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles

    Science.gov (United States)

    Nowak, Andrew P.; Breedveld, Victor; Pakstis, Lisa; Ozbas, Bulent; Pine, David J.; Pochan, Darrin; Deming, Timothy J.

    2002-05-01

    Protein-based hydrogels are used for many applications, ranging from food and cosmetic thickeners to support matrices for drug delivery and tissue replacement. These materials are usually prepared using proteins extracted from natural sources, which can give rise to inconsistent properties unsuitable for medical applications. Recent developments have utilized recombinant DNA methods to prepare artificial protein hydrogels with specific association mechanisms and responsiveness to various stimuli. Here we synthesize diblock copolypeptide amphiphiles containing charged and hydrophobic segments. Dilute solutions of these copolypeptides would be expected to form micelles; instead, they form hydrogels that retain their mechanical strength up to temperatures of about 90°C and recover rapidly after stress. The use of synthetic materials permits adjustment of copolymer chain length and composition, which we varied to study their effect on hydrogel formation and properties. We find that gelation depends not only on the amphiphilic nature of the polypeptides, but also on chain conformations-α-helix, β-strand or random coil. Indeed, shape-specific supramolecular assembly is integral to the gelation process, and provides a new class of peptide-based hydrogels with potential for applications in biotechnology.

  14. Transfersomes: self-optimizing carriers for bioactives.

    Science.gov (United States)

    Rai, Kavita; Gupta, Yashwant; Jain, Anekant; Jain, Sanjay K

    2008-01-01

    The transdermal route of drug delivery has gained great interest of pharmaceutical research, as it circumvents number of problems associated with oral route of drug administration. The major barrier in transdermal delivery of drug is the skin intrinsic barrier, the stratum corneum, the outermost envelop of the skin that offers the principal hurdle for diffusion of hydrophilic ionizable bioactives. Recently, various strategies have been used to augment the transdermal delivery of bioactives. Mainly, they include iontophoresis, electrophoresis, sonophoresis, chemical permeation enhancers, microneedles, and vesicular system (liposomes, niosomes, elastic liposomes such as ethosomes and transfersomes). Among these strategies transferosomes appear promising. Transport of this vesicular system through skin and epithelial hurdle depends upon the flexibility of their membrane, which can be attained using appropriate ratio of surfactant. Transfersomes have shown immense potential in drug delivery across the skin. Recent success also demonstrates the potential of transfersome in vaccine, steroid, protein, and peptide delivery across the skin. It is also used for transporting genetic material and achieving transfection. This review highlights the various aspects of the transferosomes in the effective delivery of drug/bioactives across the skin. PMID:19055232

  15. Facially amphiphilic thiol capped gold and silver nanoparticles

    OpenAIRE

    Bhat, Shreedhar; Maitra, Uday

    2008-01-01

    A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  16. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Shreedhar Bhata; Uday Maitra

    2008-11-01

    A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  17. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo.

    Science.gov (United States)

    Torchilin, V P; Shtilman, M I; Trubetskoy, V S; Whiteman, K; Milstein, A M

    1994-10-12

    Newly synthesized amphiphilic polyacrylamide and poly(vinyl pyrrolidone), single terminus-modified with long-chain fatty acyl groups, are able to incorporate into the liposomal membrane, and similar to poly(ethylene glycol) prolong liposome circulation in vivo and decrease liposome accumulation in the liver. Protective efficacy of modified polymers increases with the increase in the length of acyl moiety and decreases for higher molecular weight polymers. The data on amphiphilic polymer-modified liposome biodistribution are presented.

  18. Constraining cyclic peptides to mimic protein structure motifs

    DEFF Research Database (Denmark)

    Hill, Timothy A.; Shepherd, Nicholas E.; Diness, Frederik;

    2014-01-01

    Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable pro...

  19. The pharmacokinetics and pharmacodynamics of progastrin-derived peptides

    DEFF Research Database (Denmark)

    Hansen, Carsten Palnaes

    2003-01-01

    The elimination of progastrin-derived peptides was a first-order process, also at supraphysiological concentrations in plasma. The site of extraction was dependent on the molecular size of the peptides and not on their bioactivity. Apart from the kidneys and brain, where the extraction was nonsel...

  20. Effect of IKVAV Peptide Nanofiber on Proliferation,Adhesion and Differentiation into Neurocytes of Bone Marrow Stromal Cells

    Institute of Scientific and Technical Information of China (English)

    吴斌; 郑启新; 吴永超; 郭晓东; 邹枕玮

    2010-01-01

    This study examined the effect of IKVAV peptide nanofiber on proliferation,adhesion and differentiation into neurocytes of bone marrow stromal cells(BMSCs).IKVAV Peptide-amphiphile was synthesized and purified.Then,hydrogen chloride was added to the diluted aqueous solutions of PA to induce spontaneous formation of nanofiber in vitro.The resultant samples was observed under transmission electron microscope.BMSCs were cultured with IKVAV peptide nanofiber.The effect of IKVAV nanofiber on the proliferation,ad...

  1. Wetting in mixtures of water, nonionic amphiphiles, and nonpolar solvents

    Science.gov (United States)

    Kahlweit, M.; Busse, G.

    1989-07-01

    As is well known, medium- and long-chain alkanes do not spread across H2O-air interfaces, but shape a lens. In this paper it is shown that the same holds for the upper amphiphile-rich phase in binary H2O-amphiphile mixtures with medium- and long-chain nonionic amphiphiles that show a (closed) miscibility gap with water. This finding is somewhat unexpected because surfactants form monolayers at H2O-air interfaces which should facilitate the spreading of the amphiphile-rich phase. This wetting behavior corresponds to that in ternary H2O-oil-nonionic amphiphile mixtures with a three-phase body, in which the middle amphiphile-rich phase does not spread across the H2O-oil interface. The results may stimulate further studies on critical-point wetting [for a recent review see, e.g., S. Dietrich, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, London, 1988), Vol. 12, p. 1.], and may also help clarifying the properties of microemulsions [for a recent review see, e.g., M. Kahlweit, R. Strey, P. Firman, D. Haase, J. Jen, and R. Schomäcker, Langmuir 4, 499 (1988)].

  2. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  3. Towards rice bran protein utilization: In silico insight on the role of oryzacystatins in biologically-active peptide production.

    Science.gov (United States)

    Udenigwe, Chibuike C

    2016-01-15

    Rice bran proteins (RBP) have been demonstrated to harbour biologically active peptides, which can be released by proteases and applied in human health promotion. In this study, the roles of rice bran cysteine protease inhibitors, oryzacystatins, were considered for efficient production of bioactive peptides from RBP. In silico evidence demonstrates that aspartate protease (pepsin at pH>2) and metalloproteinase (thermolysin) have strong prospects for use in simultaneously cleaving the QXVXGX motif of oryzacystatins, which can lead to their inactivation, and in releasing bioactive sequences from the protease inhibitors. The cleaved bioactive peptides are known to possess activities that can be applied in the management of hypertension, oxidative stress, type 2 diabetes mellitus and other aberrant cellular processes. Moreover, several potentially bioactive di- and tripeptides were identified in oryzacystatin peptide pools. This study provides an important consideration and a direction that can lead to efficient release of bioactive peptides from rice bran proteins for functional food applications. PMID:26258712

  4. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs.

    Science.gov (United States)

    Martin, Chloe; Aibani, Noorjahan; Callan, John F; Callan, Bridgeen

    2016-01-01

    Nanomedicine has evolved with the use of biological compounds such as proteins, peptides and DNA. These hydrophilic and often highly charged compounds require a delivery system to allow effective transport and release at the site of action. These new biological therapeutics have not replaced the more traditional smaller molecule, but instead are working synergistically to the benefit of the end user. To that end, drug delivery systems are now required to encapsulate both larger hydrophilic compounds as well as the smaller and generally more hydrophobic compound. This review highlights the emerging role in drug delivery of amphiphilic polymers that by their very nature can associate with compounds of differing physicochemical properties, in particular the role of micelles, polymersomes and nanocapsules.

  5. Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant

    Science.gov (United States)

    Peptide hydrogels are considered injectable materials for drug delivery and tissue engineering applications. Most published hydrogel-forming sequences contain either alternating-charged and noncharged residues or amphiphilic blocks. Here, we report a self-assembling peptide, h9e (FLIVIGSIIGPGGDGPGGD...

  6. Photocleavable linker for the patterning of bioactive molecules

    Science.gov (United States)

    Wegner, Seraphine V.; Sentürk, Oya I.; Spatz, Joachim P.

    2015-12-01

    Herein, we report the use of a versatile photocleavable nitrobenzyl linker to micropattern a wide variety of bioactive molecules and photorelease them on demand. On one end, the linker has an NHS group that can be coupled with any amine, such as peptides, proteins or amine-linkers, and on the other end an alkyne for convenient attachment to materials with an azide functional group. This linker was conjugated with NTA-amine or the cell adhesion peptide cRGD to enable straightforward patterning of His6-tagged proteins or cells, respectively, on PEGylated glass surfaces. This approach provides a practical way to control the presentation of a wide variety of bioactive molecules with high spatial and temporal resolution. The extent of photocleavage can also be controlled to tune the biomolecule density and degree of cell attachment to the surface.

  7. Production of bioactive secondary metabolites by marine Vibrionaceae

    DEFF Research Database (Denmark)

    Månsson, Maria; Gram, Lone; Larsen, Thomas Ostenfeld

    2011-01-01

    for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS...... also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential...

  8. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  9. Bioactive phytochemicals in flaxseed

    OpenAIRE

    Johnsson, Pernilla

    2009-01-01

    Flaxseed (Linum usitatissimum L.) is rich in health-promoting bioactive compounds. Among plant foods, flaxseed has the highest content of lignans, mainly in the form of secoisolariciresinol diglucoside (SDG). Flaxseed oil also has a very high concentration of the essential omega-3 fatty acid alpha-linolenic acid (ALA). This thesis presents studies on both SDG and ALA. An HPLC method for quantification of SDG in hydrolysed flaxseed extracts was developed and used to compare the SDG content in ...

  10. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.;

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We the...... of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  11. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Anne-Marie Ellegaard

    2016-07-01

    Full Text Available Non-small cell lung cancer (NSCLC is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.

  12. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment.

    Science.gov (United States)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C; Anand, Atul; Cederkvist, Luise; Petersen, Nikolaj H T; Nylandsted, Jesper; Stenvang, Jan; Mellemgaard, Anders; Østerlind, Kell; Friis, Søren; Jäättelä, Marja

    2016-07-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy. PMID:27333030

  13. Antimicrobial peptides: natural templates for synthetic membrane-active compounds.

    Science.gov (United States)

    Giuliani, A; Pirri, G; Bozzi, A; Di Giulio, A; Aschi, M; Rinaldi, A C

    2008-08-01

    The innate immunity of multicellular organisms relies in large part on the action of antimicrobial peptides (AMPs) to resist microbial invasion. Crafted by evolution into an extremely diversified array of sequences and folds, AMPs do share a common amphiphilic 3-D arrangement. This feature is directly linked with a common mechanism of action that predominantly (although not exclusively) develops upon interaction of peptides with cell membranes of target cells. This minireview reports on current understanding of the modes of interaction of AMPs with biological and model membranes, especially focusing on recent insights into the folding and oligomerization requirements of peptides to bind and insert into lipid membranes and exert their antibiotic effects. Given the potential of AMPs to be developed into a new class of anti-infective agents, emphasis is placed on how the information on peptide-membrane interactions could direct the design and selection of improved biomimetic synthetic peptides with antibiotic properties.

  14. Nocardiopsis species: a potential source of bioactive compounds.

    Science.gov (United States)

    Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V

    2016-01-01

    Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications. PMID:26369300

  15. Bioactive substances in food: identification and potential uses.

    Science.gov (United States)

    Kitts, D D

    1994-04-01

    Bioactive substances in foods can represent "extranutritional" constituents naturally present in small quantities in the food matrix, produced upon either in vivo or industrial enzymatic digestion, the latter being a result of food-processing activities. Bioactive constituents of food evoke physiological, behavioral, and immunological effects. Evidence from both epidemiological and animal studies has suggested chemopreventative roles for phytochemicals in certain forms of cancers and in the control of hyperlipidemia. Secondary products of plant metabolism can modulate xenobiotic metabolizing and cholesterol synthetic enzymes. Unique physicochemical properties of food-derived peptides with characteristic amino acid composition and sequences have been reported to influence intestinal transit, modify nutrient absorption and excretion, and exhibit immunostimulating and antihypertensive activity. Biologically active peptides derived from casein, fish muscle, and plant protein hydrolysates have been isolated, purified, and identified in peptide sequence studies. Therapeutic proteins (e.g., specific antibodies) derived from animal products such as milk may offer the potential for developing specialized food products with prophylactic as well as nutritive quality. This paper discusses the physicochemical mechanism of action of specific bioactive substances naturally present in or derived from foods. The biotechnologies employed to develop these products and the issues concerning acceptance by consumer and regulatory bodies are also addressed. PMID:7922875

  16. Synthesis of Bioinspired Carbohydrate Amphiphiles that Promote and Inhibit Biofilms.

    Science.gov (United States)

    Dane, Eric L; Ballok, Alicia E; O'Toole, George A; Grinstaff, Mark W

    2014-02-01

    The synthesis and characterization of a new class of bioinspired carbohydrate amphiphiles that modulate Pseudomonas aeruginosa biofilm formation are reported. The carbohydrate head is an enantiopure poly-amido-saccharide (PAS) prepared by a controlled anionic polymerization of β-lactam monomers derived from either glucose or galactose. The supramolecular assemblies formed by PAS amphiphiles are investigated in solution using fluorescence assays and dynamic light scattering. Dried samples are investigated using X-ray, infrared spectroscopy, and transmission electron microscopy. Additionally, the amphiphiles are evaluated for their ability to modulate biofilm formation by the Gram-negative bacterium Pseudomonas aeruginosa. Remarkably, from a library of eight amphiphiles, we identify a structure that promotes biofilm formation and two structures that inhibit biofilm formation. Using biological assays and electron microscopy, we relate the chemical structure of the amphiphiles to the observed activity. Materials that modulate the formation of biofilms by bacteria are important both as research tools for microbiologists to study the process of biofilm formation and for their potential to provide new drug candidates for treating biofilm-associated infections.

  17. A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R;

    2012-01-01

    Non-traditional amphiphiles: Conferring aqueous solubility on membrane proteins generally requires the use of a detergent or other amphiphilic agent. A new class of amphiphiles was synthesized, based on steroidal lipophilic groups, and evaluated with several membrane proteins. The results show th...

  18. Redox-controllable amphiphilic [2]rotaxanes.

    Science.gov (United States)

    Tseng, Hsian-Rong; Vignon, Scott A; Celestre, Paul C; Perkins, Julie; Jeppesen, Jan O; Di Fabio, Alberto; Ballardini, Roberto; Gandolfi, M Teresa; Venturi, Margherita; Balzani, Vincenzo; Stoddart, J Fraser

    2004-01-01

    With the fabrication of molecular electronic devices (MEDs) and the construction of nanoelectromechanical systems (NEMSs) as incentives, two constitutionally isomeric, redox-controllable [2]rotaxanes have been synthesized and characterized in solution. Therein, they both behave as near-perfect molecular switches, that is, to all intents and purposes, these two rotaxanes can be switched precisely by applying appropriate redox stimuli between two distinct chemomechanical states. Their dumbbell-shaped components are composed of polyether chains interrupted along their lengths by i) two pi-electron rich recognition sites-a tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) moiety-with ii) a rigid terphenylene spacer placed between the two recognition sites, and then terminated by iii) a hydrophobic tetraarylmethane stopper at one end and a hydrophilic dendritic stopper at the other end of the dumbbells, thus conferring amphiphilicity upon these molecules. A template-directed protocol produces a means to introduce the tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), which contains two pi-electron accepting bipyridinium units, mechanically interlocked around the dumbbell-shaped components. Both the TTF unit and the DNP moiety are potential stations for CBPQT(4+), since they can establish charge-transfer and hydrogen bonding interactions with the bipyridinium units of the cyclophane, thereby introducing bistability into the [2]rotaxanes. In both constitutional isomers, (1)H NMR and absorption spectroscopies, together with electrochemical investigations, reveal that the CBPQT(4+) ring is predominantly located on the TTF unit, leading to the existence of a single translational isomer (co-conformation) in both cases. In addition, a model [2]rotaxane, incorporating hydrophobic tetraarylmethane stoppers at both ends of its dumbbell-shaped component, has also been synthesized as a point of reference. Molecular synthetic approaches were used to

  19. Magnetic Amphiphilic Composites Applied for the Treatment of Biodiesel Wastewaters

    Directory of Open Access Journals (Sweden)

    Bruno R. S. Lemos

    2012-05-01

    Full Text Available In this work, new magnetic amphiphilic composites were prepared by chemical vapor deposition with ethanol on the surface of hydrophilic natural chrysotile matrix containing Fe catalyst. XRD, Raman, Mössbauer and SEM analyses suggest the formation of a complex nanostructured material composed of hydrophobic carbon nanotubes/nanofibers grown on the hydrophilic surface of the MgSi fiber mineral and the presence of Fe metallic nanoparticles coated by carbon. These nanostructured particles show amphiphilic properties and interact very well with both oil and aqueous phases. When added to emulsions the amphiphilic particles locate on the oil/water interface and, under a magnetic field, the oil droplets collapsed leading to the separation of the aqueous and oil phases. Preliminary work showed excellent results on the use of these particles to break wastewater emulsions in the biodiesel process.

  20. Synthesis of silver nanoparticles in melts of amphiphilic polyesters

    International Nuclear Information System (INIS)

    The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion. (paper)

  1. 米曲霉发酵鳕鱼皮制取低分子肽条件的优化及活性研究%The Optimization of Fermentation of Cod Fish Skin with Aspergillus oryzae to Produce Peptides of LMW and the Research of Bioactivity of Fermentation Peptides

    Institute of Scientific and Technical Information of China (English)

    吴海滨; 刘尊英; 曾名湧; 赵元晖; 董士远

    2011-01-01

    将鳕鱼皮打浆后利用米曲霉进行液态发酵以制取有较高价值的低分子量多肽,从碳氮比、装液量、底物浓度、转速、碳源、表面活性剂、不同起始pH、接种量8个方面进行了单因子实验。进而采用响应面法(Response Surface Methodology,简称RSM)进一步优化影响发酵的最重要因素:碳氮比、底物浓度、接种量,得到发酵的最优条件,即发酵中碳氮比应控制在0.29,底物浓度为7.0%,接种量为4×10^7孢子/100mL,此时发酵水解度可以达到36%,对发酵肽的分子量进行测定,发现分子量1000u以下小肽占到%The peptides was obtained by submerged fermentation of cod fish skin after which was cracked with Aspergillus oryzae utilized, The optimization was started from 8 aspects -the carbon and nitrogen ratio, liquid volume, substrate concentration, rotation speed, carbon resource, surfactants, different initial pH, inoculation rate, after which the most important factors was chosen-carbon and nitrogen ratio, inoculum, substrate concentration to do the response surface experiment. The optimum fermentation conditions were as follows: 0.29 ratio of carbon and nitrogen, 7.0% substrate concentration, inoculum size 4 × 107 , then the ratio of hydrolysis could come up to 36% , the molecular weight below 1000 took up about 71.5% of fementation peptide. This paper also monitored the activity of antioxidation as well as antihypertense of the peptides, which proved that the IC50 of DPPH could be 1.3 mg/mL, The IC50 of anti-ACE of peptides was 0.88 mg/mL, the peptide of this paper was in low molecular weight with high activity of antioxidation and antihypertense.

  2. Purification and identification of endogenous antioxidant and ACE-inhibitory peptides from donkey milk by multidimensional liquid chromatography and nanoHPLC-high resolution mass spectrometry.

    Science.gov (United States)

    Zenezini Chiozzi, Riccardo; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Piovesana, Susy; Samperi, Roberto; Laganà, Aldo

    2016-08-01

    Donkey milk is a valuable product for the food industry due to its nutraceutical, nutritional, and functional properties. In this work, the endogenous peptides from donkey milk were investigated for their antioxidant and ACE-inhibitory activities, combining a two-dimensional peptide fractionation strategy with high-resolution mass spectrometry, bioinformatics analysis, and in vitro assays. After extraction, the endogenous peptides were fractionated twice, first by polymeric reversed phase and then by hydrophilic interaction chromatography. Fractions were screened for the investigated bioactivities and only the most active ones were finally analyzed by nanoRP-HPLC-MS/MS; this approach allowed to reduce the total number of possible bioactive sequences. Results were further mined by in silico analysis using PeptideRanker, BioPep, and PepBank, which provided a bioactivity score to the identified peptides and matched sequences to known bioactive peptides, in order to select candidates for chemical synthesis. Thus, five peptides were prepared and then compared to the natural occurring ones, checking their retention times and fragmentation patterns in donkey milk alone and in spiked donkey milk samples. Pure peptide standards were finally in vitro tested for the specific bioactivity. In this way, two novel endogenous antioxidant peptides, namely EWFTFLKEAGQGAKDMWR and GQGAKDMWR, and two ACE-inhibitory peptides, namely REWFTFLK and MPFLKSPIVPF, were successfully validated from donkey milk. Graphical Abstract Analytical workflow for purification and identification of bioactive peptides from donkey milk sample. PMID:27325462

  3. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products

    NARCIS (Netherlands)

    Medema, Marnix; Paalvast, Yared; Nguyen, D.D.; Melnik, A.; Dorrestein, P.C.; Takano, Eriko; Breitling, Rainer

    2014-01-01

    Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strateg

  4. Self-assembled peptide beads used as a template for ordered gold nanoparticle superstructures.

    Science.gov (United States)

    de Bruyn Ouboter, Dirk; Schuster, Thomas B; Sigg, Severin J; Meier, Wolfgang P

    2013-12-01

    Using peptide-based materials to tailor self-assembled, nano-scaled hybrid materials with potentially high biocompatibility/biodegradability is gaining importance in developing a broad range of new applications, in areas such as diagnostics and medicine. Here, we investigated how the self-assembly ability of amphiphilic peptides can be used to create organized inorganic materials, i.e. gold nanoparticles. A bead-forming, purely peptidic amphiphile Ac-[K(Ac)]3-[W-l]3-W-NH2, containing acetylated (Ac) l-lysine (K), l-tryptophan (W) and d-leucine (l), was C-terminally modified with a l-cysteine (C) and linked to gold nanoparticles. Subsequent peptide-driven self-assembly of the peptide-coated gold nanoparticles with increasing water content led to controlled aggregation of the gold-core micelles, forming composite peptide-gold superstructures. The individual gold nanoparticles did not agglomerate but were separated from each other by a peptide film within the composite material, as revealed by electron microscopy studies. Structural investigation on 2D template-stripped gold demonstrated the ability of the peptides to form self-assembled monolayers. Structural elements of β-turns and weak hydrogen bonding of the hydrophobic moiety of the peptide were evident, thereby suggesting that the secondary structure remains intact. PMID:24099645

  5. Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation.

    Science.gov (United States)

    Rosselin, Marie; Meyer, Grégory; Guillet, Pierre; Cheviet, Thomas; Walther, Guillaume; Meister, Annette; Hadjipavlou-Litina, Dimitra; Durand, Grégory

    2016-03-16

    We report herein the synthesis of a divalent amphiphilic carrier onto which α-phenyl-N-tert-butyl nitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) antioxidants were grafted to give the divalent derivative called FATxPBN. The divalent carrier consists of two lysine amino acids as a scaffold upon which the antioxidant moieties are grafted, a perfluorinated chain that supplies hydrophobicity, and a sugar-based polar headgroup that ensures water solubility. For the sake of comparison, a divalent PBN derivative called FADiPBN was also synthesized. The self-aggregation properties of FATxPBN and FADiPBN were studied by means of surface tension, dynamic light scattering, and transmission electron microscopy methods, and showed they form small micelles (i.e., 12 and 6 nm diameter, respectively) at submillimolar concentrations (i.e., 0.01 and 0.05 mM, respectively), in agreement with partition coefficient values. The superior antioxidant properties of FATxPBN over FADiPBN and the parent compounds PBN and Trolox were demonstrated using in vitro ABTS(•+) reduction (98%) and soybean lipoxygenase inhibition (94%) assays. Finally, FATxPBN was found to significantly inhibit hyperglycemia-induced toxicity on an ex-vivo rat model, demonstrating its potency as a bioactive antioxidant against oxidative stress-induced damage. PMID:26850367

  6. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery.

    Science.gov (United States)

    Nadithe, Venkatareddy; Liu, Runhui; Killinger, Bryan A; Movassaghian, Sara; Kim, Na Hyung; Moszczynska, Anna B; Masters, Kristyn S; Gellman, Samuel H; Merkel, Olivia M

    2015-02-01

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20-65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent. PMID:25437915

  7. Peptide Toxins in Solitary Wasp Venoms

    Science.gov (United States)

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-01-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  8. Peptide Toxins in Solitary Wasp Venoms

    Directory of Open Access Journals (Sweden)

    Katsuhiro Konno

    2016-04-01

    Full Text Available Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs, in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized.

  9. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  10. Small Bioactive Lipoplex (SBL) Nanoparticles Self-Assembled at Elevated Temperature and Pressure

    Science.gov (United States)

    Huang, Leaf

    2009-03-01

    Conventional lipoplex (cationic liposome/DNA complex) serves well for gene transfer in cultured cells. However, their in vivo gene delivery activity is limited due to its relatively large size (>100 nm). This is due to incomplete charge neutralization as a result of the steric hindrance during the complexation between DNA and liposomes. Behr et al hypothesized that monomolecular DNA condensate can be prepared if the DNA sees the cationic lipid as monomers. Indeed, small nanoparticles (˜30 nm) were prepared by using a single-chain cationic amphiphile which has a high solubility at the physiological condition. To stabilize the monomolecular condensate, Behr has included a SH group in the cationic amphiphile which could be oxidized to form a dimer. Unfortunately, the stabilized nanoparticles showed no transfection activity when delivered into cells. We hypothesized that similar small lipoplex can be prepared by using a double-chain cationic amphiphile if both DNA and the amphiphile can be soluble in the same solvent. A hydrofluorocarbon HFC-152a is an excellent solvent for the cationic lipid DOTAP at an elevated temperature (˜35 ^oC) and pressure (˜300 atm). Since the solvent can accommodate small amounts of water, DNA or siRNA could be introduced into the system to allow lipoplex formation. The resulting Small Bioactive Lipoplex (SBL) is 30-50 nm in diameter and can transfect cultured cells. Freeze-fracture electron microscopy showed that SBL are solid nanoparticles without any lipid bilayer structure. Since plasmid DNA is fragile at elevated temperature and pressure, we have concentrated our effort in siRNA which is stable under the same conditions. The new formulation shows great promise as an in vivo delivery vector when small particles are required for efficient penetration into the tissues.

  11. Cationic amphiphilic non-hemolytic polyacrylates with superior antibacterial activity.

    Science.gov (United States)

    Punia, Ashish; He, Edward; Lee, Kevin; Banerjee, Probal; Yang, Nan-Loh

    2014-07-01

    Acrylic copolymers with appropriate compositions of counits having cationic charge with 2-carbon and 6-carbon spacer arms can show superior antibacterial activities with concomitant very low hemolytic effect. These amphiphilic copolymers represent one of the most promising synthetic polymer antibacterial systems reported. PMID:24854366

  12. Langmuir monolayer formation of metal complexes from polymerizable amphiphilic ligands

    NARCIS (Netherlands)

    Werkman, PJ; Schouten, AJ

    1996-01-01

    The monolayer behaviour of 4-(10,12-pentacosadiynoicamidomethyl)-pyridine at the air-water interface was studied by measuring the surface pressure-area isotherms. The amphiphile formed stable monolayers with a clear liquid-expanded (LE) to liquid-condensed phase transition at various temperatures. U

  13. Effects of perfluorinated amphiphiles on backward swimming in Paramecium caudatum

    International Nuclear Information System (INIS)

    PFOS and PFOA are ubiquitous contaminants in the environment. We investigated the effects of fluorochemicals on calcium currents in Paramecium caudatum using its behavioral changes. Negatively charged amphiphiles prolonged backward swimming (BWS) of Paramecium. PFOS significantly prolonged BWS, while PFOA was less potent (EC5: 29.8 ± 4.1 and 424.1 ± 124.0 μM, respectively). The BWS prolongation was blocked by cadmium, indicating that the cellular calcium conductance had been modified. The positively charged amphiphile FOSAPrTMA shortened BWS (EC5: 19.1 ± 17.3). Nonionic amphiphiles did not affect BWS. The longer-chain perfluorinated carboxylates PFNA and PFDA were more potent than PFOA (EC5: 98.7 ± 20.1 and 60.4 ± 10.1 μM, respectively). However, 1,8-perfluorooctanedioic acid and 1,10-perfluorodecanedioic acid did not prolong BWS. The critical micelle concentration (CMC) and BWS prolongation for negatively charged amphiphiles showed a clear correlation (r 2 = 0.8008, p < 0.001). In summary, several perfluorochemicals and PFOS and PFOA had similar effects in Paramecium, while chain length, CMC, and electric charge were major determinants of BWS duration

  14. Bio-based amphiphilic materials development and applications

    Science.gov (United States)

    Farm-based raw materials are increasingly used in the development of amphiphilic materials that have potential applications in the production of a variety of consumer and industrial products, including lubricants. Raw materials of interest include: starches, proteins, fats, oils, and sugars. These ...

  15. Amphiphiles containing aromatic groups in the hydrophobic part

    NARCIS (Netherlands)

    Visscher, Inge

    2004-01-01

    Aggregation processes are essential for life on this planet. For example, the membranes of all living cells are bilayered aggregates, consisting of lipid molecules, proteins and steroids. In many biological processes, aggregates play a role. The main driving force for aggregation of amphiphiles is h

  16. Microphase separation of diblock copolymers with amphiphilic segment

    NARCIS (Netherlands)

    Kriksin, Yury A.; Khalatur, Pavel G.; Erukhimovich, Igor Ya.; ten Brinke, Gerrit; Khokhlov, Alexei R.

    2009-01-01

    We present a statistical mechanical approach for predicting the self-assembled morphologies of amphiphilic diblock copolymers in the melt. We introduce two conformationally asymmetric linear copolymer models with a local structural asymmetry, one of a "comb-tail'' type and another that we call "cont

  17. Blends of Amphiphilic, Hyperbranched Polyesters and Different Polyolefins

    NARCIS (Netherlands)

    Schmaljohann, D.; Pötschke, P.; Hässler, R.; Voit, B.I.; Froehling, P.E.; Mostert, B.; Loontjens, J.A.

    1999-01-01

    A hyperbranched polyester based on 3,5-dihydroxybenzoic acid was completely modified with dodecanoyl chloride to result in an amphiphilic, globular polymer, which has a polar core and a nonpolar outer sphere with the ability both to incorporate an organic dye and to interact with a nonpolar matrix.

  18. Bioactivity and structural properties of chimeric analogs of the starfish SALMFamide neuropeptides S1 and S2.

    Science.gov (United States)

    Jones, Christopher E; Otara, Claire B; Younan, Nadine D; Viles, John H; Elphick, Maurice R

    2014-10-01

    The starfish SALMFamide neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide) are the prototypical members of a family of neuropeptides that act as muscle relaxants in echinoderms. Comparison of the bioactivity of S1 and S2 as muscle relaxants has revealed that S2 is ten times more potent than S1. Here we investigated a structural basis for this difference in potency by comparing the bioactivity and solution conformations (using NMR and CD spectroscopy) of S1 and S2 with three chimeric analogs of these peptides. A peptide comprising S1 with the addition of S2's N-terminal tetrapeptide (Long S1 or LS1; SGPYGFNSALMFamide) was not significantly different to S1 in its bioactivity and did not exhibit concentration-dependent structuring seen with S2. An analog of S1 with its penultimate residue substituted from S2 (S1(T); GFNSALTFamide) exhibited S1-like bioactivity and structure. However, an analog of S2 with its penultimate residue substituted from S1 (S2(M); SGPYSFNSGLMFamide) exhibited loss of S2-type bioactivity and structural properties. Collectively, our data indicate that the C-terminal regions of S1 and S2 are the key determinants of their differing bioactivity. However, the N-terminal region of S2 may influence its bioactivity by conferring structural stability in solution. Thus, analysis of chimeric SALMFamides has revealed how neuropeptide bioactivity is determined by a complex interplay of sequence and conformation.

  19. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

    Directory of Open Access Journals (Sweden)

    Patricia Martorell

    Full Text Available BACKGROUND: Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. METHODOLOGY/PRINCIPAL FINDINGS: A bioactive peptide, 13L (DNYDNSAGKWWVT, was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ₁₋₄₂ peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL showed the highest antioxidant activity (P≤0.001 in the wild-type strain (N2. Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24-47 h period after Aβ₁₋₄₂ peptide induction (P≤0.0001. This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals.

  20. PepServe: a web server for peptide analysis, clustering and visualization

    Science.gov (United States)

    Alexandridou, Anastasia; Dovrolis, Nikolas; Tsangaris, George Th.; Nikita, Konstantina; Spyrou, George

    2011-01-01

    Peptides, either as protein fragments or as naturally occurring entities are characterized by their sequence and function features. Many times the researchers need to massively manage peptide lists concerning protein identification, biomarker discovery, bioactivity, immune response or other functionalities. We present a web server that manages peptide lists in terms of feature analysis as well as interactive clustering and visualization of the given peptides. PepServe is a useful tool in the understanding of the peptide feature distribution among a group of peptides. The PepServe web application is freely available at http://bioserver-1.bioacademy.gr/Bioserver/PepServe/. PMID:21572105

  1. Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials

    KAUST Repository

    Cho, Youngjin

    2012-05-14

    Antifouling surfaces are critical for the good performance of functional materials in various applications including water filtration, medical implants, and biosensors. In this study, we synthesized amphiphilic triblock terpolymers (tri-BCPs, coded as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers without such groups. The adsorption of bovine serum albumin (BSA) on the amphiphilic fibers was about 10-fold less than that on the control surfaces from PLA and PET fibers. With the increase of the KB content in the amphiphilic fibers, the resistance to adsorption of BSA was increased. BSA was released more easily from the surface of the amphiphilic fibers than from the surface of hydrophobic PLA or PET fibers. We have also investigated the structural conformation of KB in fibers before and after annealing by contact angle measurements, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and coarse-grained molecular dynamics (CGMD) simulation to probe the effect of amphiphilic chain conformation on antifouling. The results reveal that the amphiphilic KB was evenly distributed within as-spun hybrid fibers, while migrated toward the core from the fiber surface during thermal treatment, leading to the reduction in antifouling. This suggests that the antifouling effect of the amphiphilic fibers is greatly influenced by the arrangement of amphiphilic groups in the fibers. © 2012 American Chemical Society.

  2. Structural characterization of amphiphilic siderophores produced by a soda lake isolate, Halomonas sp. SL01, reveals cysteine-, phenylalanine- and proline-containing head groups.

    Science.gov (United States)

    Figueroa, Luis O'mar Serrano; Schwarz, Benjamin; Richards, Abigail M

    2015-11-01

    Soap Lake, located in Washington State, is a naturally occurring saline and alkaline lake. Several organisms inhabiting this lake have been identified as producers of siderophores that are unique in structure. Bacterial isolates, enriched from Soap Lake sediment and water samples, were screened for siderophore production using both the chrome azurol S (CAS) agar plate and liquid methods. Bacterial isolate Halomonas sp. SL01 was found to produce relatively high concentrations of siderophores in liquid medium (up to 40 µM). Siderophores from the isolate were separated from the culture supernatant using solid phase extraction and purified by high-performance liquid chromatography (HPLC). Siderophore structure was determined using LC/MS/MS (liquid chromatography/mass spectrometry/mass spectrometry) and fatty acid methyl ester (FAME) GC. Two distinct new families of amphiphilic siderophores were produced by isolate SL01. All siderophores ranged in size from 989 to 1096 atomic mass units and consisted of a conserved peptidic head group (per family), which coordinates iron, coupled to fatty acid moieties. The fatty acyl moieties were C10-C14 in length and some with hydroxyl substitutions at the third α position. These siderophores resembled amphiphilic aquachelin siderophores produced by Halomonas aquamarina strain DS40M3, a marine bacterium as well as siderophores from isolate Halomonas sp. SL28 that was found to produce amphiphilic siderophores. Bacteria thriving under saline and alkaline conditions are capable of producing unique siderophores resembling those produced by microbes inhabiting marine environments. PMID:26439615

  3. Developing a Dissociative Nanocontainer for Peptide Drug Delivery

    Directory of Open Access Journals (Sweden)

    Patrick Kelly

    2015-10-01

    Full Text Available The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers.

  4. Advancement and applications of peptide phage display technology in biomedical science.

    Science.gov (United States)

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-01

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  5. Periodically Grafted Amphiphilic Copolymers: Effects of Steric Crowding and Reversal of Amphiphilicity.

    Science.gov (United States)

    Mandal, Joydeb; Ramakrishnan, S

    2015-06-01

    Two series of periodically clickable polyesters were prepared; one of them carries alkylene segments along its backbone, whereas the other carries poly(ethylene glycol) (PEG) segments. These polyesters were clicked with either MPEG-350 azide or docosyl (C22) azide to yield periodically grafted amphiphilic copolymers (PGACs) carrying either flexible hydrophilic or crystallizable hydrophobic backbone segments. The immiscibility between hydrocarbon and PEG segments causes both of these systems to fold in either a zigzag or hairpin-like conformation; the hairpin-like conformation appears to be preferred when flexible PEG segments are present in the backbone. The folded chains further reorganize in the solid state to develop a lamellar morphology that permits the collocation of the PEG and hydrocarbon (HC) segments within alternate domains; evidence for the self-segregation was gained from DSC, SAXS, and AFM studies. SAXS studies revealed the formation of an extended lamellar structure, whereas AFM images showed uniform layered morphology with layer heights that matched reasonably well with the interlamellar spacing obtained from the SAXS study. Labeling one representative PGAC, carrying crystallizable long alkylene segments in the backbone and pendant PEG-350 side chains, with a small mole fraction of pyrene fluorophore permitted the examination of the conformational transition that occurs upon going from a good to a poor solvent; this single-chain folded conformation, we postulate, is the intermediate that organizes into the lamellar morphology.

  6. Extraction and characterization of candidate bioactive compounds in different tissues from salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Mikalsen, S. O.; Joensen, H.;

    2014-01-01

    , pharmaceutical or other functional value and be used in health and functional foods, thus increasing the value adding of secondary marine products. A number of naturally occurring antimicrobial peptides have been characterized from fish skin and gills, such as piscidins, but these and other fish tissues may...... not contain standard unmodified amino acids, indicating peptides with modified amino acids or other kinds of molecules.Industrial relevance. Bioprospecting in fish tissue traditionally regarded as waste can lead to detection of novel natural bioactive compounds including peptides, which could have nutritional...

  7. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  8. Synthesis, characterization and comparative evaluation of phenoxy ring containing long chain gemini imidazolium and pyridinium amphiphiles.

    Science.gov (United States)

    Bhadani, Avinash; Kataria, Hardeep; Singh, Sukhprit

    2011-09-01

    Two series of phenoxy ring containing long chain imidazolium and pyridinium based gemini amphiphiles have been synthesized from renewable cardanol oil having different spacers (i. e. -S-(CH(2))(n)-S-, where n is 2, 3, 4 & 6). Critical micelle concentration (cmc) of these new gemini amphiphiles has been determined by conductivity method. Further, these new cationic amphiphiles have been evaluated for their DNA binding capability by agarose gel electrophoresis, ethidium bromide exclusion experiments and transmission electron microscopy (TEM). The cytotoxicity of these new amphiphiles have been evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Comparative studies of these phenoxy ring containing long chain gemini imidazolium amphiphiles and their pyridinium analogues depicted low cmc values of the later but greater DNA interaction capability and low cytotoxicity of the former series of amphiphiles. PMID:21676409

  9. Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters.

    Science.gov (United States)

    Ďorďovič, Vladimír; Tošner, Zdeněk; Uchman, Mariusz; Zhigunov, Alexander; Reza, Mehedi; Ruokolainen, Janne; Pramanik, Goutam; Cígler, Petr; Kalíková, Květa; Gradzielski, Michael; Matějíček, Pavel

    2016-07-01

    This is the first experimental evidence that both self-assembly and surface activity are common features of all water-soluble boron cluster compounds. The solution behavior of anionic polyhedral boranes (sodium decaborate, sodium dodecaborate, and sodium mercaptododecaborate), carboranes (potassium 1-carba-dodecaborate), and metallacarboranes {sodium [cobalt bis(1,2-dicarbollide)]} was extensively studied, and it is evident that all the anionic boron clusters form multimolecular aggregates in water. However, the mechanism of aggregation is dependent on size and polarity. The series of studied clusters spans from a small hydrophilic decaborate-resembling hydrotrope to a bulky hydrophobic cobalt bis(dicarbollide) behaving like a classical surfactant. Despite their pristine structure resembling Platonic solids, the nature of anionic boron cluster compounds is inherently amphiphilic-they are stealth amphiphiles. PMID:27287067

  10. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles

    Science.gov (United States)

    Qiu, Huibin; Hudson, Zachary M.; Winnik, Mitchell A.; Manners, Ian

    2015-03-01

    Self-assembly of molecular and block copolymer amphiphiles represents a well-established route to micelles with a wide variety of shapes and gel-like phases. We demonstrate an analogous process, but on a longer length scale, in which amphiphilic P-H-P and H-P-H cylindrical triblock comicelles with hydrophobic (H) or polar (P) segments that are monodisperse in length are able to self-assemble side by side or end to end in nonsolvents for the central or terminal segments, respectively. This allows the formation of cylindrical supermicelles and one-dimensional (1D) or 3D superstructures that persist in both solution and the solid state. These assemblies possess multiple levels of structural hierarchy in combination with existence on a multimicrometer-length scale, features that are generally only found in natural materials.

  11. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A.

    Science.gov (United States)

    Haugen, Helen Sophie; Fimland, Gunnar; Nissen-Meyer, Jon; Kristiansen, Per Eugen

    2005-12-13

    The 3D structure of the membrane-permeabilizing 41-mer pediocin-like antimicrobial peptide curvacin A produced by lactic acid bacteria has been studied by NMR spectroscopy. In DPC micelles, the cationic and hydrophilic N-terminal half of the peptide forms an S-shaped beta-sheet-like domain stabilized by a disulfide bridge and a few hydrogen bonds. This domain is followed by two alpha-helices: a hydrophilic 6-mer helix between residues 19 and 24 and an amphiphilic/hydrophobic 11-mer helix between residues 29 and 39. There are two hinges in the peptide, one at residues 16-18 between the N-terminal S-shaped beta-sheet-like structure and the central 6-mer helix and one at residues 26-28 between the central helix and the 11-mer C-terminal helix. The latter helix is the only amphiphilic/hydrophobic part of the peptide and is thus presumably the part that penetrates into the hydrophobic phase of target-cell membranes. The hinge between the two helices may introduce the flexibility that allows the helix to dip into membranes. The helix-hinge-helix structure in the C-terminal half of curvacin A clearly distinguishes this peptide from the other pediocin-like peptides whose structures have been analyzed and suggests that curvacin A along with the structural homologues enterocin P and carnobacteriocin BM1 belong to a subgroup of the pediocin-like family of antimicrobial peptides. PMID:16331975

  12. Clustering analyses in peptidomics revealed that peptide profiles of infant formulae are descriptive

    NARCIS (Netherlands)

    Lambers, T.T.; Gloerich, J.; Hoffen, E. van; Alkema, W.B.L.; Hondmann, D.H.; Tol, E.A. van

    2015-01-01

    Prompted by the accumulating evidence on bioactive moieties of milk-derived peptides, novel methods were applied to compare the peptide composition among commercially available hydrolysate formulations and to determine batch-to-batch variations of protein hydrolysate products. Despite the availabili

  13. MS approaches to select peptides with post-translational modifications from amphibian defense secretions prior to full sequence elucidation

    Directory of Open Access Journals (Sweden)

    Martijn Pinkse

    2014-12-01

    Full Text Available Peptide families are characterized by structural motifs, which often comprise specific post-translational modifications (PTMs required for biological activity. In conventional bioactivity-based peptidomics studies natural peptide mixtures are chromatographically separated and the bioactive fractions purified to homogeneity, prior to structural characterization. In this paper we illustrate the reverse methodology, in which the primary structures of peptides with presumed bioactivity are first determined before investigating functions/bioactivities. We exemplify mass spectrometry (MS-based strategies (employing, in particular, high resolution MS to specifically select peptides – from complex mixtures such as frog defensive secretions – by virtue of the occurrence of particular PTMs, including amidation, disulfide-bonding, l- to d-amino acid isomerization, tyrosine-sulfation, proline-hydroxylation, and aminoterminal pyroglutamate formation.

  14. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth.

    Science.gov (United States)

    Fiore, Michele; Strazewski, Peter

    2016-01-01

    It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles. PMID:27043635

  15. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth

    Directory of Open Access Journals (Sweden)

    Michele Fiore

    2016-03-01

    Full Text Available It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles.

  16. Relation between structure and organisation properties of new amphiphilic cyclodextrins

    International Nuclear Information System (INIS)

    Since a number of years, special attention and efforts have been made to prepare amphiphilic cyclodextrins (CDs) with the objective to use them to obtain supramolecular assemblies as such or in the presence of preformed lipidic structures. The aim of these investigation is in both cases to combine the size specificity of cyclodextrins for guests and the transport properties of phospho-lipidic structures. The final objects could be of importance to transport or target biologically relevant molecules such as drugs using new galenic formulations. In a first step, a new family of amphiphilic CDs was prepared from a pure phospholipids (DMPE) onto cyclodextrins or methylated derivatives through a spacing arm. The afforded compounds (phospholipidyl-cyclodextrins) were fully characterized by high field NMR and high resolution mass spectrometry. The methylated derivatives were shown to self-organize in water with low CMC to form fluctuating micellar fibers retaining the inclusion capacity of the cyclodextrin cavities. The interactions of these compounds with membrane systems were investigated as black films using X-ray reflectivity and by evaluation of their detergent power towards model DMPC liposomes. Their ability to cross over the Blood Brain Barrier was evidenced by a new approach making use of novel immuno-enzymatic assays. In a second step, a new class of amphiphilic cyclodextrins was considered (peptidolipidyl-cyclodextrins). Although they are structurally similar to phospholipidyl-CDs, their preparation overcomes the tedious steps of the later and lead to a considerable versatility in terms of the number of possible molecules to be prepared. Moreover, the stability problems encountered with phospholipids are avoided. Several examples have been prepared, fully characterized and their organization properties investigated by the determination of CMC and by deuterium NMR on a pure and homogeneous mixed peptidolipidyl-CD / DMPC lamellar phase. This novel class of

  17. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    OpenAIRE

    Yuka Sakuma; Masayuki Imai

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhes...

  18. A defect mediated lamellar to isotropic transition of amphiphile bilayers

    OpenAIRE

    Pal, Antara; Pabst, Georg; Raghunathan, V. A.

    2011-01-01

    We report the observation of a novel isotropic phase of amphiphile bilayers in a mixed system consisting of the ionic surfactant, sodium docecylsulphate (SDS), and the organic salt p-toludine hydrochloride (PTHC). This system forms a collapsed lamellar ($L_\\alpha$) phase over a wide range of water content, which transforms into an isotropic phase on heating. This transition is not observed in samples without excess water, where the $L_\\alpha$ phase is stable at higher temperatures. Our observ...

  19. The lamellar-to-isotropic transition in ternary amphiphilic systems

    OpenAIRE

    Schwarz, U. S.; Swamy, K.; Gompper, G.

    1996-01-01

    We study the dependence of the phase behavior of ternary amphiphilic systems on composition and temperature. Our analysis is based on a curvature elastic model of the surfactant film with sufficiently large spontaneous curvature and sufficiently negative saddle-splay modulus that the stable phases are the lamellar phase and a droplet microemulsion. In addition to the curvature energy, we consider the contributions to the free energy of the long-ranged van der Waals interaction and of the undu...

  20. Supramolecular Packing Controls H₂ Photocatalysis in Chromophore Amphiphile Hydrogels.

    Science.gov (United States)

    Weingarten, Adam S; Kazantsev, Roman V; Palmer, Liam C; Fairfield, Daniel J; Koltonow, Andrew R; Stupp, Samuel I

    2015-12-01

    Light harvesting supramolecular assemblies are potentially useful structures as components of solar-to-fuel conversion materials. The development of these functional constructs requires an understanding of optimal packing modes for chromophores. We investigated here assembly in water and the photocatalytic function of perylene monoimide chromophore amphiphiles with different alkyl linker lengths separating their hydrophobic core and the hydrophilic carboxylate headgroup. We found that these chromophore amphiphiles (CAs) self-assemble into charged nanostructures of increasing aspect ratio as the linker length is increased. The addition of salt to screen the charged nanostructures induced the formation of hydrogels and led to internal crystallization within some of the nanostructures. For linker lengths up to seven methylenes, the CAs were found to pack into 2D crystalline unit cells within ribbon-shaped nanostructures, whereas the nine methylene CAs assembled into long nanofibers without crystalline molecular packing. At the same time, the different molecular packing arrangements after charge screening led to different absorbance spectra, despite the identical electronic properties of all PMI amphiphiles. While the crystalline CAs formed electronically coupled H-aggregates, only CAs with intermediate linker lengths showed evidence of high intermolecular orbital overlap. Photocatalytic hydrogen production using a nickel-based catalyst was observed in all hydrogels, with the highest turnovers observed for CA gels having intermediate linker lengths. We conclude that the improved photocatalytic performance of the hydrogels formed by supramolecular assemblies of the intermediate linker CA molecules likely arises from improved exciton splitting efficiencies due to their higher orbital overlap. PMID:26593389

  1. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung.

    Science.gov (United States)

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda

    2011-03-16

    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  2. Self-assembly of amphiphilic molecules:A review on the recent computer simulation results

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We provided a short review on the recent progresses in computer simulations of adsorption and self-assembly of amphiphilic molecules.Owing to the extensive applications of amphiphilic molecules,it is very important to understand thoroughly the effects of the detailed chemistry,solid surfaces and the degree of confinement on the aggregate morphologies and kinetics of self-assembly for amphiphilic systems.In this review we paid special attention on(i) morphologies of adsorbed surfactants on solid surfaces,(ii) self-assembly in confined systems,and(iii) kinetic processes involving amphiphilic molecules.

  3. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo

    2015-01-01

    Full Text Available Amphiphiles are synthetic or natural molecules with the ability to self-assemble into a wide variety of structures including micelles, vesicles, nanotubes, nanofibers, and lamellae. Self-assembly processes of amphiphiles have been widely used to mimic biological systems, such as assembly of lipids and proteins, while their integrated actions allow the performance of highly specific cellular functions which has paved a way for bottom-up bionanotechnology. While amphiphiles self-assembly has attracted considerable attention for decades due to their extensive applications in material science, drug and gene delivery, recent developments in nanoscience stimulated the combination of the simple approaches of amphiphile assembly with the advanced concept of supramolecular self-assembly for the development of more complex, hierarchical nanostructures. Introduction of stimulus responsive supramolecular amphiphile assembly-disassembly processes provides particularly novel approaches for impacting bionanotechnology applications. Leading examples of these novel self-assembly processes can be found, in fact, in biosystems where assemblies of different amphiphilic macrocomponents and their integrated actions allow the performance of highly specific biological functions. In this perspective, we summarize in this tutorial review the basic concept and recent research on self-assembly of traditional amphiphilic molecules (such as surfactants, amphiphile-like polymers, or lipids and more recent concepts of supramolecular amphiphiles assembly which have become increasingly important in emerging nanotechnology.

  4. Synthesis and characterization of an elastin-mimetic amphiphilic block copolymer protein

    Science.gov (United States)

    Lee, Terrence Anita-Talley

    2000-10-01

    The overall goal in material science is to be able to control the molecular architecture of a material and thus its end properties. There is no method that offers greater control than the biological synthesis of proteins. From the DNA sequence to the final synthesized protein, the entire process is finitely controlled. This present work describes methods developed and used to synthesize protein polymers by manipulating this process. From the initial DNA sequence chosen, the end properties that the protein polymer will have are dictated. An amphiphilic diblock copolymer was designed based on environmentally responsive elastin-mimetic peptide sequences [(Val/Ile)-Pro-Gly-Xaa-Gly] (Xaa = Ala or Glu for the hydrophilic block, Val or Phe for the hydrophobic block) and synthesized using a genetic engineering approach. Differential scanning calorimetry measurements in aqueous solution revealed that reversible hydrophobic folding and assembly of the copolymer occurs above the inverse temperature transition, Tt, of the hydrophobic block. This process results in the formation of 50 nm protein-based micellar aggregates, which were characterized by electron microscopy and temperature-dependent dynamic light scattering techniques. The distribution of micellar aggregates can be altered reproducibly through variation of environmental conditions including pH and temperature. The uniform and defined macromolecular architecture of this protein copolymer permits greater control over the physical properties of the micelles, which therefore may facilitate applications in controlled release of small molecules.

  5. The future of bioactive ceramics.

    Science.gov (United States)

    Hench, Larry L

    2015-02-01

    Two important worldwide needs must be satisfied in the future; (1) treatment of the deteriorating health of an aging population and, (2) decreasing healthcare costs to meet the needs of an increased population. The ethical and economic dilemma is how to achieve equality in quality of care while at the same time decreasing cost of care for an ever-expanding number of people. The limited lifetime of prosthetic devices made from first-generation nearly inert biomaterials requires new approaches to meet these two large needs. This paper advises an expanded emphasis on: (1) regeneration of tissues and (2) prevention of tissue deterioration to meet this growing need. Innovative use of bioactive ceramics with genetic control of in situ tissue responses offers the potential to achieve both tissue regeneration and prevention. Clinical success of use of bioactive glass for bone regeneration is evidence that this concept works. Likewise the use of micron sized bioactive glass powders in a dentifrice for re-mineralization of teeth provides evidence that prevention of tissue deterioration is also possible. This opinion paper outlines clinical needs that could be met by innovative use of bioactive glasses and ceramics in the near future; including: regeneration of skeletal tissues that is patient specific and genetic based, load-bearing bioactive glass-ceramics for skeletal and ligament and tendon repair, repair and regeneration of soft tissues, and rapid low-cost analysis of human cell-biomaterial interactions leading to patient specific diagnoses and treatments using molecularly tailored bioceramics.

  6. Non-peptide metabolites from the genus Bacillus.

    Science.gov (United States)

    Hamdache, Ahlem; Lamarti, Ahmed; Aleu, Josefina; Collado, Isidro G

    2011-04-25

    Bacillus species produce a number of non-peptide metabolites that display a broad spectrum of activity and structurally diverse bioactive chemical structures. Biosynthetic, biological, and structural studies of these metabolites isolated from Bacillus species are reviewed. This contribution also includes a detailed study of the activity of the metabolites described, especially their role in biological control mechanisms.

  7. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  8. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    International Nuclear Information System (INIS)

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO2-CaO-P2O5 mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  9. Assembly and Structure of alpha-helical Peptide Films on Hydrophobic Fluorocarbon Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, T.; Samual, N; McCrea, K; Gamble, L; Ward, R; Castner, D

    2010-01-01

    The structure, orientation, and formation of amphiphilic {alpha}-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The {alpha}-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide {pi}* is likely due to the broad distribution of amide bond orientations inherent to the {alpha}-helical secondary structure. SFG spectra exhibit strong peaks near 2865 and 2935 cm{sup -1} related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 and 3400 cm{sup -1} indicate ordering of water molecules in the adsorbed-peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm{sup -1} confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air-buffer interface showed features related to well-ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates.

  10. pH-dependent and pH-independent self-assembling behavior of surfactant-like peptides

    DEFF Research Database (Denmark)

    Gurevich, Leonid; Fojan, Peter

    2012-01-01

    Self-assembly of amphiphilic peptides designed during the last years by several research groups leads to a large variety of 3D-structures that already found applications in stabilization of large protein complexes, cell culturing systems etc. In this report, we present synthesis and characterizat......Self-assembly of amphiphilic peptides designed during the last years by several research groups leads to a large variety of 3D-structures that already found applications in stabilization of large protein complexes, cell culturing systems etc. In this report, we present synthesis...... and characterization of two novel families of amphiphilic peptides KAn and KAnW (n=6,5,4) that exhibits clear charge separation controllable by pH of the environment. As the pH changes from acidic to basic, the charge on the ends of the peptide molecule varies eventually leading to reorganization of KAn micelles...... and even micellar inversion. On contrary, the bulky geometry of the tryptophan residue in KAnW limits the variation of the surfactant parameter and hence largely prevents assembly into spherical or cylindrical micelles while favouring flatter geometries. The studied short peptide families demonstrate...

  11. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    OpenAIRE

    Laura Montesinos; Mireia Bundó; Esther Izquierdo; Sonia Campo; Esther Badosa; Michel Rossignol; Emilio Montesinos; Blanca San Segundo; María Coca

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice ...

  12. Nanocellulose-based biosensors: design, preparation, and activity of peptide-linked cotton cellulose nanocrystals having fluorimetric and colorimetric elastase detection sensitivity

    Science.gov (United States)

    Nanocrystalline cellulose is an amphiphilic, high surface area material that can be easily functionalized and is biocom-patible and eco-friendly. It has been used singularly and in combination with other nanomaterials to optimize biosensor design. The attachment of peptides and proteins to nanocryst...

  13. Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds

    NARCIS (Netherlands)

    Buitink, J.; Leprince, O.; Hoekstra, F.A.

    2000-01-01

    This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and cucumb

  14. Bioactive saponins from Dioscorea futschauensis.

    Science.gov (United States)

    Liu, H W; Hu, K; Zhao, Q C; Cui, C B; Kobayashi, H; Yao, X S

    2002-08-01

    A new anti-neoplastic spirostanol saponin, (25S)-spirost-5-en-3 beta, 27-diol-3O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl (1-->3)]-beta-D-glucopyranoside and three known compounds viz. prosapogenin A of dioscin, dioscin and gracilin were isolated from Dioscorea futschauensis by bioactivity-guided fractionation. Their structures were elucidated mainly by means of spectroscopic analysis. Their bioactivity against Pyricularia oryzae and cytotoxic activity on ts-FT210 cell line was evaluated. PMID:12227201

  15. Preparation and bioactivity of sol-gel macroporous bioactive glass

    Institute of Scientific and Technical Information of China (English)

    Zhihua Zhou; Jianming Ruan; Jianpeng Zou; Zhongcheng Zhou

    2008-01-01

    Bioactive glass is well known for its ability of bone regeneration, and sol-gel bioactive glass has many advantages com-pared with melt-derived bioactive glass. 3-D scaffold prepared by the sol-gel method is a promising substrate material for bone tissue engineering and large-scale bone repair. Porous sol-gel glass in the CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by the addition of stearic acid as a pore former. The diameter of the pore created by the pore former varied from 100 to 300μm. The formation of a hydroxyapatite layer on the glass was analyzed by studying the surface of the porous glass by scanning elec-tron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Raman spectra after they had been immersed in simulated body fluid (SBF) for some time, and the porous glass shows good bioactivity.

  16. REDV Peptide Conjugated Nanoparticles/pZNF580 Complexes for Actively Targeting Human Vascular Endothelial Cells.

    Science.gov (United States)

    Shi, Changcan; Li, Qian; Zhang, Wencheng; Feng, Yakai; Ren, Xiangkui

    2015-09-16

    Herein, we demonstrate that the REDV peptide modified nanoparticles (NPs) can serve as a kind of active targeting gene carrier to condensate pZNF580 for specific promotion of the proliferation of endothelial cells (ECs). First, we synthesized a series of biodegradable amphiphilic copolymers by ring-opening polymerization reaction and graft modification with REDV peptide. Second, we prepared active targeting NPs via self-assembly of the amphiphilic copolymers using nanoprecipitation technology. After condensation with negatively charged pZNF580, the REDV peptide modified NPs/pZNF580 complexes were formed finally. Due to the binding affinity toward ECs of the specific peptide, these REDV peptide modified NPs/pZNF580 complexes could be recognized and adhered specifically by ECs in the coculture system of ECs and human artery smooth muscle cells (SMCs) in vitro. After expression of ZNF580, as the key protein to promote the proliferation of ECs, the relative ZNF580 protein level increased from 15.7% to 34.8%. The specificity in actively targeting ECs of the REDV peptide conjugated NPs/pZNF580 complexes was still retained in the coculture system. These findings in the present study could facilitate the development of actively targeting gene carriers for the endothelialization of artificial blood vessels. PMID:26373583

  17. Stimuli-Responsive Codelivery of Oligonucleotides and Drugs by Self-Assembled Peptide Nanoparticles.

    Science.gov (United States)

    Sigg, Severin J; Postupalenko, Viktoriia; Duskey, Jason T; Palivan, Cornelia G; Meier, Wolfgang

    2016-03-14

    Ever more emerging combined treatments exploiting synergistic effects of drug combinations demand smart, responsive codelivery carriers to reveal their full potential. In this study, a multifunctional stimuli-responsive amphiphilic peptide was designed and synthesized to self-assemble into nanoparticles capable of co-bearing and -releasing hydrophobic drugs and antisense oligonucleotides for combined therapies. The rational design was based on a hydrophobic l-tryptophan-d-leucine repeating unit derived from a truncated sequence of gramicidin A (gT), to entrap hydrophobic cargo, which is combined with a hydrophilic moiety of histidines to provide electrostatic affinity to nucleotides. Stimuli-responsiveness was implemented by linking the hydrophobic and hydrophilic sequence through an artificial amino acid bearing a disulfide functional group (H3SSgT). Stimuli-responsive peptides self-assembled in spherical nanoparticles in sizes (100-200 nm) generally considered as preferable for drug delivery applications. Responsive peptide nanoparticles revealed notable nucleotide condensing abilities while maintaining the ability to load hydrophobic cargo. The disulfide cleavage site introduced in the peptide sequence induced responsiveness to physiological concentrations of reducing agent, serving to release the incorporated molecules. Furthermore, the peptide nanoparticles, singly loaded or coloaded with boron-dipyrromethene (BODIPY) and/or antisense oligonucleotides, were efficiently taken up by cells. Such amphiphilic peptides that led to noncytotoxic, reduction-responsive nanoparticles capable of codelivering hydrophobic and nucleic acid payloads simultaneously provide potential toward combined treatment strategies to exploit synergistic effects. PMID:26871486

  18. Conus venom peptide pharmacology.

    Science.gov (United States)

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  19. Stable Vesicles Composed of Mono- or Dicarboxylic Fatty Acids and Trimethylammonium Amphiphiles

    DEFF Research Database (Denmark)

    Caschera, Filippo; Bernardino de la Serna, Jorge; Löffler, Philipp M. G.;

    2011-01-01

    The self-assembly of cationic and anionic amphiphile mixtures into vesicles in aqueous media was studied using two different systems: i) decanoic acid and trimethyldecylammonium bromide ii) hexadecanedioic acid (a simple bola-amphiphile) and trimethyldecylammonium bromide. The resulting vesicles ...

  20. Phosphate bioisostere containing amphiphiles: a novel class of squaramide-based lipids.

    Science.gov (United States)

    Saha, Abhishek; Panda, Subhankar; Paul, Saurav; Manna, Debasis

    2016-07-19

    We describe a novel class of amphiphiles with squaramide moiety as a phosphate bioisostere. Most synthesized squaramide-based amphiphiles have the favorable physicochemical properties of lipids, such as: formation of stable liposomes or giant unilamellar vesicles in aqueous solution, high phase-transition temperature, low vesicle leakage and phospholipase resistance properties. PMID:27377058

  1. Spider-Venom Peptides as Therapeutics

    Directory of Open Access Journals (Sweden)

    Glenn F. King

    2010-12-01

    Full Text Available Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides, making them a valuable resource for drug discovery. Here we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction.

  2. Antimicrobial Peptides: Multifunctional Drugs for Different Applications

    Directory of Open Access Journals (Sweden)

    Lea-Jessica Albrecht

    2012-02-01

    Full Text Available Antimicrobial peptides (APs are an important part of the innate immune system in epithelial and non-epithelial surfaces. So far, many different antimicrobial peptides from various families have been discovered in non-vertebrates and vertebrates. They are characterized by antibiotic, antifungal and antiviral activities against a variety of microorganisms. In addition to their role as endogenous antimicrobials, APs participate in multiple aspects of immunity. They are involved in septic and non-septic inflammation, wound repair, angiogenesis, regulation of the adaptive immune system and in maintaining homeostasis. Due to those characteristics AP could play an important role in many practical applications. Limited therapeutic efficiency of current antimicrobial agents and the emerging resistance of pathogens require alternate antimicrobial drugs. The purpose of this review is to highlight recent literature on functions and mechanisms of APs. It also shows their current practical applications as peptide therapeutics and bioactive polymers and discusses the possibilities of future clinical developments.

  3. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles.

    Science.gov (United States)

    Fleming, Scott; Debnath, Sisir; Frederix, Pim W J M; Hunt, Neil T; Ulijn, Rein V

    2014-04-14

    The coassembly of small molecules is a useful means of increasing the complexity and functionality of their resultant supramolecular constructs in a modular fashion. In this study, we explore the assembly and coassembly of serine surfactants and tyrosine-leucine hydrogelators, capped at the N-termini with either fluorenyl-9-methoxycarbonyl (Fmoc) or pyrene. These systems all exhibit self-assembly behavior, which is influenced by aromatic stacking interactions, while the hydrogelators also exhibit β-sheet-type arrangements, which reinforce their supramolecular structures. We provide evidence for three distinct supramolecular coassembly models; cooperative, disruptive, and orthogonal. The coassembly mode adopted depends on whether the individual constituents (I) are sufficiently different, such that effective segregation and orthogonal assembly occurs; (II) adhere to a communal mode of self-assembly; or (III) act to compromise the assembly of one another via incorporation and disruption. We find that a greater scope for controllable coassembly exists within orthogonal systems; which show minimal relative changes in the native gelator's supramolecular structure by Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and fluorescence spectroscopy. This is indicative of the segregation of orthogonal coassembly constituents into distinct domains, where surfactant chemical functionality is presented at the surface of the gelator's supramolecular fibers. Overall, this work provides new insights into the design of modular coassembly systems, which have the potential to augment the chemical and physical properties of existing gelator systems. PMID:24568678

  4. Electrostatic effects on the self-assembly mechanism of peptide amphiphiles

    OpenAIRE

    Toksöz, Sıla

    2010-01-01

    Ankara : The Graduate Program of Materials Science and Nanotechnology and the Institute of Engineering and Sciences of Bilkent University, 2010. Thesis (Master's) -- Bilkent University, 2010. Includes bibliographical references leaves 58-60. Toksöz, Sıla Master's

  5. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    of infant formula. Thereafter, bioactive milk components which were preserved in gently-processed infant formula were selected for further investigation of their immunomodulatory activity in cell and preterm pig models. We hope this project will contribute to the research on the development of new...

  6. Electrochemical redox responsive polymeric micelles formed from amphiphilic supramolecular brushes.

    Science.gov (United States)

    Feng, Anchao; Yan, Qiang; Zhang, Huijuan; Peng, Liao; Yuan, Jinying

    2014-05-11

    The end-decorated homopolymer poly(ε-caprolactone)-ferrocene threaded onto a β-cyclodextrin-functionalized main-chain polymer can form a class of amphiphilic noncovalent graft copolymers based on the host-guest interactions of the terminal groups on the side chains. These new supramolecular polymer brushes can further self-assemble into micellar aggregates that exhibit reversible assembly and disassembly behavior under an electrochemical redox trigger, which opens up a new route to building dynamic block copolymer topologies. PMID:24681929

  7. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    Directory of Open Access Journals (Sweden)

    Yuka Sakuma

    2015-03-01

    Full Text Available It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life.

  8. From vesicles to protocells: the roles of amphiphilic molecules.

    Science.gov (United States)

    Sakuma, Yuka; Imai, Masayuki

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256

  9. Identification of new members within suites of amphiphilic marine siderophores

    OpenAIRE

    Vraspir, Julia M.; Holt, Pamela D.; Butler, Alison

    2010-01-01

    Marine bacterial isolates Vibrio sp. HC0601C5 and Halomonas meridiana str. HC4321C1 were isolated off the coast of southern California and were found to produce an expanded suite of previously identified amphiphilic siderophores. Specifically two new members of the amphibactin family, amphibactins S and T, which have a C14:1 ω-7 fatty acid and a saturated C12 fatty acid, respectively, were produced by Vibrio sp. HC0601C5. These siderophores are produced in addition to a number of previously d...

  10. Synthesis of Amphiphilic Block Copolymers for Use in Biomedical Applications

    OpenAIRE

    Carmichael-Baranauskas, Anita Yvonne

    2010-01-01

    The research presented in this thesis focuses on the synthesis of three amphiphilic block copolymer systems containing poly(ethylene oxide) (PEO) blocks. The polymer systems were developed for use in biomedical applications. The first of these is a series of poly(ethylene oxide-b¬-oxazoline) (PEO-b-POX) diblock copolymers for use in the progress towards novel non-viral gene transfer vectors. Poly(ethylene oxide-b¬-2-ethyl-2-oxazoline) (PEO-b-PEOX) and poly(ethylene oxide-b¬-2-methyl-2-o...

  11. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  12. Antihypertensive Peptides from Milk Proteins

    Directory of Open Access Journals (Sweden)

    Heikki Vapaatalo

    2010-01-01

    Full Text Available Dietary proteins possess a wide range of nutritional and functional properties. They are used as a source of energy and amino acids, which are needed for growth and development. Many dietary proteins, especially milk proteins, contain physiologically active peptides encrypted in the protein sequence. These peptides may be released during gastrointestinal digestion or food processing and once liberated, cause different physiological functions. Milk-derived bioactive peptides are shown to have antihypertensive, antimicrobial, immunomodulatory, antioxidative and mineral-binding properties. During the fermentation of milk with certain lactobacilli, two interesting tripeptides Ile-Pro-Pro and Val-Pro-Pro are released from casein to the final product. These lactotripeptides have attenuated the development of hypertension in several animal models and lowered blood pressure in clinical studies. They inhibit ACE in vitro at micromolar concentrations, protect endothelial function in vitro and reduce arterial stiffness in humans. Thus, milk as a traditional food product can after certain processing serve as a functional food and carry specific health-promoting effects, providing an option to control blood pressure.

  13. Antimicrobial peptides.

    Science.gov (United States)

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  14. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  15. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    Science.gov (United States)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  16. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization

    Science.gov (United States)

    Duval-Terrié, Caroline; Cosette, Pascal; Molle, Gérard; Muller, Guy; Dé, Emmanuelle

    2003-01-01

    The aim of this study was to develop new surfactants for membrane protein solubilization, from a natural, biodegradable polymer: the polysaccharide pullulan. A set of amphiphilic pullulans (HMCMPs), differing in hydrophobic modification ratio, charge ratio, and the nature of the hydrophobic chains introduced, were synthesized and tested in solubilization experiments with outer membranes of Pseudomonas fluorescens. The membrane proteins were precipitated, and then resolubilized with various HMCMPs. The decyl alkyl chain (C10) was the hydrophobic graft that gave the highest level of solubilization. Decyl alkyl chain-bearing HMCMPs were also able to extract integral membrane proteins from their lipid environment. The best results were obtained with an amphiphilic pullulan bearing 18% decyl groups (18C10). Circular dichroism spectroscopy and membrane reconstitution experiments were used to test the structural and functional integrity of 18C10-solubilized proteins (OmpF from Escherichia coli and bacteriorhodopsin from Halobacterium halobium). Whatever their structure type (α or β), 18C10 did not alter either the structure or the function of the proteins analyzed. Thus, HMCMPs appear to constitute a promising new class of polymeric surfactants for membrane protein studies. PMID:12649425

  17. DEFORMATION OF COPOLYMER MICELLES INDUCED BY AMPHIPHILIC DIMER PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren

    2012-01-01

    Combining self-consistent-field theory and density-functional theory,we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles.Due to the amphiphilic nature,dimer particles tend to accumulate onto the interface of the copolymer micelle.With increasing concentration of the symmetric dimer particles,which are made of two identical spherical particles,the micelle deforms from the initial sphere to ellipse,dumbbell,and finally separates into two micelles.Furthermore,asymmetric dimer particles,composed by two particles with different sizes,are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle.It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle.The present study on the deformation of micelles is useful to understand the possible shape variation in the course of cell division/fusion.

  18. Lipophosphoramidate-based bipolar amphiphiles: their syntheses and transfection properties.

    Science.gov (United States)

    Berchel, Mathieu; Le Gall, Tony; Lozach, Olivier; Haelters, Jean-Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2016-03-14

    Six new cationic bolaamphiphiles (also called bipolar amphiphiles, bolaform amphiphiles, or bolalipids) were readily prepared by a thiol-ene click reaction that engaged a mercapto-alcohol (mercapto-ethanol or mercapto-hexanol) and a cationic based lipophosphoramidate. The cationic lipophosphoramidates contain two lipid chains that end in an alkene group and a selected cationic polar head group (trimethylammonium, dimethyl hydroxyethyl ammonium, or methylimidazolium). These compounds were formulated in water (with or without DOPE as a colipid) to produce supramolecular aggregates. These aggregates, before (i.e. bolasomes) and after (i.e. bolaplexes) mixing with plasmid DNA (pDNA) at various charge ratios, were characterized with regard to their sizes and zeta potentials. In the case of bolasomes, the suspensions were unstable since precipitation occurred after only a few hours at room temperature. On the other hand, bolaplex formulations exhibited clearly a better colloidal stability. Then, the gene delivery properties of the cationic bolasomes were investigated using two human-derived epithelial cell lines (A549 and 16HBE). Compared to the commercially available lipofection reagent (Lipofectamine), most of the cationic bolaamphiphiles were able to efficiently transfect these cells when they were formulated with DOPE in a 1 : 1 molar ratio. We report herein that bolaamphiphiles possessing a trimethylammonium or a dimethyl hydroxyethyl ammonium head group were the most efficient in terms of transfection efficiency while exhibiting no significant cytotoxicity. PMID:26864681

  19. The Behavior of Amphiphile at Oil-Water Interface by Monte Carlo Simulation%双亲分子在油水界面的行为研究

    Institute of Scientific and Technical Information of China (English)

    潘海华; 李啸风; 李浩然; 刘迪霞; 韩世钧

    2003-01-01

    A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In thismodel, the oil-water interface is fixed, And amphiphile molecules will be enriched at the oil-water interface. Theinterfacial concentration of amphiphile calculated by Monte Carlo method shows that it is easier for the hydrophilic-hydrophobic balanced amphiphile to stay at the interface. And the adsorption of amphiphile increases with theincrease of amphiphile concentration and the decrease with temperature.

  20. Spatial location of indomethacin associated with unimeric amphiphilic carrier macromolecules as determined by nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Orban, David E; Moretti, Alysha; Uhrich, Kathryn E

    2016-07-01

    A combination of nuclear magnetic resonance (NMR) techniques including, proton NMR, relaxation analysis, two-dimensional nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy, has been used to demonstrate the spatial location of indomethacin within a unimolecular micelle. Understanding the location of drugs within carrier molecules using such NMR techniques can facilitate rational carrier design. In addition, this information provides insight to encapsulation efficiency of different drugs to determine the most efficient system for a particular bioactive. This study demonstrates that drugs loaded by the unimolecular amphiphile under investigation are not necessarily encapsulated but reside or localize to the periphery or interfacial region of the carrier molecule. The results have further implications as to the features of the unimolecular carrier that contribute to drug loading. In addition, evidence of drug retention associated with the unimolecular surfactant is possible in organic media, as well as in an aqueous environment. Such findings have implications for rational carrier design to correlate the carrier features to the drug of interest and indicate the strong retention capabilities of the unimolecular micelle for delivery applications. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Preparation of amphiphilic glycopolymers with flexible long side chain and their use as stabilizer for emulsion polymerization.

    Science.gov (United States)

    Alvárez-Paino, Marta; Juan-Rodríguez, Rafael; Cuervo-Rodríguez, Rocío; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2014-03-01

    A glycomonomer was synthesized from poly(ethylene glycol) methacrylate (PEGMA). The terminal hydroxyl moieties were activated with ester groups and subsequently the glucosamine was incorporated forming urethane linkages. The obtained glycomonomer was copolymerized with methyl acrylate by free radical polymerization varying the initial feed composition to produce different amphiphilic glycopolymers. The glycopolymers were then characterized and compared with the homologous glycopolymers based on 2-{[(D-glucosamin-2-N-yl)carbonyl]oxy}ethyl methacrylate. Both series of glycopolymers were used in emulsion polymerization of methyl acrylate as stabilizers without the addition of any cosurfactant. Although high conversions were not achieved with any of the employed surfactant, the glycopolymers provide good colloidal stability, spherical, monodisperse and small latex particles in comparison with the surfactant-free emulsion polymerization. The latex particles stabilized with the glycosurfactant based on PEGMA, containing a flexible spacer between the backbone and the glucosamine, lead to smooth films whereas the short side chain surfactant from 2-hydroxyethyl methacrylate (HEMA), with higher glass transition temperature, restricts the coalescence of particles and, therefore, the film formation. Moreover, the surface bioactivity of these polymer coatings was examined by analyzing their specific interaction with the lectin, Concanavalin A, Canavalia ensiformis. The specific and successful binding to the Concanavalin A was demonstrated by fluorescence microscopy for both series being more intense with increasing amount of glycounits in the glycopolymer stabilizers. Interestingly, the incorporation of a flexible spacer in the glycopolymer structures enhances the binding activity.

  2. Spatial location of indomethacin associated with unimeric amphiphilic carrier macromolecules as determined by nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Orban, David E; Moretti, Alysha; Uhrich, Kathryn E

    2016-07-01

    A combination of nuclear magnetic resonance (NMR) techniques including, proton NMR, relaxation analysis, two-dimensional nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy, has been used to demonstrate the spatial location of indomethacin within a unimolecular micelle. Understanding the location of drugs within carrier molecules using such NMR techniques can facilitate rational carrier design. In addition, this information provides insight to encapsulation efficiency of different drugs to determine the most efficient system for a particular bioactive. This study demonstrates that drugs loaded by the unimolecular amphiphile under investigation are not necessarily encapsulated but reside or localize to the periphery or interfacial region of the carrier molecule. The results have further implications as to the features of the unimolecular carrier that contribute to drug loading. In addition, evidence of drug retention associated with the unimolecular surfactant is possible in organic media, as well as in an aqueous environment. Such findings have implications for rational carrier design to correlate the carrier features to the drug of interest and indicate the strong retention capabilities of the unimolecular micelle for delivery applications. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26864907

  3. Review: Production and functionality of active peptides from milk.

    Science.gov (United States)

    Muro Urista, C; Álvarez Fernández, R; Riera Rodriguez, F; Arana Cuenca, A; Téllez Jurado, A

    2011-08-01

    In recent years, research on the production of active peptides obtained from milk and their potential functionality has grown, to a great extent. Bioactive peptides have been defined as specific protein fragments that have a positive impact on body functions or conditions, and they may ultimately have an influence on health. Individual proteins of casein or milk-derived products such as cheese and yogurt have been used as a protein source to study the isolation and activity of peptides with several applications. Currently, the milk whey waste obtained in the production of cheese also represents a protein source from which active peptides could be isolated with potential industrial applications. The active properties of milk peptides and the results found with regard to their physiological effects have led to the classification of peptides as belonging to the group of ingredients of protein nature, appropriate for use in functional foods or pharmaceutical formulations. In this study, the main peptides obtained from milk protein and the past research studies about its production and biological activities will be explained. Second, an analysis will be made on the methods to determinate the biological activities, the separation of bioactive peptides and its structure identification. All of these form the base required to obtain synthetic peptides. Finally, we explain the experimental animal and human trials done in the past years. Nevertheless, more research is required on the design and implementation of equipment for the industrial production and separation of peptides. In addition, different authors suggest that more emphasis should therefore be given to preclinical studies, proving that results are consistent and that effects are demonstrated repeatedly by several research human groups.

  4. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration.

    Science.gov (United States)

    Loo, Yihua; Goktas, Melis; Tekinay, Ayse B; Guler, Mustafa O; Hauser, Charlotte A E; Mitraki, Anna

    2015-11-18

    Self-assembling proteins and peptides are increasingly gaining interest for potential use as scaffolds in tissue engineering applications. They self-organize from basic building blocks under mild conditions into supramolecular structures, mimicking the native extracellular matrix. Their properties can be easily tuned through changes at the sequence level. Moreover, they can be produced in sufficient quantities with chemical synthesis or recombinant technologies to allow them to address homogeneity and standardization issues required for applications. Here. recent advances in self-assembling proteins, peptides, and peptide amphiphiles that form scaffolds suitable for tissue engineering are reviewed. The focus is on a variety of motifs, ranging from minimalistic dipeptides, simplistic ultrashort aliphatic peptides, and peptide amphiphiles to large "recombinamer" proteins. Special emphasis is placed on the rational design of self-assembling motifs and biofunctionalization strategies to influence cell behavior and modulate scaffold stability. Perspectives for combination of these "bottom-up" designer strategies with traditional "top-down" biofabrication techniques for new generations of tissue engineering scaffolds are highlighted. PMID:26461979

  5. Synthesis of Polymerizable Amphiphiles with Systematic Variation of Critical Packing Parameters

    Institute of Scientific and Technical Information of China (English)

    M. H. Li; W. L. Yang; J. Qian; C. C. Wang; S. K. Fu

    2005-01-01

    @@ 1Introduction An amphiphile is a molecule composed of hydrophilic part and hydrophobic part, which are incompatible and tend to separate from each other. The tendency of separation is often promoted by addition of water and sometimes also oil. Under balanced conditions the mixtures form macroscopically homogeneous phases, including isotropic solution phases and liquid crystalline phases. Correlation of the amphiphile structure with its preferred phases could be understood with a simple geometric model[1], which defines a dimensionless Critical Packing Parameter (CPP) to describe the relative bulkiness of the hydrophobic part and the hydrophilic part in an amphiphile. With CPP increasing from a small value to a high value the amphiphile changes from hydrophilic to hydrophobic, its preferred phase structure from direct structures via lamellar structure to reverse structures. This model provides a basis for the molecular design of amphiphiles. To immobilize the microstructure of the phases formed by amphiphiles is a challenge for current material chemists. Techniques of both inorganic polymerization[2] and organic polymerization[3] have been developed. With organic polymerization the molecular design of polymerizable amphiphiles is critical for the successful immobilization of the vulnerable precursor microstructures.

  6. Electron paramagnetic resonance study of amphiphiles partitioning behavior in desiccation-tolerant moss during dehydration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of amphiphiles transferring can contribute to the enhancement of desiccation tolerance and the reduction of plasma membrane integrity simultaneously. The effects of amphiphiles partitioning into the lipid phase during water loss has been studied for pollen and seeds using electron paramagnetic resonance (EPR) spectroscopy. However, desiccation-tolerant high plants occur among mosses, several angiosperms and higher plants seeds or pollens. They have different strategies for survival in dehydration and rehydration. A desiccation-tolerant moss Tortula desertorurn was used to investigate the behaviors of amphiphilic molecules during drying by spin label technology. There are small amount of amphiphilic probes partitioning into membrane during moss leaves dehydration, comparing with that in higher plants. Cytoplasm viscosity changed from 1.14 into glass state only dehydration less than 60 min. Moss leaves lost plasma membrane integrity slightly,from 0.115 to 0.237, occurred simultaneously with amphiphiles partition. The results showed the more advantages of mosses than higher plants in adapting fast dehydration. We propose that EPR spin label is feasible for studying the amphiphiles partitioning mechanisms in membrane protection and damage for desiccation-tolerant mosses.(C) 2007 Yan Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  7. Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants.

    Science.gov (United States)

    Albertsen, A N; Duffy, C D; Sutherland, J D; Monnard, P-A

    2014-06-01

    The spontaneous formation of closed bilayer structures from prebiotically plausible amphiphiles is an essential requirement for the emergence of early cells on prebiotic Earth. The sources of amphiphiles could have been both endo- and exogenous (accretion of meteorite carbonaceous material or interstellar dust particles). Among all prebiotic possible amphiphile candidates, those containing phosphate are the least investigated species because their self-assembly occurs in a seemingly too narrow range of conditions. The self-assembly of simple phosphate amphiphiles should, however, be of great interest, as contemporary membranes predominantly contain phospholipids. In contrast to common expectations, we show that these amphiphiles can be easily synthesized under prebiotically plausible environmental conditions and can efficiently form bilayer structures in the presence of various co-surfactants across a large range of pH values. Vesiculation was even observed in crude reaction mixtures that contained 1-decanol as the amphiphile precursor. The two best co-surfactants promoted vesicle formation over the entire pH range in aqueous solutions. Expanding the pH range where bilayer membranes self-assemble and remain intact is a prerequisite for the emergence of early cell-like compartments and their preservation under fluctuating environmental conditions. These mixed bilayers also retained small charged solutes, such as dyes. These results demonstrate that alkyl phosphate amphiphiles might have played a significant role as early compartment building blocks.

  8. Chelating Tendencies of Bioactive Aminophosphonates

    OpenAIRE

    Kiss, Tamas; Lázár, István; Kafarski, Pawel

    1994-01-01

    The metal-binding abilities of a wide variety of bioactive aminophosphonates, from the simple aminoethanephosphonic acids to the rather large macrocyclic polyaza derivatives, are discussed with special emphasis on a comparison of the analogous carboxylic acid and phosphonic acid systems. Examples are given of the biological importance of metal ion – aminophosphonate interactions in living systems, and also of their actual and potential applicability in medicine.

  9. Bioactivity of Rumex obtusifolius (Polygonaceae)

    OpenAIRE

    Harshaw Diane; Nahar Lutfun; Vadla Brahmachari; Saif-E-Naser Gadria M.; Sarker Satyajit D.

    2010-01-01

    Rumex obtusifolius L. (Polygonaceae), commonly known as 'broad-leaf dock', is one of the most common Irish wayside weeds, and it also occurs in silage fields, on river banks, in ditches and on waste grounds. The ethnobotanical uses of this species include its use as an antidote to nettle, depurative, astringent, laxative, and tonic, and in the treatment of sores, blisters, burns, cancer and tumors. The bioactivities of n-hexane, dichloromethane (DCM) and methanol (MeOH) extracts of the leaves...

  10. OBTAINING LOW MOLECULAR WEIGHT PEPTIDES OF MILK AND ANALYSIS OF THEIR IMMUNODEFENCE BOOSTING ACTIVITY Получение низкомолекулярных пептидов молока и исследование их иммуностимулирующей активности

    Directory of Open Access Journals (Sweden)

    Danilov I. M.

    2011-06-01

    Full Text Available Milk protein hydrolysates are analyzed for the presence of low molecular weight fractions of peptides. Bioactivity is shown; the requirements for obtaining are streamlined; effect of peptides on the physical and chemical characteristics of kefir is revealed

  11. Potential Anticarcinogenic Peptides from Bovine Milk

    Directory of Open Access Journals (Sweden)

    Giacomo Pepe

    2013-01-01

    Full Text Available Bovine milk possesses a protein system constituted by two major families of proteins: caseins (insoluble and whey proteins (soluble. Caseins (αS1, αS2, β, and κ are the predominant phosphoproteins in the milk of ruminants, accounting for about 80% of total protein, while the whey proteins, representing approximately 20% of milk protein fraction, include β-lactoglobulin, α-lactalbumin, immunoglobulins, bovine serum albumin, bovine lactoferrin, and lactoperoxidase, together with other minor components. Different bioactivities have been associated with these proteins. In many cases, caseins and whey proteins act as precursors of bioactive peptides that are released, in the body, by enzymatic proteolysis during gastrointestinal digestion or during food processing. The biologically active peptides are of particular interest in food science and nutrition because they have been shown to play physiological roles, including opioid-like features, as well as immunomodulant, antihypertensive, antimicrobial, antiviral, and antioxidant activities. In recent years, research has focused its attention on the ability of these molecules to provide a prevention against the development of cancer. This paper presents an overview of antitumor activity of caseins and whey proteins and derived peptides.

  12. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides.

    Science.gov (United States)

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert

    2016-01-01

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. PMID:27075966

  13. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides.

    Science.gov (United States)

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert

    2016-04-14

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets.

  14. Cucurbit[7]uriI-Based Vesicles Formed by Self-assembly of Supramolecular Amphiphiles

    Institute of Scientific and Technical Information of China (English)

    李佳锡; 周黎鹏; 罗全; 王永国; 张春秋; 卢伟; 徐家云; 刘俊秋

    2012-01-01

    Cucurbituril (CB), a well-known macrocyclic cavitand, has been used extensively to construct supramolecular aggregates. Based on host-guest intertactions, an adamantanyl derivative guest molecule was designed and syn- thesized to prepare a supramolecular amphiphile with cucurbit[7]uril. In aqueous solution, the cucurbit[7]uril based supramolecular amphiphiles self-assemble into well-defined vesicles, and their disassembly can be achieved by addition of excess competitive agent 1-adamantanamine hydrochloride. This vesicle functions as a new nanocapsule to encapsulate molecules within its hollow cavity. Through competitive disassembly of supramolecular amphiphiles, the vesicles behave as a novel drug delivery carrier.

  15. Syntheses, Characterization, Physical and Biological Properties of Long-chain, Water-soluble, Dendritic Amphiphiles

    OpenAIRE

    Williams, André Arvin

    2008-01-01

    In this project, we have designed and synthesized a new series of long-chain, water-soluble, dendritic, anionic amphiphiles [3CAmn, RCONHC(CH2CH2COOH)3, R= CnH2n+1] to alleviate the low aqueous solubility of fatty acids. The dendritic-tricarboxlyato headgroup improves aqueous solubility and allows us to measure the intrinsic biological activity of our amphiphiles without the potential hindrance of low aqueous solubility. The aqueous solubilities of the anionic amphiphiles have been measured...

  16. Where surface physics and fluid dynamics meet: rupture of an amphiphile layer by fluid flow

    OpenAIRE

    Bandi, Mahesh; Goldburg, Walter; Cressman Jr., John; Kellay, Hamid

    2006-01-01

    We investigate the fluctuating pattern created by a jet of fluid impingent upon an amphiphile-covered surface. This microscopically thin layer is initially covered with 50 $\\mu$m floating particles so that the layer can be visualized. A vertical jet of water located below the surface and directed upward drives a hole in this layer. The hole is particle-free and is surrounded by the particle-laden amphiphile region. The jet ruptures the amphiphile layer creating a particle-free region that is ...

  17. Large-scale dissipative particle dynamics simulations of self-assembly amphiphilic systems†

    Science.gov (United States)

    Li, Xuejin; Tang, Yu-Hang

    2014-01-01

    We present large-scale simulation results on the self-assembly of amphiphilic systems in bulk solution and under soft confinement. Self-assembled unilamellar and multilamellar vesicles are formed from amphiphilic molecules in bulk solution. The system is simulated by placing amphiphilic molecules inside large unilamellar vesicles (LUVs) and the dynamic soft confinement-induced self-assembled vesicles are investigated. Moreover, the self-assembly of sickle hemoglobin (HbS) is simulated in a crowded and fluctuating intracellular space and our results demonstrate that the HbS self-assemble into polymer fibers causing the LUV shape to be distorted. PMID:24938634

  18. Characterisation and cytomodulatory properties of peptides from Mozzarella di Bufala Campana cheese whey.

    Science.gov (United States)

    De Simone, Carmela; Picariello, Gianluca; Mamone, Gianfranco; Stiuso, Paola; Dicitore, Alessandra; Vanacore, Daniela; Chianese, Lina; Addeo, Francesco; Ferranti, Pasquale

    2009-03-01

    Bioactive peptides are present in a latent state, encrypted within the amino acid sequence of milk proteins, requiring enzymatic proteolysis for their release. They can be produced by gastrointestinal digestion or food processing, thus they can be present in fermented milks, cheese and also in the by-products of dairy industry such as waste whey. The spectrum of biological activity covered by milk-derived peptides is extremely wide, including antibacterial, immunostimulating, antihypertensive, antithrombotic and opioid actions. However, the characterisation of milk-derived peptides with classical analytical methodologies is severely challenged by the complexity of the milk protein fraction and by the wide dynamic range of relative peptide abundance in both dairy products and by-products. Here we report the characterisation of the peptide fraction released in the whey during the different production stages of Mozzarella di Bufala Campana cheese. The peptide extracts were separated by RP HPLC and analysed by MS in order to identify the peptides produced and to trace the pathway of formation of potential bioactive peptides. The antioxidant properties and the modulatory effect on the cell cycle exerted by the peptide extracts were also studied in CaCo2 cell line. We found that a significant antiproliferative effect on CaCo2 was exerted by Mozzarella di Bufala waste whey peptides. PMID:19035578

  19. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    Science.gov (United States)

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  20. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    Science.gov (United States)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  1. Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers.

    Science.gov (United States)

    Gontsarik, Mark; Buhmann, Matthias T; Yaghmur, Anan; Ren, Qun; Maniura-Weber, Katharina; Salentinig, Stefan

    2016-09-01

    Designing efficient colloidal systems for the delivery of membrane active antimicrobial peptides requires in-depth understanding of their structural and morphological characteristics. Using dispersions of inverted type bicontinuous cubic phase (cubosomes), we examine the effect of integrating the amphiphilic peptide LL-37 at different concentrations on the self-assembled structure and evaluate its bactericidal ability against Escherichia coli. Small-angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy show that LL-37 integrates into the bicontinuous cubic structure, inducing colloidal transformations to sponge and lamellar phases and micelles in a concentration-dependent manner. These investigations, together with in vitro evaluation studies using a clinically relevant bacterial strain, established the composition-nanostructure-activity relationship that can guide the design of new nanocarriers for antimicrobial peptides and may provide essential knowledge on the mechanisms underlying the bacterial membrane disruption with peptide-loaded nanostructures. PMID:27541048

  2. Semi-wet peptide/protein array using supramolecular hydrogel

    Science.gov (United States)

    Kiyonaka, Shigeki; Sada, Kazuki; Yoshimura, Ibuki; Shinkai, Seiji; Kato, Nobuo; Hamachi, Itaru

    2004-01-01

    The protein microarray is a crucial biomaterial for the rapid and high-throughput assay of many biological events where proteins are involved. In contrast to the DNA microarray, it has not been sufficiently established because of protein instability under the conventional dry conditions. Here we report a novel semi-wet peptide/protein microarray using a supramolecular hydrogel composed of glycosylated amino acetate. The spontaneous gel-formation and amphiphilic properties of this supramolecular hydrogel have been applied to a new type of peptide/protein gel array that is compatible with enzyme assays. Aqueous cavities created in the gel matrix are a suitable semi-wet reaction medium for enzymes, whereas the hydrophobic domains of the fibre are useful as a unique site for monitoring the reaction. This array system overcomes several drawbacks of conventional protein chips, and thus can have potential applications in pharmaceutical research and diagnosis.

  3. Biosynthetic engineering of nonribosomal peptide synthetases.

    Science.gov (United States)

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  4. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  5. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    Science.gov (United States)

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  6. Structure and reactivity in amphiphile-water micelles

    International Nuclear Information System (INIS)

    Following a review of the general properties of micelles, this report contains two parts: - A structural study of octylphosphate micelles. Important structural changes have been evidenced by mean of small angle neutron scattering as the electrical charge of the interface is varied. The NMR relaxation study of the conformation of the hydrocarbon chains has shown that the micellar core is disordered in contrast with the interface which is rather structured. The diffusion motions in the interface and the segmental motions of the chains are fast. - Studies on the reactivity in micelles have been carried out. A large micellar effect on the complexation of transition ions by amphiphilic ligands is evidenced. The problem of solute localization in micelles is developed with few examples. (author)

  7. Nanocapsules templated on liquid cores stabilized by graft amphiphilic polyelectrolytes

    Science.gov (United States)

    Szafraniec, Joanna; Janik, Małgorzata; Odrobińska, Joanna; Zapotoczny, Szczepan

    2015-03-01

    A surfactant-free method of preparation of nanocapsules templated on liquid cores using amphiphilic graft polyelectrolytes was developed. A model photoactive copolymer, poly(sodium 2-acrylamido-2-methyl-1-propanesulfonate) with grafted poly(vinylnaphthalene) chains (PAMPS-graft-PVN) was used to stabilize toluene droplets in an aqueous emulsion. The macromolecules, due to their amphiphilic character and the presence of strong ionic groups, tend to undergo intramolecular aggregation in water but at the water-oil interface less compact conformation is preferred with PVN grafts anchoring in the oil phase and the charged PAMPS main chains residing in the aqueous phase, thus stabilizing the nanoemulsion droplets. Formation of such nanocapsules was confirmed by dynamic light scattering measurements as well as SEM and cryo-TEM imaging. Grafting density and content of the chromophores in the graft copolymers were varied in order to achieve high stability of the coated nanodroplets. It was shown that the capsules are better stabilized by the copolymers with many short hydrophobic grafts than with fewer but longer ones. Use of photoactive polyelectrolytes enabled spectroscopic investigation of the relationship between conformation of the macromolecules and stabilization of the oil-core nanocapsules. Long-term stability of the nanocapsules was achieved and further increased by multilayer shell formation using polyelectrolytes deposited via the layer-by-layer approach. The obtained capsules served as efficient nanocontainers for a hydrophobic fluorescent probe. The proposed strategy of nanocapsule preparation may be easily extended to biologically relevant polymers and applied to fabricate liquid core nanodelivery systems without the need of using low molecular weight additives which may have adverse effects in numerous biomedical applications.A surfactant-free method of preparation of nanocapsules templated on liquid cores using amphiphilic graft polyelectrolytes was developed

  8. Amphiphilic siderophore production by oil-associating microbes.

    Science.gov (United States)

    Kem, Michelle P; Zane, Hannah K; Springer, Stephen D; Gauglitz, Julia M; Butler, Alison

    2014-06-01

    The Deepwater Horizon oil spill in 2010 released an unprecedented amount of oil into the ocean waters of the Gulf of Mexico. As a consequence, bioremediation by oil-degrading microbes has been a topic of increased focus. One factor limiting the rate of hydrocarbon degradation by microbial communities is the availability of necessary nutrients, including iron. The siderophores produced from two Vibrio spp. isolated from the Gulf of Mexico following the Deepwater Horizon oil spill, along with the well-studied oil-degrading microbe, Alcanivorax borkumensis SK2, are studied under iron-limiting conditions. Here we report the amphiphilic amphibactin siderophores produced by the oil-associated bacteria, Vibrio sp. S1B, Vibrio sp. S2A and Alcanivorax borkumensis SK2. These findings provide insight into oil-associating microbial iron acquisition. PMID:24663669

  9. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery.

    Science.gov (United States)

    Miryala, Bhavani; Godeshala, Sudhakar; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Tian, Yanqing; Rege, Kaushal

    2016-10-01

    The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer. PMID:27472455

  10. Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Rati Ranjan; Yamada, Tasuku; Matsuoka, Hideki, E-mail: ratiranjan@immt.res.in, E-mail: matsuoka@star.polym.kyoto-u.ac.jp [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2011-09-19

    Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.

  11. Globules of annealed amphiphilic copolymers: Surface structure and interactions

    Science.gov (United States)

    Jarkova, E.; Johner, A.; Maresov, E. A.; Semenov, A. N.

    2006-12-01

    A mean-field theory of globules of random amphiphilic copolymers in selective solvents is developed for the case of an annealed copolymer sequence: each unit can be in one of two states, H (insoluble) or P (soluble or less insoluble). The study is focussed on the regime when H and P units tend to form long blocks, and when P units dominate in the dilute phase, but are rare in the globule core. A first-order coil-to-globule transition is predicted at some T = Tcg. The globule core density at the transition point increases as the affinity of P units to the solvent, tildeɛ, is increased. Two collapse transitions, coil → “loose” globule and “loose” globule → “dense” globule, are predicted if tildeɛ is high enough and P units are marginally soluble or weakly insoluble. H and P concentration profiles near the globule surface are obtained and analyzed in detail. It is shown that the surface excess of P units rises as tildeɛ is increased. The surface tension decreases in parallel. Considering the interaction between close enough surfaces of two globules, we show that they always attract each other at a complete equilibrium. It is pointed out, however, that such equilibrium may be difficult to reach, so that partially equilibrium structures (defined by the condition that a chain forming one globule does not penetrate into the core of the other globule) are relevant. It is shown that at such partial equilibrium the interaction is repulsive, so the globules may be stabilized from aggregation. The strongest repulsion is predicted at the coil-to-globule transition point Tcg: the repulsion force decreases with the distance between the surfaces according to a power law. In the general case (apart from Tcg) the force vs. distance decay becomes exponential; the decay length ξ diverges as T → Tcg. The developed theory explains certain anomalous properties observed for globules of amphiphilic homopolymers.

  12. 海洋贝类活性肽研究进展%Functional and bioactive properties of marine shellfish derived peptides:a review

    Institute of Scientific and Technical Information of China (English)

    蔡康鹏; 蔡水淋; 吴靖娜; 苏捷; 刘智禹; 肖美添

    2016-01-01

    海洋贝类含有丰富的、结构多样的生物活性肽。研究发现这些生物活性肽具有多种生理调节功能,已经发现的有抗氧化、抗肿瘤、抗高血压、抑菌和抗凝血等生物活性。酶解法制备海洋贝类活性肽已成为当前国内外研究的热点。本文综述了在制备、分离和纯化海洋贝类活性肽过程中的相关技术,概述了海洋贝类活性肽的活性及其结构鉴定方法,并就有关海洋贝类活性肽研究开发过程中存在的一些问题做了简要讨论。%Marine shellfish are rich of sources of structurally diverse biofunctional peptides. Researches showed that those biofunctional peptides may significantly promote human health. The bioactive peptides de-rived from marine shellfish have a variety of physiologic functions, and they have been reported to have antiox-idative, antitumor, antihypertension, anticoagulation and anticoagulation activities. Nowadays, more and more domestic and overseas research institutions are interested in the preparation of bioactive peptides from marine shellfish by enzymatic hydrolysis. This review summarizes current technologies used in the prepara-tion, separation and purification technologies of bioactive peptides from marine shellfish. It outlines the activ-ities and methods of structural identification of marine shellfish -derived bioactive peptides. Finally, some questions about the research of bioactive peptides found in marine shellfish are briefly discussed.

  13. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  14. Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo.

    Science.gov (United States)

    Van Hove, Amy H; Burke, Kathleen; Antonienko, Erin; Brown, Edward; Benoit, Danielle S W

    2015-11-10

    Therapeutic angiogenesis holds great potential for a myriad of tissue engineering and regenerative medicine approaches. While a number of peptides have been identified with pro-angiogenic behaviors, therapeutic efficacy is limited by poor tissue localization and persistence. Therefore, poly(ethylene glycol) hydrogels providing sustained, enzymatically-responsive peptide release were exploited for peptide delivery. Two pro-angiogenic peptide drugs, SPARC113 and SPARC118, from the Secreted Protein Acidic and Rich in Cysteine, were incorporated into hydrogels as crosslinking peptides flanked by matrix metalloproteinase (MMP) degradable substrates. In vitro testing confirmed peptide drug bioactivity requires sustained delivery. Furthermore, peptides retain bioactivity with residual MMP substrates present after hydrogel release. Incorporation into hydrogels achieved enzymatically-responsive bulk degradation, with peptide release in close agreement with hydrogel mass loss and released peptides retaining bioactivity. Interestingly, SPARC113 and SPARC118-releasing hydrogels had significantly different degradation time constants in vitro (1.16 and 8.77×10(-2) h(-1), respectively), despite identical MMP degradable substrates. However, upon subcutaneous implantation, both SPARC113 and SPARC118 hydrogels exhibited similar degradation constants of ~1.45×10(-2) h(-1), and resulted in significant ~1.65-fold increases in angiogenesis in vivo compared to controls. Thus, these hydrogels represent a promising pro-angiogenic approach for applications such as tissue engineering and ischemic tissue disorders.

  15. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids.

    Science.gov (United States)

    Gissot, Arnaud; Camplo, Michel; Grinstaff, Mark W; Barthélémy, Philippe

    2008-04-21

    Amphiphilic molecules based on nucleosides, nucleotides and oligonucleotides are finding more and more biotechnological applications. This Perspective highlights their synthesis, supramolecular organization as well as their applications in the field of biotechnology.

  16. Amphiphile regulation of ion channel function by changes in the bilayer spring constant

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Koeppe, R.E.; Andersen, Oluf Sten

    2010-01-01

    effect of amphiphiles, at concentrations often used in biological research, on the bilayer elastic response to a change in the hydrophobic length of an embedded protein. The effects of structurally diverse amphiphiles can be described by changes in a phenomenological bilayer spring constant (H......Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e. g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function......-B) that summarizes the bilayer elastic properties, as sensed by a bilayer-spanning protein. Amphiphile-induced changes in H-B, measured using gA channels of a particular length, quantitatively predict changes in lifetime for channels of a different length-as well as changes in the inactivation of voltage...

  17. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  18. Amphiphilic organoplatinum(II) complexes: Self-assembly in solution and at interfaces

    Science.gov (United States)

    Maran, Umamageswaran

    Organoplatinum(II) gemini amphiphiles with three different chain lengths and a predefined angle of 60° are synthesized. Self-organization at the air-water interface is investigated as a function of chain length and reduction in surface area, by using Langmuir-trough techniques. The atomic force microscopy (AFM) images of the transferred Langmuir-Schaefer (LS) films reveals wormlike aggregates for the organoplatinum(II) gemini amphiphiles, possessing hexyloxy- and dodecyloxy-chains. A neutral crown ether functionalized [1+1] facial amphiphile was self-assembled from a flexible 32-membered dibenzo crown ether and a diplatinum acceptor clip. A homologous series of charged triangle-shaped amphiphilic metallomacrocyles was self-assembled from stoichiometric amounts of organoplatinum(II) gemini amphiphiles and bipyridyl donor molecules in quantitative yields. The amphiphilic triangular scaffolds were characterized by multinuclear NMR and ESI-MS. A new amphiphilic organoplatinum(II) precursor with a predefined angle of 90° was synthesized. The precursor was mixed in stoichiometric ratios with two different 3-substituted pyridines and a rigid bipyridyl ligand to construct three charged amphiphilic metallomacrocyles. The computational calculations on the assemblies constructed from flexible 3-substituted pyridines indicate that the assemblies exist largely as chair isomers. The self-organization of the hexacationic triangular amphiphiles at liquid-liquid, air-water and solid-air interfaces was studied using confocal microscopy, in situ Raman spectroscopy, Langmuir-trough techniques, fluorescence spectroscopy and AFM. The amphiphilic triangle with octadecyloxy-chains was found to form a bicontinuous coacervate with pores in a chloroform/water solvent mixture. The pressure-area isotherms revealed formation of surface aggregates at the air-water interface. Fluid AFM studies on the transferred LS layers reveal ridge-like patterns with a flat top. Models were constructed to

  19. Amphiphilic oligoethyleneimine-β-cyclodextrin "click" clusters for enhanced DNA delivery.

    Science.gov (United States)

    Martínez, Álvaro; Bienvenu, Céline; Jiménez Blanco, José L; Vierling, Pierre; Mellet, Carmen Ortiz; García Fernández, José M; Di Giorgio, Christophe

    2013-08-16

    Monodisperse amphiphilic oligoethyleneimine (OEI)-β-cyclodextrin (βCD) clusters have been prepared, and their potential as gene delivery systems has been evaluated in comparison with a nonamphiphilic congener. The general prototype incorporates tetraethyleneimine segments linked to the primary rim of βCD through either triazolyl or thioureidocysteaminyl connectors. Transfection efficiency data for the corresponding CD:pDNA nanocomplexes (CDplexes) in BNL-CL2 murine hepatocytes evidenced the strong beneficial effect of facial amphiphilicity. PMID:23859761

  20. Synthesis and aggregation properties of amphiphilic mono and bisadducts of fullerene in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Pu Zhang; Zhi Xin Guo; Shuang Lv

    2008-01-01

    New amphiphilic[60]fullerene monoadduet TPF and bisadducts BTPF were synthesized and well-characterized. Their aggregation properties in aqueous solution was investigated by UV-vis and TEM methods. In aqueous solution, monoadduct TPF forms irregularly shaped and some rod-like aggregates, whereas bisadducts BTPF gives spherical aggregates with diameters of 50-150 nm. It indicated that the aggregation properties of amphiphilic fullerene derivatives depend on the number of hydrophilic appendage on the C60 cage.

  1. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    徐又一

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4- hydroxyphenyl) maleimide)(SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate(PEGMA) side groups was achieved by atom transfer radical polymerization(ATRP).The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).From thermogravimetric analysis (TGA),the decomposition temperature of SHMI-g-PEGMA is low...

  2. Amphiphile self-assemblies in supercritical CO2 and ionic liquids.

    Science.gov (United States)

    Zhang, Jianling; Peng, Li; Han, Buxing

    2014-08-28

    Supercritical (sc) CO2 and ionic liquids (ILs) are very attractive green solvents with tunable properties. Using scCO2 and ILs as alternatives of conventional solvents (water and oil) for forming amphiphile self-assemblies has many advantages. For example, the properties and structures of the amphiphile self-assemblies in these solvents can be easily modulated by tuning the properties of solvents; scCO2 has excellent solvation power and mass-transfer characteristics; ILs can dissolve both organic and inorganic substances and their properties are designable to satisfy the requirements of various applications. Therefore, the amphiphile self-assemblies in scCO2 and ILs have attracted considerable attention in recent years. This review describes the advances of using scCO2 or/and ILs as amphiphile self-assembly media in the last decade. The amphiphile self-assemblies in scCO2 and ILs are first reviewed, followed by the discussion on combination of scCO2 and ILs in creating microemulsions or emulsions. Some future directions on the amphiphile self-assemblies in scCO2 and ILs are highlighted. PMID:25000970

  3. Multifunctional hybrid networks based on self assembling peptide sequences

    Science.gov (United States)

    Sathaye, Sameer

    The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This

  4. Origin and functional diversification of an amphibian defense peptide arsenal.

    Directory of Open Access Journals (Sweden)

    Kim Roelants

    Full Text Available The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs acting as defense toxins against predators, and antimicrobial peptides (AMPs providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization, completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.

  5. Bioactivity of plasma implanted biomaterials

    Science.gov (United States)

    Chu, Paul K.

    2006-01-01

    Plasma immersion ion implantation and deposition (PIII&D) is an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification of biomedical materials is described. NiTi alloys have unique super-elastic and shape memory properties and are suitable for orthopedic implants but the leaching of toxic Ni may pose health hazards in humans. We have recently investigated the use of acetylene, oxygen and nitrogen PIII&D to prevent out-diffusion of nickel and good results have been obtained. Silicon is the most important material in the microelectronics industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PIII into silicon to improve the surface bioactivity and observed biomimetic growth of apatite on the surface in simulated body fluids. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness and by incorporation of elements such as nitrogen and phosphorus, the surface blood compatibility can be improved. The properties as well as in vitro biological test results are discussed in this article.

  6. Bioactive Egg Components and Inflammation

    Directory of Open Access Journals (Sweden)

    Catherine J. Andersen

    2015-09-01

    Full Text Available Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk.

  7. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  8. Peptide nanofibers modified with a protein by using designed anchor molecules bearing hydrophobic and functional moieties.

    Science.gov (United States)

    Miyachi, Ayaka; Takahashi, Tsuyoshi; Matsumura, Sachiko; Mihara, Hisakazu

    2010-06-11

    Self-assembly of peptides and proteins is a key feature of biological functions. Short amphiphilic peptides designed with a beta-sheet structure can form sophisticated nanofiber structures, and the fibers are available as nanomaterials for arranging biomolecules. Peptide FI (H-PKFKIIEFEP-OH) self-assembles into nanofibers with a coiled fine structure, as reported in our previous work. We have constructed anchor molecules that have both a binding moiety for the fiber structure and a functional unit capable of capturing target molecules, with the purpose of arranging proteins on the designed peptide nanofibers. Designed anchors containing an alkyl chain as a binding unit and biotin as a functional moiety were found to bind to peptide fibers FI and F2i (H-ALEAKFAAFEAKLA-NH(2)). The surface-exposed biotin moiety on the fibers could capture an anti-biotin antibody. Moreover, hydrophobic dipeptide anchor units composed of iminodiacetate connected to Phe-Phe or Ile-Ile and a peptide composed of six histidine residues connected to biotin could also connect FI peptide fibers to the anti-biotin antibody through the chelation of Ni(2+) ions. This strategy of using designed anchors opens a novel approach to constructing nanoscale protein arrays on peptide nanomaterials. PMID:20419712

  9. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  10. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species.

    Science.gov (United States)

    Raman, Namrata; Lee, Myung-Ryul; Lynn, David M; Palecek, Sean P

    2015-01-01

    Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics. PMID:26287212

  11. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

    Science.gov (United States)

    Kim, Sungjin; Kim, Jae Hong; Lee, Joon Seok; Park, Chan Beum

    2015-08-12

    Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials. PMID:25929870

  12. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition

    Energy Technology Data Exchange (ETDEWEB)

    Keleş, Elif, E-mail: elifkelesh@hotmail.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Hazer, Baki, E-mail: bhazer2@yahoo.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Cömert, Füsun B. [Department of Microbiology, Faculty of Medicine, Bülent Ecevit University, 67600 Zonguldak (Turkey)

    2013-04-01

    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene–block-polyisoprene–block-polystyrene (PS–b-PI–b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS–b-PI–b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, {sup 1}H NMR, {sup 13}C NMR, GPC and FTIR. - Graphical abstract: Double bonds of polyisoprene units in polystyrene–block-polyisoprene–block-polystyrene triblock copolymer were partially capped with PEG containing mercapto end group via thiol-ene addition in order to obtain antibacterial amphiphilic elastomer. Nano fibers from amphiphilic graft polymers solution were produced by electrospinning. The PEG grafted copolymer inhibits very effectively bacterial growth. Highlights: ► A commercial synthetic elastomer was grafted with PEG to obtain amphiphilic elastomer. ► Amphiphilic elastomer shows antibacterial properties. ► Electrospun micro fibers of the amphiphilic elastomer tend to globular formation.

  13. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  14. Structural pattern matching of nonribosomal peptides

    Directory of Open Access Journals (Sweden)

    Leclère Valérie

    2009-03-01

    Full Text Available Abstract Background Nonribosomal peptides (NRPs, bioactive secondary metabolites produced by many microorganisms, show a broad range of important biological activities (e.g. antibiotics, immunosuppressants, antitumor agents. NRPs are mainly composed of amino acids but their primary structure is not always linear and can contain cycles or branchings. Furthermore, there are several hundred different monomers that can be incorporated into NRPs. The NORINE database, the first resource entirely dedicated to NRPs, currently stores more than 700 NRPs annotated with their monomeric peptide structure encoded by undirected labeled graphs. This opens a way to a systematic analysis of structural patterns occurring in NRPs. Such studies can investigate the functional role of some monomeric chains, or analyse NRPs that have been computationally predicted from the synthetase protein sequence. A basic operation in such analyses is the search for a given structural pattern in the database. Results We developed an efficient method that allows for a quick search for a structural pattern in the NORINE database. The method identifies all peptides containing a pattern substructure of a given size. This amounts to solving a variant of the maximum common subgraph problem on pattern and peptide graphs, which is done by computing cliques in an appropriate compatibility graph. Conclusion The method has been incorporated into the NORINE database, available at http://bioinfo.lifl.fr/norine. Less than one second is needed to search for a pattern in the entire database.

  15. Synthesis, Characterization, and Evaluation of a Novel Amphiphilic Polymer RGD-PEG-Chol for Target Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Shi Zeng

    2014-01-01

    Full Text Available An amphiphilic polymer RGD-PEG-Chol which can be produced in large scale at a very low cost has been synthesized successfully. The synthesized intermediates and final products were characterized and confirmed by 1H nuclear magnetic resonance spectrum (1H NMR and Fourier transform infrared spectrum (FT-IR. The paclitaxel- (PTX- loaded liposomes based on RGD-PEG-Chol were then prepared by film formation method. The liposomes had a size within 100 nm and significantly enhanced the cytotoxicity of paclitaxel to B16F10 cell as demonstrated by MTT test (IC50 = 0.079 μg/mL of RGD-modified PTX-loaded liposomes compared to 9.57 μg/mL of free PTX. Flow cytometry analysis revealed that the cellular uptake of coumarin encapsulated in the RGD-PEG-Chol modified liposome was increased for HUVEC cells. This work provides a reasonable, facile, and economic approach to prepare peptide-modified liposome materials with controllable performances and the obtained linear RGD-modified PTX-loaded liposomes might be attractive as a drug delivery system.

  16. Screening Peptide Inhibitors Using Phage Peptide Library with Isocitrate Lyase in Mycobacterium tuberculosis as Target

    Institute of Scientific and Technical Information of China (English)

    YIN Yu-he; NIU Xue; SUN Bo; TENG Guo-sheng; ZHAO Yun-hui; WU Cong-mei

    2011-01-01

    When devoured by macrophages,Mycobacterium tuberculosis remains persistent in macrophages and gains energy through the glyoxylate bypass to maintain its long-term existence in host cells.Therefore it is possible to stop persistent infections by interdicting the glyoxylate bypass in which the isocitrate lyase(ICL) is the key rate-limiting enzyme and a persistence factor.ICL is the target of anti-TB(TB:tubercular) drugs,which could screen ICL out and effectively inhibit the activity of ICL in Mycobacterium tuberculosis,and because of this,anti-TB drugs can be used to kill persistent Mycobacterium tuberculosis.In this study,the ICL gene of the Mycobacterium tuberculosis H37Rv was cloned successfully and recombinant protein with bioactivity was obtained through the enzyme characteristic appraisal.The specific activity of the recombined ICL is 24 μmol·mg-1 -min-1.The recombined ICL protein was used as the target,and phages which can specifically combine to ICL were screened in the phage 7 peptide library.According to the results of the ELISA and DNA sequence detection,eventually three 7-peptide chains were synthesized.Then the peptide chains were reacted with ICL,respectively,to detect their inhibitory effects on ICL.The results show that all the three 7-peptide chains possessed varying inhibitory effects on the activity of ICL.This study provided lead compounds for the research and development of new peptide anti-TB drugs.

  17. Bioactive furanonaphthoquinones from Crescentia cujete.

    Science.gov (United States)

    Hetzel, C E; Gunatilaka, A A; Glass, T E; Kingston, D G; Hoffmann, G; Johnson, R K

    1993-09-01

    Bioassay-directed fractionation of the MeCOEt extract of Crescentia cujete (Bignonaceae) resulted in the isolation of (2S,3S)-3-hydroxy-5,6-dimethoxydehydroiso-alpha-lapachone [1], (2R)-5,6-dimethoxydehydroiso-alpha-lapachone [2], (2R)-5-methoxydehydroiso-alpha-lapachone [3], 2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione [4], 5-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione [5], 2-isopropenylnaphtho[2,3-b]furan-4,9-dione [6], and 5-hydroxydehydroiso-alpha-lapachone [7]. Compounds 1-3 are new, and all compounds are bioactive, showing selective activity towards DNA-repair-deficient yeast mutants. The isolation, structure elucidation, and biological activities of these compounds are reported. PMID:8254347

  18. Two-dimensional Effects of Hydrogel Self-organized from IKVAV-containing Peptides on Growth and Differentiation of NSCs

    Institute of Scientific and Technical Information of China (English)

    SONG Yulin; ZHENG Qixin; WU Yongchao; GUO Xiaodong

    2009-01-01

    The neural stem cells (NSCs) were seeded in the surf ace layer of hydrogels made of IKVAV-containing peptide amphiphile. Two-dimensional effects of hydrogel on growth and differ-entiation of NSCs were investigated. Peptide was synthesized in solid way. Cells were harvested from the cerebral cortex of neonatal mice, identified by immunohisto chemical methods. Cells were incu-bated in the surface layer of self-assembled peptide hydrogel and coverslips for seven days respec-tively,detected immunocy to chemically for NF and GFAP. The molecular weight (MW) of Peptide was1438 and purity was 95.22%. Cells were identified as Nestin-positive NSCs. TEM showed that hy-drogel was composed of interactive nanofibers. NSCs extended processes, and were able to be dif-ferentiated into NF-positive neurons with red fluorescence and GFAP-positive astrocytes with greenone in the surface of hydrogel. However, NSCs only formed undifferentiated neurospheres in thesurface layer of coverslips. Results indicate that the self-assembled hydrogel from peptide amphiphile has good cyto-compatibility to NSCs and induced their differentiation.

  19. MECANISMUL DE PROTEOLIZĂ A FICOCIANINEI, PROTEINEI BIOACTIVE DIN SPIRULINĂ SUB ACŢIUNEA PAPAINEI

    Directory of Open Access Journals (Sweden)

    Angela RUDAKOVA

    2016-02-01

    Full Text Available Elaborarea unor procedee de obţinere a peptidelor bioactive din ficocianină prin intermediul hidrolizei proteolitice prezintă un interes sporit pentru cercetători în contextul utilizării acestora în calitate de remedii anticancer şi pentru alte proprietăţi terapeutice. Peptidele derivate din ficocianină ar putea manifesta proprietăţi terapeutice mult mai pronunţate comparativ cu ficocianina. În prezenta lucrare sunt studiate dinamica proteolizei ficocianinei cu papaina şi mecanismul de hidroliză a acestei proteine.Mechanism of proteolysis of C-phycocyanin, bioactive protein from Spirulina, under the action of papainThe elaboration of the procedures of obtaining of bioactive peptides derived from phycocyanin, as a result of it proteolytic hydrolysis presents great interest for researchers in the terms of theirs use as anti-cancer drugs and for other therapeutic properties. It can be assumed that peptides derived from phycocyanin could manifest more pronounced therapeutic effects compared to phycocyanin. Dynamics of phycocyanin proteolisis by papain, as well as mechanism of phycocyanin hydrolysis were studied in the present work. 

  20. Structure-Activity Relationships of Peptides Incorporating a Bioactive Reverse-Turn Heterocycle at the Melanocortin Receptors: Identification of a 5,800-fold Mouse Melanocortin-3 Receptor (mMC3R) Selective Antagonist/Partial Agonist versus the Mouse Melanocortin-4 Receptor (mMC4R)

    OpenAIRE

    Singh, Anamika; Dirain, Marvin; Witek, Rachel; Rocca, James R.; Edison, Arthur S.; Haskell-Luevano, Carrie

    2013-01-01

    The melanocortin-3 (MC3) and melanocortin-4 (MC4) receptors regulate energy homeostasis, food intake, and associated physiological conditions. The MC4R has been studied extensively. Less is known about specific physiological roles of the MC3R. A major obstacle to this lack of knowledge is attributed to a limited number of identified MC3R selective ligands. We previously reported a spatial scanning approach of a 10-membered thioether-heterocycle ring incorporated into a chimeric peptide templa...

  1. Perfluorocyclobutyl-containing Amphiphilic Block Copolymers Synthesized by RAFT Polymerization

    Institute of Scientific and Technical Information of China (English)

    LI, Yongjun; ZHANG, Sen; FENG, Chun; ZHANG, Yaqin; LI, Qingnuan; LI, Wenxin; HUANG, Xiaoyu

    2009-01-01

    Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl-based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition-fragmentation chain transfer (RAP-T) polymerization. The PFCB-containing acrylate monomer, p-(2-(p-tolyloxy)perfluorocyclobutoxy)phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2'-azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number-average molecular weights (M_n) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (M_w/M_n≤1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4-cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG-CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB-based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.

  2. Photochemical Isomerization and Topochemical Polymerization of the Programmed Asymmetric Amphiphiles

    Science.gov (United States)

    Kim, Dae-Yoon; Lee, Sang-A.; Jung, Daseal; Jeong, Kwang-Un

    2016-06-01

    For the advancement in multi-stimuli responsive optical devices, we report the elaborate molecular engineering of the dual photo-functionalized amphiphile (abbreviated as AZ1DA) containing both a photo-isomerizable azobenzene and a photo-polymerizable diacetylene. To achieve the efficient photochemical reactions in thin solid films, the self-assembly of AZ1DA molecules into the ordered phases should be precisely controlled and efficiently utilized. First, the remote-controllable light shutter is successfully demonstrated based on the reversible trans-cis photo-isomerization of azobenzene group in the smectic A mesophase. Second, the self-organized monoclinic crystal phase allows us to validate the photo-polymerization of diacetylene moiety for the photo-patterned thin films and the thermo-responsible color switches. From the demonstrations of optically tunable thin films, it is realized that the construction of strong relationships between chemical structures, molecular packing structures and physical properties of the programmed molecules is the core research for the development of smart and multifunctional soft materials.

  3. Synthesis, aggregation, and chiroptical properties of chiral, amphiphilic dendrimers.

    Science.gov (United States)

    Laufersweiler, M J; Rohde, J M; Chaumette, J L; Sarazin, D; Parquette, J R

    2001-09-21

    The syntheses of amphiphilic dendrimers based on 3,5-dihydroxybenzyl alcohol containing tri- or tetrafunctional chiral central cores and allyl ester termini are described. Water solubility is imparted to the dendrimers via a palladium-catalyzed deprotection of the peripheral allyl esters. This method affords complete deprotection of the carboxylate surface because, in contrast to the basic hydrolysis of methyl ester termini, the solubility of partially hydrolyzed intermediates is maintained throughout the course of the deprotection, thereby avoiding precipitation during the reaction. Chiroptical analysis indicates that the structure of the dendrimers collapses in water, resulting in an increased steric effect upon the central core that is manifested by lower optical rotatory power. However, contributions to the chiroptical properties from the dendron branch segments were not evident in water or organic media, suggesting that chiral substructures were not developing in the branch segments of the dendrimers. Multiangle light scattering studies revealed that the dendrimers experienced significant aggregation in aqueous media that decreased at higher generations. This behavior could be rationalized by a change in conformational preference from a disklike conformation at low generations to a more globular conformation at higher generations. PMID:11559197

  4. Amphiphilic self-assembly of alkanols in protic ionic liquids.

    Science.gov (United States)

    Jiang, Haihui Joy; FitzGerald, Paul A; Dolan, Andrew; Atkin, Rob; Warr, Gregory G

    2014-08-21

    Strong cohesive forces in protic ionic liquids (PILs) can induce a liquid nanostructure consisting of segregated polar and apolar domains. Small-angle X-ray scattering has shown that these forces can also induce medium chain length n-alkanols to self-assemble into micelle- and microemulsion-like structures in ethylammonium (EA(+)) and propylammonium (PA(+)) PILs, in contrast to their immiscibility with both water and ethanolammonium (EtA(+)) PILs. These binary mixtures are structured on two distinct length scales: one associated with the self-assembled n-alkanol aggregates and the other with the underlying liquid nanostructure. This suggests that EA(+) and PA(+) enable n-alkanol aggregation by acting as cosurfactants, which EtA(+) cannot do because its terminating hydroxyl renders the cation nonamphiphilic. The primary determining factor for miscibility and self-assembly is the ratio of alkyl chain lengths of the alkanol and PIL cation, modulated by the anion type. These results show how ILs can support the self-assembly of nontraditional amphiphiles and enable the creation of new forms of soft matter. PMID:25068766

  5. Optimization of hypocrellin B derivative amphiphilicity and biological activity

    Institute of Scientific and Technical Information of China (English)

    LIU Xin; XIE Jie; ZHANG LuYong; CHEN HongXia; GU Ying; ZHAO JingQuan

    2009-01-01

    To satisfy the dual requirements of the fluent transportation in blood and the affinity to the target tissues of vascular diseases, hypocrellin derivatives with optimized amphiphilicity are expected. In this work, 3-amino-1-propanesulfonic acid and 4-amino-1-butanesulfonic acid substituted hypocrellin B,named compounds 1 and 2, were designed, synthesized in high yields and characterized. Besides greatly strengthened red absorption, the maximum solubility of compound 2 in phosphate buffered saline (PBS) is 4.2 mg/mL which is just enough to prepare an aqueous solution for intravenous injection in clinically acceptable concentration, while the partition coefficient between n-octanol and PBS,5.6, benefits the cell-uptake and biological activity as well. Furthermore, EPR measurements reveal that the photosensitization activities of the two compounds to generate semiquinone anion radicals, superoxide anion radicals and singlet oxygen are a little bit higher than those of taurine substituted hypocrellin B (THB), but the photodynamic activities to human lung cancer A549 cells are several times that of THB, mainly due to increases in lipophilicity and cell-uptake.

  6. Effect of Amphiphiles on the Rheology of Triglyceride Networks

    Science.gov (United States)

    Seth, Jyoti

    2014-11-01

    Networks of aggregated crystallites form the structural backbone of many products from the food, cosmetic and pharmaceutical industries. Such materials are generally formulated by cooling a saturated solution to yield the desired solid fraction. Crystal nucleation and growth followed by aggregation leads to formation of a space percolating fractal-network. It is understood that microstructural hierarchy and particle-particle interactions determine material behavior during processing, storage and use. In this talk, rheology of suspensions of triglycerides (TAG, like tristearin) will be explored. TAGs exhibit a rich assortment of polymorphs and form suspensions that are evidently sensitive to surface modifying additives like surfactants and polymers. Here, a theoretical framework will be presented for suspensions containing TAG crystals interacting via pairwise potentials. The work builds on existing models of fractal aggregates to understand microstructure and its correlation with material rheology. Effect of amphiphilic additives is derived through variation of particle-particle interactions. Theoretical predictions for storage modulus will be compared against experimental observations and data from the literature and micro structural predictions against microscopy. Such a theory may serve as a step towards predicting short and long-term behavior of aggregated suspensions formulated via crystallization.

  7. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms.

    Science.gov (United States)

    Ruder, Tim; Ali, Syed Abid; Ormerod, Kiel; Brust, Andreas; Roymanchadi, Mary-Louise; Ventura, Sabatino; Undheim, Eivind A B; Jackson, Timothy N W; Mercier, A Joffre; King, Glenn F; Alewood, Paul F; Fry, Bryan G

    2013-09-01

    It has been previously shown that octopus venoms contain novel tachykinin peptides that despite being isolated from an invertebrate, contain the motifs characteristic of vertebrate tachykinin peptides rather than being more like conventional invertebrate tachykinin peptides. Therefore, in this study we examined the effect of three variants of octopus venom tachykinin peptides on invertebrate and vertebrate tissues. While there were differential potencies between the three peptides, their relative effects were uniquely consistent between invertebrate and vertebrae tissue assays. The most potent form (OCT-TK-III) was not only the most anionically charged but also was the most structurally stable. These results not only reveal that the interaction of tachykinin peptides is more complex than previous structure-function theories envisioned, but also reinforce the fundamental premise that animal venoms are rich resources of novel bioactive molecules, which are useful investigational ligands and some of which may be useful as lead compounds for drug design and development.

  8. A variant peptide of buffalo colostrum β-lactoglobulin inhibits angiotensin I-converting enzyme activity.

    Science.gov (United States)

    Rohit, A C; Sathisha, K; Aparna, H S

    2012-07-01

    β-lactoglobulin is a rich source of bioactive peptides. The LC-MS separated tryptic peptides of buffalo colostrum β-lactoglobulin (BLG-col) were computed based on MS-MS fragmentation for de novo sequencing. Among the selected peptides (P1-P8), a variant was detected with methionine at position 74 instead of glutamate. The sequences of two peptides were identical to hypocholesterolemic peptides whereas the remaining peptides were in accordance with buffalo milk β-lactoglobulin. Comparative sequence analysis of BLG-col to milk β-lactoglobulin was carried out using CLUSTALW2 and a molecular model for BLG-col was constructed (PMDB ID-PM0076812). The synthesized variant pentapeptide (IIAMK, m/z-576 Da) was found to inhibit angiotensin I-converting enzyme (ACE) with an IC(50) of 498 ± 2 μM, which was rationalized through docking simulations using Molgrow virtual docker. PMID:22541393

  9. Targeting the S1 and S3 subsite of trypsin with unnatural cationic amino acids generates antimicrobial peptides with potential for oral administration.

    Science.gov (United States)

    Karstad, Rasmus; Isaksen, Geir; Wynendaele, Evelien; Guttormsen, Yngve; De Spiegeleer, Bart; Brandsdal, Bjørn-Olav; Svendsen, John Sigurd; Svenson, Johan

    2012-07-26

    This study investigates how the S1 and S3 site of trypsin can be challenged with cationic amino acid analogues to yield active antimicrobial peptides with stability toward tryptic degradation. It is shown that unnatural analogues can be incorporated to generate stable peptides with maintained bioactivity to allow for a potential oral uptake. Selected peptides were studied using isothermal calorimetry and computational methods. Both stable and unstable peptides were found to bind stoichiometrically to trypsin with dissociation constants ranging 2-60 μM, suggesting several different binding modes. The stability of selected peptides was analyzed in whole organ extracts and the incorporation of homoarginine and 2-amino-(3-guanidino)propanoic acid resulted in a 14- and 50-fold increase in duodenal stability. In addition, a 40- and 70-fold increase in stomach stability is also reported. Overall, these results illustrate how the incorporation of cationic side chains can be employed to generate bioactive peptides with significant systemic stability.

  10. Self-assembly of ssDNA-amphiphiles into micelles, nanotapes and nanotubes

    Science.gov (United States)

    Pearce, Timothy R.

    The field of DNA nanotechnology utilizes DNA as a construction material to create functional supramolecular and multi-dimensional structures like two-dimensional periodic lattices and three-dimensional polyhedrons with order on the nanometer scale for many nanotechnology applications including molecular templating, nanosensors, and drug delivery. Single-stranded DNA (ssDNA) is often used to create these nanostructures as the DNA bases provide an intrinsic molecular code that can be exploited to allow for the programmed assembly of structures based upon Watson-Crick base-pairing. However, engineering these complex structures from biopolymers alone requires careful design to ensure that the intrinsic forces responsible for organizing the materials can produce the desired structures. Additional control over supramolecular assembly can be achieved by chemically modifying the ssDNA with hydrophobic moieties to create amphiphilic molecules, which adds the hydrophobic interaction to the list of contributing forces that drive the self-assembly process. We first explored the self-assembly behavior of a set of ssDNA aptamer-amphiphiles composed of the same hydrophobic tail and hydrophilic ssDNA aptamer headgroup but with different spacer molecules linking these groups together. Through the use of cryo-transmission electron microscopy (cryo-TEM), small angle x-ray scattering (SAXS), and circular dichroism (CD) we show that the aptamer-amphiphiles can assemble into a variety of structures depending on the spacer used. We demonstrated, for the first time, the creation of self-assembled aptamer-amphiphile nanotape structures and show that the choice of the spacer used in the design of aptamer-amphiphiles can influence their supramolecular self-assembly as well as the secondary structure of the aptamer headgroup. We next explored the role of the ssDNA headgroup on the amphiphile self-assembly behavior by designing amphiphiles with headgroups of multiple lengths and nucleotides

  11. Bioactivities and Health Benefits of Wild Fruits

    Directory of Open Access Journals (Sweden)

    Ya Li

    2016-08-01

    Full Text Available Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits.

  12. Bioactivities and Health Benefits of Wild Fruits.

    Science.gov (United States)

    Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin

    2016-08-04

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits.

  13. Bioactivities and Health Benefits of Wild Fruits.

    Science.gov (United States)

    Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin

    2016-01-01

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits. PMID:27527154

  14. New cationic amphiphilic compounds as potential antibacterial agents

    NARCIS (Netherlands)

    Visser, Peter Christian de

    2006-01-01

    Het onderwerp van het in dit proefschrift beschreven onderzoek is de ontwikkeling van nieuwe verbindingen met antibacteriële activiteit gericht tegen Gram-negatieve bacteriën. Deze verbindingen zijn afgeleid van kationische antimicrobiële peptides (CAPs), een klasse van antibiotica die volgens ander

  15. Structure Elucidation of ACE-inhibitory and Antithrombotic Peptides Isolated from Mackerel Skin Gelatine Hydrolysates

    OpenAIRE

    Khiari, Zied; Rico, Daniel; Barry-Ryan, Catherine; Martin-Diana, Ana Belen

    2013-01-01

    The fish-processing industry generates significant amounts of waste and by-products that are usually discarded. This study investigated the preparation of bioactive gelatine peptides from fish skin. Gelatine was extracted from mackerel (Scomber scombrus) skin and hydrolysed by pepsin for 1, 2, 6 and 24 h. All hydrolysates were screened for antioxidant, ACE-inhibitory and antithrombotic activities.

  16. A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides.

    Science.gov (United States)

    Manikkam, V; Vasiljevic, T; Donkor, O N; Mathai, M L

    2016-01-01

    Bioactive peptides are food derived components, usually consisting of 3-20 amino acids, which are inactive when incorporated within their parent protein. Once liberated by enzymatic or chemical hydrolysis, during food processing and gastrointestinal transit, they can potentially provide an array of health benefits to the human body. Owing to an unprecedented increase in the worldwide incidence of obesity and hypertension, medical researchers are focusing on the hypotensive and anti-obesity properties of nutritionally derived bioactive peptides. The role of the renin-angiotensin system has long been established in the aetiology of metabolic diseases and hypertension. Targeting the renin-angiotensin system by inhibiting the activity of angiotensin-converting enzyme (ACE) and preventing the formation of angiotensin II can be a potential therapeutic approach to the treatment of hypertension and obesity. Fish-derived proteins and peptides can potentially be excellent sources of bioactive components, mainly as a source of ACE inhibitors. However, increased use of marine sources, poses an unsustainable burden on particular fish stocks, so, the underutilized fish species and by-products can be exploited for this purpose. This paper provides an overview of the techniques involved in the production, isolation, purification, and characterization of bioactive peptides from marine sources, as well as the evaluation of the ACE inhibitory (ACE-I) activity and bioavailability. PMID:25569557

  17. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.; (UIUC)

    2009-06-17

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  18. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.

    2009-05-21

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  19. Cholesterol-Targeted Anticancer and Apoptotic Effects of Anionic and Polycationic Amphiphilic Cyclodextrin Nanoparticles.

    Science.gov (United States)

    Varan, Gamze; Öncül, Selin; Ercan, Ayşe; Benito, Juan M; Ortiz Mellet, Carmen; Bilensoy, Erem

    2016-10-01

    Amphiphilic cyclodextrins (CDs) are biocompatible derivatives of natural CDs and are able to form nanoparticles or polyplexes spontaneously. In this study, nanoparticles prepared from nonionic (6OCaproβCD) or cationic amphiphilic CD (PC βCDC6) were used comparatively to develop nanoparticles intended for breast cancer therapy. The characterization of these nanoparticles was performed both by in vitro and cell culture studies. Furthermore, the apoptotic and cytotoxic effects of blank amphiphilic CDs were demonstrated by various mechanistic methods including Caspase-8 activity, lipid peroxidation assay, TUNEL assay, Tali(®)-based image analysis, cholesterol assay, and gene expression studies. Blank nanoparticles exerted cytotoxicity against a variety of cancer cells (MCF-7, HeLa, HepG2, and MB49) but none to healthy cells (L929, G/G). Interestingly, blank 6OCaproβCD and blank PC βCDC6 derivatives were found to be intrinsically effective on cell number and membrane integrity of MCF-7 cells in apoptosis studies. Further in-depth studies were performed to elucidate the selective mechanism of anticancer action in MCF-7 cells caused by these amphiphilic CDs. In conclusion, blank amphiphilic CD nanoparticles induced apoptosis through mitochondrial pathway targeted to cholesterol microdomains in cancer cell membrane. PMID:27488900

  20. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    International Nuclear Information System (INIS)

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers

  1. Fluorinated amphiphiles control the insertion of α-hemolysin pores into lipid bilayers.

    Science.gov (United States)

    Raychaudhuri, Pinky; Li, Qiuhong; Mason, Amy; Mikhailova, Ellina; Heron, Andrew J; Bayley, Hagan

    2011-03-15

    The insertion of fully folded and assembled ion channels and pores into planar lipid bilayers for electrical recording has been facilitated by the use of conventional detergents at a final concentration below the critical micelle concentration (CMC). After the desired number of channels or pores (often one) has been incorporated into a bilayer, it is important to prevent further insertion events, which is often done by awkward techniques such as perfusion. Here, we show that the addition of single-chain fluorinated amphiphiles (F-amphiphiles) with zwitterionic, simple neutral, and neutral oligomeric headgroups at a concentration above the CMC prevents the further insertion of staphylococcal α-hemolysin pores, MspA pores, and Kcv potassium channels into lipid bilayers. We found the commercially available F(6)FC (fluorinated fos-choline with a C(6)F(13)C(2)H(4) chain) to be the least perturbing and most effective agent for this purpose. Bilayers are known to be resistant to F-amphiphiles, which in this case we suppose sequester the pores and channels within amphiphile aggregates. We suggest that F-amphiphiles might be useful in the fabrication of bilayer arrays for nanopore sensor devices and the rapid screening of membrane proteins. PMID:21275394

  2. Identification of multiple peptides with antioxidant and antimicrobial activities from skin and its secretions of Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus.

    Science.gov (United States)

    Guo, Chao; Hu, Yuhong; Li, Jing; Liu, Yuliang; Li, Sihan; Yan, Keqiang; Wang, Xiao; Liu, Jingze; Wang, Hui

    2014-10-01

    Amphibian skin and its secretions contain many kinds of peptides with different bioactivities. In this study, a large number of peptides including antioxidant and antimicrobial peptides were identified from three East Asian frog species Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus. The majority of these peptides were antimicrobial peptides, while eight antioxidant peptides were identified, which included two novel peptides taipehensin-1TP1 (TLIWEFYHQILDEYNKENKG) and taipehensin-2TP1 (CLMARPNYRCKIFKQC). These antioxidant peptides exhibited the ability to scavenge ABTS and/or DPPH free radicals. Moreover, six out of eight antioxidant peptides temporin-TP1, brevinin-1TP1, brevinin-1TP2, brevinin-1TP3, brevinin-1LF1, and palustrin-2GN1 also showed antimicrobial activity.

  3. Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; SHEN Xiong-jun

    2007-01-01

    Bioactive and bioresorbable composite was fabricated by a solvent evaporation technique using poly-L-lactide(PLLA) and bioactive glass (average particle size: 6.8 μm). Bioactive glass granules are homogeneously distributed in the composite with microcrack structure. The formation of hydroxyapatite(HA) on the composite in simulated body fluid(SBF) was analyzed by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and Raman spectra. Rod-like HA crystals deposit on the surface of PLLA/bioactive glass composite after soaking for 3 d. Both rod-like crystals and HA layer form on the surface for 14 d in SBF. The high bioactivity of PLLA/bioactive glass composite indicates the potential of materials for integration with bone.

  4. Interfacial Templating of Inorganic Nanostructures Using Rationally Designed Peptide Molecules

    Science.gov (United States)

    Leon Gibbons, Lorraine

    In nature, biological molecules form interfaces that assemble patterns of chemical functionality with exceptional precision. The role of dynamics during the assembly of biological molecules appears to be important for mineralization processes. The work presented in this dissertation applies model sheet-forming peptides at interfaces to explore the dynamics of assembly in order to template mineral growth. The peptide molecules are rationally designed to have amphiphilic properties and a propensity for sheet-like secondary structure. These designed peptides are deposited at the air/water interface to explore the dynamics of their self-assembly and investigate their 2D order. To characterize the phase behavior, techniques such as Langmuir Blodgett and Brewster Angle Microscopy are used. In addition, we verify the hypothesized sheet-forming propensity using both Circular Dichroism and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy, while the characterization of the inorganic phase is done using Transmission Electron Microscopy, Electron Diffraction, and Atomic Force Microscopy. Thermodynamic analysis of structure formation with increasing pressure allows us to understand the nature of self-assembly with iterative changes in the peptide sequence. Additionally, we look at the dynamics of the self-assembled state, where the organic phase switches between short- and long-range order as a function of surface pressure. We use this model system to explore the influence of electrostatic interactions on self-assembly, and additionally, the influence of short- and long-range order on the nucleation and growth of inorganic material. This is in contrast to a system that starts with a well-ordered preformed template that defines the epitaxial growth of the mineral phase. Two versions of our model peptides are constructed by substituting histidine for glutamic acid in order to nucleate Au nanocrystals in both the short and long range ordered organic matrix, to

  5. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-06-01

    Full Text Available The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases.

  6. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  7. Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities?

    Science.gov (United States)

    Wang, Jian-Hui; Liu, Yong-Le; Ning, Jing-Heng; Yu, Jian; Li, Xiang-Hong; Wang, Fa-Xiang

    2013-05-01

    Multifunctional peptides have attracted increasing attention in the food science community because of their therapeutic potential, low toxicity and rapid intestinal absorption. However, previous study demonstrated that the limited structural variations make it difficult to optimize dipeptide molecules in a good balance between desirable and undesirable properties (F. Tian, P. Zhou, F. Lv, R. Song, Z. Li, J. Pept. Sci. 13 (2007) 549-566). In the present work, we attempt to answer whether the structural diversity is sufficient for a tripeptide to have satisfactory multiple bioactivities. Statistical test, structural examination and energetic analysis confirm that peptides of three amino acids long can bind tightly to human angiotensin converting enzyme (ACE) and thus exert significant antihypertensive efficacy. Further quantitative structure-activity relationship (QSAR) modeling and prediction of all 8000 possible tripeptides reveal that their ACE-inhibitory potency exhibits a good (positive) relationship to antioxidative activity, but has only a quite modest correlation with bitterness. This means that it is possible to find certain tripeptide entities possessing the optimal combination of strong ACE-inhibitory potency, high antioxidative activity and weak bitter taste, which are the promising candidates for developing multifunctional food additives with satisfactory multiple bioactivities. The marked difference between dipeptide and tripeptide can be attributed to the fact that the structural diversity of peptides increases dramatically with a slight change in sequence length.

  8. Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight

    OpenAIRE

    Bourbon, A. I.; A.C. Pinheiro; Cerqueira, M. A.; Rocha, Cristina M. R.; Avides, Maria do Carmo; Quintas, Mafalda A. C.; Vicente, A.A.

    2011-01-01

    Chitosan packaging films containing different bioactive compounds (a peptide fraction from whey protein concentrate (WPC) hydrolysate, glycomacropeptide (GMP) and lactoferrin) were produced and their mechanical and barrier properties were evaluated. The molecular weight of protein-based compounds was determined using SDS–PAGE. The addition of GMP and lactoferrin to chitosan film caused a significant reduction of tensile strength and the elongation-at-break significantly increased ...

  9. Going viral: designing bioactive surfaces with bacteriophage.

    Science.gov (United States)

    Hosseinidoust, Zeinab; Olsson, Adam L J; Tufenkji, Nathalie

    2014-12-01

    Bacteriophage-functionalized bioactive surfaces are functional materials that can be used as antimicrobial surfaces in medical applications (e.g., indwelling medical devices or wound dressings) or as biosensors for bacterial capture and detection. Despite offering immense potential, designing efficient phage-functionalized bioactive surfaces is hampered by a number of challenges. This review offers an overview of the current state of knowledge in this field and presents a critical perspective of the technological promises and challenges.

  10. Release of bioactive active iodine in kelp

    Institute of Scientific and Technical Information of China (English)

    SUN Xiang-wu; WENG Huan-xin; QIN Ya-chao

    2005-01-01

    The release process and influencing factors of bioactive iodine of kelp are systemically studied by leaching experiment. The results showed that the bioactive iodine of kelp can be released rapidly and the principal form of iodine in lixivium is I- . There is a dynamic process between the release and absorption of iodine. With the increase of leaching water, the gross amounts of released iodine rise.There also exists a transforming process among I- , IO3- and organic iodine in lixivium.

  11. Microencapsulation of bioactives for food applications

    OpenAIRE

    Dias, Maria Inês; Isabel C. F. R. Ferreira; Barreiro, M.F.

    2015-01-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this co...

  12. Aggregation behaviour of amphiphilic cyclodextrins: the nucleation stage by atomistic molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Giuseppina Raffaini

    2015-12-01

    Full Text Available Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a “bottom up” approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD, which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties.

  13. Aggregation behaviour of amphiphilic cyclodextrins: the nucleation stage by atomistic molecular dynamics simulations.

    Science.gov (United States)

    Raffaini, Giuseppina; Mazzaglia, Antonino; Ganazzoli, Fabio

    2015-01-01

    Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a "bottom up" approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD), which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties. PMID:26734094

  14. Synthesis of Dumbbell-shaped Hyperbranched Amphiphilic Block Copolymer by Controlled Atom Transfer Radical Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Kyoung; An, Sung Guk; Cho, Chang Gi [Center for Advanced Functional Polymers, Department of Fiber and Polymer Science, Hanyang University, Seoul (Korea); Noh, Si Tae [Department of Chemical Engineering, Hanyang University, Ansan (Korea)

    2001-04-01

    Amphiphilic block copolymers containing hydrophilic ethylene glycol core and hyperbranched polystyrene (PS) arm were synthesized by atom transfer radical polymerization using hydrophilic macroinitiator and p-chloromethyl styrene (CMS) as AB type monomer. Hydrophilic poly(ethylene glycol)(PEG) macroinitiators with difuntional groups were synthesized by reacting PEG and 2-bromopropionyl bromide. The chemical structure, molecular weight, and polydispersity index of the amphiphilic block copolymer were characterized by {sup 1}H-NMR spectroscopy and GPC analysis. The molecular weight increased as the reaction time increased. Polydispersity index of the obtained polymer was relatively narrow (below 1.39). To control chain density of the hyperbranched PS, styrene and CMS were copolymerized. It was found that amphiphilic block copolymer molecule underwent conformational change in different solvents based on the result for {sup 1}H-NMR spectroscopic analysis. 29 refs., 8 figs., 2 tabs.

  15. Aggregation behaviour of amphiphilic cyclodextrins: the nucleation stage by atomistic molecular dynamics simulations

    Science.gov (United States)

    Mazzaglia, Antonino; Ganazzoli, Fabio

    2015-01-01

    Summary Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a “bottom up” approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD), which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties. PMID:26734094

  16. Colloidosomes formed by nonpolar/polar/nonpolar nanoball amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hung-Yu; Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tu, Sheng-Hung [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Tsao, Heng-Kwong, E-mail: yjsheng@ntu.edu.tw, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering and Department of Physics, National Central University, Jhongli 320, Taiwan (China)

    2014-08-07

    Fullerene-based amphiphiles are able to form bilayer vesicles in aqueous solution. In this study, the self-assembly behavior of polymer-tethered nanoballs (NBs) with nonpolar/polar/nonpolar (n-p-n{sup ′}) motif in a selective solvent is investigated by dissipative particle dynamics. A model NB bears two hydrophobic polymeric arms (n{sup ′}-part) tethered on an extremely hydrophobic NB (n-part) with hydrophilic patch (p-part) patterned on its surface. Dependent on the hydrophobicity and length of tethered arms, three types of aggregates are exhibited, including NB vesicle, core-shell micelle, and segmented-worm. NB vesicles are developed for a wide range of hydrophobic arm lengths. The presence of tethered arms perturbs the bilayer structure formed by NBs. The structural properties including the order parameter, membrane thickness, and area density of the inner leaflet decrease with increasing the arm length. These results indicate that for NBs with longer arms, the extent of interdigitation in the membrane rises so that the overcrowded arms in the inner corona are relaxed. The transport and mechanical properties are evaluated as well. As the arm length grows, the permeability increases significantly because the steric bulk of tethered arms loosens the packing of NBs. By contrast, the membrane tension decreases owing to the reduction of NB/solvent contacts by the polymer corona. Although fusion can reduce membrane tension, NB vesicles show strong resistance to fusion. Moreover, the size-dependent behavior observed in small liposomes is not significant for NB vesicles due to isotropic geometry of NB. Our simulation results are consistent with the experimental findings.

  17. Colloidosomes formed by nonpolar/polar/nonpolar nanoball amphiphiles.

    Science.gov (United States)

    Chang, Hung-Yu; Tu, Sheng-Hung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-08-01

    Fullerene-based amphiphiles are able to form bilayer vesicles in aqueous solution. In this study, the self-assembly behavior of polymer-tethered nanoballs (NBs) with nonpolar/polar/nonpolar (n-p-n') motif in a selective solvent is investigated by dissipative particle dynamics. A model NB bears two hydrophobic polymeric arms (n'-part) tethered on an extremely hydrophobic NB (n-part) with hydrophilic patch (p-part) patterned on its surface. Dependent on the hydrophobicity and length of tethered arms, three types of aggregates are exhibited, including NB vesicle, core-shell micelle, and segmented-worm. NB vesicles are developed for a wide range of hydrophobic arm lengths. The presence of tethered arms perturbs the bilayer structure formed by NBs. The structural properties including the order parameter, membrane thickness, and area density of the inner leaflet decrease with increasing the arm length. These results indicate that for NBs with longer arms, the extent of interdigitation in the membrane rises so that the overcrowded arms in the inner corona are relaxed. The transport and mechanical properties are evaluated as well. As the arm length grows, the permeability increases significantly because the steric bulk of tethered arms loosens the packing of NBs. By contrast, the membrane tension decreases owing to the reduction of NB/solvent contacts by the polymer corona. Although fusion can reduce membrane tension, NB vesicles show strong resistance to fusion. Moreover, the size-dependent behavior observed in small liposomes is not significant for NB vesicles due to isotropic geometry of NB. Our simulation results are consistent with the experimental findings.

  18. Mechanisms of plastein formation, and prospective food and nutraceutical applications of the peptide aggregates

    Directory of Open Access Journals (Sweden)

    Min Gong

    2015-03-01

    Full Text Available Plastein is a protease-induced peptide aggregate with prospective application in enhancing the nutritional quality of proteins and debittering protein hydrolysates. These properties are yet to be applied in product development possibly due to economic considerations (production cost vs. product yields. This paper reviews currently proposed mechanisms of plastein formation including condensation, transpeptidation and physical interaction of aggregating peptides. Emerging findings indicate that plastein possesses bioactivities, thereby expanding its prospective application. The role of proteases in inducing peptide interaction in plastein remains unclear. Understanding the protease function will facilitate the development of efficient proteases and scalable industrial processes for plastein production.

  19. Metabolism of cryptic peptides derived from neuropeptide FF precursors: the involvement of insulin-degrading enzyme.

    Science.gov (United States)

    Grasso, Giuseppe; Mielczarek, Przemyslaw; Niedziolka, Magdalena; Silberring, Jerzy

    2014-09-22

    The term "cryptome" refers to the subset of cryptic peptides with bioactivities that are often unpredictable and very different from the parent protein. These cryptic peptides are generated by proteolytic cleavage of proteases, whose identification in vivo can be very challenging. In this work, we show that insulin-degrading enzyme (IDE) is able to degrade specific amino acid sequences present in the neuropeptide pro-NPFFA (NPFF precursor), generating some cryptic peptides that are also observed after incubation with rat brain cortex homogenate. The reported experimental findings support the increasingly accredited hypothesis, according to which, due to its wide substrate selectivity, IDE is involved in a wide variety of physiopathological processes.

  20. Construction of Epidermal Growth Factor Receptor Peptide Magnetic Nanovesicles with Lipid Bilayers for Enhanced Capture of Liver Cancer Circulating Tumor Cells.

    Science.gov (United States)

    Ding, Jian; Wang, Kai; Tang, Wen-Jie; Li, Dan; Wei, You-Zhen; Lu, Ying; Li, Zong-Hai; Liang, Xiao-Fei

    2016-09-20

    Highly effective targeted tumor recognition via vectors is crucial for cancer detection. In contrast to antibodies and proteins, peptides are direct targeting ligands with a low molecular weight. In the present study, a peptide magnetic nanovector platform containing a lipid bilayer was designed using a peptide amphiphile (PA) as a skeleton material in a controlled manner without surface modification. Fluorescein isothiocyanate-labeled epidermal growth factor receptor (EGFR) peptide nanoparticles (NPs) could specifically bind to EGFR-positive liver tumor cells. EGFR peptide magnetic vesicles (EPMVs) could efficiently recognize and separate hepatoma carcinoma cells from cell solutions and treated blood samples (ratio of magnetic EPMVs versus anti-EpCAM NPs: 3.5 ± 0.29). Analysis of the circulating tumor cell (CTC) count in blood samples from 32 patients with liver cancer showed that EPMVs could be effectively applied for CTC capture. Thus, this nanoscale, targeted cargo-packaging technology may be useful for designing cancer diagnostic systems.

  1. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  2. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  3. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  4. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  5. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  6. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  7. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  8. Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals.

    Science.gov (United States)

    Gupta, Deeksha; Sarker, Bivas; Thadikaran, Keith; John, Vijay; Maldarelli, Charles; John, George

    2015-06-01

    Crude oil spills are a major threat to marine biota and the environment. When light crude oil spills on water, it forms a thin layer that is difficult to clean by any methods of oil spill response. Under these circumstances, a special type of amphiphile termed as "chemical herder" is sprayed onto the water surrounding the spilled oil. The amphiphile forms a monomolecular layer on the water surface, reducing the air-sea surface tension and causing the oil slick to retract into a thick mass that can be burnt in situ. The current best-known chemical herders are chemically stable and nonbiodegradable, and hence remain in the marine ecosystem for years. We architect an eco-friendly, sacrificial, and effective green herder derived from the plant-based small-molecule phytol, which is abundant in the marine environment, as an alternative to the current chemical herders. Phytol consists of a regularly branched chain of isoprene units that form the hydrophobe of the amphiphile; the chain is esterified to cationic groups to form the polar group. The ester linkage is proximal to an allyl bond in phytol, which facilitates the hydrolysis of the amphiphile after adsorption to the sea surface into the phytol hydrophobic tail, which along with the unhydrolyzed herder, remains on the surface to maintain herding action, and the cationic group, which dissolves into the water column. Eventual degradation of the phytol tail and dilution of the cation make these sacrificial amphiphiles eco-friendly. The herding behavior of phytol-based amphiphiles is evaluated as a function of time, temperature, and water salinity to examine their versatility under different conditions, ranging from ice-cold water to hot water. The green chemical herder retracted oil slicks by up to ~500, 700, and 2500% at 5°, 20°, and 35°C, respectively, during the first 10 min of the experiment, which is on a par with the current best chemical herders in practice. PMID:26601197

  9. Fusiogenic activity of natural amphiphiles, 5-n-alkylresorcinols in a yeast protoplast system.

    Science.gov (United States)

    Kozubek, A; Skała, J

    1995-01-01

    Two homologues of cereal grain resorcinolic lipids, 5-n-heptadecylresorcinol and 5-n-heptadecenylresorcinol studied in the system employing yeast cell protoplasts showed marked fusiogenic activity. The frequency of hybrid formation induced by studied amphiphiles was significantly higher than that obtained with the use of 40% (w/v) polyethylene glycol 4000. The resorcinolic lipids as fusion-inducing agents did not affect regeneration of the cellular wall. The fusiogenic activity of resorcinolic lipids lost when calcium ions were absent in the medium. Fusiogenic activity of studied amphiphiles is related to their ability to induce non-bilayer structures within the cellular membranes. PMID:8579682

  10. Monte Carlo simulation for the micellar behavior of amphiphilic comb-like copolymers

    Institute of Scientific and Technical Information of China (English)

    冯莺; 隋家贤; 赵季若; 陈欣方

    2000-01-01

    Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion ??stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.

  11. Intra-chain organisation of hydrophobic residues controls inter-chain aggregation rates of amphiphilic polymers

    CERN Document Server

    Varilly, Patrick; Kirkegaard, Julius B; Knowles, Tuomas P J; Chandler, David

    2016-01-01

    Aggregation of amphiphiles through the action of hydrophobic interactions is a common feature in soft condensed matter systems and is of particular importance in the context of biophysics as it underlies both the generation of functional biological machinery as well as the formation of pathological misassembled states of proteins. Here we explore the aggregation behaviour of amphiphilic polymers using lattice Monte-Carlo calculations and show that the distribution of hydrophobic residues within the polymer sequence determines the facility with which dry/wet interfaces can be created and that such interfaces drive the aggregation process.

  12. Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries.

    OpenAIRE

    Li, X; K. Suzuki; Kanaori, K; Tajima, K; Kashiwada, A.; Hiroaki, H; Kohda, D; Tanaka, T

    2000-01-01

    We previously reported the de novo design of an amphiphilic peptide [YGG(IEKKIEA)4] that forms a native-like, parallel triple-stranded coiled coil. Starting from this peptide, we sought to regulate the assembly of the peptide by a metal ion. The replacement of the Ile18 and Ile22 residues with Ala and Cys residues, respectively, in the hydrophobic positions disrupted of the triple-stranded alpha-helix structure. The addition of Cd(II), however, resulted in the reconstitution of the triple-str...

  13. Multienzyme Modification of Hemp Protein for Functional Peptides Synthesis

    Directory of Open Access Journals (Sweden)

    Ranjana Das

    2015-01-01

    Full Text Available Functional foods and nutraceuticals are of special importance, particularly for their impact on human health and prevention of certain chronic diseases. Consequently, the production and properties of bioactive peptides have received an increasing scientific interest over past few years. Present work intends to compare the competence of metalloendopeptidases (“Protease N” and “Protease A” with papain for getting functional peptides from hemp seed meal, which is an obligatory waste of hemp fiber production industry. As a measure of the functional potential hemp protein hydrolysates were analyzed for their antiradical properties in DPPH system. “Protease N” modified protein hydrolysate exhibited comparatively superior radical scavenging activity in DPPH system. Overall findings represent the importance of “Protease N,” as endopeptidase in getting peptides of good antiradical properties from various protein sources.

  14. Scorpion venom peptides with no disulfide bridges: a review.

    Science.gov (United States)

    Almaaytah, Ammar; Albalas, Qosay

    2014-01-01

    Scorpion venoms are rich sources of biologically active peptides that are classified into disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs). DBPs are the main scorpion venom components responsible for the neurotoxic effects observed during scorpion envenomation as they usually target membrane bound ion channels of excitable and non-excitable cells. Several hundred DBPs have been identified and functionally characterized in the past two decades. The NDBPs represent a novel group of molecules that have gained great interest only recently due to their high diversity both in their primary structures and bioactivities. This review provides an overview of scorpion NDBPs focusing on their therapeutic applications, modes of discovery, mechanisms of NDBPs genetic diversity and structural properties. It also provides a simple classification for NDBPs that could be adopted and applied to other NDBPs identified in future studies. PMID:24184590

  15. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi.

    Science.gov (United States)

    Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi

    2016-04-01

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed.

  16. Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery.

    Science.gov (United States)

    Chen, Ganchao; Xie, Yusheng; Peltier, Raoul; Lei, Haipeng; Wang, Ping; Chen, Jun; Hu, Yi; Wang, Feng; Yao, Xi; Sun, Hongyan

    2016-05-11

    A stimuli-responsive drug delivery system (DDS) with bioactive surface is constructed by end-capping mesoporous silica nanoparticles (MSNs) with functional peptide-coated gold nanoparticles (GNPs). MSNs are first functionalized with acid-labile α-amide-β-carboxyl groups to carry negative charges, and then capped with positively charged GNPs that are decorated with oligo-lysine-containing peptide. The resulting hybrid delivery system exhibits endo/lysosomal pH triggered drug release, and the incorporation of RGD peptide facilitates targeting delivery to αvβ3 integrin overexpressing cancer cells. The system can serve as a platform for preparing diversified multifunctional nanocomposites using various functional inorganic nanoparticles and bioactive peptides.

  17. Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery.

    Science.gov (United States)

    Chen, Ganchao; Xie, Yusheng; Peltier, Raoul; Lei, Haipeng; Wang, Ping; Chen, Jun; Hu, Yi; Wang, Feng; Yao, Xi; Sun, Hongyan

    2016-05-11

    A stimuli-responsive drug delivery system (DDS) with bioactive surface is constructed by end-capping mesoporous silica nanoparticles (MSNs) with functional peptide-coated gold nanoparticles (GNPs). MSNs are first functionalized with acid-labile α-amide-β-carboxyl groups to carry negative charges, and then capped with positively charged GNPs that are decorated with oligo-lysine-containing peptide. The resulting hybrid delivery system exhibits endo/lysosomal pH triggered drug release, and the incorporation of RGD peptide facilitates targeting delivery to αvβ3 integrin overexpressing cancer cells. The system can serve as a platform for preparing diversified multifunctional nanocomposites using various functional inorganic nanoparticles and bioactive peptides. PMID:27102225

  18. Machine learning assisted design of highly active peptides for drug discovery.

    Science.gov (United States)

    Giguère, Sébastien; Laviolette, François; Marchand, Mario; Tremblay, Denise; Moineau, Sylvain; Liang, Xinxia; Biron, Éric; Corbeil, Jacques

    2015-04-01

    The discovery of peptides possessing high biological activity is very challenging due to the enormous diversity for which only a minority have the desired properties. To lower cost and reduce the time to obtain promising peptides, machine learning approaches can greatly assist in the process and even partly replace expensive laboratory experiments by learning a predictor with existing data or with a smaller amount of data generation. Unfortunately, once the model is learned, selecting peptides having the greatest predicted bioactivity often requires a prohibitive amount of computational time. For this combinatorial problem, heuristics and stochastic optimization methods are not guaranteed to find adequate solutions. We focused on recent advances in kernel methods and machine learning to learn a predictive model with proven success. For this type of model, we propose an efficient algorithm based on graph theory, that is guaranteed to find the peptides for which the model predicts maximal bioactivity. We also present a second algorithm capable of sorting the peptides of maximal bioactivity. Extensive analyses demonstrate how these algorithms can be part of an iterative combinatorial chemistry procedure to speed up the discovery and the validation of peptide leads. Moreover, the proposed approach does not require the use of known ligands for the target protein since it can leverage recent multi-target machine learning predictors where ligands for similar targets can serve as initial training data. Finally, we validated the proposed approach in vitro with the discovery of new cationic antimicrobial peptides. Source code freely available at http://graal.ift.ulaval.ca/peptide-design/.

  19. Machine learning assisted design of highly active peptides for drug discovery.

    Directory of Open Access Journals (Sweden)

    Sébastien Giguère

    2015-04-01

    Full Text Available The discovery of peptides possessing high biological activity is very challenging due to the enormous diversity for which only a minority have the desired properties. To lower cost and reduce the time to obtain promising peptides, machine learning approaches can greatly assist in the process and even partly replace expensive laboratory experiments by learning a predictor with existing data or with a smaller amount of data generation. Unfortunately, once the model is learned, selecting peptides having the greatest predicted bioactivity often requires a prohibitive amount of computational time. For this combinatorial problem, heuristics and stochastic optimization methods are not guaranteed to find adequate solutions. We focused on recent advances in kernel methods and machine learning to learn a predictive model with proven success. For this type of model, we propose an efficient algorithm based on graph theory, that is guaranteed to find the peptides for which the model predicts maximal bioactivity. We also present a second algorithm capable of sorting the peptides of maximal bioactivity. Extensive analyses demonstrate how these algorithms can be part of an iterative combinatorial chemistry procedure to speed up the discovery and the validation of peptide leads. Moreover, the proposed approach does not require the use of known ligands for the target protein since it can leverage recent multi-target machine learning predictors where ligands for similar targets can serve as initial training data. Finally, we validated the proposed approach in vitro with the discovery of new cationic antimicrobial peptides. Source code freely available at http://graal.ift.ulaval.ca/peptide-design/.

  20. Bioactivity of Rumex obtusifolius (Polygonaceae

    Directory of Open Access Journals (Sweden)

    Harshaw Diane

    2010-01-01

    Full Text Available Rumex obtusifolius L. (Polygonaceae, commonly known as 'broad-leaf dock', is one of the most common Irish wayside weeds, and it also occurs in silage fields, on river banks, in ditches and on waste grounds. The ethnobotanical uses of this species include its use as an antidote to nettle, depurative, astringent, laxative, and tonic, and in the treatment of sores, blisters, burns, cancer and tumors. The bioactivities of n-hexane, dichloromethane (DCM and methanol (MeOH extracts of the leaves of R. obtusifolius were assessed using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH assay, the newly developed micro-titer-based antimicrobial assay incorporating resazurin as an indicator of cell growth, and the brine shrimp lethality assay. The most potent free radical scavenging activity was displayed by the MeOH extract with a RC50 value of 7.80 x 10-2 mg/mL. Among the fractions obtained from solid-phase extraction (SPE of the MeOH extract, the 50% aqueous methanolic SPE fraction exhibited the highest levels of free radical scavenging property (RC50 = 1.05 x 10-2 mg/mL. While the n-hexane extract did not show any antibacterial activity at test concentrations, the DCM extract was active only against Escherichia coli. However, the MeOH extract as well as the 50% and 80% SPE fractions of the MeOH extract showed significant antibacterial property against all bacterial strains tested. None of the extracts or fractions exhibited any significant toxicity towards brine shrimps.

  1. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    Science.gov (United States)

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  2. Macrocyclization and labeling of helix-loop-helix peptide with intramolecular bis-thioether linkage.

    Science.gov (United States)

    Nishihara, Toshio; Kitada, Hidekazu; Fujiwara, Daisuke; Fujii, Ikuo

    2016-11-01

    Conformationally constrained peptides have been developed as an inhibitor for protein-protein interactions (PPIs), and we have de novo designed cyclized helix-loop-helix (cHLH) peptide with a disulfide bond consisting of 40 amino acids to generate molecular-targeting peptides. However, synthesis of long peptides has sometimes resulted in low yield according to the respective amino acid sequences. Here we developed a method for efficient synthesis and labeling for cHLH peptides. First, we synthesized two peptide fragments and connected them by the copper-mediated alkyne and azide cycloaddition (CuAAC) reaction. Cyclization was performed by bis-thioether linkage using 1,3-dibromomethyl-5-propargyloxybenzene, and subsequently, the cHLH peptide was labeled with an azide-labeled probe. Finally, we designed and synthesized a peptide inhibitor for the p53-HDM2 interaction using a structure-guided design and successfully labeled it with a fluorescent probe or a functional peptide, respectively, by click chemistry. This macrocyclization and labeling method for cHLH peptide would facilitate the discovery of de novo bioactive ligands and therapeutic leads. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 415-421, 2016. PMID:26917088

  3. Resilient self-assembling hydrogels from block copolypeptide amphiphiles

    Science.gov (United States)

    Nowak, Andrew Paul

    The ability to produce well defined synthetic polypeptides has been greatly improved by the discovery of transition metal species that mediate the controlled polymerization of N-carboxyanhydrides (NCAs). These metal species create a living polymerization system by producing control over chain length, low polydispersities, and the ability to form complex block architectures. We have applied this system to the synthesis of block copolypeptide amphiphiles. Initial block copolymers synthesized were composed of hydrophilic, cationic poly(L-Lysine) combined with hydrophobic, alpha-helical poly(L-Leucine). These Lysine- block-Leucine copolypeptides were found to form stiff, clear hydrogels at low concentration (˜1 wt%) in low ionic strength water. Based on this unexpected result we used the flexibility of our transition metal polymerization chemistry to better understand the nature and mechanisms of gel formation in these materials. Systematic changes to the original Lysine-block-Leucine copolypeptides were made by altering overall chain size, relative block length, polyelectrolyte charge, and hydrophobic secondary structure. Rheological characterization revealed that the strength of these hydrogels was primarily dependent on degree of polymerization, relative block length, and a well ordered secondary structure in the hydrophobic segment. The Lysine-block-Leucine hydrogels were formed by direct addition of water to dry polypeptide material which swelled to homogeneously fill the entire volume of liquid with no special processing. CryoTEM showed a percolating cellular network at ˜100nm that appears to be comprised of both membranes and fibers. Larger length scales studied with Laser Scanning Confocal Microscopy revealed a spontaneously formed microporous network with large (˜10mum) water rich voids. These hydrogels also displayed interesting mechanical properties including rapid recovery of solid like behavior after being sheared to a liquid and mechanical stability

  4. Amphiphilic semi-interpenetrating polymer networks using pulverized rubber

    Science.gov (United States)

    Shahidi, Nima

    Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media

  5. Peptides-Derived from Thai Rice Bran Improves Endothelial Function in 2K-1C Renovascular Hypertensive Rats

    OpenAIRE

    Orachorn Boonla; Upa Kukongviriyapan; Poungrat Pakdeechote; Veerapol Kukongviriyapan; Patchareewan Pannangpetch; Supawan Thawornchinsombut

    2015-01-01

    In recent years, a number of studies have investigated complementary medical approaches to the treatment of hypertension using dietary supplements. Rice bran protein hydrolysates extracted from rice is a rich source of bioactive peptides. The present study aimed to investigate the vasorelaxation and antihypertensive effects of peptides-derived from rice bran protein hydrolysates (RBP) in a rat model of two kidney-one clip (2K-1C) renovascular hypertension. 2K-1C hypertension was induced in ma...

  6. Solid-phase synthesis of phenylalanine containing peptides using a traceless triazene linker.

    Science.gov (United States)

    Torres-García, Carolina; Pulido, Daniel; Carceller, Magdalena; Ramos, Iván; Royo, Miriam; Nicolás, Ernesto

    2012-11-01

    The use of a triazene function to anchor phenylalanine to a polymeric support through its side chain is reported. To prove the usefulness of this strategy in solid-phase peptide synthesis, several bioactive peptides have been prepared including cyclic, C-modified, and protected peptides. The triazene linkage is formed by coupling the diazonium salt of Fmoc-Phe(pNH(2))-OAllyl to a MBHA-polystyrene resin previously functionalized with isonipecotic acid (90%). Further assembly of the peptide chain, cleavage from the resin using 2-5% TFA in DCM, and reduction of the resulting diazonium salt of the peptide with FeSO(4)·7H(2)O in DMF afforded the desired products in high purities (73-94%).

  7. PARTITION-OPTIMIZED SINGLE EMULSION PARTICLES IMPROVE SUSTAINED RELEASE OF AMPHIPHILIC BUMPED KINASE INHIBITORS TO CONTROL MALARIA TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Christina Yacoob

    2015-11-01

    Full Text Available Amphiphilic molecules are challenging to be incorporatedinto polymeric particles for sustained release due to their significant solubility in both water and organic solvent used in the fabrication process. Here, we investigated an extensive panel of fabrication methods for the incorporation and release of amphiphilic molecules, in particular, novel amphiphilic bumped kinase inhibitors (BKIs. Previously, BKIswere shown to reduce malaria transmission by blocking of gametocyte exflagellation. Prolonged BKI bioavailability for effective transmission blocking is crucial since infectious gametocytes circulate for several weeks inthe mammalian host, well beyond the half-life of BKIs. So far, delivery systems for sustained release of those BKIs have not been successfully formulated yet. Here we demonstrate that out of several delivery vehicles the partition-optimized single emulsion particles are the ideal system for incorporation and sustained release of amphiphilic BKIs. They increased the incorporation greater than 90% through optimized partitioning of amphiphilic molecules to the polymer phase and sustained release of BKIs up to several weeks with a reduction in the initial burst release. Overall this work provides a method for the incorporation and sustained release of amphiphilic BKIs, and can be adapted for other amphiphilic molecules.

  8. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution

    Directory of Open Access Journals (Sweden)

    Pellach Michal

    2011-12-01

    Full Text Available Abstract Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character. The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.

  9. Unimolecular micelles of amphiphilic cyclodextrin-core star-like block copolymers for anticancer drug delivery.

    Science.gov (United States)

    Xu, Zhigang; Liu, Shiying; Liu, Hui; Yang, Cangjie; Kang, Yuejun; Wang, Mingfeng

    2015-11-11

    Well-defined star-like amphiphilic polymers composed of a β-cyclodextrin core, from which 21 hydrophobic poly(lactic acid) arms and hydrophilic poly(ethylene glycol) arms are grafted sequentially, form robust and uniform unimolecular micelles that are biocompatible and efficient in the delivery of anticancer drugs. PMID:26121632

  10. Bilayer Vesicles of Amphiphilic Cyclodextrins: Host Membranes That Recognize Guest Molecules

    NARCIS (Netherlands)

    Falvey, Patrick; Lim, Choon Woo; Darcy, Raphael; Revermann, Tobias; Karst, Uwe; Giesbers, Marcel; Marcelis, Antonius T.M.; Lazar, Adina; Coleman, Anthony W.; Reinhoudt, David N.; Ravoo, Bart Jan

    2005-01-01

    A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of a-, B-, and Y-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicles in aqueo

  11. New carbon-carbon linked amphiphilic carboranyl-porphyrins as boron neutron capture agents

    International Nuclear Information System (INIS)

    Novel amphiphilic carboranyl-porphyrins have been synthesized for Boron Neutron Capture Therapy (BNCT). These compounds have carbon-carbon bonds between the carborane residues and the porphyrin meso-phenyl groups, and contain 28-31% boron by weight . (author)

  12. Preparation of Vesicles and Nanoparticles of Amphiphilic Cyclodextrins Containing Labile Disulfide Bonds

    NARCIS (Netherlands)

    Nolan, Darren; Darcy, Raphael; Ravoo, Bart Jan

    2003-01-01

    Amphiphilic cyclodextrin derivatives were prepared in which a disulfide bond connects the hydrophobic substituents to the macrocycle. These compounds were obtained by 1,3-dicyclohexylcarbodiimide-mediated coupling reactions of heptakis(6-amino-6-deoxy)-B-cyclodextrins and disulfide-containing carbox

  13. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner;

    2008-01-01

    air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...

  14. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(epsilon-caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2009-01-01

    Amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) with a thiol functionality in the PCL terminal has been prepared in a novel synthetic cascade. Initially, living anionic ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) employing the difunctional...

  15. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus

    2010-01-01

    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic prope

  16. Self-assembly of block copolymer-based ionic supramolecules based upon multi-tail amphiphiles

    DEFF Research Database (Denmark)

    Asad Ayoubi, M.; Almdal, Kristoffer; Zhu, K.;

    2015-01-01

    Utilising simple acid-base titration chemistry, a new family of Linear-b-Amphiphilic Comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] featuring multi-tail side-chains have been synthesized and examined by synchrotron SAXS. To three different parent diblock copolymers of poly(st...

  17. Inducing spin crossover in metallo-supramolecular polyelectrolytes through an amphiphilic phase transition.

    Science.gov (United States)

    Bodenthin, Yves; Pietsch, Ullrich; Möhwald, Helmuth; Kurth, Dirk G

    2005-03-01

    A phase transition in an amphiphilic mesophase is explored to deliberately induce mechanical strain in an assembly of tightly coupled metal ion coordination centers. Melting of the alkyl chains in the amphiphilic mesophase causes distortion of the coordination geometry around the central transition metal ion. As a result, the crystal field splitting of the d-orbital subsets decreases resulting in a spin transition from a low-spin to a high-spin state. The diamagnetic-paramagnetic transition is reversible. This concept is demonstrated in a metallo-supramolecular coordination polyelectrolyte-amphiphile complex self-assembled from ditopic bis-terpyridines, Fe(II) as central transition metal, and dialkyl phosphates as amphiphiles. The magnetic properties are studied in a Langmuir-Blodgett multilayer. The modularity of this concept provides extensive control of structure and function from molecular to macroscopic length scales and gives access to a wide range of new molecular magnetic architectures such as nanostructures, thin films, and liquid crystals. PMID:15740150

  18. Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles

    NARCIS (Netherlands)

    van Leeuwen, E B; van der Veen, A Y; Hoekstra, D; Engberts, J B; Halie, M R; van der Meer, J; Ruiters, M H

    1999-01-01

    OBJECTIVES: This study compared the efficiency of electroporation and synthetic amphiphiles. (SAINT-2pp/DOPE) in transfecting small numbers of human endothelial cells. METHODS AND RESULTS: Optimal transfection conditions were tested and appeared to be 400 V and 960 microF for electroporation and a 1

  19. Oxidized potato starch based thermoplastic films : Effect of combination of hydrophilic and amphiphilic plasticizers

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Broekhuis, Antonius A.

    2016-01-01

    Different combinations of hydrophilic (glycerol and water) and amphiphilic (isoleucine) plasticizers were studied in the production of thermoplastic starch (TPS) powders and films from oxidized potato starch. All powder samples had an irregular and shrivelled morphology. In all mixtures containing i

  20. Bilayer vesicles of amphiphilic cyclodextrines: host membranes that recognize guest molecules

    NARCIS (Netherlands)

    Falvey, P.; Lim, C.W.; Darcy, R.; Revermann, T.; Karst, U.; Marcelis, A.T.M.; Coleman, A.W.; Reinhoudt, D.N.; Ravoo, B.J.

    2005-01-01

    A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of alpha-, beta-, and gamma-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicl