WorldWideScience

Sample records for bioactive glass seeds

  1. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  2. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  3. Preparation and bioactivity of sol-gel macroporous bioactive glass

    Institute of Scientific and Technical Information of China (English)

    Zhihua Zhou; Jianming Ruan; Jianpeng Zou; Zhongcheng Zhou

    2008-01-01

    Bioactive glass is well known for its ability of bone regeneration, and sol-gel bioactive glass has many advantages com-pared with melt-derived bioactive glass. 3-D scaffold prepared by the sol-gel method is a promising substrate material for bone tissue engineering and large-scale bone repair. Porous sol-gel glass in the CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by the addition of stearic acid as a pore former. The diameter of the pore created by the pore former varied from 100 to 300μm. The formation of a hydroxyapatite layer on the glass was analyzed by studying the surface of the porous glass by scanning elec-tron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Raman spectra after they had been immersed in simulated body fluid (SBF) for some time, and the porous glass shows good bioactivity.

  4. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  5. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    International Nuclear Information System (INIS)

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO2-CaO-P2O5 mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  6. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.;

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...

  7. Bioactivity of mica/apatite glass ceramics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.

  8. A new bio-active glass ceramic

    International Nuclear Information System (INIS)

    Since 1960 fine ceramics such as alumina have been used side by side with metallic materials for bone and joint replacement. They have high mechanical strength and are free from corrosion problem faced by metals. However they don't bond to the natural living bone and hence are called bio-inactive. This was followed by the development of bio-active glasses and glass-ceramics which bond to the natural bone but have low mechanical strength. In the present work a new bio-active glass-ceramic, based on CaO-SiO/sub 2/-P/sub 2/O/sub 3/-MgO composition, has been developed which has mechanical strength compared to that of a bio-inactive glass ceramic and also bonds strongly to the natural bone. X-ray diffraction analysis reveals wollastanite and apatite phases in the glass ceramic. A new bio-active cement has also been developed which can be used to join broken pieces of bone or by itself at a filler. (author)

  9. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  10. Bioactive borate glass coatings for titanium alloys.

    Science.gov (United States)

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  11. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  12. Physiological removal of silicon from bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Lai, W. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Bioengineering; Garino, J. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Orthopaedic Surgery; Flaitz, C.M. [Texas Univ., Houston, TX (United States). Div. of Oral and Maxillofacial Pathology; Ducheyne, P. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Bioengineering; Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Orthopaedic Surgery

    2001-07-01

    Bioactive glass granules were implanted in the paraspinal muscle and tibiae of rabbits in order to determine the pathway of the silicon released from bioactive glass in vivo. We traced and quantified the silicon released by obtaining 24-hour urine samples, as well as blood samples for up to 7 months after implantation. Furthermore, local muscle and bone tissue as well as the following organs were resected for chemical and histopathological analyses: brain, heart, kidney, liver, lung, lymph nodes, spleen, and thymus. The concentrations of silicon found in the urine were well below saturation and no accumulation of silicon was found in the major organs after silicon excretion had halted. The removal of silicon from the body matrix was slower overall compared to an intramuscular site, taking a total of 24 weeks versus 19 weeks to complete silicon removal, respectively. (orig.)

  13. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments.

    Science.gov (United States)

    Shah, Furqan A

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F(-)) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F(-) ions may be incorporated into the glass in the form of calcium fluoride (CaF2) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F(-) incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential.

  14. Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; SHEN Xiong-jun

    2007-01-01

    Bioactive and bioresorbable composite was fabricated by a solvent evaporation technique using poly-L-lactide(PLLA) and bioactive glass (average particle size: 6.8 μm). Bioactive glass granules are homogeneously distributed in the composite with microcrack structure. The formation of hydroxyapatite(HA) on the composite in simulated body fluid(SBF) was analyzed by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and Raman spectra. Rod-like HA crystals deposit on the surface of PLLA/bioactive glass composite after soaking for 3 d. Both rod-like crystals and HA layer form on the surface for 14 d in SBF. The high bioactivity of PLLA/bioactive glass composite indicates the potential of materials for integration with bone.

  15. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development.

  16. Bioactive and thermally compatible glass coating on zirconia dental implants.

    Science.gov (United States)

    Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H

    2015-02-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants.

  17. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  18. Bioactive glass-polymer composite for experimental bone reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Aho, A.J.; Tirri, T.; Strandberg, N.; Jaakkola, T.; Naerhi, T.; Kukkonen, J. [Turku Univ. (Finland). Biomaterials Project of Turku; Seppaelae, J.; Rich, J. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Chemical Engineering

    2001-07-01

    Thermoplastic composite of bioactive glass (S53P4) and copolymer of lactones (Glepron) can be used as liquid, injectable or paste like form, as solid plugs or thin membranes for filling bone defects. This bone substitute is bioactive, osteoconductive and biocompatible resulting in bone bonding contacts between glass granules and bone in defects on the distal femur and ulna of experimental animals. Properties of the material can be adjusted by polymer chemistry. (orig.)

  19. EFFECTS OF INCORPORATING NATURAL MINERALS ON PRODUCTION AND BIOACTIVITY OF BIOACTIVE GLASS CERAMICS

    Directory of Open Access Journals (Sweden)

    Franco Matias Stabile

    2016-07-01

    Full Text Available Two glass-ceramics composition were produced from natural minerals. Quartzes and feldspars were pre-selected on the basis of their purities studied by X-ray diffraction (XRD and chemical analysis. Prepared compositions of glasses precursors were two different theoretical leucite (KAlSi₂O₆ /Bioglass 45S5 (L/Bg ratios. Transformations of raw materials mixtures and glass precursors were studied by differential thermal analyses. On the basis of thermal analysis results, glass ceramics were produced and characterized by XRD. Glass-ceramics were composed of two major crystalline phases, leucite and sodium calcium silicate. Bioactivity tests were performed submerging the glass-ceramics into simulated body fluid (SBF for different periods (1, 5 and 10 days. Bioactive behavior was monitored by XRD and scanning electron microscopy (SEM. Studied samples were found to be bioactive, in which hydroxyapatite layer was developed within 5 days of contact with SBF.

  20. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites.

    Science.gov (United States)

    Aguilar-Pérez, Fernando J; Vargas-Coronado, Rossana F; Cervantes-Uc, Jose M; Cauich-Rodríguez, Juan V; Covarrubias, Cristian; Pedram-Yazdani, Merhdad

    2016-04-01

    Composites of glutamine-based segmented polyurethanes with 5 to 25 wt.% bioactive glass nanoparticles were prepared, characterized, and their mineralization potential was evaluated in simulated body fluid. Biocompatibility with dental pulp stem cells was assessed by MTS to an extended range of compositions (1 to 25 wt.% of bioactive glass nanoparticles). Physicochemical characterization showed that composites retained many of the matrix properties, i.e. those corresponding to semicrystalline elastomeric polymers as they exhibited a glass transition temperature (Tg) between -41 and -36℃ and a melting temperature (Tm) between 46 and 49℃ in agreement with X-ray reflections at 23.6° and 21.3°. However, with bioactive glass nanoparticles addition, tensile strength and strain were reduced from 22.2 to 12.2 MPa and 667.2 to 457.8%, respectively with 25 wt.% of bioactive glass nanoparticles. Although Fourier transform infrared spectroscopy did not show evidence of mineralization after conditioning of these composites in simulated body fluid, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray microanalysis showed the formation of an apatite layer on the surface which increased with higher bioactive glass concentrations and longer conditioning time. Dental pulp stem cells proliferation at day 5 was improved in bioactive glass nanoparticles composites containing lower amounts of the filler (1-2.5 wt.%) but it was compromised at day 9 in composites containing high contents of nBG (5, 15, 25 wt.%). However, Runx2 gene expression was particularly upregulated for the dental pulp stem cells cultured with composites loaded with 15 and 25 wt.% of bioactive glass nanoparticles. In conclusion, low content bioactive glass nanoparticles and segmented polyurethanes composites deserve further investigation for applications such as guided bone regeneration membranes, where osteoconductivity is desirable but not a demanding mechanical performance.

  1. Preparation of bioactive glasses with controllable degradation behavior and their bioactive characterization

    Institute of Scientific and Technical Information of China (English)

    YAO AiHua; WANG DePing; FU Qiang; HUANG WenHai; Mohamed N. RAHAMAN

    2007-01-01

    Bioactive glasses and ceramics have been widely investigated for bone repair because of their excellent bioactive characteristics. However, these biomaterials undergo incomplete conversion into a bone-like material, which severely limits their biomedical application. In this paper, borosilicate bioactive glasses were prepared by traditional melting process. The results showed that borosilicate glasses possessed high biocompatibility and bioactivity. In addition, when immersed in a 0.02 mol/L K2HPO4 solution, particles of a borate glass were fully converted to HA. The desirable conversion rate to HA may be achieved through the adjustment of the B2O3/SiO2 ratio. The results of XRD and FTIR analysis indicated that the degradation product was carbonate-substituted hydroxyapatite, which was similar to the inorganic component of bone.

  2. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    Science.gov (United States)

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study.

  3. Interactions of bioactive glass materials in the oral environment

    Science.gov (United States)

    Efflandt, Sarah Elizabeth

    The aim of this research was to investigate bioactive glass materials for their use in dental restorations. Mechanical properties such as strength, toughness and wear resistance were considered initially, but the focus of this thesis was the biological properties such as reactions with saliva and interactions with natural dental tissues. Bioactive composite materials were created by incorporating bioactive glass and alumina powders into an aqueous suspension, slip casting, and infiltrating with resin. Microstructure, mechanical properties and wear resistance were evaluated. Mechanically, the composites are comparable to natural dental tissues and current dental materials with a strength of 206 +/- 18.7 MPa and a toughness of 1.74 +/- 0.08 MPa(m)1/2. Interfacial reactions were examined using bulk bioactive glasses. Disks were prepared from a melt, placed in saliva and incubated at 37°C. Surfaces were analyzed at 2, 5, 10, 21, and 42 days using scanning electron microscopy (SEM) and microdiffraction. Results showed changes at 2 days with apatite crystallization by 10 days. These glass disks were then secured against extracted human dentin and incubated in saliva for 21 or 42 days. Results from SEM, electron microprobe analysis (EMPA) and microdiffraction showed that dentin and bioactive glasses adhered in this in vitro environment due to attraction of collagen to bioactive glasses and growth of an interfacial apatite. After investigating these bulk glass responses, particulate bioactive glasses were placed in in vitro and in vivo set-ups for evaluation. Particles immersed in biologically buffered saliva showed crystallization of apatite at 3 days. These bioactive glass particles were placed in the molars of mini-pigs and left in vivo. After 30 days the bioactive paste was evaluated using SEM, EMPA and microdiffraction analyses. Results showed that the paste gained structural integrity and had chemical changes in vivo. These sets of experiments show that bioactive

  4. Biological Impact of Bioactive Glasses and Their Dissolution Products.

    Science.gov (United States)

    Hoppe, Alexander; Boccaccini, Aldo R

    2015-01-01

    For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. PMID:26201273

  5. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  6. Fabrication and characterization of bioactive glass-ceramic using soda–lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Mojtaba; Hashemi, Babak, E-mail: hashemib@shirazu.ac.ir

    2014-04-01

    Soda–lime–silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. - Highlights: • A bioactive glass-ceramic was synthesized using soda–lime–silica waste glass. • Solid-state reaction method was used to synthesize bioactive glass-ceramic. • Ca{sub 2}Na{sub 2}Si{sub 3}O{sub 9} and CaNaPO{sub 4} were formed with a one-step thermal treatment condition. • The amounts of crystalline and amorphous phases influenced the bioactivity. • The sample with a smaller amount of the crystalline phase had a higher bioactivity.

  7. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2013-01-01

    Full Text Available Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the "smart" materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA. Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications.

  8. Bioactivity of Sodium Free Fluoride Containing Glasses and Glass-Ceramics

    OpenAIRE

    Xiaojing Chen; Xiaohui Chen; Brauer, Delia S.; Rory M. Wilson; Hill, Robert G.; Natalia Karpukhina

    2014-01-01

    The bioactivity of a series of fluoride-containing sodium-free calcium and strontium phosphosilicate glasses has been tested in vitro. Glasses with high fluoride content were partially crystallised to apatite and other fluoride-containing phases. The bioactivity study was carried out in Tris and SBF buffers, and apatite formation was monitored by XRD, FTIR and solid state NMR. Ion release in solutions has been measured using ICP-OES and fluoride-ion selective electrode. The results show that...

  9. Diopside-fluorapatite-wollastonite based bioactive glasses and glass-ceramics

    OpenAIRE

    Kansal, Ishu

    2015-01-01

    Bioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses...

  10. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles

    OpenAIRE

    Silva, G. A.; Costa, F. J.; Coutinho, O. P.; Radin, S.; Ducheyne, P.; Reis, R. L.

    2004-01-01

    The aim of the development of composite materials is to combine the most desired properties of two or more materials. In this work, the biodegradable character, good controlled-release properties, and natural origin of starch-based biomaterials are combined with the bioactive and bone-bonding properties of bioactive glass (BG). Novel, bioactive composite starch-BG microparticles were synthesized starting from a blend of starch and polylactic acid (50%/50% wt) with BG 45S5 powder using a simpl...

  11. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration

    NARCIS (Netherlands)

    Mota, J.; Yu, N.; Caridade, S.G.; Luz, G.M.; Gomes, M.E.R.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F.

    2012-01-01

    Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided ti

  12. Investigation of the bioactivity and biocompatibility of different glass interfaces with hydroxyapatite, fluorohydroxyapatite and 58S bioactive glass.

    Science.gov (United States)

    Han, Yuling Jamie; Loo, Say Chye Joachim; Lee, Joel; Ma, Jan

    2007-01-01

    The current review investigates the bioactivity of different glass interfaces created on thin glass cover slips as substrates. The interfaces studied are plain glass, functionalized glass using 0.5 M and 5 M of sodium hydroxide (NaOH) for 24 hrs, and glass coated with bioactive 58S Bioglass (58S). A biomimetic method, involving the exposure of the three interfaces to 1.5 times simulated body fluid (SBF) tests the bioactivity of the interfaces via creation of layer of Hydroxyapatite (HA). Fluorinated SBF will precipitate fluorine doped HA (FHA) on a bioactive interface. Higher concentration of 1.5 times of SBF used in this study intended to accelerate the formation of HA and FHA layer over the substrate. HA and FHA is found to be precipitated on the thinly coated 58S. This paper, study also the thin film coatings of three forms of bioceramics - bioactive 58S, HA and FHA. The study, also proposes to draw a relation between the morphology of HA particles with duration of exposure to SBF, the effects of fluorine on the morphology and the cell interaction with bioactive 58S, HA and FHA interfaces using pre-differentiated osteoblastic MC3T3 cells. The analysis of cells in this study is confined to three parameters that include the attachment, proliferation and viability of cells. Tests employed for the analysis of the thin film coating of HA and FHA is restricted to qualitative X-Ray Diffraction and quantitative Field Emission Scanning Electron Microscope. Other mechanical tests such as shear test are not used to test the mechanical properties of this thin layer, due to the fact that the thin film is too thin for such analysis. PMID:18607070

  13. In-vitro bioactivity of zirconia doped borosilicate glasses

    International Nuclear Information System (INIS)

    Glass composition 31B2O3-20SiO2-24.5Na2O-(24.5-x) CaO-xZrO2 x=1,2,3,4,5 were prepared by melt-quenching Technique. The formation of hydroxyapatite layer on the surface of glasses after immersion in simulated body fluid (SBF) was explored through XRD, Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM-EDX) analyses. In this report, we observed that hydroxyapatite formation for 5days of immersion time. Also observed that with increasing the immersion time up to 15days, higher amount of hydroxyapatite layer formation on the surface of glasses. The varying composition of zirconia in glass samples influences shown by XRD, FTIR studies. The present results indicate that, in-vitro bioactivity of glasses decreased with increasing zirconia incorporation

  14. Avocado (Persea americana) seed as a source of bioactive phytochemicals.

    Science.gov (United States)

    Dabas, Deepti; Shegog, Rachel M; Ziegler, Gregory R; Lambert, Joshua D

    2013-01-01

    The pulp of avocado (Persea americana, Lauraceae) has been reported to have beneficial cardiovascular health effects. Avocado oil is used for dermatological applications and its unsaponifiable portion is reported to have beneficial effects against osteoarthritis. Although the seed represents a considerable percentage of the total fruit, scientific research on the phytochemistry and biological effects of avocado seeds is in the nascent stages,. Currently, the seed represents an under-utilized resource and a waste issue for avocado processors. There is ethno-pharmacological information on the use of seeds for the treatment of health-related conditions, especially in South American countries where avocados are endemic and currently grown on a large scale. Current research has shown that avocado seeds may improve hypercholesterolemia, and be useful in the treatment of hypertension, inflammatory conditions and diabetes. Seeds have also been found to possess insecticidal, fungicidal, and anti-microbial activities. The avocado seeds and rich in phenolic compounds, and these may play a role in the putative health effects. Historically, extracts of avocado seeds were also used as ink for writing and research in our laboratory has explored the potential colorant properties of a polyphenol oxidase-produced colored avocado seed extract. Here, we review the currently-available data on the bioactivity and other functional properties of avocado seeds. We discuss the strength of the available data, the putative active compounds, and potential directions for future studies.

  15. Avocado (Persea americana) seed as a source of bioactive phytochemicals.

    Science.gov (United States)

    Dabas, Deepti; Shegog, Rachel M; Ziegler, Gregory R; Lambert, Joshua D

    2013-01-01

    The pulp of avocado (Persea americana, Lauraceae) has been reported to have beneficial cardiovascular health effects. Avocado oil is used for dermatological applications and its unsaponifiable portion is reported to have beneficial effects against osteoarthritis. Although the seed represents a considerable percentage of the total fruit, scientific research on the phytochemistry and biological effects of avocado seeds is in the nascent stages,. Currently, the seed represents an under-utilized resource and a waste issue for avocado processors. There is ethno-pharmacological information on the use of seeds for the treatment of health-related conditions, especially in South American countries where avocados are endemic and currently grown on a large scale. Current research has shown that avocado seeds may improve hypercholesterolemia, and be useful in the treatment of hypertension, inflammatory conditions and diabetes. Seeds have also been found to possess insecticidal, fungicidal, and anti-microbial activities. The avocado seeds and rich in phenolic compounds, and these may play a role in the putative health effects. Historically, extracts of avocado seeds were also used as ink for writing and research in our laboratory has explored the potential colorant properties of a polyphenol oxidase-produced colored avocado seed extract. Here, we review the currently-available data on the bioactivity and other functional properties of avocado seeds. We discuss the strength of the available data, the putative active compounds, and potential directions for future studies. PMID:23448442

  16. Structure, dynamics, and surface reactions of bioactive glasses

    Science.gov (United States)

    Zeitler, Todd R.

    Three bioactive glasses (45S5, 55S4.3, and 60S3.8) have been investigated using atomic-scale molecular dynamics simulations in attempt to explain differences in observed macroscopic bioactivity. Bulk and surface structures and bulk dynamics have been characterized. Ion exchange and hydrolysis reactions, the first two stages in Hench's model describing the reactions of bioactive glass surfaces in vivo, have been investigated in detail. The 45S5 composition shows a much greater network fragmentation: it is suggested that this fragmentation can play a role in at least the first two stages of Hench's model for HCA formation on the surfaces of bioactive glasses. In terms of dynamic behavior, long-range diffusion was only observed for sodium. Calcium showed only jumps between adjacent sites, while phosphorus showed only local vibrations. Surface simulations show the distinct accumulation of sodium at the immediate surface for each composition. Surface channels are also shown to exist and are most evident for 45S5 glass. Results for a single ion exchange showed that the ion-exchange reaction is preferred (more exothermic) for Na+ ions near Si, rather than P. A range of reaction energies were found, due to a range of local environments, as expected for a glass surface. The average reaction energies are not significantly different among the three glass compositions. The results for bond hydrolysis on as-created surfaces show no significant differences among the three compositions for simulations involving Si-O-Si or Si-O-P. All average values are greater than zero, indicating endothermic reactions that are not favorable by themselves. However, it is shown that the hydrolysis reactions became more favorable (in fact, exothermic for 45S5 and 55S4.3) when simulated on surfaces that had already been ion-exchanged. This is significant because it gives evidence supporting Hench's proposed reaction sequence. Perhaps even more significantly, the reaction energies for hydrolysis

  17. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.

    Science.gov (United States)

    Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.

  18. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Science.gov (United States)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  19. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. PMID:24582266

  20. Bioactivity of Sodium Free Fluoride Containing Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Xiaojing Chen

    2014-07-01

    Full Text Available The bioactivity of a series of fluoride-containing sodium-free calcium and strontium phosphosilicate glasses has been tested in vitro. Glasses with high fluoride content were partially crystallised to apatite and other fluoride-containing phases. The bioactivity study was carried out in Tris and SBF buffers, and apatite formation was monitored by XRD, FTIR and solid state NMR. Ion release in solutions has been measured using ICP-OES and fluoride-ion selective electrode. The results show that glasses with low amounts of fluoride that were initially amorphous degraded rapidly in Tris buffer and formed apatite as early as 3 h after immersion. The apatite was identified as fluorapatite by 19F MAS-NMR after 6 h of immersion. Glass degradation and apatite formation was significantly slower in SBF solution compared to Tris. On immersion of the partially crystallised glasses, the fraction of apatite increased at 3 h compared to the amount of apatite prior to the treatment. Thus, partial crystallisation of the glasses has not affected bioactivity significantly. Fast dissolution of the amorphous phase was also indicated. There was no difference in kinetics between Tris and SBF studies when the glass was partially crystallised to apatite before immersion. Two different mechanisms of apatite formation for amorphous or partially crystallised glasses are discussed.

  1. Surface functionalization of bioactive glasses with natural molecules of biological significance

    OpenAIRE

    Xin ZHANG

    2014-01-01

    Natural or artificial materials used for replacement or supplement the functions of living tissues, termed as biomaterials, may be bioinert (i.e. alumina and zorconia,) resorbable (i.e. tricalcium phosphate), bioactive (i.e. hydroxyapatite, bioactive glasses, and glass-ceramics) or porous for tissue ingrowth (i.e. hydroxyapatite-coated metals). Among all the biomaterials, bioactive glass and glass-ceramics are widely used in orthopedic and dental applications and are being developed for tissu...

  2. Bioactivity and mechanical behaviour of cobalt oxide-doped bioactive glass

    Indian Academy of Sciences (India)

    Vikash Kumar Vyas; Arepalli Sampath Kumar; Sunil Prasad; S P Singh; Ram Pyare

    2015-08-01

    Bioactive glasses are materials capable of bonding implants to tissues. 45S5 Bio-glass® is one such material capable of bonding strongly to bone within 6 weeks. It develops a hydroxy-carbonate apatite layer on the implant that is chemically and crystallographically equivalent to the mineral phase of bone. However, it suffers from a mechanical weakness and low fracture toughness due to an amorphous glass network and is not suitable for load-bearing applications. In order to improve its mechanical strength and bioactivity, the present work explores the effects of cobalt oxide additions. Bioactivity of the glass samples was assessed through their hydroxyapatite formation ability by immersing them in the simulated body fluid for different soaking periods. The formation of hydroxyapatite was confirmed by Fourier transform infrared spectrometry, pH measurement and microstructure evaluation through scanning electron microscopy. Densities and mechanical properties of the samples were found to increase considerably with an increase in the concentration of cobalt oxide.

  3. Attachment and conformational changes of collagen on bioactive glass surface.

    Science.gov (United States)

    Magyari, K; Vanea, E; Baia, L; Simon, V

    2016-05-12

    The proteins adsorption on biomaterials surface leads to changes in their structural conformation that may further influence the adhesion, migration and growth of cells. The aim of this study was to examine the attachment of collagen (calf skin type I) on bioactive glass powders and the conformational changes of the protein. Scanning electron microscopy analysis and X-ray photoelectron spectroscopy measurements indicate that the collagen cover the glass surface in a nanometric thin layer. The infrared amide I absorption signal shows pronounced changes in the secondary structure of the adsorbed collagen. PMID:27175468

  4. Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Chang, Jiang; Xiao, Yin

    2013-09-01

    In this article, we, for the first time, investigated mesoporous bioactive glass scaffolds for the delivery of vascular endothelial growth factor. We have found that mesoporous bioactive glass scaffolds have significantly higher loading efficiency and more sustained release of vascular endothelial growth factor than non-mesoporous bioactive glass scaffolds. In addition, vascular endothelial growth factor delivery from mesoporous bioactive glass scaffolds has improved the viability of endothelial cells. The study has suggested that mesopore structures in mesoporous bioactive glass scaffolds play an important role in improving the loading efficiency, decreasing the burst release, and maintaining the bioactivity of vascular endothelial growth factor, indicating that mesoporous bioactive glass scaffolds are an excellent carrier of vascular endothelial growth factor for potential bone tissue engineering applications.

  5. Effect of crystallinity on crack propagation and mineralization of bioactive glass 45S5

    Science.gov (United States)

    Kashyap, Satadru

    Bioactive glasses are a type of ceramic material designed to be used as bioresorbable therapeutic bone implants. Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and mineralization. This study investigates the effects of temperature, time, and heating rates on the crystallization kinetics of melt cast bioactive glass 45S5. Bulk crystallization (three dimensional crystallite formation) was found to always occur in bulk bioactive glass 45S5 irrespective of the processing conditions. A comparative study of crack paths in amorphous and crystalline phases of bioactive glass 45S5 revealed crack deflections and higher fracture resistance in partially crystallized bioactive glass. Such toughening is likely attributed to different crystallographic orientations of crystals or residual thermal mismatch strains. Furthermore, in vitro immersion testing of partially crystalline glass ceramic revealed higher adhesion capabilities of the mineralized layer formed on amorphous regions as compared to its crystalline counterpart.

  6. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  7. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. PMID:26042695

  8. Dosimetric aspects of 166Ho brachytherapy biodegradable glass seed

    International Nuclear Information System (INIS)

    The purpose of this study is to perform absorbed dose calculations based on Monte Carlo simulations for a novel beta emitter bioglass Ho-166 seed which is proposed for treating small hepatocellular carcinomas (HCCs). The bioactive glass seed has been developed by use of the sol–gel method. Monte Carlo simulations were carried out for the seed using the version 5 of the (MCNP) Monte Carlo radiation transport code to investigate the dosimetric parameters recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were obtained at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 6.71±0.4 cGy h−1 μCi−1. The anisotropy function values ranging from 0.745 to 1.928 were obtained for radial distances of 0.3–8 mm and polar angles of 0°–90°. The 166Ho seed source can deliver high radiation doses to the tumor, while the short range of the beta particles limits damage to the adjacent normal tissue. - Highlights: ► A beta emitter bioglass Ho-166 seed has been proposed for treating small HCC tumors. ► The MCNP5 code was used to investigate dose distributions around the seed. ► The dosimetric parameters recommended by the AAPM Task Group 60 (TG-60) were calculated. ► The short range of the beta particles limits damage to the normal tissues

  9. Bioactivity of microencapsulated soursop seeds extract on Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Ismael Barros Gomes

    2016-05-01

    Full Text Available ABSTRACT: The aim of this study was to evaluate the bioactivity of microencapsulated extract from the soursop seeds, Annona muricata L. ( Annonaceae , on diamondback moth, Plutella xylostela L. (Lepidoptera: Plutellidae . Microencapsulation was performed in a Mini Spray Dryer model B-290 using 50mL of ethanolic and hexanic extracts plus 150mL of ethanol and 150mL of ultrapure water, mixed with aerosil (first polymer or arabic gum (second polymer. It was possible to microencapsulate the ethanolic extract of soursop seeds only by using the polymer arabic gum at 20%. The microencapsulated extract caused significant acute toxicity (LC50=258mg L-1 and chronic effects, especially reduction of larval viability and increased larval stage. We concluded that the microencapsulation of the ethanolic extract of soursop seeds can be a viable alternative for controlling diamondback moth with possible gains for the environment.

  10. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  11. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica.

    Science.gov (United States)

    Özarslan, Ali Can; Yücel, Sevil

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. PMID:27524030

  12. Effect of nickel oxide substitution on bioactivity and mechanical properties of bioactive glass

    Indian Academy of Sciences (India)

    VIKASH KUMAR VYAS; A SAMPATH KUMAR; S P SINGH; RAM PYARE

    2016-09-01

    A small amount of nickel oxide is doped in bioglass$^{\\circledR}$ system and it is replaced by silica. The use of 45S5 glass composition is one such material able to bond strongly to bone within 42 days. The 45S5 bioglass$^{\\circledR}$ system develops a hydroxyl carbonate apatite (HCA) layer, which is chemically and crystallographically similar to mineral phase of bone. But it has low fracture toughness and mechanical weakness due to an amorphous glass network andit is not compatible for load-bearing applications. In the present work, the effect of addition of nickel oxide that annualizes the improvement in its mechanical strength and bioactivity is studied. Bioactivity of base glass and doped glass samples were tested through their HCA abilities by immersing them in simulated body fluid (SBF) for different days. The formation of HCA was confirmed by FTIR spectroscopy and pH measurement. Densities and mechanical properties of samples were also increased considerably by increasing the concentration of nickel oxide.

  13. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  14. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.

    Science.gov (United States)

    Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

    2015-01-01

    In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications.

  15. Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration.

    Science.gov (United States)

    O'Donnell, M D; Hill, R G

    2010-07-01

    The purpose of this article is to highlight some recent in vitro and in vivo studies of bioactive glasses containing strontium and to review selected literature on the in vitro and in vivo behaviour of bioactive glasses to relate this to the structure of the glass. The strontium-glass studies were performed well scientifically, but the results and conclusions could be misleading in terms of the effect of strontium, or more broadly glass chemistry, on the bioactivity and in vivo behaviour of bioactive glasses due to substitutions made on a weight basis. When strontium is substituted by weight for a lighter element such as calcium this will have a significant effect on structure and properties in particular biological response. PMID:20079468

  16. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    Science.gov (United States)

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth. PMID:25842126

  17. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Charlotte Vichery

    2016-04-01

    Full Text Available Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented.

  18. Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida Charoensuk

    2015-12-01

    Full Text Available Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES spectroscopy. This magnetic phase was introduced by adding Fe(NO33 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks.

  19. Experimental maxillary sinus augmentation using a highly bioactive glass ceramic.

    Science.gov (United States)

    Vivan, Rodrigo Ricci; Mecca, Carlos Eduardo; Biguetti, Claudia Cristina; Rennó, Ana Claudia Muniz; Okamoto, Roberta; Cavenago, Bruno Cavalini; Duarte, Marco Húngaro; Matsumoto, Mariza Akemi

    2016-02-01

    Physicochemical characteristics of a biomaterial directly influence its biological behavior and fate. However, anatomical and physiological particularities of the recipient site also seem to contribute with this process. The present study aimed to evaluate bone healing of maxillary sinus augmentation using a novel bioactive glass ceramic in comparison with a bovine hydroxyapatite. Bilateral sinus augmentation was performed in adult male rabbits, divided into 4 groups according to the biomaterial used: BO-particulate bovine HA Bio-Oss(®) (BO), BO+G-particulate bovine HA + particulate autogenous bone graft (G), BS-particulate glass ceramic (180-212 μm) Biosilicate(®) (BS), and BS+G-particulate glass ceramic + G. After 45 and 90 days, animals were euthanized and the specimens prepared to be analyzed under light and polarized microscopy, immunohistochemistry, scanning electron microscopy (SEM), and micro-computed tomography (μCT). Results revealed different degradation pattern between both biomaterials, despite the association with bone graft. BS caused a more intense chronic inflammation with foreign body reaction, which led to a difficulty in bone formation. Besides this evidence, SEM and μCT confirmed direct contact between newly formed bone and biomaterial, along with osteopontin and osteocalcin immunolabeling. Bone matrix mineralization was late in BS group but became similar to BO at day 90. These results clearly indicate that further studies about Biosilicate(®) are necessary to identify the factors that resulted in an unfavorable healing response when used in maxillary sinus augmentation. PMID:26712707

  20. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles.

    Science.gov (United States)

    Silva, G A; Costa, F J; Coutinho, O P; Radin, S; Ducheyne, P; Reis, R L

    2004-09-01

    The aim of the development of composite materials is to combine the most desired properties of two or more materials. In this work, the biodegradable character, good controlled-release properties, and natural origin of starch-based biomaterials are combined with the bioactive and bone-bonding properties of bioactive glass (BG). Novel, bioactive composite starch-BG microparticles were synthesized starting from a blend of starch and polylactic acid (50%/50% wt) with BG 45S5 powder using a simple emulsion method. Morphological and chemical characterization showed that these particles exhibited a spherical morphology with sizes up to 350 microm and that BG 45S5 was incorporated successfully into the composite particles. Upon immersion in a solution simulating body fluids, for periods up to 3 weeks, their bioactive nature was confirmed, as a calcium-phosphate layer resembling biological apatite was formed onto their surface. The short-term cytotoxicity of these materials was also tested by placing 24-h leachables of the materials extracted in culture medium in contact with a fibroblastic cell line (L929) up to 72 h. At this time period, two biochemical tests--MTT and total protein quantification--were performed. The results showed that these materials are not cytotoxic. These results constitute the basis of future encapsulation studies using bone-acting therapeutic agents such as bone morphogenetic proteins or other bone-relevant factors. The particles developed here may be very useful for applications in which controlled release, degradability, and bone-bonding ability are the main requirements. PMID:15293318

  1. Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites

    International Nuclear Information System (INIS)

    Polycaprolactone (PCL) composite films containing 5 wt.% bioactive glass (BG) particles of different sizes (6 μm, 250 nm, 3) and sodium calcium silicate (Na2CaSiO4) phases were formed. The introduction of submicron BG particles (250 nm) was shown to improve the bioactivity of PCL films. In contrast to BG microparticles, the submicron BG particles were distributed on the film surfaces, providing a high surface exposure to SBF with an improved nanotopography. A notable increase in the stiffness and elastic modulus of the composite was also obtained. As compared to submicron BG particles, lower bioactivity and elastic modulus were acquired for PCL/BG nanoparticles. It was also shown that in spite of high specific surface area of the nanoparticles, partial crystallization during mechanical milling and agglomeration of the nanoparticles during processing decrease the bioactivity, hydrophilicity and mechanical response of the BG-reinforced PCL composites. Highlights: → The effect of Bioglass particle size on the in vitro bioactivity of polycaprolactone/Bioglass composites was studied. → Partial crystallization of bioactive glass particles during high-energy mechanical milling was shown. → The submicron BG particles (250 nm) were shown to improve the bioactivity of PCL films. → Lower bioactivity was acquired for the nanocomposite due to agglomeration and partial crystallization. → The hydrophilicity and elastic modulus of the composites were shown to depend on the size of Bioglass particles.

  2. Effects of manufacturing method on surface mineralization of bioactive glasses

    Science.gov (United States)

    Pirayesh, Hamidreza

    Amorphous bioactive glass powders are used as bone-filling materials in many medical applications. Bioactivity is achieved through ion exchange with bodily fluids, leading to surface apatite mineral formation---a necessity for tissue development. Traditional fabrication is by melt-casting and grinding, however sol-gel synthesis is another method which directly produces powders with higher specific surface area and potential for increased ion exchange rates. In this study sol-gel derived powders were manufactured and compared with melt-cast powders to determine the effects of crystallinity, composition, and specific surface area on apatite formation. Powders were immersed in simulated body fluid as a function of time and the evolution of apatite minerals was characterized. Apatite formation was most significantly affected by powder composition, followed by specific surface area; merely having sodium in the powder was more influential than altering the surface area and/or atomic structure, yet high specific surface area was found to enhance reactions on crystalline powders.

  3. Through the looking glass; bioactive glass S53P4 (BonAlive®) in the treatment of chronic osteomyelitis.

    LENUS (Irish Health Repository)

    McAndrew, J

    2013-09-01

    In terms of eradication, osteomyelitis represents one of the most challenging infective conditions in medicine and surgery. In recent years, the use of bioactive glass in conjunction with antimicrobial therapy has emerged as a viable new treatment.

  4. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    Science.gov (United States)

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. PMID:24287337

  5. Influence of sodium content on the properties of bioactive glasses for use in air abrasion

    International Nuclear Information System (INIS)

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2–P2O5–CaO–CaF2–Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. (paper)

  6. Thermoluminescence as a probe in bioactivity studies; the case of 58S sol-gel bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Polymeris, George S; Tsirliganis, Nestor C [Archaeometry Laboratory, Cultural and Educational Technology Institute (CETI), RC Athena, Tsimiski 58, 67100-Xanthi (Greece); Goudouri, Ourania Menti; Paraskevopoulos, Konstantinos M [Solid State Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, Eleana [Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Kitis, George, E-mail: polymers@auth.gr [Nuclear and Elementary Particle Physics Laboratory, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-10-05

    The formation of a carbonated hydroxyapatite (HCAp) layer on the surface of bioactive materials is the main reaction that takes place upon their immersion in physiological fluids. To date, all techniques used for the identification of this HCAp formation are rather time consuming and not well suited to detailed and rapid monitoring of changes in the bioactivity response of the material. The aim of this work is to explore the possibility of using thermoluminescence (TL) for the discrimination between different bioactive responses in the case of the 58S bioactive glass. Results provided strong indications that the 110 deg. C TL peak of quartz can be used effectively in the study of the bioactive behaviour of 58S bioactive glass, since it is unambiguously present in all samples and does not require deconvolution analysis. Furthermore, the intensity of the 110 deg. C TL peak is proven to be very sensitive to the different bioactive responses, identifying the loss of silica which takes place at the first stages of the sequence. The discontinuities of the 110 deg. C TL peak intensity plot versus immersion time at 8 and 1440 min provide experimental indications regarding the timescale for both the beginning of amorphous CaP formation as well as the end of crystalline hydroxyl-apatite formation respectively, while the spike in the sensitization of the 110 deg. C TL peak, which was observed for immersion times ranging between 20 and 40 min, could be an experimental feature indicating the beginning of the crystalline HCAp formation.

  7. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-04-01

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  8. Healing effect of bioactive glass ointment on full-thickness skin wounds

    International Nuclear Information System (INIS)

    This study aimed to investigate the effect of bioactive glasses on cutaneous wound healing in both normal rats and streptozotocin-induced diabetic rats. Bioactive glass ointments, prepared by mixing the sol–gel bioactive glass 58S (SGBG-58S), nanobioactive glass (NBG-58S) and the melt-derived 45S5 bioactive glass (45S5) powder with Vaseline (V) at 18% weight percentage, were used to heal full thickness excision wounds. Pure V was used as control in this study. Compared to SGBG-58S, NBG-58S consists of relatively dispersible nanoparticles with smaller size. The analysis of wound healing rate and wound healing time showed that bioactive glasses promoted wound healing. The ointments containing SGBG-58S and NBG-58S healed the wounds more quickly and efficiently than the ointment containing 45S5. Histological examination indicated that bioactive glasses promoted the proliferation of fibroblasts and growth of granulation tissue. Immunohistochemical staining showed that the production of two growth factors, VEGF and FGF2, which are beneficial to wound healing, was also stimulated during the healing process. Transmission electron microscope observations showed that fibroblasts in wounds treated with bioactive glasses contained more rough endoplasmic reticula and had formed new capillary microvessels by the seventh day. The effects of SGBG-58S and NBG-58S were better than those of 45S5. All results suggest that bioactive glasses, especially SGBG-58S and NBG-58S, can accelerate the recovery of skin wounds in both normal and diabetes-impaired healing models and have a great potential for use in wound repair in the future. (paper)

  9. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.

    Science.gov (United States)

    Keshaw, Hussila; Forbes, Alastair; Day, Richard M

    2005-07-01

    Attempts to stimulate therapeutic angiogenesis using gene therapy or delivery of recombinant growth factors, such as vascular endothelial growth factor (VEGF), have failed to demonstrate unequivocal efficacy in human trials. Bioactive glass stimulates fibroblasts to secrete significantly increased amounts of angiogenic growth factors and therefore has a number of potential applications in therapeutic angiogenesis. The aim of this study was to assess whether it is possible to encapsulate specific quantities of bioactive glass and fibroblasts into alginate beads, which will secrete growth factors capable of stimulating angiogenesis. Human fibroblasts (CCD-18Co) were encapsulated in alginate beads with specific quantities of 45S5 bioactive glass and incubated in culture medium (0-17 days). The conditioned medium was collected and assayed for VEGF or used to assess its ability to stimulate angiogenesis by measuring the proliferation of human dermal microvascular endothelial cells. At 17 days the beads were lysed and the amount of VEGF retained by the beads measured. Fibroblasts encapsulated in alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass particles secreted increased quantities of VEGF compared with cells encapsulated with 0% or 1% (w/v) 45S5 bioactive glass particles. Lysed alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass contained significantly more VEGF (p<0.01) compared with beads containing no glass particles. Endothelial cell proliferation was significantly increased (p<0.01) by conditioned medium collected from alginate beads containing 0.1% (w/v) 45S5 bioactive glass particles. The results of this study demonstrate that bioactive glass and fibroblasts can be successfully incorporated into alginate beads for use in delivering angiogenic growth factors. With further optimization, this technique offers a novel delivery device for stimulating therapeutic angiogenesis. PMID:15664644

  10. Synthesis of nano-bioactive glass-ceramic powders and its in vitro bioactivity study in bovine serum albumin protein

    Science.gov (United States)

    Nabian, Nima; Jahanshahi, Mohsen; Rabiee, Sayed Mahmood

    2011-07-01

    Bioactive glasses and ceramics have proved to be able to chemically bond to living bone due to the formation of an apatite-like layer on its surface. The aim of this work was preparation and characterization of bioactive glass-ceramic by sol-gel method. Nano-bioglass-ceramic material was crushed into powder and its bioactivity was examined in vitro with respect to the ability of hydroxyapatite layer to form on the surface as a result of contact with bovine serum albumin (BSA) protein. The obtained nano-bioactive glass-ceramic was analyzed before and after contact with BSA solution. This study used scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis to examine its morphology, crystallinity and composition. The TEM images showed that the NBG particles size were 10-40 nm. Bioactivity of nanopowder was confirmed by SEM and XRD due to the presence of a rich bone-like apatite layer. Therefore, this nano-BSA-bioglass-ceramic composite material is promising for medical applications such as bone substitutes and drug carriers.

  11. Comparison of Calcium Hydroxide and Bioactive Glass after Direct Pulp Capping in Primary Teeth

    OpenAIRE

    Haghgoo, R.; N. Jalayer Naderi

    2007-01-01

    Objective: Bioactive glass is often used as a filler material for repair of dental bone defects.In different studies osteogenic potential of this material was proved, but its dentinogenesisproperty is in doubt. The purpose of this study was to evaluate the histological pulp responses of Calcium hydroxide and Bioactive glass placed directly on exposed pulp tissues.Materials and Methods: Twenty teeth to be extracted due to orthodontic reasons were selected. These teeth were divided into two gro...

  12. Nanoengineering of bioactive glasses: hollow and dense nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Gisela M., E-mail: gisela.luz@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt [University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 3B' s Research Group, Biomaterials, Biodegradables and Biomimetics (Portugal)

    2013-02-15

    The possibility of engineering bioactive glass (BG) nanoparticles into suitable sizes and shapes represents a significant achievement regarding the development of new osteoconductive biomaterials for therapeutic strategies to replace or regenerate damaged mineralised tissues. Herein we report the structural and chemical evolution of sol-gel derived BG nanoparticles for both the binary (SiO{sub 2}:CaO (mol%) = 70:30) and ternary (SiO{sub 2}:CaO:P{sub 2}O{sub 5} (mol%) = 55:40:5) formulations, in order to understand how the particles formation can be directed. Hollow BG nanospheres were obtained through Ostwald ripening. The presence of a non ionic surfactant, poly(ethylene glycol) (PEG), allowed the formation of dense BG nanospheres with controllable diameters depending on the molecular weight of PEG. A deep insight into the genesis of BG nanoparticles formation is essential to design BG based materials with controlled compositions, morphologies and sizes at the nanoscale, in order to improve their performance in orthopaedic applications including bone tissue engineering.

  13. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering.

    Science.gov (United States)

    Gantar, Ana; da Silva, Lucilia P; Oliveira, Joaquim M; Marques, Alexandra P; Correlo, Vitor M; Novak, Saša; Reis, Rui L

    2014-10-01

    This work presents bioactive-glass-reinforced gellan-gum spongy-like hydrogels (GG-BAG) as novel hydrophilic materials for use as the scaffolding in bone-tissue engineering. The reinforcement with bioactive-glass particles resulted in an improvement to the microstructure and to the mechanical properties of the material. These mechanical properties were found to be dependent on the composition and improved with the amount of bioactive glass; however, values necessary to accommodate biomechanical loading were not achieved in this study. Nevertheless, by incorporating the bioactive-glass particles, the composite material acquired the ability to form an apatite layer when soaked in simulated body fluid. Furthermore, human-adipose-derived stem cells were able to adhere and spread within the gellan-gum, spongy-like hydrogels reinforced with the bioactive glass, and remain viable, which is an important result when considering their use in bone-tissue engineering. Thus, hydrogels based on gellan gum and bioactive glass are promising biomaterials for use either alone or with cells, and with the potential for use in osteogenic differentiation.

  14. Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass

    International Nuclear Information System (INIS)

    A multifunctional magnetic mesoporous bioactive glass (MMBG) has been widely used for a drug delivery system, but its biological properties have been rarely reported. Herein, the effects of mesopores and Fe3O4 nanoparticles on drug loading–release property, bactericidal property and biocompatibility have been investigated by using mesoporous bioactive glass (MBG) and non-mesoporous bioactive glass (NBG) as control samples. Both MMBG and MBG have better drug loading efficiency than NBG because they possess ordered mesoporous channels, big specific surface areas and high pore volumes. As compared with MBG, the Fe3O4 nanoparticles in MMBG not only provide magnetic property, but also improve sustained drug release property. For gentamicin-loaded MMBG (Gent-MMBG), the sustained release of gentamicin and the Fe3O4 nanoparticles minimize bacterial adhesion significantly and prevent biofilm formation against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). Moreover, the magnetic Fe3O4 nanoparticles in MMBG can promote crucial cell functions such as cell adhesion, spreading and proliferation. The excellent biocompatibility and drug delivery property of MMBG suggest that Gent-MMBG has great potentials for treatment of implant-associated infections. - Highlights: • Multifunctional magnetic mesoporous bioactive glass is fabricated. • The bioactive glass has great biocompatibility. • The bioactive glass exhibits high drug loading–release properties. • The drug delivery system has bactericidal property. • Magnetic particles improve cell adhesion, spreading and proliferation

  15. The Correlation of Surfactant Concentrations on the Properties of Mesoporous Bioactive Glass

    Directory of Open Access Journals (Sweden)

    Shao-Ju Shih

    2016-01-01

    Full Text Available Bioactive glass (BG, a potential biomaterial, has received increasing attention since the discovery of its superior bioactivity. One of the main research objectives is to improve the bioactive property of BGs; therefore, surfactant-derived mesoporous bioactive glasses (MBGs were developed to provide a high specific surface area for achieving higher bioactivity. In this study, various concentrations of typical triblock F127 surfactant were used to manipulate the morphology, specific surface area, and bioactivity of MBG particles. Two typical morphologies of smooth (Type I and wrinkled (Type II spheres were observed, and the population of Type II particles increased with an increase in the surfactant concentration. A direct correlation between specific surface area and bioactivity was observed by comparing the data obtained using the nitrogen adsorption-desorption method and in vitro bioactive tests. Furthermore, the optimal surfactant concentration corresponding to the highest bioactivity revealed that the surfactant aggregated to form Type II particles when the surface concentration was higher than the critical micelle concentration, and the high population of Type II particles may reduce the specific surface area because of the loss of bioactivity. Moreover, the formation mechanism of SP-derived MBG particles is discussed.

  16. Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material.

    Science.gov (United States)

    Ragel, C V; Vallet-Regí, M; Rodríguez-Lorenzo, L M

    2002-04-01

    Hydroxyapatite/solgel glass biphasic material has been obtained in order to improve the bioactivity of the hydroxyapatite (OHAp). A mixture of stoichiometric OHAp and the precursor gel of a solgel glass, with nominal composition in mol% CaO-26, SiO2-70, P205-4, has been prepared. The amounts of components used have been selected to obtain a final relationship for OHAp/solgel glass of 60/40 on heating. Two different thermal treatments have been used: (i) 700 degrees C, temperature of solgel glass stabilisation and (ii) 1000 degrees C, lower temperature of hydroxyapatite sintering. The bioactivity of the resulting materials has been examined in vitro by immersion in simulated body fluid at 37 degrees C. The results obtained show that both materials are bioactive. The apatite-like layer grown is greater for the new materials than for the OHAp and the solgel glass themselves. PMID:11950057

  17. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles.

    Science.gov (United States)

    Novajra, G; Boetti, N G; Lousteau, J; Fiorilli, S; Milanese, D; Vitale-Brovarone, C

    2016-10-01

    Novel bone glass fibre scaffolds were developed by thermally bonding phosphate glass fibres belonging to the P2O5-CaO-Na2O-SiO2-MgO-K2O-TiO2 system (TiPS2.5 glass). Scaffolds with fibres of 85 or 110μm diameter were fabricated, showing compressive strength in the range of 2-3.5MPa, comparable to that of the trabecular bone. The effect of different thermal treatments and fibre diameters and length on the final scaffold structure was investigated by means of micro-CT analysis. The change of the sintering time from 30 to 60min led to a decrease in the scaffold overall porosity from 58 to 21vol.% for the 85μm fibre scaffold and from 50 to 40vol.% when increasing the sintering temperature from 490 to 500°C for the 110μm fibre scaffold. The 85μm fibres resulted in an increase of the scaffold overall porosity, increased pore size and lower trabecular thickness; the use of different fibre diameters allowed the fabrication of a scaffold showing a porosity gradient. In order to impart bioactive properties to the scaffold, for the first time in the literature the introduction in these fibre scaffolds of a bioactive phase, a melt-derived bioactive glass (CEL2) powder or spray-dried mesoporous bioactive glass particles (SD-MBG) was investigated. The scaffold bioactivity was assessed through soaking in simulated body fluid. CEL2/glass fibre scaffold did not show promising results due to particle detachment from the fibres during soaking in simulated body fluid. Instead the use of mesoporous bioactive powders showed to be an effective way to impart bioactivity to the scaffold and could be further exploited in the future through the ability of mesoporous particles to act as systems for the controlled release of drugs. PMID:27287156

  18. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    Science.gov (United States)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  19. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    Science.gov (United States)

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation.

  20. Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites

    Energy Technology Data Exchange (ETDEWEB)

    Tamjid, E. [Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Azadi Ave. P.O. Box: 11365-9466, 14588 Tehran (Iran, Islamic Republic of); Bagheri, R., E-mail: rezabagh@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave. P.O. Box: 11365-9466, 14588 Tehran (Iran, Islamic Republic of); Vossoughi, M. [Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Azadi Ave. P.O. Box: 11365-9466, 14588 Tehran (Iran, Islamic Republic of); Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave. P.O. Box: 11365-9466, 14588 Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Azadi Ave. P.O. Box: 11365-9466, 14588 Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave. P.O. Box: 11365-9466, 14588 Tehran (Iran, Islamic Republic of)

    2011-10-10

    Polycaprolactone (PCL) composite films containing 5 wt.% bioactive glass (BG) particles of different sizes (6 {mu}m, 250 nm, < 100 nm) were prepared by solvent casting methods. The ultra-fine BG particles were prepared by high-energy mechanical milling of commercial 45S5 Bioglass (registered) particles. The characteristics of bioactive glass particles were studied by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD) methods. In vitro bioactivity of the PCL/BG composite films was evaluated through immersion in the simulated body fluid (SBF). The films were analyzed by FE-SEM, energy dispersive spectrometry (EDS), XRD, and atomic force microscopy (AFM). The mechanical properties of highly-porous PCL/BG composites were examined on cylindrical specimens under quasi-static compression load. It was found that partial crystallization of amorphous BG particles during a prolonged mechanical milling occurred and calcium silicate (CaSiO{sub 3}) and sodium calcium silicate (Na{sub 2}CaSiO{sub 4}) phases were formed. The introduction of submicron BG particles (250 nm) was shown to improve the bioactivity of PCL films. In contrast to BG microparticles, the submicron BG particles were distributed on the film surfaces, providing a high surface exposure to SBF with an improved nanotopography. A notable increase in the stiffness and elastic modulus of the composite was also obtained. As compared to submicron BG particles, lower bioactivity and elastic modulus were acquired for PCL/BG nanoparticles. It was also shown that in spite of high specific surface area of the nanoparticles, partial crystallization during mechanical milling and agglomeration of the nanoparticles during processing decrease the bioactivity, hydrophilicity and mechanical response of the BG-reinforced PCL composites. Highlights: {yields} The effect of Bioglass particle size on the in vitro bioactivity of

  1. Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles.

    Science.gov (United States)

    Leite, Álvaro J; Sarker, Bapi; Zehnder, Tobias; Silva, Raquel; Mano, João F; Boccaccini, Aldo R

    2016-01-01

    Alginate dialdehyde-gelatin (ADA-GEL) constructs incorporating bioactive glass nanoparticles (BGNPs) were produced by biofabrication to obtain a grid-like highly-hydrated composite. The material could induce the deposition of an apatite layer upon immersion in a biological-like environment to sustain cell attachment and proliferation. Composites were formulated with different concentrations of BGNPs synthetized from a sol-gel route, namely 0.1% and 0.5% (w/v). Strontium doped BGNPs were also used. EDS analysis suggested that the BGNPs loading promoted the growth of bone-like apatite layer on the surface when the constructs were immersed in a simulated body fluid. Moreover, the composite constructs could incorporate with high efficiency ibuprofen as a drug model. Furthermore, the biofabrication process allowed the successful incorporation of MG-63 cells into the composite material. Cells were distributed homogeneously within the hydrogel composite, and no differences were found in cell viability between ADA-GEL and the composite constructs, proving that the addition of BGNPs did not influence cell fate. Overall, the composite material showed potential for future applications in bone tissue engineering. PMID:27432012

  2. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation.

    Science.gov (United States)

    Groh, Daniel; Döhler, Franziska; Brauer, Delia S

    2014-10-01

    Bioactive glasses, particularly Bioglass® 45S5, have been used to clinically regenerate human bone since the mid-1980s; however, they show a strong tendency to undergo crystallization upon heat treatment, which limits their range of applications. Attempts at improving their processing (by reducing their tendency to crystallize) have included increasing their silica content (and thus their network connectivity), incorporating intermediate oxides or reducing their phosphate content, all of which reduce glass bioactivity. Therefore, bioactive glasses known for their good processing (e.g. 13-93) are considerably less bioactive. Here, we investigated if the processing of 45S5 bioactive glass can be improved while maintaining its network connectivity and phosphate content. The results show that, by increasing the calcium:alkali cation ratio, partially substituting potassium for sodium (thereby making use of the mixed alkali effect) and adding small amounts of fluoride, bioactive glasses can be obtained which have a larger processing window (suggesting that they can be processed more easily, allowing for sintering of scaffolds or drawing into fibres) while degrading readily and forming apatite in aqueous solution within a few hours. PMID:24880003

  3. Abrasive wear behaviour of bio-active glass ceramics containing apatite

    Indian Academy of Sciences (India)

    I Sevim; M K Kulekci

    2006-06-01

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture toughness equations using experimental hardness results of the bio-active glass ceramic material. Two fracture toughness equations in the literature were used to identify the wear behaviour of studied ceramics. Wear resistance results that identified with both of the equations were similar. The results showed that the abrasive wear resistance of the bio-active glass ceramics produced with hot pressing process was found to be higher than that of the ceramics produced by conventional casting and controlled crystallization process.

  4. Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass-ceramic fabricated using soda-lime-silica waste glass

    Science.gov (United States)

    Abbasi, M.; Hashemi, B.; Shokrollahi, H.

    2014-04-01

    The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass-ceramic prepared through the solid-state reaction method using soda-lime-silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5-20 wt% strontium hexaferrite to bioactive glass-ceramics, the ferrimagnetic bioactive glass-ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed.

  5. In vitro study of manganese-doped bioactive glasses for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Miola, Marta, E-mail: marta.miola@polito.it [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Brovarone, Chiara Vitale [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Maina, Giovanni [Department of Clinical and Biological Sciences, University of Turin, Via Zuretti 29, 10126 Turin (Italy); Rossi, Federica [Department of Public Health and Pediatric Sciences, Piazza Polonia, 94, 10126 Torino (Italy); Bergandi, Loredana; Ghigo, Dario [Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin (Italy); Saracino, Silvia; Maggiora, Marina; Canuto, Rosa Angela; Muzio, Giuliana [Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin (Italy); Vernè, Enrica [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2014-05-01

    A glass belonging to the system SiO{sub 2}–P{sub 2}O{sub 5}–CaO–MgO–Na{sub 2}O–K{sub 2}O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm{sup 2} (μg of glass powders/cm{sup 2} of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). - Highlights: • Novel bioactive glasses doped with manganese were prepared. • Mn-doped bioactive glasses were not cytotoxic towards human MG-63 osteoblasts. • The Mn introduction promotes the expression of ALP and bone morphogenetic proteins. • Mn-doped glass may be a promising material for bone regeneration procedures.

  6. In vitro study of manganese-doped bioactive glasses for bone regeneration

    International Nuclear Information System (INIS)

    A glass belonging to the system SiO2–P2O5–CaO–MgO–Na2O–K2O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm2 (μg of glass powders/cm2 of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). - Highlights: • Novel bioactive glasses doped with manganese were prepared. • Mn-doped bioactive glasses were not cytotoxic towards human MG-63 osteoblasts. • The Mn introduction promotes the expression of ALP and bone morphogenetic proteins. • Mn-doped glass may be a promising material for bone regeneration procedures

  7. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules

    Science.gov (United States)

    El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won

    2012-11-01

    Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.Inorganic bioactive nanomaterials are attractive for hard tissue regeneration

  8. Avoiding mastoid cavity Problems: Mastoid obliteration using Bioactive glass

    Directory of Open Access Journals (Sweden)

    Said Shokry, Al`Sayed Hossieni Al`Sayed, Mohammed Fatehy Zidan,

    2012-04-01

    Full Text Available Background and objective: The aim of this study was to evaluate bioactive glass as an ideal material for the purpose of mastoid cavity elimination after mastoid surgery to avoid mastoid cavity problems.Materials and methods: In 20 patients diagnosed as cholesteatoma or chronic unsafe ear, we used different surgical techniques according to pathology and situation during surgical exploration, basically adhering to standard principles of eradicating disease in chronic unsafe ear. After performing the canal wall down (CWD or the canal wall up (CWU technique, mastoidectomy was followed by obliteration of mastoid cavity by particulate form Bioglass®. Cases were divided according to operative procedures, type of reconstruction and material used into 3 groups A- Canal wall up mastoidectomy followed by obliteration of mastoid cavity by particulate form Bioglass®. B- Canal wall down mastoidectomy followed by reconstruction of posterior meatal wall and obliteration of mastoid cavity by particulate form Bioglass®. C- Canal wall down mastoidectomy followed by reconstruction of posterior meatal wall by conchal cartilage and obliteration of mastoid cavity by Bioglass®.Results: Bioactiveglass paste is very effective for mastoid obliteration in the three groups with good integration to the surrounding tissues either connective tissue, bone, meninges or lateral dural sinus without any adverse reaction on the dura even with contact to Bioglass®. Infection was seen in 2 cases (10%, however was readily controlled by topical application of antibiotics daily for one week. In both cases no extrusion of the material occurred. Conclusion: The successful formation of bone with elimination of mastoid cavity problems proved that using Bioglass is appropriate for performing clinical mastoid obliteration.

  9. STATIC AND DYNAMIC IN VITRO TEST OF BIOACTIVITY OF GLASS CERAMICS

    Directory of Open Access Journals (Sweden)

    JANA KOZÁNKOVÁ

    2011-06-01

    Full Text Available The bioactivity of glass ceramics from Li2O–SiO2–CaO–P2O5–CaF2 system, with different amount of fluorapatite expressed as P2O5 content, has been tested in vitro under static and dynamic regime. The paper reports the results of bioactivity test of glass ceramics in static and dynamic regime. XRD, SEM and EPMA analysis were used to characterise the sample as well as to detect the presence of new phase onto the surface of glass ceramics. The bioactivity, as demonstrated by the formation of new apatite layer, depends on P2O5 content and testing regime. In static regime, one can observe a fine microstructure of hydroxyapatite layer on the surface on glass ceramics samples. In dynamic regime, the formation rate of this layer seems to be retarded in comparison with that of static regime.

  10. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanfeng; Song Lei; Liu Xiaoguang; Huang Yi; Huang Tao; Wu Yao; Chen Jiyong [National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road Chengdu, Sichuan 610064 (China); Wu Fang, E-mail: fwu@scu.edu.cn [National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road Chengdu, Sichuan 610064 (China)

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P{sub 2}O{sub 5}-Na{sub 2}O-CaO-SiO{sub 2} bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P{sub 2}O{sub 5}-Na{sub 2}O-CaO-SiO{sub 2} bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  11. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    Science.gov (United States)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  12. Comparison of Calcium Hydroxide and Bioactive Glass after Direct Pulp Capping in Primary Teeth

    Directory of Open Access Journals (Sweden)

    R. Haghgoo

    2007-12-01

    Full Text Available Objective: Bioactive glass is often used as a filler material for repair of dental bone defects.In different studies osteogenic potential of this material was proved, but its dentinogenesisproperty is in doubt. The purpose of this study was to evaluate the histological pulp responses of Calcium hydroxide and Bioactive glass placed directly on exposed pulp tissues.Materials and Methods: Twenty teeth to be extracted due to orthodontic reasons were selected. These teeth were divided into two groups and treated with direct pulp capping.Calcium hydroxide was used for 10 teeth and Bioactive glass for 10 teeth. After 60 daysthe teeth were extracted and prepared for histological evaluation. Finally the data was analyzed with exact Fisher test.Results: All teeth treated with Calcium hydroxide showed inflammation. Internal resorption was seen in six teeth, abscess in five teeth and dentinal bridge in two teeth. Inflammationwas seen in three Bioactive glass samples and dentinal bridge in seven teeth, but internal resorption and abscess were not seen.Conclusion: Bioactive glass appears to be superior to Calcium hydroxide as a pulp capping agent in primary teeth.

  13. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  14. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr.

    Science.gov (United States)

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431

  15. Microwave-assisted rapid discharge sintering of a bioactive glass-ceramic.

    Science.gov (United States)

    O'Flynn, Kevin P; Twomey, Barry; Breen, Aidan; Dowling, Denis P; Stanton, Kenneth T

    2011-07-01

    Bioactive glass-ceramics have been developed as successful bone graft materials. Although conventional sintering in an electrically-heated furnace is most commonly used, an alternative microwave plasma batch processing technique, known as rapid discharge sintering (RDS), is examined to crystallise the metastable base glass to form one or more ceramic phases. Apatite-mullite glass-ceramics (AMGC) were examined to elucidate the effects of RDS on the crystallization of a bioactive glass-ceramic. By increasing the fluorine content of the glass, the fluorapatite (FAp) and mullite crystallization onset temperatures can be reduced. Samples were sintered in a hydrogen and hydrogen/nitrogen discharge at temperatures of ≈800 and 1000 °C respectively with the higher sintering temperature required to form mullite. Results show that the material can be densified and crystallised using RDS in a considerably shorter time than conventional sintering due to heating and cooling rates of ≈400 °C/min. PMID:21574014

  16. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2015-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  17. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass

    Directory of Open Access Journals (Sweden)

    Mona A. Ouis

    2012-09-01

    Full Text Available Bioactive borate glasses (from the system Na2O-CaO-B2O3-P2O5 and corresponding glass-ceramics as a new class of scaffold material were prepared by full replacement of SiO2 with B2O3 in Hench patented bioactive glass. The prepared samples were investigated by differential thermal analysis (DTA, Fourier transform infrared (FTIR spectroscopy and X-ray diffraction (XRD analysis. The DTA data were used to find out the proper heat treatment temperatures for preparation of the appropriate glass-ceramics with high crystallinity. The prepared crystalline glass-ceramics derivatives were examined by XRD to identify the crystalline phases that were precipitated during controlled thermal treatment. The FTIR spectroscopy was used to justify the formation of hydroxyapatite as an indication of the bioactivity potential or activity of the studied ternary borate glasses or corresponding glass-ceramics after immersion in aqueous phosphate solution. The corrosion results are interpreted on the basis of suggested recent views on the corrosion mechanism of such modified borate glasses in relation to their composition and constitution.

  18. Fluoride-containing bioactive glasses: Surface reactivity in simulated body fluids solutions

    International Nuclear Information System (INIS)

    Bioactive glasses are used in medical field as bone regenerative materials. They promote the growth of bone tissue surface, and establish interconnections in order to form a continuum with the tissue. The bioactivity of this class of materials, immersed in a real or simulated biological medium, is monitored by the ability to form at its surface a layer of Ca-phosphate, which ought to crystallize in the form of either hydroxy-apatite (H A) or hydroxy-carbonate-apatite (H C A). The present contribution deals with the activity/reactivity of some oxidic materials (to be possibly used as bio-active glasses) that: 1) have been produced through the conventional melt-quench-grin method; 2) belong to the family of Hench's Bio glass (H-glass); 3) have been modified, in respect of H-glass composition by the introduction of variable amounts of Ca-fluoride. In assessing the bioactivity of two families of F-modified glasses, it is herewith shown that the use of some physico-chemical methods, typical of surface chemistry (e.g., surface area determination, IR and Raman vibrational spectroscopic analysis), gives indeed access to what happens at the interface between a complex oxidic material and the surrounding biological medium.

  19. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Oudadesse, H; Dietrich, E; Gal, Y L; Pellen, P; Bureau, B; Mostafa, A A; Cathelineau, G, E-mail: hassane.oudadesse@univ-rennes1.fr [SCR, UMR-CNRS 6226, Campus de Beaulieu, Universite de Rennes 1, 263 Avenue du General Leclerc, 35042 Rennes Cedex (France)

    2011-06-15

    The use of bone grafts permits the filling of a bone defect without risk of virus transmission. In this work, pure bioactive glass (46S6) and zinc-doped bioactive glass (46S6Zn10) with 0.1 wt% zinc are used to elaborate highly bioactive materials by melting and rapid quenching. Cylinders of both types of glasses were soaked in a simulated body fluid (SBF) solution with the aim of determining the effect of zinc addition as a trace element on the chemical reactivity and bioactivity of glass. Several physico-chemical characterization methods such as x-ray diffraction, Fourier transform infrared spectroscopy and nuclear magnetic resonance methods, with particular focus on the latter, were chosen to investigate the fine structural behaviour of pure and Zn-doped bioactive glasses as a function of the soaking time of immersion in SBF. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to measure the concentrations of Ca and P ions in the SBF solution after different durations of immersion. The effect of the investigated samples on the proliferation rate of human osteoblast cells was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and tested on two different sizes of pure and zinc-doped glasses in powder form, with particle sizes that ranged between 40 to 63 {mu}m and 500 to 600 {mu}m. The obtained results showed the delay release of ions by Zn-doped glass (46S6Zn10) and the slower CaP deposition. Cytotoxicity and cell viability were affected by the particle size of the glass. The release rate of ions was found to influence the cell viability.

  20. Surface signatures of bioactivity: MD simulations of 45S and 65S silicate glasses.

    Science.gov (United States)

    Tilocca, Antonio; Cormack, Alastair N

    2010-01-01

    The surface of a bioactive (45S) and a bioinactive (65S) glass composition has been modeled using shell-model classical molecular dynamics simulations. Direct comparison of the two structures allowed us to identify the potential role of specific surface features in the processes leading to integration of a bioglass implant with the host tissues, focusing in particular on the initial dissolution of the glass network. The simulations highlight the critical role of network fragmentation and sodium enrichment of the surface in determining the rapid hydrolysis and release of silica fragments in solution, characteristic of highly bioactive compositions. On the other hand, no correlation has been found between the surface density of small (two- and three-membered) rings and bioactivity, thus suggesting that additional factors need to be taken into account to fully understand the role of these sites in the mechanism leading to calcium phosphate deposition on the glass surface. PMID:19725567

  1. Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Zhuo [The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China); Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Li, Yang [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yu, Xi-Bin [The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China); Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Liu, Li-Na [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China); Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2014-08-01

    A multifunctional magnetic mesoporous bioactive glass (MMBG) has been widely used for a drug delivery system, but its biological properties have been rarely reported. Herein, the effects of mesopores and Fe{sub 3}O{sub 4} nanoparticles on drug loading–release property, bactericidal property and biocompatibility have been investigated by using mesoporous bioactive glass (MBG) and non-mesoporous bioactive glass (NBG) as control samples. Both MMBG and MBG have better drug loading efficiency than NBG because they possess ordered mesoporous channels, big specific surface areas and high pore volumes. As compared with MBG, the Fe{sub 3}O{sub 4} nanoparticles in MMBG not only provide magnetic property, but also improve sustained drug release property. For gentamicin-loaded MMBG (Gent-MMBG), the sustained release of gentamicin and the Fe{sub 3}O{sub 4} nanoparticles minimize bacterial adhesion significantly and prevent biofilm formation against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). Moreover, the magnetic Fe{sub 3}O{sub 4} nanoparticles in MMBG can promote crucial cell functions such as cell adhesion, spreading and proliferation. The excellent biocompatibility and drug delivery property of MMBG suggest that Gent-MMBG has great potentials for treatment of implant-associated infections. - Highlights: • Multifunctional magnetic mesoporous bioactive glass is fabricated. • The bioactive glass has great biocompatibility. • The bioactive glass exhibits high drug loading–release properties. • The drug delivery system has bactericidal property. • Magnetic particles improve cell adhesion, spreading and proliferation.

  2. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Killion, John A., E-mail: jkillion@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland); Kehoe, Sharon, E-mail: sh625116@dal.ca [Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 34R2 (Canada); Geever, Luke M., E-mail: lgeever@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland); Devine, Declan M., E-mail: ddevine@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland); Sheehan, Eoin, E-mail: eoinsheehan@aol.com [Department of Trauma and Orthopaedics, MRHT, Tullamore, Co. Offaly (Ireland); Boyd, Daniel, E-mail: d.boyd@dal.ca [Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 34R2 (Canada); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland)

    2013-10-15

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications. Highlights: • Young's modulus increases with the addition of bioactive glasses. • Hydrogel based composites formed an apatite layer in simulated body fluid. • Storage modulus increases with addition of bioactive glasses. • Compressive strength is dependent on molecular weight and bioactive glass loading.

  3. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    Science.gov (United States)

    Shantappa, Anil; Hanagodimath, S. M.

    2015-08-01

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.

  4. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Gyorgy, E.; Grigorescu, S.; Socol, G.; Mihailescu, I. N.; Janackovic, D.; Dindune, A.; Kanepe, Z.; Palcevskis, E.; Zdrentu, E. L.; Petrescu, S. M.

    2007-07-01

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO 2 doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF * ( λ = 248 nm, τ ≥ 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 °C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  5. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gyorgy, E. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania) and Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: egyorgy@icmab.es; Grigorescu, S. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Janackovic, D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Dindune, A. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Kanepe, Z. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Palcevskis, E. [Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Zdrentu, E.L. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania); Petrescu, S.M. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania)

    2007-07-31

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO{sub 2} doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF{sup *} ({lambda} = 248 nm, {tau} {>=} 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 deg. C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  6. In vitro performance of 13-93 bioactive glass fiber and trabecular scaffolds with MLO-A5 osteogenic cells.

    Science.gov (United States)

    Modglin, Vernon C; Brown, Roger F; Fu, Qiang; Rahaman, Mohamed N; Jung, Steven B; Day, Delbert E

    2012-10-01

    This in vitro study was performed to evaluate the ability of two types of porous bioactive glass scaffolds to support the growth and differentiation of an established osteogenic cell line. The two scaffold types tested included 13-93 glass fiber and trabecular-like scaffolds seeded with murine MLO-A5 cells and cultured for intervals of 2 to 12 days. Culture in MTT-containing medium showed metabolically active cells both on the surface and within the interior of the scaffolds. Scanning electron microscopy revealed well-attached cells on both types of scaffolds with a continual increase in cell density over a 6-day period. Protein measurements also showed a linear increase in cell density during the incubation. Activity of alkaline phosphatase, a key indicator of osteoblast differentiation, increased about 10-fold during the 6-day incubation with both scaffold types. The addition of mineralization media to MLO-A5 seeded scaffolds triggered extensive formation of alizarin red-positive mineralized extracellular material, additional evidence of cell differentiation and completion of the final step of bone formation on the constructs. Collectively, the results indicate that the 13-93 glass fiber and trabecular scaffolds promote the attachment, growth, and differentiation of MLO-A5 osteogenic cells and could potentially be used for bone tissue engineering applications. PMID:22528984

  7. Clinical evaluation of bioactive glass in the treatment of periodontal osseous defects in humans.

    Science.gov (United States)

    Lovelace, T B; Mellonig, J T; Meffert, R M; Jones, A A; Nummikoski, P V; Cochran, D L

    1998-09-01

    The purpose of this study was to compare the use of bioactive glass to demineralized freeze-dried bone allograft (DFDBA) in the treatment of human periodontal osseous defects. Fifteen systemically healthy patients (6 males and 9 females, aged 30 to 63) with moderate to advanced adult periodontitis were selected for the study. All patients underwent initial therapy, which included scaling and root planing, oral hygiene instruction, and an occlusal adjustment when indicated, followed by re-evaluation 4 to 6 weeks later. Paired osseous defects in each subject were randomly selected to receive grafts of bioactive glass or DFDBA. Both soft and hard tissue measurements were taken the day of surgery (baseline) and at the 6-month re-entry surgery. The clinical examiner was calibrated and blinded to the surgical procedures, while the surgeon was masked to the clinical measurements. Statistical analysis was performed by using the paired Student's t test. The results indicated that probing depths were reduced by 3.07 +/- 0.80 mm with the bioactive glass and 2.60 +/- 1.40 mm with DFDBA. Sites grafted with bioactive glass resulted in 2.27 +/- 0.88 mm attachment level gain, while sites grafted with DFDBA had a 1.93 +/- 1.33 mm gain in attachment. Bioactive glass sites displayed 0.53 +/- 0.64 mm of crestal resorption and 2.73 mm bone fill. DFDBA-grafted sites experienced 0.80 +/- 0.56 mm of crestal resorption and 2.80 mm defect fill. The use of bioactive glass resulted in 61.8% bone fill and 73.33% defect resolution. DFDBA-grafted defects showed similar results, with 62.5% bone fill and 80.87% defect resolution. Both treatments provided soft and hard tissue improvements when compared to baseline (P < or = 0.0001). No statistical difference was found when comparing bioactive glass to DFDBA; however, studies with larger sample sizes may reveal true differences between the materials. This study suggests that bioactive glass is capable of producing results in the short term (6 months

  8. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    Science.gov (United States)

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. PMID:27040248

  9. Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA

    Directory of Open Access Journals (Sweden)

    Nabian Nima

    2013-01-01

    Full Text Available The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%. We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer’s solution with bovine serum albumin (BSA for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, surface electron microscope (SEM and transmission electron microscope (TEM. The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.

  10. Gallium-containing phospho‐silicate glasses: Synthesis and in vitro bioactivity

    International Nuclear Information System (INIS)

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x = 1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga3+ concentration measured in solution is ∼ 6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. - Highlights: ► A new class of potential bioactive glasses gallium content. ► Controlled ions release from the glass surface. ► Effect of Ga2O3 content on bioactivity (hydroxyapatite formation). ► Formation of calcite when the phosphate concentration is low in SBF.

  11. Interaction of bioactive glasses with peritoneal macrophages and monocytes in vitro.

    Science.gov (United States)

    Bosetti, M; Hench, L; Cannas, M

    2002-04-01

    Macrophage activation was analyzed following exposure to pure, crystalline alpha-quartz powders, two bioactive gel-glass powders of different compositions, and a melt-derived glass, 45S5 Bioglass. The release of reactive oxygen metabolites (chemiluminescence test), modifications of cell morphology, the amount of tumor necrosis factor alpha (TNFalpha) secreted, and the amount of TNFalpha mRNA expression were evaluated. The 45S5 Bioglass powders elicited the highest chemiluminescence response while the two solgel glasses had a lower response with less of an oxidative burst difference between them. Particulate bioactive glasses are actively ingested by mouse peritoneal macrophages, and only the 58S solgel glass had a moderate toxic effect on the macrophages. Macrophage cell morphology showed increased size and cell spreading, consistent with the high level of cytokine secretion induced by 45S5 Bioglass. The 45S5 Bioglass powders led to an increased release of TNFalpha and expression of TNFalpha mRNA relative to unstimulated and control treated monocytes. Bioactive glasses (and particularly 45S5 Bioglass) that in vivo induce rapid bone growth appear to activate an autocrine-like process in which the response evoked by the material (for example monocyte and macrophage activation with cytokine production) enhances subsequent interactions with cells in contact with the material. PMID:11835162

  12. Laser sintering of nano 13-93 glass scaffolds: Microstructure, mechanical properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Cao Y.

    2015-01-01

    Full Text Available As the only bioactive material that can bond with both hard tissues and soft tissues, bioactive glass has become much important in the field of tissue engineering. 13-93 bioactive glass scaffolds were fabricated via selective laser sintering (SLS. It was focused on the effects of laser sintering on microstructure and mechanical properties of the scaffolds. The experimental results showed that the sintered layer gradually became dense with the laser power increasing and then some defects occurred, such as macroscopic caves. The optimum compressive strength and fracture toughness were 21.43±0.87 MPa and 1.14±0.09 MPa.m1/2, respectively. In vitro bioactivity showed that there was the bone-like apatite layer on the surface of the scaffolds after soaking in simulated body fluid (SBF, which was further evaluated by Fourier transform infrared spectroscopy (FTIR. Moreover, cell culture study showed MG-63 cells adhered and spread well on the scaffolds, and proliferated with increasing time in cell culture. These indicated excellent bioactivity and biocompatibility of nano 13-93 glass scaffolds.

  13. In vitro study of polycaprolactone/bioactive glass composite coatings on corrosion and bioactivity of pure Mg

    Science.gov (United States)

    Yang, Yuyun; Michalczyk, Carolin; Singer, Ferdinand; Virtanen, Sannakaisa; Boccaccini, Aldo R.

    2015-11-01

    The influence of the addition of nano-scaled bioactive glass (nBG) powder into polycaprolactone (PCL) coatings on the biodegradation and bioactivity of pure Mg was investigated in the present work. Scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Fourier transform infrared spectroscopy (FTIR) and electrochemical methods were employed to characterize the morphology, chemical composition and anticorrosion properties of the coatings. The results indicate that nBG addition in PCL increases the degradation of PCL in physiological solution; depending on the amount of nBG in the composite coating, the barrier properties of PCL therefore can be modified. At the same time, the addition of nBG facilitates the formation of hydroxyapatite during 7 days immersion in simulated body fluid (SBF).

  14. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  15. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    Science.gov (United States)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  16. PROCESSING AND CHARACTERISATION OF HIGH-VELOCITY SUSPENSION FLAME SPRAYED (HVSFS) BIOACTIVE GLASS COATINGS

    OpenAIRE

    GIOVANNI BOLELLI; VALERIA CANNILLO; RAINER GADOW; ANDREAS KILLINGER; LUCA LUSVARGHI; JOHANNES RAUCH

    2010-01-01

    The High-Velocity Suspension Flame Spraying (HVSFS) technique was employed in order to deposit bioactive glass coatings onto titanium substrates. Two different glass compositions were examined: the classical 45S5 Bioglass and a newly-developed SiO2–CaO–K2O–P2O5 glass, labelled as “Bio-K”. Suitable raw materials were melted in a furnace and fritted by casting into water. The frit was dry-milled in a porcelain jar and subsequently attrition-milled in isopropanol. The resulting micronsized powde...

  17. Bioactive type glass-ceramics within incorporated aluminium; Vitroceramicos del tipo bioactivo con aluminio incorporado

    Energy Technology Data Exchange (ETDEWEB)

    Volzone, C.; Stabile, F.M.; Ortiga, J., E-mail: volzcris@netverk.com.ar [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Buenos Aires (Argentina)

    2012-07-01

    Bioactive glass-ceramics are used as biomaterials for the reparation of bone tissue. They are prepared, generally, by bioglass of specific composition for each particular use. The aluminium addition in the formulation at very small quantities influences on the structural properties. Two glass-ceramics obtained by P{sub 2}O{sub 5}-Na{sub 2}O-CaO-SiO{sub 2} formulation within aluminium (0.5 % in Al{sub 2}O{sub 3} base) added through a reactive alumina and purified feldspar were analyzed. The results showed structural differences between both glass-ceramics. (author)

  18. Amaranth Seeds and Products – The Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ogrodowska Dorota

    2014-09-01

    Full Text Available In recent years, new products obtained from amaranth seeds have entered the food market including expanded “popping” seeds and flakes. Lipids and biologically-active substances dissolved in these products are susceptible to changes. Additionally, due to the fact that fat quality has high dietary importance, there is a need to conduct detailed quality and quantity studies on the lipid composition of Amaranthus cruentus.

  19. Preparation of Machinable Bioactive Glass-ceramics by Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method.The composite sol was then transformed into gel by aging under different temperatures. The gel was dried finally by super critically drying method and sintered to obtain the machinable bioactive glass-ceramics. Effect of thermal treatment on crystallization of the glass-ceramics was investigated by X-ray diffraction (XRD) analysis. Microstructure of the glass-ceramics was observed by Scanning Electron Microscopy (SEM) and the mechanism of machinability was discussed. Phlogopite and hydroxylapatite were identified as main crystal phases by XRD analysis under thermal treatment at 750 ℃ and 950 ℃ for 1.5 h separately. The relative bulk density could achieve 99%under 1050 ℃ for 4 h. Microstructure of the glass-ceramics showed that the randomly distributed phlogopite and hydroxylapatite phases were favorable to the machinability of the glass-ceramics. A mean bending strength of about 160-180 MPa and a fracture toughness parameter KIC of about 2.1-2.3 were determined for the glass-ceramics.

  20. Bioactive and Antibacterial Glass Powders Doped with Copper by Ion-Exchange in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Marta Miola

    2016-05-01

    Full Text Available In this work, two bioactive glass powders (SBA2 and SBA3 were doped with Cu by means of the ion-exchange technique in aqueous solution. SBA2 glass was subjected to the ion-exchange process by using different Cu salts (copper(II nitrate, chloride, acetate, and sulphate and concentrations. Structural (X-ray diffraction-XRD, morphological (Scanning Electron Microscopy-SEM, and compositional (Energy Dispersion Spectrometry-EDS analyses evidenced the formation of crystalline phases for glasses ion-exchanged in copper(II nitrate and chloride solutions; while the ion-exchange in copper(II acetate solutions lead to the incorporation of higher Cu amount than the ion-exchange in copper(II sulphate solutions. For this reason, the antibacterial test (inhibition halo towards S. aureus was performed on SBA2 powders ion-exchanged in copper(II acetate solutions and evidenced a limited antibacterial effect. A second glass composition (SBA3 was developed to allow a greater incorporation of Cu in the glass surface; SBA3 powders were ion-exchanged in copper(II acetate solutions (0.01 M and 0.05 M. Cu-doped SBA3 powders showed an amorphous structure; morphological analysis evidenced a rougher surface for Cu-doped powders in comparison to the undoped glass. EDS and X-ray photoelectron spectroscopy (XPS confirmed the Cu introduction as Cu(II ions. Bioactivity test in simulated body fluid (SBF showed that Cu introduction did not alter the bioactive behaviour of the glass. Finally, inhibition halo test towards S. aureus evidenced a good antimicrobial effect for glass powders ion-exchanged in copper(II acetate solutions 0.05 M.

  1. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Bioactive glasses (SiO2–P2O5–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  2. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  3. Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy

    Science.gov (United States)

    Shruti, S.; Andreatta, F.; Furlani, E.; Marin, E.; Maschio, S.; Fedrizzi, L.

    2016-08-01

    Surface modification is one of the methods for improving the performance of medical implants in biological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5 mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 V substrates by dip-coating method in order to obtain an inorganic-organic hybrid coating (MBG-PCL). Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 μm. Glass and polymer phases were detected in the coating along with the presence of biologically potent elements cerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samples in simulated body fluid (SBF) for up to 30 days at 37 °C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In this way, an attempt was made to develop a new biomaterial with improved in vitro bioactive response due to bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biological properties of cerium, gallium and zinc.

  4. Preparation, in vitro mineralization and osteoblast cell response of electrospun 13-93 bioactive glass nanofibers.

    Science.gov (United States)

    Deliormanlı, Aylin M

    2015-08-01

    In this study, silicate based 13-93 bioactive glass fibers were prepared through sol-gel processing and electrospinning technique. A precursor solution containing poly (vinyl alcohol) and bioactive glass sol was used to produce fibers. The mixture was electrospun at a voltage of 20 kV by maintaining tip to a collector distance of 10 cm. The amorphous glass fibers with an average diameter of 464±95 nm were successfully obtained after calcination at 625 °C. Hydroxyapatite formation on calcined 13-93 fibers was investigated in simulated body fluid (SBF) using two different fiber concentrations (0.5 and 1 mg/ml) at 37 °C. When immersed in SBF, conversion to a calcium phosphate material showed a strong dependence on the fiber concentration. At 1mg/ml, the surface of the fibers converted to the hydroxyapatite-like material in SBF only after 30 days. At lower solid concentrations (0.5 mg/ml), an amorphous calcium phosphate layer formation was observed followed by the conversion to hydroxyapatite phase after 7 days of immersion. The XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay was conducted to evaluate the osteoblast cell response to the bioactive glass fibers. PMID:26042714

  5. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Razavi, Mehdi [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Pothineni, Venkata Raveendra [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Rajadas, Jayakumar [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2015-05-30

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  6. Effect of Ti(+4) on in vitro bioactivity and antibacterial activity of silicate glass-ceramics.

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Hussain, Tousif; Bashir, Farooq; Ikhram, Hafeez

    2016-12-01

    A novel glass-ceramic series in (48-x) SiO2-36 CaO-4 P2O5-12 Na2O-xTiO2 (where x=0, 3.5, 7, 10.5 and 14mol %) system was synthesized by crystallization of glass powders, obtained by melt quenching technique. The differential scanning calorimetric analysis (DSC) was used to study the non-isothermal crystallization kinetics of the as prepared glasses. The crystallization behaviour of glasses was analyzed under non-isothermal conditions, and qualitative phase analysis of glass-ceramics was made by X-ray diffraction. The in vitro bioactivity of synthesized glass-ceramics was studied in stimulated body fluid at 37°C under static condition for 24days. The formation of hydroxyl-carbonated apatite layer; evident of bioactivity of the material, was elucidated by XRD, FTIR, AAS, SEM and EDX analysis. The result showed that partial substitution of TiO2 with SiO2 negatively influenced bioactivity; it decreased with increase in concentration of TiO2. As Ti(+4) having stronger field strength as compared to Si(+4) so its replacement became the cause for reduction in degradation that in turn improved the chemical stability. The compressive strength was also enhanced with progress addition of TiO2 in the system. The antibacterial properties were examined against Staphylococcus Epidermidis. Strong antibacterial efficacy was observed with the addition of TiO2 in the system. PMID:27612803

  7. Degradation studies of 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) - bioactive glass scaffolds for bone tissue repair applications

    Science.gov (United States)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2016-05-01

    Bio composite scaffolds prepared from polymer and bio glass provide necessary sites for bone tissue regeneration. In the presented work, bioactive glass scaffolds have been prepared from 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) with different amount of bioactive glass powder by solvent casting method. Prepared scaffolds have been characterized by XRD, FTIR and FESEM techniques. Effect of content of bioactive glass on biodegradability has been investigated in detail.

  8. Paramagnetic centers induced by gamma irradiation of bioactive silica glasses containing yttrium

    International Nuclear Information System (INIS)

    Full text: Silica bioactive glasses containing neutron activated yttrium were investigated as a potential material for internal radiotherapy of cancers. The silica glasses, containing yttrium oxide and different alkali and alkaline-earth oxides as network modifiers, were obtained by melt annealing method. The samples were exposed to gamma radiation from a 60Co source for up to 10 days irradiation time. The radiation induced paramagnetic point defects in the irradiated glasses were analysed by Electron Paramagnetic Resonance (EPR). The EPR spectra of the silica glasses with different modifiers are characterised by a resonance line at g ≅ 2.024, slightly varying with the composition, attributed to a non-bridging oxygen hole centres. The addition of modifier oxides into glass network results in the formation of non-bridging oxygens that are locally charged compensated by modifier cations in neighbouring interstitial positions. The presence of small amount of boron oxide, up to 2.6 wt. %, in some of the glasses induced the formation of boron oxygen hole centres that are the main EPR species in these irradiated glasses. The presence of the EPR evidenced defects have to be taken into account as possible centres for glasses dissolution in human body during the radiotherapy procedure. (author)

  9. Preparation and biocompatibility evaluation of bioactive glass-forsterite nanocomposite powder for oral bone defects treatment applications.

    Science.gov (United States)

    Saqaei, Mahboobe; Fathi, Mohammadhossein; Edris, Hossein; Mortazavi, Vajihesadat

    2015-11-01

    Bone defects which emerge around dental implants are often seen when implants are placed in areas with insufficient alveolar bone, in extraction sockets, or around failing implants. Bone regeneration in above-mentioned defects using of bone grafts or bone substitutes may cure the long-term prognoses of dental implants. Biocompatibility, bioactivity and osteogenic properties are key factors affecting the applications of a bone substitute. This study was aimed at preparation, characterization, biocompatibility and bioactivity evaluation of the bioactive glass-forsterite nanocomposite powder as a desired candidate for oral bone defect treatments. Nanocomposite powders containing 58S bioactive glass and different amounts of forsterite nanopowder were synthesized in situ by sol-gel technique. Characterization of the prepared nanocomposite powders and their cytotoxicity assessment was performed via MTT test. Bioactivity assessment was done by immersing the prepared powder in the simulated body fluid (SBF). Results showed that nanocomposite powders containing forsterite with crystallite size of 20-50nm were successfully fabricated by calcination at 600°C. The prepared bioactive glass-forsterite nanocomposite powders revealed high in vitro biocompatibility; besides, the nanocomposite containing 20wt.% forsterite showed a substantial increase in the cell viability compared with control groups. During immersion in SBF, the formation of apatite layer confirmed the bioactivity of bioactive glass-forsterite nanocomposite powders. According to the results, the fabricated nanocomposite powders can be introduced as a promising candidate for oral bone imperfection treatments and hard tissue mend.

  10. New mixes based on collagen extracts with bioactive properties, for treatment of seeds in sustainable agriculture.

    Science.gov (United States)

    Gaidau, Carmen; Niculescu, Mihaela; Stepan, Emil; Epure, Doru-Gabriel; Gidea, Mihai

    2013-01-01

    The world's population, areas intended for the production of bio-mass and bio-fuels and the food demand of mankind are on a continuous ascending trend. In this context, an increased efficiency in obtaining large and steady productions, in compliance with the requirements of sustainable development of the agricultural eco-system, is a priority. To be effective, the seed treatment will fulfill the following requirements: shall disinfect and protect the seeds against the pests and pathogen agents found in the soil, shall ensure the system protection, shall not pollute the soil, water and environment, shall have no remnant effect onto the environment and onto the crops and shall be bio-degradable, easy to transport and to use. This paper aims at presenting new collagen based materials for cereal seed treatment, which generates an increase of the quality and protection indicators for treated seeds. Creation of a new and advanced technology for treatment of cereal seeds, by using pesticide-collagen hydrolysate mixes has the objectives of increasing seed quality indexes; reducing pesticide consumption, which will in turn decrease environmental pollution and the cost of treatment for cereal seeds; achieving a better management of resources; reducing production expenses while preserving the environment. The technologies developed for protein raw material processing and characteristics of collagen hydrolysates with bioactive properties are presented. The future route for ecological treatment of seeds is the use of microencapsulated plant extracts (thyme and cinnamon essential oils) with insecticidal and antifungal properties in a shell made using collagen hydrolysate.

  11. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    OpenAIRE

    Alireza Eshghi; Maryam Khoroushi; Alireza Rezvani

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces r...

  12. Antibacterial and Anticancer Activity of Bioactive Fraction of Syzygium cumini L. Seeds

    Directory of Open Access Journals (Sweden)

    SUNIL S YADAV

    2011-09-01

    Full Text Available Syzygium cumini L. better known as Jamun belonging to the family Myrtaceae is identified to have antidiabetic, anti-inflammatory, anti-pyretic and anti-oxidant activities. Anticancer activity of S. cumini L. fruits has been demonstrated. However, anticancer activity of S. cumini seeds on various types of human cancers has not been explored much. The methanol fraction of ethanol extract from the seeds of S. cumini was found to have significant antibacterial activity. This bioactive fraction was further tested positive for its anticancer activity on various types of human cancer cell lines indicating its potency. Structural characterization of the bioactive fraction was achieved using analysis of high performance liquid chromatography, ultra violet and infra red spectrum.

  13. The powerful in vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds

    OpenAIRE

    Barros, Lillian; Ricardo C. Calhelha; Queiroz, Maria João R. P.; Santos-Buelga, Celestino; Santos, Elândia A.; Regis, Wiliam C. B.; Ferreira, Isabel C.F.R.

    2015-01-01

    The Euterpe oleracea Mart. (açaí) is a plant from the Amazon region, classified as "super fruit" because of its various functional properties. However, limited investigation has been performed on açaí by-products, such as seeds. Therefore, the aim of this work was to characterized the phenolic compounds of the aqueous extract of açaí seeds and further evaluate its bioactivity (antioxidant and cytotoxic activities. Only proanthocyanidins were detected, being a B-type (epi)catech...

  14. Enhanced Stem Cell Osteogenic Differentiation by Bioactive Glass Functionalized Graphene Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Xiaoju Mo

    2016-01-01

    Full Text Available An unmet need in engineered bone regeneration is to develop scaffolds capable of manipulating stem cells osteogenesis. Graphene oxide (GO has been widely used as a biomaterial for various biomedical applications. However, it remains challenging to functionalize GO as ideal platform for specifically directing stem cell osteogenesis. Herein, we report facile functionalization of GO with dopamine and subsequent bioactive glass (BG to enhance stem cell adhesion, spreading, and osteogenic differentiation. On the basis of graphene, we obtained dopamine functionalized graphene oxide/bioactive glass (DGO/BG hybrid scaffolds containing different content of DGO by loading BG nanoparticles on graphene oxide surface using sol-gel method. To enhance the dispersion stability and facilitate subsequent nucleation of BG in GO, firstly, dopamine (DA was used to modify GO. Then, the modified GO was functionalized with bioactive glass (BG using sol-gel method. The adhesion, spreading, and osteoinductive effects of DGO/BG scaffold on rat bone marrow mesenchymal stem cells (rBMSCs were evaluated. DGO/BG hybrid scaffolds with different content of DGO could influence rBMSCs’ behavior. The highest expression level of osteogenic markers suggests that the DGO/BG hybrid scaffolds have great potential or elicit desired bone reparative outcome.

  15. Isolation and Characterization of Potential Bioactive Compounds from Landolphia owariensis P. Beauv Stringy Seed Pulp

    OpenAIRE

    T JN Okonkwo; P O Osadebe

    2013-01-01

    Summary. Landolphia owariensis P. Beauv, a tropical climber, is economically important for latex/rubber and folklore medicine. Among other uses, it is utilized in the management of malaria and inflammatory related diseases in ethno medicine. Thus its stringy seed pulp (LOSSP) was subjected to isolation and characterization of bioactive compounds. A fresh portion of LOSSP was air-dried, pulverized, defatted with petroleum ether and subsequently extracted with acetone and distilled water succes...

  16. Characterisation of the bioactive behaviour of sol-gel hydroxyapatite-CaO and hydroxyapatite-CaO-bioactive glass composites

    International Nuclear Information System (INIS)

    The fabrication and characterization of sol-gel derived hydroxyapatite-calcium oxide (HAp-CaO) material is investigated focusing on the effect of the addition of a bioactive glass on the material bioactive behaviour through the fabrication of a novel HAp-CaO (70 wt.%)-bioactive glass (30 wt.%) composite material. The bioactive behaviour of the materials was assessed by immersion studies in Simulated Body Fluid (SBF) and the alterations of the materials surfaces after soaking periods in SBF were characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). A brittle and weakly crystalline carbonate hydroxyapatite (HCAp) layer was found to develop on the surface of all samples, few hours after immersion in SBF, confirming the high bioactivity of the material. Alterations of the morphology of the developed HCAp layer, which led to a more compact structure, were observed on the surface of composite samples after 7 days of immersion in SBF. The presence of the CaO phase seems to accelerate the formation of HCAp, while the bioactive glass affects both the morphology and cohesion of the developed layer.

  17. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    Science.gov (United States)

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

  18. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds.

    Science.gov (United States)

    Wang, Hui; Zhao, Shichang; Xiao, Wei; Xue, Jingzhe; Shen, Youqu; Zhou, Jie; Huang, Wenhai; Rahaman, Mohamed N; Zhang, Changqing; Wang, Deping

    2016-01-01

    Copper doped borosilicate glasses (BG-Cu) were studied by means of FT-IR, Raman, UV-vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B-O bond of BO4 groups at 980 cm(-1), while they decrease that of BO2O(-) groups at 1440-1470 cm(-1) as shown by Raman spectra. A negative shift was observed from (11)B and (29)Si NMR spectra. The (11)B NMR spectra exhibited a clear transformation from BO3 into BO4 groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG-Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering.

  19. Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements.

    Science.gov (United States)

    Tian, Kun Viviana; Chass, Gregory A; Di Tommaso, Devis

    2016-01-14

    Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form. PMID:26646505

  20. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications.

    Science.gov (United States)

    Hoppe, Alexander; Jokic, Bojan; Janackovic, Djordje; Fey, Tobias; Greil, Peter; Romeis, Stefan; Schmidt, Jochen; Peukert, Wolfgang; Lao, Jonathan; Jallot, Edouard; Boccaccini, Aldo R

    2014-02-26

    Loading biomaterials with angiogenic therapeutics has emerged as a promising approach for developing superior biomaterials for engineering bone constructs. In this context, cobalt-releasing materials are of interest as Co is a known angiogenic agent. In this study, we report on cobalt-releasing three-dimensional (3D) scaffolds based on a silicate bioactive glass. Novel melt-derived "1393" glass (53 wt % SiO2, 6 wt % Na2O, 12 wt % K2O, 5 wt % MgO, 20 wt % CaO, and 4 wt % P2O5) with CoO substituted for CaO was fabricated and was used to produce a 3D porous scaffold by the foam replica technique. Glass structural and thermal properties as well as scaffold macrostructure, compressive strength, acellular bioactivity, and Co release in simulated body fluid (SBF) were investigated. In particular, detailed insights into the physicochemical reactions occurring at the scaffold-fluid interface were derived from advanced micro-particle-induced X-ray emission/Rutherford backscattering spectrometry analysis. CoO is shown to act in a concentration-dependent manner as both a network former and a network modifier. At a concentration of 5 wt % CoO, the glass transition point (Tg) of the glass was reduced because of the replacement of stronger Si-O bonds with Co-O bonds in the glass network. Compressive strengths of >2 MPa were measured for Co-containing 1393-derived scaffolds, which are comparable to values of human spongy bone. SBF studies showed that all glass scaffolds form a calcium phosphate (CaP) layer, and for 1393-1Co and 1393-5Co, CaP layers with incorporated traces of Co were observed. The highest Co concentrations of ∼12 ppm were released in SBF after reaction for 21 days, which are known to be within therapeutic ranges reported for Co(2+) ions.

  1. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    Science.gov (United States)

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications. PMID:25631259

  2. Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds.

    Science.gov (United States)

    Bi, Lianxiang; Zobell, Brett; Liu, Xin; Rahaman, Mohamed N; Bonewald, Lynda F

    2014-09-01

    The repair of structural bone defects such as segmental defects in the long bones of the limbs is a challenging clinical problem. In this study, the capacity of silicate (13-93) and borate (13-93B3) bioactive glass scaffolds (porosity=47-50%) to heal critical-size segmental defects in rat femurs was evaluated and compared with autografts. Defects were implanted with 13-93 and 13-93B3 scaffolds with a grid-like microstructure (compressive strength=86 MPa and 40 MPa, respectively), 13-93B3 scaffolds with an oriented microstructure (compressive strength=32 MPa) and autografts using intramedullary fixation. Twelve weeks post-implantation, the defects were harvested and evaluated using histomorphometric analysis. The percentage of new bone in the defects implanted with the three groups of glass scaffolds (25-28%) and the total von Kossa-positive area (32-38%) were not significantly different from the autografts (new bone=38%; von Kossa-positive area=40%) (p>0.05). New blood vessel area in the defects implanted with the glass scaffolds (4-8%) and the autografts (5%) showed no significant difference among the four groups. New cartilage formed in the 13-93 grid-like scaffolds (18%) was significantly higher than in 13-93B3 grid-like scaffolds (8%) and in the autografts (8%) (p=0.02). The results indicate that these strong porous bioactive glass scaffolds are promising synthetic implants for structural bone repair.

  3. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Ana Maria Athayde Uchôa-thomaz

    2014-09-01

    Full Text Available This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.. The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g, protein (11.19 g/100g, iron (13.8 mg/100g, zinc (3.31 mg/100g, and reduced calorie content (182 kcal/100g. Their lipid profile showed a predominance of unsaturated fatty acids (87.06%, especially linoleic acid (n6 and oleic acid (n9. The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g, total carotenoids (1.25 mg/100 g and insoluble dietary fiber (63.55 g/100g. With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste.

  4. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery

    International Nuclear Information System (INIS)

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. 29Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. - Graphical abstract: The morphologies and microstructures of acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were observed by scanning electron microscope and transmission electron microscope. MBGMs-A exhibits a dense structure and a porous can be observed in MBGMs-B. The microspheres have a quick inducing-apatite formation ability and show a sustained release of alendronate (AL). Highlights: • A rapid method was reported to prepare mesoporous bioactive glass microspheres. • The addition of ammonia significantly shortens the preparation time. • Acid and acid-alkali co-catalyzed microspheres were studied for the first time. • The materials exhibited excellent in vitro bioactivity and drug

  5. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  6. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Science.gov (United States)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  7. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chi-Chung [Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Chien, Chi-Sheng [Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Department of Orthopaedics, Chi Mei Foundation Hospital, Tainan, Taiwan (China); Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Kung, Jung-Chang [Department of Family Dentistry, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Shy-Shin [Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Lu, Pei-Shan [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer All the unwanted organic contents were removed completely at temperatures above 600 Degree-Sign C. Black-Right-Pointing-Pointer Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. Black-Right-Pointing-Pointer SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. Black-Right-Pointing-Pointer The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1-9.1 wt% and significantly decreased from 328.7 to 204.0 m{sup 2}/g in the concentration range of 9.1-12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  8. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    International Nuclear Information System (INIS)

    Highlights: ► All the unwanted organic contents were removed completely at temperatures above 600 °C. ► Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. ► SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. ► The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO2–CaO–P2O5 mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1–9.1 wt% and significantly decreased from 328.7 to 204.0 m2/g in the concentration range of 9.1–12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  9. Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration

    Science.gov (United States)

    Wang, Xiaojian; Li, Wei

    2016-06-01

    Bioactive inorganic materials are attractive for hard tissue regeneration, and they are used as delivery vehicles for pharmaceutical molecules, scaffolds and components for bio-composites. We demonstrated mesoporous bioactive glass (BG) nanospheres that exhibited the capacity to deliver pharmaceutical molecules. Mesoporous BG nanospheres with variable Ca to Si ratios were synthesized using sol-gel chemistry. By controlling the hydrolysis and condensation conditions, the diameter of the mesoporous BG nanospheres was changed from 300 nm to 1500 nm. The porous structure and surface area of the BG nanospheres were shown to be dependent on their composition. The surface area of the BG nanospheres decreased from 400 ± 2 m2 g-1 to 56 ± 0.1 m2 g-1 when the Ca/Si ratio increased from 5 to 50 at.%. When the mesoporous BG nanospheres were loaded with ibuprofen (IBU), they exhibited a sustained release profile in simulated body fluid (SBF). In the meantime, the IBU-loaded BG nanospheres degraded in SBF, and induced apatite layer formation on the surface as a result of their good bioactivity. When the BG nanospheres were used as a composite filler to poly (ɛ-caprolactone) (PCL), they were shown to be effective at improving the in vitro bioactivity of PCL microspheres.

  10. A doxorubicin delivery system: Samarium/mesoporous bioactive glass/alginate composite microspheres.

    Science.gov (United States)

    Zhang, Ying; Wang, Xiang; Su, Yanli; Chen, Dongya; Zhong, Wenxing

    2016-10-01

    Samarium (Sm) incorporated mesoporous bioactive glasses (MBG) microspheres have been prepared using the method of alginate cross-linking with Ca(2+) ions. The in vitro bioactivities of Sm/MBG/alginate microspheres were studied by immersing in simulated body fluid (SBF) for various periods. The results indicated that the Sm/MBG/alginate microspheres have a faster apatite formation rate on the surface. To investigate their delivery properties further, doxorubicin (DOX) was selected as a model drug. The results showed that the Sm/MBG/alginate microspheres exhibit sustained DOX delivery, and their release mechanism is controlled by Fickian diffusion according the Higuchi model. In addition, the delivery of DOX from Sm/MBG/alginate microspheres can be dominated by changing the doping concentration of Sm and the values of pH microenvironment. These all revealed that this material is a promising candidate for the therapy of bone cancer. PMID:27287115

  11. EFFECT OF SINTERING TEMPERATURE ON MICROSTRUCTURE AND IN-VITRO BEHAVIOR OF BIOACTIVE GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    Hashmi M. U.

    2013-12-01

    Full Text Available In this work, powders of the composition (CaO 46- SiO2 34- P2O5 14.5- MgO 4- CaF2 1- MgF2 0.5 (wt. % were thoroughly mixed and melted in a muffle furnace. The melt was quenched in water to form glass. Three glass-ceramics were prepared by sintering glass samples at three different temperatures 850, 900 and 950°C according to the exothermal peaks of DTA. The DTA peaks correspond to the bioactive crystalline phases hydroxyapatite (HA and wollastonite as confirmed by the XRD data. Study of diameter-shrinkage co-efficient and bulk-density of samples revealed higher densification rate for the range 900 - 950°C than that for the range 850 - 900°C.SEM and optical microscope results illustrated a tendency towards closely packed structure and increasing grain size with the increase of sintering temperature. The samples were immersed in SBF for 30 days at room temperature for in-vitro evaluation.EDS analysis, showing the presence of carbon (C along with calcium (Ca and phosphorus (P suggests the formation of hydroxycarbonate-apatite (HCA phase that indicates the bioactivity of the material which increases with the increase of sintering temperature.

  12. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    Science.gov (United States)

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. PMID:26117744

  13. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection.

    Science.gov (United States)

    Posti, Jussi P; Piitulainen, Jaakko M; Hupa, Leena; Fagerlund, Susanne; Frantzén, Janek; Aitasalo, Kalle M J; Vuorinen, Ville; Serlo, Willy; Syrjänen, Stina; Vallittu, Pekka K

    2015-03-01

    This case study describes the properties of an early development stage bioactive glass containing fiber-reinforced composite calvarial implant with histology that has been in function for two years and three months. The patient is a 33-year old woman with a history of substance abuse, who sustained a severe traumatic brain injury later unsuccessfully treated with an autologous bone flap and a custom-made porous polyethylene implant. She was thereafter treated with developmental stage glass fiber-reinforced composite - bioactive glass implant. After two years and three months, the implant was removed due to an implant site infection. The implant was analyzed histologically, mechanically, and in terms of chemistry and dissolution of bioactive glass. Mechanical integrity of the load bearing fiber-reinforced composite part of the implant was not affected by the in vivo period. Bioactive glass particles demonstrated surface layers of hydroxyapatite like mineral and dissolution, and related increase of pH was considerably less after two and three months period than that for fresh bioactive glass. There was a difference in the histology of the tissues inside the implant areas near to the margin of the implant that absorbed blood during implant installation surgery, showed fibrous tissue with blood vessels, osteoblasts, collagenous fibers with osteoid formation, and tiny clusters of more mature hard tissue. In the center of the implant, where there was less absorbed blood, only fibrous tissue was observed. This finding is in line with the combined positron emission tomography - computed tomography examination with (18F)-fluoride marker, which demonstrated activity of the mineralizing bone by osteoblasts especially at the area near to the margin of the implant 10 months after implantation. Based on these promising reactions found in the bioactive glass containing fiber-reinforced composite implant that has been implanted for two years and three months, calvarial

  14. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Here we fabricate and characterize bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilizing additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young's modulus compared to PCL scaffolds at similar porosity (∼75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ± 3.8%, 12.1 ± 1% and 1.6 ± 1% of the original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralization when compared to PCL scaffolds. However, as indicated by alkaline phosphatase activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffolds show potential as next generation bone scaffolds. (paper)

  15. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    Directory of Open Access Journals (Sweden)

    Mozafari M

    2013-04-01

    Full Text Available Masoud Mozafari,1,2 Erfan Salahinejad,1,3 Vahid Shabafrooz,1 Mostafa Yazdimamaghani,1 Daryoosh Vashaee,4 Lobat Tayebi1,5 1Helmerich Advanced Technology Research Center, School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK, USA; 2Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence, Amirkabir University of Technology, Tehran, Iran; 3Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran; 4Helmerich Advanced Technology Research Center, School of Electrical and Computer Engineering, Oklahoma State University, Tulsa, OK, USA; 5School of Chemical Engineering, Oklahoma State University, Tulsa, OK, USA Abstract: Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. Keywords: bioactive glass, zirconium titanate, spin-coating, microstructural properties, bone/dental applications, tissue engineering

  16. Structural characterization and anti-cancerous potential of gallium bioactive glass/hydrogel composites.

    Science.gov (United States)

    Keenan, T J; Placek, L M; Coughlan, A; Bowers, G M; Hall, M M; Wren, A W

    2016-11-20

    A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40-X)ZnO-(X)Ga2O3) was incorporated into carboxymethyl cellulose (CMC)/dextran (Dex) hydrogels in three different amounts (0.05, 0.10, and 0.25m(2)), and the resulting composites were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and (13)C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS-NMR). Composite extracts were also evaluated in vitro against MG-63 osteosarcoma cells. TEM confirmed glass distribution throughout the composites, although some particle agglomeration was observed. DSC revealed that glass composition and content did have small effects on both Tg and Tm. MAS-NMR revealed that both CMC and Dex were successfully functionalized, that cross-linking occurred, and that glass addition did slightly alter bonding environments. Cell viability analysis suggested that extracts of the glass and composites with the largest Ga-content significantly decreased MG-63 osteosarcoma viability after 30days. This study successfully characterized this composite series, and demonstrated their potential for anti-cancerous applications.

  17. Structural characterization and anti-cancerous potential of gallium bioactive glass/hydrogel composites.

    Science.gov (United States)

    Keenan, T J; Placek, L M; Coughlan, A; Bowers, G M; Hall, M M; Wren, A W

    2016-11-20

    A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40-X)ZnO-(X)Ga2O3) was incorporated into carboxymethyl cellulose (CMC)/dextran (Dex) hydrogels in three different amounts (0.05, 0.10, and 0.25m(2)), and the resulting composites were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and (13)C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS-NMR). Composite extracts were also evaluated in vitro against MG-63 osteosarcoma cells. TEM confirmed glass distribution throughout the composites, although some particle agglomeration was observed. DSC revealed that glass composition and content did have small effects on both Tg and Tm. MAS-NMR revealed that both CMC and Dex were successfully functionalized, that cross-linking occurred, and that glass addition did slightly alter bonding environments. Cell viability analysis suggested that extracts of the glass and composites with the largest Ga-content significantly decreased MG-63 osteosarcoma viability after 30days. This study successfully characterized this composite series, and demonstrated their potential for anti-cancerous applications. PMID:27561520

  18. Phenolic contents and bioactivities of pericarp and seeds of Pleiogynium solandri (Benth. Engl. (Anacardiaceae

    Directory of Open Access Journals (Sweden)

    Ataa Said

    2015-02-01

    Full Text Available Objective(s: This study aimed to develop drugs from natural sources to overcome the side effects of many of synthetic drugs. Methanol extracts of both pericarp and seeds of Pleiogynium solandri were used to investigate antioxidant, hepatoprotective, and renal function protective, analgesic, and anti-inflammatory effects and to determine the chemical composition of the extract responsible for bioactivity. Materials and Methods: Methanol (70% extracts of the seeds and pericarps of P. solandri were prepared. Hot plate method was used to test analgesic activity, carrageenan-induced paw inflammation method was used to test anti-inflammatory activity, and colorimetric methods were used to test antioxidant, hepatoprotective (by determination of serum alanine and aspartate aminotransferase activities, and renal function protective effects (by measuring uric acid and creatinine levels. Chromatographic methods and means of 1H-NMR, 13C –NMR, and UV spectra were used for isolation and identification of the responsible compounds. Results:In this study for the first time,four phenolic compounds were isolated from the pericarp of P. solandri which were identified as catechin, quercetin, quercetrin and rutin[m1] . Methanolic extract of both seeds and pericarp of P. solandri showed strong antioxidant effect, hepatoprotective, renal function protective, analgesic, and anti-inflammatory effects. However, seed extract had lower effect than pericarp in a dose dependent manner. Conclusion: This study showed that methanol extract of pericarp of P. solandri is more powerful than that of the seed regarding its antioxidant, hepato-protective; renal function protective, analgesic, and anti-inflammatory effects[m2] . The phenolic compounds isolated from the methanol extract of pericarp were responsible for bioactivity.

  19. Preparation of Nanofibrous Structure of Mesoporous Bioactive Glass Microbeads for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2016-06-01

    Full Text Available A highly ordered, mesoporous (pore size 2~50 nm bioactive glass (MBG structure has a greater surface area and pore volume and excellent bone-forming bioactivity compared with traditional bioactive glasses (BGs. Hence, MBGs have been used in drug delivery and bone tissue engineering. MBGs can be developed as either a dense or porous block. Compared with a block, microbeads provide greater flexibility for filling different-shaped cavities and are suitable for culturing cells in vitro. In contrast, the fibrous structure of a scaffold has been shown to increase cell attachment and differentiation due to its ability to mimic the three-dimensional structure of natural extracellular matrices. Hence, the aim of this study is to fabricate MBG microbeads with a fibrous structure. First, a sol-gel/electrospinning technique was utilized to fabricate the MBG nanofiber (MBGNF structure. Subsequently, the MBGNF microbeads (MFBs were produced by an electrospraying technology. The results show that the diameter of the MFBs decreases when the applied voltage increases. The drug loading and release profiles and mechanisms of the MFBs were also evaluated. MFBs had a better drug entrapment efficiency, could reduce the burst release of tetracycline, and sustain the release over 10 days. Hence, the MFBs may be suitable drug carriers. In addition, the cellular attachment of MG63 osteoblast-like cells is significantly higher for MFBs than for glass microbeads after culturing for 4 h. The nanofibrous structure of MFBs could provide an appropriate environment for cellular spreading. Therefore, MFBs have great potential for use as a bone graft material in bone tissue engineering applications.

  20. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis

    Science.gov (United States)

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-11-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (~100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  1. Structure, dielectric and bioactivity of P{sub 2}O{sub 5}-CaO-Na{sub 2}O-B{sub 2}O{sub 3} bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Maheswaran, A. [Kalasalingam University, Department of Physics, Krishnankoil (India); Panimalar Engineering College, Department of Physics, Chennai (India); Hirankumar, G. [PSN College of Engineering and Technology, Centre for Scientific and Applied Research, School of Basic Engineering and Sciences, Melathediyoor (India); Heller, Nithya; Kawamura, Junichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Sendai (Japan); Karthickprabhu, S. [Kalasalingam University, Department of Physics, Krishnankoil (India)

    2014-11-15

    Bioactive phosphate glasses have been widely investigated for bone repair. Phosphate glass system of 47P{sub 2}O{sub 5}-30.5CaO-(22.5-x)Na{sub 2}O-xB{sub 2}O{sub 3} has been prepared by melt quenching technique. From the Raman analysis, it is confirmed that phosphate network form metaphosphate structure. Bioactivity of the glass is studied by immersing the prepared glass in simulated body fluid (SBF). All the glasses exhibited bioactivity after soaking in SBF. Addition of B{sub 2}O{sub 3} to the glass by replacing the Na{sub 2}O produces considerable effect on the dielectric and bioactivity of the glass. Ion dynamics are also analyzed through imaginary modulus and imaginary dielectric permittivity. (orig.)

  2. Micro PIXE-RBS for the study of Sr release at bioactive glass scaffolds/biological medium interface

    International Nuclear Information System (INIS)

    Strontium is a very interesting element in bone regeneration as it can promote bone formation and limit bone resorption. Bone tissue engineering has a very high potential as a method for bone healing and it requires a 3D macroporous scaffold to serve as a support for cell growth. In that purpose, strontium containing bioactive glass foams made with the sol–gel foaming process are very promising scaffolds as they combine the high bioactivity of bioactive glasses, the beneficial effects of strontium on bone growth and a structure that would allow cell adhesion, cell invasion and vascularization. This paper reports the synthesis of such a material and its in vitro bioactivity study. The release of strontium ions from the material to the biological medium occurs quickly, as shown by ICP-AES results, with the delivery of quantities of Sr ions that should be adequate for bone regeneration. Ion microbeam techniques evidence a very specific behavior of strontium: it is rapidly removed from the inner part of the material but remains in the calcium phosphate layer that is deposited on the surface of the foam pores. It reveals the particular behavior of glass foams compared to other materials suitable for implantation like glass powders of same composition and highlights the interest of ion microbeam techniques in the study of strontium-containing bioactive glass scaffolds

  3. Fabrication and characterization of silk fibroin/bioactive glass composite films

    International Nuclear Information System (INIS)

    Composite films of silk fibroin (SF) with nano bioactive glass (NBG) were prepared by the solvent casting method, and the structures and properties of the composite films were characterized. Fourier transform infrared (FT-IR) spectroscopy analysis shows that the random coil and β-sheet structure co-exist in the SF films. Results of field emission scanning electron microscope (FESEM) indicate that the NBG particles are uniformly dispersed in the SF films. The measurements of the water contact angles suggest that the incorporation of NBG into SF can improve the hydrophilicity of the composites. The bioactivity of the composite films was evaluated by soaking in 1.5 times simulated body fluid (1.5 × SBF), and formation of a hydroxycarbonate apatite (HCA) layer was determined by XRD and FESEM. The results show that the SF/NBG composite film is bioactive as it induces the formation of HCA on the surface of the composite film after soaking in 1.5 × SBF for 7 days. In vitro osteoblasts attachment and proliferation tests show that the composite film is a good matrix for the growth of osteoblasts. Consequently, the incorporation of NBG into the SF film can enhance both the bioactivity and biocompatibility of the film, which suggests that the SF/NBG composite film may be a potential biomaterial for bone tissue engineering. - Highlights: ► The incorporation of NBG into SF can improve the hydrophilicity of the SF/NBG composite films. ► The SF/NBG composite films show the better bioactivity than the pure SF film. ► The SF/NBG composite films facilitate cell growth and promote cell proliferation and differentiation.

  4. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Filipa O.; Pires, Ricardo A., E-mail: rpires@dep.uminho.pt; Reis, Rui L.

    2013-04-01

    Al-free glasses of general composition 0.340SiO{sub 2}:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na{sub 2}O:0.060P{sub 2}O{sub 5} (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn

  5. Stress Corrosion Crack Growth Behavior of Titanium Alloy/Bioactive Glasses Sandwiches in Simulated Human Physiological Environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on a series of newly developed bioactive glasses having suitable thermo-mechanical properties to allow application as fixation agents between bone and titanium alloy biomedical implants, the stress corrosion crack growth(SCCG) behavior of their interfaces with Ti6Al4V was investigated in simulated body fluid (SBF) with the objectiveof discerning the salient mechanisms of crack advance and to assess the reliability of the bonds. Results indicatedthat crack growth rates in Ti6Al4V/glass/Ti6Al4V sandwich specimens were nearly the same as or slightly lowerthan those in the bulk glasses at comparable stress intensities; indeed, cracks would prefer to propagate off theinterface, suggesting that the Ti6Al4V/glass interface has relatively good crack-growth resistance. Mechanistically,interfacial crack growth appears to be controlled by the classic stress corrosion mechanisms for silicate glasses, withno discernible effect of bioactivity on the SCCG behavior being observed.

  6. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Shi, Honglan [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Xiao, Hai [Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634 (United States); Ma, Yinfa, E-mail: yinfa@mst.edu [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell–glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. - Highlights: • Bioactive glass nano-/micro-materials were effectively used for tissue wound healing. • The wound-healing effects of silicate-based 45S5, borate-based 13-93B3 and 1605 fibers were investigated. • Glass conversion rates were compared under either static or dynamic-flow modes. • Glass compositions and flow rates greatly influenced bioactivity and cell migration. • These results can

  7. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers

    International Nuclear Information System (INIS)

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell–glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. - Highlights: • Bioactive glass nano-/micro-materials were effectively used for tissue wound healing. • The wound-healing effects of silicate-based 45S5, borate-based 13-93B3 and 1605 fibers were investigated. • Glass conversion rates were compared under either static or dynamic-flow modes. • Glass compositions and flow rates greatly influenced bioactivity and cell migration. • These results can

  8. Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass.

    Science.gov (United States)

    Shah, Asma Tufail; Batool, Madeeha; Chaudhry, Aqif Anwar; Iqbal, Farasat; Javaid, Ayesha; Zahid, Saba; Ilyas, Kanwal; Bin Qasim, Saad; Khan, Ather Farooq; Khan, Abdul Samad; Ur Rehman, Ihtesham

    2016-08-01

    In this manuscript for the first time calcium hydroxide (Ca(OH)2) has been used for preparation of bioactive glass (BG-2) by co-precipitation method and compared with glass prepared using calcium nitrate tetrahydrate Ca(NO3)2·4H2O (BG-1), which is a conventional source of calcium. The new source positively affected physical, biological and mechanical properties of BG-2. The glasses were characterized by Fourier transform infrared (FTIR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC), BET surface area analysis and Knoop hardness. The results showed that BG-2 possessed relatively larger surface properties (100m(2)g(-1) surface area) as compared to BG-1 (78m(2)g(-1)), spherical morphology and crystalline phases (wollastonite and apatite) after sintering at lower than conventional temperature. These properties contribute critical role in both mechanical and biological properties of glasses. The Knoop hardness measurements revealed that BG-2 possessed much better hardness (0.43±0.06GPa at 680°C and 2.16±0.46GPa at 980°C) than BG-1 (0.24±0.01 at 680°C and 0.57±0.07GPA at 980°C) under same conditions. Alamar blue Assay and confocal microscopy revealed that BG-2 exhibited better attachment and proliferation of MG63 cells. Based on the improved biological properties of BG-2 as a consequent of novel calcium source selection, BG-2 is proposed as a bioactive ceramic for hard tissue repair and regeneration applications. PMID:27068802

  9. Enamel Surface with Pit and Fissure Sealant Containing 45S5 Bioactive Glass.

    Science.gov (United States)

    Yang, S-Y; Kwon, J-S; Kim, K-N; Kim, K-M

    2016-05-01

    Enamel demineralization adjacent to pit and fissure sealants leads to the formation of marginal caries, which can necessitate the replacement of existing sealants. Dental materials with bioactive glass, which releases ions that inhibit dental caries, have been studied. The purpose of this study was to evaluate the enamel surface adjacent to sealants containing 45S5 bioactive glass (BAG) under simulated microleakage between the material and the tooth in a cariogenic environment. Sealants containing 45S5BAG filler were prepared as follows: 0% 45S5BAG + 50.0% glass (BAG0 group), 12.5% 45S5BAG + 37.5% glass (BAG12.5 group), 25.0% 45S5BAG + 25.0% glass (BAG25.0 group), 37.5% 45S5BAG + 12.5% glass (BAG37.5 group), and 50.0% 45S5BAG + 0% glass (BAG50.0 group). A cured sealant disk was placed over a flat bovine enamel disk, separated by a 60-µm gap, and immersed in lactic acid solution (pH 4.0) at 37 °C for 15, 30, and 45 d. After the storage period, each enamel disk was separated from the cured sealant disk, and the enamel surface was examined with optical 3-dimensional surface profilometer, microhardness tester, and scanning electron microscopy. The results showed a significant increase in roughness and a decrease in microhardness of the enamel surface as the proportion of 45S5BAG decreased (P< 0.05). In the scanning electron microscopy images, enamel surfaces with BAG50.0 showed a smooth surface, similar to those in the control group with distilled water, even after prolonged acid storage. Additionally, an etched pattern was observed on the surface of the demineralized enamel with a decreasing proportion of 45S5BAG. Increasing the 45S5BAG filler contents of the sealants had a significant impact in preventing the demineralization of the enamel surface within microgaps between the material and the tooth when exposed to a cariogenic environment. Therefore, despite some marginal leakage, these novel sealants may be effective preventive dental materials for inhibiting

  10. Enamel Surface with Pit and Fissure Sealant Containing 45S5 Bioactive Glass.

    Science.gov (United States)

    Yang, S-Y; Kwon, J-S; Kim, K-N; Kim, K-M

    2016-05-01

    Enamel demineralization adjacent to pit and fissure sealants leads to the formation of marginal caries, which can necessitate the replacement of existing sealants. Dental materials with bioactive glass, which releases ions that inhibit dental caries, have been studied. The purpose of this study was to evaluate the enamel surface adjacent to sealants containing 45S5 bioactive glass (BAG) under simulated microleakage between the material and the tooth in a cariogenic environment. Sealants containing 45S5BAG filler were prepared as follows: 0% 45S5BAG + 50.0% glass (BAG0 group), 12.5% 45S5BAG + 37.5% glass (BAG12.5 group), 25.0% 45S5BAG + 25.0% glass (BAG25.0 group), 37.5% 45S5BAG + 12.5% glass (BAG37.5 group), and 50.0% 45S5BAG + 0% glass (BAG50.0 group). A cured sealant disk was placed over a flat bovine enamel disk, separated by a 60-µm gap, and immersed in lactic acid solution (pH 4.0) at 37 °C for 15, 30, and 45 d. After the storage period, each enamel disk was separated from the cured sealant disk, and the enamel surface was examined with optical 3-dimensional surface profilometer, microhardness tester, and scanning electron microscopy. The results showed a significant increase in roughness and a decrease in microhardness of the enamel surface as the proportion of 45S5BAG decreased (Pacid storage. Additionally, an etched pattern was observed on the surface of the demineralized enamel with a decreasing proportion of 45S5BAG. Increasing the 45S5BAG filler contents of the sealants had a significant impact in preventing the demineralization of the enamel surface within microgaps between the material and the tooth when exposed to a cariogenic environment. Therefore, despite some marginal leakage, these novel sealants may be effective preventive dental materials for inhibiting secondary caries at the margins. PMID:26767770

  11. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.

    Science.gov (United States)

    Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto

    2010-01-20

    In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time.

  12. Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass–ceramic fabricated using soda-lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Street, Shiraz (Iran, Islamic Republic of); Hashemi, B., E-mail: hashemib@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Street, Shiraz (Iran, Islamic Republic of); Shokrollahi, H. [Electroceramics Group, Materials Science and Engineering Department, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2014-04-01

    The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass–ceramic prepared through the solid-state reaction method using soda-lime–silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5–20 wt% strontium hexaferrite to bioactive glass–ceramics, the ferrimagnetic bioactive glass–ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed. - Highlights: • A novel ferrimagnetic bioactive glass–ceramic was synthesized by an incorporation method. • The bioactive part was synthesized by the solid-state reaction method using soda-lime–silica waste glass. • The doping of SrFe{sub 12}O{sub 19} to Bioglass{sup ®} 45S5 glass–ceramic is likely to decrease bioactivity.

  13. Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass–ceramic fabricated using soda-lime–silica waste glass

    International Nuclear Information System (INIS)

    The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass–ceramic prepared through the solid-state reaction method using soda-lime–silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5–20 wt% strontium hexaferrite to bioactive glass–ceramics, the ferrimagnetic bioactive glass–ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed. - Highlights: • A novel ferrimagnetic bioactive glass–ceramic was synthesized by an incorporation method. • The bioactive part was synthesized by the solid-state reaction method using soda-lime–silica waste glass. • The doping of SrFe12O19 to Bioglass® 45S5 glass–ceramic is likely to decrease bioactivity

  14. Clinical Applications of S53P4 Bioactive Glass in Bone Healing and Osteomyelitic Treatment: A Literature Review

    Directory of Open Access Journals (Sweden)

    N. A. P. van Gestel

    2015-01-01

    Full Text Available Nowadays, S53P4 bioactive glass is indicated as a bone graft substitute in various clinical applications. This review provides an overview of the current published clinical results on indications such as craniofacial procedures, grafting of benign bone tumour defects, instrumental spondylodesis, and the treatment of osteomyelitis. Given the reported results that are based on examinations, such as clinical examinations by the surgeons, radiographs, CT, and MRI images, S53P4 bioactive glass may be beneficial in the various reported applications. Especially in craniofacial reconstructions like mastoid obliteration and orbital floor reconstructions, in grafting bone tumour defects, and in the treatment of osteomyelitis very promising results are obtained. Randomized clinical trials need to be performed in order to determine whether bioactive glass would be able to replace the current golden standard of autologous bone usage or with the use of antibiotic containing PMMA beads (in the case of osteomyelitis.

  15. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites.

    Science.gov (United States)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1week immersion in SBF. After 2weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications.

  16. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity.

    Science.gov (United States)

    Yatongchai, Chokchai; Placek, Lana M; Curran, Declan J; Towler, Mark R; Wren, Anthony W

    2015-11-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability.

  17. Synthesis, characterization and in vitro study of magnetic biphasic calcium sulfate-bioactive glass

    International Nuclear Information System (INIS)

    Calcium sulfate-bioactive glass (CSBG) composites doped with 5, 10 and 20 mol% Fe were synthesized using quick alkali sol–gel method. X-ray diffraction (XRD) data of samples heated at 700 °C revealed the presence of anhydrite, while field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) characterization confirmed the formation of nano-sized CSBGs. The UV–vis studies confirmed that the main iron species in 5% Fe and 10% Fe doped CSBGs were tetrahedral Fe(III) whereas that in 20% Fe doped CSBG were extra-framework FeOx oligomers or iron oxide phases. Measurement of magnetic properties of the samples by vibrating sample magnetometer (VSM) showed very narrow hysteresis loop with zero coercivity and remanence for 10% Fe and 20% Fe doped CSBG, indicating that they are superparamagnetic in nature. All samples induced the formation of apatite layer with Ca/P ratio close to the stoichiometric HA in simulated body fluid (SBF) assessment. - Highlights: • Biphasic calcium sulphate-bioactive glass containing iron was prepared. • Composite bioglass was superparamagnetic in nature. • All samples promoted the growth of apatite layer with Ca/P close to 1.67

  18. Synthesis, characterization and in vitro study of magnetic biphasic calcium sulfate-bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Akram, Muhammad; Alshemary, Ammar Z. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Darul Ta' zim (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta' zim (Malaysia)

    2015-08-01

    Calcium sulfate-bioactive glass (CSBG) composites doped with 5, 10 and 20 mol% Fe were synthesized using quick alkali sol–gel method. X-ray diffraction (XRD) data of samples heated at 700 °C revealed the presence of anhydrite, while field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) characterization confirmed the formation of nano-sized CSBGs. The UV–vis studies confirmed that the main iron species in 5% Fe and 10% Fe doped CSBGs were tetrahedral Fe(III) whereas that in 20% Fe doped CSBG were extra-framework FeO{sub x} oligomers or iron oxide phases. Measurement of magnetic properties of the samples by vibrating sample magnetometer (VSM) showed very narrow hysteresis loop with zero coercivity and remanence for 10% Fe and 20% Fe doped CSBG, indicating that they are superparamagnetic in nature. All samples induced the formation of apatite layer with Ca/P ratio close to the stoichiometric HA in simulated body fluid (SBF) assessment. - Highlights: • Biphasic calcium sulphate-bioactive glass containing iron was prepared. • Composite bioglass was superparamagnetic in nature. • All samples promoted the growth of apatite layer with Ca/P close to 1.67.

  19. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    Science.gov (United States)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  20. Seed germination-influencing bioactive secondary metabolites secreted by the endophyte Cladosporium cladosporioides LWL5.

    Science.gov (United States)

    Waqas, Muhammad; Khan, Abdul Latif; Ali, Liaqat; Kang, Sang-Mo; Kim, Yoon-Ha; Lee, In-Jung

    2013-12-13

    The present study was aimed to isolate bioactive metabolites produced by a fungal endophyte from Helianthus annuus, Capsicum annuum, and Cucumis sativus and to assess their role in seed germination. Culture filtrate of the endophyte HA-3B from H. annuus was significantly inhibitory towards the germination and growth of lettuce seeds. HA-3B was identified as Cladosporium cladosporioides LWL5 through molecular techniques. Different concentrations (100, 500 and 1000 ppm) of the ethyl acetate extract obtained from the culture inhibited the lettuce seed germination. The extract was subjected to column chromatography and a bioassay-guided isolation method, which yielded compounds 1, 2 and an oily fraction. The oily fraction, subjected to fractionation and spectroscopic techniques, resulted in the identification of 31 different constituents. Compounds 1 and 2 were identified and characterized through MS and NMR spectroscopic techniques as benzoic acid. The bioassay results showed that this compound significantly inhibited the growth and germination of lettuce seeds. In conclusion, assessing the role of endophytes harboring essential crop plants can help us to develop potentially eco-friendly herbicides.

  1. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds

    OpenAIRE

    Poh, Patrina S.P.; Hutmacher, Dietmar W.; Holzapfel, Boris M; Solanki, Anu K.; Woodruff, Maria A.

    2016-01-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (Na...

  2. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering

    International Nuclear Information System (INIS)

    Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 deg. C and 695 deg. C. The sintered scaffolds had pore sizes ranging from 300 to 800 μm with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

  3. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kolan, Krishna C R; Leu, Ming C [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Hilmas, Gregory E [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Brown, Roger F [Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO (United States); Velez, Mariano, E-mail: kkd7b@mail.mst.edu, E-mail: mleu@mst.edu [Mo-Sci Corporation, Rolla, MO (United States)

    2011-06-15

    Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 deg. C and 695 deg. C. The sintered scaffolds had pore sizes ranging from 300 to 800 {mu}m with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

  4. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription.

    Science.gov (United States)

    Varanasi, Venu G; Odatsu, Tetsurou; Bishop, Timothy; Chang, Joyce; Owyoung, Jeremy; Loomer, Peter M

    2016-10-01

    Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016.

  5. Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro.

    Science.gov (United States)

    Coraça-Huber, Débora C; Fille, Manfred; Hausdorfer, Johann; Putzer, David; Nogler, Michael

    2014-01-01

    We evaluated the effectiveness of different sizes of bioactive glass S53P4 against Staphylococcus aureus biofilms grown on metal discs in vitro. S. aureus biofilms were cultivated on titanium discs. BAG-S53P4 (0.5-0.8 mm and Glass beads (0.5 mm) were used as a control. After each interval, the pH from each sample was measured. Colony forming units were counted for the biofilm recovery verification. In parallel, we tested the activity of bioactive glass against S. aureus planktonic cells. We found that BAG-S53P4 can suppress S. aureus biofilm formation on titanium discs in vitro. The suppression rate of biofilm cells by BAG-S53P4 glass S53P4 has potential to be used as bone substitute for the resolution of infection complications in joint replacement surgeries and treatment of chronic osteomyelitis.

  6. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.

    Science.gov (United States)

    Misra, Superb K; Mohn, Dirk; Brunner, Tobias J; Stark, Wendelin J; Philip, Sheryl E; Roy, Ipsita; Salih, Vehid; Knowles, Jonathan C; Boccaccini, Aldo R

    2008-04-01

    This study compares the effects of introducing micro (m-BG) and nanoscale (n-BG) bioactive glass particles on the various properties (thermal, mechanical and microstructural) of poly(3hydroxybutyrate) (P(3HB))/bioactive glass composite systems. P(3HB)/bioactive glass composite films with three different concentrations of m-BG and n-BG (10, 20 and 30 wt%, respectively) were prepared by a solvent casting technique. The addition of n-BG particles had a significant stiffening effect on the composites, modulus when compared with m-BG. However, there were no significant differences in the thermal properties of the composites due to the addition of n-BG and m-BG particles. The systematic addition of n-BG particles induced a nanostructured topography on the surface of the composites, which was not visible by SEM in m-BG composites. This surface effect induced by n-BG particles considerably improved the total protein adsorption on the n-BG composites compared to the unfilled polymer and the m-BG composites. A short term in vitro degradation (30 days) study in simulated body fluid (SBF) showed a high level of bioactivity as well as higher water absorption for the P(3HB)/n-BG composites. Furthermore, a cell proliferation study using MG-63 cells demonstrated the good biocompatibility of both types of P(3HB)/bioactive glass composite systems. The results of this investigation confirm that the addition of nanosized bioactive glass particles had a more significant effect on the mechanical and structural properties of a composite system in comparison with microparticles, as well as enhancing protein adsorption, two desirable effects for the application of the composites in tissue engineering. PMID:18255139

  7. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2016-07-01

    Full Text Available Glass ionomer cements (GICs are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.

  8. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Science.gov (United States)

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  9. In vitro bioactivity of SiO{sub 2}, CaO, Na{sub 2}O - based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lebecq, I.; Desanglois, F.; Follet-Houttemane, C. [Univ. de Valenciennes et du Hainaut Cambresis (Spain). Lab. des Materiaux Avances Ceramiques

    2002-07-01

    Bioactivity of 15 glasses in the system SiO{sub 2}-CaO-Na{sub 2}O was evaluated by examining the formation of apatite in vitro. SiO{sub 2} content is varied between 42 mole% and 55 mole%. Surfaces of glasses soaked in SBF were studied by FTIR. An apatite layer is formed on surfaces in a wide compositional region within 4 days. Hench Bioglass 45S5 is also studied for comparison. (orig.)

  10. In vitro cell response to Co-containing 1,393 bioactive glass.

    Science.gov (United States)

    Hoppe, Alexander; Brandl, Andreas; Bleiziffer, Oliver; Arkudas, Andreas; Horch, Raymund E; Jokic, Bojan; Janackovic, Djordje; Boccaccini, Aldo R

    2015-12-01

    Cobalt ions are known to stimulate angiogenesis via inducing hypoxic conditions and hence are interesting agents to be used in conjunction with bioactive glasses (BGs) in bone tissue engineering approaches. In this work we investigated in vitro cell biocompatibility of Co releasing 1393 BG composition (in wt.%: 53SiO2, 6Na2O, 12K2O, 5MgO, 20CaO, and 4P2O5) derived scaffolds with osteoblast-like cells (MG-63) and human dermal microvascular endothelial cells (hDMECs). Cell viability, cell number and cell morphology of osteoblast-like cells in contact with particulate glass and 3D scaffolds were assessed showing good biocompatibility of 1393 reference material and with 1 wt.% CoO addition whereby 5 wt.% of CoO in the glass showed cytotoxicity. Furthermore for 1393 with 1 wt.% of CoO increased mitochondrial activity was measured. Similar observations were made with hDMECs: while 1393 and 1393 with 1 wt.% CoO were biocompatible and the endothelial phenotype was retained, 5 wt.% CoO containing BG showed cytotoxic effects after 1 week of cell culture. In conclusion, 1 wt.% Co containing BG was biocompatible with osteoblast like cells and endothelial cells and showed slightly stimulating effects on osteoblast-like cells whereas the addition of 5 wt.% CoO seems to exceed the vital therapeutic ranges of Co ions being released in physiological fluids.

  11. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    Science.gov (United States)

    Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia

    2015-10-01

    Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  12. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method

    International Nuclear Information System (INIS)

    Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 ± 3%; pore size = 250-500 μm) had a compressive strength of 6.4 ± 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K2HPO4 solution at 37 deg. C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.

  13. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method

    Energy Technology Data Exchange (ETDEWEB)

    Fu Hailuo, E-mail: fuhailuo@hotmail.com [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Fu Qiang, E-mail: fuharry@hotmail.com [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Zhou Nai [Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Huang Wenhai, E-mail: whhuang@mail.tongji.edu.cn [Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Rahaman, Mohamed N. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Wang Deping [Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Liu Xin [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China)

    2009-08-31

    Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 {+-} 3%; pore size = 250-500 {mu}m) had a compressive strength of 6.4 {+-} 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K{sub 2}HPO{sub 4} solution at 37 deg. C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.

  14. Bioactive Phenylpropanoids, Phenolic Acid and Phytosterol from Landolphia owariensis P. Beauv Stringy Seed Pulp.

    Science.gov (United States)

    Okonkwo, Tochukwu J N; Osadebe, Patience O; Proksch, Peter

    2016-01-01

    Landolphia owariensis P. Beauv is economically important for latex/rubber and folklore medicine. Its stringy seed pulp is freely eaten by humans and animals. Thus, L. owariensis stringy seed pulp was extracted serially with hexane and acetone to isolate and characterize its active pharmaceutical ingredients. Solvent/solvent partition and chromatographic separations afforded four bioactive compounds, (E)-3-(3,4-Dihydroxylcinnamoyl)quinic acid [(E)-Chlorogenic acid], I; (E)-3-(3,4-Dihydroxylcinnamoyl)quinic acid methyl ester [(E)-Chlorogenic acid methyl ester], II; 3,4-Dihydroxylbenzoic acid, (Protocatechuic acid), III; and 22,23-Dihydrostigmaster-3β-ol (3β-Sitosterol) (IV). Structures of I, II and III were assigned by combinations of high-performance liquid chromatography-ultraviolet-visible spectroscopy, 1D and 2D nuclear magnetic resonance spectroscopy, high-performance liquid chromatography-mass spectrometry and reference to published literatures, while compound IV was identified by chemical methods and gas chromatography-mass spectrometry. The phenylpropanoids and phenolic acid (compounds I, II and III) are notable standard antioxidants with confirmed hepatic-protective activity and other exciting biological activities. Compound IV has been reported to possess anti-inflammatory activity, anti-colon cancer action and a cholesterol-lowering effect. The described compounds are important medicinal constituents of L. owariensis stringy seed pulp, and this is the first major report on the phytochemistry of L. owariensis P. Beauv.

  15. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique.

    Science.gov (United States)

    Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Brown, Roger F; Day, Delbert E

    2008-11-01

    A polymer foam replication technique was used to prepare porous scaffolds of 13-93 bioactive glass with a microstructure similar to that of human trabecular bone. The scaffolds, with a porosity of 85+/-2% and pore size of 100-500 microm, had a compressive strength of 11+/-1 MPa, and an elastic modulus of 3.0+/-0.5 GPa, approximately equal to the highest values reported for human trabecular bone. The strength was also considerably higher than the values reported for polymeric, bioactive glass-ceramic and hydroxyapatite constructs prepared by the same technique and with the equivalent level of porosity. The in vitro bioactivity of the scaffolds was observed by the conversion of the glass surface to a nanostructured hydroxyapatite layer within 7 days in simulated body fluid at 37 degrees C. Protein and MTT assays of in vitro cell cultures showed an excellent ability of the scaffolds to support the proliferation of MC3T3-E1 preosteoblastic cells, both on the surface and in the interior of the porous constructs. Scanning electron microscopy showed cells with a closely adhering, well-spread morphology and a continuous increase in cell density on the scaffolds during 6 days of culture. The results indicate that the 13-93 bioactive glass scaffolds could be applied to bone repair and regeneration. PMID:18519173

  16. Kinetic neutron diffraction and SANS studies of phase formation in bioactive machinable glass ceramics

    International Nuclear Information System (INIS)

    Bioactive fluormica-fluorapatite glass-ceramic materials offer a very encouraging solution to the problem of efficient restoration and reconstruction of hard tissues. To produce material with the desired crystalline phases, a five-stage heat treatment must be performed. This thermal processing has a large impact on the microstructure and ultimately the final mechanical properties of the materials. We have examined the thermal processing of one of our most promising machinable biomaterials, using time-resolved small angle neutron scattering and neutron diffraction to study the nucleation and growth of crystallites. The processing route had already been optimized by studying the properties of quenched samples using x-ray diffraction, mechanical measurements and differential thermal analysis. However these results show that the heat treatment can be further optimized in terms of crystal nucleation, and we show that these techniques are the only methods by which a truly optimized thermal processing route may be obtained

  17. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.

    Science.gov (United States)

    Zhang, Jianhua; Zhao, Shichang; Zhu, Yufang; Huang, Yinjun; Zhu, Min; Tao, Cuilian; Zhang, Changqing

    2014-05-01

    In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the pH environment with increasing Sr substitution. Importantly, Sr-MBG scaffolds possessed good apatite-forming ability, and stimulated osteoblast cells' proliferation and differentiation. Using dexamethasone as a model drug, Sr-MBG scaffolds also showed a sustained drug delivery property for use in local drug delivery therapy, due to their mesoporous structure. Therefore, the 3-D printed Sr-MBG scaffolds combined the advantages of Sr-MBG such as good bone-forming bioactivity, controlled ion release and drug delivery and enhanced mechanical strength, and had potential application in bone regeneration. PMID:24412143

  18. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2012-09-11

    In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellu-larized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm2, human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization. © 2012 Wiley Periodicals, Inc.

  19. PROCESSING AND CHARACTERISATION OF HIGH-VELOCITY SUSPENSION FLAME SPRAYED (HVSFS BIOACTIVE GLASS COATINGS

    Directory of Open Access Journals (Sweden)

    GIOVANNI BOLELLI

    2010-03-01

    Full Text Available The High-Velocity Suspension Flame Spraying (HVSFS technique was employed in order to deposit bioactive glass coatings onto titanium substrates. Two different glass compositions were examined: the classical 45S5 Bioglass and a newly-developed SiO2–CaO–K2O–P2O5 glass, labelled as “Bio-K”. Suitable raw materials were melted in a furnace and fritted by casting into water. The frit was dry-milled in a porcelain jar and subsequently attrition-milled in isopropanol. The resulting micronsized powders were dispersed in a water+isopropanol mixture, in order to prepare suitable suspensions for the HVSFS process. The deposition parameters were varied; however, all coatings were obtained by performing three consecutive torch cycles in front of the substrate. The thickness and porosity of the coatings were significantly affected by the chosen set of deposition parameters; however, in all cases, the layer produced during the third torch cycle was thicker and denser than the one produced during the first cycle. As the system temperature increases during the spraying process, the particles sprayed during the last torch cycle remain at T > Tg while they spread, so that interlamellar viscous flow sintering takes place, favouring the formation of such denser microstructure. Both coatings are entirely glassy; however, micro-Raman spectroscopy reveals that, whereas the 45S5 coating is structurally identical to the corresponding bulk glass, the “Bio-K” coating is somewhat different from the bulk one.

  20. The Effect of 58S Bioactive Glass Coating on Polyethylene Terephthalates in Graft-Bone Healing

    Institute of Scientific and Technical Information of China (English)

    Yang Wu; Shiyi Chen; Jia Jiang; Hong Li; Kai Gao; Pengyun Zhang

    2012-01-01

    In this study the effects of surface modification of Polyethylene Terephthalates (PET) fibers with 58S bioactive glasses on osteoblasts proliferation and osseointegration in the tibia-articular tendon-bone healing model were investigated.PET sheets were coated with 58S bioactive glass and uncoated PET sheets were used as a control.Scanning Electron Microscope (SEM) and X-ray photoelectron spectrometer were adopted to analyze the surface characteristics of the fibers.MT3T3-E 1 cells were cultured with the PET fibers and the MTT and ALP were tested at 1,3,5 days.Twenty-four skeletally mature male New Zealand white rabbits were randomly divided into two groups,the 58S-PET group and the PET group.Both groups underwent a surgical procedure to establish a tibia-articular tendon-bone healing model.Mechanical examinations and histological assays were taken to verify the coating effects in vivo.Results of both MTT and ALP tests show significant differences (P < 0.01) between the 58S-PET group and the PET group.At 6 weeks and 12 weeks,the max load-to-failure was significantly higher in the 58S-PET group.In the histological assays,distinct new bone formation was observed only in the 58S-PET group and stronger osseointegration was seen in the 58S-PET group than that in the control group.The 58S-coating on PET could enhance the proliferation and activity of the osteoblasts and therefore promote the new bone formation and tendon-bone healing.

  1. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel.

    Directory of Open Access Journals (Sweden)

    Alireza Eshghi

    2014-12-01

    Full Text Available Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG or alumina using etch-and-rinse and self-etch adhesives.Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12. Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05. Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation.No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987. There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1. Also, decalcified or intact enamel groups had no significant difference (P=0.918. However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion.Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

  2. Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability

    NARCIS (Netherlands)

    Buitink, J.; Hemminga, M.A.; Hoekstra, F.A.

    2000-01-01

    We examined whether oligosaccharides extend seed longevity by increasing the intracellular glass stability. For that purpose, we used a spin probe technique to measure the molecular mobility and glass transition temperature of the cytoplasm of impatiens (Impatiens walleriana) and bell pepper (Capsic

  3. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    Science.gov (United States)

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing

  4. Total polyphenols and bioactivity of seeds and sprouts in several legumes.

    Science.gov (United States)

    Chon, Sang-Uk

    2013-01-01

    , ascorbate peroxidase (APX) and peroxidase (POX) activities were highest in cowpea sprouts and catalase (CAT) and superoxide dismutase (SOD) activities in soybean sprouts. During sprouting in mungbean, TP and TF levels significantly increased and improved free radical scavenging, tyrosinase inhibition, anticancer, and ADH (alcohol dehydrogenase) activities, showing higher contents and activities in sprouts than in seeds. Sprouting of seeds is known to increase the nutritive value such as phenolics and flavonoids and the health qualities of foods in a natural way. Phasic bioactive responses from dry seeds to 7-day-old seedlings of cowpea showed differential growth, contents of TP and TF, antioxidant activity and antioxidant enzyme activity. Plant length and weight of cowpea sprouts were significantly increased until 7 days after seeding. TP content, however, was highest in dry seed (DS) extracts of cowpea (63.9 mg kg(1)), followed by imbibed seed (IS) (56.8 mg kg(1)) and 1-day-old sprout (1DOS) (46.4 mg kg(1)) extracts, and significantly reduced with increase of sprout age (p < 0.05). DPPH free radical scavenging activity was higher in DS or IS than in cowpea sprouts. APX, POX, and POX activities were highest in 7DOS and lowest in DS. SOD activity was lowest in DS and much higher in additional sprouting days.

  5. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, L. A. [University of Erlangen-Nuremberg Medical Center, Department of Plastic and Hand Surgery (Germany); Hild, N.; Mohn, D.; Stark, W. J. [ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering (Switzerland); Hoppe, A. [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany); Gbureck, U. [University of Wuerzburg, Department for Functional Materials in Medicine and Dentistry (Germany); Horch, R. E.; Kneser, U. [University of Erlangen-Nuremberg Medical Center, Department of Plastic and Hand Surgery (Germany); Boccaccini, A. R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany)

    2013-07-15

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 {mu}g/cm Superscript-Two (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 {mu}g/cm Superscript-Two , Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

  6. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    International Nuclear Information System (INIS)

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30–35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes

  7. Bioactivity studies on TiO₂-bearing Na₂O-CaO-SiO₂-B₂O₃ glasses.

    Science.gov (United States)

    Jagan Mohini, G; Sahaya Baskaran, G; Ravi Kumar, V; Piasecki, M; Veeraiah, N

    2015-12-01

    Soda lime silica borate glasses mixed with different concentrations of TiO2 are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO2 on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO2 concentration indicated that about 6.0 mol% of TiO2 is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. PMID:26354260

  8. Enhancement of bioactivity of pulsed magnetron sputtered TiC{sub x}N{sub y} with bioactive glass (BAG) incorporated polycaprolactone (PCL) composite scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Anusha Thampi, V.V.; Subramanian, B., E-mail: subramanianb3@gmail.com

    2015-11-15

    Titanium carbonitride (TiC{sub x}N{sub y}) thin films were fabricated on SS 316 L by pulsed reactive DC magnetron sputtering using titanium and graphite targets. The sputtered film was characterized microstructurally by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD pattern revealed that the film was preferentially oriented along (200) axis with a grain size of 20 nm. A globular morphology was observed from electron micrograph while Energy dispersive X-ray spectroscopy (EDS) showed the compositional purity of the film. To improve the bioactivity, bioactive glass (BAG) nanopowders of size 60 nm, synthesized by sol–gel method, was incorporated into a polycaprolactone (PCL) scaffold (BAG-PCL), which was applied over TiC{sub x}N{sub y}/SS (BAG-PCL/TiCN/SS). In-vitro bioactivity studies of BAG-PCL showed the apatite formation, which was confirmed from fourier transform infrared (FTIR) spectrum and SEM. In-vitro corrosion studies in simulated body fluid (SBF) solution showed that the coated specimen had a higher charge transfer resistance than stainless steel (SS) bare. The enhancement of bioactivity was monitored by hemocompatibility and cytocompatibility, where an improved cell attachment and lower thrombus formation was observed for the coatings with BAG-PCL. - Highlights: • Fabrication of TiC{sub x}N{sub y} thin films on SS 316 L (TiCN/SS) by reactive pulsed DC magnetron sputtering. • Synthesis of BAG nanopowders (45S5) by sol–gel method. • Incorporation of BAG nanopowders into PCL matrix to form polymer composite scaffold. • BAG-PCL scaffold was coated on TiCN/SS to enhance the bioactivity.

  9. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Changsheng [Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Chen, C.-W.; Ducheyne, Paul [Center for Bioactive Materials and Tissue Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: liucs@ecust.edu.cn, E-mail: ducheyne@seas.upenn.edu

    2008-09-01

    Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 deg. C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO{sub 4} and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 {mu}m and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue

  10. Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds.

    Science.gov (United States)

    Li, Liya; Henry, Geneive E; Seeram, Navindra P

    2009-08-26

    Plants of the Carex genus (Family: Cyperaceae) have attracted recent attention as potential food additives because they contain high levels of bioactive polyphenols commonly found in plant foods. Seven compounds, which included two resveratrol oligomers and five flavonoids, were isolated from seeds of Carex folliculata L. (northern long sedge), a forage prevalent in the northern United States. The compounds were identified by (1)H and (13)C nuclear magnetic resonance and mass spectrometry data. The resveratrol oligomers were pallidol (1), a resveratrol dimer reported to be present in levels equivalent to those of resveratrol in red wine, and kobophenol A (2), a resveratrol tetramer with a unique 2,3,4,5-tetraaryltetrahydrofuran skeleton. The flavonoids were isoorientin (3), luteolin (4), quercetin (5), 3-O-methylquercetin (6), and rutin (7). Compounds were evaluated for antioxidant activity in the diphenylpicrylhydrazyl (DPPH) radical scavenging assay; cytotoxicity activity against human colon (HCT116, HT29) and breast (MCF7, MDA-MB-231) tumor cell lines; and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The antioxidant activities of the flavonoids (3-7; IC(50) values ranging from 50 to 200 microM) were comparable to that of ascorbic acid (IC(50) = 60 microM) and superior to those of the resveratrol derivatives (1 and 2; IC(50) > 1000 microM) and butylated hydroxytoluene (BHT; IC(50) = 1500 microM), a commercial antioxidant. In the cytotoxicity and antibacterial bioassays, compounds 4 (IC(50) for HCT116 = 45 microM) and 6 (IC(50) for MRSA = 6.4 microM) were the most active, respectively. Therefore, given the wide availability and underutilization of C. folliculata, this forage may provide a source of bioactive compounds useful for nutraceutical purposes. Also, this is the first reported phytochemical investigation of C. folliculata.

  11. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  12. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

    Science.gov (United States)

    Poh, Patrina S P; Hutmacher, Dietmar W; Holzapfel, Boris M; Solanki, Anu K; Woodruff, Maria A

    2016-06-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  13. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    Science.gov (United States)

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass.

  14. Structure, solubility and bioactivity in TiO2-doped phosphate-based bioglasses and glass-ceramics

    International Nuclear Information System (INIS)

    Phosphate-based bioactive glasses in addition to TiO2 (x = 0-2.5 mol%) were prepared by melt quenching technique. Glass-ceramics were prepared by controlled two-step thermal treatment of the as-prepared phosphate bioglasses at their nucleation and crystallisation temperatures. X-ray diffraction (XRD) analysis was used to explore the amorphous and crystalline nature of materials. The presence of calcium phosphate crystals like NaPO3, α, β-Ca2P2O7, α,β-Ca3(PO4)2 and Na5Ti(PO4)3 plays a dominant role in glass-ceramics. The structural changes were analyzed by density and Tg measurements. The degradation process in deionised water (DIW) was observed by pH and weight loss measurements. It was interesting to note that the highest solubility phosphate glasses become stiffer to degradation with increasing TiO2 content. Addition of TiO2 leads to densify the glass structure and interconnect the cross-linkages in the network. Chemical durability of glass-ceramics in DIW purely depends on the formed crystalline as well as the residual glassy phases. The formation of a biologically active layer on the surface of glasses and glass-ceramics were investigated by in vitro studies through XRD analysis.

  15. 45S5 bioactive glass coatings by atmospheric plasma spraying obtained from feedstocks prepared by different routes

    OpenAIRE

    López, Verónica; Vicent, Mónica; Bannier, Emilie; Cañas Recacha, Eugeni; Boccaccini, Aldo R.; Cordero Arias, L.; Sánchez Vilches, Enrique Javier

    2014-01-01

    45S5 bioactive glass powders with the composition of 45 SiO2, 6 P2O5, 24.5 CaO and 24.5 wt% Na2O were melted and quenched in water to obtain a frit. The frit was milled using two different routes: dry milling followed by sieving to obtain glass particles and wet milling followed by spray drying to obtain a powder comprising porous agglomerates. All feedstocks showed adequate characteristics that make them suitable to be deposited by atmospheric plasma spraying. The powders and coatings were c...

  16. Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Arias, L.; Cabanas-Polo, S.; Goudouri, O.M. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany); Misra, S.K. [Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Ahmedabad 382424 (India); Gilabert, J. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Valsami-Jones, E. [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanchez, E. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Virtanen, S. [Institute for Surface Science and Corrosion (LKO, WW4), Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen (Germany); Boccaccini, A.R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany)

    2015-10-01

    Two organic/inorganic composite coatings based on alginate, as organic matrix, and zinc oxide nanoparticles (n-ZnO) with and without bioactive glass (BG), as inorganic components, intended for biomedical applications, were developed by electrophoretic deposition (EPD). Different n-ZnO (1–10 g/L) and BG (1–1.5 g/L) contents were studied for a fixed alginate concentration (2 g/L). The presence of n-ZnO was confirmed to impart antibacterial properties to the coatings against gram-negative bacteria Escherichia coli, while the BG induced the formation of hydroxyapatite on coating surfaces thereby imparting bioactivity, making the coating suitable for bone replacement applications. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings. Polarization curves of the coated substrates made in cell culture media at 37 °C confirmed the corrosion protection function of the novel organic/inorganic composite coatings. - Highlights: • Organic–inorganic nanocomposite coatings fabricated by electrophoretic deposition • nZnO and bioactive glass containing alginate coatings exhibit antibacterial effect. • Bioactive character and anticorrosion function of coatings demonstrated.

  17. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    Science.gov (United States)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  18. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    International Nuclear Information System (INIS)

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ε-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications

  19. Genotoxicity effects of nano bioactive glass and Novabone bioglass on gingival fibroblasts using single cell gel electrophoresis (comet assay: An in vitro study

    Directory of Open Access Journals (Sweden)

    Mohammad Tavakoli

    2012-01-01

    Conclusion: The findings of this study have demonstrated that novel nano bioactive glass had no genotoxicity in concentrations lower than 4 mg/ml. Nanoparticles have a higher surface area in comparison to microparticles and thus, the amount and rate of ion release for nanoparticles are extremely higher. This difference is the main reason for the different genotoxicity of nano bioactive glass and micro Novabone bioglass in the concentrations higher than 4 mg/ml.

  20. Ions Release and pH of Calcium Hydroxide-, Chlorhexidine- and Bioactive Glass-Based Endodontic Medicaments.

    Science.gov (United States)

    Carvalho, Ceci Nunes; Freire, Laila Gonzales; Carvalho, Alexandre Pinheiro Lima de; Duarte, Marco Antonio Húngaro; Bauer, José; Gavini, Giulio

    2016-01-01

    This study evaluated pH and release of calcium, sodium and phosphate ions from different medications in human dentin. Fifty premolars were prepared and randomly divided into groups: (CHX) - 2% chlorhexidine gel; (CHX + CH) - CHX + calcium hydroxide PA; (CH) - CH + propylene glycol 600; (NPBG) - experimental niobium phosphate bioactive glass + distilled water; (BG) - bioactive glass (Bio-Gran) + distilled water. The specimens were immersed in deionized water and the pH variations were measured. The quantification of ions in the solutions was made by inductively coupled plasma - atomic emission spectroscopy (ICP/AES) at 10 min, 24 h, 7, 14, 21 and 30 days. The results were analyzed by ANOVA and Tukey`s test, with a significance level of 5%. CH had the highest level of calcium ions release at 30 days, while CHX and BG released more sodium ions. BG, NPBG and CHX released a higher amount of phosphate ions. The pH of CH was significantly higher compared with the other groups. CH favored the greatest increase of pH and calcium ions release. The bioactive glasses released more sodium and phosphate ions and presented an alkaline pH immediately and after 30 days. PMID:27224568

  1. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Kung, Jung-Chang [Department of Family Dentistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chen, Cheng-Hwei [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Hsiao, Yu-Cheng [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chien, Chi-Sheng, E-mail: jannie.gissing@msa.hinet.net [Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Department of Orthopaedics, Chi Mei Foundation Hospital, Tainan, Taiwan (China); Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China)

    2013-10-15

    Bioactive glass (BG) is a potential material for treating dentin hypersensitivity due to its high ability of dissolution. In this study, conventional BG and BG with well-ordered mesopore structures (MBG) were applied for dentinal tubule occlusion. We used X-ray diffractometer (XRD), scanning electronic microscope (SEM), and Fourier transform infrared (FTIR) to investigate the physiochemical properties and the dentinal tubule occlusion ability of BG and MBG groups. The results showed that the major crystallite phase of MBG and BG agents was monocalcium phosphate monohydrate. MBG pastes, mixed with 30 and 40 wt% phosphoric acid hardening solutions, had the ability to create a penetration depth greater than 50 μm. These results showed that BG with mesoporous structures turned the pastes mixed with suitable phosphoric acid solution into a material with great ability for occluding dentinal tubules; it has a short reaction time and good operability, and these agents have better potential for the treatment of dentin hypersensitivity than BG without mesoporous structures.

  2. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2011-06-01

    The angiogenic properties of micron-sized (m-BG) and nano-sized (n-BG) bioactive glass (BG) filled poly(D,L lactide) (PDLLA) composites were investigated. On the basis of cell culture work investigating the secretion of vascular endothelial growth factor (VEGF) by human fibroblasts in contact with composite films (0, 5, 10, 20 wt %), porous 3D composite scaffolds, optimised with respect to the BG filler content capable of inducing angiogenic response, were produced. The in vivo vascularisation of the scaffolds was studied in a rat animal model and quantified using stereological analyses. The prepared scaffolds had high porosities (81-93%), permeability (k = 5.4-8.6 × 10-9 m2) and compressive strength values (0.4-1.6 MPa) all in the range of trabecular bone. On composite films containing 20 wt % m-BG or n-BG, human fibroblasts produced 5 times higher VEGF than on pure PDLLA films. After 8 weeks of implantation, m-BG and n-BG containing scaffolds were well-infiltrated with newly formed tissue and demonstrated higher vascularisation and percentage blood vessel to tissue (11.6-15.1%) than PDLLA scaffolds (8.5%). This work thus shows potential for the regeneration of hard-soft tissue defects and increased bone formation arising from enhanced vascularisation of the construct. © 2011 Elsevier Ltd.

  3. One-pot synthesis of magnetic, macro/mesoporous bioactive glasses for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Dan Wang, Huiming Lin, Jingjie Jiang, Xiao Han, Wei Guo, Xiaodan Wu, Yingxue Jin and Fengyu Qu

    2013-01-01

    Full Text Available Magnetic and macro/mesoporous bioactive glasses were synthesized by a one-pot method via a handy salt leaching technique. It was identified to be an effective and simple synthetic strategy. The non-ionic triblock copolymer, poly(ethylene glycol-block-poly(propylene glycol-block-poly(ethylene glycol (P123, was used as the structure directing agent for mesoporous structure but also as the reductant to reduce the iron source into magnetic iron oxide. The prepared materials exhibited excellent super-paramagnetic property with interconnected macroporous (200–300 μm and mesoporous (3.4 nm structure. Furthermore, their outstanding drug storage/release properties and rapid (5 induction of hydroxyapatite growth ability were investigated after immersing in simulated body fluid solution at 37 °C. Notably, the biocompatibility assessment confirmed that the materials obtained presented good biocompatibility and enhanced adherence of HeLa cells. Herein, the novel materials are expected to have potential application for bone tissue engineering.

  4. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion

    International Nuclear Information System (INIS)

    Bioactive glass (BG) is a potential material for treating dentin hypersensitivity due to its high ability of dissolution. In this study, conventional BG and BG with well-ordered mesopore structures (MBG) were applied for dentinal tubule occlusion. We used X-ray diffractometer (XRD), scanning electronic microscope (SEM), and Fourier transform infrared (FTIR) to investigate the physiochemical properties and the dentinal tubule occlusion ability of BG and MBG groups. The results showed that the major crystallite phase of MBG and BG agents was monocalcium phosphate monohydrate. MBG pastes, mixed with 30 and 40 wt% phosphoric acid hardening solutions, had the ability to create a penetration depth greater than 50 μm. These results showed that BG with mesoporous structures turned the pastes mixed with suitable phosphoric acid solution into a material with great ability for occluding dentinal tubules; it has a short reaction time and good operability, and these agents have better potential for the treatment of dentin hypersensitivity than BG without mesoporous structures.

  5. Rheological evaluations and in vitro studies of injectable bioactive glass-polycaprolactone-sodium alginate composites.

    Science.gov (United States)

    Borhan, Shokoufeh; Hesaraki, Saeed; Behnamghader, Ali-Asghar; Ghasemi, Ebrahim

    2016-09-01

    Composite pastes composed of various amounts of melt-derived bioactive glass 52S4 (MG5) and polycaprolactone (PCL) microspheres in sodium alginate solution were prepared. Rheological properties in both rotatory and oscillatory modes were evaluated. Injectability was measured as injection force versus piston displacement. In vitro calcium phosphate precipitation was also studied in simulated body fluid (SBF) and tracked using scanning electron microscopy, X-ray diffraction and FTIR analyses. All composite pastes were thixotropic in nature and exhibited shear thinning behavior. The magnitude of thixotropy decreased by adding 10-30 wt% PCL, while further amounts of PCL increased it again. Moreover, the composites were viscoelastic materials in which the elastic modulus was higher than viscous term. The pastes which were just made of MG5 or PCL had poor injectability, whereas the composites containing both of these constituents exhibited reasonable injectability. All pastes revealed adequate structural stability in contact with SBF solution. In vitro calcium phosphate precipitation was well observed on the paste made of MG5 and somewhat on the pastes with 10-40 wt% PCL, however the precipitated layer was amorphous in nature. Overall, the produced composites may be appropriate as injectable biomaterials for non-invasive surgeries but more biological evaluations are essential. PMID:27432416

  6. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis.

    Science.gov (United States)

    Shih, Shao-Ju; Tzeng, Wei-Lung; Jatnika, Rifqi; Shih, Chi-Jen; Borisenko, Konstantin B

    2015-05-01

    Mesoporous bioactive glasses (MBGs) have become important bone implant materials because of their high specific surface area resulting in high bioactivity. Doping MBGs with Ag removes one of the remaining challenges to their applications, namely their lack of intrinsic antibacterial properties. In present work we demonstrate that Ag-doped MBGs can be prepared in one-step spray pyrolysis (SP) process. The SP preparation method offers the advantages of short processing times and continuous production over the sol-gel method previously used to prepare MBGs. Using scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction we demonstrate that the synthesized MBG particles have amorphous structure with nanocrystalline Ag inclusions. The scanning transmission electron microscopy-X-ray energy dispersive spectrometry of cross-sectional samples shows that the distribution of the Ag dopant nanoparticles within MBGs can be controlled by using the appropriate formulation of the precursors. The distribution of the Ag dopant nanoparticles within the MBG particles was found to affect their surface areas, bioactivities and antibacterial properties. Based on the observations, we propose a mechanism describing MBG particle formation and controlling dopant distribution. PMID:25171327

  7. Influence of seeding on crystallization behaviour of BaNaB9O15 glasses

    Indian Academy of Sciences (India)

    Rahul Vaish; K B R Varma

    2009-02-01

    Transparent BaNaB9O15 (BNBO) glasses were fabricated via the conventional melt-quenching technique. X-ray powder diffraction (XRD) followed by differential scanning calorimetric (DSC) studies confirmed the amorphous and glassy nature of the as-quenched samples, respectively. The effect of seeding on the crystallization of BNBO glasses was studied by non-isothermal DSC method and was modeled using the Johnson–Mehl–Avrami and Ozawa equations. The activation energy for seeded glasses decreased with the increase in fraction of crystallization. The values for the onset of crystallization and Avrami exponent were found to be lower for seeded samples which were associated with the heterogeneous nucleation and epitaxial processes.

  8. Influence of seeding on crystallization behaviour of BaNaB9O15 glasses

    Indian Academy of Sciences (India)

    Rahul Vaish; K B R Varma

    2009-08-01

    Transparent BaNaB9O15 (BNBO) glasses were fabricated via the conventional melt-quenching technique. X-ray powder diffraction (XRD) followed by differential scanning calorimetric (DSC) studies confirmed the amorphous and glassy nature of the as-quenched samples, respectively. The effect of seeding on the crystallization of BNBO glasses was studied by non-isothermal DSC method and was modeled using the Johnson–Mehl–Avrami and Ozawa equations. The activation energy for seeded glasses decreased with the increase in fraction of crystallization. The values for the onset of crystallization and Avrami exponent were found to be lower for seeded samples which were associated with the heterogeneous nucleation and epitaxial processes.

  9. Isolation and Characterization of Potential Bioactive Compounds from Landolphia owariensis P. Beauv Stringy Seed Pulp

    Directory of Open Access Journals (Sweden)

    T JN Okonkwo

    2013-06-01

    Full Text Available Summary. Landolphia owariensis P. Beauv, a tropical climber, is economically important for latex/rubber and folklore medicine. Among other uses, it is utilized in the management of malaria and inflammatory related diseases in ethno medicine. Thus its stringy seed pulp (LOSSP was subjected to isolation and characterization of bioactive compounds. A fresh portion of LOSSP was air-dried, pulverized, defatted with petroleum ether and subsequently extracted with acetone and distilled water successively. The acetone extract was fractionated serially into chloroform, ethylacetate and acetone to obtain the respective solvent fractions. LOSSP/CF-1 was obtained by re-crystallization of the chloroform fraction. Phytochemical analysis of the extracts and fractions was performed using standard methods. The chemical structure of LOSSP/CF-1 was elucidated by ultraviolet/visible light, infrared, H-NMR, C-NMR and mass spectroscopic techniques. While the flavonoid concentrate (FC and LOSSP/CF-1 tested positive to 2, 2-diphenylpicryl hydrazyl radical and KMnO4 assays, indicating strong antioxidant properties. In addition, LOSSP/CF-1 expressed a 50% radical inhibition concentration (IC50 of 238.24 ± 3.12 µg/ml against gallic acid (37.63 ± 0.47 µg/ml. Ultraviolet/visible light, infrared, H-NMR, C-NMR spectroscopy and gas chromatography-mass spectrometry of LOSSP/CF-1 indicated it to be ascorbic acid. This is novel for the herb, and the first ever compound isolated and characterized from L. owariensis. Flavonoids and LOSSP/CF-1 (ascorbic acid are potent bioactive principles of L. owariensis, acting via antioxidant mechanism. Thus the herb is recommended for use as an adjuvant in the management of diseases involving pro-oxidative state.   Industrial relevance. Pro-oxidative state-induced disorders like hepatitis, cardiovascular disorders, arthritis, cancer, et c., have been identified as major course of morbidity and mortality throughout the world, especially in

  10. The choice of process parameters to obtain a stable dispersion system of plant-based bioactivated dicotyledonous seeds

    Directory of Open Access Journals (Sweden)

    L. A. Samofalova

    2016-01-01

    Full Text Available The article dealswith the search for the unification of technological approaches to increase the efficiency of separation of the protein complex and stability of the plant foundations from seed dicotyledonous economically important crops of soybean, hemp, buckwheat. Uneven localization of nitrogenous substances in the seed largely determines the accessibility of protein complexes for extraction. Natural fermentation of spare proteins in cellular structures when the germination process starts leads to the accumulation of soluble nitrogen, and the change in the salt composition of protoplasm facilitates the transition in the solution of insoluble complexes in the form of colloids. It is shown that fine grinding of dry seeds increases the efficiency of extraction by 1.3–1.6 times, while rough grinding increases bioactivity by 1.6–1.8 times. The dispersion containing 8.1±0.7% of dry matter at buckwheat bases and 9.5±1,3% at hemp and soy bases with the water ratio 1:4 to 1:7 satisfy the requirements of taste sensations and fullness of the chemical composition. Based on the results of the extraction of protein of buckwheat seeds the conclusion has been drawn that there is a need for a differentiated approach to selecting conditions for the creation of food framework. Taking into consideration the fact that the amount of calcium in buckwheat seeds is17–25 times smaller than in oil seeds and the quantity of phosphorus is 1.6–2 times smaller, the contribution of electrostatic forces in the protein solubility is small and the additional actions to activate the protein complex are required. To predict the properties of vegetable bases of bioactivated soybean seeds and hemp, the central composite uniform-rotatable planning was applied and the full factorial experiment with factorial scheme 3×3×3 (33 was selected. The preferred combination of values of the input parameters X1, X2, X3 was discovered. They provide for the maximum of Y

  11. Incorporation of sol–gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties

    International Nuclear Information System (INIS)

    In this study, 3D porous bioactive composite scaffolds were produced and evaluated for their physico-chemical and biological properties. Polymer poly-L-lactide-co-glycolide (PLGA) matrix scaffolds were modified with sol–gel-derived bioactive glasses (SBGs) of CaO–SiO2–P2O5 systems. We hypothesized that SBG incorporation into PLGA matrix would improve the chemical and biological activity of composite materials as well as their mechanical properties. We applied two bioactive glasses, designated as S2 or A2, differing in the content of SiO2 and CaO (i.e. 80 mol% SiO2, 16 mol% CaO for S2 and 40 mol% SiO2, 52 mol% CaO for A2). The composites were characterized for their porosity, bioactivity, microstructure and mechanical properties. The osteoinductive properties of these composites were evaluated in human bone marrow stromal cell (hBMSC) cultures grown in either standard growth medium or treated with recombinant human bone morphogenetic protein-2 (rhBMP-2) or dexamethasone (Dex). After incubation in simulated body fluid, calcium phosphate precipitates formed inside the pores of both A2-PLGA and S2-PLGA scaffolds. The compressive strength of the latter was increased slightly compared to PLGA. Both composites promoted superior hBMSC attachment to the material surface and stimulated the expression of several osteogenic markers in hBMSC compared to cells grown on unmodified PLGA. There were also marked differences in the response of hBMSC to composite scaffolds, depending on chemical compositions of the scaffolds and culture treatments. Compared to silica-rich S2-PLGA, hBMSC grown on calcium-rich A2-PLGA were overall less responsive to rhBMP-2 or Dex and the osteoinductive properties of these A2-PLGA scaffolds seemed partially dependent on their ability to induce BMP signaling in untreated hBMSC. Thus, beyond the ability of currently studied composites to enhance hBMSC osteogenesis, it may become possible to modulate the osteogenic response of h

  12. Novel bioactive Fe-based metallic glasses with excellent apatite-forming ability.

    Science.gov (United States)

    Qin, Chunling; Hu, Qingfeng; Li, Yongyan; Wang, Zhifeng; Zhao, Weimin; Louzguine-Luzgin, Dmitri V; Inoue, Akihisa

    2016-12-01

    We demonstrate, for the first time, that the (Fe0.75B0.15Si0.1)100-xNbx (x=0, 1 and 3at.%) metallic glasses without toxic and allergic elements exhibit excellent apatite-forming ability in simulated body fluids (SBF), which is expected to be a new generation of biomaterials in stents and orthopedic implants. For the alloys without any surface treatment, spherical particles corresponding to octacalcium phosphate are spontaneously nucleated and precipitated throughout the alloy surface after immersion only for 1day, indicating that the present alloys possess an unusual high bioactivity. During the subsequent in-vitro immersion for 3days, SEM image reveals the typical 'cauliflower' morphology of bone-like hydroxyapatite (HA) with Ca/P ratio of 1.65. In addition, it is surprising to find that the in-vitro SBF immersion not only leads to the formation and growth of the apatite layer but also causes the progressive development of the underlying alloy substrate. Moreover, for the alloys immersed for 3 or 9days, the substrate alloy just beneath the apatite layer consists of a hierarchical nano/macro-porous structure through selective dissolution of the active components Fe and B in the surface. XPS analysis indicates that the apatite nucleation on the present alloys in SBF is attributed to the specific dissolution properties of the present alloys and the fast formation of Si-OH and Fe-OH or Nb-OH functional groups, followed by combination of these groups with Ca(2+) and phosphate ions. PMID:27612742

  13. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function.

    Science.gov (United States)

    Li, Wei; Ding, Yaping; Rai, Ranjana; Roether, Judith A; Schubert, Dirk W; Boccaccini, Aldo R

    2014-08-01

    PHBV microsphere/45S5 bioactive glass (BG) composite scaffolds with drug release function were developed for bone tissue engineering. BG-based glass-ceramic scaffolds with high porosity (94%) and interconnected pore structure prepared by foam replication method were coated with PHBV microspheres (nominal diameter=3.5 μm) produced by water-in-oil-in-water double emulsion solvent evaporation method. A homogeneous microsphere coating throughout the porous structure of scaffolds was obtained by a simple dip coating method, using the slurry of PHBV microspheres in hexane. Compressive strength tests showed that the microsphere coating slightly improved the mechanical properties of the scaffolds. It was confirmed that the microsphere coating did not inhibit the bioactivity of the scaffolds in SBF. Hydroxyapatite crystals homogeneously grew not only on the struts of the scaffolds but also on the surface of microspheres within 7 days of immersion in SBF. Vancomycin was successfully encapsulated into the PHBV microspheres. The encapsulated vancomycin was released with a dual release profile involving a relatively low initial burst release (21%) and a sustained release (1 month), which is favorable compared to the high initial burst release (77%) and short release period (4 days) measured on uncoated scaffolds. The developed bioactive composite scaffold with drug delivery function has thus the potential to be used advantageously in bone tissue engineering.

  14. Review and the state of the art: Sol-gel and melt quenched bioactive glasses for tissue engineering.

    Science.gov (United States)

    Kaur, Gurbinder; Pickrell, Gary; Sriranganathan, Nammalwar; Kumar, Vishal; Homa, Daniel

    2016-08-01

    Biomaterial development is currently the most active research area in the field of biomedical engineering. The bioglasses possess immense potential for being the ideal biomaterials due to their high adaptiveness to the biological environment as well as tunable properties. Bioglasses like 45S5 has shown great clinical success over the past 10 years. The bioglasses like 45S5 were prepared using melt-quenching techniques but recently porous bioactive glasses have been derived through sol-gel process. The synthesis route exhibits marked effect on the specific surface area, as well as degradability of the material. This article is an attempt to provide state of the art of the sol-gel and melt quenched bioactive bioglasses for tissue regeneration. Fabrication routes for bioglasses suitable for bone tissue engineering are highlighted and the effect of these fabrication techniques on the porosity, pore-volume, mechanical properties, cytocompatibilty and especially apatite layer formation on the surface of bioglasses is analyzed in detail. Drug delivery capability of bioglasses is addressed shortly along with the bioactivity of mesoporous glasses. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1248-1275, 2016. PMID:26060931

  15. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration.

    Science.gov (United States)

    Sadiasa, Alexander; Sarkar, Swapan Kumar; Franco, Rose Ann; Min, Young Ki; Lee, Byong Taek

    2014-01-01

    In this work, we fabricated injectable bone substitutes modified with the addition of bioactive glass powders synthesized via ultrasonic energy-assisted hydrothermal method to the calcium phosphate-based bone cement to improve its biocompatibility. The injectable bone substitutes was initially composed of a powder component (tetracalcium phosphate, dicalcium phosphate dihydrate and calcium sulfate dehydrate) and a liquid component (citric acid, chitosan and hydroxyl-propyl-methyl-cellulose) upon which various concentrations of bioactive glass were added: 0%, 10%, 20% and 30%. Setting time and compressive strength of the injectable bone substitutes were evaluated and observed to improve with the increase of bioactive glass content. Surface morphologies were observed via scanning electron microscope before and after submersion of the samples to simulated body fluid and increase in apatite formation was detected using x-ray diffraction machine. In vitro biocompatibility of the injectable bone substitutes was observed to improve with the addition of bioactive glass as the proliferation/adhesion behavior of cells on the material increased. Human gene markers were successfully expressed using real time-polymerase chain reaction and the samples were found to promote cell viability and be more biocompatible as the concentration of bioactive glass increases. In vivo biocompatibility of the samples containing 0% and 30% bioactive glass were evaluated using Micro-CT and histological staining after 3 months of implantation in male rabbits' femurs. No inflammatory reaction was observed and significant bone formation was promoted by the addition of bioactive glass to the injectable bone substitute system.

  16. Identification and Antibacterial Evaluation of Bioactive Compounds from Garcinia kola (Heckel Seeds

    Directory of Open Access Journals (Sweden)

    Christinah T. Seanego

    2012-05-01

    Full Text Available We assessed the bioactivity of G. kola seeds on Streptococcus pyogenes, Staphylococcus aureus, Plesiomonas shigelloides and Salmonella typhimurium. The crude ethyl acetate, ethanol, methanol, acetone and aqueous extracts were screened by the agar-well diffusion method and their activities were further determined by Minimum Inhibitory Concentration (MIC and Minimum Bactericidal Concentration (MBC assays. The extracts were fractionated by Thin Layer Chromatography (TLC. Bioautography was used to assess the activity of the possible classes of compounds present in the more active extracts. Column chromatography was used to purify the active compounds from the mixture, while GC-MS was used to identify the phytocomponents of the fractions. The inhibition zone diameters of the extracts ranged from 0–24 ± 1.1 mm, while MIC and MBC values ranged between 0.04–1.25 mg/mL and 0.081–2.5 mg/mL, respectively. The chloroform/ethyl acetate/formic acid (CEF solvent system separated more active compounds. The MIC of the fractions ranged between 0.0006–2.5 mg/mL. CEF 3 (F3, CEF 11 (F11 and CEF 12 (F12 revealed the presence of high levels of linoleic acid, 1,2-benzenedicarboxylic acid and 2,3-dihydro-3,5-dihydroxy-6-methyl ester, respectively. The results obtained from this study justify the use of this plant in traditional medicine and provide leads which could be further exploited for the development of new and potent antimicrobials.

  17. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR.

    Science.gov (United States)

    Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J

    2012-09-21

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. PMID:22868255

  18. Acid Neutralizing Ability and Shear Bond Strength Using Orthodontic Adhesives Containing Three Different Types of Bioactive Glass

    Directory of Open Access Journals (Sweden)

    Song-Yi Yang

    2016-02-01

    Full Text Available The objective of the study was to compare the acid neutralizing ability and shear bond strength (SBS of three different types of orthodontic adhesives containing bioactive glasses (BAGs. 45S5, 45S5F and S53P4 BAGs were prepared using the melting technique and ground to fine particles. Orthodontic adhesives containing three types of BAGs were prepared as follows: 52.5% 45S5 BAG + 17.5% glass (45S5_A; 61.25% 45S5 BAG + 8.75% glass (45S5_B; 52.5% 45S5F BAG + 17.5% glass (45S5F_A; 61.25% 45S5F BAG + 8.75% glass (45S5F_B; 52.5% S53P4 BAG + 17.5% glass (S53P4_A; 61.25% S53P4 BAG + 8.75% glass (S53P4_B; and 70.0% glass (BAG_0. To evaluate the acid neutralizing properties, specimens were immersed in lactic acid solution, and pH changes were measured. SBS was measured with a universal testing machine. For all of the BAG-containing adhesives, the one with 61.25% of BAG showed a significantly greater increase of pH than the one with 52.5% of BAG (p < 0.05. Groups with 61.25% of BAG showed lower SBS than samples with 52.5% of BAG. 45S5F_A showed no significant difference of SBS compared to BAG_0 (p > 0.05. The adhesive containing 61.25% of 45S5F BAG exhibited clinically acceptable SBS and acid neutralizing properties. Therefore, this composition is a suitable candidate to prevent white spot lesions during orthodontic treatment.

  19. Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds.

    Science.gov (United States)

    Saavedra, M J; Aires, A; Dias, C; Almeida, J A; De Vasconcelos, M C B M; Santos, P; Rosa, E A

    2015-02-01

    The transformation of byproducts and wastes generated by agro-food companies is of high importance since only a small portion of plant material is utilized directly for human consumption. Squash pumpkin is greatly used in Portugal and as by-products of its processing are generated tons of shell and seeds. In this study we aim to evaluate the potential of these wastes as sources of beneficial and bioactive compounds (antioxidants and antimicrobials), studying the effect of different extraction solvents and drying methods. The samples (fresh and cooked) were freeze-dried and oven-dried followed by extraction with different solvents that revealed the following decreasing order of efficiency: 70 % ethanol, 70 % methanol, 70 % acetone, ultra-pure water and 100 % dichloromethane. The oven-dried samples showed higher values of antioxidant activity and phenolic content, with exception of the values of phenolics for the seeds material. The shell samples presented higher values (1.47 - 70.96 % inhibition) of antioxidant activity and total phenolic content (2.00 - 10.69 mg GAE/g DW). A positive correlation was found between these two parameters on the shell samples, however the squash seeds revealed a negative correlation between the phenolic content and the antioxidant activity. The results show that these industrial agro-food residues are potentially good sources of bioactive compounds with health benefits. PMID:25694712

  20. Isolation and analysis of bioactive constituents of sour cherry (Prunus cerasus) seed kernel: an emerging functional food.

    Science.gov (United States)

    Bak, Istvan; Lekli, Istvan; Juhasz, Bela; Varga, Edit; Varga, Balazs; Gesztelyi, Rudolf; Szendrei, Levente; Tosaki, Arpad

    2010-08-01

    A plant-based diet reduces the risk for the development of several chronic diseases, such as ischemic heart disease or cancer due to natural compounds found in plants. Numerous cereals, berries, fruits, and vegetables, including sour cherry (Prunus cerasus), which is a favored fruit worldwide, contain biological active components. The antioxidant components of the sour cherry seed kernel have not been investigated until now. The aim of our study was to isolate and analyze the bioactive constituents of sour cherry seed kernel. We separated the oil fraction of the kernel; then the remaining solid fraction was dried, and the oil-free kernel extract was further analyzed. Our results show that sour cherry seed kernel oil contains vegetable oils including unsaturated fatty acids, oleic acids, alpha-tocopherol, tocotrienols, and tocopherol-like components. The components of the solid fraction include various bioactive structures such as polyphenols, flavonoids, vegetable acids, and pro- and anthocyanidins, which could have useful therapeutic effects in the prevention of various vascular diseases. PMID:20482278

  1. In vitro chemical and biological effects of Ag, Cu and Cu + Zn adjunction in 46S6 bioactive glasses

    Science.gov (United States)

    Bunetel, L.; Wers, E.; Novella, A.; Bodin, A.; Pellen-Mussi, P.; Oudadesse, H.

    2015-09-01

    Three bioactive glasses belonging to the system SiO2-CaO- Na2O-P2O5 elaborated by conventional melt-quenching techniques were doped with silver, copper and copper + zinc. They were characterized using the usual physical methods. Human osteoblast cells Saos-2 and human endothelial cells EAhy926 were used for viability assays and to assess the metallic ions, self toxicity. Human monocyte cells THP-1 were used to measure interleukins IL1β and IL6 release. Glass chemical structures did not vary much on introduction of metal ions. A layer of hydroxyapatite was observed on every glass after 30 days of SBF immersion. A proliferative action was seen on Saos-2 after 24 h of incubation, EAhy926 growth was not affected. For both cell lines, a moderate cytotoxicity was found after 72 h. Dose-dependent toxic effects of Ag, Cu and Zn ions were observed on Saos-2 and EAhy926 cells. Measured CD50 of silver against these two cell lines were 8 to 20 fold lower than copper and zinc’s. Except undoped control glass, all doped glasses tested showed anti-inflammatory properties by preventing IL1β and IL6 excretion by differentiated THP-1. In conclusion, strictly monitored adjunction of metal ions to bioglasses ensures good anti-inflammatory properties without altering their biocompatibility.

  2. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J., E-mail: joel.faure@univ-reims.fr [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Drevet, R., E-mail: richard.drevet@univ-reims.fr [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Lemelle, A.; Ben Jaber, N.; Tara, A. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); El Btaouri, H. [Université de Reims Champagne-Ardenne UMR CNRS MEDyC, EA 7369, Campus Moulin de la Housse, 51687 REIMS Cedex 2 (France); Benhayoune, H. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France)

    2015-02-01

    In this paper a new sol–gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol–gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol–gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2 M nitric acid solution or either a 5 mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer–Emmett–Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol–gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4 h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol–gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol–gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol–gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. - Highlights: • Citric acid is employed as a catalyzer of the sol–gel process. • This catalyzer is used at a very low concentration for the hydrolysis reaction. • The chemical composition of the bioglass synthesized by the sol–gel process is optimized. • The properties of two sol–gel bioglasses are compared with those of the commercial

  3. 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: an evaluation of the porous structure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Elke M. F. Lemos

    2016-05-01

    Full Text Available Porous synthetic substrates are developed through tissue engineering technologies to grow new tissue, restoring the function of tissue or an organ. For bone regeneration, these scaffolds must support the dynamic load exerted on this tissue, achieved primarily by increasing their compression strength, as established in the literature. The aim of this paper was to incorporate an inorganic composite bioactive glass (60%SiO2 - 36%CaO - 4%P2O5 as a reinforcing agent in mechanical 3D scaffolds that must remain porous. Two strategies were adopted: a co-precipitation method to obtain a nanoparticulate dispersion of bioactive glass (BGNP and a sol-gel method to combine a bioactive glass solution (BG with a previously prepared chitosan polymer solution. Moreover, a lyophilization process was also used, generating highly porous scaffolds. Various aspects of the scaffold were evaluated, including the morphology, orientation and size of the pores, and mechanical strength, as obtained using the two synthetic methods. The data for compressive strength revealed increased strength after the incorporation of bioactive glass, which was more pronounced when utilizing the nanoscale bioactive glass.

  4. Europium-Containing Mesoporous Bioactive Glass Scaffolds for Stimulating in Vitro and in Vivo Osteogenesis.

    Science.gov (United States)

    Wu, Chengtie; Xia, Lunguo; Han, Pingping; Mao, Lixia; Wang, Jiacheng; Zhai, Dong; Fang, Bing; Chang, Jiang; Xiao, Yin

    2016-05-11

    Bone tissue engineering offers a possible strategy for regenerating large bone defects, in which how to design beneficial scaffolds for accelerating bone formation remains significantly challenging. Europium, as an important rare earth element, has been used as a solid-state lighting material. However, there are few reports on whether Eu can be used for labeling bone tissue engineering scaffolds, and its biological effect on bone cells and bone tissue regeneration is unknown. In this study, we incorporated Eu into mesoporous bioactive glass (Eu-MBG) scaffolds by an in situ cotemplate method to achieve a bifunctional biomaterial with biolabeling and bone regeneration. The prepared Eu-MBG scaffolds have highly interconnective large pores (300-500 μm), a high specific surface area (140-290 m(2)/g), and well-ordered mesopores (5 nm) as well as uniformly distributed Eu. The incorporation of 2-5 mol % Eu into MBG scaffolds gives them a luminescent property. The in vitro degradation of Eu-MBG scaffolds has a functional effect on the change of the luminescence intensity. In addition, Eu-MBG can be used for labeling bone marrow stromal cells (BMSCs) in vitro and still presents a distinct luminescence signal in deep bone tissues in vivo to label new bone tissue via release of Eu ions. Furthermore, the incorporation of different contents of Eu (1, 2, and 5 mol %) into MBG scaffolds significantly enhances the osteogenic gene expression of BMSCs in the scaffolds. The Eu- and Si-containing ionic products released from Eu-MBG scaffolds distinctly promote the osteogenic differentiation of BMSCs. Critically sized femur defects in ovariectomized (OVX) rats are created to simulate an osteoporotic phenotype. The results show that Eu-MBG scaffolds significantly stimulate new bone formation in osteoporotic bone defects when compared to MBG scaffolds alone and Eu may be involved in the acceleration of bone regeneration in OVX rats. Our study for the first time reports that the

  5. Sol-gel derived bioactive glasses with low tendency to crystallize: synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds.

    Science.gov (United States)

    Bellucci, Devis; Sola, Antonella; Salvatori, Roberta; Anesi, Alexandre; Chiarini, Luigi; Cannillo, Valeria

    2014-10-01

    A new sol-gel (SG) method is proposed to produce special bioactive glasses (BG_Ca family) characterized by a low tendency to devitrify. These formulations, derived from 45S5 Bioglass®, are characterized by a high content of CaO (45.6 mol%) and by a partial or complete substitution of sodium oxide with potassium oxide (total amount of alkaline oxides: 4.6 mol%), which increases the crystallization temperature up to 900°C. In this way, it is possible to produce them by SG preserving their amorphous nature, in spite of the calcination at 850°C. The sintering behavior of the obtained SG powders is thoroughly investigated and the properties of the sintered bodies are compared to those of the melt-derived (M) counterparts. Furthermore, the SG glass powders are successfully used to produce scaffolds by means of a modified replication technique based on the combined use of polyurethane sponges and polyethylene particles. Finally, in the view of a potential application for bone tissue engineering, the cytotoxicity of the produced materials is evaluated in vitro. PMID:25175252

  6. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry

    OpenAIRE

    Y-Y Wang; X Chatzistavrou; D Faulk; Badylak, S; Zheng, L; S. Papagerakis; Ge, L.; H. Liu; Papagerakis, P.

    2015-01-01

    The aim of this study was the fabrication and evaluation of a novel bioactive and bactericidal material, which could have applications in dentistry by supporting tissue regeneration and killing oral bacteria. Our hypothesis was that a new scaffold for pulp-dentin tissue engineering with enhanced antibacterial activity could be obtained by associating extracellular matrix derived from porcine bladder with an antibacterial bioactive glass. Our study combines in vitro approaches and ectopic impl...

  7. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  8. In vitro solubility and bioactivity of Sr and Mg co-doped calcium phosphate glass-ceramics derived from different heat-treatment temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cai Shu, E-mail: caishu@tju.edu.cn [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Li Jianxin [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Xu Guohua [Shanghai Changzheng Hospital, Shanghai 200003 (China); Li, Xudong [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ye Xiaojian [Shanghai Changzheng Hospital, Shanghai 200003 (China); Jiang Wei [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Porous glass ceramics were prepared by controlled heat treatment process. Black-Right-Pointing-Pointer A fast release of Mg ions has a great influence on the Ca/P ratio of the deposits. Black-Right-Pointing-Pointer The chemical stability of the deposited apatite directly affects cell behavior. Black-Right-Pointing-Pointer The glass ceramics heat-treated at 760 Degree-Sign C and 780 Degree-Sign C show less glass. Black-Right-Pointing-Pointer The degradation rates are both compatible with cell growth and differentiation. - Abstract: CaO-P{sub 2}O{sub 5}-Na{sub 2}O-SrO-MgO glass-ceramic system was prepared by controlled heat treatment process. Solubility and bioactivity of glass-ceramics were measured and evaluated in simulated body fluid (SBF) and cell culture medium respectively. The dissolution behavior of these glass-ceramics strongly depends on the amount and microstructure of the crystals precipitated by sintering treatment. Concerning the bioactivity, the onset of the apatite formation on the glass-ceramic system was directly dependent on the amount of bioactive glass amount which can be controlled using different temperatures of heat treatment. After immersing glass-ceramic in SBF, Mg ion as one of system composition can be released from residual glass and provides a high impact on the Ca/P ratio and chemical stability of the deposited apatite layer that directly affects cell attachment and proliferation in in vitro cell culture system. The glass ceramics heat-treated at 760 Degree-Sign C and 780 Degree-Sign C show less glass amount, and their degradation rates are both compatible with cell growth and differentiation.

  9. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Devis, E-mail: devis.bellucci@unimore.it [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Sola, Antonella [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Cacciotti, Ilaria [University of Rome " Niccolò Cusano" , UdR INSTM, Via Don Carlo Gnocchi 3, 00166, Rome (Italy); Bartoli, Cristina; Gazzarri, Matteo [Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM — Pisa, Via Risorgimento 35, 56127 Pisa (Italy); Bianco, Alessandra [Department of Enterprise Engineering, INSTM RU “Rome-Tor Vergata”, Via del Politecnico 1, 00133 Roma (Italy); Chiellini, Federica [Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM — Pisa, Via Risorgimento 35, 56127 Pisa (Italy); Cannillo, Valeria [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy)

    2014-09-01

    Presently, there is an increasing interest towards the composites of calcium phosphates, especially β-tricalcium phosphate (TCP), and bioactive glasses. In the present contribution, the recently developed BG{sub C}a/Mix glass has been used because its low tendency to crystallize allows to sinter the composites at relatively low temperature (i.e. 850 °C), thus minimizing the glass devitrification and the interaction with TCP. A further improvement is the introduction of lab-produced TCP powders doped with specific ions instead of non-doped commercial powders, since the biological properties of materials for bone replacement can be modulated by doping them with certain metallic ions, such as Mg and Sr. Therefore, novel binary composites have been produced by sintering the BG{sub C}a/Mix glass with the addition of pure, Mg-substituted, Sr-substituted or Mg/Sr bisubstituted TCP powders. After an accurate characterization of the starting TCP powders and of the obtained samples, the composites have been used as three-dimensional supports for the culture of mouse calvaria-derived pre-osteoblastic cells. The samples supported cell adhesion and proliferation and induced promising mechanisms of differentiation towards an osteoblastic phenotype. In particular, the Mg/Sr bi-doped samples seemed to better promote the differentiation process thus suggesting a combined stimulatory effect of Mg{sup 2+} and Sr{sup 2+} ions.

  10. Mechanical Behavior of Nanostructured Hybrids Based on Poly(Vinyl Alcohol/Bioactive Glass Reinforced with Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    H. S. Mansur

    2012-01-01

    Full Text Available This study reports the synthesis and characterization of novel tridimensional porous hybrids based on PVA combined with bioactive glass and reinforced by chemically functionalized carbon nanotubes (CNT for potential use in bone tissue engineering. The functionalization of CNT was performed by introducing carboxylic groups in multiwall nanotubes. This process aimed at enhancing the affinity of CNTs with the water-soluble PVA polymer derived by the hydrogen bonds formed among alcohol (PVA and carboxylic groups (CNT–COOH. In the sequence, the CNT–COOH (0.25 wt% were used as the nanostructure modifier for the hybrid system based on PVA associated with the bioactive glass (BaG. The mechanical properties of the nanostructured hybrids reinforced with CNT–COOH were evaluated by axial compression tests, and they were compared to reference hybrid. The averaged yield stresses of macroporous hybrids were (2.3 ± 0.9 and (4.4 ± 1.0 MPa for the reference and the CNT reinforced materials, respectively. Moreover, yield strain and Young's modulus were significantly enhanced by about 30% for the CNT–COOH hybrids. Hence, as far as the mechanical properties are concerned, the results have clearly showed the feasibility of utilizing these new hybrids reinforced with functionalized CNT in repairing cancellous bone tissues.

  11. SiO2-CaO-P2O5 Bioactive Glasses: A Promising Curcuminoids Delivery System

    Directory of Open Access Journals (Sweden)

    Valentina Nicolini

    2016-04-01

    Full Text Available In this paper, we report the study of the loading and the release of curcuminoids by bioactive glasses (BG and mesoporous bioactive glasses (MBG. Through a detailed spectroscopic study, it was possible to determine the amount and the type of molecules released in water and in simulated body fluid (SBF. In particular, curcumin and K2T21 show a good ability to be released in di-keto and keto-enolic form, depending from the pH. However, after 24 h, the amount of pristine curcumin release is very low with a consequent increment of degradation products derived by curcuminoids. The presence of –OH groups on curcuminoids is a fundamental pre-requisite in order to obtain a high loading and release in polar solution such as water and SBF. The substrate on which we loaded the drugs does not seem to affect significantly the loading and the release of the drugs. The environment, instead, affects the release: for all the drugs, the release in SBF, buffered at pH of 7.4, is slightly worse than the release in water (basic pH values.

  12. Cutaneous and Labyrinthine Tolerance of Bioactive Glass S53P4 in Mastoid and Epitympanic Obliteration Surgery: Prospective Clinical Study

    Directory of Open Access Journals (Sweden)

    Daniele Bernardeschi

    2015-01-01

    Full Text Available Objective. To evaluate the cutaneous and the inner ear tolerance of bioactive glass S53P4 when used in the mastoid and epitympanic obliteration for chronic otitis surgery. Material and Methods. Forty-one cases have been included in this prospective study. Cutaneous tolerance was clinically evaluated 1 week, 1 month, and 3 months after surgery with a physical examination of the retroauricular and external auditory canal (EAC skin and the presence of otalgia; the inner ear tolerance was assessed by bone-conduction hearing threshold 1 day after surgery and by the presence of vertigo or imbalance. Results. All surgeries but 1 were uneventful: all patients maintained the preoperative bone-conduction hearing threshold except for one case in which the round window membrane was opened during the dissection of the cholesteatoma in the hypotympanum and this led to a dead ear. No dizziness or vertigo was reported. Three months after surgery, healing was achieved in all cases with a healthy painless skin. No cases of revision surgery for removal of the granules occurred in this study. Conclusion. The bioactive glass S53P4 is a well-tolerated biomaterial for primary or revision chronic otitis surgery, as shown by the local skin reaction which lasted less than 3 months and by the absence of labyrinthine complications.

  13. Evaluation of La-Doped Mesoporous Bioactive Glass as Adsorbent and Photocatalyst for Removal of Methylene Blue from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Liying Li

    2015-01-01

    Full Text Available A series of La-doped mesoporous bioactive glass (BG-La materials with excellent biosafety and hypotoxicity have been prepared and tested as adsorbent. The study was aimed to evaluate the possibility of utilizing BG-La for the adsorptive removal of methylene blue (MB from aqueous solution and test the adsorption and desorption behavior of this new material. The process parameters affecting adsorption behaviors such as pH, contact time, and initial concentration and the photocatalytic degradation of MB were systematically investigated. The result showed that BG-La had excellent removal rate (R of MB, and BG-La showed better photocatalytic effect than undoped mesoporous bioactive glass (BG. Furthermore, the MB loaded BG-La was easily desorbed with acid solution due to its electronegativity and mesoporous structure. The result indicated that these materials can be employed as candidates for removal of dye pollutant owing to their high removal rate, excellent photocatalytic effect, desorption performance, and their reusability.

  14. The in vitro antibacterial effect of S53P4 bioactive glass and gentamicin impregnated polymethylmethacrylate beads.

    Science.gov (United States)

    Gergely, István; Zazgyva, Ancuta; Man, Adrian; Zuh, Sándor György; Pop, Tudor Sorin

    2014-06-01

    Osteomyelitis is a disease that is still difficult to treat, with considerable morbidity and associated costs. The current "gold standard" in treatment - debridement and implantation of antibiotic impregnated polymethylmethacrylate (PMMA) beads - presents the disadvantage of a second surgical intervention required for the removal of the beads. We comparatively investigated the in vitro antibacterial effect of S53P4 bioactive glass (BAG) and gentamicin impregnated PMMA beads. Bacterial viability was assessed hourly by Standard Plate Count during 24 hours of incubation, by determining the number of colony forming units (CFU) of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Klebsiella pneumoniae. Both tested materials showed an antibacterial effect on all studied bacteria. In case of S. aureus, BAG granules were almost as effective as gentamicin impregnated PMMA beads, with no statistically significant differences. In contrast, PMMA beads had a superior antibacterial effect on S. epidermidis and K. pneumoniae. The antibacterial effect of BAG was greatly influenced by granule size and contact time. There was a statistically significant correlation between pH values and the number of CFU in the case of S53P4 BAG granules. As a biocompatible and biodegradable bone substitute, S53P4 bioactive glass can be a good alternative in the local management of osteomyelitis.

  15. Microwave energy-assisted formation of bioactive CaO–MgO–SiO$_2$ ternary glass from bio-wastes

    Indian Academy of Sciences (India)

    ENOBONG R ESSIEN; VIOLETTE N ATASIE; ESTHER U UDOBANG

    2016-08-01

    Regeneration technique is extensively being sought after as a means of achieving bone repair without adverse immunological response. Silicate-based bioactive glasses containing Mg are gaining increasing attention for their biocompatibility. The current work has been focused on designing a facile and economic route using bio-wastes for synthesizing bioactive glasses in the CaO–MgO–SiO$_2$ system. Rice husk ash (RHA) obtained from burning ricehusk was used as silica source, while Ca was extracted from eggshells for preparing the glass through a modified sol–gel approach. The gel formed was irradiated in microwave before sintering at 950$^{\\circ}$C for 3 h. Thereafter, bioactivity test was conducted on the samples in simulated body fluid (SBF) at physiological conditions for a maximum of 14 days. Characterization of samples were performed before and after immersion in SBF to evaluate thecomposition, morphology and phases present in the glass using energy-dispersive X-ray analysis, scanning electron microscopy and X-ray diffraction. Apatite formation was confirmed using Fourier transform infrared spectroscopy.Results obtained showed the presence of diopside, wollastonite and pseudo-wollastonite as major bioactive phases. Hydroxyapatite formed on the material within 3 days in SBF, indicating good bioactivity.

  16. In vitro and in vivo Biocompatibility of Alginate Dialdehyde/Gelatin Hydrogels with and without Nanoscaled Bioactive Glass for Bone Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ulrike Rottensteiner

    2014-03-01

    Full Text Available In addition to good mechanical properties needed for three-dimensional tissue engineering, the combination of alginate dialdehyde, gelatin and nano-scaled bioactive glass (45S5 is supposed to combine excellent cellular adhesion, proliferation and differentiation properties, good biocompatibility and predictable degradation rates. The goal of this study was to evaluate the in vitro and in vivo biocompatibility as a first step on the way to its use as a scaffold in bone tissue engineering. In vitro evaluation showed good cell adherence and proliferation of bone marrow derived mesenchymal stem cells seeded on covalently crosslinked alginate dialdehyde-gelatin (ADA-GEL hydrogel films with and without 0.1% nano-Bioglass® (nBG. Lactate dehydrogenase (LDH- and mitochondrial activity significantly increased in both ADA-GEL and ADA-GEL-nBG groups compared to alginate. However, addition of 0.1% nBG seemed to have slight cytotoxic effect compared to ADA-GEL. In vivo implantation did not produce a significant inflammatory reaction, and ongoing degradation could be seen after four weeks. Ongoing vascularization was detected after four weeks. The good biocompatibility encourages future studies using ADA-GEL and nBG for bone tissue engineering application.

  17. Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis.

    Science.gov (United States)

    Caridade, Sofia G; Merino, Esther G; Alves, Natália M; Bermudez, Verónica de Zea; Boccaccini, Aldo R; Mano, João F

    2013-04-01

    A new family of biodegradable polymer/bioactive glass (BG) composite materials has emerged based on the availability of nano-sized bioactive particles. Such novel biocomposites can have enhanced performance, in terms of mechanical properties and bioactivity, and they can be designed to be used in bone regeneration approaches. In this work, membranes of chitosan (CTS) and chitosan with bioactive glass (BG) both micron and nano sized particles (CTS/μBG, CTS/nBG, respectively) were prepared by solvent casting. Microstructural and mechanical properties were evaluated in order to compare the effects of the incorporation of micro (μBG) and nano (nBG) particles in the chitosan matrix. In vitro bioactivity tests were performed to characterize the apatite layer that is formed on the surface of the material after being immersed in simulated body fluid (SBF). The biomineralization process on the biomaterials was also followed using non-conventional dynamic mechanical analysis (DMA), both online and offline. In such DMA experiments, the change in the storage modulus, E', and the loss factor, tan δ, were measured as a function of the immersion time in SBF. The results demonstrated that CTS/nBG membranes possess enhanced mechanical properties and higher bioactivity in comparison with the CTS/μBG membranes. Such results suggest the potential of nBG for the development of bioactive composites for bone regeneration applications. PMID:23466499

  18. Bioactivity of SiO2-CaO-P2O5-Na2O glasses containing zinc-iron oxide

    International Nuclear Information System (INIS)

    Glasses with composition x(ZnO,Fe2O3)(65 - x)SiO220(CaO,P2O5)15Na2O (6 ≤ x ≤ 21 mol%) were prepared by melt-quenching technique. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations nearly equal to those in human blood plasma. Formation of bioactive apatite layer on the samples treated in SBF was confirmed by using Fourier transform infrared reflection (FTIR) spectroscopy, grazing incidence X-ray diffraction (GI-XRD) and scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer. Development of an apatite structure on the surface of the SBF treated glass samples as functions of composition and time could be established using the GI-XRD data. FTIR spectra of the glasses treated in SBF show features at characteristic vibration frequencies of apatite after 1-day of immersion in SBF. SEM observations revealed that the spherical particles formed on the glass surface were made of calcium and phosphorus with the Ca/P molar ratio being close to 1.67, corresponding to the value in crystalline apatite. Increase in bioactivity with increasing zinc-iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of glass composition and immersion time in SBF.

  19. 莲子生理活性的研究进展%Advances in the Bioactivity of Lotus-seed

    Institute of Scientific and Technical Information of China (English)

    曾绍校; 陈秉彦; 郭泽镔; 郑宝东

    2012-01-01

    The seed of Nelumbo nucifere Gaertn, has been used as a functional food in China, India and Southeast Asia for thousands of years. Recently, more and more focus has been placed on the lotus-seed because of its rich nutrition components and potential pharmaceutical values. This paper reviewed the bioactives and functional components of lotus-seed for further exploitation and utilization.%莲子是睡莲科莲属(Nelumbo nucifere Gaertn)植物的种子,在中国、印度及东南亚各国莲子作为一种功能食品已有几千年的历史.近年来,由于莲子具有丰富的营养物质和潜在的药用价值而备受关注,本文综述了莲子的生理活性及功效成分,以期为莲子的进一步开发利用提供依据.

  20. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.

    Science.gov (United States)

    Ding, Yaping; Li, Wei; Müller, Teresa; Schubert, Dirk W; Boccaccini, Aldo R; Yao, Qingqing; Roether, Judith A

    2016-07-13

    Electrospinning of biopolymer and inorganic substances is one of the efficient ways to combine various advantageous properties in one single fibrous structure with potential for tissue engineering applications. In the present study, to integrate the high stiffness of polyhydroxybutyrate (PHB), the flexibility of poly(ε-caprolactone) (PCL) and the bioactivity of 58S bioactive glass, PHB/PCL/58S sol-gel bioactive glass hybrid scaffolds were fabricated using combined electrospinning and sol-gel method. Physical features such as fiber diameter distribution, mechanical strength and Young's modulus were characterized thoroughly. FTIR analysis demonstrated the successful incorporation of 58S bioactive glass into the blend polymers, which greatly improved the hydrophilicity of PHB/PCL fibermats. The primary biological response of MG-63 osteoblast-like cells on the prepared fibrous scaffolds was evaluated, proving that the 58S glass sol containing hybrid scaffold were not only favorable to MG-63 cell adhesion but also slightly enhanced cell viability and significantly increased alkaline phosphate activity . PMID:27295496

  1. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.

    Science.gov (United States)

    Ding, Yaping; Li, Wei; Müller, Teresa; Schubert, Dirk W; Boccaccini, Aldo R; Yao, Qingqing; Roether, Judith A

    2016-07-13

    Electrospinning of biopolymer and inorganic substances is one of the efficient ways to combine various advantageous properties in one single fibrous structure with potential for tissue engineering applications. In the present study, to integrate the high stiffness of polyhydroxybutyrate (PHB), the flexibility of poly(ε-caprolactone) (PCL) and the bioactivity of 58S bioactive glass, PHB/PCL/58S sol-gel bioactive glass hybrid scaffolds were fabricated using combined electrospinning and sol-gel method. Physical features such as fiber diameter distribution, mechanical strength and Young's modulus were characterized thoroughly. FTIR analysis demonstrated the successful incorporation of 58S bioactive glass into the blend polymers, which greatly improved the hydrophilicity of PHB/PCL fibermats. The primary biological response of MG-63 osteoblast-like cells on the prepared fibrous scaffolds was evaluated, proving that the 58S glass sol containing hybrid scaffold were not only favorable to MG-63 cell adhesion but also slightly enhanced cell viability and significantly increased alkaline phosphate activity .

  2. Clinical and histologic evaluation of an enamel matrix protein derivative combined with a bioactive glass for the treatment of intrabony periodontal defects in humans.

    NARCIS (Netherlands)

    Sculean, A.; Windisch, P.; Keglevich, T.; Gera, I.

    2005-01-01

    The present study clinically and histologically evaluated healing of human intrabony defects following treatment with a combination of enamel matrix derivative (EMD) and bioactive glass (BG) or BG alone. Six patients displaying either combined one- and two-walled (five patients) or three-walled (one

  3. Bioactivity of Na{sub 2}O.CaO.SiO{sub 2}.P{sub 2}O{sub 5} modified glasses

    Energy Technology Data Exchange (ETDEWEB)

    Barrios de Arenas, I. [I.U.T., Caracas (Venezuela). Dept. of Materials Technology; Schattner, C.; Vasquez, M. [Simon Bolivar Univ., Sartenejas (Venezuela). Dept. of Materials Science

    2002-07-01

    Special materials have been developed with properties which allow them to be used where a bone replacement is needed. Research works have been carried out on the bioactivity of ceramics and glasses studying their bond to soft or hard tissues. Hench and co-workers discovered that chemical bonding between a bone and certain glass compositions is possible, so called bioactive glasses, encountering them numerous applications in the repair and reconstruction of diseased and damaged tissue, especially hard one (bone). B{sub 2}O{sub 3} and Al{sub 2}O{sub 3} have been used in bioactive glasses to modify its surface dissolution and durability, melting and forming characteristics; however, Al{sub 2}O{sub 3} in contrast to B{sub 2}O{sub 3} can inhibit bone bonding, being the acceptable amount of alumina a function of the glass composition. The purpose of this work was to study the influence of variable B{sub 2}O{sub 3} / Al{sub 2}O{sub 3} addition on the bioactivity NaO.CaO.SiO{sub 2}.P{sub 2}O{sub 5} glasses, being the formation of the apatite layer on the glasses surface investigated in vitro soaked at different time intervals, using simulated body fluid, an acellular aqueous solution which has similar ion concentration to human blood plasma. The reaction surface was studied using scanning electron microscopy (SEM) and the deposited layer was analysed by EDX line scans using UTW detector. The compositional profiles of the deposited surface and substrate showed a layer rich in calcium and phosphorous characterised in previous works as apatite. This phase has grown in all studied compositions except those with B{sub 2}O{sub 3} / Al{sub 2}O{sub 3} contents higher than 0.55. (orig.)

  4. Antimelanoma Potential of Eruca sativa Seed Oil and its Bioactive Principles.

    Science.gov (United States)

    Bansal, Prachi; Medhe, S; Ganesh, N; Srivastava, M M

    2015-01-01

    The present communication reports the comparison of in vivo antioxidant, antimelanoma and antimutagenic activities of Eruca sativa seed oil and its bio principles (allyl isothiocyanate, phenylethyl isothiocyanate and sulphoraphane) against B16F10 melanoma cells induced in C57BL/6 mice model. Among the various treatments considered for the study, isothiocyanates combination (allyl isothiocyanate, phenylethyl isothiocyanate and sulphoraphane; 1:1:1; 10 µM) exhibited optimum antioxidant activity, 51.95±1.14 µM glutathione per mg protein compared to seed oil 25.91±1.26 µM. Lipid peroxidation value was 9.97±1.72 µM malondialdehyde per mg wet weight for isothiocyanates combination against seed oil, 28.45±1.87 µM and rendered significant protection against oxidative stress induced by melanoma in liver tissue. Isothiocyanates combination significantly suppressed various parameters, such as tumor growth, isothiocyanates combination by 36.36% while the seed oil by 15.23%; tumor weight, isothiocyanates combination by 45.9% and seed oil by 19.6%; tumor volume, isothiocyanates combination by 41.7% while the seed oil by 32.3%, measured for antimelanoma activity at a concentration of 10 µM. Isothiocyanates combination has been found to be more cytotoxic bioagent against B16F10 melanoma cells induced in C57BL/6 mice compared to naturally occurring Eruca sativa seed oil.

  5. Antimelanoma potential of eruca sativa seed oil and its bioactive principles

    Directory of Open Access Journals (Sweden)

    Prachi Bansal

    2015-01-01

    Full Text Available The present communication reports the comparison of in vivo antioxidant, antimelanoma and antimutagenic activities of Eruca sativa seed oil and its bio principles (allyl isothiocyanate, phenylethyl isothiocyanate and sulphoraphane against B16F10 melanoma cells induced in C57BL/6 mice model. Among the various treatments considered for the study, isothiocyanates combination (allyl isothiocyanate, phenylethyl isothiocyanate and sulphoraphane; 1:1:1; 10 µM exhibited optimum antioxidant activity, 51.95±1.14 µM glutathione per mg protein compared to seed oil 25.91±1.26 µM. Lipid peroxidation value was 9.97±1.72 µM malondialdehyde per mg wet weight for isothiocyanates combination against seed oil, 28.45±1.87 µM and rendered significant protection against oxidative stress induced by melanoma in liver tissue. Isothiocyanates combination significantly suppressed various parameters, such as tumor growth, isothiocyanates combination by 36.36% while the seed oil by 15.23%; tumor weight, isothiocyanates combination by 45.9% and seed oil by 19.6%; tumor volume, isothiocyanates combination by 41.7% while the seed oil by 32.3%, measured for antimelanoma activity at a concentration of 10 µM. Isothiocyanates combination has been found to be more cytotoxic bioagent against B16F10 melanoma cells induced in C57BL/6 mice compared to naturally occurring Eruca sativa seed oil.

  6. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems.

    Science.gov (United States)

    Ballesteros, Daniel; Walters, Christina

    2011-11-01

    Slow movement of molecules in glassy matrices controls the kinetics of chemical and physical reactions in dry seeds. Variation in physiological activity among seeds suggests that there are differences in mobility among seed glasses. Testing this hypothesis is difficult because few tools are available to measure molecular mobility within dry seeds. Here, motional properties within dry pea cotyledons were assessed using dynamic mechanical analysis. The technique detected several molecular relaxations between -80 and +80°C and gave a more detailed description of water content-temperature effects on molecular motion than previously understood from studies of glass formation in seeds at glass transition (Tg). Diffusive movement is delimited by the α relaxation, which appears to be analogous to Tg. β and γ relaxations were also detected at temperatures lower than α relaxations, clearly demonstrating intramolecular motion within the glassy matrix of the pea cotyledon. Glass transitions, or the mechanical counterpart α relaxation, appear to be less relevant to seed aging during dry storage than previously thought. On the other hand, β relaxation occurs at temperature and moisture conditions typically used for seed storage and has established importance for physical aging of synthetic polymer glasses. Our data show that the nature and extent of molecular motion varies considerably with moisture and temperature, and that the hydrated conditions used for accelerated aging experiments and ultra-dry conditions sometimes recommended for seed storage give greater molecular mobility than more standard seed storage practices. We believe characterization of molecular mobility is critical for evaluating how dry seeds respond to the environment and persist through time. PMID:21831210

  7. Research Progress of Bioactive Glasses and Composite Materials%生物玻璃及其复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    周智华; 阮建明; 邹俭鹏; 周忠诚; 申雄军

    2005-01-01

      生物玻璃已成为材料科学、生物化学以及分子生物学的交叉学科,由于生物玻璃具有生物活性等特点,在组织工程支架材料、骨科、牙科、中耳、癌症治疗和药物载体等方面的应用前景可观。生物玻璃主要由Si、Na、Ca以及P的氧化物组成。本文综述了生物玻璃的应用、生物活性、制备、与无机材料和有机材料形成复合材料的研究进展,分析了通过将生物玻璃与陶瓷、纤维、涂层以及可降解聚合物的复合使生物玻璃材料增强、增韧等方法的优、缺点,并指出了生物玻璃今后的发展方向。%  Bioactive glasses have been studied through intercrossing of the science of materials, biology and biochemistry. Their applications are promising in dental, bone repairing and substituting and bone tissue engineering because of good bioactivity and biocompatibility. The bioactive glasses consist of silica and sodium, calcium and phosphate oxides in very specific ranges. The application, bioactivity, preparation and composite materials of bioactive glasses have been reviewed. The advantage and shortcoming of the methods of bioactive glass materials reinforced and toughed with ceramics, fiber, coat and composite materials were discussed, and the trend of development and the problems were also presented.

  8. A new composite scaffold of bioactive glass nanoparticles/graphene: Synchronous improvements of cytocompatibility and mechanical property.

    Science.gov (United States)

    Fan, Zengjie; Wang, Jinqing; Liu, Fengzhen; Nie, Yingying; Ren, Liling; Liu, Bin

    2016-09-01

    This study presents a simple method of synthesizing bioactive glass nanoparticles/graphene nanosheets composite (BGs/GNS) scaffolds using the sol-gel and mold-compressing strategies. Characterizations of BGs/GNS scaffold revealed that BGs with an average diameter of 28.75nm were densely anchored onto both sides of GNS. When the mass ratio of BGs to graphene oxide was set as 10, this scaffold showed better cytocompatibility and higher osseointegration ability with surrounding tissues than the other scaffolds. The introduction of GNS also significantly enhanced the hardness and Young's modulus of BGs. Given the excellent performance of this scaffold, it has potential applications in bone regeneration and implantation. PMID:27232307

  9. Sonochemical processing and characterization of composite materials based on soy protein and alginate containing micron-sized bioactive glass particles

    Science.gov (United States)

    Silva, Raquel; Bulut, Buse; Roether, Judith A.; Kaschta, Joachim; Schubert, Dirk W.; Boccaccini, Aldo R.

    2014-09-01

    Novel composite hydrogels based on the combination of natural polymers; namely alginate and soy protein isolate, and bioactive glass (BG) particles (mean size: 2 μm) were developed. For this purpose a sonochemical approach was used and homogeneous composite hydrogels, incorporating two concentrations of BG particles, were successfully obtained. Further physico-chemical characterization was performed in order to evaluate the influence of each component on hydrogel properties. The water uptake ability, weight loss, protein release, as well as FTIR, SEM and DMTA characterization were carried out. The biomineralization process in simulated body fluid (SBF) was followed over time and the results demonstrated that the composite materials have the ability to form a surface apatite layer after 7 days in SBF. The design of novel composite hydrogels based on soy protein, alginate and BG can be a suitable approach for bone regeneration applications.

  10. One-pot synthesis of macro-mesoporous bioactive glasses/polylactic acid for bone tissue engineering.

    Science.gov (United States)

    Han, Xiao; Wang, Dan; Chen, Xiang; Lin, Huiming; Qu, Fengyu

    2014-10-01

    The macro-mesoporous bioactive glasses/polylactic acid nanofibers were synthesized via electrospun method followed by acid treatment processing. It was identified to be an effective and simple synthetic strategy to form the uniform nanofibers about 350 nm in size. The non-ionic triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), was used as the template for mesoporous structure (5 nm) and the macroporous structure about 10 μm in size derived from the overlapping of the nanofibers. Furthermore, the surface hydrophilic-hydrophobic property can be adjusted by varying the amount of mesoporous bioglass precursor (MBG-p). With the outstanding structure characters and the suitable hydrophilic property, these nanofiber composites show controlled drug release and the fast hydroxyapatite (HAP) mineralization performance. Herein, the novel materials are expected to have potential application for bone tissue engineering.

  11. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    International Nuclear Information System (INIS)

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  12. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices.

    Science.gov (United States)

    Vergnol, Gwenaelle; Ginsac, Nathalie; Rivory, Pascaline; Meille, Sylvain; Chenal, Jean-Marc; Balvay, Sandra; Chevalier, Jérôme; Hartmann, Daniel J

    2016-01-01

    Poly(lactic acid) is nowadays among the most used bioabsorbable materials for medical devices. To promote bone growth on the material surface and increase the degradation rate of the polymer, research is currently focused on organic-inorganic composites by adding a bioactive mineral to the polymer matrix. The purpose of this study was to investigate the ability of a poly(L,DL-lactide)-Bioglass® (P(L,DL)LA-Bioglass(®) 45S5) composite to be used as a bone fixation device. In vitro cell viability testing of P(l,dl)LA based composites containing different amounts of Bioglass(®) 45S5 particles was investigated. According to the degradation rate of the P(L,DL)LA matrix and the cytocompatibility experiments, the composite with 30 wt % of Bioglass® particles seemed to be the best candidate for further investigation. To study its behavior after immersion in simulated physiological conditions, the degradation of the composite was analyzed by measuring its weight loss and mechanical properties and by proceeding with X-ray tomography. We demonstrated that the presence of the bioactive glass significantly accelerated the in vitro degradation of the polymer. A preliminary in vivo investigation on rabbits shows that the addition of 30 wt % of Bioglass(®) in the P(L,DL)LA matrix seems to trigger bone osseointegration especially during the first month of implantation. This composite has thus strong potential interest for health applications. PMID:25677798

  13. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    Science.gov (United States)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  14. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    Energy Technology Data Exchange (ETDEWEB)

    Milly, Hussam [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Andiappan, Manoharan [Unit of Dental Public Health, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Thompson, Ian [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Banerjee, Avijit, E-mail: avijit.banerjee@kcl.ac.uk [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Unit of Conservative Dentistry, King' s College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom)

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  15. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices.

    Science.gov (United States)

    Vergnol, Gwenaelle; Ginsac, Nathalie; Rivory, Pascaline; Meille, Sylvain; Chenal, Jean-Marc; Balvay, Sandra; Chevalier, Jérôme; Hartmann, Daniel J

    2016-01-01

    Poly(lactic acid) is nowadays among the most used bioabsorbable materials for medical devices. To promote bone growth on the material surface and increase the degradation rate of the polymer, research is currently focused on organic-inorganic composites by adding a bioactive mineral to the polymer matrix. The purpose of this study was to investigate the ability of a poly(L,DL-lactide)-Bioglass® (P(L,DL)LA-Bioglass(®) 45S5) composite to be used as a bone fixation device. In vitro cell viability testing of P(l,dl)LA based composites containing different amounts of Bioglass(®) 45S5 particles was investigated. According to the degradation rate of the P(L,DL)LA matrix and the cytocompatibility experiments, the composite with 30 wt % of Bioglass® particles seemed to be the best candidate for further investigation. To study its behavior after immersion in simulated physiological conditions, the degradation of the composite was analyzed by measuring its weight loss and mechanical properties and by proceeding with X-ray tomography. We demonstrated that the presence of the bioactive glass significantly accelerated the in vitro degradation of the polymer. A preliminary in vivo investigation on rabbits shows that the addition of 30 wt % of Bioglass(®) in the P(L,DL)LA matrix seems to trigger bone osseointegration especially during the first month of implantation. This composite has thus strong potential interest for health applications.

  16. Bio-templated bioactive glass particles with hierarchical macro-nano porous structure and drug delivery capability.

    Science.gov (United States)

    Zheng, Kai; Bortuzzo, Judith A; Liu, Yufang; Li, Wei; Pischetsrieder, Monika; Roether, Judith; Lu, Miao; Boccaccini, Aldo R

    2015-11-01

    Hierarchically porous bioactive glass particles (BGPs) were synthesized by a facile sol-gel process using pollen grains as the templates. The synthesized pollen-templated bioactive glass particles (PBGPs) exhibited dual macro-nano porous structure. The macro pores (∼ 1 μm) were inherited from the template of pollen grains while the nano pores (∼ 9.5 nm) were induced by the intrinsic mechanism of the sol-gel process. PBGPs possessed a high specific surface area (111.4m(2)/g) and pore volume (0.35 cm(3)/g). Hydroxyapatite (HA) formation on PBGPs was detected within 3 days after immersion in simulated body fluid (SBF). Due to their larger specific surface area and pore volume, PBGPs could be loaded with more tetracycline hydrochloride (TCH) than non-templated BGPs and conventional melt-derived 45S5 BGPs. In addition, PBGPs exhibited a low initial burst release (within 10% of the loaded amount) within 18 h and a sustained release with a two-stage release pattern for up to 6 days in phosphate buffered saline (PBS). The antibacterial assay confirmed that the TCH-loaded PBGPs could release TCH within 5 days, and the released TCH could reach the minimum inhibitory concentration (MIC) against Escherichia coli. MTT assay indicated that PBGPs showed non-cytotoxic effects toward human hepatocellular carcinoma (Hep G2) cells after co-culture for up to 72 h in vitro. These results showed that the biocompatible hierarchically macro-nano porous PBGPs are potential for bone regeneration and local drug delivery applications. PMID:25858191

  17. Dosimetric response of radioactive bio glass seeds implants on rabbit brain

    International Nuclear Information System (INIS)

    Interstitial implants of radioactive seeds are used as an efficient way of treating brain tumors. Bio glasses is an interesting alternative to the metallic implanted materials, because they can be absorbed by the organism, reducing the possibilities of side effects. The present paper investigates the dosimetry by the implants performed on rabbit's brain on the NRI/UFMG research group. The spatial distribution of the specific ionizing energy deposited per unit of mass generated by Sm-153 seeds were evaluated. A computational model of the brain's region was built using the software SISCODES produced by the research group. The sections of the computer tomography of a rabbit, which was included on the experiment, were digitalized. Those were converted in a three dimensional voxel model, including the tissues, its chemical composition and density. A simulation of the particles transport is performed by the stochastic code MCNP5. The implants consist of 15 ceramic Ca-Si-Sm seeds enriched with Sm-153, with 1.1.6 mm of length and 0.3 mm diameter, implanted on the rabbit's brain. It was predicted on the model three ribbons of 5 seeds each, spaced by 1.1.2 mm, since the ribbons were in a triangular topology whose vertices were spaced by 8 mm. The activities were 120 MBq/seed. The results show isodose regions superposed over the rabbits' model, reproducing the spatial energy deposition on the brain region. The absorbed dose predicted was 3.2 Gy per 15 seed; however it was not enough to tumor control. The authors suggest to increase the number of seeds and activity, reduction of the space to 5-6 mm among ribbons, improving dose with the beta emitting. (author)

  18. Calcium phosphate glass-ceramics for bioactive coating on a β-titanium alloy

    International Nuclear Information System (INIS)

    The formation of a porous coating is the decisive feature for the bio-compatibility of silica-free calcium phosphate glass ceramics on alloy surfaces like the β-Ti structured Ti-29Nb-13Ta-4.6Zr used in this work. The ceramic composition is highly important: 50CaO-40P2O5-7Na2O-3TiO2 glass powder produces a pore-free coating unable to bind hydroxyapatite, whereas 60CaO-30P2O5-7Na2O-3TiO2 glass incorporates pores from which a crystalline hydroxyapatite phase can grow over the surface from simulated body fluid (see Figure). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  19. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    Science.gov (United States)

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-09-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.

  20. Bioactivity of SiO{sub 2}-CaO-P{sub 2}O{sub 5}-Na{sub 2}O glasses containing zinc-iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajendra Kumar, E-mail: k.rajendra@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Srinivasan, A., E-mail: asrini@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2010-01-01

    Glasses with composition x(ZnO,Fe{sub 2}O{sub 3})(65 - x)SiO{sub 2}20(CaO,P{sub 2}O{sub 5})15Na{sub 2}O (6 {<=} x {<=} 21 mol%) were prepared by melt-quenching technique. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations nearly equal to those in human blood plasma. Formation of bioactive apatite layer on the samples treated in SBF was confirmed by using Fourier transform infrared reflection (FTIR) spectroscopy, grazing incidence X-ray diffraction (GI-XRD) and scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer. Development of an apatite structure on the surface of the SBF treated glass samples as functions of composition and time could be established using the GI-XRD data. FTIR spectra of the glasses treated in SBF show features at characteristic vibration frequencies of apatite after 1-day of immersion in SBF. SEM observations revealed that the spherical particles formed on the glass surface were made of calcium and phosphorus with the Ca/P molar ratio being close to 1.67, corresponding to the value in crystalline apatite. Increase in bioactivity with increasing zinc-iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of glass composition and immersion time in SBF.

  1. Bioactivity of non-edible oil seed extracts and purified extracts against Helicoverpa armigera (Hubner).

    Science.gov (United States)

    Pawar, Pushpa; Joseph, Mary; Tungikar, Vijay; Joshi, Swati

    2004-01-01

    Extracts and purified extracts of seeds of two plant species, Madhuca latifolia and Calophyllum inophyllum when evaluated against the 2nd instar larvae of Helicoverpa armigera reared on synthetic diet, exhibited high larval mortality, prolongation of developmental period, morphological deformities and highly significant reduction in adult emergence. The reduction in larval weights in the treatments was also highly significant. PMID:15274488

  2. Poly (L-lactide-co-e caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Titash [Sree Chitra Tirunal Institute of Medical Science and Technology, Biomedical Technology Wing, Thiruvananthpuram-695012 (India); Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, West Bengal (India); Sunny, M.C. [Sree Chitra Tirunal Institute of Medical Science and Technology, Biomedical Technology Wing, Thiruvananthpuram-695012 (India); Khastgir, D. [Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, West Bengal (India); Varma, H.K. [Sree Chitra Tirunal Institute of Medical Science and Technology, Biomedical Technology Wing, Thiruvananthpuram-695012 (India); Ramesh, P., E-mail: rameshsct@gmail.com [Sree Chitra Tirunal Institute of Medical Science and Technology, Biomedical Technology Wing, Thiruvananthpuram-695012 (India)

    2012-05-01

    Microspheric scaffolds of poly-(lactide-co-caprolactone) loaded with alendronate sodium, a family precursor of bisphosphonate drug and bioactive glass-ceramic (BGS) were prepared for the treatment of osteoporosis like bone defects with the rationale of getting a combined effect/concurrent advantage of osteoclast apoptosis as well as the augmentation of bone regeneration. The porous microspheres were generated by oil in water/solvent evaporation technique. The distribution of bioactive glass-ceramic was evidenced by the microcomputed tomography ({mu}-CT) and scanning electron microscopy analyses. The microspheres were evaluated for their in vitro cytocompatibility using L929 cell line and were found to be noncytotoxic. The osteoinductivity of the scaffold was assessed by its response in simulated body fluid and observed an excellent hydroxy carbonate apatite (HCA) layer formation on the surface which revealed the bone bonding and bone regeneration capability of the scaffold. The cell adhesion studies was performed with L-929 cell line and a marking cell growth on the surface as well as in the pores of the bioactive glass-ceramic as well as bioactive glass-ceramic cum drug incorporated microspheres was evidenced by the Confocal laser scanning microscopy (CLSM) investigation. No cell adhesion was observed onto the surface of the bare microspheres prepared by the copolymer alone where as the bioactive glass-ceramic and drug cum bioactive glass-ceramic loaded microspheres were found to promote the cell adhesion. The viability of the adhered cells on the microspheres was checked by flourescein diacetate (FDA) staining and it was observed that the adhered cells were viable and metabolically active. The release of the drug, alendronate sodium, directly into the problem site makes the presently prepared microsphere superior to the oral variety of drug available which is associated with oral discomfort and low bioavailability. - Highlights: Black

  3. In vivo behavior of bioactive phosphate glass-ceramics from the system P2O5-Na2O-CaO containing TiO2.

    Science.gov (United States)

    Monem, Ahmed Soltan; ElBatal, Hatem A; Khalil, Elsayed M A; Azooz, Moenis A; Hamdy, Yousry M

    2008-03-01

    Soda lime phosphate bioglass-ceramics with incorporation of small additions of TiO2 were prepared in the metaphosphate and pyrophosphate region, using an appropriate two-step heat treatment of controlled crystallization defined by differential thermal analysis results. Identification and quantification of crystalline phases precipitated from the soda lime phosphate glasses were performed using X-ray diffraction analysis. Calcium pyrophosphate (beta-Ca2P2O7), sodium metaphosphate (NaPO3), calcium metaphosphate (beta-Ca(PO3)2), sodium pyrophosphate (Na4P2O7), sodium calcium phosphate (Na4Ca(PO3)6) and sodium titanium phosphate (Na5Ti(PO4)3) phases were detected in the prepared glass-ceramics. The degradation of the prepared glass-ceramics were carried out for different periods of time in simulated body fluid at 37 degrees C using granules in the range of (0.300-0.600 mm). The released ions were estimated by atomic absorption spectroscopy and the surface textures were measured by scanning electron microscopy. Evaluation of in vivo bioactivity of the prepared glass-ceramics was carried through implanting the samples in the rabbit femurs. The results showed that the addition of 0.5 TiO2 mol% enhanced the bioactivity while further increase of the TiO2 content decreased the bioactivity. The effect of titanium dioxide on the bioactivity was interpreted on the basis of its action on the crystallization process of the glass-ceramics. PMID:17701314

  4. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties

    Energy Technology Data Exchange (ETDEWEB)

    Dziadek, Michal, E-mail: dziadek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Menaszek, Elzbieta, E-mail: elzbieta.menaszek@uj.edu.pl [Jagiellonian University, Collegium Medicum, Department of Cytobiology, 9 Medyczna St., 30-688 Krakow (Poland); Zagrajczuk, Barbara, E-mail: b.zagrajczuk@gmail.com [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Pawlik, Justyna, E-mail: pawlikj@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Cholewa-Kowalska, Katarzyna, E-mail: cholewa@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland)

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21 vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO{sub 2}–CaO–P{sub 2}O{sub 5} system differing in SiO{sub 2} and CaO contents were applied (mol%): S2: 80SiO{sub 2}, 16CaO, 4P{sub 2}O{sub 5} and A2: 40SiO{sub 2}, 54CaO, 6P{sub 2}O{sub 5}. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37 °C for 56 weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~ 67° for 21A2-PCL compared to ~ 78° for pure PCL) and also makes AS surface more hydrophobic (~ 94° for 21S2-PCL compared to ~ 86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38 GPa for pure PCL, 0.90 GPa for 12A2-PCL to 1.31 GPa for 21A2-PCL), which also depends on

  5. Morphology of sealant/enamel interface after surface treatment with bioactive glass.

    Science.gov (United States)

    Panzeri Pires-de-Souza, Fernanda de Carvalho; Silveira, Renata Espíndola; Abuna, Gabriel; Chinelatti, Michelle Alexandra; Alandia-Román, Carla Cecilia; Sinhoreti, Mario Alexandre Coelho

    2015-12-01

    The purpose of this study was to analyze, by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), the morphology of sealant/enamel interface after surface treatment with Biosilicate. Before pits and fissures sealing, the occlusal surfaces of 10 sound human molars were sectioned perpendicularly at the fissures in order to obtain three slices for each tooth. Slices were randomly assigned into three groups (n = 10) according to sealing protocol: Group 1- Acid etching + Biosilicate + glass ionomer-based sealant (Clinpro XT Varnish, 3M ESPE); Group 2- Acid etching + glass ionomer-based sealant (Clinpro XT Varnish, 3M ESPE); Group 3- No sealing. All slices were subjected to thermal cycling (5,000 cycles; 5-55°C; dwell time: 30s). Half of the slices from each group (n = 5) were analyzed by CLSM and the other half by SEM. Groups 1 and 2 were also submitted to EDS analysis and their data were evaluated by Two-Way ANOVA e Tukey's test (α=5%). EDS data analysis showed higher amounts of silicon (Si) ions than calcium (Ca) ions in Group 1 (P glass ionomer-based sealant/enamel interfaces.

  6. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering

    International Nuclear Information System (INIS)

    Constructing bioactive scaffolds with controllable architecture for bone tissue engineering and drug delivery still maintains a significant challenge. In this study, we have developed a composite material consisting of mesoporous bioactive glass (MBG) and concentrated alginate pastes for fabrication of hierarchical scaffolds by 3D plotting. The scaffold structure contains well-ordered nano-channels, micropores as well as controllable macropores beneficial for bone tissue engineering applications and drug delivery. The structural architecture of the scaffolds has been optimized by efficient designing of the plotting coordination. The effects of MBG on mechanical strength, apatite mineralization, cytocompatibility and drug delivery properties of the composite scaffolds have been systematically studied. Transmission electron microscopy, scanning electron microscopy and energy-dispersive spectrometry were used to characterize composition and microstructure of the composite scaffolds. The MBG/alginate pastes showed good processability in the 3D plotting process, in which stable MBG/alginate composite scaffolds with controllable architecture can be prepared. The incorporation of MBG particles significantly improved the mechanical properties and apatite-mineralization ability of alginate scaffolds as well as enhanced the attachment and alkaline phosphatase activity of human bone marrow-derived mesenchymal stem cells cultivated onto the scaffolds. Dexamethasone, used as a model drug, can be efficiently loaded in MBG particles and then incorporated into alginate scaffolds resulting in a more sustained release as a function of the MBG content. Our results have indicated that 3D-plotted MBG incorporated alginate scaffolds with well-ordered nano-pores, controllable large pores, and significantly improved physicochemical, biological and drug-delivery properties could be a platform for bone tissue engineering. (paper)

  7. Preparation and characterization of Li$_2$O–CaO–Al$_2$O$_3$–P$_2$O$_5$–SiO$_2$ glasses as bioactive material

    Indian Academy of Sciences (India)

    HIMANSHU TRIPATHI; AREPALLI SAMPATH KUMAR; S P SINGH

    2016-04-01

    The aim of the present investigation was to study the role of Al$_2$O$_3$ in the Li$_2$O–CaO–P$_2$O$_5$–SiO$_2$ bioactive glass for improving the bioactivity and other physico-mechanical properties of glass. A comparative studyon structural and physico-mechanical properties and bioactivity of glasses were reported. The structural properties of glasses were investigated by X-ray diffraction, Fourier transform infrared spectrometry, scanning electronmicroscopy and the bioactivity of the glasses was evaluated by in vitro test in simulated body fluid (SBF). Density, compressive strength, Vickers hardness and ultrasonic wave velocity of glass samples were measured to investigatephysical and mechanical properties. Results indicated that partial molar replacement of Li$_2$O by Al$_2$O$_3$ resulted in a significant increase in mechanical properties of glasses. In vitro studies of samples in SBF had shown that the pH of the solution increased after immersion of samples during the initial stage and then after reaching maxima it decreased with the increase in the immersion time. In vitro test in SBF indicated that the addition of Al$_2$O$_3$ up to 1.5 mol% resulted in an increase in bioactivity where as further addition of Al$_2$O$_3$ caused a decrease in bioactivity of the samples. The biocompatibility of these bioactive glass samples was studied using human osteoblast (MG-63) cell lines. The results obtained suggested that Li$_2$O–CaO–Al$_2$O$_3$–P$_2$O$_5$–SiO$_2$-based bioactive glasses containing alumina would be potential materials for biomedical applications.

  8. Bioactive glucosinolates and antioxidant properties of broccoli seeds cultivated in Thailand

    OpenAIRE

    Sarunya Chuanphongpanich; Sukon Phanichphant; Duang Bhuddasukh; Maitree Suttajit; Busaban Sirithunyalug

    2006-01-01

    One of the most significant health concerns of cruciferous vegetables is the presence of biologically active compounds, glucosinolates. Broccoli (Brassica oleracea var. italica) is a nutritionally important crop grown all over the world. Glucosinolates have been found to have anti-cancer properties. The primary purpose of this study was to evaluate glucosinolate content and antioxidant property in the seeds of broccoli cultivars widely grown in Thailand. Glucosinolates were analyzed with high...

  9. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications

    International Nuclear Information System (INIS)

    Bioactive glass nanoparticles (nanostructured bioglass ceramics or nBGs) have been widely employed as a filler material for bone tissue regeneration. The physical properties of nBG particles govern their biological actions. In this study, the impact of the size of nBG particles on mouse mesenchymal stem cell (mMSC) proliferation was investigated. Three different sizes of nBG particles were prepared via the sol–gel method with varying concentrations of the surfactant and polyethylene glycol (PEG), and the particles were characterized. Increased concentrations of PEG decreased the size of nBG particles (nBG-1: 74.7 ± 0.62 nm, nBG-2: 43.25 ± 1.5 nm, and nBG-3: 37.6 ± 0.81 nm). All three nBGs were non-toxic at a concentration of 20 mg/mL. Increased proliferation was observed in mMSCs treated with smaller nBG particles. Differential mRNA expression of cyclin A2, B2, D1, and E1 genes induced by nBG particles was noticed in the mMSCs. nBG-1 and nBG-3 particles promoted cells in the G0/G1 phase to enter the S and G2/M phases. nBG particles activated ERK, but prolonged activation was achieved with nBG-3 particles. Among the prepared nBG particles, nBG-3 particles showed enhanced mMSC proliferation via the sustained activation of ERKs, upregulation of cyclin gene(s) expression, and promotion of cell transition from the G0/G1 phase to the S and G2/M phases. Thus, this study indicates that small nBG particles have clinical applications in dental and bone treatments as fillers or bone-tissue bond forming materials. - Highlights: • Three different sizes of bioactive glass nanoparticles (nBGs) were prepared via the sol–gel method. • Increased concentrations of polyethylene glycol decreased the size of nBG particles. • All three nBGs were non-toxic at a concentration of 20 mg/mL. • Cell number, cell cycle phase analysis, cyclin gene expression and ERK activation were studied. • Increased proliferation was observed in mMSCs treated with smaller nBG particles

  10. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ajita, J.; Saravanan, S.; Selvamurugan, N., E-mail: selvamurugan.n@ktr.srmuniv.ac.in

    2015-08-01

    Bioactive glass nanoparticles (nanostructured bioglass ceramics or nBGs) have been widely employed as a filler material for bone tissue regeneration. The physical properties of nBG particles govern their biological actions. In this study, the impact of the size of nBG particles on mouse mesenchymal stem cell (mMSC) proliferation was investigated. Three different sizes of nBG particles were prepared via the sol–gel method with varying concentrations of the surfactant and polyethylene glycol (PEG), and the particles were characterized. Increased concentrations of PEG decreased the size of nBG particles (nBG-1: 74.7 ± 0.62 nm, nBG-2: 43.25 ± 1.5 nm, and nBG-3: 37.6 ± 0.81 nm). All three nBGs were non-toxic at a concentration of 20 mg/mL. Increased proliferation was observed in mMSCs treated with smaller nBG particles. Differential mRNA expression of cyclin A2, B2, D1, and E1 genes induced by nBG particles was noticed in the mMSCs. nBG-1 and nBG-3 particles promoted cells in the G0/G1 phase to enter the S and G2/M phases. nBG particles activated ERK, but prolonged activation was achieved with nBG-3 particles. Among the prepared nBG particles, nBG-3 particles showed enhanced mMSC proliferation via the sustained activation of ERKs, upregulation of cyclin gene(s) expression, and promotion of cell transition from the G0/G1 phase to the S and G2/M phases. Thus, this study indicates that small nBG particles have clinical applications in dental and bone treatments as fillers or bone-tissue bond forming materials. - Highlights: • Three different sizes of bioactive glass nanoparticles (nBGs) were prepared via the sol–gel method. • Increased concentrations of polyethylene glycol decreased the size of nBG particles. • All three nBGs were non-toxic at a concentration of 20 mg/mL. • Cell number, cell cycle phase analysis, cyclin gene expression and ERK activation were studied. • Increased proliferation was observed in mMSCs treated with smaller nBG particles.

  11. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.

    Science.gov (United States)

    Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

    2010-10-01

    Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3. PMID:20544804

  12. Surface modified Ti based metallic glasses for bioactivation by electrochemical treatment technique

    Energy Technology Data Exchange (ETDEWEB)

    Oak, Jeong-Jung, E-mail: ojj69@pusan.ac.kr [GCRC-SOP, Pusan Nat’l University, Busan (Korea, Republic of); Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai (Japan); Rao, K. Venkat [Division of Engineering Materials Physics, KTH, Stockholm (Sweden); Chun, Ho-Hwan [Dept. of Naval Architecture and Ocean Engineering, Pusan Nat’l University, Busan (Korea, Republic of); Park, Yong Ho [Dept. of Materials Science and Engineering, Pusan Nat’l University, Busan (Korea, Republic of)

    2014-12-05

    The aim of this study is surface modification of Ni-free type Ti based metallic glass (Ti{sub 42}Hf{sub 11}Cu{sub 11}Pd{sub 36} at.%) for increasing calcification by electrochemical treatment. Ni-free type Ti based metallic glass has excellent mechanical and chemical properties which are comparable with those of Ti based alloys. Surface of Ti based metallic glasses was prepared as follows; one is anodically-oxidized porous layer by potentiostatic control in 5 M NaOH solution at 25 °C for 2 h, and the other is simple hydrothermal treated poros layer by immersion in 5 M NaOH solution at 60 °C for 24 h. The synthesized surface structures were characterized by X-ray diffraction (XRD) identification, SEM observation, energy dispersive X-ray spectroscopy (EDS) analysis and Auger electron spectroscopy (AES) analysis. These surfaces on the modified specimens have nano-mesh laminated structures and are consist of sodium titanate and titanium oxide. In addition, the above two types surfaces with nano-mesh laminated layer were immersed in Hank’s balance salt solution (HBSS) at 37 °C for 21 days for evaluation of calcification. The apatite-forming ability on these surfaces is observed by SEM observation and EDS analysis. As stated above surface modifications are also discussed about calcification effect by different surface treatment and different formability of porosity in this study. - Highlights: • Electrochemical treatment synthesizes nano-mesh laminated structures. • Large reticular area and fine nanopores are synthesized in alkali-solution at 25 °C. • Low crystal growth of sodium titanate densifies nano-mesh laminated structures. • The modified surface increases calcification in simulated body fluid.

  13. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    Science.gov (United States)

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell.

  14. Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani.

    Science.gov (United States)

    Kuo, Ping-Chung; Lin, Tsung-Chun; Yang, Cheng-Wei; Lin, Chih-Lung; Chen, Guo-Feng; Huang, Jenn-Wen

    2010-08-11

    The present study was aimed to characterize the antifungal principles in methanol extract of tea ( Camellia oleifera ) seed pomace. Totally, two flavonoids, camelliasides A (1) and B (2), and one saponin mixture composed of camelliasaponin B(1) (3) were identified from the methanol extract. These constituents were tested for their ability to reduce the infection of cabbage seedlings by Rhizoctonia solani Kuhn AG-4 and to inhibit growth of the pathogen on potato dextrose agar plates. The saponin mixture is a potential candidate as a new plant-derived pesticide to control Rhizoctonia damping-off of vegetable seedlings. PMID:20681650

  15. Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, P; Leite, M Fatima [Department of Physiology and Biophysics, Federal University of Minas Gerais (Brazil); Pereira, M M [Department of Metallurgical Engineering, Federal University of Minas Gerais (Brazil); Goes, A M, E-mail: patricia.valerio@terra.com.b, E-mail: leitemd@dedalus.lcc.ufmg.b, E-mail: mpereira@demet.ufmg.b, E-mail: goes@icb.ufmg.b [Department of Biochemistry and Immunology, Federal University of Minas Gerais (Brazil)

    2009-08-15

    Glutamate released by osteoblasts sharing similarities with its role in neuronal transmission is a very new scientific concept which actually changed the understanding of bone physiology. Since glutamate release is a calcium (Ca{sup 2+})-dependent process and considering that we have previously demonstrated that the dissolution of bioactive glass with 60% of silicon (BG60S) can alter osteoblast Ca{sup 2+}-signaling machinery, we investigated whether BG60S induces glutamate secretion in osteoblasts and whether it requires an increase in intracellular Ca{sup 2+}. Here we showed that the extracellular Ca{sup 2+} increase due to BG60S dissolution leads to an intracellular Ca{sup 2+} increase in the osteoblast, through the activation of an inositol 1,4,5-triphosphate receptor (InsP{sub 3}R) and a ryanodine receptor (RyR). Additionally, we also demonstrated that glutamate released by osteoblasts can be profoundly altered by BG60S. The modulation of osteoblast glutamate released by the extracellular Ca{sup 2+} concentration opens a new window in the field of tissue engineering, since many biomaterials used for bone repair are able to increase the extracellular Ca{sup 2+} concentration due to their dissolution products.

  16. A clinical study on the efficacy of hydroxyapatite - Bioactive glass composite granules in the management of periodontal bony defects

    Directory of Open Access Journals (Sweden)

    Tirthankar Debnath

    2014-01-01

    Full Text Available Background: In periodontal regeneration, several alloplastic materials are being used with a goal to reconstruct new osseous tissue in the infrabony defect sites. The present study was undertaken to evaluate the efficacy of hydroxyapatite-bioactive glass (HA:BG composite granules in the management of periodontal bony defects. Materials and Methods: A randomized control study was conducted. Subjects with infrabony defects were divided into three groups. Test Group 1 (n = 10: Defect site was treated with HA:BG, with a biodegradable membrane. Test Group 2 (n = 10: Defect site was treated with HAP, with a biodegradable membrane. Control group (n = 10: Defect site was treated with open flap debridement with a biodegradable membrane Results: The healing of defects was uneventful and free of any biological complications. The gain in clinical attachment level, reduction of probing pocket depth, and defect fill were statistically significant in all three groups. TG1 sites showed significant defect fill than TG2 and CG sites. Conclusion: The performance of HA:BG was better compared to HAP and open flap debridement for the reconstruction of infrabony defects.

  17. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects.

    Science.gov (United States)

    Zhao, Shichang; Zhang, Jianhua; Zhu, Min; Zhang, Yadong; Liu, Zhongtang; Tao, Cuilian; Zhu, Yufang; Zhang, Changqing

    2015-01-01

    The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (∼400μm), high porosity (∼70%) and enhanced compressive strength (8.67±1.74MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial defects. The results showed that Sr-MBG scaffolds possessed good apatite-forming ability and stimulated MC3T3-E1 cell proliferation and differentiation. Importantly, the in vivo results revealed that Sr-MBG scaffolds had good osteogenic capability and stimulated new blood vessel formation in critical-sized rat calvarial defects within 8 weeks. Therefore, 3-D printed Sr-MBG scaffolds with favorable pore structure and high osteogenic ability have more potential applications in bone regeneration. PMID:25449915

  18. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.

    Science.gov (United States)

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration. PMID:26082632

  19. Evaluation of pulpal response of deciduous teeth after direct pulp capping with bioactive glass and mineral trioxide aggregate

    Science.gov (United States)

    Haghgoo, Roza; Ahmadvand, Motahare

    2016-01-01

    Aim: The aim of this study was to evaluate the pulpal response of primary teeth after direct pulp capping (DPC) with two biocompatible materials namely mineral trioxide aggregate (MTA) and bioactive glass (BAG). Settings and Design: This study was a randomized clinical trial. Materials and Methods: A total of 22 healthy primary canine teeth scheduled for extraction for orthodontic reasons were selected. The teeth were divided into two groups of 11 and underwent DPC. The exposure sites were randomly capped with MTA or BAG in the two groups. After 2 months, the teeth were extracted and prepared for histopathologic evaluation. Statistical Analysis: The data were analyzed using Fisher's exact test. Results: In the BAG group, inflammation was seen in three patients; internal resorption and abscess were not seen at all. In the MTA group, inflammation was seen in one patient and internal resorption and abscess were not seen in any patient. Fisher's exact test showed no significant difference between the two groups (P > 0.05). Dentinal bridge formation was noted in five patients in the BAG group and six patients in the MTA group. No significant difference was observed between the BAG and MTA groups using Chi-square analysis (P = 0.67). Conclusion: Based on the results of this study, MTA and BAG can be used for DPC of primary teeth.

  20. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.

    Science.gov (United States)

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration.

  1. Bioactive glucosinolates and antioxidant properties of broccoli seeds cultivated in Thailand

    Directory of Open Access Journals (Sweden)

    Sarunya Chuanphongpanich

    2006-03-01

    Full Text Available One of the most significant health concerns of cruciferous vegetables is the presence of biologically active compounds, glucosinolates. Broccoli (Brassica oleracea var. italica is a nutritionally important crop grown all over the world. Glucosinolates have been found to have anti-cancer properties. The primary purpose of this study was to evaluate glucosinolate content and antioxidant property in the seeds of broccoli cultivars widely grown in Thailand. Glucosinolates were analyzed with high performance liquid chromatography (HPLC. Total and individual glucosinolate levels varied significantly among cultivars. In all broccoli seeds, 4-methylsulfinylbutylglucosinolate (glucoraphanin was the predominant glucosinolate. The highest total glucosinolates was 65.5 µmol/g DW in ‘Top Green #067’ cultivar, followed by ‘Packman’ (58.6, ‘Green Queen’ (51.2, ‘Pak Ging’ (25.5 and ‘Rod Fai’ (20.3. The antioxidant capacities, including ABTS radical scavenging activity and ferrous ion chelating ability in the methanol and water extracts, were found to be high.

  2. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(d,l-lactic acid) coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mantsos, T; Chatzistavrou, X; Roether, J A; Boccaccini, A R [Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hupa, L; Arstila, H, E-mail: a.boccaccini@imperial.ac.u [Process Chemistry Centre, Abo Akademi University, Piispankatu 8, FI-20500 Turku (Finland)

    2009-10-15

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO{sub 2}, 22.6 CaO, 5.9 Na{sub 2}O, 4 P{sub 2}O{sub 5}, 12 K{sub 2}O, 5.3 MgO and 0.2 B{sub 2}O{sub 3}. The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 deg, C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly({sub D,L}-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications.

  3. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings.

    Science.gov (United States)

    Mantsos, T; Chatzistavrou, X; Roether, J A; Hupa, L; Arstila, H; Boccaccini, A R

    2009-10-01

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO(2), 22.6 CaO, 5.9 Na(2)O, 4 P(2)O(5), 12 K(2)O, 5.3 MgO and 0.2 B(2)O(3). The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 degrees C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly((D,L)-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications. PMID:19776493

  4. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(d,l-lactic acid) coatings

    International Nuclear Information System (INIS)

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO2, 22.6 CaO, 5.9 Na2O, 4 P2O5, 12 K2O, 5.3 MgO and 0.2 B2O3. The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 deg, C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly(D,L-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications.

  5. Characterization of fatty acids, bioactive lipids, and radical scavenging activity of Canterbury bells seed oil

    Directory of Open Access Journals (Sweden)

    Hassanien, M. F.R.

    2014-06-01

    Full Text Available The aim of this study was to characterize the chemical composition and radical scavenging activity of Canterbury bells (Campanula medium seed oil. C. medium seeds contained 9.2% extractable oil. The lipid classes, fatty acids, phytosterol and tocopherol composition of C. medium seed oil were determined. The amount of neutral lipids in the oil was the highest, followed by glycolipids and phospholipids. Linoleic and oleic were the main fatty acids. C. medium oil is characterized by high levels of phytosterols and β-sitosterol was the main compound. β-Tocopherol constituted 42.5% of the total tocopherol content followed by γ-tocopherol. The radical scavenging activity (RSA toward 1,1-diphenyl-2-picrylhydrazyl (DPPH radicals and galvinoxyl radicals of C. medium oil were higher than those of extra virgin olive oil. The diverse potential uses of C. medium oil may make this plant industrially important.El objetivo de este estudio fue caracterizar la composición química y la actividad de captación de radicales de aceites de semillas de campanillas de Canterbury (Campanula medium. Las semillas de C. medium contenían 9,2 % de aceite extraíble. Se determinó la composición de las diferentes clases de lípidos, ácidos grasos, fitoesteroles y tocoferoles. La cantidad de lípidos neutros en el aceite fue mayoritario, seguido de glicolípidos y fosfolípidos. Linoleico y oleico fueron los ácidos grasos principales. El aceite de C. medium se caracteriza por altos niveles de fitoesteroles y β-sitosterol fue el compuesto principal. β-tocoferol constituía 42,5 % del contenido total de tocoferol seguido de γ-tocoferol. La actividad de captación de radicales (RSA a 1,1-difenil-2- picrilhidrazil (DPPH y radicales galvinoxil de C. medium fueron superiores a las de aceite de oliva virgen extra. Los diversos usos potenciales de los aceites de C. medium pueden hacer que esta planta pueda ser importante industrialmente.

  6. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    Science.gov (United States)

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells.

  7. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    Science.gov (United States)

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells. PMID:27341780

  8. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics.

    Science.gov (United States)

    Kapoor, Saurabh; Goel, Ashutosh; Correia, Ana Filipa; Pascual, Maria J; Lee, Hye-Young; Kim, Hae-Won; Ferreira, José M F

    2015-08-01

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO-(19.24-x) MgO-x ZnO-5.61 P2O5-38.49 SiO2-0.59 CaF2 (x=2-10) have been synthesised by melt-quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content >4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO.

  9. The effect of Sr concentration on bioactivity and biocompatibility of sol-gel derived glasses based on CaO-SrO-SiO2-P2O5 quaternary system

    International Nuclear Information System (INIS)

    In the present study, sol-gel derived glasses based on CaO-SrO-SiO2-P2O5 system were prepared and the effect of Sr concentration on in vitro bioactivity and cellular properties of the glasses were investigated. SrO was substituted for CaO in the glass formula up to 10 mol% and in vitro bioactivity of the samples was evaluated by soaking them in simulated body fluid followed by structural characterization using XRD, FTIR and SEM techniques. The effects of various glass compositions on proliferation and differentiation of osteoblastic cells were also evaluated. The results showed that the substitution of Sr for Ca in the glass composition retarded formation of apatite layer onto the glass surfaces. Morphologies of the apatite layers were also different in which abundance of the crystals decreased with increasing Sr concentration. The bioactive glasses did not exert cytotoxic effect on the cells, however the proliferation and alkaline phosphatase activity of the cells on the samples containing low doses of Sr were higher than those of control and the samples with high dose of Sr. Glass specimen with 5 mol% of Sr exhibited appropriate bioactivity with optimal cell proliferation and ALP activity.

  10. Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone.

    Science.gov (United States)

    Detsch, Rainer; Stoor, Patricia; Grünewald, Alina; Roether, Judith A; Lindfors, Nina C; Boccaccini, Aldo R

    2014-11-01

    Bioactive glasses (BAGs) are being investigated for the repair and reconstruction of bone defects, as they exhibit osteoconductive and osteostimulatory potential. However, successful bone regeneration requires also the neovascularization of the construct which is, among other factors, guided by vascular endothelial growth factor (VEGF). In this study, BAG S53P4 (53% SiO2 , 23% Na2 O, 20% CaO, 4% P2 O5 ) is investigated in relation to VEGF-release and response of fibroblast cells. Human CD-18CO fibroblasts were cultivated in contact with different granules of different sizes (0.5-0.8 mm, 1.0-2.0 mm, and 2.0-3.15 mm) and at different concentrations (0-1 wt/vol % of BAG) for 72 h. The analysis of morphology revealed no toxic effect for all granule sizes and concentrations. Compared with the reference, lactate dehydrogenase-activity of CCD-18CO cells increased in contact with BAG samples. The VEGF release from CCD-18CO fibroblasts cultured on different granule sizes and at different concentrations after 72 h of incubation was quantified. It was found that particles of 0.5-0.8 mm and 1.0-2.0 mm in size enhanced VEGF release, whereas BAG particle sizes of 2.0-3.15 mm led to inhibition of VEGF release. The results are relevant to understand the influence of the particle size and concentration of BAG S53P4 on VEGF expression and neovascularization. PMID:24357515

  11. Regulation of cellular behaviors of fibroblasts related to wound healing by sol-gel derived bioactive glass particles.

    Science.gov (United States)

    Xie, Weihan; Chen, Xiaofeng; Miao, Guohou; Tang, Jieying; Fu, Xiaoling

    2016-10-01

    Sol-gel derived bioactive glass (BG) holds great potential in the application of skin repair. However, the specific regulation of BG on skin cells is still unclear and demands more investigation. Herein, we synthesized sol-gel derived BGs with different compositions (60S, 70S, 80S, and 90S) and found 90S BGs (90 mol % SiO2 , 6 mol % CaO, 4 mol % P2 O5 ) exhibited the best supportiveness for the proliferation of normal human foreskin fibroblasts. Thus, 90S BG particles were used as a model to systematically study the wound healing related cellular response of fibroblasts to BGs. Time-lapse imaging revealed a promoted fibroblast motility stimulated by 90S BG particles. Results on the expression of extracellular matrix (ECM) related genes illustrated that 90S BG particles modulated the synthesis capacity for critical ECM molecules including type I collagen, type III collagen, fibronectin, and tenascin-C. Moreover, the myofibroblastic differentiation of fibroblasts was greatly inhibited by 90S BG particles. Further analysis on the intracellular signaling pathways demonstrated that 90S BG particles down-regulated the collagen synthesis and fibroblast-to-myofibroblast differentiation via TGF-β1-Smad2 signaling, evidenced by the decreased expression levels of TGF-β receptor I and its downstream effector Smad2. Our study provided a further understanding of the specific regulation of 90S BG particles on fibroblasts, which may guide the future design of BG based wound dressing and benefit the clinical application of BG particles in skin repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2420-2429, 2016. PMID:27177533

  12. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application.

    Science.gov (United States)

    Fereshteh, Zeinab; Nooeaid, Patcharakamon; Fathi, Mohammadhossein; Bagri, Akbar; Boccaccini, Aldo R

    2015-09-01

    This article presents data related to the research article entitled "The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering" [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG) scaffolds coated by poly (ε-caprolactone) (PCL) and zein used as a controlled release device for tetracycline hydrochloride (TCH). By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds) to 0.15±0.02 MPa (PCL/zein coated BG scaffolds). A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF). The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research.

  13. Synthesis and Characterization of Poly(lactic-co-glycolic Acid Nanoparticles-Loaded Chitosan/Bioactive Glass Scaffolds as a Localized Delivery System in the Bone Defects

    Directory of Open Access Journals (Sweden)

    K. Nazemi

    2014-01-01

    Full Text Available The functionality of tissue engineering scaffolds can be enhanced by localized delivery of appropriate biological macromolecules incorporated within biodegradable nanoparticles. In this research, chitosan/58S-bioactive glass (58S-BG containing poly(lactic-co-glycolic acid (PLGA nanoparticles has been prepared and then characterized. The effects of further addition of 58S-BG on the structure of scaffolds have been investigated to optimize the characteristics of the scaffolds for bone tissue engineering applications. The results showed that the scaffolds had high porosity with open pores. It was also shown that the porosity decreased with increasing 58S-BG content. Furthermore, the PLGA nanoparticles were homogenously distributed within the scaffolds. According to the obtained results, the nanocomposites could be considered as highly bioactive bone tissue engineering scaffolds with the potential of localized delivery of biological macromolecules.

  14. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Melissa H. X. Tan

    2015-01-01

    Full Text Available Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38–80 μm versus the conventional alumina abrasive (29 μm in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p<0.05 despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine.

  15. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics

    International Nuclear Information System (INIS)

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO–(19.24 − x) MgO–x ZnO–5.61 P2O5–38.49 SiO2–0.59 CaF2 (x = 2–10) have been synthesised by melt–quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1 h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content > 4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO. - Highlights: • The addition of zinc to glasses decreased Tg and promoted crystallisation. • Zinc enhanced the sintering ability and increased mechanical strength by 36%. • The apatite formation ability decreased with increasing Zn contents. • Zinc stimulated mesenchymal stem cell proliferation in a dose dependent manner

  16. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Saurabh [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Goel, Ashutosh [Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8065 (United States); Correia, Ana Filipa [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Pascual, Maria J. [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Lee, Hye-Young; Kim, Hae-Won [Institute of Tissue Regeneration Engineering (ITREN) & College of Dentistry, Dankook University, Cheonan 330714 (Korea, Republic of); Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan 330714 (Korea, Republic of); Ferreira, José M.F., E-mail: jmf@ua.pt [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal)

    2015-08-01

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO–(19.24 − x) MgO–x ZnO–5.61 P{sub 2}O{sub 5}–38.49 SiO{sub 2}–0.59 CaF{sub 2} (x = 2–10) have been synthesised by melt–quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1 h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content > 4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO. - Highlights: • The addition of zinc to glasses decreased T{sub g} and promoted crystallisation. • Zinc enhanced the sintering ability and increased mechanical strength by 36%. • The apatite formation ability decreased with increasing Zn contents. • Zinc stimulated mesenchymal stem cell proliferation in a dose dependent manner.

  17. On the dissolution/reaction of small-grain Bioglass ® 45S5 and F-modified bioactive glasses in artificial saliva (AS)

    Science.gov (United States)

    Aina, Valentina; Bertinetti, Luca; Cerrato, Giuseppina; Cerruti, Marta; Lusvardi, Gigliola; Malavasi, Gianluca; Morterra, Claudio; Tacconi, Linda; Menabue, Ledi

    2011-02-01

    The reaction of small-grain Bioglass® 45S5 in artificial saliva (AS), to produce a layer of hydroxy-apatite (HA) and/or hydroxy-carbonate apatite (HCA), has been studied and compared to the results obtained in a simple buffered solution (TRIS). Some potentially bioactive glasses based on the composition of Bioglass® and containing CaF2 (HCaCaF2 5% and HNaCaF2 5%) have also been studied, in order to analyze the effects/changes produced when a F-containing glass surface is contacted with AS. The insertion of fluorine has been proposed to improve bioactive glass bone-bonding ability, and to parallel fluorine-containing glass-ceramics currently used in dentistry. ICP-OES analysis of the solution, and FTIR spectroscopy of the solid samples provided compositional information on the stages of reaction. These data were integrated with XRD and the textural and morphological data, obtained by specific surface areas determination and TEM-EDS measurements. In the case of Bioglass® 45S5, a comparison at corresponding reaction times indicates that the precipitation of an amorphous Ca-phosphate phase is faster in AS, but the crystallization of HA/HCA is delayed in AS with respect to the TRIS solution. For fluoride-containing glasses, the sample HCaCaF2 5%, in which CaF2 replaces part of CaO, possesses the fastest rate for HA/HCA crystallization (1 week) in AS. Some lines of interpretation for these results are proposed.

  18. 樟树籽中生物活性物质的研究进展%An Advanced Research on the Bioactive Component in Camphor Seed

    Institute of Scientific and Technical Information of China (English)

    李卫林

    2012-01-01

    樟树在南方种植广泛,会产生大量的樟树籽,因此企待樟树籽的应用开发应该深入。目前的研究主要集中在樟树籽油、樟树籽壳色素的提取方法和应用、主要成分的分析和结构研究。作为药物或者食品添加物,樟树籽蛋白都具有一定的研究意义。%The camphor seed should be exploited with more attention owing to the wide coverage of camphor tree and the seed production. The present researches of camphor seed are mainly focused on extraction methods, main components or construct of the oil and the pigment in camphor seed, as well as some other bioactive component. It was emphasized on the importance of camphor seed protein as food additive or drug.

  19. Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model

    Directory of Open Access Journals (Sweden)

    Jbahi Samira

    2015-10-01

    Full Text Available Background: Synthetic bone graft substitutes such as bioactive glass (BG material are developed in order to achieve successful bone regeneration. Zn plays an important role in the proper bone growth, development, and maintenance of healthy bones. Aims: This study aims to evaluate in vivo the performance therapy of zinc-doped bioactive glass (BG-Zn and its applications in biomedicine. Methods: Female Wistar rats were ovariectomized. BG and BG-Zn were implanted in the femoral condyles of Wistar rats and compared to that of control group. Grafted bone tissues were carefully removed to evaluate the oxidative stress status, histomorphometric profile, mechanical property, and mineral bone distribution by using inductively coupled plasma optical emission spectrometry. Results: A significant decrease of thiobarbituric acid–reactive substances was observed after BG-Zn implantation. Superoxide dismutase, catalase (CAT, and glutathione peroxidase (GPx activities significantly increased in ovariectomized group implanted with Zinc-doped bioactive glass (OVX-BG-Zn as compared to ovariectomized group implanted with bioactive glass (OVX-BG. An improved mechanical property was noticed in contact of OVX-BG-Zn (39±6 HV when compared with that of OVX-BG group (26±9 HV. After 90 days of implantation, the histomorphometric analysis showed that trabecular thickness (Tb.Th and trabecular number (Tb.N were significantly increased with 28 and 24%, respectively, in treated rats of OVX-BG-Zn group as compared to those of OVX-BG groups. Trabecular separation (Tb.Sp and trabecular bone pattern factor (TBPf were significantly decreased in OVX-BG-Zn group with 29.5 and 54% when compared with those of OVX-BG rat groups. On the other hand, a rise in Ca and P ion concentrations in the implanted microenvironment was shown and lead to the formation/deposition of Ca-P phases. The ratio of pyridinoline [Pyr] to dihydroxylysinonorleucine [DHLNL] cross-links was normalized to the

  20. Engineered Hybrid Scaffolds of Poly(vinyl alcohol)/Bioactive Glass for Potential Bone Engineering Applications: Synthesis, Characterization, Cytocompatibility, and Degradation

    OpenAIRE

    Costa, Hermes S; Mansur, Alexandra A.P.; Marivalda M. Pereira; Mansur, Herman S

    2012-01-01

    The synthesis, characterization, preliminary cytocompatibility, and degradation behavior of the hybrids based on 70% Poly(vinyl alcohol) and 30% bioactive glass (58SiO2–33CaO–9P2O5, BaG) with macroporous tridimensional structure is reported for the first time. The effect of glutaraldehyde covalent crosslinker in the organic-inorganic nanostructures produced and, as a consequence, tailoring the hybrids properties was investigated. The PVA/BaG hybrids scaffolds are characterized by Fourier tran...

  1. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid electrospun fibrous scaffold for bone regeneration

    Directory of Open Access Journals (Sweden)

    Chen SJ

    2015-06-01

    Full Text Available Shijie Chen,1,* Zhiyuan Jian,2,* Linsheng Huang,2,* Wei Xu,3,* Shaohua Liu,4 Dajiang Song,3 Zongmiao Wan,3 Amanda Vaughn,5 Ruisen Zhan,1 Chaoyue Zhang,1 Song Wu,1 Minghua Hu,6 Jinsong Li1 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 2The First General Surgery Department of Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, People’s Republic of China; 3Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People’s Republic of China; 4Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 5Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; 6Department of Anthropotomy, Changsha Medical College, Changsha, Hunan, People’s Republic of China *These authors contributed equally to this work Abstract: A mesoporous bioactive glass (MBG surface modified with poly(lactic-co-glycolic acid (PLGA electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds

  2. 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses.

    Science.gov (United States)

    Bonhomme, Christian; Gervais, Christel; Folliet, Nicolas; Pourpoint, Frédérique; Diogo, Cristina Coelho; Lao, Jonathan; Jallot, Edouard; Lacroix, Joséphine; Nedelec, Jean-Marie; Iuga, Dinu; Hanna, John V; Smith, Mark E; Xiang, Ye; Du, Jincheng; Laurencin, Danielle

    2012-08-01

    Strontium is an element of fundamental importance in biomedical science. Indeed, it has been demonstrated that Sr(2+) ions can promote bone growth and inhibit bone resorption. Thus, the oral administration of Sr-containing medications has been used clinically to prevent osteoporosis, and Sr-containing biomaterials have been developed for implant and tissue engineering applications. The bioavailability of strontium metal cations in the body and their kinetics of release from materials will depend on their local environment. It is thus crucial to be able to characterize, in detail, strontium environments in disordered phases such as bioactive glasses, to understand their structure and rationalize their properties. In this paper, we demonstrate that (87)Sr NMR spectroscopy can serve as a valuable tool of investigation. First, the implementation of high-sensitivity (87)Sr solid-state NMR experiments is presented using (87)Sr-labeled strontium malonate (with DFS (double field sweep), QCPMG (quadrupolar Carr-Purcell-Meiboom-Gill), and WURST (wideband, uniform rate, and smooth truncation) excitation). Then, it is shown that GIPAW DFT (gauge including projector augmented wave density functional theory) calculations can accurately compute (87)Sr NMR parameters. Last and most importantly, (87)Sr NMR is used for the study of a (Ca,Sr)-silicate bioactive glass of limited Sr content (only ~9 wt %). The spectrum is interpreted using structural models of the glass, which are generated through molecular dynamics (MD) simulations and relaxed by DFT, before performing GIPAW calculations of (87)Sr NMR parameters. Finally, changes in the (87)Sr NMR spectrum after immersion of the glass in simulated body fluid (SBF) are reported and discussed. PMID:22738329

  3. Flame particle seeding with oxygen enrichment for NO sub x reduction and increased efficiency. [In glass melting furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.L.; Tester, M.E.; Neff, G.C. (Combustion Tec Inc., Orlando, FL (US)); Panahi, S.K. (Southern California Gas Co., Los Angeles, CA (United States))

    1991-06-01

    An improved method of gas firing glass melting furnaces, involving flame particle seeding for reducing NO{sub x} emissions, is outlined. The soot particles for flame seeding are produced in an oxygen/natural gas 'cracker' by using 25% of furnace natural gas consumption which is then reblended with the remaining 75% natural gas. It has been shown previously that combustion of soot-rich gas produces a flame with increased luminosity, increased heat transfer to the glass and consequently reduced flame temperature and NO{sub x} emissions by 35%. Past experiments on a pilot-scale unit were successful in producing a soot-rich gas mixture with the design soot concentration of 0.0025 lb carbon/ft{sup 3} of natural gas as fuel. Current activities include development of optimum operating conditions which will result in the reliable transport of soot from a natural gas (cracker) to parallel arrays of burners in glass melters. The future activities include a field test involving the cracker at one large container glass melting furnace to verify the thermal NO{sub x} reductions. (author).

  4. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box-Behnken design.

    Science.gov (United States)

    Gönen, Seza Özge; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-10-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25kV, tip-to-collector distance of 12.5cm, and flow rate of 1mL/h), the fiber diameter was found to be 584±337nm which was in good agreement with the predicted value by the developed models (523±290nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. PMID:27287168

  5. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration

    Science.gov (United States)

    Kim, Tae-Hyun; Singh, Rajendra K.; Kang, Min Sil; Kim, Joong-Hyun; Kim, Hae-Won

    2016-04-01

    The recent development of bioactive glasses with nanoscale morphologies has spurred their specific applications in bone regeneration, for example as drug and gene delivery carriers. Bone engineering with stem cells genetically modified with this unique class of nanocarriers thus holds great promise in this avenue. Here we report the potential of the bioactive glass nanoparticle (BGN) system for the gene delivery of mesenchymal stem cells (MSCs) targeting bone. The composition of 15% Ca-added silica, proven to be bone-bioactive, was formulated into surface aminated mesoporous nanospheres with enlarged pore sizes, to effectively load and deliver bone morphogenetic protein-2 (BMP2) plasmid DNA. The enlarged mesopores were highly effective in loading BMP2-pDNA with an efficiency as high as 3.5 wt% (pDNA w.r.t. BGN), a level more than twice than for small-sized mesopores. The BGN nanocarriers released the genetic molecules in a highly sustained manner (for as long as 2 weeks). The BMP2-pDNA/BGN complexes were effectively internalized to rat MSCs with a cell uptake level of ~73%, and the majority of cells were transfected to express the BMP2 protein. Subsequent osteogenesis of the transfected MSCs was demonstrated by the expression of bone-related genes, including bone sialoprotein, osteopontin, and osteocalcin. The MSCs transfected with BMP2-pDNA/BGN were locally delivered inside a collagen gel to the target calvarium defects. The results showed significantly improved bone regeneration, as evidenced by the micro-computed tomographic, histomorphometric and immunohistochemical analyses. This study supports the excellent capacity of the BGN system as a pDNA-delivery nanocarrier in MSCs, and the engineered system, BMP2-pDNA/BGN with MSCs, may be considered a new promising candidate to advance the therapeutic potential of stem cells through genetic modification, targeting bone defects and diseases.The recent development of bioactive glasses with nanoscale morphologies has

  6. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL EVALUATION OF SOL–GEL DERIVED NANOMATERIAL IN THE TERNARY SYSTEM 64 % SiO2 - 31 % CaO - 5 % P2O5 AS A BIOACTIVE GLASS: IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Bizari D.

    2013-09-01

    Full Text Available In this study, we performed a new bioactive glass formulation with the molar composition 64 % SiO2 - 31 % CaO - 5 % P2O5 by the sol-gel method. Sol-gel derived bioglass material was produced in nanopowder using planetary milling machine, followed by sintering at 700°C, for applications as bioactive material in bioactive scaffolds or in orthopaedic. The obtained material was evaluated by X-ray powder diffraction (XRD, thermal gravimetric analysis (TGA, differential scanning calorimetry (DSC analyses, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM and nitrogen adsorption pore size. The biocompatibility evaluation of the formed glass was assessed through in vitro cell culture by evaluation of alkaline phosphatase activity of osteoblasts and immersion studies in simulated body fluid (SBF for different time intervals while monitoring the pH changes and the concentration of calcium, phosphorus and silicon in the SBF medium as key factors in the rapid bonding of this bioactive glass to bone tissue as a high bioactive glass. The present investigation revealed that the sol-gel derived ternary bioglass system has the ability to support the growth of human fetal osteoblastic cells (hFOB 1.19. Finally, this material proved to be non-toxic and compatible for the proposed work in segmental defects in the goat model in vivo.

  7. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry

    Directory of Open Access Journals (Sweden)

    Y-Y Wang

    2015-06-01

    Full Text Available The aim of this study was the fabrication and evaluation of a novel bioactive and bactericidal material, which could have applications in dentistry by supporting tissue regeneration and killing oral bacteria. Our hypothesis was that a new scaffold for pulp-dentin tissue engineering with enhanced antibacterial activity could be obtained by associating extracellular matrix derived from porcine bladder with an antibacterial bioactive glass. Our study combines in vitro approaches and ectopic implantation in scid mice. The novel material was fabricated by incorporating a sol-gel derived silver (Ag-doped bioactive glass (BG in a natural extracellular matrix (ECM hydrogel in ratio 1:1 in weight % (Ag-BG/ECM. The biological properties of the Ag-BG/ECM were evaluated in culture with dental pulp stem cells (DPSCs. In particular, cell proliferation, cell apoptosis, stem cells markers profile, and cell differentiation potential were studied. Furthermore, the antibacterial activity against Streptococcus mutans and Lactobacillus casei was measured. Moreover, the capability of the material to enhance pulp/dentin regeneration in vivo was also evaluated. Our data show that Ag-BG/ECM significantly enhances DPSCs’ proliferation, it does not affect cell morphology and stem cells markers profile, protects cells from apoptosis, and enhances in vitro cell differentiation and mineralisation potential as well as in vivo dentin formation. Furthermore, Ag-BG/ECM strongly inhibits S. mutans and L. casei growth suggesting that the new material has also anti-bacterial properties. This study provides foundation for future clinical applications in dentistry. It could potentially advance the currently available options of dental regenerative materials.

  8. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones

    International Nuclear Information System (INIS)

    Reconstruction of critical size defects in the load-bearing area has long been a challenge in orthopaedics. In the past, we have demonstrated the feasibility of using a biodegradable load-sharing scaffold fabricated from poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) loaded with bone morphogenetic protein-2 (BMP-2) to successfully induce healing in those defects. However, there is limited osteoconduction observed with the PPF/TCP scaffold itself. For this reason, 13-93 bioactive glass scaffolds with local BMP-2 delivery were investigated in this study for inducing segmental defect repairs in a load-bearing region. Furthermore, a recent review on BMP-2 revealed greater risks in radiculitis, ectopic bone formation, osteolysis and poor global outcome in association with the use of BMP-2 for spinal fusion. We also evaluated the potential side effects of locally delivered BMP-2 on the structures of adjacent bones. Therefore, cylindrical 13-93 glass scaffolds were fabricated by indirect selective laser sintering with side holes on the cylinder filled with dicalcium phosphate dehydrate as a BMP-2 carrier. The scaffolds were implanted into critical size defects created in rat femurs with and without 10 μg of BMP-2. The x-ray and micro-CT results showed that a bridging callus was found as soon as three weeks and progressed gradually in the BMP group while minimal bone formation was observed in the control group. Degradation of the scaffolds was noted in both groups. Stiffness, peak load and energy to break of the BMP group were all higher than the control group. There was no statistical difference in bone mineral density, bone area and bone mineral content in the tibiae and contralateral femurs of the control and BMP groups. In conclusion, a 13-93 bioactive glass scaffold with local BMP-2 delivery has been demonstrated for its potential application in treating large bone defects. (paper)

  9. Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials.

    Science.gov (United States)

    Popescu, R A; Magyari, K; Vulpoi, A; Trandafir, D L; Licarete, E; Todea, M; Ştefan, R; Voica, C; Vodnar, D C; Simon, S; Papuc, I; Baia, L

    2016-07-19

    In the present study our interest is focused on finding the efficiency of 60SiO2·(32 - x)CaO·8P2O5·xCuO (mol%) glass-ceramics, with 0 ≤ x ≤ 4 mol%, in terms of bioactivity, biocompatibility, antibacterial properties and cell viability in order to determine the most appropriate composition for their further use in in vivo trials. The sol-gel synthesized samples show a preponderantly amorphous structure with a few crystallization centers associated with the formation of an apatite and calcium carbonate crystalline phases. The Fourier Transform Infrared (FT-IR) spectra revealed slightly modified absorption bands due to the addition of copper oxide, while the information derived from the measurements performed by transmission electron microscopy, UV-vis and electron paramagnetic resonance spectroscopy showed the presence of ions and metallic copper species. X-Ray photoelectron spectroscopic analysis indicated the presence of copper metallic species, in a reduced amount, only on the sample surface with the highest Cu content. Regarding in vitro assessment of bioactivity, the results obtained by X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy, demonstrated the formation of a calcium phosphate layer on all investigated sample surfaces. The inhibitory effect of the investigated samples was more significant on the Pseudomonas aeruginosa than the Staphylococcus aureus strain, the sample with the lowest concentration of copper oxide (0.5 mol%) being also the most efficient in both bacterial cultures. This sample also exhibits a very good bactericidal activity, for the other samples it was necessary to use a higher quantity to inhibit and kill the bacterial species. The secondary structure of adsorbed albumin presents few minor changes, indicating the biocompatibility of the glass-ceramics. The cell viability assay shows a good proliferation rate on samples with 0.5 and 1.5 mol% CuO, although all glass-ceramic samples exhibited a good in vivo

  10. In vitro evaluation of bioactivity of CaO-SiO{sub 2}-P{sub 2}O{sub 5}-Na{sub 2}O-Fe{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajendra Kumar, E-mail: k.rajendra@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Kothiyal, G.P., E-mail: gpkoth@barc.gov.in [Glass and Glass Ceramic Technology Section, TP and PED, B.A.R.C., Mumbai 400085 (India); Srinivasan, A., E-mail: asrini@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2009-05-15

    Glasses with compositions 41CaO(52 - x)SiO{sub 2}4P{sub 2}O{sub 5}.xFe{sub 2}O{sub 3}3Na{sub 2}O (2 {<=} x {<=} 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.

  11. Effect of Radiation on Seed Germinating Ability Ofwild-Growing and Cultivated Plants, Sources of Bioactive Substances

    Science.gov (United States)

    Shabanov, Aleksandr; Tirranen, Lyalya; Zykova, Irina; Bondarenko, Gennadiy

    2016-07-01

    In the above-ground parts of common chickweed (Stellaria media) the content of vitamin C was experimentally quantified, which (in terms of dry matter) was 81.55 mg/100 g; 133 mg/100 g and 161.76 mg/100 g depending on the growing site. 52 components were detected in the essential oil of the above-ground parts of common chickweed (Stellaria media). Chamazulene, neophytodien and phytol are the major components of whole oil. A wide range of elements was identified in the plants and seeds of common chickweed (Stellaria media), and in the seeds of carrots, parsley and lettuce. It was established that UV irradiation (lamp with a wavelength of 254 nm and 283 nm) of chickweed seeds (Stellaria media) for 15 sec. and 100 sec. in a microbiological box on a table at a distance from the object didn't affect their germinating ability. The germinating ability of the experimental seeds was identical to the control (no irradiation) seeds. With the help of an X-ray fluorescence spectrometer Renger 2 (Germany) at a voltage of 1.6 kV during 15 sec. the effect of "soft" radiation on the seed germinating ability of chickweed, carrot, parsley and lettuce seeds was studied.Under the effect of "soft" radiation during 15 sec. all the experimental chickweed seeds sprouted, like in the control. The germinating ability of the exposed lettuce seeds was 100% after one day, while only 45% of the exposed parsley seeds grew after 21 days. The exposed carrot seeds (70%) grew after 18 days. The effect of "hard" radiation on the germinating ability of common chickweed seeds was investigated using an X-ray fluorescence spectrometer S4 Pioneer (Germany) at a voltage of 60 kV for 15 sec and 100 sec. Under the effect of "hard" radiation and during 15 seconds of exposure, where the distance (L) from the focus of the X-ray tube to the seeds of chickweed was 20 mm, the germinating ability of the experimental chickweed seeds was 30 %. At a voltage of 60 kV and 100-second exposure the germinating ability of the

  12. DFT modeling of 45S5 and 77S soda-lime phospho-silicate glass surfaces: clues on different bioactivity mechanism.

    Science.gov (United States)

    Berardo, Enrico; Pedone, Alfonso; Ugliengo, Piero; Corno, Marta

    2013-05-14

    The reactivity of bioglasses, which is related to the dissolution of cations and orthosilicate groups in the physiological fluid, strongly depends on the key structural features present at the glass surfaces. On the basis of the composition and the synthetic routes employed to make the glass, surfaces with very different characteristics and thus presenting different mechanisms of dissolution can be observed. In this paper, the surface structures of two very different bioglass compositions, namely 45S5 (46.1 SiO2, 24.4 Na2O, 26.9 CaO, and 2.6 P2O5 mol %) and 77S (80.0 SiO2, 16.0 CaO, and 4.0 P2O5 mol %), have been investigated by means of periodic DFT calculations based on a PBE functional and localized Gaussian basis set as encoded in the CRYSTAL code. Our calculations show that the two glass surfaces differ by the relative amount of key structural sites such as NBOs, exposed ions, orthosilicate units, and small rings. We have demonstrated how the number of these sites affects the surface stability and reactivity (bioactivity). PMID:23594027

  13. In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2014-09-01

    Full Text Available Borate glasses with the basic composition 0.6B2O3·0.2Na2O·0.2CaO and SrO progressively substituting CaO were prepared and characterized for their bone-bonding ability. The obtained glasses were thermally treated and converted to their glass-ceramic derivatives. In this study, FTIR spectral analyses were done for the prepared glasses and glass-ceramics before and after immersion in a sodium phosphate solution for extended times. The appearance of two IR bands within the spectral range 550–680 cm-1 after immersion confirms the formation of hydroxyapatite. X-ray diffraction studies and scanning electron microscope analysis supported the obtained infrared spectroscopy results. The solubility test (measurements of the weight loss in aqueous sodium phosphate solution was conducted for measuring the dissolution of both glassy and crystalline derivatives to find out the role of SrO. The corrosion behaviour of the glasses and glass-ceramics indicate the increase of weight loss with the increase of SrO content. Different suggested proposals were introduced to explain this abnormal behaviour.

  14. Investigating the effect of SiO2-TiO 2-CaO-Na 2O-ZnO bioactive glass doped hydroxyapatite: characterisation and structural evaluation.

    Science.gov (United States)

    Yatongchai, Chokchai; Wren, Anthony W; Curran, Declan J; Hampshire, Stuart; Towler, Mark R

    2014-07-01

    The effects of increasing bioactive glass additions, SiO2-TiO2-CaO-Na2O-ZnO up to 25 wt% in increments of 5 wt%, on the physical and mechanical properties of hydroxyapatite (HA) sintered at 900, 1000, 1100 and 1200 °C for 2 h was investigated. Increasing both the glass content and the temperature resulted in increased HA decomposition. This resulted in the formation of a number of bioactive phases. However the presence of the liquidus glass phase did not result in increased densification levels. At 1000 and 1100 °C the additions of 5 wt% glass resulted in a decrease in density which never recovered with increasing glass content. At 1200 °C a cyclic pattern resulted from increasing glass content. There was no direct relationship between strength and density with all samples experiencing no change or a decrease in strength with increasing glass content. Weibull statistics displayed no pattern with increasing glass content. PMID:24748516

  15. Bioactivity studies on TiO{sub 2}-bearing Na{sub 2}O–CaO–SiO{sub 2}–B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jagan Mohini, G. [Department of Physics, Andhra Loyola College, Vijayawada 520 008, Andhra Pradesh (India); Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India); Sahaya Baskaran, G. [Department of Physics, Andhra Loyola College, Vijayawada 520 008, Andhra Pradesh (India); Ravi Kumar, V. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India); Piasecki, M. [Institute of Physics, J. Dlugosz University, Al. Armii Krajowej 13/15, Czestochowa (Poland); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India)

    2015-12-01

    Soda lime silica borate glasses mixed with different concentrations of TiO{sub 2} are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~ 21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO{sub 2} on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO{sub 2} concentration indicated that about 6.0 mol% of TiO{sub 2} is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. - Highlights: • Soda lime silica borate glasses mixed with TiO{sub 2} are synthesized. • Bioactivity of the glasses is studied by immersing them in SBF solution. • XRD and SEM studies indicated the formation of hydroxyapatite layer on the surface. • Quantum of degradability is the highest in the glasses mixed with 6.0 mol% of TiO{sub 2.} • The results are analyzed using IR and optical absorption studies.

  16. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  17. Comparative Bio-activity Guided Characterization of Biocide from Jatropha curcas and Ricinus communius L Seeds Oil

    OpenAIRE

    Asnake G. Ede; Abebe G. Demissie

    2013-01-01

    This study reports the characterization of biocide from Jatropha (Jatropha curca) and castor (Ricinus communius L) seeds oil. The biocide potential of the seeds oil was evaluated against termite (Odontotermes obesus) and cockroach (Blattela germanica). The bioassay study showed that Jatropha 10% oil caused 100% mortality in 48 hrs and 72 hrs against termite and cockroach, respectively. Castor 10% oil caused 100% mortality in 60hrs and 72 hrs against termite and cockroach, respectively. The L...

  18. In vitro response of human osteoblasts to multi-step sol–gel derived bioactive glass nanoparticles for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jian Ping, E-mail: jian.fan@ucl.ac.uk [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Kalia, Priya; Di Silvio, Lucy [Biomaterials, Tissue Engineering and Imaging, The Dental Institute, King' s College London, Guy' s Hospital, London SE1 9BT (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2014-03-01

    A multi-step sol–gel process was employed to synthesize bioactive glass (BG) nanoparticles. Transmission electron microscopy (TEM) revealed that the BG nanoparticles were spherical and ranged from 30 to 60 nm in diameter. In vitro reactivity of the BG nanoparticles was tested in phosphate buffer saline (PBS), Tris-buffer (TRIS), simulated body fluid (SBF), and Dulbecco's modified Eagle's medium (DMEM), in comparison with similar sized hydroxyapatite (HA) and silicon substituted HA (SiHA) nanoparticles. Bioactivity of the BG nanoparticles was confirmed through Fourier transform infrared spectroscopy (FTIR) analysis. It was found that bone-like apatite was formed after immersion in SBF at 7 days. Solutions containing BG nanoparticles were slightly more alkaline than HA and SiHA, suggesting that a more rapid apatite formation on BG was related to solution-mediated dissolution. Primary human osteoblast (HOB) cell model was used to evaluate biological responses to BG nanoparticles. Lactate dehydrogenase (LDH) cytotoxicity assay showed that HOB cells were not adversely affected by the BG nanoparticles throughout the 7 day test period. Interestingly, MTS assay results showed an enhancement in cell proliferation in the presence of BG when compared to HA and SiHA nanoparticles. Particularly, statistically significant (p < 0.05) alkaline phosphatase (ALP) activity of HOB cells was found on the culture containing BG nanoparticles, suggesting that the cell differentiation might be promoted by BG. Real-time quantitative PCR analysis (qPCR) further confirmed this finding, as a significantly higher level of RUNX2 gene expression was recorded on the cells cultured in the presence of BG nanoparticles when compared to those with HA and SiHA. - Highlights: • Spherical bioactive glass nanoparticles (BG) under 60 nm were synthesized. • An alkali morphological catalyst was used in the synthesis. • Cytotoxicity assays demonstrated that BG was not cytotoxic towards HOB

  19. Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route)

    Energy Technology Data Exchange (ETDEWEB)

    Rau, J.V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Teghil, R. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Fosca, M. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); De Bonis, A. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Cacciotti, I.; Bianco, A. [Universita di Roma ' Tor Vergata' , Dipartimento di Ingegneria Industriale, UR INSTM ' Roma Tor Vergata' , Via del Politecnico, 1-00133 Rome (Italy); Albertini, V. Rossi [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Caminiti, R. [Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); Ravaglioli, A. [Parco Torricelli delle Arti e delle Scienze, Via Granarolo, 64-48018 Faenza (Ra) (Italy)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Bioactive glass-ceramic coatings for bone tissue repair and regeneration. Black-Right-Pointing-Pointer Pulsed Lased Deposition allowed congruent transfer of target composition to coating. Black-Right-Pointing-Pointer Target was prepared by sol-gel process suitable for compositional tailoring. Black-Right-Pointing-Pointer Titanium, widely used for orthopaedics and dental implants, was used as substrate. Black-Right-Pointing-Pointer The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass-ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol-gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm{sup 2} and 500 Degree-Sign C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 {mu}m thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 {mu}m thick sol-gel films with the hardness of 17 GPa were obtained.

  20. Electrophoretic deposition of a bioactive Si, Ca-rich glass coating on 316L stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    H. H. Rodríguez

    2011-12-01

    Full Text Available This work consisted in the development and characterization of a vitroceramic coating on 316L stainless steel bymeans of electrophoretic deposition (EPD. This vitroceramic coating was obtained through a Si-, Ca-rich glas coating crystallization. The electrophoretic deposition tests were performed on 316L stainless steel mechanically polished substrates. The results suggest that the electrophoretic coatings adhered well to the metallic surfaces. Theresults demonstrate that the crystallized coatings are potentially bioactive, because a dense and homogeneous apatite layer, similar to a bone, makes up.

  1. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses

    Science.gov (United States)

    Kaur, Gurbinder; Pickrell, G.; Kimsawatde, G.; Homa, D.; Allbee, H. A.; Sriranganathan, N.

    2014-03-01

    CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol-gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations.

  2. Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications

    Science.gov (United States)

    Coletta, D.J.; Lozano, D.; Rocha-Oliveira, A.A.; Mortarino, P.; Bumaguin, G.E.; Vitelli, E.; Vena, R.; Missana, L.; Jammal, M. V.; Portal-Núñez, S.; Pereira, M.; Esbrit, P.; Feldman, S.

    2014-01-01

    Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds PMID:24772196

  3. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    Science.gov (United States)

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-02

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications.

  4. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    Science.gov (United States)

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-01

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications. PMID:26836444

  5. Bioactive compounds extracted from Indian wild legume seeds: antioxidant and type II diabetes-related enzyme inhibition properties.

    Science.gov (United States)

    Gautam, Basanta; Vadivel, Vellingiri; Stuetz, Wolfgang; Biesalski, Hans K

    2012-03-01

    Seven different wild legume seeds (Acacia leucophloea, Bauhinia variegata, Canavalia gladiata, Entada scandens, Mucuna pruriens, Sesbania bispinosa and Tamarindus indica) from various parts of India were analyzed for total free phenolics, l-Dopa (l-3,4 dihydroxyphenylalanine), phytic acid and their antioxidant capacity (ferric-reducing antioxidant power [FRAP] and 2,2-diphenyl-1-picrylhydrazyl [DPPH] assay) and type II diabetes-related enzyme inhibition activitiy (α-amylase). S. bispinosa had the highest content in both total free phenolics and l-Dopa, and relatively low phytic acid when compared with other seeds. Phytic acid content, being highest in E. scandens, M. pruriens and T. indica, was highly predictive for FRAP (r = 0.47, p < 0.05) and DPPH (r = 0.66, p < 0.001) assays. The phenolic extract from T. indica and l-Dopa extract from E. scandens showed significantly higher FRAP values among others. All seed extracts demonstrated a remarkable reducing power (7-145 mM FeSO4 per mg extract), DPPH radical scavenging activity (16-95%) and α-amylase enzyme inhibition activity (28-40%). PMID:21970446

  6. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.

    Science.gov (United States)

    Placek, L M; Keenan, T J; Wren, A W

    2016-08-01

    The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. PMID:27231265

  7. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR

    OpenAIRE

    Martin, R A; Twyman, H.L.; Rees, G.J.; Smith, J M; Barney, E. R.; Smith, M E; Hanna, J. V.; Newport, Robert J.

    2012-01-01

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a simila...

  8. Influence of heat treatments upon the mechanical properties and in vitro bioactivity of ZrO2-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics.

    Science.gov (United States)

    Li, Huan-Cai; Wang, Dian-Gang; Meng, Xiang-Guo; Chen, Chuan-Zhong

    2014-09-01

    Zirconia-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics are prepared using sintering techniques, and a series of heat treatment procedures are designed to obtain a glass-ceramic with improved properties. The crystallization behavior, phase composition, and morphology of the glass-ceramics are characterized. The bending strength, elastic modulus, fracture toughness, and microhardness of the glass-ceramics are investigated, and the effect mechanism of heat treatments upon the mechanical properties is discussed. The bioactivity of glass-ceramics is then evaluated using the in vitro simulated body fluid (SBF) soaking test, and the mechanism whereby apatite forms on the glass-ceramic surfaces in the SBF solution is discussed. The results indicate that the main crystal phase of the G-24 sample undergoing two heat treatment procedures is Ca5(PO4)3F (fluorapatite), and those of the G-2444 sample undergoing four heat treatment procedures are Ca5(PO4)3F and β-CaSiO3 (β-wollastonite). The heat treatment procedures are found to greatly influence the mechanical properties of the glass-ceramic, and an apatite layer is induced on the glass-ceramic surface after soaking in the SBF solution.

  9. Application of nuclear and physico-chemical analysis methods in the study of an after-implanting bioactive glass deposition on a titanium alloy, in view of optimizing the long-term bio-compatibility and operability

    International Nuclear Information System (INIS)

    To improve the anchorage of orthopedic prosthesis into surrounding bone, osteo-conductive biomaterials are usually used as coatings. Among usual coatings, we find bioactive glasses. The bioactive glass A9 is analyzed before and after implantation. It is plasma sprayed onto titanium alloy cylinders (Ti-6Al-4V). Neutron Activation Analysis and Coupled Plasma-Atomic Emission Spectrometry allow us to get the precise composition of A9 before implantation, and to observe a volatilization of some A9 oxides during plasma spraying. Scanning Electron Microscopy shows a coating constituted by pores and by A9 particles of different sizes, into a non compact and non homogeneous form of variable thickness. Wavelength Dispersive Spectroscopy is applied to the analysis of A9 major element composition, in surface and thickness: the composition of the coating is homogeneous in volume. Ti alloy cylinders coated with A9 are implanted in ovine femur epiphysis. At different times after implantation they are extracted to be analyzed. The formation of an in vivo gel in contact with the coated implant and neo-formed bone was found. Time variations in the concentration of the bioactive glass constituents were observed in the gel. Titanium is detected within gel and neo-formed bone, in a higher quantity than within an old bone. P.I.X.E. method enables us to get elemental mapping of several interesting areas and to trace elements (zinc, strontium) in the neo-formed bone. The percentages of bone surface in contact and of bone volume are calculated and the results show that at 12 months, the bone surface in contact is equivalent for coated and uncoated cylinders. However, the bone volume is higher for coated cylinders. This last point clearly stresses the interest of A9 bioactive glass shows its osteo-conductivity

  10. Preparation of bioactive peptides with high angiotensin converting enzyme inhibitory activity from winged bean [Psophocarpus tetragonolobus (L.) DC.] seed.

    Science.gov (United States)

    Wan Mohtar, Wan Abd Al-Qadr Imad; Hamid, Azizah Abdul; Abd-Aziz, Suraini; Muhamad, Sharifah Kharidah Syed; Saari, Nazamid

    2014-12-01

    Winged bean [Psophocarpus tetragonolobus (L.) DC.] seed is a potential underexploited source of vegetable protein due to its high protein content. In the present work, undefatted and defatted winged bean seed hydrolysates, designated as UWBSH and DWBSH, respectively were produced separately by four proteolytic enzymes namely Flavourzyme, Alcalase, Bromelain, and Papain using pH-stat method in a batch reactor. Enzymatic hydrolysis was carried out over a period of 0.5 to 5 h. UWBSH and DWBSH produced were tested for their ACE inhibitory activity in relation to the hydrolysis time and degree of hydrolysis (DH). Maximum ACE inhibitory activity, both for UWBSH and DWBSH, were observed during 3 to 5 h of hydrolysis. Both, UWBSH (DH 91.84 %), and DWSBH (DH 18.72 %), produced by Papain at 5 h hydrolysis, exhibited exceptionally high ACE inhibitory activity with IC50 value 0.064 and 0.249 mg mL(-1), respectively. Besides, papain-produced UWBSH and DWBSH were further fractionated into three fractions based on molecular weight (UWBSH-I, <10 kDa; UWBSH-II, <5 kDa; UWBSH-III, <2 kDa) and (DWBSH-I, <10 kDa; DWBSH-II, <5 kDa; DWBSH-III, <2 kDa). UWBSH-III revealed the highest ACE inhibitory activity (IC50 0.003 mg mL(-1)) compared with DWBSH-III (IC50 0.130 mg mL(-1)). The results of the present investigation revealed that winged bean seed hydrolysates can be explored as a potential source of ACE inhibitory peptides suggesting their uses for physiological benefits as well as for other functional food applications. PMID:25477632

  11. Drug-loadable Mesoporous Bioactive Glass Nanospheres: Biodistribution, Clearance, BRL Cellular Location and Systemic Risk Assessment via (45)Ca Labelling and Histological Analysis.

    Science.gov (United States)

    Sui, Baiyan; Zhong, Gaoren; Sun, Jiao

    2016-09-15

    Mesoporous bioactive glass (MBG) nanospheres with excellent drug loading property have attracted significant attention in the field of nano-medicine. However, systemic metabolism and biosafety of MBG nanospheres which are crucial issues for clinical application are yet to be fully understood. Isotope quantitative tracing combined with biochemical parameters and histopatological changes were used to analyze biodistribution, excretion path and the effect on metabolism and major organs, and then we focused on the hepatocellular location and damaging effect of MBG. The results indicated MBG possessed a longer residence time in blood. After being cleared from circulation, nanospheres were mainly distributed in the liver and were slightly internalized in the form of exogenous phagosome by hepatocyte, whereby more than 96% of nanospheres were located in the cytoplasm (nearly no nuclear involvement). A little MBG was transferred into the mitochondria, but did not cause ROS reaction. Furthermore, no abnormal metabolism and histopathological changes was observed. The accumulation of MBG nanospheres in various organs were excreted mainly through feces. This study revealed comprehensively the systemic metabolism of drug-loadable MBG nanospheres and showed nanospheres have no obvious biological risk, which provides a scientific basis for developing MBG nanospheres as a new drug delivery in clinical application.

  12. In vitro effect of air-abrasion operating parameters on dynamic cutting characteristics of alumina and bio-active glass powders.

    Science.gov (United States)

    Milly, H; Austin, R S; Thompson, I; Banerjee, A

    2014-01-01

    Minimally invasive dentistry advocates the maintenance of all repairable tooth structures during operative caries management in combination with remineralization strategies. This study evaluated the effect of air-abrasion operating parameters on its cutting efficiency/pattern using bio-active glass (BAG) powder and alumina powder as a control in order to develop its use as a minimally invasive operative technique. The cutting efficiency/pattern assessment on an enamel analogue, Macor, was preceded by studying the powder flow rate (PFR) of two different commercial intraoral air-abrasion units with differing powder-air admix systems. The parameters tested included air pressure, powder flow rate, nozzle-substrate distance, nozzle angle, shrouding the air stream with a curtain of water, and the chemistry of abrasive powder. The abraded troughs were scanned and analyzed using confocal white light profilometry and MountainsMap surface analysis software. Data were analyzed statistically using one-way and repeated-measures analysis of variance tests (p=0.05). The air-abrasion unit using a vibration mechanism to admix the abrasive powder with the air stream exhibited a constant PFR regardless of the set air pressure. Significant differences in cutting efficiency were observed according to the tested parameters (ppatterns can improve the ultraconservative cutting characteristics of BAG air-abrasion, thereby allowing an introduction of this technology for the controlled cleaning/removal of enamel, where it is indicated clinically. PMID:23718212

  13. Engineered Hybrid Scaffolds of Poly(vinyl alcohol/Bioactive Glass for Potential Bone Engineering Applications: Synthesis, Characterization, Cytocompatibility, and Degradation

    Directory of Open Access Journals (Sweden)

    Hermes S. Costa

    2012-01-01

    Full Text Available The synthesis, characterization, preliminary cytocompatibility, and degradation behavior of the hybrids based on 70% Poly(vinyl alcohol and 30% bioactive glass (58SiO2–33CaO–9P2O5, BaG with macroporous tridimensional structure is reported for the first time. The effect of glutaraldehyde covalent crosslinker in the organic-inorganic nanostructures produced and, as a consequence, tailoring the hybrids properties was investigated. The PVA/BaG hybrids scaffolds are characterized by Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, X-ray diffraction (XRD, and X-ray Microcomputed tomography analysis (μCT. Cytotoxicity assessment is performed by the MTT method with VERO cell culture. Additionally, the hybrid in vitro degradation assay is conducted by measuring the mass loss by soaking in deionized water at 37°C for up to 21 days. The results have clearly shown that it is possible to modify the PVA/BaG hybrids properties and degradation behavior by engineering the structure using different concentrations of the chemical crosslinker. Moreover, these hybrid crosslinked nanostructures have presented 3D hierarchical pore size architecture varying within 10–450 μm and a suitable cytocompatibility for potential use in bone tissue engineering applications.

  14. Prospects of fatty acid profile and bioactive composition from lipid seeds for the discrimination of apple varieties with the application of chemometrics

    Directory of Open Access Journals (Sweden)

    Arain, S.

    2012-06-01

    Full Text Available The extracted oils from four apple seed varieties (Royal Gala, Red Delicious, Pyrus Malus and Golden Delicious from Pakistan were investigated for their fatty acid profiles and lipid biactives by GC-MS. The oil contents in the seeds of the apple varieties ranged from 26.8-28.7%. The results revealed that linoleic acid (40.5-49.6% was the main fatty acid in the Royal Gala, Red Delicious and Pyrus Malus seeds, and oleic acid (38.7-45.5% was the main fatty acid in the Golden Delicious seeds. Palmitic acid (6.1-7.4% and stearic acid (2.0-3.1% were the dominant saturated fatty acids, besides the small amount of palmitoleic, heptadecanoic, linolenic, archidic, eicosanoic, and behenicacids. Sterols, tocopherols, hydrocarbons and some other minor components were also identified from the unsaponifiable lipid fraction. The variation among the results of both fatty acids and lipid bioactives for the four different varieties was assessed by principal component analysis, discriminant analysis and cluster analyses. The results conclude that both oil fractions could be applied as a useful tool to discriminate among the apple seed varieties.

    Se ha estudiado el perfil de ácidos grasos y lípidos biactivos mediante GC-MS del aceite extraído de semillas de cuatro variedades de manzanas de Pakistán (Royal Gala, Red Delicious, Pyrus Malus y Golden Delicious. El contenido de aceite en las semillas de las variedades de manzanas estudiadas oscilaron desde 26,8 hasta 28,7%. Los resultados mostraron que el ácido linoleico (40.5-49.6% fue el principal ácido graso de las semillas de las variedades Royal Gala, Red Delicious y Pyrus Malus, y el ácido oleico (38,7-45,5% fue el principal ácido graso de Golden Delicious. Los ácidos palmítico (6.1-7.4% y esteárico (2,0-3,1% fueron los ácidos grasos saturados predominantes, las semillas contenían también pequeñas cantidades de palmitoleico, heptadecanoico, linolénico, araquídico, eicosanoico, y beh

  15. Effects of Different Concentrations of Bioactive Water on Seed Germination and Seedling Growth of Corn%生物活性水对玉米种子萌发及幼苗生长的影响

    Institute of Scientific and Technical Information of China (English)

    张秋霞

    2014-01-01

    以北农青贮308玉米种子为试验材料,分别用生物活性水稀释10、25、50、100、200、400、800、4000倍对玉米种子进行浸种处理,以蒸馏水为对照,比较种子的发芽率、发芽势、吸水值、贮藏物质转运率、生物量、根长、芽长、叶绿素含量。试验结果表明,除稀释10倍处理外,不同浓度生物活性水均能显著提高玉米种子的发芽率、发芽势及苗期的长势和叶绿素的含量,其中稀释100倍的生物活性水最有利于种子的萌发,稀释50倍的生物活性水在苗期对壮苗和促进株高效果最明显。%We soaked seeds of corn cultivar Beinongqingzhu 308 in different concentrations of bioactive water, and the diluted times were 10, 25, 50, 100, 200, 400, 800 and 4 000. Then we studied the effects of different dilution of bioactive water on seed germination and seedling growth of corn, by taking the seeds soaking in distilled water as control treatment. The results showed that, except for the 10 times dilution treatment, the other bioactive water treatments could significantly increase seed germination rate, seed germination potential, stem length, root length and SPAD value, compared with those of the control treatment, and 100 times dilution of bioactive water was most beneficial to seed germination, while the 50 times dilution had most obvious effect on breeding sound seedlings and increasing plant height of corn.

  16. Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO2–CaO–P2O5–MgO–ZnO): In vitro study

    Indian Academy of Sciences (India)

    Fatemeh Baghbani; Fathollah Moztarzadeh; Leila Hajibaki; Masoud Mozafari

    2013-12-01

    Bioactive glasses in the systems SiO2–CaO–P2O5–MgO (BGZn0) and SiO2–CaO–P2O5–MgO–ZnO (BGZn5), were prepared by sol–gel method and then characterized. Surface reactivity was studied in simulated body fluid (SBF) to determine the effect of zinc (Zn) addition as a trace element. The effect of Zn addition to the glass matrix on the formation of apatite layer on the glass surface was investigated through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and scanning electron microscopy (SEM). Also, inductively coupled plasma–optical emission spectroscopy (ICP–OES) was used to determine the concentrations of released ions in SBF solution after different time intervals in SBF solution. The antibacterial activity of Zn containing glass against Pseudomonas aeruginosa was measured by the halo zone test. The presence of Zn in glass composition improved chemical durability, slowed down the formation rate of Ca–P layer and decreased the size of crystalline apatite particles. Zn containing glass exhibited an excellent antibacterial activity against P. aeruginosa which could demonstrate its ability to treat bone infection.

  17. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration.

    Science.gov (United States)

    Chen, Jing; Du, Yuzhang; Que, Wenxiu; Xing, Yonglei; Chen, Xiaofeng; Lei, Bo

    2015-12-01

    Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration.

  18. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    Science.gov (United States)

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials.

  19. Bioactivity and cell proliferation in radiopaque gel-derived CaO–P{sub 2}O{sub 5}–SiO{sub 2}–ZrO{sub 2} glass and glass–ceramic powders

    Energy Technology Data Exchange (ETDEWEB)

    Montazerian, Maziar, E-mail: maziar_montaz@yahoo.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 1684613114 (Iran, Islamic Republic of); Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 1684613114 (Iran, Islamic Republic of); Bellani, Caroline Faria [Department of Bioengineering, School of Engineering of São Carlos, University of São Paulo, São Carlos, SP, 13.566-590 (Brazil); Siqueira, Renato Luiz; Zanotto, Edgar Dutra [Department of Materials Engineering, Center for Research, Technology and Education in Vitreous Materials, Federal University of São Carlos, São Carlos, SP, 13.565-905 (Brazil)

    2015-10-01

    In this study, 10 mol% ZrO{sub 2} was added to a 27CaO–5P{sub 2}O{sub 5}–68SiO{sub 2} (mol%) base composition synthesized via a simple sol–gel method. This composition is similar to that of a frequently investigated bioactive gel–glass. The effects of ZrO{sub 2} on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass–ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite–wollastonite–zirconia glass–ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass–ceramic particles containing ZrO{sub 2} was confirmed by FTIR and SEM. Addition of ZrO{sub 2} to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO{sub 2} could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass–ceramic powder containing ZrO{sub 2} crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass–ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline

  20. Understanding the magnetic behavior of heat treated CaO–P2O5–Na2O–Fe2O3–SiO2 bioactive glass using electron paramagnetic resonance studies

    International Nuclear Information System (INIS)

    Bioactive glass of composition 41CaO–44SiO2–4P2O5–8Fe2O3–3Na2O has been heat treated in the temperature (TA) range of 750–1150 °C for time periods (tA) ranging from 1 h to 3 h to yield magnetic bioactive glass ceramics (MBCs). X-ray diffraction studies indicate the presence of bone mineral (hydroxyapatite and wollastonite) and magnetic (magnetite and α-hematite) phases in nanocrystalline form in the MBCs. Electron paramagnetic resonance (EPR) study was carried out to understand the variation in saturation magnetization and coercivity of the MBCs with TA and tA. These studies reveal the nature and amount of iron ions present in the MBCs and their interaction in the glassy oxide matrix as a function of annealing parameters. The deterioration in the magnetic properties of the glass heat treated above 1050 °C is attributed to the crystallization of the non-magnetic α-hematite phase. These results are expected to be useful in the application of these MBCs as thermoseeds in hyperthermia treatment of cancer

  1. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  2. 生物活性玻璃对体外脱矿釉质再矿化的影响%Effect of bioactive glass on demineralization enamel remineralization in vitro

    Institute of Scientific and Technical Information of China (English)

    方谦; 穆玉; 周雪; 瞿亚男; 彭伟

    2016-01-01

    目的:观察生物活性玻璃对早期脱矿釉质再矿化的作用。方法:将40块牛牙釉质块建立人工龋模型后随机分为4组:生物活性玻璃组(用质量分数6%生物活性玻璃进行再矿化处理)、GC护牙素组、NaF组(用质量分数2%NaF进行再矿化处理)和去离子水组。采用pH循环法进行再矿化处理,2次/d,5 min/次,循环15 d。用显微硬度仪测量脱矿前、再矿化前及再矿化后牙釉质表面的显微硬度,荧光显微镜观察早期釉质龋表层下的荧光带厚度,测定脱矿深度。结果:生物活性玻璃组、GC护牙素组、NaF组再矿化后显微硬度均较再矿化前增加,且生物活性玻璃组提高幅度最大(P<0.05)。4组再矿化区荧光带厚度均较脱矿区降低(P<0.05),其中生物活性玻璃组、GC护牙素组、NaF组均大于去离子水组( P<0.05)。结论:质量分数6%生物活性玻璃溶液促进脱矿釉质再矿化的疗效较好。%Aim:To observe the effect of bioactive glass on the remineralization of demineralization enamel .Methods:Forty bovine teeth were subjected to establish demineralization enamel model , and then were allocated into four groups ran-domly(10 in each group) and treated with 6% bioactive glass, casein phosphopeptide amorphous calcium phosphate (CPP-ACP),2%sodium fluoride(NaF) and deionized water,respectively.Then they were subjected to the pH-cycling,two times a day and 5 minutes each time, cycling for 15 days for remineralization.The surface microhardness(SMH)of the enamel before demineralization,before and after remineralization were measured by microhardness detector .Thickness of fluorescence be-neath the surface of early enamel caries in the demineralization area and the remineralization area were detected by fluores -cence microscopy .Results: The SMH after remineralization in bioactive glass , CPP-ACP and NaF groups was higher than those before

  3. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold

    Directory of Open Access Journals (Sweden)

    Chen XH

    2015-01-01

    Full Text Available Xiaohui Chen,1,2,* Yanbing Zhao,3,* Shinan Geng,3 Richard J Miron,1 Qiao Zhang,1 Chengtie Wu,4 Yufeng Zhang1,2 1State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People’s Republic of China; 2Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, People’s Republic of China; 3National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 4State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate (PIB nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo.Patients and methods: To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation.Results: Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB

  4. Management of localized advance loss of periodontal support associated Grade II furcation and intrabony defect in chronic periodontitis patient through amalgamation of platelet-rich fibrin and hydroxyapatite bioactive glass composite granules.

    Science.gov (United States)

    Salaria, Sanjeev Kumar; Ghuman, Simrat Kaur; Kumar, Saurabh; Sharma, Garima

    2016-01-01

    Periodontal disease is infectious, complex, multifactorial, chronic inflammatory disease of supporting periodontal tissues that not only alters the bone morphology but also leads to the reduction in bone height. Different types of bony deformities such as horizontal, vertical, craters, and furcation result from periodontal disease, but vertical and Grade II furcation defects are more amenable to regenerative periodontal therapy. The present case report describes the current concept of periodontal diagnosis and the clinical radiographical efficiency of platelet-rich fibrin and hydroxyapatite bioactive glass composite granules graft combination in the management of localized advance osseous defects with respect to tooth number 36 in chronic periodontitis patient at 1 year postoperatively. PMID:27630511

  5. Management of localized advance loss of periodontal support associated Grade II furcation and intrabony defect in chronic periodontitis patient through amalgamation of platelet-rich fibrin and hydroxyapatite bioactive glass composite granules

    Science.gov (United States)

    Salaria, Sanjeev Kumar; Ghuman, Simrat Kaur; Kumar, Saurabh; Sharma, Garima

    2016-01-01

    Periodontal disease is infectious, complex, multifactorial, chronic inflammatory disease of supporting periodontal tissues that not only alters the bone morphology but also leads to the reduction in bone height. Different types of bony deformities such as horizontal, vertical, craters, and furcation result from periodontal disease, but vertical and Grade II furcation defects are more amenable to regenerative periodontal therapy. The present case report describes the current concept of periodontal diagnosis and the clinical radiographical efficiency of platelet-rich fibrin and hydroxyapatite bioactive glass composite granules graft combination in the management of localized advance osseous defects with respect to tooth number 36 in chronic periodontitis patient at 1 year postoperatively. PMID:27630511

  6. Dosimetric response of radioactive bio glass seeds implants on rabbit brain; Resposta radiodosimetrica de implantes de sementes de biovidros radioativos no cerebro de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, I.T.; Campos, T.P.R., E-mail: itemponi@yahoo.com.br, E-mail: campos@nuclear.ufmg.br [Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares - Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2007-07-01

    Interstitial implants of radioactive seeds are used as an efficient way of treating brain tumors. Bio glasses is an interesting alternative to the metallic implanted materials, because they can be absorbed by the organism, reducing the possibilities of side effects. The present paper investigates the dosimetry by the implants performed on rabbit's brain on the NRI/UFMG research group. The spatial distribution of the specific ionizing energy deposited per unit of mass generated by Sm-153 seeds were evaluated. A computational model of the brain's region was built using the software SISCODES produced by the research group. The sections of the computer tomography of a rabbit, which was included on the experiment, were digitalized. Those were converted in a three dimensional voxel model, including the tissues, its chemical composition and density. A simulation of the particles transport is performed by the stochastic code MCNP5. The implants consist of 15 ceramic Ca-Si-Sm seeds enriched with Sm-153, with 1.1.6 mm of length and 0.3 mm diameter, implanted on the rabbit's brain. It was predicted on the model three ribbons of 5 seeds each, spaced by 1.1.2 mm, since the ribbons were in a triangular topology whose vertices were spaced by 8 mm. The activities were 120 MBq/seed. The results show isodose regions superposed over the rabbits' model, reproducing the spatial energy deposition on the brain region. The absorbed dose predicted was 3.2 Gy per 15 seed; however it was not enough to tumor control. The authors suggest to increase the number of seeds and activity, reduction of the space to 5-6 mm among ribbons, improving dose with the beta emitting. (author)

  7. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium Doped TiO2 Thin Films on Glass

    Energy Technology Data Exchange (ETDEWEB)

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; O' Hayre, Ryan P.; Ginley, David S.; Berry, Joseph J.

    2016-09-09

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.

  8. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass

    Science.gov (United States)

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; O'Hayre, Ryan P.; Ginley, David S.; Berry, Joseph J.

    2016-09-01

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.

  9. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass.

    Science.gov (United States)

    Nikodemski, Stefan; Dameron, Arrelaine A; Perkins, John D; O'Hayre, Ryan P; Ginley, David S; Berry, Joseph J

    2016-01-01

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity. PMID:27610922

  10. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass.

    Science.gov (United States)

    Nikodemski, Stefan; Dameron, Arrelaine A; Perkins, John D; O'Hayre, Ryan P; Ginley, David S; Berry, Joseph J

    2016-09-09

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.

  11. The future of bioactive ceramics.

    Science.gov (United States)

    Hench, Larry L

    2015-02-01

    Two important worldwide needs must be satisfied in the future; (1) treatment of the deteriorating health of an aging population and, (2) decreasing healthcare costs to meet the needs of an increased population. The ethical and economic dilemma is how to achieve equality in quality of care while at the same time decreasing cost of care for an ever-expanding number of people. The limited lifetime of prosthetic devices made from first-generation nearly inert biomaterials requires new approaches to meet these two large needs. This paper advises an expanded emphasis on: (1) regeneration of tissues and (2) prevention of tissue deterioration to meet this growing need. Innovative use of bioactive ceramics with genetic control of in situ tissue responses offers the potential to achieve both tissue regeneration and prevention. Clinical success of use of bioactive glass for bone regeneration is evidence that this concept works. Likewise the use of micron sized bioactive glass powders in a dentifrice for re-mineralization of teeth provides evidence that prevention of tissue deterioration is also possible. This opinion paper outlines clinical needs that could be met by innovative use of bioactive glasses and ceramics in the near future; including: regeneration of skeletal tissues that is patient specific and genetic based, load-bearing bioactive glass-ceramics for skeletal and ligament and tendon repair, repair and regeneration of soft tissues, and rapid low-cost analysis of human cell-biomaterial interactions leading to patient specific diagnoses and treatments using molecularly tailored bioceramics.

  12. Does adaptive strategy for delayed seed dispersion affect extinction probability of a desert species? an assessment using the population viability analysis and glass house experiment

    Directory of Open Access Journals (Sweden)

    Manish Mathur

    2014-10-01

    Full Text Available Canopy seed bank is an important adaptive evolutionary trait that provides various types of protection to the seeds. However, costing of such evolutionary trait on plant survival is largely unknown. Present investigation provided a new insight on the serotonious habit of Blepharis sindica associated with its endangerment status. Extinction probabilities of two available population of B. sindica were quantified using two types of census data, i.e., fruiting body number and actual population size. Population Viability Analysis (PVA revealed that delayed seed release tendency (higher fruiting body number was not synchronized with actual ground conditions (lower population size. PVA analysis based on actual population size indicated that both the available populations would vanish within 20 years. The mean time of extinction calculated from both type census data indicated its extinction within 48 years. For assessing the conservation criteria, a glass house experiment was carried out with different soil types and compositions. Pure sand and higher proportions of sand -silt were more suitable compared to clay; further, gravelly surface was the most unsuitable habitat for this species. Collection of the seeds from mature fruits/capsule and their sowing with moderate moisture availability with sandy soil could be recommended.

  13. In Vitro evaluation of antifungal activity of Bioactive Compound 2H-FURO [2,3-H]-1-Benzopyran-2-one against seed borne fungi of maize

    Directory of Open Access Journals (Sweden)

    B. Kiran

    2012-03-01

    Full Text Available Antifungal activity of bioactive compound 2HFuro[ 2,3-H]-1-benzopyran-2-one recorded a significant activity at 100-1000 ppm concentration against all the ten Aspergillus species tested. A. flavus recorded complete inhibition at 100 ppm concentration, A. niger at 500 ppm, A. fumigates at 600 ppm, A. flavus oryzae and A. flavus columnaris at 700 ppm respectively. A. ochraceous and A. flavipes recorded complete inhibition at 900 ppm concentration. Compared to synthetic fungicide Captan and Thiram at 2000ppm concentration. Minimum Inhibitory Concentration (MIC of bioactive compound was in the range of 100- 900ppm concentration against all the test fungi.

  14. 生物活性玻璃联合颈椎椎间融合器在颈椎前路椎间融合中的应用%Anterior cervical discectomy and fusion by cervical cage with bioactive glass

    Institute of Scientific and Technical Information of China (English)

    李宏; 李淳德; 邑晓东; 刘洪

    2014-01-01

    BACKGROUND:Bioactive glass has been largely reported to have perfect clinical results in the bone nonunion and fracture healing, but its effect during spinal fusion progress is rarely reported. OBJECTIVE:To explore the safety and effectiveness of anterior cervical discectomy and fusion by cervical cage with bioactive glass METHODS:A total of 68 cases of cervical spondylosis myelopathy were treated with single level anterior cervical discectomy and fusion. Their clinical data were retrospectively analyzed. Al the cases underwent polyetheretherketone cervical cage with autogenous bone (n=32, control group) or bioactive glass (n=32, experimental group). The bone fusion, neurological functional recovery, intervertebral height, change of cervical curve and wound complications in the two groups was recorded and analyzed. RESULTS AND CONCLUSION:Neurological improvement had no difference between the two groups and there was no complication about wound, such as infection and delayed healing. The average rate of bone fusion was 97%in the control group while 94%in the experiment group 3 months after operation which had no significant differences. Six months after operation, al cases gained bone fusion. The intervertebral height and change of cervical curve both maintained wel in the two groups within 3, 6, 12 months after operation which had no significant differences between the two groups. So, anterior cervical discectomy and fusion by cervical cage with bioactive glass is safe and effective.%背景:已有文献报道生物活性玻璃在骨不连、骨折愈合过程中有较佳的临床疗效,但其在脊柱骨融合过程中的效果鲜有报道。  目的:观察生物活性玻璃联合颈椎椎间融合器在颈椎前路椎间融合中应用的安全性和有效性。  方法:回顾性分析68例颈椎前路单节段椎间融合患者资料,全部病例均采用聚醚醚酮材料椎间融合器,其中内填充自体松质骨植骨32

  15. Bioactive glass effects on remineralization of early artificial enamel caries%生物活性玻璃对早期人工釉质龋的再矿化*★

    Institute of Scientific and Technical Information of China (English)

    王尹; 王瑀; 董波; 张婷; 陈思杰; 曲媛媛

    2013-01-01

      背景:生物活性玻璃具有良好的生物相容性,且具有抑制口腔致龋细菌和牙周相关细菌及抗牙本质过敏的作用。目的:评价生物活性玻璃促进早期人工釉质龋再矿化的作用。方法:将新鲜拔除的30颗牛切牙制成人工龋模型,将标本在37℃人工脱矿液内脱矿72 h,用扫描电镜观察脱矿后釉质表面的平滑情况,用显微硬度仪测量脱矿后釉质的显微硬度。然后随机分为3组,每组10个。采用pH循环法模拟人口腔环境,将3组标本分别浸泡在生物活性玻璃溶液、氟化钠溶液及人工唾液内,3次/d,10 min/次,循环浸泡20 d,扫描电镜检测标本脱矿及再矿化情况,用显微硬度计检查牙釉质显微硬度。结果与结论:浸泡在生物活性玻璃溶液中的牙釉质表面较浸泡在其他两溶液中的牙釉质表面光滑平整,无空隙存在;浸泡在生物活性玻璃溶液中的牙釉质表面显微硬度高于浸泡在其他两溶液中的牙釉质表面显微硬度(P <0.05)。说明生物活性玻璃在体外实验中能促进早期釉质龋的再矿化。%BACKGROUND: Bioactive glass has good biocompatibility and could control oral bacteria and protect against dentin hypersensitivity. OBJECTIVE: To evaluate remineralization effect of bioactive glass on early artificial enamel caries. METHODS: Thirty bovine incisors fresh were made to artificial caries models, and were placed in a container with demineralization iquid at 37 ℃ for 72 hours. Micro hardness tester was used to detect hardness value after demineralization, and the enamel surfaces were observed by scanning electron microscope. Then, the samples were randomly divided into three groups, 10 in each group. Using pH cycle way method, the oral environment of human beings was copied. Samples were respectively soaked in bioactive glass solution, sodium fluoride solution and artificial saliva solution, three times a day and 10 minutes

  16. Effect of Sol-Gel Ageing Time on Three Dimensionally Ordered Macroporous Structure of 80SiO2-15CaO-5P2O5 Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida CHAROENSUK

    2014-04-01

    Full Text Available Three dimensionally ordered macroporous bioactive glasses (3DOM-BGs, namely 80SiO2-15CaO-5P2O5, were synthesized by sol-gel method. PMMA colloidal crystals and non-ionic block copolymers P123 were used as cotemplates. The amorphous 3DOM-BGs had skeletal walls enclosing macropores. Such structure resulted from octahedral and tetrahedral holes of the face-centered cubic (fcc closest packed PMMA templates and windows interconnecting through macropores network. The thicknesses of the walls were around 50 nm – 80 nm and the windows were 90 nm – 110 nm in diameter. These wall thickness is increased by with an increase in ageing time up to 24 h and  then gradually reduced with further increase in aging time. Vibration bands of Si–O–Si and P–O were evident in infrared spectra which are in agreement with EDS spectra indicating Si, P and Ca compositions. After in vitro bioactivity testing by soaking 3DOM-BGs in simulated body fluid at 37 °C, the crystallization of amorphous calcium phosphate layers compatible to the bone component of hydroxyl carbonate apatite were rapidly formed within 3 h. These results indicated that these 3DOM-BGs resembled ideal bone implant materials.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.4755

  17. Prospects of fatty acid profile and bioactive composition from lipid seeds for the discrimination of apple varieties with the application of chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Arain, S.; Sherazzi, S. T. H.; Bhanger, M. I.; Memon, N.; Mahesar, S. A.; Rajput, M. T.

    2012-11-01

    The extracted oils from four apple seed varieties (Royal Gala, Red Delicious, Pyrus Malus and Golden Delicious) from Pakistan were investigated for their fatty acid profiles and lipid biactives by GC-MS. The oil contents in the seeds of the apple varieties ranged from 26.8-28.7%. The results revealed that linoleic acid (40.5-49.6%) was the main fatty acid in the Royal Gala, Red Delicious and Pyrus Malus seeds, and oleic acid (38.7-45.5%) was the main fatty acid in the Golden Delicious seeds. Palmitic acid (6.1-7.4%) and stearic acid (2.0-3.1%) were the dominant saturated fatty acids, besides the small amount of palmitoleic, heptadecanoic, linolenic, archidic, eicosanoic, and behenic acids. Sterols, tocopherols, hydrocarbons and some other minor components were also identified from the unsaponifiable lipid fraction. The variation among the results of both fatty acids and lipid bio actives for the four different varieties was assessed by principal component analysis, discriminant analysis and cluster analyses. The results conclude that both oil fractions could be applied as a useful tool to discriminate among the apple seed varieties. (Author) 42 refs.

  18. Micro-ion beam analysis of physico-chemical reactions in vitro induced by nano-structured sol-gel derived bioactive glasses; Caracterisation par micro-faisceau d'ions des reactions physico-chimiques induites in vitro par des verres bioactifs nanostructures elabores par la methode sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Lao, J

    2007-07-15

    The study of bioactive glasses is a multi-field area of research aiming at a major goal: the development of new generation biomaterials that would be able to bond with host tissues through the formation of a strong interfacial bond, together with helping the body heal itself through the stimulation of specific cellular responses. Thus clinical applications of bioactive glasses mainly concern dental surgery and orthopedics, for filling osseous defects. For this purpose, we have elaborated bioactive glasses in the binary SiO{sub 2}-CaO system, ternary SiO{sub 2}-CaO-P{sub 2}O{sub 5} system, and for the first time, to our knowledge, strontium-doped SiO{sub 2}-CaO-SrO and SiO{sub 2}-CaO-P{sub 2}O{sub 5}-SrO glasses. The materials were elaborated using the sol-gel process, which allowed the synthesis of nano-porous materials with great purity and homogeneity. The bio-activity of the glasses was clearly demonstrated in vitro: in contact with biological fluids, the whole lot of mate-rials were able to induce the formation of a Ca-P-Mg layer a few microns thick at their surface. Our work is characterized by the use of PIXE-RBS nuclear microprobes to study the bioactive glass/biological fluids interface. Thanks to these methods we obtained chemical maps that made possible the analysis of major and trace elements concentrations at the interface. Moreover, quantitative information regarding the local reactivity of glasses were acquired. These data are important to evaluate the kinetics and amplitude of the physico-chemical reactions involved in the bio-activity process. Thus, we highlighted that the binary glass is the highest reactive regarding the dissolution of the glassy matrix as well as the first appearance of the Ca-P rich layer. However the Ca/P atomic ratio calculated at the glass/biological fluids interface decreases slowly, indicating that the Ca-P-Mg layer encounters difficulties to be changed into a more stable apatitic phase. For the P-containing glasses, the de

  19. Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo.

    Science.gov (United States)

    Lin, Yinan; Xiao, Wei; Bal, B Sonny; Rahaman, Mohamed N

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13-93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0-2.0wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8wt.% CuO in the glass but they were significantly reduced by 2.0wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6weeks in rat calvarial defects (46±8%) was not significantly affected by 0.4 or 0.8wt.% CuO in the glass whereas it was significantly inhibited (0.8±0.7%) in the scaffolds doped with 2.0wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13-93 glass scaffolds with up to 0.8wt.% CuO did not affect their biocompatibility whereas 2.0wt.% CuO was toxic to cells and detrimental to bone regeneration. PMID:27287141

  20. Brushing abrasion of eroded enamel using bioactive glass toothpaste in different time after acid etching%生物活性玻璃抑制酸蚀后不同时间牙釉质的刷牙磨损

    Institute of Scientific and Technical Information of China (English)

    赵玉龙; 杨德圣

    2015-01-01

    BACKGROUND:Bioactive glass has good biocompatibility, which can promote the remineralization effects of demineralized enamel and enhance the resistance of enamel to erosion. OBJECTIVE:To evaluate the effect of bioactive glass toothpaste versus fluoride toothpaste on brushing abrasion of enamel after acid etching. METHODS:Fifty-six enamel specimens were prepared from bovine incisors, and were embedded in acrylic resin with exposed buccal surface. The exposed area was 6 mm×6 mm and two amalgam fil ings were placed into the enamel and polished. Al specimens were divided into seven groups with eight specimens each. In six groups, specimens were brushed with ordinary toothpaste, fluoride toothpaste, bioactive glass toothpaste immediately and 30 minutes after being eroded by the Sprite. The last one group was brushed with ordinary toothpaste without acid etching as control. The treatment course was cycled 60 times. The surface abrasion loss of the specimens between two amalgam fil ings compared with respective amalgam reference surfaces was final y observed and calculated under laser scanning confocal microscope. RESULTS AND CONCLUSION:The abrasion loss amount of teeth with no acid etching was significantly lower than that with acid etching (P<0.05). The abrasion loss amount of teeth brushed with bioactive glass toothpaste was less than that with fluoride toothpaste at the same brushing time (P<0.05). For the same toothpaste, the abrasion loss amount of teeth brushed 30 minutes after eroded was less than that bushed instantly after eroded (P<0.05). Use of bioactive glass toothpaste can effectively reduce enamel loss caused by acid etching and brushing. The loss amount can also be reduced by brushing teeth 30 minutes after acid etching.%背景:生物活性玻璃具有良好的生物相容性,并具有优异的促进牙齿再矿化和抗酸蚀效果。目的:比较生物活性玻璃牙膏和含氟牙膏对牙釉质酸蚀后不同时间点刷牙

  1. 溶胶-凝胶生物活性玻璃的结构特征及其对糖尿病创面修复作用的研究%Structural Properties and Wound Healing Effect of the Sol-Gel Bioactive Glass on Diabetic Skin Wounds

    Institute of Scientific and Technical Information of China (English)

    林才; 毛葱; 李玉莉; 张娟娟; 苗国厚; 陈晓峰

    2013-01-01

    采用熔融法和溶胶-凝胶法分别制备了生物活性玻璃45S5和SGBG,通过SEM、BET及XRD等方法对它们的微观结构进行了表征,并建立了SD大鼠糖尿病皮肤创面模型,通过对创面愈合时间、创面愈合率以及HE染色分析,探讨了生物活性玻璃对促进糖尿病难愈创面愈合的效果.结果表明,与凡士林组相比,生物活性玻璃组能加速创面愈合,且SGBG具有纳米结构,其比表面积更大,与45S5相比能缩短糖尿病创面的愈合时间,提高愈合速度.组织学分析表明生物活性玻璃能促进肉芽组织的生长.由此表明生物活性玻璃能促进大鼠糖尿病创面的修复,且具有纳米结构的SGBG效果更好.%The 45S5 bioactive glass (45S5) was prepared by a melting process, while sol-gel bioactive glass (SGBG) was obtained by Sol-Gel method. The bioactive glasses were characterized by SEM、BET and XRD. Then the wound healing effect was investigated through the wound healing time, wound healing rate and histology examination. The results indicate that the bioactive glass can lessen the wound healing time and increase the healing rates of diabetic rats. Compared with the 45S5, SGBG can promote wound healing of diabetic rats more quickly and efficiently due to the larger surface area and nanostructure. Histological examination shows that bioactive glasses promote the proliferation of fibroblasts and growth of granulation tissue. All results suggest that bioactive glass can accelerate the recovery of skin wounds and SGBG with nanostructure has a better healing effect in diabetes-impaired models.

  2. BIOACTIVE GLASS SHELL GROWTH OF A Si–Na–Ca–P LAYER ON GOLD NANOPARTICLES FUNCTIONALIZED WITH MERCAPTOPROPYLTRIMETHYLOXYSILANE–SILICATE–TETRAETHYLOTHOSILICATE

    OpenAIRE

    CHIH-KUANG WANG; SZU-HSIEN CHEN; WAN-YUN LI; CHERN-HSIUNG LAI; WEN-CHENG CHEN

    2009-01-01

    Calcium phosphate and silicate-modified gold surfaces have potential applications in orthopedic and dental reconstruction, especially when combined with bone cement or dental resins. The aim of this study was to evaluate the formation of a Si–Na–Ca–P glass system nanoshell on functionalized gold nanoparticles. Stable gold nanoparticle suspensions were prepared by controlled reduction of HAuCl4 using the sodium citrate method to obtain a nanogold-mercaptopropyltrimethyloxysilane (MPTS)–silicat...

  3. Preparation and Properties of Mesoporous Bioactive Glass / Demineralized Bone Composite Scaffolds%介孔生物活性玻璃/脱钙骨复合支架的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    薛士壮; 朱海霖; 陈建勇; 冯新星; 常江

    2011-01-01

    The composite scaffolds (MBG/DB) were prepared successfully through immersing the mesoporous bioactive glass powders into the demineralized bones. The bovine cancellous bone, demineralized bone, composite scaffold were investigated and characterized by FTIR, SEM, XRD and universal electromechanical testing machine. The results show that the compressive strength of the demineralized bones is about (1.10+0.31)Mpa, the porosity is about 71% and the pore size is in the range from 200 to 600μm. However, the porosity and the compressive strength of the composite scaffolds are decreased to 40% and increase markedly to (8.49 + 2.14)Mpa, respectively. Meanwhile, the composite scaffolds show good bioactivity in vitro.%将介孔生物活性玻璃(MBG)与脱钙骨(DB)复合,利用浸渍法制备出MBG/DB复合支架材料.采用红外光谱(FTIR),扫描电镜(SEM),X射线衍射(XRD),电子万能材料试验机等方法对牛松质骨(CB)、DB、MBG/DB复合支架进行表征.结果表明,CB经浸酸处理后制备的DB,孔径大小在200-600μm范围内,孔隙率约为71%,抗压性能比CB明显降低(1.10±0.31)MPa,而采用浸渍法制备的复合支架,孔隙率降为40%左右,而压缩强度明显提高(8.49±2.14)MPa.体外生物活性测试表明:复合支架具有良好的生物活性.

  4. Optimizing concentration of bioactive glass that promotes early enamel caries remineralization%生物活性玻璃促进早期釉质龋再矿化最适浓度的研究

    Institute of Scientific and Technical Information of China (English)

    方谦; 周雪; 穆玉; 陈乃玲; 赵艳萍; 刘庆辉; 彭伟

    2015-01-01

    Objective To explore the optimum concentration of bioactive glass that promotes early enamel caries remineralization. Methods Fresh bovine incisors were selected and used for enamel specimen preparation. All specimens were randomly divided into two groups:micro hardness group and fluorescence group. Both groups were further divided into 3%, 6%and 9%groups. These specimens were placed in containers with demineralization liquid at 37℃for 72 hours. Then they were treat with 3%, 6%and 9%bioactive glass solution respectively twice a day for 5 minutes each. Samples in all three groups were dipped circularly into an artificial demineralization solution and an artificial saliva solution for 15 days. The mi⁃crohardness of enamel surface was measured before and after demineralization and remineralization. The different value of microhardness before and after remineralization was calculated. The thickness of fluorescence beneath the surface of early enamel caries was observed to evaluate the extend of remineralization effect. Results The difference in value of micro hard⁃ness in 6%group was the highest while that in 3%group was the lowest. The differences were significant. The difference in value of demineralization depth in 6%group was greater than those in 3%and 9%groups (P<0.05). There was no statistical⁃ly significance between those in 3%group and 9%group. Conclution The optimum concentration of bioactive glass solu⁃tion that promotes the remineralization of early enamel caries is 6%, which is ideal for remineralization of early enamel caries.%目的:探讨生物活性玻璃促进早期釉质龋再矿化的最适浓度。方法收集新鲜拔除的牛切牙,制备釉质标本,随机分成显微硬度组和荧光组两大组,每组又分为3%、6%和9%小组,每小组5个标本。所有标本放在37℃人工脱矿液中脱矿72 h后,分别浸泡在质量分数为3%、6%和9%生物活性玻璃溶液内,5 min/次,2次/d,循环15 d。显微硬度

  5. Anti-biofilm Effect of Glass Ionomer Cements Incorporated with Chlorhexidine and Bioaetive Glass

    Institute of Scientific and Technical Information of China (English)

    HUANG Xueqing; YANG Tiantian; ZHAO Suling; HUANG Cui; DU Xijin

    2012-01-01

    The effect of glass ionomer cement and resin-modified glass ionomer cement incorporated with chlorhexidine and bioactive glass on antimicrobial activity and physicochemical properties were investigated.The experimental results showed that groups incorporated with 1% chlorhexidine exhibited a significant reduction of optical density values of the bacterial suspension and increased the degradation of Streptococcus mutans biofilm.However,groups incorporated with 10% bioactive glass did not affect the optical density values and the biofilm formation.The mechanical properties of the materials and the polymerization were not influenced by the addition of chlorhexidine.Nevertheless,the compressive strength was lower when the materials were incorporated with bioactive glass.It can be concluded that glass ionomer cements incorporated with chlorhexidine can maintain its mechanical properties as well as reduce early S mutans biofilm formation.Controlled release/sustained release technology may be required to optimize the antibacterial activity of glass ionomer cements incorporated with bioactive glass.

  6. Studies on influence of aluminium ions on the bioactivity of B{sub 2}O{sub 3}–SiO{sub 2}–P{sub 2}O{sub 5}–Na{sub 2}O–CaO glass system by means of spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Mohini, G. Jagan; Krishnamacharyulu, N. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, Andhra Pradesh (India); Department of Physics, Andhra Loyola College, Vijayawada 520 008, Andhra Pradesh (India); Sahaya Baskaran, G., E-mail: sbalc@rediffmail.com [Department of Physics, Andhra Loyola College, Vijayawada 520 008, Andhra Pradesh (India); Rao, P. Venkateswara [Physics Department, University of West Indies, Mona Campus, Kingston (Jamaica); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, Andhra Pradesh (India)

    2013-12-15

    Bioactive multi component glasses of the composition of 27.4 B{sub 2}O{sub 3}–6.4 SiO{sub 2}–2.5 P{sub 2}O{sub 5}–25.5 Na{sub 2}O–(38.2 − x) CaO: x Al{sub 2}O{sub 3} (x between 0 and 3.2) were synthesized, by melt quenching technique and their bioactivity was investigated as a function of Al{sub 2}O{sub 3} concentration. Initially, optical absorption and infrared spectra were recorded and analyzed in order to have some pre-understanding over structural aspects of the glasses. For understanding the bioactivity, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (∼30 days) and the weight loss measurements were carried out. The spectroscopic studies were repeated on the post immersed samples. From the comparison of the analysis of the spectroscopic data of both pre-immersed and post-immersed samples together with the information on variation of pH value of residual solution as a function of immersion time, it is concluded that the participation of aluminium ions in tetrahedral positions is hindrance for the formation of HA layer and for the bioactivity of the samples.

  7. Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mengchao Shi

    2014-01-01

    Full Text Available It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

  8. Bioactive Hierarchical Structures for Genetic Control of Bone Morphogenesis

    Directory of Open Access Journals (Sweden)

    Pilar Sepulveda

    2002-09-01

    Full Text Available For thirty years it has been known that certain compositions of Na2O-CaO-P2O5-SiO 2 glasses will form a mechanically strong, chemical bond to bone. These materials have become known as bioactive glasses and the process of bonding is called bioactive fixation. Bioactive glasses are widely used clinically in the repair of bone defects. Recent research at the Imperial College Tissue Engineering Centre has now established that there is a genetic control of the cellular response to bioactive materials. Seven families of genes are up-regulated when primary human osteoblasts are exposed to the ionic dissolution products of bioactive glasses. The gene expression occurs very rapidly, within two days, and includes enhanced expression of cell cycle regulators. The consequence is rapid differentiation of the osteoblasts into a mature phenotype and formation of large three-dimensional bone nodules within six days in vitro. These cell culture results correlate with extensive human clinical results using the same bioactive material. The new genetic theory of bioactive materials provides a scientific foundation for molecular design of new generation of resorbable bioactive materials for tissue engineering and in situ tissue regeneration and repair. Application of this theory to the synthesis of bioactive foams for tissue engineering of bone is described.

  9. 豆类种子及萌发过程中功效性成分研究概述%Research Advancement of Bioactive Compounds in Legumes Seeds and Their Germinated Products

    Institute of Scientific and Technical Information of China (English)

    陈振; 康玉凡

    2012-01-01

    豆类种子及其萌发后形成的芽苗菜富含多种生物活性成分,本文综述近几年有关大豆、绿豆、红小豆、蚕豆、豌豆等多种豆类种子及其萌发过程中酚类、大豆异黄酮、γ-氨基丁酸和左旋多巴等功能性成分的研究,分别从结构与种类、植物体内合成途径、保健功能和代谢过程中的变化规律等方面对这些功能成分进行了综述,为豆类芽苗菜功能保健产品开发提供理论借鉴与技术参考。%Legumes seeds and their germinated products are rich in various bioactive compounds. This article summaried the research on functional components of phenolics, isoflavones, γ-aminobutyric acid and levodopa in legumes seeds including soybeans, mung beans, red beans, broad beans, peas, etc and their germinated products in recent years. Furthermore, structure and species, biosynthesis pathway, health functions and variation in the metabolic processes of the functional components of legumes and their germinated products were reviewed respectively, which provided agronomic traits and transgenic technology for the development of health products of bean sprouts.

  10. Pressurization of bioactive bone cement in vitro.

    Science.gov (United States)

    Fujita, H; Iida, H; Kawanabe, K; Okada, Y; Oka, M; Masuda, T; Kitamura, Y; Nakamura, T

    1999-01-01

    We have developed a bioactive bone cement consisting of MgO-CaO-SiO2-P2O5-CaF2 glass-ceramic powder (AW glass-ceramic powder), silica glass powder as an inorganic filler, and bisphenol-a-glycidyl methacrylate (bis-GMA) based resin as an organic matrix. The efficacy of this bioactive bone cement was investigated by evaluating its pressurization in a 5-mm hole and small pores using a simulated acetabular cavity. Two types of acetabular components were used (flanged and unflanged sockets) and a commercially available polymethylmethacrylate (PMMA) bone cement (CMW 1 Radiopaque Bone Cement) was selected as a comparative control. Bioactive bone cement exerted greater intrusion volume in 5-mm holes than PMMA bone cement in both the flanged and unflanged sockets 10 minutes after pressurization (p anchor holes than PMMA bone cement.

  11. Bioatividade do óleo de nim sobre Alphitobius diaperinus (Coleoptera: Tenebrionidae em sementes de amendoim Bioactivity of neem oil on Alphitobius diaperinus (Coleoptera: Tenebrionidae in stored peanut seeds

    Directory of Open Access Journals (Sweden)

    Aderdilânia I. B. de Azevedo

    2010-03-01

    Full Text Available Propôs-se, neste trabalho, avaliar a bioatividade do óleo de nim sobre Alphitobius diaperinus, em sementes armazenadas. Sementes de amendoim cultivar BRS Havana foram tratadas com óleo de nim nas concentrações de 0,0; 1,0; 2,0; 3,0 e 4,0% (volume/massa de sementes e mantidas em bandejas durante 24 h. Cinquenta gramas de sementes foram colocados em recipientes plásticos e infestados com 20 insetos adultos de A. diaperinus. Avaliaram-se, aos 30, 60, 90 e 120 dias de armazenamento, a mortalidade, o número de descendentes (larvas, pupas e adultos e o número de sementes perfuradas. Para análise de variância dos dados utilizou-se o teste de Friedman (p £ 0,05, sendo a comparação das médias realizada pelo teste de Student Newman Keuls (p £ 0,05. Calculou-se, também, a eficiência do produto pelo método de Henderson & Tilton (1955. Eficiência do óleo de nim sobre a mortalidade de A. diaperinus acima de 74,92% foi observada a partir dos 90 dias do armazenamento, para as concentrações de 3 e 4%; entretanto, o produto conferiu proteção às sementes de amendoim, em todas as concentrações, nos períodos estudados, visto que afetou todos os descendentes de A. diaperinus da geração F1.This work aimed to evaluate the bioactivity of neem oil on Alphitobius diaperinus, in stored seed. Peanuts seeds, cultivar BRS Havana, were treated with neem oil at concentrations of 0.0, 1.0, 2.0, 3.0 and 4.0% (volume/weight and kept in trays for 24 h. Fifty grams of seeds were put in plastic containers and infested with 20 adult insects of A. diaperinus. The mortality, the offspring number (larvae, pupae and adults and the number of punched seeds were evaluated at 30, 60, 90 and 120 days of storage. For variance analysis of data, Friedman test (p £ 0.05 was used. Student Newman Keuls test (p £ 0.05 was used for comparison of means. The product efficiency was also analysed by using Henderson & Tilton (1955 method. Neem oil efficiency on the mortality

  12. Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.).

    Science.gov (United States)

    Velázquez-Gutiérrez, Sandra Karina; Figueira, Ana Cristina; Rodríguez-Huezo, María Eva; Román-Guerrero, Angélica; Carrillo-Navas, Hector; Pérez-Alonso, César

    2015-05-01

    Freeze-dried chia mucilage adsorption isotherms were determined at 25, 35 and 40°C and fitted with the Guggenheim-Anderson-de Boer model. The integral thermodynamic properties (enthalpy and entropy) were estimated with the Clausius-Clapeyron equation. Pore radius of the mucilage, calculated with the Kelvin equation, varied from 0.87 to 6.44 nm in the temperature range studied. The point of maximum stability (minimum integral entropy) ranged between 7.56 and 7.63kg H2O per 100 kg of dry solids (d.s.) (water activity of 0.34-0.53). Enthalpy-entropy compensation for the mucilage showed two isokinetic temperatures: (i) one occurring at low moisture contents (0-7.56 kg H2O per 100 kg d.s.), controlled by changes in water entropy; and (ii) another happening in the moisture interval of 7.56-24 kg H2O per 100 kg d.s. and was enthalpy driven. The glass transition temperature Tg of the mucilage fluctuated between 42.93 and 57.93°C.

  13. The effect of commercial enzyme preparation-assisted maceration on the yield, quality, and bioactivity of essential oil from waste carrot seeds (Daucus carota L.

    Directory of Open Access Journals (Sweden)

    Śmigielski, K. B.

    2014-12-01

    Full Text Available Eight enzyme preparations were screened with a view to maximizing the yield of carrot seed essential oil. Three of the eight enzyme preparations investigated, lipase from Mucor circinelloides, XPect® pectinase, and Esperase® protease, significantly influenced the amount of essential oil obtained, with Esperase® being the most effective. The Taguchi method was applied to optimize the processing conditions for the Esperase® protease. Under the optimum conditions, the essential oil yield increased by approximately 48%. The main constituent compounds in the oil are: carotol (OeA: 40.80%–OeB: 46.17%, daucol (OeA: 7.35%–OeB: 6.22%, sabinene (OeA: 5.12%–OeB: 6.13%, alpha-pinene (OeA: 4.24%–OeB: 5.11% and geranyl acetate (OeA: 4.50%–OeB: 3.68%. As compared to the control sample, the essential oil obtained from enzyme-pretreated carrot seeds has the same biological activity against Bacillus subtilis and Candida sp., lower activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and higher activity against Aspergillus niger and Penicillium expansum.Ocho preparados enzimáticos fueron seleccionados con el fin de maximizar el rendimiento de aceites esenciales de semillas de zanahoria. Tres de los ocho preparados de las enzimas investigadas, lipasa de Mucor circinelloides, Xpect® pectinasa y Esperase® proteasa, influyeron de manera significativa sobre la cantidad de aceite esencial obtenido, siendo Esperase® el más eficaz. El método de Taguchi se aplicó para optimizar las condiciones del procesamiento para esta última. Bajo las condiciones óptimas, el rendimiento de los aceite esenciales aumentó aproximadamente un 48%. Los principales compuestos constituyentes del aceite son: carotol (OEA: 40.80%–OeB: 46,17%, ducol (OEA: 7,35%–OeB: 6,22%, sabineno (OEA: 5,12%–OeB: 6,13%, alfa-pineno (OEA: 4,24%– OeB: 5,11% y acetato de geranilo (OEA: 4,50%–OeB: 3,68%. En comparación con la muestra control, el

  14. Dissolution behavior of bioactive glass ceramics with different CaO/MgO ratios in SBF-K9 and r-SBF

    Directory of Open Access Journals (Sweden)

    M.U. Hashmi

    2014-08-01

    Full Text Available In the present work, we studied dissolution behavior of three glass ceramics samples each having 34 SiO2–14.5 P2O5–1 CaF2–0.5 MgF2 (%wt and ratio of CaO/MgO varying from 11.5:1 to 1:11.5 in conventional SBF (SBF-K9 and revised SBF (r-SBF that has ionic concentration exactly equal to that of human blood plasma. For that purpose, samples were immersed in fluids for different time periods upto 25 days. Thin film XRD analysis revealed the diffusive nature of the phases on the surfaces of samples after soaking for different time periods in r-SBF. It showed the poor precipitation and small thickness of the HCAp layer on the samples as compared to that in SBF-K9, thus indicating the fitness and sensitivity of r-SBF for in-vitro characterization of samples. AAS, FTIR and EDS revealed slow bonding rate on the surfaces of the samples in r-SBF than that in SBF-K9 that showed the dependence of bond formation on the composition of the materials as well as on the physiological fluid used for in-vitro characterization. The rate of HCAp formation was slower in r-SBF due to more competitive adsorption of CO3− ions to Ca and Mg ions owing to greater amount of CO3− in r-SBF than that in SBF-K9. It shows the importance of CO3− content in the physiological fluids for the in-vitro assessment of samples. So, r-SBF is recommended to be used for assessment of samples to clearly understand their behavior in-vivo.

  15. Dissolution behavior of bioactive glass ceramics with different CaO/MgO ratios in SBF-K9 and r-SBF$

    Institute of Scientific and Technical Information of China (English)

    M.U. Hashmi; Saqlain A. Shah

    2014-01-01

    In the present work, we studied dissolution behavior of three glass ceramics samples each having 34 SiO2-14.5 P2O5-1 CaF2-0.5 MgF2 (%wt) and ratio of CaO/MgO varying from 11.5:1 to 1:11.5 in conventional SBF (SBF-K9) and revised SBF (r-SBF) that has ionic concentration exactly equal to that of human blood plasma. For that purpose, samples were immersed in fluids for different time periods upto 25 days. Thin film XRD analysis revealed the diffusive nature of the phases on the surfaces of samples after soaking for different time periods in r-SBF. It showed the poor precipitation and small thickness of the HCAp layer on the samples as compared to that in SBF-K9, thus indicating the fitness and sensitivity of r-SBF for in-vitro characterization of samples. AAS, FTIR and EDS revealed slow bonding rate on the surfaces of the samples in r-SBF than that in SBF-K9 that showed the dependence of bond formation on the composition of the materials as well as on the physiological fluid used for in-vitro characterization. The rate of HCAp formation was slower in r-SBF due to more competitive adsorption of CO3- ions to Ca and Mg ions owing to greater amount of CO3- in r-SBF than that in SBF-K9. It shows the importance of CO3- content in the physiological fluids for the in-vitro assessment of samples. So, r-SBF is recommended to be used for assessment of samples to clearly understand their behavior in-vivo.

  16. Chloroform Fraction of Centratherum anthelminticum (L. Seed Inhibits Tumor Necrosis Factor Alpha and Exhibits Pleotropic Bioactivities: Inhibitory Role in Human Tumor Cells

    Directory of Open Access Journals (Sweden)

    Aditya Arya

    2012-01-01

    Full Text Available We investigated the antioxidant potential, cytotoxic effect, and TNF-α inhibition activity with NF-κB activation response in a chloroform fraction of Centratherum anthelminticum seeds (CACF. The antioxidant property of CACF was evaluated with DPPH, ORAC, and FRAP assays, which demonstrated significant antioxidant activity. The cytotoxicity of CACF was tested using the MTT assay; CACF effective inhibitory concentrations (IC50 for A549, PC-3, MCF-7, and WRL-68 cells were 31.42±5.4, 22.61±1.7, 8.1±0.9, and 54.93±8.3 μg/mL, respectively. CACF effectively and dose-dependently inhibited TNF-α release, in vitro and in vivo. CACF inhibited TNF-α secretion in stimulated RAW264.7 macrophage supernatants with an IC50 of 0.012 μg/mL, without affecting their viability; the highest dose tested reduced serum TNF-α by 61%. Acute toxicity testing in rats revealed that CACF was non-toxic at all doses tested. Matching the cytotoxic activity towards a mechanistic approach, CACF dose-dependently exhibited in vitro inhibitory effects against the activation of NF-κB translocation in MCF-7 cells. Preliminary phytochemical screening with GC/MS analysis detected 22 compounds in CACF, of which morpholinoethyl isothiocyanate was the most abundant (29.04%. The study reveals the potential of CACF in the treatment of breast cancer and in oxidative stress conditions with associated inflammatory responses.

  17. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    Science.gov (United States)

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions. PMID:26861499

  18. 黄皮种子甲醇提取物对茶黄蓟马的生物活性%Bioactivities of the methanol extract from Clausena lansium seeds against Scirtothrips dorsalis

    Institute of Scientific and Technical Information of China (English)

    张瑞明; 赵冬香; 万树青

    2011-01-01

    The repelling and contact actions of the methanol extract from Clausena lansium (Lour.) Skeels seeds against Scirtothrips dorsalis were investigated.The results showed that the methanol extract had an extremely strong repelling activity.The percentages of repellency of the extract against S.dorsalis at 20 g/L were 92.86%and 89.91% after 12 and 24 h, respectively.In addition, the extract displayed contact activity to some extent.The medium lethal concentrations (LC50) of the extracts to S.dorsalis were 16.60 g/L and 12.85 g/L after 12 h and 24 h, respectively.The bioactivity of petroleum ether phase of C.lansium seeds was the highest, with an adjusted mortality of 49.37% after 24 h.%研究了黄皮种子甲醇提取物对茶黄蓟马(Scirtothrips dorsalis Hood)的驱避和触杀作用.结果表明:黄皮种子甲醇提取物对茶黄蓟马有较强的驱避活性,在浓度为20g/L时,12h和24h对茶黄蓟马的驱避率分别为92.86%和89.91%;另外,提取物对茶黄蓟马有一定的触杀作用,处理后12h和24h对茶黄蓟马的致死中浓度(LC50)分别为16.60g/L和12.85g/L.各萃取相中石油醚相的活性最高,质量浓度为5g/L时,石油醚萃取物对茶黄蓟马24h后的校正死亡率为49.37%.

  19. Cytocompatibility of oxygen plasma-treated polylactic acid and bioactive glass guided bone regeneration membrane%氧等离子处理聚乳酸与生物活性玻璃引导骨再生膜的细胞相容性

    Institute of Scientific and Technical Information of China (English)

    齐磊; 同志超; 伍骥

    2015-01-01

    BACKGROUND:Currently, bioactive glass and polylactic acid have been used in clinical dentistry and plastic surgery; however, their therapeutic outcomes are not satisfactory, because the material properties have some limitations. OBJECTIVE:To explore the cytocompatibility of oxygen plasma-treated polylactic acid and bioactive glass guided bone regeneration membrane. METHODS:Bioactive glass and polylactic acid were used as the basic materials to prepare polylactic acid membrane, polylactic acid and bioactive glass composite membrane and oxygen plasme-treated polylactic acid and bioactive glass composite membrane, al of which were used to culture MG63 cels. Cel adhesion rate, cel proliferation rate and alkaline phosphatase activity of MG63 cels on these three kinds of membranes were observed. RESULTS AND CONCLUSION: With the growth of time, in these three groups of membranes, the cel adhesion rate and cel proliferation rate were al significantly increased. Alkaline phosphatase activity showed a decreasing trend after the first increase, and reached its peak at the 7thday of culture. The cel adhesion rate and cel proliferation rate in oxygen plasma-treated polylactic acid and bioactive glass group were significantly higher than those in the other two groups, while the cel adhesion and proliferation rates in polylactic acid and polylactic acid and bioactive glass groups were similar. At the 3rd day of culture, the alkaline phosphatase activity in the polylactic acid and bioactive glass group and oxygen plasma-treated polylactic acid and bioactive glass group was significantly higher than that in the polylactic acid group. At the 7th and 14th days, there was no significant difference in the alkaline phosphatase activity among these three groups. These results show that oxygen plasma-treated polylactic acid and bioactive glass composite membrane has good biocompatibility, which can better promote cel adhesion, proliferation and matrix secretion from osteogenic cels.%背

  20. Application of nuclear and physico-chemical analysis methods in the study of an after-implanting bioactive glass deposition on a titanium alloy, in view of optimizing the long-term bio-compatibility and operability; Application de methodes nucleaires et physico-chimiques d`analyse a l`etude, apres implantation, d`un depot de bioverre sur un alliage de titane, en vue d`une optimisation de la biocompatibilite et de la fonctionnalite a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Vanessa [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1999-01-27

    To improve the anchorage of orthopedic prosthesis into surrounding bone, osteo-conductive biomaterials are usually used as coatings. Among usual coatings, we find bioactive glasses. The bioactive glass A9 is analyzed before and after implantation. It is plasma sprayed onto titanium alloy cylinders (Ti-6Al-4V). Neutron Activation Analysis and Coupled Plasma-Atomic Emission Spectrometry allow us to get the precise composition of A9 before implantation, and to observe a volatilization of some A9 oxides during plasma spraying. Scanning Electron Microscopy shows a coating constituted by pores and by A9 particles of different sizes, into a non compact and non homogeneous form of variable thickness. Wavelength Dispersive Spectroscopy is applied to the analysis of A9 major element composition, in surface and thickness: the composition of the coating is homogeneous in volume. Ti alloy cylinders coated with A9 are implanted in ovine femur epiphysis. At different times after implantation they are extracted to be analyzed. The formation of an in vivo gel in contact with the coated implant and neo-formed bone was found. Time variations in the concentration of the bioactive glass constituents were observed in the gel. Titanium is detected within gel and neo-formed bone, in a higher quantity than within an old bone. P.I.X.E. method enables us to get elemental mapping of several interesting areas and to trace elements (zinc, strontium) in the neo-formed bone. The percentages of bone surface in contact and of bone volume are calculated and the results show that at 12 months, the bone surface in contact is equivalent for coated and uncoated cylinders. However, the bone volume is higher for coated cylinders. This last point clearly stresses the interest of A9 bioactive glass shows its osteo-conductivity 63 refs., 74 figs., 12 tabs.

  1. 生物活性玻璃-丝素蛋白复合膜支持人牙髓干细胞增殖与分化初探%Bioactive glass 45S5-silk fibroin membrane supports proliferation and differentiation of human dental pulp stem cells

    Institute of Scientific and Technical Information of China (English)

    吕孝帅; 李正茂; 王海燕; 杨雪超

    2015-01-01

    Objective To investigate the effect of bioactivity glass 45S5-silk fibroin(BG45S5-SF) membrane on growth, proliferation and differentiation of human dental pulp stem cells(hDPSC), and to provide new ideas and method for the regeneration of pulp-dentine complex.Methods hDPSC seed on pure silk fibroin membrane (protein membrane group) and BG45S5-SF membrane with different concentrations(1 000, 5 000 mg/L, composite membrane group A and B, respectively) were prepared, and the materials were incubated in cell culture fluid for 24 h.No material membrane orifice plate was used as blank control group.Contact angle meter was used to measure surface contact angle of protein membrane and composite membrane group(each group had three repeated holes).Cell proliferation was assessed by cell counting kit-8 on the 4, 7, 14, and 21 days.The state of adhesion and growth of hDPSC on the materials surface was evaluated by scanning electron microscopy and cytoskeleton staining;and alkaline phosphatase (ALP) activity was measured to evaluate the cell differentiation potential.The expression of odontoblastic differentiation-related genes was measured by real-time PCR.Results Surface contact angle of the protein membrane group and composite membrane group A and group B were 89.51°±0.12°, 70.32°±0.07° and 71.31°±0.09° respectively.hDPSC adhered well on each materials surface on the 7, 14, 21 days, ALP activity and differentiation genes of composite membrane group A and B rised more significantly than the blank control group and protein membrane group did (P<0.05).Dentin matrix protein1(DMP-1), dentin sialoprotein(DSP), ALP, osteoealcin(OC) mRNA expression reached peak on the 14 days in group A, and in group B on the 21 days.Bone sialoprotein(BSP) mRNA expression in both group A and B reached peak on the 21 days.Conclusions BG45S5-SF membrane is able to support the proliferation and showed the potential of odontoblastic differentiation for hDPSC.This finding suggests that BG45S5

  2. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.;

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...

  3. Preparation and cell compatibility of chitosan composite bioactive glass%生物活性玻璃与壳聚糖复合骨修复材料的制备及细胞相容性的研究

    Institute of Scientific and Technical Information of China (English)

    孙晨; 祝少博; 禹志宏; 金林; 漆白文; 张韬; 麦合木提江·穆海麦提

    2014-01-01

    Objective To design a kind of bioactive glasses/chitosan (BG/CS) composite materials,and investigate their physico-chemical properties and cell compatibility.Methods 2.0% chitosan of hydrochloric acid solution and β-glycerophosphate on ice conditions in the 7∶1 ratio of well mixed.after CS/BG become 2.0∶ 1.0,1.0∶ 1.0,1.0∶1.5 gelatinous liquid stage.Save it in the-80 ℃ frige,formed by freeze-drying machine.After 20 kGy 60Go radiation sterilization get the sample.By scanning electron microscope,X-ray diffraction and Fourier infrared spectral analysis,DSC thermal analysis,its microstructure and composition,Calculate the stents' porosity,adopt ceramic test system of mechanical properties test.Inoculate the third-generation rabbit mesenchymal stem cells into the stents and use electron microscopy scanning the adherency of stents.Detect the proliferation of cells which are adhere to the stents.Evaluate the compatibility of the stents and cells.Results Synthetic CS/BG stents has the same size and geometric shapes with mould.The phenomenon of hydroxyapatite crystals gathered and carbon nanotube reunion was not detected.The porosity is 81%-89%,it is appropriate.The breaking strength is (4.90 ±0.63) mPa,Characteristic BG diffraction peak can be seen through X-ray diffraction figure technology.The absorption peaks of BG can be detected through fourier transform infrared spectroscopy.It indicate that BG is consist in the material.The third generation of rabbit rabbit mesenchymal stem cells adhere to the stent when cultivate for one day,some cells extends and put out locomotions.Training 7 days later,the cells grows well,and spread along the stent,it can be seen that cells polygonal and cell with material connected through slender locomotion.bone marrow mesenchymal stem cell grows well in the CS/BG stents.Conclusion The CS/BG stents can be preparate through the solution blending and freeze drying technology.The stents has good porosity,high mechanical strength

  4. Bioactivity of Powder and Extracts from Garlic, Allium sativum L. (Alliaceae) and Spring Onion, Allium fistulosum L. (Alliaceae) against Callosobruchus maculatus F. (Coleoptera: Bruchidae) on Cowpea, Vigna unguiculata (L.) Walp (Leguminosae) Seeds

    OpenAIRE

    Abiodun A. Denloye

    2010-01-01

    Laboratory bioassays were conducted to investigate the bioactivity of powders, extracts, and essential oils from Allium sativum L. (Alliaceae) and A. fistulosum L. (Liliaceae) against adults, eggs, and larvae of Callosobruchus maculatus F. (Coleoptera: Bruchidae). On the basis of 48 hr median lethal toxicity (LC50), test plant powders and extracts from A. sativum were more toxic to C. maculatus adults than those from A. fistulosum. The 48 hr LC50 values for the powder against the test insect ...

  5. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.-M. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, L.; Kantiranis, N. [Department of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lazaridis, N.K. [Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K.; Chatzistavrou, X. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M., E-mail: kpar@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  6. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords:     informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.   Seed is a crucial input for agricultural producti

  7. The effect of commercial enzyme preparation-assisted maceration on the yield, quality, and bioactivity of essential oil from waste carrot seeds (Daucus carota L.)

    OpenAIRE

    Śmigielski, K. B.; Majewska, M.; Kunicka-Styczyńska, A.; Gruska, R.; Stańczyk, Ł.

    2014-01-01

    Eight enzyme preparations were screened with a view to maximizing the yield of carrot seed essential oil. Three of the eight enzyme preparations investigated, lipase from Mucor circinelloides, XPect® pectinase, and Esperase® protease, significantly influenced the amount of essential oil obtained, with Esperase® being the most effective. The Taguchi method was applied to optimize the processing conditions for the Esperase® protease. Under the optimum conditions, the essential oil yield increas...

  8. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  9. Compact 2 Micron Seed Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass fibers,...

  10. Compact 2 Micron Seed Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of innovative compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass...

  11. Influence of Drying Temperature on Total Phenolic Content And Antioxidant Capacity of Grape Seeds

    OpenAIRE

    Dilara Konuk; Figen Korel

    2015-01-01

    Grape seed, which is an organic waste arise from production of wine, juice and molasses, is considered as a functional food ingredient in food formulations because of its rich content of bioactive compounds. This study was performed in order to evaluate the effect of air-drying temperature on the bioactive compounds of grape seeds. In the study, total phenolic content and antioxidant activity of grape seeds that are dehydrated at different drying temperatures (40, 50 and 60°C) were determined...

  12. Bioactivity of Powder and Extracts from Garlic, Allium sativum L. (Alliaceae and Spring Onion, Allium fistulosum L. (Alliaceae against Callosobruchus maculatus F. (Coleoptera: Bruchidae on Cowpea, Vigna unguiculata (L. Walp (Leguminosae Seeds

    Directory of Open Access Journals (Sweden)

    Abiodun A. Denloye

    2010-01-01

    Full Text Available Laboratory bioassays were conducted to investigate the bioactivity of powders, extracts, and essential oils from Allium sativum L. (Alliaceae and A. fistulosum L. (Liliaceae against adults, eggs, and larvae of Callosobruchus maculatus F. (Coleoptera: Bruchidae. On the basis of 48 hr median lethal toxicity (LC50, test plant powders and extracts from A. sativum were more toxic to C. maculatus adults than those from A. fistulosum. The 48 hr LC50 values for the powder against the test insect species were 9.66 g/kg and 26.29 g/kg for A. sativum and A. fistulosum, respectively. Also the 48 hr LC50 values obtained show that aqueous extracts of the test plant species, 0.11 g/L (A. sativum and 0.411 g/L (A. fistulosum were more toxic to C. maculatus than the corresponding ethanol extracts. There was no significant difference in the toxicity of vapours from the two test plant species against C. maculatus, although A. sativum gave lower values. The study shows that A. sativum and A. fistulosum have potentials for protecting stored cowpea from damage by C. maculatus.

  13. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  14. PREPARATION OF BIOACTIVE NANOSTRUCTURE SCAFFOLD WITH IMPROVED COMPRESSIVE STRENGTH

    Directory of Open Access Journals (Sweden)

    R. EMADI

    2011-03-01

    Full Text Available Highly porous scaffolds with open structure are today the best candidates for bone substitution to ensure bone oxygenation and angiogenesis. In this study, we developed a new route to enhance the compressive strength of porous hydroxyapatite scaffold made of natural bone. Briefly, the spongy bone of an adult bovine was extracted, annealed, and coated by a nanostructure bioactive glass layer to be subsequently sintered at different temperatures. The apatite formation ability on the surfaces of the coated scaffolds was investigated by standard procedures. Our results showed that the scaffold and coating microstructure consisted of the grains smaller than 100 nm. These nanostructures improved the compressive strength and bioactivity of highly porous scaffold. The results showed that with increasing the sintering temperature, the compressive strength of scaffolds increased while their in vitro bioactivity decreased.

  15. Fruits Bioactive Compounds Characterization from a New Food Product

    Directory of Open Access Journals (Sweden)

    Valentina Mariana RUS

    2014-12-01

    Full Text Available The aim of this study was (I to create a new product, smart bar type which can be consumed as protective food by adults and children (II to characterize the bioactive compounds from the designed food. The bioactive compounds were identified from nuts, raw seeds of almonds, dry cranberries, dry plums and flax seeds. Secoisolariciresinol (683 ppm has been identified as a major compound in flax seeds.  The vitamin C was quantified by HPLC in a concentration of 35.02 mg% in cranberries extract. The total phenolic content varied from 7.1 mg/g for walnut to 71.8 mg/g for cranberries. In addition, the antioxidative capability of phenolic compounds was monitored and evaluated using a colored free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH. Almond showed better results than walnut in the antioxidant capacity test. The results obtained in this study collect information that enables the use of nuts, raw seeds of almonds, dry cranberries, dry plums and flax seeds as raw material for the production of smart bar which may serve as a new product for food market.

  16. Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive Constituents

    OpenAIRE

    Monica Viladomiu; Raquel Hontecillas; Pinyi Lu; Josep Bassaganya-Riera

    2013-01-01

    Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Man...

  17. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  18. Seed proteomics

    Science.gov (United States)

    Seeds comprise a protective covering, a small embryonic plant, and a nutrient-storage organ. Seeds are protein-rich, and have been the subject of many mass spectrometry-based analyses. Seed storage proteins (SSP), which are transient depots for reduced nitrogen, have been studied for decades by cel...

  19. 新型活性修饰对聚乳酸组织工程骨支架上种子细胞生物学行为的影响%Effects of bioactive modification of poly-D,L-lactide acid scaffolds on the biological behaviors of the seed cells

    Institute of Scientific and Technical Information of China (English)

    许子星; 陈建庭; 李涛; 查丁胜; 张鑫鑫; 姜晓锐; 肖文德; 朱青安

    2011-01-01

    Objective To study the changes in the biological behavior of bone marrow mesenchymal stem cells (BMSCs) transfected with red fluorescent protein by lentivirus (RFP-BMSCs) seeded on in poly-D, L-lactide acid (PDLLA) scaffolds with bioactive modification by ammonia plasma and Gly-Arg-Gly-Asp-Ser (GRGDS) in vitro. Methods Circular sheets of PDLLA scaffolds (8 mm in diameter and 1 mm in thickness) were prepared and aminated with PDLLA (group A) or modified with the peptide conjugate A/PDLLA (group PA), with untreated PDLLA as the control (group P). The RFP-BMSCs were seeded on the scaffold materials and their proliferation and metabolic activity were detected using CyQuant NF and Alamar blue staining. The mineralization on the scaffolds was observed using calcein fluorescent dye under a fluorescent microscope. The adhesion and proliferation of RFP-BMSCs were observed by fluorescent microscope, and scanning electron microscope (SEM) was used to confirm the observed adhesion of the seed cells. Results The RFP-BMSCs seeded on the 3 scaffolds all showed proliferative activity at different time points after cell seeding, and the cell numbers decreased significantly in the order of PA>A>P (P0.001). The cell number was significantly greater in group PA than in group A at all the time points except for days 10 (P=0.077) and 12 (P=0.491), and gradually became similar with the passage of time. The metabolic changes of the cells follow a similar pattern of cell proliferation. RFP-BMSCs showed more active proliferation in group A and group PA than in group P. On days 14 and 21, the intensity of green fluorescence decreased in the order of group PA, A and P. The RFP-BMSCs showed better adhesion in group PA than in group A, and the cells in group P appeared more scattered under scanning electron microscope. Conclusion Bioactive modification of PDLLA by ammonia treatment and conjugation withGRGDS peptides may promotes the adhesion, proliferation, metabolism and mineralization of RFP

  20. Bioactive phytochemicals in flaxseed

    OpenAIRE

    Johnsson, Pernilla

    2009-01-01

    Flaxseed (Linum usitatissimum L.) is rich in health-promoting bioactive compounds. Among plant foods, flaxseed has the highest content of lignans, mainly in the form of secoisolariciresinol diglucoside (SDG). Flaxseed oil also has a very high concentration of the essential omega-3 fatty acid alpha-linolenic acid (ALA). This thesis presents studies on both SDG and ALA. An HPLC method for quantification of SDG in hydrolysed flaxseed extracts was developed and used to compare the SDG content in ...

  1. Seed quality in informal seed systems

    OpenAIRE

    Biemond, P.C.

    2013-01-01

    Keywords:     informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.   Seed is a crucial input for agricultural production. Approximately 80% of the smallholder farmers in Africa depend for their seed on the informal seed system, consisting of farmers involved in selection, production and dissemination of seed. The la...

  2. Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization.

    Science.gov (United States)

    Silva, Eric Keven; Zabot, Giovani L; Bargas, Matheus A; Meireles, M Angela A

    2016-11-01

    This paper presents novel outcomes about the effect of degree of inulin polymerization (DP) on the technological properties of annatto seed oil powder obtained by freeze-drying. Inulins with two DP's were evaluated: GR-inulin (DP≥10) and HP-inulin (DP≥23). Micrographs obtained by confocal microscopy were analyzed to confirm the encapsulation of bioactive compounds using both inulins, especially the encapsulation of the natural fluorescent substance δ-tocotrienol. Microparticles formed with both inulins presented the same capacity for geranylgeraniol retention (77%). Glass transitions of microparticles formed with GR-inulin and HP-inulin succeeded at 144°C and 169°C, respectively. Regarding water adsorption isotherms, microparticles formed with HP-inulin and GR-inulin presented behaviors of Types II (sigmoidal) and III (non-sigmoidal), respectively. Reduction of water adsorption capacity in the matrix at high relative moistures (>70%) was presented when HP-inulin was used. At low relative moistures (<30%), the opposite behavior was observed. PMID:27516329

  3. 生物活性玻璃提高骨质疏松绵羊椎弓根螺钉稳定性的体内实验研究%In Vivo Study of Bioactive Glass in Improvement of Pedicle Screw Fixation in Osteoporosis Sheep

    Institute of Scientific and Technical Information of China (English)

    程欢; 雷伟; 吴子祥; 万世勇; 刘达; 曹鹏冲; 王征

    2011-01-01

    Objective: To investigate the effect of pedicle screw augmentation using bioactive glass (BG) in osteoporosis sheep and observe the absorption of BG and the interface between bone and screw. Methods: Osteoporosis animal models were established by ovariectomy combined with methylprednisolone injection in four adult female sheep. L2-L5 unilateral pedicles were randomly selected in each sheep which were only implanted with pedicle screw and the contralateral pedicles were implant with pedicle screw after the augmentation with BG. 3 months later, six vertebraes (12 screws) were randomly collected from all samples and the interface between screw and bone was analyzed by MicroCT. The augmentation of the screws were evaluated by Axial pull-out-test. Results: The bone mineral density (BMD) of the lumbar of the sheep decreased by 22.38%, and significant difference was found (P<0,05). The trabecular thickness (Tb. Th) and the trabecular number (Tb. N) of the interface in experiment group increased by 143.60% and 33.56% compared with the control group respectively. Significant differences of Tb. Th and Tb. N were found between experiment group and control group (P<0.05). Most of the BG around the screw channel had been degraded and much newly formed bone tissue wrapped the screws tightly in experiment group. In control group, the bone mass was much lower and the bone-screw junction was defectively tight. The junction of the interface between bone and screw in experiment group was better than that in control group. The maximal axial pullout strength in experiment group increased by 25.26% compared with that in control group (P<0.05). Conclusion: Bioactive glass can significantly improve bone microstructure of the interface in osteoporosis condition and increase the hold-strength of the pedicle screw.%目的:研究生物活性玻璃(Bioactive Glass,BG)在骨质疏松绵羊体内强化榷弓根螺钉固定的力学效果,并观察钉道界面及

  4. Decontamination glass

    International Nuclear Information System (INIS)

    Glass for the decontamination of the furnace for vitrification of radioactive wastes contains 50 to 60 wt.% of waste glass, 15 to 30 wt.% of calcium oxide, 1 to 6 wt.% sodium oxide, 1 to 5 wt.% phosphorus pentoxide and 5 to 20 wt.% boron oxide. The melting furnace is flushed with the glass such that it melts in the furnace for at least 60 mins and is then poured out of the furnace. After the furnace has cooled down the settled glass spontaneously cracks and peels off the walls leaving a clean surface. The glass may be used not only for decontamination of the furnace but also for decontamination of melting crucibles and other devices contaminated with radioactive glass. (J.B.)

  5. Recycle Glass in Foam Glass Production

    OpenAIRE

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2014-01-01

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses in foam glass industry and the supply sources and capacity of recycle glass.

  6. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  7. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne.......The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  8. Coatings of titanium substrates with xCaO · (1 - x)SiO2 sol-gel materials: characterization, bioactivity and biocompatibility evaluation.

    Science.gov (United States)

    Catauro, M; Papale, F; Bollino, F

    2016-01-01

    The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0sol-gel route starting from tetraethyl orthosilicate and calcium nitrate tetrahydrate. Those materials, still in the sol phase, have been used to coat titanium substrates by means of the dip-coating technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) allowed the materials to be characterized and a microstructural analysis of the coatings obtained was performed using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated titanium was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. To investigate cell-material interactions, mouse embryonic fibroblast cells (3T3) were seeded onto the specimens and the cell viability was evaluated by a WST-8 assay.

  9. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  10. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  11. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF).

    Science.gov (United States)

    He, Yonghua; Schmidt, Monica A; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W; Herman, Eliot M

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  12. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF.

    Directory of Open Access Journals (Sweden)

    Yonghua He

    Full Text Available Necrotizing enterocolitis (NEC is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF, typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform.

  13. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF)

    Science.gov (United States)

    He, Yonghua; Schmidt, Monica A.; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W.; Herman, Eliot M.

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother’s breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N’ terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  14. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    DEFF Research Database (Denmark)

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng;

    2015-01-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for B40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical ...

  15. Development and application of inorganic bioactive ceramic nanocomposites for bone tissue remodeling

    International Nuclear Information System (INIS)

    The objective of the article is to study the synthesis, animal tests and results of clinical applications of the newly proposed kind of bioactive ceramics for full bone tissue restoration-inorganic composites consisting of modified phosphate ceramics, bioactive glasses and bioactive glass-ceramic-so-called SYNTHETBONE materials. Regulation of the composition and structure of the composite can serve to adjust physicochemical and biological properties of the implant with demands of a particular surgery operation and provide the best results of the operations. The presented results demonstrate ample evidence of regulations of resorption rate and mechanism of the composite, favorable biological reaction on its implantation and prove its advantages and high efficiency in numerous surgery operations.

  16. Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration.

    Science.gov (United States)

    Morais, D S; Fernandes, S; Gomes, P S; Fernandes, M H; Sampaio, P; Ferraz, M P; Santos, J D; Lopes, M A; Sooraj Hussain, N

    2015-09-01

    The aim of this work was to develop a bioactive bone substitute with an effective antibacterial ability based on a cerium (Ce) doped glass-reinforced hydroxyapatite (GR-HA) composite. Developed composites were physicochemically characterized, using x-ray diffraction (XRD) analysis, SEM, energy dispersive x-ray spectroscopy (EDS), and flexural bending strength (FBS) tests. X-ray photoelectron spectroscopy (XPS) analysis was performed to analyze the oxidation state of Ce in the prepared doped glass. The antimicrobial activity of the composites was evaluated against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa; whether the cytocompatibility profile was assayed with human osteoblastic-like cells (Mg-63 cell line). The results revealed that the Ce inclusion in the GR-HA matrix induced the antimicrobial ability of the composite. In addition, Ce-doped materials reported an adequate biological behavior following seeding of osteoblastic populations, by inducing cell adhesion and proliferation. Developed materials were also found to enhance the expression of osteoblastic-related genes. Overall, the developed GR-HA_Ce composite is a prospective candidate to be used within the clinical scenario with a successful performance due to the effective antibacterial properties and capability of enhancing the osteoblastic cell response. PMID:26391473

  17. A Review of Glass-Ionomer Cements for Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Sharanbir K. Sidhu

    2016-06-01

    Full Text Available This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base reaction within 2–3 min and to form hard, reasonably strong materials with acceptable appearance. They release fluoride and are bioactive, so that they gradually develop a strong, durable interfacial ion-exchange layer at the interface with the tooth, which is responsible for their adhesion. Modified forms of glass-ionomers, namely resin-modified glass-ionomers and glass carbomer, are also described and their properties and applications covered. Physical properties of the resin-modified glass-ionomers are shown to be good, and comparable with those of conventional glass-ionomers, but biocompatibility is somewhat compromised by the presence of the resin component, 2 hydroxyethyl methacrylate. Properties of glass carbomer appear to be slightly inferior to those of the best modern conventional glass-ionomers, and there is not yet sufficient information to determine how their bioactivity compares, although they have been formulated to enhance this particular feature.

  18. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette;

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary meta...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  19. Photocleavable linker for the patterning of bioactive molecules

    Science.gov (United States)

    Wegner, Seraphine V.; Sentürk, Oya I.; Spatz, Joachim P.

    2015-12-01

    Herein, we report the use of a versatile photocleavable nitrobenzyl linker to micropattern a wide variety of bioactive molecules and photorelease them on demand. On one end, the linker has an NHS group that can be coupled with any amine, such as peptides, proteins or amine-linkers, and on the other end an alkyne for convenient attachment to materials with an azide functional group. This linker was conjugated with NTA-amine or the cell adhesion peptide cRGD to enable straightforward patterning of His6-tagged proteins or cells, respectively, on PEGylated glass surfaces. This approach provides a practical way to control the presentation of a wide variety of bioactive molecules with high spatial and temporal resolution. The extent of photocleavage can also be controlled to tune the biomolecule density and degree of cell attachment to the surface.

  20. Coriander (Coriandrum sativum L.) and its bioactive constituents.

    Science.gov (United States)

    Laribi, Bochra; Kouki, Karima; M'Hamdi, Mahmoud; Bettaieb, Taoufik

    2015-06-01

    Coriander (Coriandrum sativum L.), a member of the Apiaceae family, is among most widely used medicinal plant, possessing nutritional as well as medicinal properties. Thus, the aim of this updated review is to highlight the importance of coriander as a potential source of bioactive constituents and to summarize their biological activities as well as their different applications from data obtained in recent literature, with critical analysis on the gaps and potential for future investigations. A literature review was carried out by searching on the electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies focusing on the biological and pharmacological activities of coriander seed and herb bioactive constituents. All recent English-language articles published between 2000 and 2014 were searched using the terms 'C. sativum', 'medicinal plant', 'bioactive constituents', and 'biological activities'. Subsequently, coriander seed and herb essential oils have been actively investigated for their chemical composition and biological activities including antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anxiolytic, analgesic, anti-inflammatory, anti-convulsant and anti-cancer activities, among others. Although coriander has been reported to possess a wide range of traditional medicinal uses, no report is available in its effectiveness use in reactive airway diseases such as asthma and bronchiolitis. In brief, the information presented herein will be helpful to create more interest towards this medicinal species by defining novel pharmacological and clinical applications and hence, may be useful in developing new drug formulations in the future or by employing coriander bioactive constituents in combination with conventional drugs to enhance the treatment of diseases such as Alzheimer and cancer. PMID:25776008

  1. Bioactive proteins from pipefishes

    Institute of Scientific and Technical Information of China (English)

    E. Rethna Priya; S. Ravichandran; R. Ezhilmathi

    2013-01-01

    Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment.Methods:Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains.Results:Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm) and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm). In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm) and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm). Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups.Conclusions:It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  2. Determination of Total Phenolics, Flavonoids and Antioxidant Capacity of Methanolic Extracts of Some Brassica Seeds

    Directory of Open Access Journals (Sweden)

    Maria Doiniţa Borş

    2014-11-01

    Full Text Available Cruciferous vegetables are rich in nutrients and bioactive compounds. Seeds are highly nutritious and they are becoming more and more popular in nowadays diets. In the present study various types of radish and mustard seeds were evaluated on the basis of the total phenolic content (TPC, total flavonoid content (TFC and the antioxidant potential, using simple spectrophotometric methods.

  3. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    Directory of Open Access Journals (Sweden)

    Yun HS

    2011-10-01

    Full Text Available Hui-suk Yun1, Sang-Hyun Kim2, Dongwoo Khang3, Jungil Choi4, Hui-hoon Kim2, Minji Kang31Functional Materials Division, Korea Institute of Materials Science, Gyeongnam, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Jung-Gu, Daegu, Korea; 3School of Nano and Advanced Materials Science and Engineering and Center for NMBE, Gyeongsang National University, Jinju, Korea; 4Department of Anatomy, Institute of Health Science and School of Medicine, Gyeongsang National University, Jinju, Gyeongnam, KoreaBackground: Mesoporous bioactive glasses (MBGs are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA in simulated body fluid (SBF, which is a major inorganic component of bone extracellular matrix (ECM and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs.Methods and materials: The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed.Results: The ECM components were fully

  4. Biological Glasses : nature's way to preserve life

    NARCIS (Netherlands)

    Buitink, J.

    2000-01-01

    As a result of drying, the cytoplasm of desiccation-tolerant organisms, such as seed and pollen, enters into a highly viscous, solid-like, semi-equilibrium state: the glassy state. The work in this dissertation is focussed on the function and characteristics of intracellular glasses in these organis

  5. ANTIFUNGAL ACTIVITY ASSOCIATED WITH Psoralea corylifolia Linn. (BAKUCHI SEED AND CHEMICAL PROFILE CRUDE METHANOL SEED EXTRACT

    Directory of Open Access Journals (Sweden)

    A. BORATE

    2014-07-01

    Full Text Available Objective: Present study aims to evaluate antifungal efficacy of Bakuchi (Psoralea corylifolia seed extracts prepared in methanol solvents and the bakuchi oil. Bakuchi seed used in the formulations against skin related diseases and disorders in Ayurvedic system of medicine. Method: Antifungal assay was performed by agar well diffusion method against common fungal skin pathogens Candida albicans, Aspergillus niger and Malassezia furfur. Results: Bakuchi seeds extract in methanol was observed the most promising antifungal activity against the selected skin pathogens. The phytochemical and GC MS analysis confirmed the presence of several bioactive components including phenol derivatives as coumarin – psoralen, isopsoralen which might be accountable for its antifungal activity. Conclusion: The study has unveiled the antifungal potential of P. corylifolia seed extract.

  6. Bioactive saponins from Dioscorea futschauensis.

    Science.gov (United States)

    Liu, H W; Hu, K; Zhao, Q C; Cui, C B; Kobayashi, H; Yao, X S

    2002-08-01

    A new anti-neoplastic spirostanol saponin, (25S)-spirost-5-en-3 beta, 27-diol-3O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl (1-->3)]-beta-D-glucopyranoside and three known compounds viz. prosapogenin A of dioscin, dioscin and gracilin were isolated from Dioscorea futschauensis by bioactivity-guided fractionation. Their structures were elucidated mainly by means of spectroscopic analysis. Their bioactivity against Pyricularia oryzae and cytotoxic activity on ts-FT210 cell line was evaluated. PMID:12227201

  7. Bioactivity of polyurethane-based scaffolds coated with Bioglass (registered)

    International Nuclear Information System (INIS)

    Polyurethane (PUR) and polyurethane/poly(d, l-lactide) acid (PUR/PDLLA) based scaffolds coated with Bioglass (registered) particles for application in bone tissue engineering were fabricated. The slurry-dipping method was used for coating preparation. The homogeneous structure of the Bioglass (registered) coatings on the surface of the PUR and PUR/PDLLA foams indicated a good adhesion of the bioactive glass particles to polyurethane without any additional surface treatment. In vitro studies in simulated body fluid (SBF) were performed to study the influence of Bioglass (registered) coating on biodegrability and bioactivity of PUR-based scaffolds. The surface of Bioglass (registered) -coated samples was covered by a layer of carbonate-containing apatite after 7 days of immersion in SBF, while in uncoated polymer samples apatite crystals were not detected even after 21 days of immersion in SBF. The apatite layer was characterized by scanning electron microscopy (SEM), EDS analysis and attenuated total reflectance-Fourier transform infrared spectrometry (FTIR-ATR). Weight loss measurements showed that the in vitro degradation rate of the composite scaffolds in SBF was higher in comparison to uncoated polyurethane samples. PUR and PUR/PDLLA foams with Bioglass (registered) coating have potential to be used as bioactive, biodegradable scaffolds in bone tissue engineering

  8. Triterpene Composition and Bioactivities of Centella asiatica

    Directory of Open Access Journals (Sweden)

    Uma Devi Palanisamy

    2011-01-01

    Full Text Available Leaves of Centella asiatica (Centella were analysed for their triterpene composition and bioactivity such as collagen enhancement, antioxidant, anticellulite and UV protection capacity properties. Triterpenes of Centella were measured using HPLC-PAD on an Excil ODS 5 mm (C18 column for the simultaneous determination of asiatic acid, madecassic acid, asiaticoside and madecassoside. Centella was found to contain significant amounts of madecassoside (3.10 ± 4.58 mg/mL and asiaticoside (1.97 ± 2.65 mg/mL, but was low in asiatic and madecassic acid. The highest collagen synthesis was found at 50 mg/mL of Centella extracts. The antioxidant activity of Centella (84% was compared to grape seed extract (83% and Vitamin C (88%. Its lipolytic activity was observed by the release of glycerol (115.9 µmol/L at 0.02% concentration. Centella extracts exhibited similar UV protection effect to OMC at 10% concentration. In view of these results, the potential application of Centella in food and pharmaceutical industries is now widely open.

  9. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    Science.gov (United States)

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.

  10. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    Science.gov (United States)

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual. PMID:25848676

  11. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    of infant formula. Thereafter, bioactive milk components which were preserved in gently-processed infant formula were selected for further investigation of their immunomodulatory activity in cell and preterm pig models. We hope this project will contribute to the research on the development of new...

  12. Self-burrowing seeds: drag reduction in granular media

    Science.gov (United States)

    Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    We present the results of a combined experimental and theoretical investigation of drag reduction of self-burrowing seeds in granular media. In response to environmental changes in humidity, the awn (a tail-like appendage of seed) of Pelargonium carnosum exhibits coiling-uncoiling deformation which induces the thrust and rotary motions of the head of the seed against the surface of the soil. Using various sizes of glass beads that mimic the granular soil, we measure the thrust forces required for the seed of Pelargonium carnosum to penetrate into granular media with and without rotation. Our quantitative measurements show that the rotation of the seed remarkably reduces the granular drag as compared to the drag against the non-spinning seed. This leads us to conclude that the hygroscopically active awns of Pelargonium carnosum enables its seed to dig into the relatively coarse granular soils.

  13. Neutral atom beam technique enhances bioactivity of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Joseph, E-mail: jkhoury@exogenesis.us [Exogenesis Corporation, Billerica, MA 01821 (United States); Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C. [Exogenesis Corporation, Billerica, MA 01821 (United States)

    2013-07-15

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants.

  14. Seed Treatment. Bulletin 760.

    Science.gov (United States)

    Lowery, Harvey C.

    This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

  15. Initial performance of corn in response to treatment of seeds with humic acids isolated from bokashi

    OpenAIRE

    Marihus Altoé Baldotto; Lílian Estrela Borges Baldotto

    2016-01-01

    ABSTRACT The humified organic matter presents bioactivity similar to the auxinic effect. As bokashi is produced by a special process of humification, information is needed about the bioactive potential of its humic acids. The objective of this work was studying the initial performance of corn-indicator plants in response to the application of different concentrations of humic acids isolated from bokashi. The corn seeds were treated for 16 hours with solutions containing 0, 10, 20, 30, 40 and ...

  16. Alpha-Glucosidase Inhibition and Hypoglycemic Activities of Sweitenia mahagoni Seed Extract

    OpenAIRE

    Tutik Wresdiyat; Siti Sa’diah; Adi Winarto; Venny Febriyani

    2015-01-01

    Inhibition of α-glucosidase and hypoglycemic activity are two effects commonly used to identify bioactive compounds with potential to treat diabetes. The objectives of this study were to analyse and compare the bioactive compounds and α-glucosidase inhibitory effect of four different types of Swietenia mahagoni seed extract, and to analyse the hypoglycemic activity of the greatest inhibition of α-glucosidase-extract in rats. The extracts were obtained using two different solvents (aqueous and...

  17. Preparation and biocompatibility of poly (methyl methacrylate reinforced with bioactive particles

    Directory of Open Access Journals (Sweden)

    Pereira Marivalda de Magalhães

    2003-01-01

    Full Text Available Calcium phosphates and bioactive glasses have been used in many biomedical applications for more than 30 years due basically to their bioactive behavior. However, ceramics are too brittle for applications that require high levels of toughness and easy processability. In this work, a biphasic calcium phosphate (BCP and a bioactive glass composition (BG were combined with polymers to produce composites with tailorable properties and processability. The BCP particles were synthesized by a precipitation technique. The BG particles were produced by sol-gel processing. The BCP particles were treated with a silane agent to improve the compatibility between particles and the polymer matrix. Dense samples were produced by hot pressing (200 °C a mixture of 30 wt.% of particles in poly (methyl methacrylate. The samples produced were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Mechanical properties were evaluated by a three point bending test. Samples were also submitted to in vitro bioactivity test and in vivo toxicity test. Results showed that the production of the composites was successfully achieved, yielding materials with particles well dispersed within the matrices. Evaluation of the in vivo inflammatory response showed low activity levels for all composites although composites with silane treated BCP particles led to milder inflammatory responses than composites with non-treated particles.

  18. Chelating Tendencies of Bioactive Aminophosphonates

    OpenAIRE

    Kiss, Tamas; Lázár, István; Kafarski, Pawel

    1994-01-01

    The metal-binding abilities of a wide variety of bioactive aminophosphonates, from the simple aminoethanephosphonic acids to the rather large macrocyclic polyaza derivatives, are discussed with special emphasis on a comparison of the analogous carboxylic acid and phosphonic acid systems. Examples are given of the biological importance of metal ion – aminophosphonate interactions in living systems, and also of their actual and potential applicability in medicine.

  19. Bioactivity of Rumex obtusifolius (Polygonaceae)

    OpenAIRE

    Harshaw Diane; Nahar Lutfun; Vadla Brahmachari; Saif-E-Naser Gadria M.; Sarker Satyajit D.

    2010-01-01

    Rumex obtusifolius L. (Polygonaceae), commonly known as 'broad-leaf dock', is one of the most common Irish wayside weeds, and it also occurs in silage fields, on river banks, in ditches and on waste grounds. The ethnobotanical uses of this species include its use as an antidote to nettle, depurative, astringent, laxative, and tonic, and in the treatment of sores, blisters, burns, cancer and tumors. The bioactivities of n-hexane, dichloromethane (DCM) and methanol (MeOH) extracts of the leaves...

  20. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    OpenAIRE

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng; Bowron, Daniel T.; Mayers, Jerry; Donnan, Robert S.; Dobó-Nagy, Csaba; John W. Nicholson; Fang, De-Cai; Greer, A. Lindsay; Chass, Gregory A.; Greaves, G. Neville

    2015-01-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for ∼40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture tough...

  1. Bioactive peptides in dairy products

    Directory of Open Access Journals (Sweden)

    Donata Marletta

    2010-01-01

    Full Text Available Bioactive peptides are specific protein fragments that have a positive impact on body functions and conditions and may ultimately influence health. Most of the biological activities are encrypted within the primary sequence of the native protein and can be released by enzymatic hydrolysis and proteolysis or by food processing. Milk is a rich source of bioactive peptides which may contribute to regulate the nervous, gastrointestinal and cardiovascular systems as well as the immune system, confirming the added value of dairy products that, in certain cases, can be considered functional foods. The main biological activities of these peptides and their bioavailability in dairy products are reviewed. The natural concentration of these biomolecules is quite low and, to date one of the main goals has been to realize products enriched with bioactive peptides that have beneficial effects on human health and proven safety. Even though several health-enhancing products have already been launched and their integration in the diet could help in the prevention of chronic diseases such as hypertension, cancer and osteoporosis, more clinical trials are required in order to develop a deeper understanding of the activity of biopeptides on the human physiological mechanisms and also to assess the efficacy of their effects in a long term view. New scientific data are also needed to support their commercialisation in compliance with current regulations.

  2. Comparative analyses of seeds of wild fruits or Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts

    NARCIS (Netherlands)

    Fazio, A.; Plastina, P.; Meijerink, J.; Witkamp, R.F.; Gabriele, B.

    2013-01-01

    Fruit seeds are byproducts from fruit processing. Characterisation of the bioactive compounds present in seeds and evaluation of their potential biological properties is therefore of particular importance in view of a possible valorisation of seeds as a source of health beneficial components. In thi

  3. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  4. Bioactive Ca-P scaffolds used for bone reconstruction

    Institute of Scientific and Technical Information of China (English)

    RUAN Jian-ming(阮建明); ZOU Jian-peng(邹俭鹏); Goldie Elisabeth; LIU Bing(刘兵)

    2003-01-01

    Bioactive ceramic scaffolds HA*TCP, aimed to be applied in clinic, were evaluated both in vitro and in vivo models. HA*TCP was supposed as a completely biodegradable material and designed as a scaffold to be used for bone reconstruction or regeneration. Materials processing was proposed and physical properties as well as microstructure feature were characterized. Biological postulation of the relationship between seeding density and proliferation, and viability of human osteoblasts cultured on the porous HA*TCP were quantitatively measured. Bone reconstruction was investigated both in vitro and in vivo by using these biodegradable scaffolds with pore sizes ranged in 200-400 μm in diameter. The degradable scaffold supported cellular proliferation of seeded osteoblasts on the scaffold and shown normal differentiated function in vitro. Seeding density is an important factor for cell attachment and proliferation expression and has been considerably discussed. Suitable pore size of the scaffolds is required if promotion of bone reconstruction is desired. Clinical trials show that HA*TCP scaffolds are successful applied for bone reconstruction and regeneration and can be completely degraded in human body in 12 months. This approach suggests the feasibility of using porous HA*TCP scaffold materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  5. Comparative review of the nutritional value of cold-pressed pumpkin (Cucurbita pepo L.) seed oil of different origins

    OpenAIRE

    Rabrenovic Biljana B.; Vujasinovic Vesna B.; Novakovic Miroslav M.; Corbo Selma; Basic Zorica N.

    2016-01-01

    The objective of this study was to investigate the nutritional value of seven samples of cold pressed a pumpkin oil of different origins and influence of seed origin on the content of the most important bioactive components. Four samples of a pumpkin oil is obtained by cold pressing of the seeds of domestic and Austrian varieties, and three samples of cold pressed oils were obtained from the seeds of unknown origin, taken