WorldWideScience

Sample records for bioactive compounds electronic

  1. CEC of phytochemical bioactive compounds.

    Science.gov (United States)

    Yang, Feng-qing; Zhao, Jing; Li, Shao-ping

    2010-01-01

    Although there are many publications related to technological or methodological developments of CEC, few focus on the analysis of natural products, especially phytochemical bioactive compounds. This review summarized the application of CEC in the analysis of phytochemical bioactive components, including flavonoids, nucleosides, steroids, lignans, quinones and coumarins, as well as fingerprint analysis of herbs. The strategies for optimization of CEC conditions and detection were also discussed.

  2. Major Australian tropical fruits biodiversity: bioactive compounds and their bioactivities.

    Science.gov (United States)

    Pierson, Jean T; Dietzgen, Ralf G; Shaw, Paul N; Roberts-Thomson, Sarah J; Monteith, Gregory R; Gidley, Michael J

    2012-03-01

    The plant kingdom harbours many diverse bioactive molecules of pharmacological relevance. Temperate fruits and vegetables have been highly studied in this regard, but there have been fewer studies of fruits and vegetables from the tropics. As global consumers demand and are prepared to pay for new appealing and exotic foods, tropical fruits are now being more intensively investigated. Polyphenols and major classes of compounds like flavonoids or carotenoids are ubiquitously present in these fruits, as they are in the temperate ones, but particular classes of compounds are unique to tropical fruits and other plant parts. Bioactivity studies of compounds specific to tropical fruit plants may lead to new drug discoveries, while the synergistic action of the wide range of diverse compounds contained in plant extracts underlies nutritional and health properties of tropical fruits and vegetables. The evidence for in vitro and animal bioactivities is a strong indicator of the pharmacological promise shown in tropical fruit plant biodiversity. In this review, we will discuss both the occurrence of potential bioactive compounds isolated and identified from a selection of tropical fruit plants of importance in Australia, as well as recent studies of bioactivity associated with such fruits and other fruit plant parts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Promiscuity progression of bioactive compounds over time

    OpenAIRE

    Hu, Ye; Jasial, Swarit; Bajorath, J?rgen

    2015-01-01

    In the context of polypharmacology, compound promiscuity is rationalized as the ability of small molecules to specifically interact with multiple targets. To study promiscuity progression of bioactive compounds in detail, nearly 1 million compounds and more than 5.2 million activity records were analyzed. Compound sets were assembled by applying different data confidence criteria and selecting compounds with activity histories over many years. On the basis of release dates, compounds and acti...

  4. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much

  5. Promiscuity progression of bioactive compounds over time.

    Science.gov (United States)

    Hu, Ye; Jasial, Swarit; Bajorath, Jürgen

    2015-01-01

    In the context of polypharmacology, compound promiscuity is rationalized as the ability of small molecules to specifically interact with multiple targets. To study promiscuity progression of bioactive compounds in detail, nearly 1 million compounds and more than 5.2 million activity records were analyzed. Compound sets were assembled by applying different data confidence criteria and selecting compounds with activity histories over many years. On the basis of release dates, compounds and activity records were organized on a time course, which ultimately enabled monitoring data growth and promiscuity progression over nearly 40 years, beginning in 1976. Surprisingly low degrees of promiscuity were consistently detected for all compound sets and there were only small increases in promiscuity over time. In fact, most compounds had a constant degree of promiscuity, including compounds with an activity history of 10 or 20 years. Moreover, during periods of massive data growth, beginning in 2007, promiscuity degrees also remained constant or displayed only minor increases, depending on the activity data confidence levels. Considering high-confidence data, bioactive compounds currently interact with 1.5 targets on average, regardless of their origins, and display essentially constant degrees of promiscuity over time. Taken together, our findings provide expectation values for promiscuity progression and magnitudes among bioactive compounds as activity data further grow.

  6. Comparative evaluation of bioactive compounds in Hibiscus ...

    African Journals Online (AJOL)

    There is growing interest in the chemical composition of plants towards discovery of more effective biotherapeutic agents. Six bioactive compounds were evaluated from Hibiscus sabdariffa and Syzygium samarangense juice extracts. Both juices had high amounts of saponins, with Syzygium samarangense having higher ...

  7. Bioactive Compounds And Encapsulation Of Yanang ( Tiliacora ...

    African Journals Online (AJOL)

    Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability ...

  8. Legume bioactive compounds: influence of rhizobial inoculation

    Directory of Open Access Journals (Sweden)

    Luis R. Silva

    2017-04-01

    Full Text Available Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

  9. COMPARATIVE EVALUATION OF BIOACTIVE COMPOUNDS IN ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    remedy for after-effects of drunkenness (Morton,. 1987a). The calyx extract is used in the treatment ... Comparative evaluation of bioactive compounds. 181 to room/ambient temperature before analysis. The .... steam-distillation with saturated sodium bicarbonate solution contained in a 50 ml conical flask for 60 min.

  10. Bioactive compounds from northern plants.

    Science.gov (United States)

    Hohtola, Anja

    2010-01-01

    Northern conditions are characterised by long days with much light and low temperatures during the growing season. It has been chimed that herbs and berries grown in the north are stronger tasting compared to those of southern origin. The compounds imparting aroma and color to berries and herbs are secondary metabolites which in plants mostly act as chemical means of defense. Recently, the production of secondary metabolites using plant cells has been the subject of expanding research. Light intensity, photoperiod and temperature have been reported to influence the biosynthesis of many secondary metabolites. Native wild aromatic and medicinal plant species of different families are being studied to meet the needs of raw material for the expanding industry of e.g., health-promoting food products known as nutraceutics. There are already a large number of known secondary compounds produced by plants, but the recent advances in modern extraction and analysis should enable many more as yet unknown compounds to be found, characterised and utilised. Rose root (Rhodiola rosea) is a perennial herbaceous plant which inhabits mountain regions throughout Europe, Asia and east coastal regions of North America. The extract made from the rhizomes acts as a stimulant like the Ginseng root. Roseroot has been categorized as an adaptogen and is reported to have many pharmacological properties. The biologically active components of the extract are salitroside tyrosol and cinnamic acid glycosides (rosavin, rosarin, rosin). Round-leaved sundew (Drosera rotundifolia L.) has circumboreal distribution. It inhabits nutrient-poor, moist and sunny areas such as peat bogs and wetlands. Sundew leaves are collected from the wild-type for various medicinal preparations and can be utilized in treating e.g., as an important "cough-medicine" for different respiratory diseases. The antimicrobial activity of extracts of aerial parts against various bacteria has been investigated. Drosera produces

  11. [Multiple emulsions; bioactive compounds and functional foods].

    Science.gov (United States)

    Jiménez-Colmenero, Francisco

    2013-01-01

    The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  12. Bioactive Compounds in Functional Meat Products

    Directory of Open Access Journals (Sweden)

    Ewelina Pogorzelska-Nowicka

    2018-01-01

    Full Text Available Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional constituents were chosen: (i fatty acids; (ii minerals; (iii vitamins; (iv plant antioxidants; (v dietary fibers; (vi probiotics and (vii bioactive peptides. Each of them is discussed in term of their impact on human health as well as some quality attributes of the final products.

  13. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Directory of Open Access Journals (Sweden)

    Elisa Flávia Luiz Cardoso Bailão

    2015-10-01

    Full Text Available Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi, Dipteryx alata Vog. (baru, Eugenia dysenterica DC. (cagaita, Eugenia uniflora L. (pitanga, Genipa americana L. (jenipapo, Hancornia speciosa Gomes (mangaba, Mauritia flexuosa L.f. (buriti, Myrciaria cauliflora (DC Berg (jabuticaba, Psidium guajava L. (goiaba, Psidium spp. (araçá, Solanum lycocarpum St. Hill (lobeira, Spondias mombin L. (cajá, Annona crassiflora Mart. (araticum, among others are reported here.

  14. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-01-01

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here. PMID:26473827

  15. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-10-09

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here.

  16. Bioactive compounds: historical perspectives, opportunities, and challenges.

    Science.gov (United States)

    Patil, Bhimanagouda S; Jayaprakasha, G K; Chidambara Murthy, K N; Vikram, Amit

    2009-09-23

    Mom's conventional wisdom of eating fruits and vegetables to lead a healthy life has evolved with scientific, fact-finding research during the past four decades due to advances in science of "Foods for Health". Epidemiological and prospective studies have demonstrated the vital role of fruits, vegetables, and nuts in reducing the risk of cancer and cardiovascular diseases. In recent years, several meta-analyses strongly suggested that by adding one serving of fruits and vegetables to daily diet, the risk of cardiovascular diseases will be decreased up to 7%. The multidisciplinary and partnership efforts of agriculture and medical scientists across the globe stimulated interest in establishing certain interdisciplinary centers and institutes focusing on "Foods for Health". While the consumption of various healthy foods continues, several questions about toxicity, bioavailability, and food-drug interactions of bioactive compounds are yet to be fully understood on the basis of scientific evidence. Recent research on elucidation of the molecular mechanisms to understand the "proof of the concept" will provide the perfect answer when consumers are ready for a "consumer-to-farm" rather than the current "farm-to-consumer" approach. The multidisciplinary research and educational efforts will address the role of healthy foods to improve eye, brain, and heart health while reducing the risk of cancer. Through this connection, this review is an attempt to provide insight and historical perspectives on some of the bioactive compounds from the day of discovery to their current status. The bioactive compounds discussed in this review are flavonoids, carotenoids, curcumin, ascorbic acid, and citrus limonoids.

  17. Germinated grains--sources of bioactive compounds.

    Science.gov (United States)

    Donkor, O N; Stojanovska, L; Ginn, P; Ashton, J; Vasiljevic, T

    2012-12-01

    Germination of seven selected commercially important grains was studied to establish its effects on the nutritional and chemical composition. The changes in the concentration of the nutrients, bioactive compounds and the inhibitory effect of extracts on α-glucosidase and α-amylase activities were investigated. These were measured through proximate analysis, inhibition assays and HPLC. Germinated sorghum and rye extracts inhibited (pGerminated grains contained substantial amounts of total phenolics with rye having significantly higher content compared with the non-germinated grains. Radical scavenging activities of the phenolic extracts were between 13% and 73% for non-germinated and 14% and 53% for germinated. Inositol phosphate (InsP) 4, 5 and 6 were noted in all the grains, but InsP 6 was significantly lower in concentration. This study indicates the potential of germinated barley, sorghum and rye for the development of effective physiologically bioactive compounds for the reduction of the risk of diabetic agents and colon cancer. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  18. Bioactive compounds in berries relevant to human health

    NARCIS (Netherlands)

    Battino, M.; Beekwilder, M.J.; Denoyes-Rothan, B.; Laimer, M.

    2009-01-01

    Berries contain powerful antioxidants, potential allergens, and other bioactive compounds. Genetic and environmental factors affect production and storage of such compounds. For this reason breeding and biotechnological approaches are currently used to control or to increase the content of specific

  19. Bioactive compounds: Safety and efficacy (Consensus Meeting - Part II)

    NARCIS (Netherlands)

    Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.R.; Schrenk, D.; Walter, P.; Weber, P.

    2009-01-01

    The efficacy and safety of bioactive compounds depend on a few known and unknown parameters. What is a physiologic dose and how can that dose be defined in cases of bioactive compounds with a poor knowledge of supply and distribution? What safety sets are needed? How can individual aspects such as

  20. The ecological dynamics and trajectories of bioactive compounds in ...

    African Journals Online (AJOL)

    Result revealed seven bioactive compounds with anthraquinone totally absent from all the species in the four locations. The seven bioactive compounds were apparently more in the leaves than other parts of the plants. Among the four locations alkaloid, triterpene, glycoside, carbohydrate, flavonoid and tannin were high in ...

  1. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    Science.gov (United States)

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  2. Synthesis and evaluation of some bioactive compounds having ...

    Indian Academy of Sciences (India)

    Synthesis and evaluation of some bioactive compounds having oxygen and nitrogen heteroatom. Poonam Yadav Nalini V ... by dehydration. The chemical structures of all the compounds were determined by analytical and spectral method. The lead compounds were screened for antimicrobial and analgesic activities.

  3. Experimental and theoretical investigations on Pd(II) host-guest compound: Deciphering the structural and electronic features of a potential bioactive complex

    Science.gov (United States)

    Sreejith, S. S.; Mohan, Nithya; Prathapachandra Kurup, M. R.

    2017-10-01

    A Pd(II) complex from N,N‧-bis(2-hydroxy-3-ethoxybenzylidene)butane-1,4-diamine salen-type ligand has been synthesized and characterised using single crystal XRD analysis, elemental analysis, IR and UV-Vis spectroscopic methods. Thermal profile of the compound is investigated using TG-DTG-DSC method. The quantification of intermolecular interactions and surface morphology has been done using Hirshfeld surface study mapped using various functions like dnorm, shape index and curvedness. ESP analysis is done to visualize the electrophilic and nucleophilic regions in the complex. Geometry optimization of the structure is done using DFT at B3LYP/def2-TZVP level of theory. Frontier orbital analysis reveals the kinetical stability and chemical inertness of the complex. A detailed charge distribution analysis is done using different analytical methods like Mulliken, Löwdin, NPA and AIM methods. Further bond order analysis and topological analysis are also done. Finally the bioactivity of the titled complex is checked using molecular docking method on both DNA and protein.

  4. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    Directory of Open Access Journals (Sweden)

    Sona Skrovankova

    2015-10-01

    Full Text Available Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry, and Ericaceae (blueberry, cranberry, belong to the best dietary sources of bioactive compounds (BAC. They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  5. Natural bioactive compounds: antibiotics | Dezfully | Journal of ...

    African Journals Online (AJOL)

    Antibiotics are powerful therapeutic agents that are produced by diverse living organisms. Over the last several decades, natural bioactive products particularly antibiotics have continued to play a significant role in drug discovery and has expanded the process for developing drugs with high degree of therapeutic index and ...

  6. Plant-derived bioactive compounds produced by endophytic fungi.

    Science.gov (United States)

    Zhao, J; Shan, T; Mou, Y; Zhou, L

    2011-02-01

    Plant endophytic fungi are an important and novel resource of natural bioactive compounds with their potential applications in agriculture, medicine and food industry. In the past two decades, many valuable bioactive compounds with antimicrobial, insecticidal, cytotoxic, and anticancer activities have been successfully discovered from endophytic fungi. During the long period of co-evolution, a friendly relationship was formed between each endophyte and its host plant. Some endophytes have the ability to produce the same or similar bioactive compounds as those originated from their host plants. This review mainly deals with the research progress on endophytic fungi for producing plant-derived bioactive compounds such as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin, and diosgenin. The relations between endophytic fungi and their host plants, biological activities and action mechanisms of these compounds from endophytic fungi, some available strategies for efficiently promoting production of these bioactive compounds, as well as their potential applications in the future will also be discussed. It is beneficial for us to better understand and take advantage of plant endophytic fungi.

  7. Endophytic actinomycetes: promising source of novel bioactive compounds.

    Science.gov (United States)

    Matsumoto, Atsuko; Takahashi, Yōko

    2017-05-01

    Endophytic actinomycetes associated with plant roots are a relatively untapped source of potential new bioactive compounds. This is becoming increasingly important, as the returns from discovery research on soil-dwelling microbes, have been continuously diminishing. We have isolated more than 1000 strains of actinomycetes from plant roots in our search for novel bioactive compounds, identified and assayed their bioactive metabolites, as well as investigated their biosynthetic genes for generating secondary metabolites. This has resulted in the discovery of several interesting compounds. Creation of plant root clone libraries enabled us to confirm that we had, indeed, isolated endophytes. In this paper, we introduce our approach to this promising line of research, incorporating data from other publications, and illustrate the potential that endophytic actinomycetes offer as a new source of novel lead compounds.

  8. Bioactive compounds from the alga Dictyopteris undulata | Koker ...

    African Journals Online (AJOL)

    X-ray crystallography of zonarol confirmed the gross structure of this compound and also gave the relative stereochemistry at C- 9 and C- 10 as trans. All of these compounds were found to exhibit antimicrobial activity. Some also showed activity against L1210 cells and antiviral activity. Keywords: Bioactivity-guided isolation; ...

  9. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles.

    Science.gov (United States)

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.

  10. Microalgae as a source of high-value bioactive compounds.

    Science.gov (United States)

    Bule, Mohammed Hussen; Ahmed, Ishtiaq; Maqbool, Faheem; Bilal, Muhammad; Iqbal, Hafiz M N

    2018-01-01

    Microalgae are one of the oldest microorganisms, that grow in various hostile environments, ranging from deserts to Antarctica. The microalgae sustain life in such harsh environments through generation of secondary metabolites. Microalgae biosynthesize a large number of diverse bioactive metabolites with activities on cancer, neurodegenerative diseases, and infectious diseases. Here, we highlight the bioactive compounds that are isolated from microalgae for the purpose of using them as food, and as chemicals in pharmaceutical industry as new agents with therapeutic benefits.

  11. Health Promoting Bioactive Compounds in Plants

    DEFF Research Database (Denmark)

    El-Houri, Rime Bahij

    which includes a variety of side effects, efforts are being made to find suitable antidiabetic therapies. Ethnopharmacological surveys indicate that more than 1200 plants are used in traditional medical systems for their potential hypoglycemic activity. As the use of natural products for biological...... and medicinal investigation is getting more attention, many methods have been developed to scientifically validate the bioactivity of the plants and their bioactive metabolites. All steps in investigating plants of interest are important, such as correct identification, preparation, storage, and choice...... different procedures are recommended. This PhD thesis is based on three papers and revolves around identification of secondary metabolites from plant extracts with influence on glucose uptake and the activation of the nuclear receptor PPARγ. In the experimental part related to this thesis, which...

  12. Natural bioactive compounds of Citrus limon for food and health.

    Science.gov (United States)

    González-Molina, E; Domínguez-Perles, R; Moreno, D A; García-Viguera, C

    2010-01-20

    Citrus genus is the most important fruit tree crop in the world and lemon is the third most important Citrus species. Several studies highlighted lemon as an important health-promoting fruit rich in phenolic compounds as well as vitamins, minerals, dietary fiber, essential oils and carotenoids. Lemon fruit has a strong commercial value for the fresh products market and food industry. Moreover, lemon productive networks generate high amounts of wastes and by-products that constitute an important source of bioactive compounds with potential for animal feed, manufactured foods, and health care. This review focuses on the phytochemistry and the analytical aspects of lemon compounds as well as on the importance for food industry and the relevance of Citrus limon for nutrition and health, bringing an overview of what is published on the bioactive compounds of this fruit.

  13. Isolation and identification of bioactive compounds from kernel seed ...

    African Journals Online (AJOL)

    The ethanol extract and ethyl acetate fraction of Mangifera indica kernel seed cake inhibited the growth of Staphylococcus aureus and Pseudomonas aeruginosa. The bioactive compounds were isolated and identified by NMR, UV and mass spectrometry as methyl gallate, gallic acid and penta-O-galloylglucose. The

  14. Optimization of media for production of bioactive compounds by ...

    African Journals Online (AJOL)

    ... media for production of bioactive compounds from Streptomyces parvullus SS23/2 isolated from marine algae (Dictyota dichotoma) at the Bay of Bengal, India. Suitable medium was selected and optimized under different chemical and physical parameters for maximum production following one-factor- at- a time approach.

  15. Phytoestrogens as Bioactive Compounds with Beneficial Effects for Human Health

    OpenAIRE

    Silva, Ana Cristina Ferrão; Guiné, Raquel

    2017-01-01

    Phytoestrogens, also called estrogens, are bioactive compounds original from plants. They are similar in structure and functionality to the estrogenic hormones in animals. It has been documented that these compounds have several effects on the human body, namely in terms of carbohydrate, protein, lipid and mineral metabolism. Some of the most known effects of these substances are related to their roles in the women’s reproductive system. The dietary phytoestrogens are present in vegetable...

  16. Flaxseeds: Nutritional Potential and Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Tatiana PANAITE

    2017-11-01

    Full Text Available The objective of this work was to study the nutritional and bioactive composition of commercially available flaxseeds with the aim to develop new alternatives for their use as functional and nutraceutical food ingredient. The samples of flaxseed contained 20.86% protein, 31.16% fat, 29.07% crude fiber and 3.75% ash. Essential amino acids represented 34% of total protein. The amino acids profile showed that glutamic acid was the most abundant (3.87 g 100 g-1, followed by arginine (1.93 g 100 g-1 and aspartic acid (1.52 g 100 g-1. Fatty acids analysis indicated that alpha-linolenic acid represents the major fatty acid (54.51% of the total fatty acids. The ratio of unsaturated to saturated fatty acids was 8.67 while the n-3/n-6 PUFA ratio was 3.2. Total phenolics showed average contents of 295.92 mg GAE 100 g-1, of which flavonoids accounted for 25.85 mg QE 100 g-1. The results confirmed that, in addition to being one of the richest sources of alpha-linolenic acid, flaxseed is an essential source of high quality protein, soluble fiber and potent natural antioxidants.

  17. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ira Bhatnagar

    2010-10-01

    Full Text Available Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  18. Nocardiopsis species: a potential source of bioactive compounds.

    Science.gov (United States)

    Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V

    2016-01-01

    Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications. © 2015 The Society for Applied Microbiology.

  19. Extraction, Isolation And Characterization Of Bioactive Compounds ...

    African Journals Online (AJOL)

    Natural products from medicinal plants, either as pure compounds or as standardized extracts, provide unlimited opportunities for new drug leads because of the unmatched availability of chemical diversity. Due to an increasing demand for chemical diversity in screening programs, seeking therapeutic drugs from natural ...

  20. Sea cucumbers, the ocean of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Hadi Ebrahimi

    2015-07-01

    Full Text Available Sea cucumbers are one of the most echinoderms and from the class Holothuroidea. Some of their specific biological activities are including anti-cancer, anticoagulant, antihypertensive, anti-inflammatory, antimicrobial, antioxidant, anti-atherosclerosis and anti-tumor properties, as well as accelerate wound healing. The presence of different compounds such as saponins, chondroitin sulfates, glycosaminoglycans, sulfated Polysaccharides, glycoprotein, glycosphingolipids and essential and non essential fatty acids, are the causes of their biological properties. Saponins, which are produced for compatibility with the environment, are as theire secondary metabolites. These active compounds have biological properties like hemolytic, anti-tumor, anti-inflammatory, antibacterial, antiviral, ichthyotoxic, cytostatic, anti neogenic, antineoplastic, and uric acid lowering effects. Sea cucumber, have high economic value. In East Asia, Since ancient times, it have been traditionally used for the treatment of fatigue, sexual impotence, impotence caused by aging, constipation due to intestinal dryness, urinary incontinence, asthma, hypertension, arthritis and anemia. Also, toxins obtained from sea cucumber, have anti-viral, anti-tumor, anti-cancer and anti-pregnancy properties. According to literatures, the aqueous extract and high molecular weight compounds from sea cucumbers can inhibit tumor activity, via the apoptosis induction. Sea cucumbers because of the high percentage of protein and the absence of cholesterol, classified as an invigorating food. Because of different species of sea cucumbers in the Persian Gulf and Oman Sea the identification of compounds and biological properties of sea cucumber species in these regions is recommended to the researchers.

  1. REVIEW PAPER-MARINE MICROBIAL BIOACTIVE COMPOUNDS

    OpenAIRE

    Kalyani. P*, Hemalatha. K. P. J

    2016-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and...

  2. Bioactive compounds in different acerola fruit cultivares

    Directory of Open Access Journals (Sweden)

    Flávia Aparecida de Carvalho Mariano-Nasser

    2017-08-01

    Full Text Available The increased consumption of acerola in Brazil was triggered because it is considered as a functional food mainly for its high ascorbic acid content, but the fruit also has high nutritional value, high levels of phenolic compounds, total antioxidant activity, anthocyanins and carotenoids in its composition. The objective was to evaluate the chemical, physical-chemical and antioxidant activity of eight varieties of acerola tree. The acerolas used in the research were the harvest 2015, 8 varieties: BRS 235 - Apodi, Mirandópolis, Waldy - CATI 30, BRS 238 - Frutacor, Okinawa, BRS 236 - Cereja, Olivier and BRS 237 - Roxinha, from the Active Bank Germplasm APTA Regional Alta Paulista in Adamantina - SP. Avaluated the following attributes: pH, titratable acidity, soluble solids, reducing sugar, instrumental color, ascorbic acid, total phenolics, flavonoids and antioxidant activity. The design was completely randomized, 8 varieties and 3 replications of 20 fruits each. Acerola fruit of the analyzed varieties prove to be good sources of phenolic compounds and antioxidant activity, ensuring its excellent nutritional quality relative to combat free radicals. The variety BRS 236 - Cereja presents higher ascorbic acid content, antioxidant activity and phenolic compounds, and the lowest value for flavonoid, which was higher than the other cultivars, especially Olivier and Waldy CATI-30.

  3. Chemistry and Functionality of Bioactive Compounds Present in Persimmon

    Directory of Open Access Journals (Sweden)

    Shazia Yaqub

    2016-01-01

    Full Text Available Extensive research has related the consumption of persimmon with the reduced risk of various diseases and particularly highlighted the presence of bioactive phenolic compounds for their therapeutic properties. Major phenolic compounds present in persimmon are ferulic acid, p-coumaric acid, and gallic acid. β-Cryptoxanthin, lycopene, β-carotene, zeaxanthin, and lutein are important carotenoids having antioxidant potential. They are important to prevent oxidation of low-density lipoproteins, safeguard beta cells of the pancreas, and reduce cardiovascular diseases, cancer, diabetes mellitus, and damage caused by chronic alcohol consumption. In this paper, the chemistry and health benefits of bioactive compounds present in persimmon are reviewed to encourage impending applications and to facilitate further research activities.

  4. Health promoting effects of bioactive compounds in plants

    DEFF Research Database (Denmark)

    Kotowska, Dorota Ewa

    While type 2 diabetes is an increasing problem worldwide, there is still no cure and therefore search for the new insulin sensitizer continues. Plants are a natural source of bioactive compounds and have been used to improve human health and wellbeing for centuries. Today, several studies...... concentrate on screening plant extracts commonly used in folk medicine for pure compounds, exploiting promising results in treatment of, among others, type 2 diabetes. Another area of diabetes research, focused on the complex biology of adipose tissue and its influence on the development of insulin resistance...... compounds and their influence on adipocyte differentiation, lipid storage, glucose uptake and gut microbiota....

  5. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.

    Science.gov (United States)

    Mamo, Gashaw

    Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these

  6. Effects of Bioactive Compounds on Odontogenic Differentiation and Mineralization.

    Science.gov (United States)

    Phung, S; Lee, C; Hong, C; Song, M; Yi, J K; Stevenson, R G; Kang, M K; Shin, K-H; Park, N-H; Kim, R H

    2017-01-01

    Direct pulp capping involves the placement of dental materials directly onto vital pulp tissues after deep caries removal to stimulate the regeneration of reparative dentin. This physical barrier will serve as a "biological seal" between these materials and the pulp tissue. Although numerous direct pulp capping materials are available, the use of small bioactive compounds that can potently stimulate and expedite reparative dentin formation is still underexplored. Here, the authors compared and evaluated the pro-osteogenic and pro-odontogenic effects of 4 small bioactive compounds- phenamil (Phen), purmorphamine (Pur), genistein (Gen), and metformin (Met). The authors found that these compounds at noncytotoxic concentrations induced differentiation and mineralization of preosteoblastic MC3T3-E1 cells and preodontoblastic dental pulp stem cells (DPSCs) in a dose-dependent manner. Among them, Phen consistently and potently induced differentiation and mineralization in vitro. A single treatment with Phen was sufficient to enhance the mineralization potential of DPSCs in vitro. More importantly, Phen-treated DPSCs showed enhanced odontogenic differentiation and mineralization in vivo. Our study suggests that these small bioactive compounds merit further study for their potential clinical use as pulp capping materials.

  7. Bioactive compounds of fresh and dehydrated green pepper

    Directory of Open Access Journals (Sweden)

    Ana Marinho do Nascimento

    2017-07-01

    Full Text Available Pepper Capsicum annuum L., belongs to the Solanaceae family, which contains approximately 31 species. Bioactive compounds also known as phytochemicals are chemical and biochemical components that are present in most fruits and vegetables. The objective of the present study was to verify if the bioactive compounds of the green pepper remain after being submitted to the drying process. The experiment was conducted in a completely randomized design with 2 treatments and 5 replicates. Green peppers were used from the (Economic Center of Supply Corporation of the city of Patos, Paraíba. The peppers were packed in plastic boxes and transported to the Laboratory of Chemistry, Biochemistry and Food Analysis of the Federal University of Campina Grande, Campus Pombal. Where they were selected, washed and sanitized. After that, the minimum processing was done and the drying was carried out in a circulation oven at 60 ºC. At the end of the drying, the samples were crushed and sieved. After this process, the analyzes of ascorbic acid, chlorophylls, carotenoids, anthocyanin flavonoids and phenolic compounds. It was found that there was a significant difference between treatments. The bioactive properties of green pepper were not lost after the heat treatment. Some phytochemicals as ascorbic acid, carotenoids and phenolic compounds were concentrated. Therefore the loss of water during the drying process increased the concentration of the bioactive compounds of dehydrated pepper, the product obtained with this method exhibited high levels of phytochemicals, the use of drying may be an alternative to prolong the shelf life of the vegetable.

  8. Edible flowers as sources of phenolic compounds with bioactive potential.

    Science.gov (United States)

    Pires, Tânia C S P; Dias, Maria Inês; Barros, Lillian; Calhelha, Ricardo C; Alves, Maria José; Oliveira, M Beatriz P P; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2018-03-01

    The edible flowers are widely used, but there is still a lot to be done in relation to its bioactive potential and its correlation with the presence of phenolic compounds. The aim of this study was determined the individual phenolic profile in the hydromethanolic extracts and infusion preparations of four different flower samples (Dahlia mignon, Rosa damascena 'Alexandria' and R. gallica 'Francesa' draft in R. canina, Calendula officinalis L., and Centaurea cyanus L.) and their bioactive potential (antioxidant, antiproliferative, and antibacterial capacity). All the studied flowers presented different profiles regarding their phenolic composition and revealed biological potential. The bioactive potential of the studied flowers was moderate, the hydromethanolic extracts of rose petals showed the best results for antioxidant and antibacterial assays, while the antiproliferative properties were only present in some of the tested cell lines, for the hydromethanolic extracts, in which dahlia and rose showed the best results. These results demonstrate that edible flowers can be used as a source of phenolic compounds with bioactive potential, which can be applied in the food sector, as foods and as sources natural ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Echinoderms: their culture and bioactive compounds.

    Science.gov (United States)

    Kelly, M S

    2005-01-01

    biologically active compounds with biomedical applications. Sea cucumber has been valued in Chinese medicine for hundreds of years as a cure for a wide variety of ailments. Some more recently isolated compounds, mainly from sea cucumbers and starfish, and including those with antitumour, antiviral, anticoagulant and antimicrobial activity are summarised below. When wild stocks decline, the demand created in the market place raises to the price of the product and, consequently, culturing is more likely to become viable economically. As this review shows, there have been dramatic advances in the culture methods of sea urchins and sea cucumbers in the last 10-15 years, to the extent that one can conclude that currently the major obstacles to successful cultivation are indeed economic rather than biological. Hence the future of the echinoculture industry is closely linked to that of the fisheries, whose fate will ultimately determine the market forces that will shape this growing industry.

  10. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi

    OpenAIRE

    Vasundhara, M.; Kumar, Anil; Reddy, M. Sudhakara

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain...

  11. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  12. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    Science.gov (United States)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  13. BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY FROM FIVE TYPES OF SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Maria Copaciu

    2016-10-01

    Full Text Available After germination process, the green seedlings accumulate important quantities of bioactive compounds such as: enzymes, vitamins, minerals, chlorophylls and nutrients. The current study presents a comparison between different bioactive compounds and their antioxidant capacity, after the seedling germination and growth of five seeds (arugula, lentil, wheat, beans and mustard both on soil, in a pot (natural system, and directly on cotton wool soaked, in water (artificial system. In this study the carotenoids content and the antioxidant capacity were analysed. The data of the present study showed that the highest amount of zeaxanthin and β - carotene was found in cultivars of wheat grown in natural system, while the highest antioxidant activity was found in cultivars of wheat, lentils and beans, though in this case with no statistical differences between the systems. The results show statistical differences between the values of bioactive compounds in the five types of seedlings but also in the values obtained for the same seedlings in different systems. The best cultivars for improving the nutritional quality for human consumption are wheat seedlings followed by lentil ones.

  14. Bioactive compounds and antioxidant potential fruit of Ximenia americana L.

    Science.gov (United States)

    Almeida, Maria Lucilania Bezerra; Freitas, Wallace Edelky de Souza; de Morais, Patrícia Lígia Dantas; Sarmento, José Dárcio Abrantes; Alves, Ricardo Elesbão

    2016-02-01

    The caatinga ecoregion in northeast Brazil presents a wide variety in plant species. However, the potential of these species as a source of energy, carbohydrates, vitamins, minerals and bioactive properties beneficial to health is still unknown. Among these species we can find the wild plum (Ximenia americana). Due to its various phytotherapeutic properties and absence of studies on the chemical composition of the fruit this article aimed to evaluate the bioactive compounds and antioxidant potential of the X. americana in different stages of maturation. The fruits of X. americana showed considerable amounts of bioactive compounds, as well as antioxidant activity and antioxidant enzymes. The fruits at green maturity stage showed higher content of yellow flavonoids (22.07 mg/100g), anthocyanins (1.92 mg/100 g), polyphenols (3051.62 mg/100 g), starch (4.22%), antioxidant activity (489.40 g fruit/g DPPH and 198.77 μmol Trolox/g) and activity of antioxidant enzymes; the antioxidant activity allocated to the fruit was shown to be related to the contents of extractable polyphenols, yellow flavonoids, total anthocyanins and antioxidant enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cell-based screening assay for anti-inflammatory activity of bioactive compounds

    NARCIS (Netherlands)

    Meijer, Kees; Vonk, Roel J.; Priebe, Marion G.; Roelofsen, Han

    2015-01-01

    Excess dietary intake may induce metabolic inflammation which is associated with insulin resistance and cardiovascular disease. Recent evidence indicates that dietary bioactive compounds may diminish metabolic inflammation. To identify anti-inflammatory bioactives, we developed a screening assay

  16. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi.

    Science.gov (United States)

    Vasundhara, M; Kumar, Anil; Reddy, M Sudhakara

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s). Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel), podophyllotoxin, and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are discussed.

  17. Bioactive compounds and quality characteristics of five apples cultivars

    Directory of Open Access Journals (Sweden)

    Moises Zucoloto

    2015-11-01

    Full Text Available The aim of this study was to evaluate bioactive compounds in five apple cultivars and to analyze correlation of their quality characteristics with concentration of bioactive compounds. Phenolic compounds measurements were made in a spectrophotometer compared to a standard curve of gallic acid and expressed as gallic acid equivalent (GAE per 100g of dry weight. Sugar and organics acids in five cultivars were quantified using high-performance liquid chromatograph (HPLC. Antioxidant activities were evaluated using three complementary tests 2,2-diphenyl-1-picrylhidrazyl (DPPH scavenging activity, ferric reducing antioxidant power (FRAP, and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid (ABTS. 'GoldRush' had the highest total phenolic compared to the other four cultivars. Additionally, 'GoldRush' had slightly higher, DPPH activity followed by 'Crimson Crisp' and 'Wine Crisp'. 'GoldRush' and 'Crimson Crisp' cultivars also have higher antioxidant capacity based on the ABTS and FRAP methods. The antioxidant capacity was significantly correlated with total polyphenols present in the different cultivars, while organic acids and fruit color showed slightly significant correlation to total phenols

  18. Molecular approaches to screen bioactive compounds from endophytic fungi

    Directory of Open Access Journals (Sweden)

    M Vasundhara

    2016-11-01

    Full Text Available Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s. Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel, podophyllotoxin and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are also discussed.

  19. Sea urchin: toxinology, bioactive compounds and its treatment management

    Directory of Open Access Journals (Sweden)

    Gholamhossein Mohebbi

    2016-09-01

    Full Text Available Background: The sea urchins are classified in the echinoderms category because of their spiny skin. Saponins are the major responsible metabolites for Echinodermata biological activities . As mentioned before, about 80 species of sea urchins are venomous for human. Their spine, pedicellariae, and some other organs such as gonads and coelomic fluids contain different toxins and bioactive compounds. This review study have evaluated toxinology and bioactive compounds from the extracts, and treatment management of these venomous animals. Results: Contractin A, echinochrome A, echinometrin, major yolk protein (MYP, centrocins (I, II(, cathepsin B/X, strongylostatins (I,II, vitellogenin, UT841 toxin, spinochrome, and pedoxin as the prosthetic group of peditoxin are the most important compounds obtained from these animals. Some people show poisoning symptoms following the ingestion of sea urchin gonads, especially during the breeding season. Some of these symptoms included allergies symptoms, as the first symptoms, nausea, diarrhea, vomiting, epigastric distress, severe headache, swelling of the lips and mouth, salivation, abdominal pain and some systemic symptoms such as hypotension, numbness and weakness. The most injuries by sea urchin can cause by contact to spines, which can create the various complications such as granuloma, synovitis, arthritis, edema, hyperkeratosis and even neuroma. Injuries by pedicellaria may cause severe pain, local edema, bleeding, lethargy, weakness, tingling, joint pain, aphonia, dizziness, syncope, general muscle paralysis, respiratory distress, hypotension and, infrequently death. After the injury by sea urchin, removing the spines and pedicellariae should be done to minimize the contact with the venom source, and subsequently the management of wounds and poisoning symptoms, as quickly as possible. Conclusion: The venoms of some sea urchins have toxins and bioactive molecules that produce toxicity effects on their

  20. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

    Directory of Open Access Journals (Sweden)

    Laura Cornara

    2017-06-01

    Full Text Available Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs, and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA, with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  1. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products.

    Science.gov (United States)

    Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno

    2017-01-01

    Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  2. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian

    Directory of Open Access Journals (Sweden)

    Lin Bi-Fong

    2010-05-01

    Full Text Available Abstract Andrographis paniculata (Burm. f. Nees (Acanthaceae is a medicinal plant used in many countries. Its major constituents are diterpenoids, flavonoids and polyphenols. Among the single compounds extracted from A. paniculata, andrographolide is the major one in terms of bioactive properties and abundance. Among the andrographolide analogues, 14-deoxy-11,12-didehydroandrographolide is immunostimulatory, anti-infective and anti-atherosclerotic; neoandrographolide is anti-inflammatory, anti-infective and anti-hepatotoxic; 14-deoxyandrographolide is immunomodulatory and anti-atherosclerotic. Among the less abundant compounds from A. paniculata, andrograpanin is both anti-inflammatory and anti-infective; 14-deoxy-14,15-dehydroandrographolide is anti-inflammatory; isoandrographolide, 3,19-isopropylideneandrographolide and 14-acetylandrographolide are tumor suppressive; arabinogalactan proteins are anti-hepatotoxic. The four flavonoids from A. paniculata, namely 7-O-methylwogonin, apigenin, onysilin and 3,4-dicaffeoylquinic acid are anti-atherosclerotic.

  3. A profile of bioactive compounds of Rumex vesicarius L.

    Science.gov (United States)

    El-Hawary, Seham A; Sokkar, Nadia M; Ali, Zeinab Y; Yehia, Marwa M

    2011-10-01

    The present study was designed to investigate the bioactive compounds in extracts of Rumex vesicarius L. (Polygonaceae), a wild edible herb growing in Egypt. Ethyl acetate and n-butanol fractions of leaves of R. vesicarius were conducted by HPLC-PDA-MS/MS-ESI in the negative mode to analyze phenolics content. Results revealed the identification of 13 phenolic compounds: 8-C-glucosyl-apigenin, 8-C-glucosyl-luteolin, 6-C-hexosyl-quercetin, 3-O-rutinosyl-quercetin, 7-O-rhamno-hexosyl-diosmetin, 7-O-rhamno-acetylhexosyl-diosmetin, catechin, epicatechin, ferulohexoside, 6-C-glucosyl-naringenin, epicatechin gallate, 6-C-glucosyl-catechin, and epigallocatechin gallate. Quantification of the identified compounds revealed that 6-C-glucosyl-naringenin was the major compound. Also, qualitative and quantitative analysis of the hydro-ethanolic extract of leaves was carried out for ascorbic acid, α-tocopherol, β-carotene. The essential oil as well as lipids analysis of saponifiable and unsaponifiable matters. The biochemical studies were conducted to evaluate the antioxidant and hepatoprotective potential of roots (REE), leaves (LEE), and fruits (FEE) ethanolic extracts of R. vesicarius (100 mg/kg b.wt., p.o., each) against hepatotoxicity induced by CCl(4) (0.5 mL/kg b.wt., p.o., 3 times a week) compared with silymarin (50 mg/kg b.wt., p.o.) as standard drug. The results confirmed that coadministration of the tested extracts or silymarin with CCl(4) for 4 wk exhibited a marked hepatoprotective activity, attributed to their antioxidant potential, membrane stabilizing effect, and antifibrogenic activities. Practical Application:  Investigation of the effect of hommad as a safe hepatoprotective diet that prospectively directs the attention to a valuable therapeutic natural herb rich in bioactive constituents. © 2011 Institute of Food Technologists®

  4. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  5. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    Science.gov (United States)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  6. Chemical Composition and Bioactive Compounds of Some Wild Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Melinda NAGY

    2017-05-01

    Full Text Available Over the last decades, the consumption of mushrooms has significantly increased due to the scientific evidence of their ability to help the organism in the combat and prevention of several diseases (Kalac, 2009. Fruiting bodies of mushrooms are consumed as a delicacy for their texture and flavour, but also for their nutritional properties that makes them even more attractable (Heleno S. 2015. In this paper data were collected from several scientific studies with the aim to characterize the chemical composition and content of bioactive compounds of various mushrooms species: Agaricus bisporus, Boletus edulis, Cantharellus cibarius, Pleurotus ostreatus, Lactarius piperatus. The chemical composition of 5 wild edible studied mushrooms, including moisture, ash, total carbohydrates, total sugars, crude fat, crude protein and energy were determined according to AOAC procedures.

  7. Bioactive Compounds of Edible Purple Laver Porphyra sp. (Nori).

    Science.gov (United States)

    Bito, Tomohiro; Teng, Fei; Watanabe, Fumio

    2017-12-13

    Porphyra sp. (nori) is widely cultivated as an important marine crop. Dried nori contains numerous nutrients, including vitamin B 12 , which is the only vitamin absent from plant-derived food sources. Vegetarian diets are low in iron and vitamin B 12 ; depletion of both causes severe anemia. Nori also contains large amounts of iron compared with other plant-derived foods and eicosapentaenoic acid, which is an important fatty acid found in fish oils. In nori, there are also many bioactive compounds that exhibit various pharmacological activities, such as immunomodulation, anticancer, antihyperlipidemic, and antioxidative activities, indicating that consumption of nori is beneficial to human health. However, Porphyra sp. contains toxic metals (arsenic and cadmiun) and/or amphipod allergens, the levels of which vary significantly among nori products. Further evidence from human studies of such beneficial or adverse effects of nori consumption is required.

  8. Bioactive compounds in Mexican genotypes of cocoa cotyledon and husk.

    Science.gov (United States)

    Hernández-Hernández, Carolina; Viera-Alcaide, Isabel; Morales-Sillero, Ana María; Fernández-Bolaños, Juan; Rodríguez-Gutiérrez, Guillermo

    2018-02-01

    A characterization of the phenolic profile of 25 cocoa genotypes established in a Mexican gene bank was carried out. From five different extraction methods commonly used for phenols, extraction with acidified methanol-water was chosen as the best to quantify the concentrations of theobromine and individual phenols in cocoa beans. High concentrations of individual and total phenols were found for genotypes native to Mexico (like RIM105, M031, and M033) or from Peru and Ecuador (INI10), but not the commercial mix (CAF), and were directly associated with their antioxidant activities. Despite the loss of some theobromine and phenols during fermentation, epicatechin remained in the fermented cotyledon in high concentrations. This study could help promote the commercialization of Mexican genotypes of cocoa and reports the possibility of upcycling fermented cocoa husks, which are rich in bioactive compounds and fiber, as novel functional extracts for use in food formulation or for nutraceutical purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Managing hypertension: relevant biomarkers and combating bioactive compounds

    Directory of Open Access Journals (Sweden)

    Bryan Singharaj

    2017-06-01

    Full Text Available Hypertension is one of the most common chronic diseases which affects many people who belong to a higher age range. The standard definition that is offered to the general public has a minimum age of 18 years to be diagnosed with hypertension. Many studies have been conducted in the hopes of finding consistent data that provides information on the biomarkers of hypertension and effective forms of treatment. However, there is a tendency for skewed data due to the ineffectiveness of diagnosing hypertension, due to variability in technique or even negligence. Interestingly, research has indicated that there are connections to certain biomarkers of hypertension. However,the results have been deemed inconclusive. Moreover, the results provide promising data for future studies that have an emphasis on biomarkers. The biomarkers that have been consistently brought to researchers’ attention include the following: circulating C-reactive protein (CRP, plasminogen activator inhibitor-1 (PAI-1, urinary albumin:creatinine ratio (UACR, and aldosterone:renin ratio (ARR. These four biomarkers have become the foundation of multiple hypertension studies, even though the only formal conclusion drawn from these studies is that there is a wide range of variables that have some kind of influence on hypertension. More recently, treatment options for hypertension have increasingly become an emphasis for studies, with research predicting that nutrition plays a key role in the managing of diseases. Furthermore, the role of bioactive compounds has gained traction in hypertension research, being loosely correlated to managing specific biomarkers. Ultimately, these correlations to bioactive compounds like antioxidants would demonstrate that certain functional foods have the capacity to help treat hypertension. The modality is to find an alternative option for managing or treating hypertension through natural sources of food or food products fortified with ingredients to

  10. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds.

    Science.gov (United States)

    Dos Santos, Mary de Fátima Guedes; Mamede, Rosa Virginia Soares; Rufino, Maria do Socorro Moura; de Brito, Edy Sousa; Alves, Ricardo Elesbão

    2015-09-07

    The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã) were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g(-1)), total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g(-1)), and anthocyanins in bacaba (80.76 mg·100g(-1)). As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC) (194.67 µM·Trolox·g(-1)), 2,2-diphenyl-1-picrylhydrazyl (DPPH) (47.46 g·pulp·g(-1) DPPH), and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I) methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits.

  11. Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Isabel Borrás-Linares

    2014-11-01

    Full Text Available In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis samples, obtained by microwave-assisted extraction (MAE, was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC–ESI-QTOF-MS. The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina.

  12. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Nalisha, I.

    2006-01-01

    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  13. Carrier system for a plant extract or bioactive compound from a plant

    DEFF Research Database (Denmark)

    2018-01-01

    This invention relates to a carrier system for use in producing a beverage with a metered amount of plant extract or bioactive compound.......This invention relates to a carrier system for use in producing a beverage with a metered amount of plant extract or bioactive compound....

  14. Antioxidant capacity and bioactive compounds of four Brazilian native fruits

    Directory of Open Access Journals (Sweden)

    Cristiane C. Denardin

    2015-09-01

    Full Text Available The purpose of this study was to evaluate the bioactive compounds and antioxidant activity of extracts from araçá (Psidium cattleianum, butiá (Butia eriospatha, and pitanga (Eugenia uniflora fruits with different flesh colors (i.e., purple, red, and orange, and blackberries (Rubus sp.; cv. Xavante and Cherokee collected in the southern region of Brazil. The content of ascorbic acid, total carotenoids, and phenolics were determined. The profile of the phenolic compounds was assessed by high-performance liquid chromatography combined with diode array detection (HPLC-DAD. The antioxidant activity was determined using the ferric-reducing antioxidant power (FRAP assay, 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH assay, total reactive antioxidant potential (TRAP assay, and total antioxidant reactivity (TAR assay. The Xavante blackberry and purple-fleshed pitanga showed the highest total phenolic content [816.50 mg gallic acid equivalents (GAE/100g and 799.80 mg GAE/100g, respectively]. The araçá and red-fleshed pitanga showed the highest carotenoid content (6.27 ug β-carotene/g and 5.86 ug β-carotene/g, respectively. The fruits contained several phenolic compounds such as quercetin derivatives, quercitrin, isoquercitrin, and cyanidin derivatives, which may contribute differentially to the antioxidant capacity. The highest scavenging activity in the DPPH assay was found for purple-fleshed pitanga (IC50 36.78 mg/L, blackberries [IC50 44.70 (Xavante and IC50 78.25 mg/L (Cherokee], and araçá (IC50 48.05 mg/L, which also showed the highest FRAP, followed by orange- and red-fleshed pitanga. Our results revealed that some fruits grown in southern Brazil such as purple-fleshed pitanga, blackberries, and araçá are rich sources of phenolic compounds and have great antioxidant activity.

  15. Extraction and identification of bioactive compounds from agarwood leaves

    Science.gov (United States)

    Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.

    2016-11-01

    Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and

  16. Definition of the Mediterranean diet based on bioactive compounds.

    Science.gov (United States)

    Saura-Calixto, Fulgencio; Goñi, Isabel

    2009-02-01

    Antioxidant (polyphenols and carotenoids) and nonantioxidant (phytosterols) bioactive compounds and dietary fiber may have a significant role in health. The intake of these compounds is strongly linked with the high consumption of fruits, vegetables, and unrefined cereals. A whole-diet approach to these food constituents is intended to render the current definition of Mediterranean diet based on food consumption more comprehensive. The Mediterranean dietary pattern can be characterized by the following four essential dietary indicators: 1) Monounsaturated to saturated fatty acid ratio (range: 1.6 to 2.0); 2) Intake of dietary fiber (41 to 62 g/person/day); 3) Antioxidant capacity of the whole diet (3500 to 5300 trolox equivalent/person/day); 4) Phytosterols intake (370 to 555 mg/person/day). The contribution of foods and beverages to these parameters is described. Spanish National Food Consumption Data for the years 2000 and 1964 were used to quantify the lowest and highest range values. The occurrence of these indicators in the Mediterranean diet has specific characteristics and there is sufficient scientific evidence to support the beneficial health effects.

  17. Potential Bioactive Compounds from Seaweed for Diabetes Management

    Directory of Open Access Journals (Sweden)

    Yusrizam Sharifuddin

    2015-08-01

    Full Text Available Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B and dipeptidyl-peptidase-4 (DPP-4. Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes’ activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.

  18. Potential Bioactive Compounds from Seaweed for Diabetes Management.

    Science.gov (United States)

    Sharifuddin, Yusrizam; Chin, Yao-Xian; Lim, Phaik-Eem; Phang, Siew-Moi

    2015-08-21

    Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes' activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.

  19. New Bioactive Oleanane Type Compounds from Coriandrum sativum Linn.

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2014-01-01

    Full Text Available Five (1–5 new bioactive oleanane type triterpenoids have been isolated from ethyl acetate soluble fraction of ethanolic extract of Coriandrum sativum Linn. of Umbelliferae family. Ethanolic extract of the whole plant was fractionated in organic solvents. Ethyl acetate fraction was subjected to column chromatography on HPLC RP-18 to get 1-oxo-11β,21β-dihydroxy-oleanane (1, 1-oxo-11β-hydroxy-21β-O-acetyloleanane (2, 1-oxo-11β-hydroxy-21β-O-angeloyloleanane (3, 1-oxo-11β-O-angeloyl-21β-O-acetyloleanane (4, and 1-oxo-11β,21β-O-dibenzoyloleanane (5. The structures were elucidated after analysis of spectroscopic data, UV, IR, NMR (1H, 13C, 1D, and 2D, and mass measurements. Suspension in water of crude ethyl acetate extract was employed to treat sheep with ringworm disease. All isolated compounds (1–5 displayed excellent activity in terms of inhibition zones, MICs, MBCs, and MFCs against both bacteria and fungi. Ethyl acetate extract showed excellent antiringworm activity in sheep.

  20. Bioactive compounds in potatoes: Accumulation under drought stress conditions

    Directory of Open Access Journals (Sweden)

    Christina B. Wegener

    2015-03-01

    Full Text Available Background: Potato (Solanum tuberosum is a valuable source of bioactive compounds. Besides starch, crude fibre, amino acids (AAS, vitamins and minerals, the tubers contain diverse phenolic compounds. These phenolics and AAS confer anti-oxidant protection against reactiveoxygen species, tissue damage, and diseases like atherosclerosis, renal failure, diabetes mellitus,and cancer. Climate change and drought stress may become a major risk for crop production worldwide, resulting in reduced access for those who depend on the nutritional value of this staple crop. Objective: The aim of this study is to determine the effect of drought stress on water, lipid soluble antioxidants, anthocyanins (Ac, soluble phenols, proteins, free AAS, peroxidase (POD and lipid acyl hydrolase activity (LAH in tuber tissue. Methods: The study was carried out on three potato genotypes comprising one yellow-fleshed cultivar and two purple breeding clones. The plants were grown in pots (from April to September in a glasshouse with sufficient water supply and under drought stress conditions. After harvest, the tubers of both variants were analysed for antioxidants measured as ascorbic acid (ACE and Trolox equivalent (TXE using a photo-chemiluminescent method. Amounts of anthocyanins (Ac, soluble phenols, proteins, as well as POD and LAH activities were analysed using a UV photometer. Finally, free AAS were measured by HPLC. Results: The results revealed that drought stress significantly reduces tuber yield, but has no significant effect on antioxidants, Ac, soluble phenols and POD. Drought stress significantly increased the levels of soluble protein (P < 0.0001 and LAH (P < 0.001. Also, total amounts of free AAS were higher in the drought stressed tubers (+34.2%, on average than in the tubers grown with a sufficient water supply. Above all, proline was elevated due to drought stress.

  1. [Bioactive compounds from marine sponges and cell culture of marine sponges].

    Science.gov (United States)

    Zhang, Xiao-Ying; Zhao, Quan-Yu; Xue, Song; Zhang, Wei

    2002-01-01

    Presented a survey of bioactive compounds discovered from marine sponges in the recent five years, including the classes, distribution and their potential pharmaceutical uses. In particular, the compounds with antitumor, antivirus and antibacteria activity were discussed with their originating marine sponge species. Whereas the "Supply Problems" were identified to hinder the clinical tests and commercial applications of most of the sponge bioactive compounds. In vitro cell culture of marine sponges is one of the most promising approaches to solve this problem. The state-of-the art of marine sponge cell culture and the challenging areas were discussed. A brief summary of the R&D status was also given on the bioactive compounds from marine sponges in Chinese oceans. It is crucial to invest more efforts on studying marine sponges and their bioactive compounds in our country in order to develop new marine drugs of independent intellectual property.

  2. Bioactive compounds in the stem bark of Albizia coriaria (Welw. ex ...

    African Journals Online (AJOL)

    Albizia coriaria was investigated for the bioactive compounds present in its stem bark. The plant was selected on the basis of its widespread use in traditional herbal medicine. Extraction of the plant material was done with ethyl acetate, methanol and water and the bioactivity of each extract was tested against Pseudomonas ...

  3. Production of hydroxy marilone C as a bioactive compound from

    Directory of Open Access Journals (Sweden)

    Osama H. El Sayed

    2016-06-01

    Full Text Available Hydroxy marilone C is a bioactive metabolite produced from the culture broth of Streptomyces badius isolated from Egyptian soil. Hydroxy marilone C was purified and fractionated by a silica gel column with a gradient mobile phase dichloromethane (DCM:methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many procedures such as infrared (IR, nuclear magnetic resonance (NMR, Mass spectroscopy (MS and UV spectroscopy for elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549 and human breast adenocarcinoma cell line (MCF-7 and antiviral activities; showed that the maximum antioxidant activity was 78.8% at 3 mg/ml after 90 min. and the IC50 value against DPPH radical found about 1.5 mg/ml after 60 min. Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells was 443 μg/ml and 147.9 μg/ml, respectively, while for detection of antiviral activity using Madin–Darby canine kidney (MDCK cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1 μg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50 was 33.25% for 80 μg/ml. These results indicated that the hydroxy marilone C has potential antitumor and antiviral activities.

  4. Empirical modeling of drying kinetics and microwave assisted extraction of bioactive compounds from Adathoda vasica

    Directory of Open Access Journals (Sweden)

    Prithvi Simha

    2016-03-01

    Full Text Available To highlight the shortcomings in conventional methods of extraction, this study investigates the efficacy of Microwave Assisted Extraction (MAE toward bioactive compound recovery from pharmaceutically-significant medicinal plants, Adathoda vasica and Cymbopogon citratus. Initially, the microwave (MW drying behavior of the plant leaves was investigated at different sample loadings, MW power and drying time. Kinetics was analyzed through empirical modeling of drying data against 10 conventional thin-layer drying equations that were further improvised through the incorporation of Arrhenius, exponential and linear-type expressions. 81 semi-empirical Midilli equations were derived and subjected to non-linear regression to arrive at the characteristic drying equations. Bioactive compounds recovery from the leaves was examined under various parameters through a comparative approach that studied MAE against Soxhlet extraction. MAE of A. vasica reported similar yields although drastic reduction in extraction time (210 s as against the average time of 10 h in the Soxhlet apparatus. Extract yield for MAE of C. citratus was higher than the conventional process with optimal parameters determined to be 20 g sample load, 1:20 sample/solvent ratio, extraction time of 150 s and 300 W output power. Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy were performed to depict changes in internal leaf morphology.

  5. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; García Moreno, Pedro Jesús; Mendes, Ana Carina Loureiro

    2018-01-01

    technologies such as electrospraying and electrospinning have received increasing attention. This review presents the principles of electrohydrodynamic processes for the production of nano-microstructures (NMSs) containing bioactive compounds. It provides an overview of the current use of this technology...

  6. Bioactive edible films for food applications:Influence of the bioactive compounds on film structure and properties.

    Science.gov (United States)

    Benbettaïeb, Nasreddine; Karbowiak, Thomas; Debeaufort, Frédéric

    2017-10-17

    Nowadays, a new generation of edible films is being especially designed for incorporating antimicrobials, antioxidants, enzymes or functional ingredients. Edible films made from natural biopolymers become the focus of many research works as an alternative to synthetic food packaging due to their edibility, biodegradability and compostability as well as to their use as active packaging. Active compounds incorporated in edible films could protect foods against deterioration during storage and therefore extend their shelf life. These active films were mainly studied for the bioactivity, as antimicrobial or antioxidant. However, they could also improve the structure and the physicochemical properties of films through chemical linkage with reactive groups of the polymer chains for instance. Moreover, changing the film structure under cross-linking reaction may increase the cohesion between polymer chains and active compounds, and therefore their retention in the polymer network to better control their release. This manuscript provides an overview on the effect of bio-active compounds incorporation on the film structure and functional properties. Depending on their structure, concentration, reactive groups,.., active compounds can act as plasticizer, but also as anti-plasticizer or cross-linking agents in the biopolymer matrix, and can thus ameliorate the water vapour and gas permeability. Therefore, the retention of bioactive compounds in the polymer network and their release can be better controlled. They can also provide a negative plasticizing effect on the film structure. Hence, the improvement of edible active film functionalities has been investigated to achieve suitable applications on foods.

  7. Bioactive compounds in edible flowers processed by radiation

    International Nuclear Information System (INIS)

    Koike, Amanda Cristina Ramos

    2015-01-01

    Edible flowers are increasingly being used in culinary preparations, being also recognized for their potential valuable effects in human health, which require new approaches to improve their conservation and safety. These highly perishable products should be grown without using any pesticide. Irradiation treatment might be the answer to these problems, ensuring food quality, increasing shelf-life and disinfestation of foods. Irradiation treatment might be the answer to these problems, to ensure food quality, to increase shelf-life and disinfestation of foods. Tropaeolum majus L. (nasturtium) and Viola tricolor L. (johnny-jump-up) flowers are widely used in culinary preparations, being also acknowledged for their antioxidant properties and high content of phenolics. The purpose of this study was to evaluate the dose-dependent effects of gamma and electron beam irradiation (doses of 0, 0.5, 0.8 and 1 kGy) on the antioxidant activity, phenolic compounds, physical aspects and antiproliferative potential of edible flowers. Kaempferol-O-hexoside-O-hexoside was the most abundant compound in all samples of Tropaeolum majus flower while pelargonidin-3-O-sophoroside was the major anthocyanin. In general, irradiated samples gave higher antioxidant activity, probably due to their higher amounts of phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source . The Viola tricolor samples displayed flavonols as the most abundant phenolic compounds, particularly those derived from quercetin. In general, gamma-irradiated samples, independently of the applied dose, showed higher amounts in phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source. The antioxidant activity was also higher among irradiated samples. The two species of edible flowers have not provided the samples did not show potential antiproliferative and cytotoxicity. Accordingly, the applied irradiation treatments seemed to represent a feasible technology

  8. Diversity and characterization of bioactive compounds of endophytic bacteria from medicinal plants

    OpenAIRE

    Akinsanya, Mushafau Adewale

    2017-01-01

    Endophytes are believed to produce a number of beneficial bioactive compounds of pharmacological importance. The aims of this study are to evaluate the diversity and characterize the bioactive compounds of bacterial endophytes from selected local medicinal plants. Eighty-seven species of endophytic bacteria were isolated from surface sterilized tissues of six local medicinal plants of which 29 were isolated from Aloe vera, 15 from Mentha spicata, eight from Ocimum basilicum, 16 from Cymbopogo...

  9. Organically grown tomato (Lycopersicon esculentum Mill.): bioactive compounds in the fruit and infection with Phytophthora infestans.

    Science.gov (United States)

    Mohammed, Afrah E; Smit, Inga; Pawelzik, Elke; Keutgen, Anna J; Horneburg, Bernd

    2012-05-01

    Tomato fruits are characterized by a good nutritional profile, including different bioactive compounds such as carotenoids, phenolic compounds and ascorbic acid. The objective of this study was to analyze the content of bioactive compounds in the fruit and the infection by Phytophthora infestans of 28 tomato genotypes from organic outdoor production. The relationship between bioactive compounds in the fruit and infection with P. infestans was estimated. Field experiments were carried out in 2004 and 2005 at two locations in central Germany. Significant variation among genotypes, locations and years was observed for the content of lycopene, ascorbic acid, total phenolic compounds, antioxidant capacity and the infection level of P. infestans. Antioxidant capacity seemed to be influenced mainly by the phenolics and was highest in small fruits, which were less infected with P. infestans. The large genetic variation among tomato genotypes for the content of bioactive compounds in their fruit allows for selection gains. None of the investigated bioactive compounds can be recommended for the indirect selection for increased field resistance against P. infestans. Copyright © 2011 Society of Chemical Industry.

  10. Comparison of Bioactive Compound Content in Egg Yolk Oil Extracted from Eggs Obtained from Different Laying Hen Housing Systems

    OpenAIRE

    Aleksandrs Kovalcuks

    2015-01-01

    Egg yolk oil is a natural source of bioactive compounds such as unsaturated fatty acids, oil soluble vitamins, pigments and others. Bioactive compound content in egg yolk oil depends from its content in eggs, from which oil was extracted. Many studies show that bioactive compound content in egg is correlated to the content of these compounds in hen feed, but there is also an opinion that hen housing systems also have influence on egg chemical content. The aim of this stud...

  11. Synthesis and evaluation of some bioactive compounds having ...

    Indian Academy of Sciences (India)

    Some new 3,4-disubstituted isocoumarins were synthesized having bioactive pyrazole molecule at 3rd position of isocoumarin moiety (5a,b), from isocoumarin -3- carboxylic acid hydrazide (4a,b) followed by cyclization with acetyl acetone. A series of isocoumarin derivative having Schiff base as lateral side chain at 3rd ...

  12. Radiation-induced crosslinking of polymeric micelles as nanoparticle for immobilization of bioactive compound

    International Nuclear Information System (INIS)

    Rida Tajau; Khairul Zaman Mohd Dahlan; Mohd Hilmi Mahmood; Wan Md Zin Wan Yunus; Kamaruddin Hashim; Nor Azowa Ibrahim; Maznah Ismail; Mek Zah Salleh

    2012-01-01

    The purpose of this study was to develop the bioactive-loaded polymeric nanoparticle by radiation-induced crosslinking technique. The polymeric micelles consist of acrylated palm oil (APO), anionic surfactant and aqueous solution was prepared for immobilization of bioactive compound for example the Thymoquinone (TQ). The TQ-loaded APO micelle was subjected to ionizing radiation to induce crosslinked polymeric structure of the TQ-loaded APO nanoparticle. The formation of TQ-loaded APO micro micelle and nano particle were evaluated by the Dynamic Light Scattering (DLS), the Fourier Transform Infrared (FTIR) Spectroscopy and the Transmission Electron Microscopy (TEM) for characterization the size, the shape, the chemical structure and the irradiation effect of the micelle and the nano particle. The results indicate that the size of APO micro and nano particles varies from 120 to 270 nanometer (nm) upon gamma irradiation at doses ranging from 1 to 25 kilo gray (kGy). In addition, size of the particle was found decreasing upon irradiation due to the crosslinking interaction. The study demonstrated that the APO micro-and nanoparticle can retained and controlled the release rate of the thymoquinone at up to 24 hours as determined using ultraviolet-visible (UV-Vis) spectrophotometer. These findings suggested that the ionizing radiation method can be utilized to prepare nano-size APO particles, with the presence of TQ. (author)

  13. Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor

    Science.gov (United States)

    Abdullah Zawawi, Muhammad Redha; Ahmad, Muhamad Aizuddin; Jaganath, Indu Bala

    2017-01-01

    The inhibition of dipeptidyl peptidase-IV (DPPIV) is a popular route for the treatment of type-2 diabetes. Commercially available gliptin-based drugs such as sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin were specifically developed as DPPIV inhibitors for diabetic patients. The use of Gynura bicolor in treating diabetes had been reported in various in vitro experiments. However, an understanding of the inhibitory actions of G. bicolor bioactive compounds on DPPIV is still lacking and this may provide crucial information for the development of more potent and natural sources of DPPIV inhibitors. Evaluation of G. bicolor bioactive compounds for potent DPPIV inhibitors was computationally conducted using Lead IT and iGEMDOCK software, and the best free-binding energy scores for G. bicolor bioactive compounds were evaluated in comparison with the commercial DPPIV inhibitors, sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin. Drug-likeness and absorption, distribution, metabolism, and excretion (ADME) analysis were also performed. Based on molecular docking analysis, four of the identified bioactive compounds in G. bicolor, 3-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, and trans-5-p-coumaroylquinic acid, resulted in lower free-binding energy scores when compared with two of the commercially available gliptin inhibitors. The results revealed that bioactive compounds in G. bicolor are potential natural inhibitors of DPPIV. PMID:28932239

  14. Emerging Strategies and Integrated Systems Microbiology Technologies for Biodiscovery of Marine Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Javier Rocha-Martin

    2014-06-01

    Full Text Available Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.

  15. Effect of different germination conditions on antioxidative properties and bioactive compounds of germinated brown rice.

    Science.gov (United States)

    Lin, You-Tung; Pao, Cheng-Cheng; Wu, Shwu-Tzy; Chang, Chi-Yue

    2015-01-01

    This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR) and germinated brown rice (GBR). We used two rice cultivars (Oryza sativa L.), Taiwan Japonica 9 (TJ-9) and Taichung Indica 10 (TCI-10), as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C), long soaking time (72 h), darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR). We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity) and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol). Higher temperature (36°C) is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives.

  16. Effect of Different Germination Conditions on Antioxidative Properties and Bioactive Compounds of Germinated Brown Rice

    Directory of Open Access Journals (Sweden)

    You-Tung Lin

    2015-01-01

    Full Text Available This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR and germinated brown rice (GBR. We used two rice cultivars (Oryza sativa L., Taiwan Japonica 9 (TJ-9 and Taichung Indica 10 (TCI-10, as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C, long soaking time (72 h, darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR. We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol. Higher temperature (36°C is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives.

  17. Bioactive compounds from palm fatty acid distillate and crude palm oil

    Science.gov (United States)

    Estiasih, T.; Ahmadi, K.

    2018-03-01

    Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.

  18. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Eduardo A.S. Rosa

    2011-08-01

    Full Text Available Research on natural and bioactive compounds is increasingly focused on their effects on human health, but there are unexpectedly few studies evaluating the relationship between climate and natural antioxidants. The aim of this study was analyze the biological role of six different Brassica vegetables (Brassica oleracea L. and Brassica rapa L. as a natural source of antioxidant compounds. The antioxidant activity may be assigned to high levels of L-ascorbic acid, total phenolics and total flavonoids of each sample. The climate seasons affected directly the concentration of bioactive components and the antioxidant activity. Broccoli inflorescences and Portuguese kale showed high antioxidant activity in Spring-Summer whilst turnip leaves did so in Summer-Winter. The Brassica vegetables can provide considerable amounts of bioactive compounds and thus may constitute an important natural source of dietary antioxidants.

  19. Extraction and characterization of candidate bioactive compounds in different tissues from salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Mikalsen, S. O.; Joensen, H.

    2014-01-01

    There is an interest in bioprospecting organisms from the aquatic environment to find novel bioactive compounds with health promoting or other functional properties. The aim of this study was to evaluate extracts from untreated and heat-treated salmon tissues for their radical scavenging activities...... and for their ability to inhibit activity of the proteases angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase 4 (DPP-4). In vitro assays were used to detect these activities and the corresponding candidate bioactive compounds were characterized by LC-MS/MS.Radical scavenging activity was detected in ... not contain standard unmodified amino acids, indicating peptides with modified amino acids or other kinds of molecules.Industrial relevance. Bioprospecting in fish tissue traditionally regarded as waste can lead to detection of novel natural bioactive compounds including peptides, which could have nutritional...

  20. Phenolic compounds and bioactive properties of wild German and Roman chamomiles

    OpenAIRE

    Guimarães, Rafaela; Barros, Lillian; Dueñas, Montserrat; Calhelha, Ricardo C.; Carvalho, Ana Maria; Santos-Buelga, Celestino; Queiroz, Maria João R.P.; Ferreira, Isabel C.F.R.

    2012-01-01

    Natural products represent a rich source of biologically active compounds and are an example of molecular diversity, with recognized potential in drug discovery. In the present work, methanolic extracts of Matricaria recutita L. (German chamomile) and Chamaemelum nobile L. (Roman chamomile) and their decoction and infusion (the most consumed preparations of these herbs) were submitted to an analysis of phenolic compounds and bioactivity evaluation. Phenolic compounds were characterized by HPL...

  1. A Systematic Review of the Efficacy of Bioactive Compounds in Cardiovascular Disease: Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Oscar D. Rangel-Huerta

    2015-06-01

    Full Text Available The prevalence of cardiovascular diseases (CVD is rising and is the prime cause of death in all developed countries. Bioactive compounds (BAC can have a role in CVD prevention and treatment. The aim of this work was to examine the scientific evidence supporting phenolic BAC efficacy in CVD prevention and treatment by a systematic review. Databases utilized were Medline, LILACS and EMBASE, and all randomized controlled trials (RCTs with prospective, parallel or crossover designs in humans in which the effects of BAC were compared with that of placebo/control were included. Vascular homeostasis, blood pressure, endothelial function, oxidative stress and inflammatory biomarkers were considered as primary outcomes. Cohort, ecological or case-control studies were not included. We selected 72 articles and verified their quality based on the Scottish Intercollegiate Guidelines Network, establishing diverse quality levels of scientific evidence according to two features: the design and bias risk of a study. Moreover, a grade of recommendation was included, depending on evidence strength of antecedents. Evidence shows that certain polyphenols, such as flavonols can be helpful in decreasing CVD risk factors. However, further rigorous evidence is necessary to support the BAC effect on CVD prevention and treatment.

  2. In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam

    Directory of Open Access Journals (Sweden)

    Abubakar Amali Muhammad

    2013-01-01

    Full Text Available Moringa oleifera Lam. (M. oleifera from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro.

  3. Endophytes: a treasure house of bioactive compounds of medicinal importance

    Directory of Open Access Journals (Sweden)

    Sushanto Gouda

    2016-09-01

    Full Text Available Endophytes are an endosymbiotic group of microorganisms that colonize in plants and microbes that can be readily isolated from any microbial or plant growth medium. They act as reservoirs of novel bioactive secondary metabolites, such as alkaloids, phenolic acids, quinones, steroids, saponins, tannins, and terpenoids that serve as a potential candidate for antimicrobial, anti-insect, anticancer and many more properties. While plant sources are being extensively explored for new chemical entities for therapeutic purposes, endophytic microbes also constitute an important source for drug discovery. This review aims to comprehend the contribution and uses of endophytes as an impending source of drugs against various forms of diseases and other possible medicinal use.

  4. Effects of selected bioactive food compounds on human white adipocyte function

    DEFF Research Database (Denmark)

    Björk, Christel; Wilhelm, Uta; Mandrup, Susanne

    2016-01-01

    bioactive nutrients on fat metabolism, we investigated their role on human white adipocyte function. METHODS: The influence of the omega-3-fatty acid docosahexaenoic acid (DHA), the anthocyanin (AC) cyanidin-3-glucoside and its metabolite protocatechuic acid, and the beta-glucan metabolite propionic acid...... of the compounds was found to be cytotoxic. CONCLUSION: The studied bioactive food compounds or their metabolites have beneficial effects in human primary fat cells measured as decreased basal lipolytic activity and secretion of inflammatory markers. A minor effect was also observed on insulin-stimulated glucose...... uptake albeit only with the combination of DHA and AC. Taken together, our results may link the reported health benefits of the selected bioactives on metabolic disorders such as insulin resistance, hypertension and dyslipidemia to effects on white adipocytes....

  5. Organic electronic devices using phthalimide compounds

    Science.gov (United States)

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  6. GC–MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco (Moraceae leaves

    Directory of Open Access Journals (Sweden)

    Franelyne Pataueg Casuga

    2016-11-01

    Conclusions: The three extracts possess major bioactive compounds that were identified and characterized spectroscopically. Thus, identification of different biologically active compounds in the extracts of B. luzonica leaves warrants further biological and pharmacological studies.

  7. Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation.

    Science.gov (United States)

    do Carmo Brito, Brenda de Nazaré; Campos Chisté, Renan; da Silva Pena, Rosinelson; Abreu Gloria, Maria Beatriz; Santos Lopes, Alessandra

    2017-08-01

    Cocoa is the target of increased scientific research as it is one of the richest source of bioactive compounds. The formation of bioactive amines and their changes in cocoa beans during seven days of traditional fermentation was investigated for the first time. In addition, total phenolic compounds, anthocyanins contents and the scavenging capacity against ABTS radical were determined to monitor the fermentation process. Only two biogenic amines (tryptamine and tyramine) and two polyamines (spermidine and spermine) were detected in cocoa beans during fermentation. Fermentation was characterized by three stages: i) high levels of tryptamine, phenolics, and scavenging capacity; ii) high contents of spermine, total biogenic amines and total polyamines; and iii) the highest spermidine levels and total acidity, but the lowest total phenolic compounds and anthocyanins contents. The scavenging capacity of cocoa beans during fermentation correlated with total phenolic compounds and anthocyanins contents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mechanisms of Endothelial Protection by Natural Bioactive Compounds from Fruit and Vegetables.

    Science.gov (United States)

    Monsalve, Bernardita; Concha-Meyer, Anibal; Palomo, Iván; Fuentes, Eduardo

    2017-05-01

    The endothelium is fundamental for the regulation of vascular tone and structure. Under disease conditions, including the presence of cardiovascular disease risk factors, the endothelium loses its protective role and becomes a proatherosclerotic structure. In this article we searched for strategies from PUBMED and Science Direct databases using the following key words: endothelium, natural bioactive compounds, polyphenols and cardiovascular diseases. The search was restricted to english language papers. Studies have identified the contribution of diet to the risk of developing cardiovascular diseases. In this context, high intakes of fruit and vegetables are associated with the decrease of cardiovascular diseases. Thus the most important fruit/vegetables and bioactive compounds to prevent endothelial diseases are berries, apples, virgin olive oil, tomatoes, soybeans, and polyphenols, carotenoids and unsaturated fatty acids, respectively. The bioactive compounds from fruit and vegetables provide endothelial protection through the following mechanisms: improved eNOS/NO bioavailability, attenuates oxidative stress, inhibited NF-κB pathway and decreased cell adhesion molecules expression. In this article natural bioactive compound mechanisms of endothelium protection are thoroughly reviewed.

  9. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    Directory of Open Access Journals (Sweden)

    Ana Teixeira

    2014-09-01

    Full Text Available The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L. are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used. Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  10. Physicochemical Parameters and Bioactive Compounds of Strawberry Tree (Arbutus unedo L.) Honey

    OpenAIRE

    Ulloa, Pablo A.; Maia, Miguel; Brigas, Amadeu F.

    2015-01-01

    Botanical origin, physicochemical properties (ash, colour, diastase activity, electrical conductivity (EC), hydroxymethylfurfural (HMF), moisture, optical rotation (OP), pH, reducing sugars, total acidity, total soluble solids, and water activity), bioactive compounds (BC), and antioxidant activity obtained from strawberry tree honey from South Portugal were investigated. Results showed that the pollen analysis and physicochemical parameters were found within to meet international honey speci...

  11. Functional food productions: release the potential of bioactive compounds through food processing

    Science.gov (United States)

    Epidemiological studies of bioactive compounds from plant-based foods have consistently pointed to undisputed benefits of consumption of plant-based foods on human health particularly regarding cardiovascular diseases and cancers. However, in order to attain the dosage required from these studies, p...

  12. Draft Genome Sequence of Hoeflea sp. Strain BAL378, a Potential Producer of Bioactive Compounds

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Riemann, Lasse; Gram, Lone

    2014-01-01

    Some phytoplankton-associated marine bacteria produce bioactive compounds. Members of the genus Hoeflea may be examples of such bacteria; however, data describing their metabolisms are scarce. Here, we report the draft genome sequence of Hoeflea sp. strain BAL378, a putative producer of bacterioc...... of bacteriocins, polyketides, and auxins, as demonstrated by genome mining....

  13. OrgTrace – No difference found in bioactive compounds of organic and conventional crops

    DEFF Research Database (Denmark)

    Knuthsen, Pia; Søltoft, Malene; Laursen, Kristian Holst

    The objective of the present study was to compare the content of selected bioactive compounds in organically and conventionally grown crops, and to evaluate if the ability of the crops to synthesize selected secondary metabolites was systematically affected by growth systems across different grow...... in foods, animal welfare, and environmental protection....

  14. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    Science.gov (United States)

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A.; Garcia-Viguera, Cristina

    2014-01-01

    The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health. PMID:25192288

  15. Sustainable production of bioactive compounds by sponges--cell culture and gene cluster approach: a review.

    Science.gov (United States)

    Müller, Werner E G; Grebenjuk, Vladislav A; Le Pennec, Gaël; Schröder, Heinz- C; Brümmer, Franz; Hentschel, Ute; Müller, Isabel M; Breter, Hans- J

    2004-01-01

    Sponges (phylum Porifera) are sessile marine filter feeders that have developed efficient defense mechanisms against foreign attackers such as viruses, bacteria, or eukaryotic organisms. Protected by a highly complex immune system, as well as by the capacity to produce efficient antiviral compounds (e.g., nucleoside analogues), antimicrobial compounds (e.g., polyketides), and cytostatic compounds (e.g., avarol), they have not become extinct during the last 600 million years. It can be assumed that during this long period of time, bacteria and microorganisms coevolved with sponges, and thus acquired a complex common metabolism. It is suggested that (at least) some of the bioactive secondary metabolites isolated from sponges are produced by functional enzyme clusters, which originated from the sponges and their associated microorganisms. As a consequence, both the host cells and the microorganisms lost the ability to grow independently from each other. Therefore, it was--until recently--impossible to culture sponge cells in vitro. Also the predominant number of "symbiotic bacteria" proved to be nonculturable. In order to exploit the bioactive potential of both the sponge and the "symbionts," a 3D-aggregate primmorph culture system was established; also it was proved that one bioactive compound, avarol/avarone, is produced by the sponge Dysidea avara. Another promising way to utilize the bioactive potential of the microorganisms is the cloning and heterologous expression of enzymes involved in secondary metabolism, such as the polyketide synthases.

  16. Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...

  17. Bioactivity of the compounds isolated from Blepharocalyx salicifolius

    Directory of Open Access Journals (Sweden)

    Ezequias P. Siqueira

    2011-06-01

    Full Text Available Blepharocalyx salicifolius (Kunth O. Berg, Myrtaceae, is an endemic species that occurs at Southern America. This species was studied to intend to isolation of the active compounds that could be used in vitro model against leishmaniosis, tumoral cell and paracoccidioidomycosis. After Gel Permeation Chromatography, the ethanolic extract from leaves yielded sixteen fractions. Five compounds were isolated and assayed, showing activity against tumoral cells, from 3.33 to 12.83 µg.mL-1; Leishmania (Leishmania amazonensis from 2.19 to 20.80 µg.mL-1 and Paracoccidioides brasiliensis from 3.10 to 12.5 µg.mL-1.

  18. Bioactivity of the compounds isolated from Blepharocalyx salicifolius

    Directory of Open Access Journals (Sweden)

    Ezequias P. Siqueira

    2011-08-01

    Full Text Available Blepharocalyx salicifolius (Kunth O. Berg, Myrtaceae, is an endemic species that occurs at Southern America. This species was studied to intend to isolation of the active compounds that could be used in vitro model against leishmaniosis, tumoral cell and paracoccidioidomycosis. After Gel Permeation Chromatography, the ethanolic extract from leaves yielded sixteen fractions. Five compounds were isolated and assayed, showing activity against tumoral cells, from 3.33 to 12.83 µg.mL-1; Leishmania (Leishmania amazonensis from 2.19 to 20.80 µg.mL-1 and Paracoccidioides brasiliensis from 3.10 to 12.5 µg.mL-1.

  19. Bioactive compounds and juice quality from selected grape cultivars

    Directory of Open Access Journals (Sweden)

    Renata Vieira da Mota

    2017-12-01

    Full Text Available ABSTRACT Grape juices have been valued due to their potential health benefits, which have demanded increased grape productivity and quality. Five grape cultivars grown in Brazil, Isabel Precoce, Carmem, Violeta, Concord and Bordo were evaluated in 2013 and 2014 seasons for bioactive components and also for juice processing quality traits. Production cycle was the longest for Carmem but lower and similar for Violeta, Isabel, Bordo and Concord. Isabel showed higher productivity (5.4 kg∙plant-1 but lowest soluble solids content (16.9 °Brix, anthocyanins (26.7 mg∙100 g-1 and total phenolics (110.7 mg∙100 g-1. The highest anthocyanins contents were observed in Violeta (189.9 mg∙100 g-1 and Bordo (133.8 mg∙100 g-1. These cultivars were also rich in phenolics (356.1 and 239.5 mg∙100 g-1, respectively. The highest anthocyanin and total phenolics concentrations were found in Violeta juice (2.68 and 6.33 g∙L-1 followed by Bordo (1.44 and 2.86 g∙L-1. Isabel juice had the lowest content, 0.14 and 1.29 g∙L-1, respectively. Biogenic amines were found at low concentrations only in the juices. Putrescine and spermidine were the major amines detected in juices. Phenylethylamine was detected only in Bordo juice from 2013 season and tryptamine was detected only in 2014 season. Blends were preferred over varietal juices except for Carmem.

  20. Screening bioactive compounds from natural product and its preparations using capillary electrophoresis.

    Science.gov (United States)

    Ma, Huifen; Bai, Yun; Li, Jin; Chang, Yan-Xu

    2018-01-01

    Bioactive ingredients of natural products can protect human body from harm, as well as prevent and treat disease. Screening bioactive compounds from natural products is attracting particular attention. It is a great challenge to separate and detect the active compounds from complex matrix natural products. CE plays a vital role in screening active compounds because of its unique features such as high-efficiency separation, short-analysis time, minimal sample consumption, and ease to realize automatization etc. Additionally, CE has been developed various modes owing to its abundant advantages in analysis and separation of compounds. The purpose of this work is to review previous developments and applications of CE in screening bioactive compounds derived from natural products from 2007 to 2017. This review does not only summarize the traditional methods of detecting active ingredients but also briefly introduces some novel assays. The trends in the application of CE in active compounds screening are addressed in the article. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.

    Directory of Open Access Journals (Sweden)

    Franco Van De Velde

    2013-03-01

    Full Text Available Strawberries represent an important source of bioactive compounds due to their vitamin C and phenolic compound levels, which present high antioxidant effects, beneficial for the maintenance of consumer’s health. Argentina is the second largest strawberry producer in The Common Market of the Southern Cone (MERCOSUR, covering the main export destinations of Argentinian strawberries, i.e., Canada, United States, and European Union. Information about the bioactive compound occurrence and antioxidant capacity of these fruits is scarce or not available. Health related compounds of strawberry cultivars (Camarosa and Selva from different zones of Argentina were investigated. Vitamin C content was in the same range for both studied cultivars. However, Camarosa strawberries, which are the most cultivated, consumed, and exported berries in Argentina, presented higher total phenolic and anthocyanins content, and consequently better in vitro antioxidant capacity. Moreover, there were differences in the occurrence and concentration in the phenolic compound profiles for both cultivars. Camarosa cultivar presented higher content of anthocyanidins, and Selva showed higher total ellagic acid content. The research shows that Argentina’s strawberries are an interesting source of bioactive compounds comparable to those in other parts of the world.

  2. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.)

    Science.gov (United States)

    Van De Velde, Franco; Tarola, Anna M.; Güemes, Daniel; Pirovani, María E.

    2013-01-01

    Strawberries represent an important source of bioactive compounds due to their vitamin C and phenolic compound levels, which present high antioxidant effects, beneficial for the maintenance of consumer’s health. Argentina is the second largest strawberry producer in The Common Market of the Southern Cone (MERCOSUR), covering the main export destinations of Argentinian strawberries, i.e., Canada, United States, and European Union. Information about the bioactive compound occurrence and antioxidant capacity of these fruits is scarce or not available. Health related compounds of strawberry cultivars (Camarosa and Selva) from different zones of Argentina were investigated. Vitamin C content was in the same range for both studied cultivars. However, Camarosa strawberries, which are the most cultivated, consumed, and exported berries in Argentina, presented higher total phenolic and anthocyanins content, and consequently better in vitro antioxidant capacity. Moreover, there were differences in the occurrence and concentration in the phenolic compound profiles for both cultivars. Camarosa cultivar presented higher content of anthocyanidins, and Selva showed higher total ellagic acid content. The research shows that Argentina’s strawberries are an interesting source of bioactive compounds comparable to those in other parts of the world. PMID:28239102

  3. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea

    Science.gov (United States)

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-01-01

    Four new sesquiterpene lactones, 8α-(2′Z-tigloyloxy)-hirsutinolide (1), 8α-(2′Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5–11), three norisoprenoids (12–14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1–16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. PMID:24370662

  4. Subcritical water extraction of bioactive compounds from dry loquat ...

    African Journals Online (AJOL)

    Medicinal properties of loquat leaf extracts (LLEs) are associated with their constituents of phenolic compounds and triterpenes. In this study, the efficacy of subcritical water extraction (SWE) technique was assessed by comparing with conventional solid-liquid extraction (CE) and Soxhlet extraction (SE). Results showed that ...

  5. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention.

    Science.gov (United States)

    Shirode, Amit B; Bharali, Dhruba J; Nallanthighal, Sameera; Coon, Justin K; Mousa, Shaker A; Reliene, Ramune

    2015-01-01

    Pomegranate polyphenols are potent antioxidants and chemopreventive agents but have low bioavailability and a short half-life. For example, punicalagin (PU), the major polyphenol in pomegranates, is not absorbed in its intact form but is hydrolyzed to ellagic acid (EA) moieties and rapidly metabolized into short-lived metabolites of EA. We hypothesized that encapsulation of pomegranate polyphenols into biodegradable sustained release nanoparticles (NPs) may circumvent these limitations. We describe here the development, characterization, and bioactivity assessment of novel formulations of poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) NPs loaded with pomegranate extract (PE) or individual polyphenols such as PU or EA. Monodispersed, spherical 150-200 nm average diameter NPs were prepared by the double emulsion-solvent evaporation method. Uptake of Alexa Fluor-488-labeled NPs was evaluated in MCF-7 breast cancer cells over a 24-hour time course. Confocal fluorescent microscopy revealed that PLGA-PEG NPs were efficiently taken up, and the uptake reached the maximum at 24 hours. In addition, we examined the antiproliferative effects of PE-, PU-, and/or EA-loaded NPs in MCF-7 and Hs578T breast cancer cells. We found that PE, PU, and EA nanoprototypes had a 2- to 12-fold enhanced effect on cell growth inhibition compared to their free counterparts, while void NPs did not affect cell growth. PU-NPs were the most potent nanoprototype of pomegranates. Thus, PU may be the polyphenol of choice for further chemoprevention studies with pomegranate nanoprototypes. These data demonstrate that nanotechnology-enabled delivery of pomegranate polyphenols enhances their anticancer effects in breast cancer cells. Thus, pomegranate polyphenols are promising agents for nanochemoprevention of breast cancer.

  6. Bioactive phenolic compounds from aerial parts of Plinia glomerata.

    Science.gov (United States)

    Serafin, Cláudia; Nart, Viviane; Malheiros, Angela; de Souza, Márcia Maria; Fischer, Luiz; Delle Monache, Giuliano; Della Monache, Franco; Cechinel Filho, Valdir

    2007-01-01

    The present work describes the antinociceptive properties and chemical composition of the aerial parts of Plinia glomerata (Myrtaceae). Both of the extracts evaluated, acetonic and methanolic, showed potent antinociceptive action, when analyzed against acetic acid-induced abdominal constrictions in mice, with calculated ID50 (mg/kg, i. p.) values of 24.8 and 3.3, respectively. Through usual chromatographic techniques with an acetonic extract, the following compounds were obtained: 3,4,3'-trimethoxy flavellagic acid (1), 3,4,3'-trimethoxy flavellagic acid 4'-O-glucoside (3) and quercitrin (4), which were identified based on spectroscopic data. Compounds 1 (ID50 = 3.9 mg/kg, i. p., or 10.8 micromol/kg) and 3 (ID50 = 1.3 mg/kg or 2.5 micromol/kg) were notably more active than some well-known analgesic drugs used here for comparison.

  7. Occurence and Bioactivities of Funicone-Related Compounds

    Directory of Open Access Journals (Sweden)

    Maria Letizia Ciavatta

    2009-03-01

    Full Text Available Studies on production of secondary metabolites by fungi have received a substantial boost lately, particularly with reference to applications of their biological properties in human medicine. Funicones represent a series of related compounds for which there is accumulating evidence supporting their possible use as pharmaceuticals. This paper provides a review on the current status of knowledge on these fungal extrolites, with special reference to aspects concerning their molecular structures and biological activities.

  8. Bioactive compounds in bee propolis for drug discovery

    Science.gov (United States)

    Kumazawa, Shigenori

    2018-02-01

    Propolis is a natural resinous product collected by honeybees. It has been used in folk medicine since ancient times because of its numerous biological properties such as antioxidant, antimicrobial, anti-cancer, and anti-inflammatory activities. Studies of the chemical composition of propolis have demonstrated that its compositional variability depends on the source plant. We have studied the chemistry and biological activities of various types of propolis from Apis mellifera. The studies of propolis collected in Brazil, Japan, Korea, the Solomon Island and Senegal are summarized. Brazilian green propolis contained high levels of artepillin C (3,5-diprenyl-4-hydroxycinnamic acid), which has a potent apoptosis-inducing agent as well as an angiogenesis inhibitor. The several phenolic compounds with potent antibacterial activity in Brazilian red propolis were found. The propolis from Okinawa, Japan, contained some prenylflavonoids with antioxidant and antimicrobial activities. The propolis from the Solomon Islands and Hawaii have the same compounds as Okinawan propolis. The propolis from Jeju Island, Korea had the promotion effect on nerve growth factor (NGF) secretion in human glioblastoma T98G cells. The compounds isolated from Senegalese propolis showed high anti-inflammatory activity due to their inhibition of the liposaccharide (LPS)-induced expression of inducible NO synthase (iNOS).

  9. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L.

    Science.gov (United States)

    Lee, Jong Won; Lee, Jeong Hyun; Yu, In Ho; Gorinstein, Shela; Bae, Jong Hyang; Ku, Yang Gyu

    2014-06-01

    The aim of this investigation was to find a proper harvesting period and establishing fern number, which effects the spear yield, bioactive compounds and antioxidant activities of Asparagus officinalis L. Spears were harvested at 2, 4, and 6 weeks after sprouting. Control for comparison was used without harvest. Spears and total yield increased with prolonged spear harvest period. In harvest of 6 weeks long optimum spear yield was the highest and fern numbers were 5 ~ 8. Bioactive compounds (polyphenols, flavonoids, flavanols, tannins and ascorbic acid) and the levels of antioxidant activities by ferric-reducing/antioxidant power (FRAP) and cupric reducing antioxidant capacity (CUPRAC) assays in asparagus ethanol extracts significantly differed in the investigated samples and were the highest at 6 weeks harvest period (P asparagus were studied by the interaction of polyphenol ethanol extracts with HSA, using 3D- FL. In conclusion, antioxidant status (bioactive compounds, binding and antioxidant activities) improved with the harvesting period and the first segment from spear tip. Appropriate harvesting is effective for higher asparagus yield and its bioactivity.

  10. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.

    Science.gov (United States)

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-04-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance.

  11. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas*

    Science.gov (United States)

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-01-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  12. Influence of Moderate High-Pressure Homogenization on Quality of Bioactive Compounds of Functional Food Supplements

    Directory of Open Access Journals (Sweden)

    Encarna Aguayo

    2017-01-01

    Full Text Available Current interest in health has led to an increase in demand for functional food supplements as well as in industry concern for maintaining the bioactive compounds of such foods via the application of new technologies. In this study, we evaluated the effect of moderate high-pressure homogenization (HPH treatments (80 and 120 MPa versus thermal treatment (80°C, atmospheric pressure on the functional bioactive compounds from four different functional supplements stored under accelerated conditions (40°C  ±  2°C and 75%  ±  5% relative humidity for 6 months. HPH proved to be a better alternative than thermal treatment for functional supplements containing heat-sensitive compounds such as vitamin C, vitamin A, and unsaturated fatty acids (10-hydroxy-2-decenoic acid. The proanthocyanidin, cynarin, chlorogenic, and iron contents, however, were not initially affected by HPH treatments. The storage time caused important reductions in the majority of the compounds studied (mainly in vitamins C, B12, and A, although the lowest decrease was found in the HPH samples. The food matrix had an important effect on the final functional composition and required the optimization of HPH treatments for each functional food supplement. HPH is a recommended alternative to thermal treatment for functional food supplements, in particular when they are rich in thermolabile bioactive compounds.

  13. Distribution of Two bioactive compounds in flowers of Trollius chinensis.

    Science.gov (United States)

    Yuan, Ming; An, Yan-Nan; Wang, Ru-Feng; Ding, Yi; Sun, Zhen-Xiao

    2014-01-01

    A comprehensive procedure was established, which combined a high-performance liquid chromatography (HPLC) assay for the simultaneous quantification of 2″-O-β-L-galactopyranosylorientin (OGA) and veratric acid and a gravimetric analysis for the determination of the mass fraction of the floral parts (calyx, corolla, stalk, stamens and pistils and ovary) of Trollius chinensis, to investigate the distribution and identify the enriched floral part(s) of these two compounds in the flowers. The calculated mean distributions of OGA in calyx, corolla, stamens and pistils, stalk and ovary were 83.62, 7.76, 4.35, 2.92 and 1.35%, respectively, whereas those of veratric acid in the corresponding floral parts were 46.41, 9.01, 18.41, 4.11 and 22.06%, respectively, indicating the uneven and noncorresponding distribution of these two compounds. This study extends the application of the HPLC assay and favors the production of OGA and veratric acid from the flowers of T. chinensis in addition to the benefits of breeding, cultivation and utilization of these flowers.

  14. Synthesis of Some Potentially Bioactive Compounds From Visnaginone

    Directory of Open Access Journals (Sweden)

    E. E. Haggag

    2001-03-01

    Full Text Available The reaction of 5-acetyl-6-hydroxy-4-methoxybenzo[b]furan (visnaginone Ia with 2-diethylaminoethylchloride led to the formation of 5-acetyl-6-diethylamino-ethoxy-4-methoxybenzo[b]furan (II, whereas condensation of compound II with some aromatic aldehydes afforded the corresponding chalcones IIIa-c. Methylation of visnaginone (Ia gave 5-acetyl-4,6-dimethoxybenzo[b]furan (Ib, which in turn reacted with some aromatic aldehydes to give the corresponding chalcones IIId,e. The reaction of chalcones IIId,e with hydrazine hydrate in alcohol gave the pyrazoline derivatives IVa,b, whereas when the same reaction was carried out in acetic acid it afforded the N-acetylpyrazoline derivatives Va,b. Similarly, the reaction of IIId,e with phenyl hydrazine in acetic acid led to the formation of phenylpyrazoline derivatives VIa,b, whereas condensation of chalcones IIId,e with hydroxyl amine hydrochloride gave the isoxazoline derivatives VIIa,b. The reaction of compound II with phenylhydrazine and 2,4,6-trichlorophenylhydrazine afforded the corresponding phenyl hydrazone derivatives VIIIa,b. Mannich bases IXa,b were synthesized by the reaction of visnaginone (Ia with piperidine and benzylamine in the presence of formaline.

  15. Effect of Mobile Phase Additives on the Resolution of Four Bioactive Compounds by RP-HPLC

    Directory of Open Access Journals (Sweden)

    Shengnan Li

    2010-05-01

    Full Text Available The use of mobile phase additives enhances the separation and resolution of the bioactive compounds on the C18 column. Chlorogenic acid, caffeic acid, rutin, and scoparone from Herba Artemisiae Scopariae were investigated as the target compounds. Acetic acid, triethylamine, inorganic salts, and several ionic liquids were added as mobile phase additives into methanol/water (40:60, v/v. The result revealed that a mobile phase with 0.01 mol/L of ionic liquid [BMIM][BF4] enabled the optimum separation of the four target compounds.

  16. Effect of Mobile Phase Additives on the Resolution of Four Bioactive Compounds by RP-HPLC

    Science.gov (United States)

    Li, Shengnan; Tian, Minglei; Row, Kyung Ho

    2010-01-01

    The use of mobile phase additives enhances the separation and resolution of the bioactive compounds on the C18 column. Chlorogenic acid, caffeic acid, rutin, and scoparone from Herba Artemisiae Scopariae were investigated as the target compounds. Acetic acid, triethylamine, inorganic salts, and several ionic liquids were added as mobile phase additives into methanol/water (40:60, v/v). The result revealed that a mobile phase with 0.01 mol/L of ionic liquid [BMIM][BF4] enabled the optimum separation of the four target compounds. PMID:20559512

  17. Aromatic Plants as a Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Panagiota Florou-Paneri

    2012-09-01

    Full Text Available Aromatic plants, also known as herbs and spices, have been used since antiquity as folk medicine and as preservatives in foods. The best known aromatic plants, such as oregano, rosemary, sage, anise, basil, etc., originate from the Mediterranean area. They contain many biologically active compounds, mainly polyphenolics, which have been found to possess antimicrobial, antioxidant, antiparasitic, antiprotozoal, antifungal, and anti-inflammatory properties. Currently, the demand for these plants and their derivatives has increased because they are natural, eco-friendly and generally recognized as safe products. Therefore, aromatic plants and their extracts have the potential to become new generation substances for human and animal nutrition and health. The purpose of this review is to provide an overview of the literature surrounding the in vivo and in vitro use of aromatic plants.

  18. Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating.

    Science.gov (United States)

    Greque de Morais, Michele; Greque de Morais, Etiele; Vaz, Bruna da Silva; Gonçalves, Carolina Ferrer; Lisboa, Cristiane; Costa, Jorge Alberto Vieira

    2016-01-01

    Microalgae have been studied in biotechnological processes due to the various biocompounds that can be obtained from their biomasses, including pigments, proteins, antioxidants, biopeptides, fatty acids and biopolymers. Microalgae biopolymers are biodegradable materials that present similar characteristics to traditional polymers, with the advantage of being rapidly degraded when discarded. In addition, nanoencapsulation is capable of increasing the availability of bioactive compounds by allowing the release of these biocompounds to occur slowly over time. The use of polymers in the nanoencapsulation of active ingredients can mask the undesired physicochemical properties of the compounds to be encapsulated, thereby enhancing consumer acceptability. This covering also acts as a barrier against several foreign substances that can react with bioactive compounds and reduce their activity. Studies of the development of poly-3-hydroxybutyrate (PHB) nanocapsules from microbial sources are little explored; this review addresses the use of nanotechnology to obtain bioactive compounds coated with biopolymer nanocapsules, both obtained from Spirulina biomasses. These microalgae are Generally Recognized as Safe (GRAS) certified, which guarantees that the biomass can be used to obtain high added value biocompounds, which can be used in human and animal supplementation.

  19. Spirolactones: Recent Advances in Natural Products, Bioactive Compounds and Synthetic Strategies.

    Science.gov (United States)

    Quintavalla, Arianna

    2018-01-01

    The spirocyclic compounds have always aroused a great interest because this motif is present as structural core in a number of natural products and bioactive compounds. In particular, the spirolactone moiety has been recognized in a wide array of natural and non-natural scaffolds showing a variety of useful pharmacological properties. Extensive literature search using SciFinder (Databases: CA Plus, CAS Registry, CAS React, Chemlist, Chemcat and Medline) and Web of Science (Database: Web of Science Core Collection) was conducted. Nowadays, many efforts are being devoted to the discovery of new natural products containing the promising spirolactone framework and to the disclosure of the potential bioactivities of these chemical entities. Moreover, the medicinal relevance of many spirolactones makes these scaffolds attractive targets for the design and development of innovative and efficient synthetic strategies, enabling the construction of complex and variably substituted products. This review gives an overview on the recent advances in the spirolactones field, in terms of new compounds isolated from natural sources, recently determined bioactivity profiles and innovative synthetic approaches. The collected data demonstrate the key role played by spirolactones in medicinal chemistry and the great attention still devoted by the scientific community to these compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. TBC2health: a database of experimentally validated health-beneficial effects of tea bioactive compounds.

    Science.gov (United States)

    Zhang, Shihua; Xuan, Hongdong; Zhang, Liang; Fu, Sicong; Wang, Yijun; Yang, Hua; Tai, Yuling; Song, Youhong; Zhang, Jinsong; Ho, Chi-Tang; Li, Shaowen; Wan, Xiaochun

    2017-09-01

    Tea is one of the most consumed beverages in the world. Considerable studies show the exceptional health benefits (e.g. antioxidation, cancer prevention) of tea owing to its various bioactive components. However, data from these extensively published papers had not been made available in a central database. To lay a foundation in improving the understanding of healthy tea functions, we established a TBC2health database that currently documents 1338 relationships between 497 tea bioactive compounds and 206 diseases (or phenotypes) manually culled from over 300 published articles. Each entry in TBC2health contains comprehensive information about a bioactive relationship that can be accessed in three aspects: (i) compound information, (ii) disease (or phenotype) information and (iii) evidence and reference. Using the curated bioactive relationships, a bipartite network was reconstructed and the corresponding network (or sub-network) visualization and topological analyses are provided for users. This database has a user-friendly interface for entry browse, search and download. In addition, TBC2health provides a submission page and several useful tools (e.g. BLAST, molecular docking) to facilitate use of the database. Consequently, TBC2health can serve as a valuable bioinformatics platform for the exploration of beneficial effects of tea on human health. TBC2health is freely available at http://camellia.ahau.edu.cn/TBC2health. © The Author 2016. Published by Oxford University Press.

  1. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Elena Talero

    2015-09-01

    Full Text Available The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB and mitogen-activated protein kinases (MAPK activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins. This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.

  2. Bioactive compounds of juices from two Brazilian grape cultivars.

    Science.gov (United States)

    da Silva, Juliana Kelly; Cazarin, Cinthia Baú Betim; Correa, Luiz Claudio; Batista, Ângela Giovana; Furlan, Cibele Priscila Busch; Biasoto, Aline Camarão Telles; Pereira, Giuliano Elias; de Camargo, Adriano Costa; Maróstica Junior, Mário Roberto

    2016-04-01

    Grape juice consumption may prevent several chronic diseases owing to the presence of phenolic compounds, which have an important role in the reduction of oxidative stress. This study investigated the polyphenol content and antioxidant activities of grape juices from two cultivars: BRS-Cora and Isabella. Total polyphenol content (TPC), anthocyanins, antioxidant capacity (oxygen radical absorbance capacity, ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl), and phenolic profile (high-performance liquid chromatography with diode array and fluorescence detection--HPLC-DAD-FLD) were determined. BRS-Cora grape juice showed higher concentrations of total polyphenols and anthocyanins, as well as higher antioxidant potential, than those of Isabella grape juice. A significant positive correlation was found in TPC or anthocyanin contents when correlated with the remaining antioxidant assays. In addition, HPLC-DAD-FLD showed a higher total phenolic content in BRS-Cora grape juice compared to Isabella. The present results show BRS-Cora as a promising cultivar for grape juice production with an improved functional potential. © 2015 Society of Chemical Industry.

  3. Chemical quality parameters and bioactive compound content of brazilian berries

    Directory of Open Access Journals (Sweden)

    Daniela Mota Segantini

    2015-09-01

    Full Text Available There is a growing consumer demand for higher healthy foods such as berries which are a rich source of phenolic compounds. The current work evaluated blackberry cultivars: Cherokee, Tupy and Xavante; raspberry cultivars: Heritage, Fallgold and Black; and the hybrid Boysenberry. All berries were grown under homogenous subtropical conditions in Brazil. Black raspberry, Cherokee and Tupy blackberry cultivars showed the highest ratio between soluble solid contents and titratable acidity, and Fallgold and Heritage raspberry showed the highest titratable acidity. Total phenolic content ranged from 2.03 to 5.33 g kg–1 fresh weight and total anthocyanin content registered values from 0.41 to 1.81 g kg–1 fresh weight. The most common phenolic acids were gallic, p-coumaric and ellagic, and for anthocyanins: cyanidin-3-glucoside and malvinidin-3-glucoside. Antioxidant capacity ranged from 14.13 to 21.51 mol equivalent trolox kg–1 fresh weight. Black raspberry, all blackberry cultivars and the Boysenberry hybrid are appropriate to be consumed fresh, while Fallgold and Heritage raspberries are recommended to the food industry. Due to their phenolic richness and antioxidant properties, these fruits are of great interest to the fresh fruit market and to pharmaceutical industries. These results could help breeders and growers when planning the cultivar selection according to their foreseeable destination.

  4. Bioactive Compounds Produced by Hypoxylon fragiforme against Staphylococcus aureus Biofilms

    Directory of Open Access Journals (Sweden)

    Kamila Tomoko Yuyama

    2017-12-01

    Full Text Available Treating infections organized in biofilms is a challenge due to the resistance of the pathogens against antibiotics and host immune cells. Many fungi grow in a wet environment, favorable for the growth of bacterial biofilms, and we speculated that fungi possess some strategies to control these bacterial biofilms. A fungus identified as Hypoxylon fragiforme, was collected in the Harz Mountains, Germany, and its mycelial culture was fermented in different culture media for 67 days to test its biological potential against bacterial biofilms. Sclerin, sclerin diacid and its 3-methyl monoester (methyl 1-(5-hydroxy-6-carboxylic-2,3,4-trimethylphenyl propionate are here described for the first time from this fungus. Sclerin and its diacid interfered with the biofilm formation of the pathogen Staphylococcus aureus, inhibiting 86% and 80% of the biofilm at 256 μg mL−1, respectively, but not killing the bacterium. Interestingly, the monomethylester of sclerin diacid was inactive. Although these compounds did not possess any activity against a pre-formed biofilm, they prevented its formation at subtoxic concentrations. Furthermore, sclerin and its diacid displayed a high specificity against Staphylococcus aureus, indicating a good strategy against pathogenic biofilms when combined with antibiotics.

  5. Preformulation and formulation development of a bioactive nitroaromatic compound

    Science.gov (United States)

    Sena, Camila F. A.; Apolinário, Lívia S.; Duarte, Jaqueline A.; dos Santos, Giovanna C.; Monteiro, Liziane O. F.; de Oliveira, Mônica C.; Leite, Elaine A.; de Oliveira, Renata B.

    2017-11-01

    The N-(butanoyloxyethyl)-4-(chloromethyl)-3-nitrobenzamide (BNB) is a nitroaromatic derivative with significant antitumor activity. Preformulation, forced degradation (distilled water, acid and base hydrolysis, oxidation, and light), and formulation studies were performed to investigate the chemical behavior of the molecule, the physicochemical properties, and the impact of formulation variables. Pharmacokinetic properties for BNB were estimated in silico. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) containing BNB were developed by a hot melt homogenization method for parenteral administration. Degradation studies demonstrated that this compound is sensitive to hydrolysis. BNB was predicted to have a favorable absorption, distribution, metabolism, and excretion profile. The nanocarriers developed were characterized for particle size (PS = 61 to 85 nm), polydispersity index (PI studies indicated that BNB (inhibitory concentration (IC50) 21.8 μM) and BNB-loaded NLC (IC50 33.7 μM) showed moderate cytotoxicity against breast cancer cell line. Blank formulations did not induce cytotoxicity and BNB-loaded SLN was able to potentiate the action of BNB (lC50 12.4 μM). BNB is a promising antitumor agent and it is possible to modulate its activity based on the particle size of the formulation.

  6. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    Science.gov (United States)

    Talero, Elena; García-Mauriño, Sofía; Ávila-Román, Javier; Rodríguez-Luna, Azahara; Alcaide, Antonio; Motilva, Virginia

    2015-01-01

    The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity. PMID:26437418

  7. Bioactive compounds from brewer’s spent grain: phenolic compounds, fatty acids and in vitro antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Aline da Rosa Almeida

    2017-07-01

    Full Text Available Brewer's spent grain (BSG was characterized by physicochemical, total phenolic compound and flavonoids contents. Antioxidant activity was evaluated by four different assays. The chromatographic analyses were used to quantify the phenolic compounds and the fatty acids in BSG. Ethanolic extracts were tested to evaluate antibacterial activity. The higher concentration of total phenolic compounds for BSG was obtained in the extraction with ethanol 20%. BSG showed an antioxidant potential for all tests evaluated. In the case of chromatographic analysis, phenolic acids and flavonoids, such as syringic acid and catechin, respectively, were detected in high quantities. Regarding to the fatty acids profile, polyunsaturated fatty acids, such as linoleic and oleic acids, were found in significant amounts. No antibacterial activity was reported for bacterial cultures and concentrations tested. BSG may be considered a protein source, rich in fiber, polyunsaturated fatty acids and bioactive compounds with antioxidant potential.

  8. The Evaluation and Utilization of Marine-derived Bioactive Compounds with Anti-obesity Effect.

    Science.gov (United States)

    Jin, Qiu; Yu, Huahua; Li, Pengcheng

    2018-01-01

    Obesity is a global epidemic throughout the world. There is thus increasing interest in searching for natural bioactive compounds with anti-obesity effect. A number of marine compounds have been regarded as potential sources of bioactive compounds and are associated with an anti-obesity effect. Marine-derived compounds with anti-obesity effect and their current applications, methods and indicators for the evaluation of anti-obesity activity are summarized in this review. in order to make contributions to the development of marine-derived functional food against obesity. In this review, an overview of marine-derived compounds with anti-obesity effect, including marine polysaccharides, marine lipid, marine peptides, marine carotenoids is intensively made with an emphasis on their efficacy and mechanism of action. Meanwhile, methods and indicators for the evaluation of anti-obesity activity are discussed. We summarize these methods into three categories: in vitro assay (including adsorption experiments and enzyme inhibitory assay), cell line study, animal experiments and clinical experiments. In addition, a brief introduction of the current applications of marine bioactive compounds with anti-obesity activity is discussed. Marine environment is a rich source of both biological and chemical diversity. In the past decades, numerous novel compounds with anti-obesity activity have been obtained from marine organisms, and many of them have been applied to industrial production such as functional foods and pharmaceuticals. Further studies are needed to explore the above-mentioned facts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. EPlantLIBRA: A composition and biological activity database for bioactive compounds in plant food supplements

    DEFF Research Database (Denmark)

    Plumb, J.; Lyons, J.; Nørby, Karin Kristiane

    2015-01-01

    The newly developed ePlantLIBRA database is a comprehensive and searchable database, with up-to-date coherent and validated scientific information on plant food supplement (PFS) bioactive compounds, with putative health benefits as well as adverse effects, and contaminants and residues. It is the......The newly developed ePlantLIBRA database is a comprehensive and searchable database, with up-to-date coherent and validated scientific information on plant food supplement (PFS) bioactive compounds, with putative health benefits as well as adverse effects, and contaminants and residues....... It is the only web-based database available compiling peer reviewed publications and case studies on PFS. A user-friendly, efficient and flexible interface has been developed for searching, extracting, and exporting the data, including links to the original references. Data from over 570 publications have been...... quality evaluated and entered covering 70 PFS or their botanical ingredients....

  10. Extraction and evaluation of bioactive compounds with antioxidant potential from green arabica coffee extract

    Directory of Open Access Journals (Sweden)

    Simona PATRICHE

    2015-12-01

    Full Text Available During the last decade researches concerning the essential role of coffee in health and disease prevention showed an increased development. In the present study we obtained extracts from three green Arabica coffee varieties which demonstrated a significant antioxidant potential due to the presence in their composition of two bioactive compounds, caffeine and chlorogenic acids. The content and antioxidant activity of bioactive compounds were evaluated by qualitative and quantitative analyses using spectrophotometric and chromatography methods. The chlorogenic acid was found in high concentrations, being followed by gallic, p-coumaric and ferulic acids. The highest caffeine contents were found in the green coffee extracts of the Supremo–Columbia and Top Quality–Kenya products.

  11. Synthesis of potentially bioactive compounds and tools for biological studies

    International Nuclear Information System (INIS)

    Cappa, F.

    2014-01-01

    NMR spectroscopy is one of the most versatile tools for studying structural parameters of organic and bioorganic compounds. It became a highly suitable method to achieve spectra simplification of macromolecules in combination with isotope labeling techniques. This technique is used to study protein structures, folding properties and mechanisms of chemical and biochemical reactions. Proteins typically feature a high molecular mass showing a high number of spin systems, being responsible for increasingly difficult to interpret NMR spectra, which is why it is essential to introduce 13 C- and 15 N- isotopes to obtain reasonable signal intensities. The development of a new synthetic route towards 13 C-isotope labeled Phenylalanine or precursors thereof, starting from inexpensive and easily accessible labeled starting materials, is the main purpose of this work. Label sources such as [ 13 C]-acetic acid, [ 13 C]-formaldehyde, [ 13 C]-allyl alcohol and [ 13 C]-glycine will be used. The synthetic pathway will be carried out in a way where the position-selective incorporation of labeled isotopes can be performed. This important feature of the synthesis may open access towards newly designed NMR-experiments. Key steps for the tested route are ring closing metatheses as well as indium mediated reactions. The second part of this work focuses on the field of sugar chemistry, in particular on the family of deoxy sugars, components of many natural products, found in different plants, fungi and bacteria. Deoxy sugars also participate in a wide range of biological processes. Special focus is given to 3-deoxy sugars and the research of a versatile and flexible synthetic route for their preparation starting from the easily accessible D-glyceraldehyde. These sugars are found on Gram-negative bacteria where they are a key component of the lipopolysaccharides, or where they can take place in the biosynthesis of aromatic amino acids in bacteria and plants. Being able to perform this

  12. Bioactive compounds in Gyromitra esculenta and Helvella lacunosa wild mushrooms from Northeast of Portugal

    OpenAIRE

    Leal, Ana Raquel; Barros, Lillian; Martins, Anabela; Ferreira, Isabel C.F.R.

    2013-01-01

    The search for foods that can improve health or reduce the risk of disease, has been steadily gaining interest. Mushrooms could be examples of these foods because they are appreciated worldwide for their nutritional properties [1] and bioactive compounds [2]. The chemical characterization of wild species is very important, in order to promote their consumption and conserve their habitats. This feature might place mushrooms in the pharma-nutrition interface. The present study de...

  13. Potential Benefits of Jujube (Zizyphus Lotus L.) Bioactive Compounds for Nutrition and Health

    OpenAIRE

    Abdoul-Azize, Souleymane

    2016-01-01

    Zizyphus lotus, belonging to the Rhamnaceae family, is a deciduous shrub which generally grows in arid and semiarid regions of the globe. In traditional medicine, Z. lotus is used as antidiabetes, sedative, bronchitis, and antidiarrhea by local populations. Recently, several scientific reports for health benefit and nutritional potential of bioactive compounds from this jujube have been reported. This plant is rich in polyphenols, cyclopeptide alkaloids, dammarane saponins, vitamins, minerals...

  14. Bioactive Compound Rich Indian Spices Suppresses the Growth of β-lactamase Produced Multidrug Resistant Bacteria

    OpenAIRE

    Eadlapalli Siddhartha; Vemula Sarojamma; Vadde Ramakrishna

    2017-01-01

    Background: Multidrug Resistance (MDR) among bacteria become a global concern due to failure of antibiotics, is drawn attention for best antimicrobials from the spices which have been using ancient days in Indian culinary and traditional medicine. Aim and Objectives: The present study was undertaken to evaluate the bioactive compounds and their antibacterial activity in routinely used culinary Indian spices against β-lactamase produced MDR bacteria. Material and Methods: Ethanolic extracts p...

  15. Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks

    OpenAIRE

    Vicente, Henrique; Roseiro, José C.; Arteiro, José M.; Neves, José; Caldeira, A. Teresa

    2013-01-01

    Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds p...

  16. FT-IR study on solvent effects in building blocks of bioactive compounds. V

    Science.gov (United States)

    Conti, C.; Galeazzi, R.; Giorgini, E.; Tosi, G.

    2006-06-01

    3-Hydroxy-4-hydroxymethyl pyrrolidin-2-ones, easily prepared from the Baylis-Hillman adduct 1-ethyl-4-methyl-2-hydroxy-3-methylenebutanedioate, are useful intermediates in the synthesis of bioactive compounds. In order to understand the mechanism involved in this reaction, vibrational and Montecarlo molecular mechanics conformational analysis on 1-ethyl-4-methyl-2-hydroxy-3-methylenebutanedioate were carried out, confirming the existence of a low energy intramolecular H-bonded five-member ring.

  17. Bioactive compounds and antioxidant activity of conilon coffee submitted to different degrees of roasting

    OpenAIRE

    Morais, Sérgio Antônio Lemos de; Aquino, Francisco José Tôrres de; Nascimento, Priscilla Mendes do; Nascimento, Evandro Afonso do; Chang, Roberto

    2009-01-01

    The bioactive compounds and antioxidant activity presented by Conilon coffee (C. Canephora) variety, produced in the Espírito Santo State, Brazil, were quantified. The light roast coffee showed the highest level of total phenols, trigonelline, caffeic and chlorogenic acids. The proanthocyanidin level was the highest for dark roast coffee, while caffeine level didn't show significative changes for the light and middle roast coffees. All the Conilon coffee extracts showed antioxidant activity d...

  18. Effects of orange winemaking variables on antioxidant activity and bioactive compounds

    Directory of Open Access Journals (Sweden)

    María del Carmen Schvab

    2015-09-01

    Full Text Available AbstractAscorbic acid, carotenoids and polyphenols stand out among the orange juice natural antioxidants. The winemaking process affects their bioavailability and bioactivity. Antioxidant activities (AA were estimated in different process conditions to asses those properties. The AA and their correlation with ascorbic acid, total phenolics and carotenoids content were calculated. The variables and levels analyzed were: pasteurized and natural must (PJ and NJ, pH 3.5 and 4.0 and fermentation temperatures at 10°C and 20°C. Statistically significant differences (α=0.05 were found among bioactive compounds concentrations. Antioxidant compounds concentration was higher in raw material than in orange wine. Juice pasteurization caused the major losses while subsequent vinification affects them to a lesser extent. Highest antioxidants retention was measured in wines from JN fermented at pH 3.5 and 10 °C (JN-3.5-10 followed by wines from JP and fermented at the same conditions (JP-3.5-10. AA determined by DPPH showed a positive and close correlation with FRAP, while ABTS showed a low correlation with former assays. Juice pasteurization process and fermentation temperature influenced bioactive compound reduction which correlates with the AA variation.

  19. Elicitor Mixtures Significantly Increase Bioactive Compounds, Antioxidant Activity, and Quality Parameters in Sweet Bell Pepper

    Directory of Open Access Journals (Sweden)

    Lina Garcia-Mier

    2015-01-01

    Full Text Available Sweet bell peppers are greatly appreciated for their taste, color, pungency, and aroma. Additionally, they are good sources of bioactive compounds with antioxidant activity, which can be improved by the use of elicitors. Elicitors act as metabolite-inducing factors (MIF by mimic stress conditions. Since plants rarely experience a single stress condition one by one but are more likely to be exposed to simultaneous stresses, it is important to evaluate the effect of elicitors on plant secondary metabolism as mixtures. Jasmonic acid (JA, hydrogen peroxide (HP, and chitosan (CH were applied to fruits and plants of bell pepper as mixtures. Bioactive compounds, antioxidant activity, and quality parameters were evaluated. The assessed elicitor cocktail leads to an increase in the variables evaluated (P ≤ 0.05 when applied to mature fruits after harvest, whereas the lowest values were observed in the treatment applied to immature fruits. Therefore, the application of the elicitor cocktail to harvested mature fruits is recommended in order to improve bioactive compounds and the antioxidant activity of sweet bell peppers.

  20. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV

    Science.gov (United States)

    Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis) and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims of this study were to characterize extracts from greenhouse grown or commercially purchased herbs for th...

  1. Comparison of the Main Bioactive Compounds and Antioxidant Activities in Garlic and White and Red Onions after Treatment Protocols

    Czech Academy of Sciences Publication Activity Database

    Gorinstein, S.; Leontowich, H.; Leontowicz, M.; Namiesnik, J.; Najman, K.; Drzewiecki, J.; Cvikrová, Milena; Martincová, Olga; Katrich, E.; Trakhtenberg, S.

    2008-01-01

    Roč. 56, č. 12 (2008), s. 4418-4426 ISSN 0021-8561 Institutional research plan: CEZ:AV0Z50380511 Keywords : Garlic * onions * bioactive compounds Subject RIV: EF - Botanics Impact factor: 2.562, year: 2008

  2. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit.

    Science.gov (United States)

    Liu, Changhong; Liu, Wei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2015-04-15

    Tomato is an important health-stimulating fruit because of the antioxidant properties of its main bioactive compounds, dominantly lycopene and phenolic compounds. Nowadays, product differentiation in the fruit market requires an accurate evaluation of these value-added compounds. An experiment was conducted to simultaneously and non-destructively measure lycopene and phenolic compounds content in intact tomatoes using multispectral imaging combined with chemometric methods. Partial least squares (PLS), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) were applied to develop quantitative models. Compared with PLS and LS-SVM, BPNN model considerably improved the performance with coefficient of determination in prediction (RP(2))=0.938 and 0.965, residual predictive deviation (RPD)=4.590 and 9.335 for lycopene and total phenolics content prediction, respectively. It is concluded that multispectral imaging is an attractive alternative to the standard methods for determination of bioactive compounds content in intact tomatoes, providing a useful platform for infield fruit sorting/grading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Composition and topology of activity cliff clusters formed by bioactive compounds.

    Science.gov (United States)

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2014-02-24

    The assessment of activity cliffs has thus far mostly focused on compound pairs, although the majority of activity cliffs are not formed in isolation but in a coordinated manner involving multiple active compounds and cliffs. However, the composition of coordinated activity cliff configurations and their topologies are unknown. Therefore, we have identified all activity cliff configurations formed by currently available bioactive compounds and analyzed them in network representations where activity cliff configurations occur as clusters. The composition, topology, frequency of occurrence, and target distribution of activity cliff clusters have been determined. A limited number of large cliff clusters with unique topologies were identified that were centers of activity cliff formation. These clusters originated from a small number of target sets. However, most clusters were of small to moderate size. Three basic topologies were sufficient to describe recurrent activity cliff cluster motifs/topologies. For example, frequently occurring clusters with star topology determined the scale-free character of the global activity cliff network and represented a characteristic activity cliff configuration. Large clusters with complex topology were often found to contain different combinations of basic topologies. Our study provides a first view of activity cliff configurations formed by currently available bioactive compounds and of the recurrent topologies of activity cliff clusters. Activity cliff clusters of defined topology can be selected, and from compounds forming the clusters, SAR information can be obtained. The SAR information of activity cliff clusters sharing a/one specific activity and topology can be compared.

  4. Extraction Techniques for Bioactive Compounds and Antioxidant Capacity Determination of Chilean Papaya (Vasconcellea pubescens Fruit

    Directory of Open Access Journals (Sweden)

    Elsa Uribe

    2015-01-01

    Full Text Available The aim of this work was to assess and compare different extraction methods by using high hydrostatic pressure (HHPE, ultrasound (UE, agitation (AE, and their combinations for the extraction of bioactive compounds of Chilean papaya. Extract antioxidant capacity was evaluated by three methods (i.e., DPPH, FRAP, and Voltammetry and phenolic compounds and vitamin C were determined by HPLC. Papaya sample extraction was performed by HHPE at 500 MPa for 10 min and UE and AE for 30 min, respectively. The combined-extractions: HHPE-UE and HHPE-AE, were carried out for 5 min and 15 min, respectively. The highest values found were total phenolic 129.1 mg GAE/100 g FW, antioxidant capacity by DPPH 20.6 mM TE/100 g FW, and voltammetry 141.0 mM TE/100 g FW for HHPE-UE method in free compound extraction. Regarding vitamin C content, its highest value was found by HHPE-UE (74 mg/100 g FW a combined extraction method. The phenolic compounds rutin and p-coumaric acid were found in all the extracts, both in free and bound forms, respectively. Besides, the combined techniques improved the extraction of bioactive compounds.

  5. Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Aida Rodriguez-Garcia

    2017-08-01

    Full Text Available Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer. Keywords: Thioredoxin, Thioredoxin reductase, TXNIP, Prostate cancer, Redox signaling, Apoptosis

  6. Solid-state fermentation as a strategy to improve the bioactive compounds recovery from Larrea tridentata leaves.

    Science.gov (United States)

    Martins, Sílvia; Teixeira, José A; Mussatto, Solange I

    2013-11-01

    Chemical composition of Larrea tridentata leaves was determined and elevated content of lignin (35.96 % w/w) was found. The present study was proposed in order to evaluate the extraction of bioactive compounds, particularly phenolic compounds, by solid-state fermentation (SSF) of L. tridentata leaves. The basidiomycete Phanerochaete chrysosporium was used in the experiments due to its ability to degrade lignin. The concentration of total phenolic compounds in the extracts produced by SSF was determined. Additionally, the extracts were characterized regarding the concentration of flavonoids, quercetin, kaempferol, and nordihydroguaiaretic acid and antioxidant activity. SSF was not an efficient process to recover phenolic compounds from L. tridentata leaves. However, this process was very efficient when used as a pretreatment before the plant extraction with organic solvent (methanol). By submitting the plant to SSF and subsequently to extraction with 90 % (v/v) methanol, the recovery of phenolic compounds was improved by 33 % when compared to the results obtained by methanolic extraction of the non-fermented plant. Scanning electron microscopy micrographs revealed a major disorganization and porosity of the plant structure after fermentation, and Fourier transform infrared spectroscopy spectra indicated a possible solubilization of some constituents of lignocellulose fraction after this process, which may have favored the solvent action in the later stage.

  7. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds.

    Science.gov (United States)

    Pinheiro, Ana C; Bourbon, Ana I; Cerqueira, Miguel A; Maricato, Élia; Nunes, Cláudia; Coimbra, Manuel A; Vicente, António A

    2015-01-22

    Hollow multilayer nanocapsules were successfully prepared through layer-by-layer assembly of two bioactive polysaccharides, chitosan and fucoidan. The stepwise adsorption of 10 chitosan/fucoidan layers and the consequent formation of a multilayer film on polystyrene nanoparticles (used as templates) were followed through ζ-potential measurement and the removal of the polystyrene core was confirmed by FTIR analysis. The chitosan/fucoidan nanocapsules morphology and size were evaluated by SEM and TEM, which showed that after the core removal, the nanocapsules maintained their spherical shape and a decrease of size occurred. A cationic bioactive compound, poly-L-lysine (PLL), was chosen to evaluate the loading and release behaviour of the nanocapsules. The chitosan/fucoidan nanocapsules showed a good capacity for the encapsulation and loading of PLL, which shows to be influenced by the initial PLL concentration and the method of encapsulation used. The results of fitting the linear superimposition model to the experimental data of PLL release suggest an anomalous behaviour, with one main polymer relaxation. The PLL release was found to be pH-dependent: at pH 2 relaxation is the governing phenomenon and at pH 7 Fick's diffusion is the main mechanism of PLL release. Chitosan/fucoidan nanocapsules is a promising delivery system for water soluble bioactive compounds, such as PLL, showing a great potential of application in food and pharmaceutical industries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents.

    Science.gov (United States)

    Jabeur, Inès; Pereira, Eliana; Barros, Lillian; Calhelha, Ricardo C; Soković, Marina; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2017-10-01

    The nutritional and bioactive composition of plants have aroused much interest not only among scientists, but also in people's daily lives. Apart from the health benefits, plants are a source of pigments that can be used as natural food colorants. In this work, the nutritional composition of Hibiscus sabdariffa L. was analysed, as well as its bioactive compounds and natural pigments. Glucose (sugar), malic acid (organic acid), α-tocopherol (tocopherol) and linoleic acid (fatty acid) were the major constituents in the corresponding classes. 5-(Hydroxymethyl) furfural was the most abundant non-anthocyanin compound, while delphinidin-3-O-sambubioside was the major anthocyanin both in its hydroethanolic extract and infusion. H. sabdariffa extracts showed antioxidant and antimicrobial activities, highlighting that the hydroethanol extract presents not only lipid peroxidation inhibition capacity, but also bactericidal/fungicidal inhibition ability for all the bacteria and fungi tested. Furthermore, both extracts revealed the absence of toxicity using porcine primary liver cells. The studied plant species was thus not only interesting for nutritional purposes but also for bioactive and colouring applications in food, cosmetic and pharmaceutical industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds.

    Science.gov (United States)

    Lourenço, Sofia C; Torres, Cristiana A V; Nunes, Daniela; Duarte, Paulo; Freitas, Filomena; Reis, Maria A M; Fortunato, Elvira; Moldão-Martins, Margarida; da Costa, Luísa Beirão; Alves, Vítor D

    2017-11-01

    The potential of a bacterial exopolysaccharide named FucoPol, produced by the bacterium Enterobacter A47, as encapsulation matrix was explored. Spherical capsules with a smooth surface were produced by spray drying. The obtained microcapsules had average diameters ranging from 0.5 to 26.7μm and presented thin walls (thickness from 222 to 1094nm). The capsules were loaded with two bioactive compounds: gallic acid (GA) and oregano essential oil (OEO). Both bioactive materials were encapsulated in FucoPol particles, retaining their antioxidant activity after the drying process. Release studies showed that GA release in simulated gastric and intestinal fluids was faster than that of OEO, envisaging that the latter had established stronger interactions with the polymer matrix. These results suggest that FucoPol has a good potential for use as encapsulating material of bioactive compounds for application in several areas, including food, cosmetic or pharmaceutical products. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Content in Bioactive Compounds of Different Brewers' Spent Grain Aqueous Extracts

    Directory of Open Access Journals (Sweden)

    Anca FARCAS

    2016-11-01

    Full Text Available In the last decade by-products of food and beverage processing have attracted much attention due to their functionality and potential as food ingredients. Brewers’ spent grain is the major by-product of the brewing industry representing a valuable source of bioactive ingredients. The aim of this study was to assess the effect of extraction time and temperature on the efficiency of water as solvent for the extraction of bioactive compounds from brewers’ spent grain (BSG. In terms of extraction efficiency, the results from polyphenols, flavonoids and antioxidant activity, showed that the best extraction parameters for aqueous extracts are 90⁰C and 60 minutes. In comparison with the control, the best extraction method generated 87% of the phenolics and 43.46% of the flavonoids obtained by a methanol extraction. The preliminary results for the aqueous extracts showed that water can be used as extraction solvent, but a higher extraction time and temperature are needed in order to have a content in bioactive compounds similar to that of methanolic extracts. The obtained values for polyphenols, flavonoids and antioxidant activity, emphasize the importance and the opportunities of the reuse of this agro-industrial waste.

  11. Fermentation of Plant Material - Effect on Sugar Content and Stability of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Reis Bruno A. dos

    2014-12-01

    Full Text Available Extraction is a method often used to obtain products rich in bioactive compounds from plant material. Most of the solvents used for the poly-phenols extraction simultaneously extract also sugars, undesirable as a component of health-promoting food. Fermentation might be a simple, cheap and efficient way of sugar elimination. In our study, black tea and goji berries, both known for their health benefits, were used and alcoholic fermentation by Saccharomyces cerevisiae was carried out to eliminate sugars. In the course of fermentation the concentration of polyphenols, L-theanine and carotenoids was evaluated in order to verify the preservation of selected bioactive compounds. Decreases in sugar content, formation of ethanol and yeasts growth were monitored during fermentation. The fermentation of black tea decreased the sugar concentration by 84% within 6 h without decreasing total polyphenols and L-theanine contents. Goji berry fermentation yielded a sugars decrease of 87% within 24 h, without decrease in poly-phenol content. However, carotenoid content was reduced by 17%. The study showed that fermentation was an effective way to decrease sugar content in plant extracts, and therefore it might be a pertinent step to concentrate bioactives.

  12. Antioxidant activity and bioactive compound contents before and after in vitro digestion of new tomato hybrids.

    Science.gov (United States)

    Tommonaro, Giuseppina; Speranza, Giovanna; De Prisco, Rocco; Iodice, Carmine; Crudele, Egle; Abbamondi, Gennaro Roberto; Nicolaus, Barbara

    2017-12-01

    The antioxidant properties and bioactive compound contents of fresh new tomato hybrids before and after in vitro digestion were investigated. To this aim, the antioxidant activities of lipophilic, hydrophilic and polyphenolic extracts of tomato hybrids were determined by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DMPD (N,N-dimethyl-p-phenylenediamine dihydrochloride) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods respectively, while the bioactive compound contents were estimated via Folin-Ciocalteu (polyphenols), pH differential (anthocyanins) and high-performance liquid chromatography (lycopene and β-carotene) methods. After the digestion process, a marked loss (ranging from 37 to 77%) of antioxidant capacity linked to the hydrophilic fraction was observed. In contrast, the lipophilic and methanolic fractions showed an increase in antioxidant activity (ranging from 9 to 40%) after gastric digestion, and a rapid decrease was observed after total digestion. Moreover, the presence of anthocyanins and carotenoids after simulated digestion was a notable result. The bioavailability of bioactive metabolites from nutraceutical food and their healthful properties in humans are strictly dependent on the digestion process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata

    Directory of Open Access Journals (Sweden)

    Vânia Specian

    2012-09-01

    Full Text Available Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of ¹H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl-ethanol (Tyrosol. Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential.

  14. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends

    Science.gov (United States)

    2017-01-01

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid–liquid extractions, IL-based liquid–liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations. PMID:28151648

  15. Microwave assisted dehydration of broccoli by-products and simultaneous extraction of bioactive compounds.

    Science.gov (United States)

    Ferreira, Sónia S; Passos, Cláudia P; Cardoso, Susana M; Wessel, Dulcineia F; Coimbra, Manuel A

    2018-04-25

    Broccoli by-products from frozen-food industry account for 45% of the initial broccoli heads. They consist on stalks, inflorescences, and leaves, blanched and non-blanched, sharing the nutritional value and bioactive compounds of commercial broccoli heads. However, their high perishability prevents further valorisation. Therefore, in this study microwave hydrodiffusion and gravity (MHG) technology was used to dehydrate broccoli by-products and simultaneously recover the water-soluble diffused compounds for food ingredients use. The hydrodiffusion allowed to obtain a dried material with 12% moisture in 43 min when 550 g of broccoli by-products were used, preserving polysaccharides and proteins. Diffused water contained up to 317 µg/mL gallic acid equivalents of phenolic compounds, 11 mg/mL free sugars, 9 mg/mL amino acids, and 356 µg/mL glucosinolates, depending on the type of by-product used. These results show the potential of MHG technology for valorisation of broccoli by-products by its simultaneous stabilization by dehydration and extraction of bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil.

    Science.gov (United States)

    Ribeiro da Silva, Larissa Morais; Teixeira de Figueiredo, Evania Altina; Silva Ricardo, Nagila Maria Pontes; Pinto Vieira, Icaro Gusmao; Wilane de Figueiredo, Raimundo; Brasil, Isabella Montenegro; Gomes, Carmen L

    2014-01-15

    This study aimed to quantify the levels of resveratrol, coumarin, and other bioactives in pulps and by-products of twelve tropical fruits from Brazil obtained during pulp production process. Pineapple, acerola, monbin, cashew apple, guava, soursop, papaya, mango, passion fruit, surinam cherry, sapodilla, and tamarind pulps were evaluated as well as their by-products (peel, pulp's leftovers, and seed). Total phenolic, anthocyanins, yellow flavonoids, β-carotene and lycopene levels were also determined. Resveratrol was identified in guava and surinam cherry by-products and coumarin in passion fruit, guava and surinam cherry by-products and mango pulp. These fruit pulp and by-products could be considered a new natural source of both compounds. Overall, fruit by-products presented higher (Pfruit pulps. This study provides novel information about tropical fruits and their by-products bioactive composition, which is essential for the understanding of their nutraceutical potential and future application in the food industry. Published by Elsevier Ltd.

  17. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango

    Directory of Open Access Journals (Sweden)

    Meran Keshawa Ediriweera

    2017-01-01

    Full Text Available Mangifera indica (family Anacardiaceae, commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described.

  18. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango)

    Science.gov (United States)

    2017-01-01

    Mangifera indica (family Anacardiaceae), commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described. PMID:29456572

  19. Minimally processed mixed salad submitted to gamma radiation: effects on bioactive compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hirashima, Fabiana K.; Sabato, Susy F., E-mail: fmayumi@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lanfer-Marquez, Ursula M., E-mail: lanferum@usp.br [Universidade de Sao Paulo (FCF/USP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    2015-07-01

    High consumption of fruits and vegetables has been associated with a lowered incidence of oxidative stress-related diseases due to the presence of bioactive structures. Minimally processed products are a growing segment in food retail establishments because it is associated with practicality and convenience without significantly altering fresh-like characteristics. Low-dose of gamma radiation in combination with minimal processes has shown to be a promising strategy for extending shelf life and maintaining the organoleptic quality of fruits and vegetables. The objective of this study was to evaluate the levels of phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) method in minimally processed mixed salad before and after different radiation doses. Samples of minimally processed mixed salad (with green and red cabbage and carrot) were purchased at local supermarket and irradiated with doses of 0.5, 1.0, 2.0 and 3.0 kGy. Phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by DPPH• and ORAC were analyzed on the same extract prepared with MeOH. The results showed that bioactive compounds levels and antioxidant activity decreased significantly (p<0.05) with an increasing on radiation dose. Gamma-rays may affect these compounds and can cause degradation or oxidation, which can explain the drop on levels. Although the radiation has affected the bioactive contents, the process seems to be interesting to maintaining organoleptic characteristics and provide microbiological security at doses up to 2.0 kGy, according to studies conducted by our research group. (author)

  20. Minimally processed mixed salad submitted to gamma radiation: effects on bioactive compounds

    International Nuclear Information System (INIS)

    Hirashima, Fabiana K.; Sabato, Susy F.; Lanfer-Marquez, Ursula M.

    2015-01-01

    High consumption of fruits and vegetables has been associated with a lowered incidence of oxidative stress-related diseases due to the presence of bioactive structures. Minimally processed products are a growing segment in food retail establishments because it is associated with practicality and convenience without significantly altering fresh-like characteristics. Low-dose of gamma radiation in combination with minimal processes has shown to be a promising strategy for extending shelf life and maintaining the organoleptic quality of fruits and vegetables. The objective of this study was to evaluate the levels of phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) method in minimally processed mixed salad before and after different radiation doses. Samples of minimally processed mixed salad (with green and red cabbage and carrot) were purchased at local supermarket and irradiated with doses of 0.5, 1.0, 2.0 and 3.0 kGy. Phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by DPPH• and ORAC were analyzed on the same extract prepared with MeOH. The results showed that bioactive compounds levels and antioxidant activity decreased significantly (p<0.05) with an increasing on radiation dose. Gamma-rays may affect these compounds and can cause degradation or oxidation, which can explain the drop on levels. Although the radiation has affected the bioactive contents, the process seems to be interesting to maintaining organoleptic characteristics and provide microbiological security at doses up to 2.0 kGy, according to studies conducted by our research group. (author)

  1. SAR analysis and bioactive potentials of freshwater and terrestrial cyanobacterial compounds: a review.

    Science.gov (United States)

    Nagarajan, M; Maruthanayagam, V; Sundararaman, M

    2013-05-01

    Freshwater and terrestrial cyanobacteria resemble the marine forms in producing divergent chemicals such as linear, cyclic and azole containing peptides, alkaloids, cyclophanes, terpenes, lactones, etc. These metabolites have wider biomedical potentials in targeting proteases, cancers, parasites, pathogens and other cyanobacteria and algae (allelopathy). Among the various families of non-marine cyanobacterial peptides reported, many of them are acting as serine protease inhibitors. While the micropeptin family has a preference for chymotrypsin inhibition rather than other serine proteases, the aeruginosin family targets trypsin and thrombin. In addition, cyanobacterial compounds such as scytonemide A, lyngbyazothrins C and D and cylindrocyclophanes were found to inhibit 20S proteosome. Apart from proteases, metabolites blocking the other targets of cancer pathways may exhibit cytotoxic effect. Colon and rectum, breast, lung and prostate are the worst affecting cancers in humans and are deduced to be inhibited by both peptidic and non-peptidic compounds. Moreover, the growth of infections causing parasites such as Plasmodium, Leishmania and Trypanosoma are well controlled by peptides: aerucyclamides A-D, tychonamides and alkaloids: nostocarboline and calothrixins. Likewise, varieties of cyanobacterial compounds tend to inhibit serious infectious disease causing bacterial, fungal and viral agents. Interestingly, portoamides, spiroidesin, nostocyclamide and kasumigamide are the allelopathic peptides determined to suppress the growth of toxic cyanobacteria and nuisance algae. Thus cyanobacterial compounds have a broad bioactive spectrum; the analysis of SAR studies will not only assist to find out the mode of action but also reveal bioactive key components. Thereby, developing the drugs bearing these bioactive skeletons to treat various illnesses is wide open. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation.

    Science.gov (United States)

    Mas, Albert; Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Cerezo, Ana B; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  3. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  4. Opuntia ficus-indica (L.) Miller as a source of bioactivity compounds for health and nutrition.

    Science.gov (United States)

    Aragona, M; Lauriano, E R; Pergolizzi, S; Faggio, C

    2017-08-14

    Plants with beneficial properties are known in traditional medicine. Nowadays, in spite of widespread availability of synthetic compounds, the search goes towards natural compounds to lower cost and few side effects. The increasing interest in preventive medicine encourages use of nutraceuticals, bioactive compounds of vegetable origin with important nutritional values. Among the medicinal plants, Opuntia ficus-indica (L.) Miller (Family Cactaceae, subfamily Opuntiodeae, Genus Opuntia, subgenus Platyopuntia, species Opuntia ficus-indica (L.) Miller) is widely known for its beneficial properties. The aim of the present review is to stress the major classes of Opuntia components and their medical interest through emphasis on some of their biological effects, particularly those having the most promising expected health benefits and therapeutic impacts on fish and mammals.

  5. Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit.

    Science.gov (United States)

    Romero, Concepción; Medina, Eduardo; Mateo, Mª Antonia; Brenes, Manuel

    2017-04-01

    Olive leaves and fruit possess bioactive substances such as phenolic compounds and triterpenic acids that can be obtained from olive by-products generated during olive oil extraction. The aim of the present study was the characterization and quantification of these compounds in Picual and Arbequina cultivars from different locations and throughout two seasons in both olive leaves and fruit. The major phenolic compound identified in the leaves was oleuropein, and the total content of phenolic compounds in this material reached 70 g kg -1 fresh weight. The leaves were also rich in triterpenic acids (20 g kg -1 fresh weight), with oleanolic acid being the most concentrated among them. With regard to olives, oleuropein and demethyloleuropein were the main phenolic compounds in the pulp of Picual and Arbequina cultivars, and the total concentration of these phenolic compounds reached 3.5% fresh weight. Olives can also be an important source of triterpenic acids, although this is mainly the skin part, where the maslinic and oleanolic acids are concentrated. Olive leaves can contain up to 70 g kg -1 phenolic compounds and 20 g kg -1 triterpenic acids, and olive fruit can contain up to 35 g kg -1 of the former and 3 g kg -1 of the latter. It must also be noted that this level was constant both between seasons and orchard locations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Identification and Characterization of Bioactive Compounds Targeting Uropathogenic Escherichia coli from Sanjin Tablets

    Directory of Open Access Journals (Sweden)

    Jie Meng

    2015-01-01

    Full Text Available Sanjin Tablets are completely natural preparation with significant efficacy in treating urinary tract infection. To identify the bioactive compounds from Sanjin Tablets, we separated components capable of binding to the soluble proteins of uropathogenic Escherichia coli (UPEC by affinity binding and characterized their identities using liquid chromatography-mass spectrometry (LC-MS analysis. Our study discovered eight compounds with E. coli protein-binding capabilities, and all these compounds were tracked back to the original natural ingredients of Sanjin Tablets. These compounds presented essentially no antibacteria activity, indicating that they affect UPEC by means other than directly killing the cells. Further molecular modeling analysis predicted molecular targets for these compounds and mapped the residues potentially involved in compound-target interactions. All the predicted targets turned out to be critical proteins regulating the metabolisms of E. coli, suggesting that these compounds may affect metabolic pathways in UPEC and inhibit pathogenesis. These data will benefit future design of drugs with higher efficacy and specificity on targeting pathogenic bacteria.

  7. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues.

    Science.gov (United States)

    Babbar, Neha; Oberoi, Harinder Singh; Sandhu, Simranjeet Kaur

    2015-01-01

    The growing interest in the substitution of synthetic food antioxidants by natural ones has fostered research in identifying new low-cost antioxidants having commercial potential. Fruits such as mango, banana, and those belonging to the citrus family leave behind a substantial amount of residues in the form of peels, pulp, seeds, and stones. Due to lack of infrastructure to handle a huge quantity of available biomass, lack of processing facilities, and high processing cost, these residues represent a major disposal problem, especially in developing countries. Because of the presence of phenolic compounds, which impart nutraceutical properties to fruit residues, such residues hold tremendous potential in food, pharmaceutical, and cosmetic industries. The biological properties such as anticarcinogenicity, antimutagenicity, antiallergenicity, and antiageing activity have been reported for both natural as well as synthetic antioxidants. Special attention is focused on extraction of bioactive compounds from inexpensive or residual sources. The purpose of this review is to characterize different phenolics present in the fruit residues, discuss the antioxidant potential of such residues and the assays used in determination of antioxidant properties, discuss various methods for efficient extraction of the bioactive compounds, and highlight the importance of fruit residues as potential nutraceutical resources and biopreservatives.

  8. Evaluation of fruit quality, bioactive compounds and total antioxidant activity of flat peach cultivars.

    Science.gov (United States)

    Di Vaio, Claudio; Marallo, Nadia; Graziani, Giulia; Ritieni, Alberto; Di Matteo, Antonio

    2015-08-15

    Fruit quality traits (fresh weight, dry weight, soluble solids content, titratable acidity and firmness) as well as the content of bioactive compounds (phenolic compounds) and total antioxidant activity were evaluated in four commercial cultivars of peach (Greta, Ufo 4, Rome Star and Ufo 6) and four of nectarine (Neve, Planet 1, Maria Carla and Mesembrina) differing in fruit shape (standard or flat) and flesh colour (white or yellow), important cultivars of the Italian and foreign market. The higher fruit organoleptic quality and nutritional profile of flat peach and nectarine cultivars make them candidates for exploiting new market opportunities and the chance to improve profits of farmers. The results showed that assayed quality parameters differed greatly among cultivars. In particular, flesh color and fruit shape accounted for most of the variation in traits underlying organoleptic and nutritional quality. Overall data suggested that the flat white-fleshed nectarine Planet 1, the yellow-fleshed nectarine Mesembrina and the yellow-fleshed peach Ufo 6, because of their profiles in terms of soluble solids content, titratable acidity and bioactive compounds, have the greatest potential to meet current consumer requirements. © 2014 Society of Chemical Industry.

  9. Comparing sorghum and wheat whole grain breakfast cereals: Sensorial acceptance and bioactive compound content.

    Science.gov (United States)

    Anunciação, Pamella Cristine; Cardoso, Leandro de Morais; Gomes, Jaqueline Vieira Piovesana; Della Lucia, Ceres Mattos; Carvalho, Carlos Wanderlei Piler; Galdeano, Melicia Cintia; Queiroz, Valéria Aparecida Vieira; Alfenas, Rita de Cássia Gonçalves; Martino, Hércia Stampini Duarte; Pinheiro-Sant'Ana, Helena Maria

    2017-04-15

    The sensory acceptance and the content of bioactive compounds of whole-sorghum and whole-wheat breakfast cereals were compared. Sensory acceptance was assessed using the Food Action RatingScale. 3-Deoxyanthocyanidins, flavones and flavanones were determined by high-performance liquid chromatography (HPLC) with diode array detection, and vitamin E by HPLC with fluorescence detection. Total phenolics and antioxidant activity were determined by spectrophotometry. The sorghum breakfast cereal had better sensory acceptance (70.6%) than wheat breakfast cereal (41.18%). Sorghum had higher 3-deoxyanthocyanidin content (100% higher), total phenolic compounds (98.2% higher) and antioxidant activity (87.9% higher) than wheat breakfast cereal. Flavones and flavanones were not detected in both breakfast cereals. Total vitamin E content was 78.6% higher in wheat than in sorghum breakfast cereal. Thus, consumption of whole sorghum breakfast cereal should be encouraged, since it had good sensory acceptance and is a source of bioactive compounds that can promote benefits to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Experimental protocol for the recovery and evaluation of bioactive compounds of tarbush against postharvest fruit fungi.

    Science.gov (United States)

    De León-Zapata, Miguel A; Pastrana-Castro, Lorenzo; Rua-Rodríguez, María Luisa; Alvarez-Pérez, Olga Berenice; Rodríguez-Herrera, Raul; Aguilar, Cristóbal N

    2016-05-01

    The aim of this study was to recover and evaluate in vitro the antifungal activity of bioactive compounds of tarbush Flourensia cernua against fruit postharvest fungi and their antioxidant capacity. A yield of 15% of bioactive compounds of tarbush was obtained by infusion method and heating using water as solvent. A concentration of 4000 mg/L showed a higher antioxidant activity against the ABTS radical (3.21 μMol/g) in comparison with the DPPH radical (7.62 μMol/g); however the DPPH radical showed a better correlation with the content of tannins. The BCT showed values of IC50 between 1519 and 3310 mg/L against Rhizopus stolonifer, Botrytis cinerea, Fusarium oxysporum and Colletotrichum gloeosporioides. Antifungal activity is attributable mainly to gallic acid and flavonoids identified by infrared and HPLC analysis. In this study, the BCT have shown to be a possible natural alternative of antioxidant and antifungal compounds for use against postharvest fruit fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. TBC2target: A Resource of Predicted Target Genes of Tea Bioactive Compounds.

    Science.gov (United States)

    Zhang, Shihua; Zhang, Liang; Wang, Yijun; Yang, Jian; Liao, Mingzhi; Bi, Shoudong; Xie, Zhongwen; Ho, Chi-Tang; Wan, Xiaochun

    2018-01-01

    Tea is one of the most popular non-alcoholic beverages consumed worldwide. Numerous bioactive constituents of tea were confirmed to possess healthy benefits via the mechanisms of regulating gene expressions or protein activities. However, a complete interacting profile between tea bioactive compounds (TBCs) and their target genes is lacking, which put an obstacle in the study of healthy function of tea. To fill this gap, we developed a database of target genes of TBCs (TBC2target, http://camellia.ahau.edu.cn/TBC2target) based on a pharmacophore mapping approach. In TBC2target, 6,226 interactions between 240 TBCs and 673 target genes were documented. TBC2target contains detailed information about each interacting entry, such as TBC, CAS number, PubChem CID, source of compound (e.g., green, black), compound type, target gene(s) of TBC, gene symbol, gene ID, ENSEMBL ID, PDB ID, TBC bioactivity and the reference. Using the TBC-target associations, we constructed a bipartite network and provided users the global network and local sub-network visualization and topological analyses. The entire database is free for online browsing, searching and downloading. In addition, TBC2target provides a BLAST search function to facilitate use of the database. The particular strengths of TBC2target are the inclusion of the comprehensive TBC-target interactions, and the capacity to visualize and analyze the interacting networks, which may help uncovering the beneficial effects of tea on human health as a central resource in tea health community.

  12. TBC2target: A Resource of Predicted Target Genes of Tea Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Shihua Zhang

    2018-02-01

    Full Text Available Tea is one of the most popular non-alcoholic beverages consumed worldwide. Numerous bioactive constituents of tea were confirmed to possess healthy benefits via the mechanisms of regulating gene expressions or protein activities. However, a complete interacting profile between tea bioactive compounds (TBCs and their target genes is lacking, which put an obstacle in the study of healthy function of tea. To fill this gap, we developed a database of target genes of TBCs (TBC2target, http://camellia.ahau.edu.cn/TBC2target based on a pharmacophore mapping approach. In TBC2target, 6,226 interactions between 240 TBCs and 673 target genes were documented. TBC2target contains detailed information about each interacting entry, such as TBC, CAS number, PubChem CID, source of compound (e.g., green, black, compound type, target gene(s of TBC, gene symbol, gene ID, ENSEMBL ID, PDB ID, TBC bioactivity and the reference. Using the TBC-target associations, we constructed a bipartite network and provided users the global network and local sub-network visualization and topological analyses. The entire database is free for online browsing, searching and downloading. In addition, TBC2target provides a BLAST search function to facilitate use of the database. The particular strengths of TBC2target are the inclusion of the comprehensive TBC-target interactions, and the capacity to visualize and analyze the interacting networks, which may help uncovering the beneficial effects of tea on human health as a central resource in tea health community.

  13. Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars.

    Science.gov (United States)

    Tarazona-Díaz, Martha Patricia; Viegas, Joana; Moldao-Martins, Margarida; Aguayo, Encarna

    2011-03-30

    The fresh-cut industry produces thousands of tons of waste in non-edible portions that present an environmental and management problem. These by-products could be reused, in particular, to obtain bioactive compounds. In this study, five different fresh-cut watermelon cultivars were assessed for their flesh and by-product bioactive contents. The amount of by-product varied between 31.27 and 40.61% of initial fresh weight (f.w.) depending on the cultivar. Watermelon cultivars were poor sources of total antioxidant, and the content was similar between rind and flesh samples (46.96 vs 43.46 mg ascorbic acid equivalent antioxidant capacity kg(-1) f.w.). However, the rind had a moderate total phenolic content higher than that of the flesh (458 vs 389 mg chlorogenic acid equivalent kg(-1) f.w.) and a much higher content of the amino acid citrulline (3.34 vs 2.33 g kg(-1) f.w.), which has potential bioactive properties. Watermelon rind offers quantitative interest as a natural source of citrulline, particularly Fashion, a dark-skinned, seedless cultivar. More research is required on the efficient extraction of citrulline from watermelon rind and its suitability as an additive to drinks, juices or others products to produce new functional food products with valid health claims. Copyright © 2010 Society of Chemical Industry.

  14. Biomaterial compounds and bioactivity of horseshoe crab Carsinoscorpius rotundicauda biomass harvested from the Madura Strait

    Science.gov (United States)

    Asih, Eka Nurrahema Ning; Kawaroe, Mujizat; Bengen, Dietriech G.

    2018-03-01

    Carsinoscorpius rotundicauda or horseshoe crab biomass has great potential in pharmaceutical aspects, one of them as an antibacterial substance. Information related to the benefits of Carsinoscorpius rotundicauda biomass such as meat and blood is essential because in fact, this species is considered a pest by fishermen, a low market value and has no legal protection in Indonesia. The purpose of this study was to determine the content of biomaterial compounds of meat and bioactivity of Carsinoscorpius rotundicauda plasma on bacterial inhibition from three different stations harvested from the waters in Madura Strait. The observation of the utilization of the potential from horseshoe crab biomass ie meat and plasma was performed by measuring the content of biomaterial compound in horseshoe crab meat by HPLC method and zone of inhibition test for gram-positive and gram-negative bacteria in horseshoe crab plasma. Analysis of the relationship between the two parameters used the Principal Component Analysis. The highest content of biomaterial compounds of monoterpenoid and zoosterol is found in horseshoe crab from Bangkalan waters, namely monoterpenoid (18.33 ppm) and zoosterol (22.67 ppm), while the smallest compound content obtained in horseshoe crab from Probolinggo waters, namely monoterpenoid (13.67) ppm and zoosterol (17.33 ppm). The bioactivity of Dark Blue Plasma (BDP) and Light Blue Plasma (LBP) samples of horseshoe crab obtained around the Madura Strait has the ability to inhibit gram-positive bacteria higher than gram-negative bacteria. The total average of DBP plasma inhibitory power on Staphylococcus aureus was 10.00 mm and 10.07 mm on Bacillus, while that in LBP sample, Staphylococcus aureus was 9.11 mm and Bacillus was 9.67 mm. The high biomaterial compound content of horseshoe crab is in line with the ability of horseshoe crab plasma to inhibit Bacillus and Staphylococcus aureus.

  15. Bioactive compounds in different cocoa (Theobroma cacao, L cultivars during fermentation

    Directory of Open Access Journals (Sweden)

    Jaqueline Fontes Moreau Cruz

    2015-06-01

    Full Text Available One component that contribute to the flavor and aroma of chocolate are the polyphenols, which have received much attention due to their beneficial implications to human health. Besides bioactive action, polyphenols and methylxantines are responsible for astringency and bitterness in cocoa beans. Another important point is its drastic reduction during cocoa processing for chocolate production and the difference between cultivars. Thus, the present study aimed to evaluate the modifications in monomeric phenolic compounds and methylxanthines during fermentation of three cocoa cultivars grown in southern Bahia. Cocoa beans from three cultivars were fermented and sun dried and monomeric phenolic compounds and methylxantines were determinated. The results showed that each cultivar have different amounts of phenolic compounds and the behaviour of them is different during fermentation. The amount of methylxantines varied but there was not a pattern for methylxantines behavior during process. In addition a huge reduction in phenolic compounds could be observed after drying. Differently of phenolic compounds, methylxantines did not have great modification after sun drying. So, the differences observed in this study between cultivars, take to the conclusion that the compounds studied in those cocoa cultivars have different behavior during fermentation and drying, which consequently, give to these cultivars differences in sensory characteristics.

  16. EuroFIR-BASIS - a combined composition and biological activity database for bioactive compounds in plant-based foods

    DEFF Research Database (Denmark)

    Gry, Jørn; Black, Lucinda; Eriksen, Folmer Damsted

    2007-01-01

    Mounting evidence suggests that certain non-nutrient bioactive compounds promote optimal human health and reduce the risk of chronic disease. An Internet-deployed database, EuroFIR-BASIS, which uniquely combines food composition and biological effects data for plant-based bioactive compounds......, is being developed. The database covers multiple compound classes and 330 major food plants and their edible parts with data sourced from quality-assessed, peer-reviewed literature. The database will be a valuable resource for food regulatory and advisory bodies, risk authorities, epidemiologists...... and researchers interested in diet and health relationships, and product developers within the food industry....

  17. Carbonyl Compounds Generated from Electronic Cigarettes

    Directory of Open Access Journals (Sweden)

    Kanae Bekki

    2014-10-01

    Full Text Available Electronic cigarettes (e-cigarettes are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  18. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.

    Science.gov (United States)

    Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto

    2010-01-20

    In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time.

  19. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts

    Directory of Open Access Journals (Sweden)

    Ammar Altemimi

    2017-09-01

    Full Text Available There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT and butylated hydroxyanisole (BHA as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed.

  20. Potential Benefits of Jujube (Zizyphus Lotus L.) Bioactive Compounds for Nutrition and Health.

    Science.gov (United States)

    Abdoul-Azize, Souleymane

    2016-01-01

    Zizyphus lotus , belonging to the Rhamnaceae family, is a deciduous shrub which generally grows in arid and semiarid regions of the globe. In traditional medicine, Z. lotus is used as antidiabetes, sedative, bronchitis, and antidiarrhea by local populations. Recently, several scientific reports for health benefit and nutritional potential of bioactive compounds from this jujube have been reported. This plant is rich in polyphenols, cyclopeptide alkaloids, dammarane saponins, vitamins, minerals, amino acids, and polyunsaturated fatty acids. These identified compounds were supposed to be responsible for most of Z. lotus biologically relevant activities including antimicrobial, anti-inflammatory, hypoglycemic, antioxidant, and immunomodulatory effects. The aim of the present review was to give particular emphasis on the most recent findings on biological effects of the major groups of Zizyphus lotus components and their medical interest, notably for human nutrition, health benefit, and therapeutic impacts.

  1. Potential Benefits of Jujube (Zizyphus Lotus L. Bioactive Compounds for Nutrition and Health

    Directory of Open Access Journals (Sweden)

    Souleymane Abdoul-Azize

    2016-01-01

    Full Text Available Zizyphus lotus, belonging to the Rhamnaceae family, is a deciduous shrub which generally grows in arid and semiarid regions of the globe. In traditional medicine, Z. lotus is used as antidiabetes, sedative, bronchitis, and antidiarrhea by local populations. Recently, several scientific reports for health benefit and nutritional potential of bioactive compounds from this jujube have been reported. This plant is rich in polyphenols, cyclopeptide alkaloids, dammarane saponins, vitamins, minerals, amino acids, and polyunsaturated fatty acids. These identified compounds were supposed to be responsible for most of Z. lotus biologically relevant activities including antimicrobial, anti-inflammatory, hypoglycemic, antioxidant, and immunomodulatory effects. The aim of the present review was to give particular emphasis on the most recent findings on biological effects of the major groups of Zizyphus lotus components and their medical interest, notably for human nutrition, health benefit, and therapeutic impacts.

  2. Isolation of Bioactive Compounds from Sunflower Leaves (Helianthus annuus L.) Extracted with Supercritical Carbon Dioxide.

    Science.gov (United States)

    El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A

    2015-07-22

    The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide.

  3. Assessment of by-products from fresh-cut products for reuse as bioactive compounds.

    Science.gov (United States)

    Tarazona-Díaz, M P; Aguayo, E

    2013-10-01

    The fresh-cut industry is constantly growing and generating wastes. The major challenge for this industry consists in an environmentally sustainable production through re-utilization of by-products, for instance, in extraction of bioactive compounds. In this paper, the nutritional and functional compounds of apple, potato, cucumber, melon and watermelon by-products were investigated. The amount of by-product produced was of 10.10 to 30.80% of initial fresh weight depending on the product. By-products were characterized by low protein (product. In most cases, the nutritional and bioactive content was higher in the peel than in whole product. Apple peel was rich in carbohydrates, total dietary fibre, antioxidants and total polyphenols. Potato peel was high in iron. Melon was rich in magnesium. Watermelon peel was characterized by the level of potassium, and cucumber peel was rich in manganese, zinc, phosphorous, calcium and sodium. All these data demonstrate than natural by-product from fresh-cut industry could potentially be utilized as ingredients to design new functional foods with a future market.

  4. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals.

    Science.gov (United States)

    Encarnação, Telma; Pais, Alberto A C C; Campos, Maria G; Burrows, Hugh D

    2015-01-01

    Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production--some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals.

  5. Bioactive compounds and the antioxidant capacity in new kiwi fruit cultivars.

    Science.gov (United States)

    Park, Yong-Seo; Namiesnik, Jacek; Vearasilp, Kann; Leontowicz, Hanna; Leontowicz, Maria; Barasch, Dinorah; Nemirovski, Alina; Trakhtenberg, Simon; Gorinstein, Shela

    2014-12-15

    The aim of this investigation was to find the best among seven different kiwi fruit cultivars ('Hayward', 'Daheung', 'Haenam', 'Bidan', 'Hort16A', 'Hwamei' and 'SKK12') for human consumption and to classify them as groups. Therefore, the contents of bioactive compounds and the level of antioxidant capacities of these cultivars were determined in four different extracts and compared. It was found that the contents of the bioactive compounds and the level of antioxidant capacities in different extracts differ significantly (Pantioxidant capacities were significantly higher in 'Bidan' and 'SKK12' cultivars than in other studied samples. The ethanol and water extracts of these cultivars exhibited high binding properties with human serum albumin (HSA) in comparison with catechin. In conclusion, based on fluorescence profiles the seven new kiwi fruit cultivars can be classified for three groups: 'Hayward' (including 'Daheung', 'Haenam', Hwamei' and 'SKK12'), 'Bidan' and 'Hort 16A'. In MS - profiles some differences in the peaks were found between the cultivar groups. All studied fruits could be a valuable addition to known disease preventing diets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Bioactive compounds in cashew nut (Anacardium occidentale L.) kernels: effect of different shelling methods.

    Science.gov (United States)

    Trox, Jennifer; Vadivel, Vellingiri; Vetter, Walter; Stuetz, Wolfgang; Scherbaum, Veronika; Gola, Ute; Nohr, Donatus; Biesalski, Hans Konrad

    2010-05-12

    In the present study, the effects of various conventional shelling methods (oil-bath roasting, direct steam roasting, drying, and open pan roasting) as well as a novel "Flores" hand-cracking method on the levels of bioactive compounds of cashew nut kernels were investigated. The raw cashew nut kernels were found to possess appreciable levels of certain bioactive compounds such as beta-carotene (9.57 microg/100 g of DM), lutein (30.29 microg/100 g of DM), zeaxanthin (0.56 microg/100 g of DM), alpha-tocopherol (0.29 mg/100 g of DM), gamma-tocopherol (1.10 mg/100 g of DM), thiamin (1.08 mg/100 g of DM), stearic acid (4.96 g/100 g of DM), oleic acid (21.87 g/100 g of DM), and linoleic acid (5.55 g/100 g of DM). All of the conventional shelling methods including oil-bath roasting, steam roasting, drying, and open pan roasting revealed a significant reduction, whereas the Flores hand-cracking method exhibited similar levels of carotenoids, thiamin, and unsaturated fatty acids in cashew nuts when compared to raw unprocessed samples.

  7. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties

    Directory of Open Access Journals (Sweden)

    Patricia Reboredo-Rodríguez

    2017-03-01

    Full Text Available Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food—as stated by the European Food Safety Authority (EFSA—due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices. The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.

  8. Antioxidant activities and skin hydration effects of rice bran bioactive compounds entrapped in niosomes.

    Science.gov (United States)

    Manosroi, Aranya; Chutoprapat, Romchat; Sato, Yuji; Miyamoto, Kukizo; Hsueh, Kesyin; Abe, Masahiko; Manosroi, Worapaka; Manosroi, Jiradej

    2011-03-01

    Bioactive compounds [ferulic acid (F), gamma-oryzanol (O) and phytic acid (P)] in rice bran have been widely used as antioxidants in skin care products. However, one of the major problems of antioxidants is the deterioration of their activities during long exposure to air and light. Niosomes have been used to entrap many degradable active agents not only for stability improvement, but also for increasing skin hydration. The objective of this study was to determine antioxidant activities [by in vitro ORAC (oxygen radical absorbance capacity) and ex vivo lipid peroxidation inhibition assay] and in vivo human skin hydration effects of gel and cream containing the rice bran extracts entrapped in niosomes. Gel and cream containing the rice bran extracts entrapped in niosomes showed higher antioxidant activity (ORAC value) at 20-28 micromol of Trolox equivalents (TE) per gram of the sample than the placebo gel and cream which gave 16-18 micromolTE/g. Human sebum treated with these formulations showed more lipid peroxidation inhibition activity than with no treatment of about 1.5 times. The three different independent techniques including corneometer, vapometer and confocal Raman microspectroscopy (CRM) indicated the same trend in human skin hydration enhancement of the gel or cream formulations containing the rice bran extracts entrapped in niosomes of about 20, 3 and 30%, respectively. This study has demonstrated the antioxidant activities and skin hydration enhancement of the rice bran bioactive compounds when entrapped in niosomes and incorporated in cream formulations.

  9. Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues.

    Science.gov (United States)

    Correia, Roberta T P; Borges, Kátia C; Medeiros, Maria F; Genovese, Maria I

    2012-12-01

    Tropical fruit residues consisting of seeds, peels and residual pulp generated as by-products of fruit processing industry were investigated for bioactive compounds, the in vitro antioxidant capacity as well as alpha-glucosidase and alpha-amylase inhibitory activities. Cyanidin, quercetin, ellagic acid (EA) and proanthocyanidins were found in acerola, jambolan, pitanga and cajá-umbu residue powders. Acerola powder had the highest phenolic content (8839.33 mg catechin equivalents (CE)/100 g) and also high-ascorbic acid (AA) concentration (2748.03 mg/100 g), followed by jambolan and pitanga. The greatest 1,1-Diphenyl-2-picrylhydrazyl (DPPH) inhibition was observed for jambolan (436.76 mmol Trolox eq/g) followed by pitanga (206.68 mmol Trolox eq/g) and acerola (192.60 mmol Trolox eq/g), while acerola had the highest ferric reducing antioxidant power (FRAP) assay result (7.87 mmol Trolox eq/g). All fruit powders exhibited enzymatic inhibition against alpha-amylase (IC50 ranging from 3.40 to 49.5 mg CE/mL) and alpha-glucosidase (IC50 ranging from 1.15 to 2.37 mg CE/mL). Therefore, acerola, jambolan and pitanga dried residues are promising natural ingredients for food and nutraceutical manufacturers, due to their rich bioactive compound content.

  10. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties.

    Science.gov (United States)

    Reboredo-Rodríguez, Patricia; Figueiredo-González, María; González-Barreiro, Carmen; Simal-Gándara, Jesús; Salvador, María Desamparados; Cancho-Grande, Beatriz; Fregapane, Giuseppe

    2017-03-20

    Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food-as stated by the European Food Safety Authority (EFSA)-due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.

  11. Hard cap espresso extraction and liquid chromatography determination of bioactive compounds in vegetables and spices.

    Science.gov (United States)

    Martinez-Sena, María Teresa; de la Guardia, Miguel; Esteve-Turrillas, Francesc A; Armenta, Sergio

    2017-12-15

    A new analytical procedure, based on liquid chromatography with diode array and fluorescence detection, has been proposed for the determination of bioactive compounds in vegetables and spices after hard cap espresso extraction. This novel extraction system has been tested for the determination of capsaicin and dihydrocapsaicin from fresh chilli and sweet pepper, piperine from ground pepper, curcumin from turmeric and curry, and myristicin from nutmeg. Extraction efficiency was evaluated by using acetonitrile:water and ethanol:water mixtures. The proposed method allows the extraction of samples with 100mL of 60% (v/v) ethanol in water. The obtained limits of quantification for the proposed procedure ranged from 0.07 to 0.30mgg -1 and results were statistically comparable with those obtained by ultrasound assisted extraction. Hard cap espresso machines offer a fast, effective and quantitative tool for the extraction of bioactive compounds from food samples with an extraction time lower than 30s, using a global available and low cost equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Ana Maria Athayde Uchôa-thomaz

    2014-09-01

    Full Text Available This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.. The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g, protein (11.19 g/100g, iron (13.8 mg/100g, zinc (3.31 mg/100g, and reduced calorie content (182 kcal/100g. Their lipid profile showed a predominance of unsaturated fatty acids (87.06%, especially linoleic acid (n6 and oleic acid (n9. The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g, total carotenoids (1.25 mg/100 g and insoluble dietary fiber (63.55 g/100g. With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste.

  13. Bioactivity-guided isolation and structural characterization of the antifungal compound, plumbagin, from Nepenthes gracilis.

    Science.gov (United States)

    Gwee, Pei Shing; Khoo, Kong Soo; Ong, Hean Chooi; Sit, Nam Weng

    2014-12-01

    Despite several phytochemical studies of Nepenthes gracilis Korth (Nepenthaceae), the biological activities of this pitcher plant remain to be explored. This study evaluates the antifungal activity of N. gracilis extracts, isolates, and characterizes its bioactive compound and evaluates the cytotoxicity of the isolated compound. Fresh leaves of N. gracilis were sequentially extracted. The fungistatic and fungicidal activities of the extracts were evaluated against six species of fungi of medical importance using a colorimetric broth microdilution method. The most active extract was fractionated by liquid-liquid partitioning and further purified by a preparative thin layer chromatography. Structural elucidation was carried out using FT-IR, GC-MS, and NMR. Cytotoxicity testing against rhesus monkey kidney epithelial cells (LLC-MK2) was assessed by a neutral red uptake (NRU) assay. The hexane extract, which showed the lowest minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), both at 20 μg/mL against Candida albicans, Issatchenkia orientalis, and Trichophyton mentagrophytes, was subjected to bioactivity-guided fractionation. The isolated compound exhibited potent activity with the MIC values ranging from 2 to 31 μg/mL against all the fungi. The active compound was identified as plumbagin (5-hydroxy-2-methyl-naphthalene-1,4-dione). The 50% cytotoxicity concentration (CC50) of plumbagin was 0.60 μg/mL. The selectivity indices of plumbagin against all the fungi were less than 1.0, indicating that plumbagin is more toxic to mammalian than fungal cells. This study provides information on the antifungal properties of N. gracilis leaf extracts, as well as the antifungal and cytotoxicity properties of plumbagin.

  14. Approach to improve the productivity of bioactive compounds of the cyanobacterium Anabaena oryzae using factorial design

    Directory of Open Access Journals (Sweden)

    Ragaa A. Hamouda

    2017-09-01

    Full Text Available Cyanobacteria are one of the richest sources of biomedical relevant compounds with extensive therapeutic pharmaceutical applications and are also known as producer of intracellular and extracellular metabolites with diverse biological activities. The genus Anabaena sp. is known to produce antimicrobial compounds, like phycocyanin and others. The goal of this study was to optimize the production of these bioactive compounds. The Plackett–Burman experimental design was used to screen and evaluate the important medium components that influence the production of bioactive compounds. In this present study, eight independent factors including NaNO3, K2HPO4, MgSO4·7H2O, CaCl2, citric acid, ammonium ferric citrate, ethylene diamine tetraacetic acid disodium magnesium salt (EDTA-Na2Mg and Na2CO3 were surveyed and the effective variables for algal components production of Anabaena oryzae were determined using two-levels Plackett–Burman design. Results analysis showed that the best medium components were NaNO3 (2.25 g l−1; K2HPO4 (0.02 g l−1; MgSO4 (0.0375 g l−1; CaCl2 (0.018 g l−1; citric acid (0.009 g l−1; ammonium ferric citrate (0.009 g l−1 and EDTA-Na2 (0.0015 g l−1 respectively. The total chlorophyll-a, carotenoids, phenol, tannic acid and flavonoid contents in crude extract of Anabaena oryzae were determined. They were 47.7, 4.11, 0.256, 1.046 and 1.83 μg/ml, respectively. The antioxidant capacity was 62.81%.

  15. Preparative Purification of Bioactive Compounds from Flos Chrysanthemi Indici and Evaluation of Its Antiosteoporosis Effect

    Directory of Open Access Journals (Sweden)

    Jia Li

    2016-01-01

    Full Text Available To understand the material basis and underlying molecular machinery of antiosteoporosis activity of the Flos Chrysanthemi Indici (FCI, the consequences of ethanol extract on the bone loss in mice induced due to ovariectomy (OVX was evaluated. Also, the antiosteoporosis fraction obtained from the FCI ethanol extract was isolated and purified using a preparative high-speed countercurrent chromatography (HSCCC. The in vitro impact of the compounds was investigated on osteoblast proliferation and differentiation. The results revealed that ethyl acetate fraction with robust in vivo antiosteoporosis activity was obtained. The important compounds purified by HSCCC using gradient elution system included acacetin, apigenin, luteolin, and linarin. The four compounds enhanced the differentiation and proliferation of osteoblasts in MC3T3-E1 cells. They also augmented the mRNA levels of runt-related transcription factor 2 (Runx2, osteocalcin (OCN, osteopontin (OPN, and type I collagen (COL I. The AKT signaling pathway was also activated in MC3T3-E1 cells by the four compounds. The present study demonstrated that the antiosteoporosis effects of FCI did not depend on a single component, and HSCCC efficiently isolated and purified the antiosteoporosis bioactive compounds from FCI.

  16. Preparative Purification of Bioactive Compounds from Flos Chrysanthemi Indici and Evaluation of Its Antiosteoporosis Effect

    Science.gov (United States)

    2016-01-01

    To understand the material basis and underlying molecular machinery of antiosteoporosis activity of the Flos Chrysanthemi Indici (FCI), the consequences of ethanol extract on the bone loss in mice induced due to ovariectomy (OVX) was evaluated. Also, the antiosteoporosis fraction obtained from the FCI ethanol extract was isolated and purified using a preparative high-speed countercurrent chromatography (HSCCC). The in vitro impact of the compounds was investigated on osteoblast proliferation and differentiation. The results revealed that ethyl acetate fraction with robust in vivo antiosteoporosis activity was obtained. The important compounds purified by HSCCC using gradient elution system included acacetin, apigenin, luteolin, and linarin. The four compounds enhanced the differentiation and proliferation of osteoblasts in MC3T3-E1 cells. They also augmented the mRNA levels of runt-related transcription factor 2 (Runx2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COL I). The AKT signaling pathway was also activated in MC3T3-E1 cells by the four compounds. The present study demonstrated that the antiosteoporosis effects of FCI did not depend on a single component, and HSCCC efficiently isolated and purified the antiosteoporosis bioactive compounds from FCI. PMID:27885328

  17. Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum).

    Science.gov (United States)

    Sandoval-Castro, Claudia Jaqueline; Valdez-Morales, Maribel; Oomah, B Dave; Gutiérrez-Dorado, Roberto; Medina-Godoy, Sergio; Espinosa-Alonso, L Gabriela

    2017-06-01

    Bioactive compounds and antioxidant activity were evaluated from industrial Jalapeño pepper byproducts and simulated non processed byproducts from two Mexican states (Chihuahua and Sinaloa) to determine their value added potential as commercial food ingredients. Aqueous 80% ethanol produced about 13% of dry extract of polar compounds. Total phenolic content increased and capsaicin and dihydrocapsaicin decreased on scalding samples (80 °C, 2 min) without affecting ascorbic acid. The major phenolic compounds, rutin, epicatechin and catechin comprised 90% of the total compounds detected by HPLC of each Jalapeño pepper byproducts. ORAC analysis showed that the origin and scalding process affected the antioxidant activity which correlated strongly with capsaicin content. Although scalding decreased capsaicinoids (up to 42%), phenolic content by (up to 16%), and the antioxidant activity (variable). Jalapeño pepper byproduct is a good source of compounds with antioxidant activity, and still an attractive ingredient to develop useful innovative products with potential food/non-food applications simultaneously reducing food loss and waste.

  18. Quantitative assessment of the expanding complementarity between public and commercial databases of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Southan Christopher

    2009-07-01

    Full Text Available Abstract Background Since 2004 public cheminformatic databases and their collective functionality for exploring relationships between compounds, protein sequences, literature and assay data have advanced dramatically. In parallel, commercial sources that extract and curate such relationships from journals and patents have also been expanding. This work updates a previous comparative study of databases chosen because of their bioactive content, availability of downloads and facility to select informative subsets. Results Where they could be calculated, extracted compounds-per-journal article were in the range of 12 to 19 but compound-per-protein counts increased with document numbers. Chemical structure filtration to facilitate standardised comparisons typically reduced source counts by between 5% and 30%. The pair-wise overlaps between 23 databases and subsets were determined, as well as changes between 2006 and 2008. While all compound sets have increased, PubChem has doubled to 14.2 million. The 2008 comparison matrix shows not only overlap but also unique content across all sources. Many of the detailed differences could be attributed to individual strategies for data selection and extraction. While there was a big increase in patent-derived structures entering PubChem since 2006, GVKBIO contains over 0.8 million unique structures from this source. Venn diagrams showed extensive overlap between compounds extracted by independent expert curation from journals by GVKBIO, WOMBAT (both commercial and BindingDB (public but each included unique content. In contrast, the approved drug collections from GVKBIO, MDDR (commercial and DrugBank (public showed surprisingly low overlap. Aggregating all commercial sources established that while 1 million compounds overlapped with PubChem 1.2 million did not. Conclusion On the basis of chemical structure content per se public sources have covered an increasing proportion of commercial databases over the last

  19. Status of bioactive compounds in foods, with focus on fruits and vegetables.

    Science.gov (United States)

    Shashirekha, M N; Mallikarjuna, S E; Rajarathnam, S

    2015-01-01

    Components of cereals, legumes, pulses, proteins, sea food, milk, carbohydrates and lipids are being evaluated for their influence on human health, as biofunctional compounds. However, references dealing with fruits and vegetables exceed any other food group and accordingly their focus. Fruits and vegetables abound in a spectacular range of such health influencing compounds and thus, study of their bioactivity, in lieu of their consumption in fresh or processed form. Anti-cancerous phenolics from Phyllanthus, radioprotective Litchi phenolics/flavonoids, hypoglycemic Sygium, quercitin and hydroxyl cinnamates of Sweet cherries, xanthones of Mangosteen, ellagitannins of Pomegranate, ursolic acid of Sea buckthorn, muscle relaxative watermelon, anti-cholesterolemic soluble fibre and sterols, cardioprotective saponins, ACE-inhibitory potato hydrolysates, anti-pancreatic cancerous ascorbic acid, carotenoids including pro-vitamin A are few examples unraveled. Thus, the imminent scope to obviate their structural chemistry, influence on storage and processing conditions, factors favoring their bio-accessibility/bio-availability in the food formulations, influencing human health. It is the meticulous combination of these compounds in daily consumption that determines their usefulness to human body. What is of paramount importance is the actual health benefits accrued from consumption of such functional- compound based fresh/processed fruits,vegetables or other foods.

  20. Beneficial Effects of Bioactive Compounds in Mulberry Fruits against Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Dahae Lee

    2018-04-01

    Full Text Available Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae, is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1–5. The compounds were identified as butyl pyroglutamate (1, quercetin 3-O-β-d-glucoside (2, kaempferol 3-O-β-d-rutinoside (3, rutin (4, and 2-phenylethyl d-rutinoside (5 by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR data with those in published literature, and liquid chromatography–mass spectrometry analysis. The isolated compounds 1–5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.

  1. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products

    Directory of Open Access Journals (Sweden)

    Anna Michalska

    2015-08-01

    Full Text Available Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops.

  2. Bioactive Compounds of Blueberries: Post-Harvest Factors Influencing the Nutritional Value of Products.

    Science.gov (United States)

    Michalska, Anna; Łysiak, Grzegorz

    2015-08-10

    Blueberries, besides having commonly-recognized taste properties, are also a valuable source of health-promoting bioactive compounds. For several decades, blueberries have gained in popularity all over the world, and recent years have seen not only an increase in fresh consumption, but also in the importance of blueberries for the processing industry. Blueberry processing mostly consists of freezing and juicing. Recently, more attention has been drawn to dewatering and drying, which are promising areas for developing novel blueberry products. Processing affects each biologically-active compound in a different way, and it is still unknown what changes those compounds undergo at the molecular level after the application of different processing technologies. This work presents the most recent state of knowledge about the pre-treatment and processing methods applied to blueberries and their influence on the content of biologically-active compounds. The presentation of methods is preceded by a brief overview of the characteristics of the blueberry species, a description of the chemical composition of the fruit and a short note about the main growing areas, production volumes and the management of fruit crops.

  3. Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?

    Science.gov (United States)

    Benkendorff, Kirsten; Rudd, David; Nongmaithem, Bijayalakshmi Devi; Liu, Lei; Young, Fiona; Edwards, Vicki; Avila, Cathy; Abbott, Catherine A

    2015-08-18

    Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds. Traditionally known for the production of the ancient dye Tyrian purple, these molluscs also form the basis of some rare traditional medicines that have been used for thousands of years. Whilst these traditional and alternative medicines have not been chemically analysed or tested for efficacy in controlled clinical trials, a significant amount of independent research has documented the biological activity of extracts and compounds from these snails. In particular, Muricidae produce a suite of brominated indoles with anti-inflammatory, anti-cancer and steroidogenic activity, as well as choline esters with muscle-relaxing and pain relieving properties. These compounds could explain some of the traditional uses in wound healing, stomach pain and menstrual problems. However, the principle source of bioactive compounds is from the hypobranchial gland, whilst the shell and operculum are the main source used in most traditional remedies. Thus further research is required to understand this discrepancy and to optimise a quality controlled natural medicine from Muricidae.

  4. Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?

    Directory of Open Access Journals (Sweden)

    Kirsten Benkendorff

    2015-08-01

    Full Text Available Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds. Traditionally known for the production of the ancient dye Tyrian purple, these molluscs also form the basis of some rare traditional medicines that have been used for thousands of years. Whilst these traditional and alternative medicines have not been chemically analysed or tested for efficacy in controlled clinical trials, a significant amount of independent research has documented the biological activity of extracts and compounds from these snails. In particular, Muricidae produce a suite of brominated indoles with anti-inflammatory, anti-cancer and steroidogenic activity, as well as choline esters with muscle-relaxing and pain relieving properties. These compounds could explain some of the traditional uses in wound healing, stomach pain and menstrual problems. However, the principle source of bioactive compounds is from the hypobranchial gland, whilst the shell and operculum are the main source used in most traditional remedies. Thus further research is required to understand this discrepancy and to optimise a quality controlled natural medicine from Muricidae.

  5. Agrobacterium rhizogenes mediated transformation of Rhodiola sp. – an approach to enhance the level of bioactive compounds

    DEFF Research Database (Denmark)

    Møller Hansen, Martin; Lauridsen, Uffe Bjerre; Hegelund, Josefine Nymark

    Agrobacterium rhizogenes mediated transformation of Rhodiola sp. – an approach to enhance the level of bioactive compounds. Martin Møller Hansen1, Uffe Bjerre Lauridsen2, Josefine Nymark Hegelund3, Renate Müller4, Jihong Liu Clarke5, Henrik Lütken6 University of Copenhagen, Faculty of Science.......liu-clarke@bioforsk.no Keywords: Natural transformation - rol-genes – roseroot – rosavin - salidroside Abstract Introduction Rhodiola rosea commonly known as roseroot has since ancient times been used against depression and for improving mental abilities mainly due to its two bioactive compounds salidroside and rosavin. Due...

  6. BIOACTIVE COMPOUNDS DURING THE MATURATION OF FOUR FRUITS NATIVE TO THE RESTINGA FOREST OF CEARA

    Directory of Open Access Journals (Sweden)

    NIGÉRIA PEREIRA GONÇALVES

    2017-12-01

    Full Text Available ABSTRACT Fruits provide not only essential nutrients for food, but also bioactive compounds that promote health benefits and help reducing the risk of developing non-communicable chronic diseases. In this sense, this work aimed at quantifying bioactive compounds during the maturation of four fruits native to the Restinga forest of Ceara. Myrtle fruits (Eugenia punicifolia (Kunth DC. were collected at the Botanical State Park of Ceara, Caucaia-CE, and guajiru (Chrisobalanus icaco L., manipuça (Mouriri cearensis Huber and murici-pitanga fruits (Byrsonima gardneriana A. Juss. at the Botanical Garden of São Gonçalo, São Gonçalo do Amarante-CE. Fruits were collected at different stages (E and transported to the Laboratory of Plant Ecophysiology, being characterized into five or six maturation stages according to the bark color, then processed and frozen for the following physicochemical and chemical evaluations: ascorbic acid, total chlorophyll, total carotenoids, total anthocyanins and yellow flavonoids. A completely randomized design was used, with five or six treatments, depending on the maturation stages of fruits and four replicates. Murici-pitanga had higher contents of ascorbic acid (ascorbic acid 646.23 mg/100 g E5, total carotenoids (6.13 mg/100 g E5 and total anthocyanins (7.99 mg/100 g E2; and myrtle had higher contents of total chlorophyll (11.05 mg/100 g E1 and yellow flavonoid (69.11 mg/100 g E2. There are positive and significant correlations between chlorophyll and carotenoid (R= 0.99; P <0.01 for manipuça and between anthocyanin and yellow flavonoid (R= 0.97; P <0.05 for murici-pitanga fruits; however, the correlation is negative and significant between ascorbic acid and yellow flavonoids (R= -0.98; P <0.05 for myrtle fruits. It could be concluded that murici-pitanga and myrtle fruits had the highest contents of bioactive compounds with the highest levels, therefore both fruits can be recommended to be commercially exploited by

  7. New beverages of lemon juice with elderberry and grape concentrates as a source of bioactive compounds.

    Science.gov (United States)

    González-Molina, Elena; Gironés-Vilaplana, Amadeo; Mena, Pedro; Moreno, Diego A; García-Viguera, Cristina

    2012-06-01

    Considering the health potential of lemon and berry fruits, different functional beverages rich in antioxidant phytochemicals, which demonstrated beneficial effects, were developed. To fulfill this objective, lemon juice was combined with 2 different concentrates, elderberry and grape, in a proportion of 5% (w/v). Bioactive composition (flavonoids and vitamin C) and color stability, as well as the antioxidant capacity of mixtures, during a period of 56 d of storage, were studied. A protective role of anthocyanins on ascorbic acid preservation was noted for both lemon-berry blends, keeping vitamin C stable until the end of the storage. In addition, the new drink combining lemon and elderberry performed better than the grape-lemon mixture in terms of health-promoting phytochemicals content, just as in vitro antioxidant capacity and color characteristics. Beverages made from lemon juice and berries could contribute to develop new drinks with a prolonged preservation of bioactive compounds throughout storage, keeping an attractive color and a high antioxidant activity during long periods of time. The information obtained in the present work is in agreement to the rules of health and safety for juices established by the Directive of European Commission Dir2001/112/CE incorporated to the Spanish law through the RD1050/2003 regulation. Consequently, an improved performance of industrial products would be achieved. © 2012 Institute of Food Technologists®

  8. Bioactive chemical compounds in Eremurus persicus (Joub. & Spach) Boiss. essential oil and their health implications.

    Science.gov (United States)

    Salehi, B; Ayatollahi, S A; Segura-Carretero, A; Kobarfard, F; Contreras, M D M; Faizi, M; Sharifi-Rad, M; Tabatabai, S A; Sharifi-Rad, J

    2017-09-30

    The genus Eremurus is native to Eastern Europe and temperate Asia. Particularly, Eremurus persicus (Joub. & Spach) Boiss. is highly valued in traditional foods and medicine. Scientific knowledge about E. persicus chemical composition and bioactivity is required. Therefore, the present study is aimed to determine the volatile composition of E. persicus essential oil (EO) by means of gas chromatography coupled to flame ionization/mass spectrometry detection. Moreover, the antioxidant, antimicrobial, anticancer, and acetylcholinesterase inhibitory activities of the EO were tested. Interestingly, the anti-dermatophyte potency was close to that of the drug griseofulvin, with minimum fungicidal concentration ranging between 0.7 and 4.5% depending on the fungi strain. The EO was also effective against hepatocellular carcinoma (Hep-G2) and breast adenocarcinoma (MCF-7) human cancer cell lines in a concentration (200-1500 ng/mL)-dependent manner, with a decrease of the cell viability up to 65% and 52%, respectively. The E. persicus EO was rich in terpenes and oxygenated terpene derivatives. Individually, limonene (16.25%), geranylgeraniol (15.23%), n-nonanal (9.48%), geranyl acetone (9.12%), benzene acetaldehyde (8.51%), linalool (7.93%), α-pinene (6.89%), and 1,8-cineol (5.22%) were the most abundant volatile compounds and could be chosen as analytical markers of this essential oil. In conclusion, our results suggested that this EO possesses a wide range of bioactive properties that could be useful in nutraceutical, functional foods and cosmeceutical formulations.

  9. Evaluation of bioactive compounds in black table olives fermented with selected microbial starters.

    Science.gov (United States)

    Durante, Miriana; Tufariello, Maria; Tommasi, Luca; Lenucci, Marcello Salvatore; Bleve, Gianluca; Mita, Giovanni

    2018-01-01

    Table olives have been a component of the Mediterranean diet for centuries, with the trend for their consumption currently increasing worldwide. They are rich in bioactive molecules with nutritional, antioxidant, anti-inflammatory or hormone-like properties. In the present study, the concentrations of phenolics, triterpenic acids, carotenoids and vitamins, as well as fatty acid profiles and antioxidant activity, were analyzed in the edible portion of black table olives (Olea europea L.) from Italian (Cellina di Nardò and Leccino) and Greek (Kalamàta and Conservolea) cultivars fermented with selected autochthonous starters and in the corresponding monovarietal olive oils. On a fresh weight basis, Cellina di Nardò and Leccino table olives showed the highest total phenolic content. No significant differences were found with respect to the levels of total triterpenic (maslinic and oleanolic) acids and vitamin E among cultivars. All table olives were characterized by high amounts of oleic, linoleic and palmitic acids. Oils were richer in lipophilic antioxidants (carotenoids and tocochromanols) than table olives, which, instead, showed a higher content of polyphenols and triterpenic acids than oils. The present study demonstrates that fermented table olives are an excellent natural source of unsaturated fatty acids, as well as being nutritionally important health-promoting bioactive compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    Science.gov (United States)

    Shantappa, Anil; Hanagodimath, S. M.

    2015-08-01

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.

  11. Structural and electronic properties of thallium compounds

    Science.gov (United States)

    Paliwal, Neetu; Srivastava, Vipul

    2016-05-01

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a0), bulk modulus (B0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  12. Structural and electronic properties of thallium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Neetu, E-mail: neetumanish@gmail.com [Department of Physics, AISECT University Bhopal, 464993 (India); Srivastava, Vipul [Department of Engineering Physics, NRI Institute of Research & Technology, Raisen Road, Bhopal, 462021 (India)

    2016-05-06

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  13. Bioactive compounds in lipid fractions of pumpkin (Cucurbita sp) seeds for use in food.

    Science.gov (United States)

    Veronezi, Carolina Médici; Jorge, Neuza

    2012-06-01

    Seeds are considered to be agro-industrial residues, which can be used as source of macronutrients and/or raw material for extraction of vegetable oils, since they present great quantities of bioactive compounds. This study aimed to characterize the lipid fractions and the seeds of pumpkin (Cucurbita sp) varieties Nova Caravela, Mini Paulista, Menina Brasileira, and Moranga de Mesa aiming at using them in food. The chemical composition of the seeds was performed according to the official methods of American Oil Chemists' Society and Association of Official Analytical Chemists. Total carotenoids and phenolic compounds were determined by spectrophotometry, while the levels of tocopherols were analyzed by high efficiency liquid chromatography. It was noted that the seeds contain high amounts of macronutrients that are essential for the functioning of the human organism. As to total carotenoids, Mini Paulista and Menina Brasileira pumpkin varieties presented significant amounts, 26.80 and 26.03 μg/g, respectively. Mini Paulista and Nova Caravela pumpkin varieties showed high amounts of total phenolic compounds in the lipid fractions and in the seeds. It was also found that γ-tocopherol is the isomer that stood out in the lipid fractions and in the seeds, mainly in Menina Brasileira. Finally, the consumption of these seeds and use of lipid fractions provide the supply of large quantities of compounds that are beneficial for health and that may be potentially used in food, besides representing an alternative to better use of agro-industrial residues. Bioactive compounds, besides presenting basic nutritional functions, provide metabolic and physiological health benefits when consumed as part of the usual diet. Therefore, there is a growing interest in vegetable oils of special composition, such as the ones extracted from fruit seeds. The seeds of Cucurbita sp are shown to be promising sources of oils, and especially the Cucurbita moschata and maxima species have not yet

  14. Effect of modified atmosphere packaging on the quality and bioactive compounds of Chinese cabbage (Brasicca rapa L. ssp. chinensis).

    Science.gov (United States)

    Mampholo, Bevly Mmakatane; Sivakumar, Dharini; Beukes, Mervyn; van Rensburg, Willem Jansen

    2013-06-01

    The perishability of Brassica chinensis poses a major challenge to distribution and marketing. The aim of this work was to select a suitable modified atmosphere packaging to retain the overall quality and bioactive compounds during storage. Four types of biorientated polypropylene packaging (BOPP)--BOPP03, BOPP04, BOPP05 and BOPP06--with different perforations were evaluated regarding the maintenance of quality parameters (weight loss, leaf yellowing, colour L*, C*, h°), decay, chlorophyll a, chlorophyll b, bioactive compounds (carotenoids, ascorbic acid, total phenolic compounds), antioxidant scavenging activity, overall appearance and odour evaluation, at 10°C at 2, 4, 6, 8 and 10 days. Leaves were packed in BOPP (two 2-mm holes) and packed and unpacked leaves were included for comparison. The modified atmosphere created (2% O2 and 7% CO2) inside the BOPP05 reduced leaf yellowing (higher h°), improved the overall appearance with acceptable odour, moderately maintained chlorophyll a and b, bioactive compounds and antioxidant scavenging activity, and remained marketable for up to 10 days at 10°C. Gas composition within the packages influenced the retention of bioactive compounds and overall quality. Application of BOPP05 is a promising method for extending the shelf life of B. chinensis leaves in order to promote its utilisation and commercialisation via urban fresh-produce markets. © 2012 Society of Chemical Industry.

  15. The seasonal variation in bioactive compounds content in juice from organic and non-organic tomatoes.

    Science.gov (United States)

    Hallmann, Ewelina; Lipowski, Janusz; Marszałek, Krystian; Rembiałkowska, Ewa

    2013-06-01

    A specific objective of this paper was to evaluate seasonal changes in bioactive compounds level (carotenoids and polyphenols) in juice prepared from organic and non-organic tomatoes in Poland. In the examined tomato juice, the content of dry matter, vitamin C, carotenoids as well as polyphenols (by HPLC method) has been measured. The presented results indicate the impact of the growing system and the year of production on the composition of tomato juice. The organic tomato juice contained significantly more beta-carotene, chlorogenic acid, rutin as well as more total phenolic acids, gallic acid, p-coumaric acid, total flavonoids, quercetin-3-O-glucoside and quercetin in comparison with the non-organic. The tomato juice from 2008 contained significantly more carotenoids and some flavonoids compared to the one produced in 2009, which contained significantly more dry matter, vitamin C, as well as quercetin and it derivatives.

  16. The Investigation of Some Bioactive Compounds and Antioxidant Properties of Hawthorn (Crataegus monogyna subsp. monogyna jacq.

    Directory of Open Access Journals (Sweden)

    Serhat KESER

    2014-04-01

    Full Text Available The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers and ripened fruits. For this purpose, antioxidant activities of extracts were assessed on DPPH and #8226;, ABTS and #8226;+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin-Cioacalteu and #8217;s reagent. The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by HPLC in the hawthorn extract. It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed highest activity in reducing power and metal chelating activity assays. Additionally, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. [J Intercult Ethnopharmacol 2014; 3(2.000: 51-55

  17. Vacuum infiltration of putrescine enhances bioactive compounds and maintains quality of blood orange during cold storage.

    Science.gov (United States)

    Habibi, Fariborz; Ramezanian, Asghar

    2017-07-15

    The effects of putrescine (Put) treatment on anthocyanin concentrations and other bioactive compounds of two blood orange ('Moro' and 'Tarocco') cultivars during cold storage have been investigated. Put at 0, 1 and 2mM were applied to fruit by vacuum infiltration at 26.665kPa for 8min and then stored at 5°C, and 90% RH for 60days, plus a simulated shelf life of 2days at 20°C. Put treatment maintained higher fruit firmness and reduced weight loss during storage. Anthocyanin, total phenolic content (TPC), ascorbic acid content, and antioxidant activity were also higher in treated fruit than the control during storage. pH and titratable acidity (TA) were highest in treated fruit, while soluble solids concentration (SSC) and SSC/TA ratios were highest in untreated fruit. Overall, the quality of blood oranges maintained by Put treatment during cold storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Induction of bioactive compound composition from marine microalgae (Lyngbya sp. by using different stress condition

    Directory of Open Access Journals (Sweden)

    Nurul Farhana Rosly

    2013-10-01

    Full Text Available Objective: To the effect of salinity stress on the production of microalgae (Lyngbya sp. and chlorophyll pigments in the growth medium. Methods: Stress was investigated by using green algae strains Lyngbya sp. in response to change bioactive compounds without any modification of cell growth and biomass production rate. The different stress conditions like 10%-40% were analyzed. Results: During the stress condition, various biochemical and microbiological assays were monitored. The photochemical composition was evaluated by GC-MS studies. The studies expressed that 30% higher salinity stress was suitable for high phytochemical production rate including chlorophyll content. Conclusions: Our study indicates the wide range of salinity stress to enhance the growth on microalgae culture and enhance the production of major secondary metabolites.

  19. Novel Beverages of Yerba-Mate and Soy: Bioactive Compounds and Functional Properties

    Directory of Open Access Journals (Sweden)

    Cátia Nara Tobaldini Frizon

    2018-03-01

    Full Text Available In this paper, two high-nutrition commodities that are produced in great amounts in Brazil were joined in a single functional product. Yerba mate (Ilex paraguariensis is rich in bioactive compounds, while soybean is a high-quality protein source. The objective of this paper was to assess the psychochemical characteristics of two yerba-mate progenies (planted–PL and native–NT leaves and then confirm whether the functional and nutritional properties of the main ingredients were conveyed to the beverage produced. The main raw material, yerba-mate leaves, and the drinks were assessed for bioactive compounds, antioxidant capacity, physicochemical properties, and nutritional value. Planted leaves showed higher concentration of 5-CQA, caffeic acid and rutin than the native plant, whereas caffeine and theobromine were detected in larger amounts in native leaves. The nutritional profile of the drinks was compared to commercial beverages–either yerba-mate-based or soy-based. They indeed provide more protein, fiber, and fats than traditional yerba-mate beverages (chimarrão, tererê, and mate tea. Soy drinks currently marketed, for their turn, have similar caloric value and higher contents of lipid and protein as compared to our product, but are poor in fibers. NT drink (DPPH—IC50 92.83 and ABTS—8.18 μM Trolox/mL had higher antioxidant activity than PL (IC50 147.06 and 5.63 μM Trolox/mL due to the greater volume fraction of yerba-mate extract. NT beverage has more 5-CQA and caffeine in the same intake of tererê and traditional mate tea. This healthy beverage contributes to an increasing income to the food industry and yerba-mate producers, and environmental gains that are related to the exploration of natural resources.

  20. Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L. DC. (Malpighiaceae

    Directory of Open Access Journals (Sweden)

    Ana Hortência Fonsêca Castro

    Full Text Available ABSTRACT This study developed a methodology for callus induction in leaf segments of B. verbascifolia and evaluated the bioactive phenolic compounds production. Leaf explants were cultured in MS medium with 30 g L-1 sucrose, solidified with 7 g L- 1 agar supplemented with 2,4-D (0; 4.52; 9.05; 18.10 µM and BAP (0; 4.44; 8.88; 17.75 µM in the presence and absence of light. Forty-five days after inoculation we assessed the percentage of callus induction, color, consistency, fresh and dry matter, total phenols, flavonoids, tannins contents, and chromatographic profile by HPLC-DAD method. Callus induction occurred only in medium with growth regulators. Maximal induction (100% was found in medium containing 2,4-D combined with BAP in the presence and absence of light. We obtained friable and compact callus in yellow, green, and red. Culture media containing 4.52 µM 2,4-D + 4.44 µM BAP induced 100% of friable callus with higher fresh and dry weight in the absence of light. The callus produced higher amounts of total phenols and flavonoids than the initial explant. Total tannins were detected only in callus induced in media containing 17.75 µM BAP and 4.52 µM 2,4-D + 17.75 µM BAP, and were not found in the initial explant. The bioactive phenolic compounds detected are derived from benzoic, p-coumaric, cinnamic, gallic acids, and catechins.

  1. Strawberry Achenes Are an Important Source of Bioactive Compounds for Human Health

    Directory of Open Access Journals (Sweden)

    María Teresa Ariza

    2016-07-01

    Full Text Available Strawberries are highly appreciated for their taste, nutritional value and antioxidant compounds, mainly phenolics. Fruit antioxidants derive from achenes and flesh, but achene contribution to the total fruit antioxidant capacity and to the bioaccessibility after intake is still unknown. In this work, the content of total phenolic compounds, flavonoids, anthocyanins and antioxidant capacity (TEAC, FRAP and DPPH of achenes and flesh were compared in non-digested as well as in gastric and intestinal extracts after in vitro digestion. Results showed that, despite strawberry achenes represent a small fraction of the fruit, their contribution to total fruit antioxidant content was more than 41% and accounted for 81% of antioxidant capacity (TEAC. Achenes have higher quantity and different quality of antioxidants in non-digested and digested extracts. Antioxidant release was higher in the in vitro gastric digested extracts, but digestion conditions did not only affect quantity but quality, resulting in differences in antioxidant capacity and highlighting the importance of simulating physiological-like extraction conditions for assessing fruit antioxidant properties on human health. These results give new insights into the use of strawberry achenes as a source of bioactive compounds to be considered in strawberry breeding programs for improving human health.

  2. Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.).

    Science.gov (United States)

    Aubert, Christophe; Chalot, Guillaume

    2018-02-01

    Six table grape cultivars (Centennial Seedless, Chasselas, Italia, Italia Rubi, Alphonse Lavallée, and Muscat de Hambourg) were analyzed for their levels of soluble solids, titratable acidity, sugars, organic acids, vitamin C and E, carotenoids, polyphenolics and volatile compounds during two successive years. Descriptive sensory analyses of the six table grape varieties were also performed. Mainly due to anthocyanins, black cultivars had the highest total phenolic contents. Alphonse Lavallée had also both the highest levels of trans-resveratrol and piceid, and Muscat de Hambourg the highest levels of α-tocopherol, β-carotene and monoterpenols, well-known key aroma compounds in Muscat varieties having also interesting pharmacological properties. This study shows that the two traditional black French cultivars, Muscat de Hambourg and Alphonse Lavallée, are particularly rich in bioactive compounds and have a great potential for human health. Finally, Muscat de Hambourg was significantly rated sweeter, juicier and more aromatic than the others cultivars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Strawberry Achenes Are an Important Source of Bioactive Compounds for Human Health

    Science.gov (United States)

    Ariza, María Teresa; Reboredo-Rodríguez, Patricia; Mazzoni, Luca; Forbes-Hernández, Tamara Yuliett; Giampieri, Francesca; Afrin, Sadia; Gasparrini, Massimiliano; Soria, Carmen; Martínez-Ferri, Elsa; Battino, Maurizio; Mezzetti, Bruno

    2016-01-01

    Strawberries are highly appreciated for their taste, nutritional value and antioxidant compounds, mainly phenolics. Fruit antioxidants derive from achenes and flesh, but achene contribution to the total fruit antioxidant capacity and to the bioaccessibility after intake is still unknown. In this work, the content of total phenolic compounds, flavonoids, anthocyanins and antioxidant capacity (TEAC, FRAP and DPPH) of achenes and flesh were compared in non-digested as well as in gastric and intestinal extracts after in vitro digestion. Results showed that, despite strawberry achenes represent a small fraction of the fruit, their contribution to total fruit antioxidant content was more than 41% and accounted for 81% of antioxidant capacity (TEAC). Achenes have higher quantity and different quality of antioxidants in non-digested and digested extracts. Antioxidant release was higher in the in vitro gastric digested extracts, but digestion conditions did not only affect quantity but quality, resulting in differences in antioxidant capacity and highlighting the importance of simulating physiological-like extraction conditions for assessing fruit antioxidant properties on human health. These results give new insights into the use of strawberry achenes as a source of bioactive compounds to be considered in strawberry breeding programs for improving human health. PMID:27409612

  4. Bioactive Compounds of Seaweed Padina australis and Eucheuma cottonii as Sunscreen Raw Materials

    Directory of Open Access Journals (Sweden)

    Fevita Maharany

    2017-04-01

    Full Text Available Seaweed is one of the main commodity which spread throughout Indonesian waters. Seaweed contains bioactive compounds which can serve as a defense form ultraviolet radiation. The purpose of this study was to obtain chemical composition, phytochemical compounds, vitamin E, and antioxidant activity of extract P. australis and E. cottonii. Chemical composition of P. australis moisture 87.25%; ash 2.34%; protein 1.05%, fat 0.58%; and carbohydrates 8.78% while E. cottonii moisture 76.15%; ash 5.62%; protein 2.32%; fat 0.11%; and carbohydrates 15.8%. The yield of P. australis extracts using methanol 4.55%; ethyl acetate 0.8%; and n-hexane 0.45%, yield of  E. cottonii extracts using methanol 6.6%; ethyl acetate 0.5%; and and n-hexane 0.35%. Vitamin E value of P. australis 162.75 μg/mL and E. cottonii 158.07 μg/mL. IC50 value of P. australis 87.082 ppm and E. cottonii  106.021 ppm. P. australis and E. cottonii contain phytochemical compound such as flavonoids, phenol hydroquinone, and triterpenoids, P. australis was also known contain tannins andsaponins.

  5. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    Directory of Open Access Journals (Sweden)

    M. Adília Lemos

    2015-06-01

    Full Text Available The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein.

  6. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Natalia V. Zhukova

    2014-08-01

    Full Text Available The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed.

  7. Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Min-Hung Chen

    2017-05-01

    Full Text Available Background: The calamondin (Citrus microcarpa Bunge and the kumquat (Fortunella crassifolia Swingle are two small-size citrus fruits that have traditionally been consumed in Taiwan; however, there has been a lack of scientific research regarding the active compounds and functionalities of these fruits. Methods: Analysis of volatile composition of essential oil and phytosterol was carried out using Gas Chromatography–Mass Spectrometry (GC-MS. Flavonoid and limonoid were analyzed by High Performance Liquid Chromatography (HPLC. Moreover, antioxidant capacity from their essential oils and extracts were assessed in vitro. Results: The compositions of the essential oils of both fruits were identified, with the results showing that the calamondin and kumquat contain identified 43 and 44 volatile compounds, respectively. In addition, oxygenated compounds of volatiles accounted for 4.25% and 2.04%, respectively, consistent with the fact that oxygenated compounds are generally found in high content in citrus fruits. In terms of flavonoids, the calamondin exhibited higher content than the kumquat, with disomin-based flavonoids being predominant; on the other hand, phytosterol content of kumquat was higher than that of calamondin, with amyrin being the dominant phytosterol. Both of them contain high amounts of limonoids. The ethanol extracts and essential oils of small-sized citrus fruits have been shown to have antioxidant effects, with those effects being closely related to the flavonoid content of the fruit in question. Conclusions: The present study also reviewed antioxidant activity in terms of specific bioactive compounds in order to find the underlying biological activity of both fruits. The calamondin and kumquat have antioxidant effects, which are in turn very important for the prevention of chronic diseases.

  8. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds

    Directory of Open Access Journals (Sweden)

    Dario Donno

    2016-02-01

    Full Text Available It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph−Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98% followed by monoterpenes (14.05%, while in blackberry preparations the main bioactive classes were catechins (50.06% and organic acids (27.34%. Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural

  9. Targeted metabolite profile of food bioactive compounds by Orbitrap high resolution mass spectrometry: The 'FancyTiles' approach

    NARCIS (Netherlands)

    Troise, A.D.; Ferracane, R.; Palermo, M.; Fogliano, V.

    2014-01-01

    In this paper a new targeted metabolic profile approach using Orbitrap high resolution mass spectrometry was described. For each foodmatrix various classes of bioactive compounds and some specificmetabolites of interest were selected on the basis of the existing knowledge creating an easy-to-read

  10. Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars

    Czech Academy of Sciences Publication Activity Database

    Park, Y.S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Suhaj, M.; Cvikrová, Milena; Martincová, Olga; Weisz, M.; Gorinstein, S.

    2011-01-01

    Roč. 24, č. 7 (2011), s. 963-970 ISSN 0889-1575 Institutional research plan: CEZ:AV0Z50380511 Keywords : Kiwifruits cultivars * Actinidia sp. * Bioactive compounds Subject RIV: EF - Botanics Impact factor: 2.079, year: 2011

  11. Use of ultrasound radiation for extraction of bioactive compounds from natural sources. Current events and perspectives

    International Nuclear Information System (INIS)

    Rodriguez Riera, Zalua; Robaina Mesa, Malvis; Jauregui Haza, Ulises

    2014-01-01

    In recent years, clean technologies have been developed for high efficiency extracting of isolation of biologically active compounds from natural sources, without the loss of biological activity, with good yield and high purity. Ultrasound-assisted extraction has low instrumental requirements and their implementation is very appropriate where the stability of the active component to be removed is affected by the high temperatures of conventional processes. In this paper it is evaluated the state of the art of ultrasound-assisted extraction of bioactive compounds from various natural sources, its mechanism, the parameters governing its use and research perspectives in this field. Ultrasonic cavitation phenomenon promotes cell wall rupture, reduction of particle size and tissue permeability, which facilitates the diffusion of the solvent into the inert part of the plant material and increasing the mass transferred through membranes. This mechanism explains the high efficiency of ultrasound-assisted extraction as it allows to reduce the time, temperature and amounts of solvent extraction process with high yields and high purity of the extracted product. Currently there is a great demand for the use of ultrasound to industrial and current research lead to the development of larger scale reactors and the theoretical modeling of the parameters that determine efficient extraction

  12. Bioactive Compounds from Mexican Varieties of the Common Bean (Phaseolus vulgaris: Implications for Health

    Directory of Open Access Journals (Sweden)

    Celia Chávez-Mendoza

    2017-08-01

    Full Text Available As Mexico is located within Mesoamerica, it is considered the site where the bean plant originated and where it was domesticated. Beans have been an integral part of the Mexican diet for thousands of years. Within the country, there are a number of genotypes possessing highly diverse physical and chemical properties. This review describes the major bioactive compounds contained on the Mexican varieties of the common bean. A brief analysis is carried out regarding the benefits they have on health. The effect of seed coat color on the nutraceutical compounds content is distinguished, where black bean stands out because it is high content of anthocyanins, polyphenols and flavonoids such as quercetin. This confers black bean with an elevated antioxidant capacity. The most prominent genotypes within this group are the “Negro San Luis”, “Negro 8025” and “Negro Jamapa” varieties. Conversely, the analyzed evidence shows that more studies are needed in order to expand our knowledge on the nutraceutical quality of the Mexican bean genotypes, either grown or wild-type, as well as their impact on health in order to be used in genetic improvement programs or as a strategy to encourage their consumption. The latter is based on the high potential it has for health preservation and disease prevention.

  13. Enrichment of Black Ripe Olives in Bioactive Compounds Using a Single Alkali Treatment.

    Science.gov (United States)

    Romero, Concepción; García-García, Pedro; Brenes, Manuel

    2016-10-14

    The aim of this work was to develop a method for processing ripe olives with a single NaOH treatment (lye) instead of the well-known 3 lye treatments. Olives of the Hojiblanca variety were processed according to the 2 processes and the color, firmness, flavor, and content in phenolic compounds of the final product were similar in both cases but concentration in triterpenic acids was highest in the olives from the single lye treatment. In this process the concentration of NaOH must range between 20 and 35 g/L, especially to obtain good texture when working at 20 °C. If temperature during the oxidation up to 27 °C the firmness of olives was significantly decreased. The concentration of the NaOH did not exert a high effect on the color of the final product, although firmness decreased as the strength of the lye increased. Higher contents in phenolic compounds and triterpenic acids were also found in the olives processed with the lowest NaOH concentration tested (20 g/L). This new process reduces the volume of wastewaters and energy consumption, and gives rise to a product which is richer in bioactive substances than the traditionally processed one. © 2016 Institute of Food Technologists®.

  14. Bioactive Compound Rich Indian Spices Suppresses the Growth of β-lactamase Produced Multidrug Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Eadlapalli Siddhartha

    2017-01-01

    Full Text Available Background: Multidrug Resistance (MDR among bacteria become a global concern due to failure of antibiotics, is drawn attention for best antimicrobials from the spices which have been using ancient days in Indian culinary and traditional medicine. Aim and Objectives: The present study was undertaken to evaluate the bioactive compounds and their antibacterial activity in routinely used culinary Indian spices against β-lactamase produced MDR bacteria. Material and Methods: Ethanolic extracts prepared from twenty spices and were evaluated for total phenolics, flavonoids, alkaloids, terpenoids, antioxidant properties, and also assayed their antibacterial activities against β-lactamase producing MDR bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. β-Lactamase and cell viability assays were performed in MDR bacteria. Results: Among twenty spices, cinnamon and clove exhibited highest levels of phenolics and terpenoids with elevated antioxidant potential and also showing greater reducing potential at lower concentrations of extract (2.3 and 4.06 µg GAE/gm, respectively. Further, the spices extracts were assessed for antimicrobial activity against β-lactamase produced tested MDR bacteria and observed higher antimicrobial activity with cinnamon, garlic, tamarind and clove at lowest concentrations of MIC and MBC at 16 - 32 µg GAE/ml, as compared to standard drug, amoxiclav (16/8 µg/ml. Spices significantly inhibited the β-lactamase activity (80–94% and also cell viability in tested MDR bacteria. Conclusion: Indian spices consist of rich bioactive profile and antioxidant activity inhibited the bacterial growth effectively by suppressing β-lactamase production in MDR bacteria. Results indicating the spices as functional foods and could be used in prevention of antibiotic resistance.

  15. Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand

    Directory of Open Access Journals (Sweden)

    Amporn Srikram

    2016-11-01

    Full Text Available Mushrooms are known as an excellent source of nutrients including macronutrients and bioactive compounds. Nutritional values were investigated involving proximate analysis, total antioxidant capacity (TAC, total phenol content (TPC and total flavonoid content (TFC of 10 edible wild mushroom species—Amanita calyptroderma Ark. et al., Amanita princeps Corner et Bas, A., Astraeus odoratus, Heimiella retispora (Pat. et. Bak. Boedijn., Mycoamaranthus cambodgensis (Pat. Trappe, Russula alboareolata Hongo, Russula cyanoxantha Schaeff.ex.Fr., Russula emetic (Schaeff. ex Fr. S.F.Gray., Russula virescens (Schaeff. fr., Termitomyces clypeatus Heim—and five cultivated mushroom species—Auricularia auricula-judae, Lentinus polychrous Lev., Lentinus squarrosulus Mont., Pleurotus sajor-caju (Fr. Sing, Volvariella vovacea (Bull. Ex.Fr. Sing. From the proximate analysis, the moisture contents of both wild and cultivated mushrooms ranged from 84.15% fresh weight (FW to 90.21% FW. The ash, crude protein, fat, crude fiber and carbohydrate contents of both wild and cultivated mushrooms were in the dry weight ranges 2.56–13.96%, 11.16–50.29%, 1.43–21.94%, 2.11–38.11% and 9.56–59.73%, respectively, and the contents of macronutrients in the mushrooms varied by variety. Wild mushrooms had a high fiber content compared to cultivated mushrooms. The contents of biologically active compounds of both wild and cultivated mushrooms also varied depending on the variety. Values for the TAC, TPC and TFC of wild mushrooms were higher than those of cultivated mushrooms. In conclusion, the proximate analysis for both wild and cultivated mushrooms was variety dependent and wild mushrooms contained a higher fiber content and more biologically active compounds than cultivated mushrooms.

  16. Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro.

    Science.gov (United States)

    Mária, Janubová; Ingrid, Žitňanová

    2017-07-19

    Senescence is a permanent cell cycle arrest that is accompanied by changes in cell morphology and physiology occurring in vitro and in vivo. Senescence evolved as a beneficial response to damage promoting wound healing, limiting fibrosis, fighting against cancer and helping embryonic development. However, excessive accumulation of senescent cells is considered to play a substantial role in the development of aging-related diseases and other morphological and physiological changes associated with aging. Therefore, the aim of many researchers is to find out a way to eliminate senescent cells and improve the health condition of aging people. Bioactive compounds e.g. polyphenols, vitamins, phenols, carotenoids, ginsenosides, omega-3 fatty acids, and compounds isolated from algae (phloroglucinol, sargachromal) are known to affect important biological functions. Recent in vitro studies have revealed that they can protect different types of cells against stress induced senescence (SISP), delay replicative senescence, rejuvenate senescent cells and exert senolytic effects. This review summarizes how the biological compounds listed above affect cell morphology, cell proliferation, specific cell functions, the activity of senescence-associated β-galactosidase (SA-β-gal), the shortening of telomeres and reduction of telomerase activity, production of intracellular reactive oxygen species (ROS) and lipid peroxidation products, expression of antioxidant enzymes, expression of p53 and p21 - key effectors of cell cycle arrest leading to senescence - and expression of some key components of senescence associated secretory phenotype (SASP) in replicative senescence, stress induced senescence (SISP) and under conditions which may lead to the development of senescence such as UV-A and UV-B irradiation of cells and the production of matrix metalloproteinases (a component of the SASP) in cells. Finally, future perspectives of this research are discussed.

  17. Bioactivity-guided fractionation and analysis of compounds with anti-influenza virus activity from Gardenia jasminoides Ellis.

    Science.gov (United States)

    Yang, Quanjun; Wu, Bin; Shi, Yujing; Du, Xiaowei; Fan, Mingsong; Sun, Zhaolin; Cui, Xiaolan; Huang, Chenggang

    2012-01-01

    Bioassay-guided fractionation of extracts from Fructus Gardeniae led to analysis of its bioactive natural products. After infection by influenza virus strain A/FM/1/47-MA in vivo, antiviral activity of the extracts were investigated. The target fraction was orally administered to rats and blood was collected. High-performance liquid chromatography coupled with photo diode array detector and electrospray ion trap multiple-stage tandem mass spectrometry was applied to screen the compounds absorbed into the blood. A structural characterization based on the retention time, ultraviolet spectra, parent ions and fragmentation ions was performed. Thirteen compounds were confirmed or tentatively identified. This provides an accurate profile of the composition of bioactive compounds responsible for the anti-influenza properties.

  18. Microbial Transformation of Bioactive Compounds and Production of ortho-Dihydroxyisoflavones and Glycitein from Natural Fermented Soybean Paste

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2014-12-01

    Full Text Available Recently, there has been a great deal of remarkable interest in finding bioactive compounds from nutritional foods to replace synthetic compounds. In particular, ortho-dihydroxyisoflavones and glycitein are of growing scientific interest owing to their attractive biological properties. In this study, 7,8-ortho-dihydroxyisoflavone, 6,7-ortho-dihydroxyisoflavone, 3',4'-ortho-dihydroxyisoflavone and 7,4'-dihydroxy-6-methoxyisoflavone were characterized using microorganism screened from soybean Doenjang. Three ortho-dihydroxyisoflavones and glycitein were structurally elucidated by 1H-NMR and GC-MS analysis. Furthermore, bacterial strains from soybean Doenjang with the capacity of biotransformation were screened. The bacterial strain, identified as Bacillus subtilis Roh-1, was shown to convert daidzein into ortho-dihydroxyisoflavones and glycitein. Thus, this study has, for the first time, demonstrated that a bacterial strain had a substrate specificity for multiple modifications of the bioactive compounds.

  19. Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream

    Directory of Open Access Journals (Sweden)

    Letricia Barbosa-Pereira

    2013-01-01

    Full Text Available The brewery industry generates waste that could be used to yield a natural extract containing bioactive phenolic compounds. We compared two methods of purifying the crude extract—solid-phase extraction (SPE and supercritical fluid extraction (SFE—with the aim of improving the quality of the final extract for potential use as safe food additive, functional food ingredient, or nutraceutical. The predominant fractions yielded by SPE were the most active, and the fraction eluted with 30% (v/v of methanol displayed the highest antioxidant activity (0.20 g L−1, similar to that of BHA. The most active fraction yielded by SFE (EC50 of 0.23 g L−1 was obtained under the following conditions: temperature 40°C, pressure 140 bar, extraction time 30 minutes, ethanol (6% as a modifier, and modifier flow 0.2 mL min−1. Finally, we found that SFE is the most suitable procedure for purifying the crude extracts and improves the organoleptic characteristics of the product: the final extract was odourless, did not contain solvent residues, and was not strongly coloured. Therefore, natural extracts obtained from the residual stream and purified by SFE can be used as natural antioxidants with potential applications in the food, cosmetic, and pharmaceutical industries.

  20. Effect of Extrusion Cooking on Bioactive Compounds in Encapsulated Red Cactus Pear Powder

    Directory of Open Access Journals (Sweden)

    Martha G. Ruiz-Gutiérrez

    2015-05-01

    Full Text Available Red cactus pear has significant antioxidant activity and potential as a colorant in food, due to the presence of betalains. However, the betalains are highly thermolabile, and their application in thermal process, as extrusion cooking, should be evaluated. The aim of this study was to evaluate the effect of extrusion conditions on the chemical components of red cactus pear encapsulated powder. Cornstarch and encapsulated powder (2.5% w/w were mixed and processed by extrusion at different barrel temperatures (80, 100, 120, 140 °C and screw speeds (225, 275, 325 rpm using a twin-screw extruder. Mean residence time (trm, color (L*, a*, b*, antioxidant activity, total polyphenol, betacyanin, and betaxanthin contents were determined on extrudates, and pigment degradation reaction rate constants (k and activation energies (Ea were calculated. Increases in barrel temperature and screw speed decreased the trm, and this was associated with better retentions of antioxidant activity, total polyphenol, betalain contents. The betacyanins k values ranged the −0.0188 to −0.0206/s and for betaxanthins ranged of −0.0122 to −0.0167/s, while Ea values were 1.5888 to 6.1815 kJ/mol, respectively. The bioactive compounds retention suggests that encapsulated powder can be used as pigments and to provide antioxidant properties to extruded products.

  1. Integrated analytical methodology to investigate bioactive compounds in Crocus sativus L. flowers.

    Science.gov (United States)

    Cusano, Erica; Consonni, Roberto; Petrakis, Eleftherios A; Astraka, Konstantina; Cagliani, Laura R; Polissiou, Moschos G

    2018-02-26

    The increasing interest on Crocus sativus L. over the last decades is caused by its potential employment as a source of biologically active molecules, endowed with antioxidant and nutraceutical properties. These molecules are present mainly in stigmas and tepals, these last generally considered as byproducts. To characterise bioactive compounds in stigmas, stamens, and tepals of Crocus sativus L. for quality, cross-contamination of tissues or fraudulent addition, joining spectroscopic and chromatographic techniques. Fourier transform infrared (FT-IR) and Raman spectroscopies were initially employed, being very rapid in response; volatiles were more appropriately investigated by gas chromatography with mass spectrometry (GC-MS), while finally nuclear magnetic resonance (NMR) and high-performance liquid chromatography with a diode array detector (HPLC-DAD) were adopted for a more thorough characterisation of secondary metabolites. NMR was also used to investigate the anthocyanins content in tepals upon acid extraction. The results obtained highlighted the drying method as the dominant factor affecting the content of volatile constituents and contributing to the quality of saffron, while only slight differences were observed in the most abundant metabolites of stigmas, as well as in the anthocyanin content of tepals. In particular, for the first time, delphinidin and petunidin were detected by NMR in this latter tissue. The integrated analytical methodology here proposed, allowed to achieve a deeper level of compositional and structural details of secondary metabolites in Crocus sativus L. flowers. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk.

    Science.gov (United States)

    Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C

    2014-01-01

    Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Physicochemical Parameters and Bioactive Compounds of Strawberry Tree (Arbutus unedo L. Honey

    Directory of Open Access Journals (Sweden)

    Pablo A. Ulloa

    2015-01-01

    Full Text Available Botanical origin, physicochemical properties (ash, colour, diastase activity, electrical conductivity (EC, hydroxymethylfurfural (HMF, moisture, optical rotation (OP, pH, reducing sugars, total acidity, total soluble solids, and water activity, bioactive compounds (BC, and antioxidant activity obtained from strawberry tree honey from South Portugal were investigated. Results showed that the pollen analysis and physicochemical parameters were found within to meet international honey specifications. Significant differences (P<0.05 in results of ash content, EC, HMF, OP and colour when were compared with analogous famous Italian honey (Sardinia island. For BC, total phenolic and total flavonoid content were 94.47 mg gallic acid/100 g and 5.33 mg quercetin/100 g, respectively. Concerning Portuguese honey, it was also found that radical scavenging activity (DPPH assay was 43.46% and antioxidant activity was 18.85 mg ascorbic acid equivalent/100 g and 9.92 mg quercetin equivalent/100 g. These results confirmed that Portuguese strawberry tree honey has the highest antioxidant activity, when compared with other kinds of honey. This complete report demonstrates advantages and can help to promote consumption and shown their benefical properties (e.g., antioxidant; which will may increase the commercial value.

  4. Nutritional and bioactive compounds of commercialized algae powders used as food supplements.

    Science.gov (United States)

    Martínez-Hernández, Ginés B; Castillejo, Noelia; Carrión-Monteagudo, María Del M; Artés, Francisco; Artés-Hernández, Francisco

    2018-03-01

    The main nutritional/bioactive compounds (protein; aminoacids, AA; fucose; minerals; vitamins B12 and C; and total phenolic content, TPC) of nine commercial algae powders, used as food supplements, were studied. Undaria pinnatifida showed the highest protein/aminoacid contents (51.6/54.4 g 100 g -1 ). Among brown macroalgae, Himanthalia elongata showed the highest fucose content (26.3 g kg -1 ) followed by Laminaria ochroleuca (22.5 g kg -1 ). Mineral contents of 15-24% were observed in the algae, being particularly excellent sources of iodine (69.0-472.0 mg kg -1 ). Porphyra spp. and Palmaria palmata showed the highest vitamin B12 contents (667-674 µg kg -1 ). Vitamin C ranged among 490.4-711.8 mg kg -1 . H. elongata showed the highest total phenolic content (14.0 g kg -1 ). In conclusion, the studied algae are excellent sources of protein, AA, minerals, vitamin C and some of them presented particularly high vitamin B12 and fucose contents, which may have a potential use as food supplements.

  5. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color.

    Science.gov (United States)

    Grudzińska, Magdalena; Czerko, Zbigniew; Zarzyńska, Krystyna; Borowska-Komenda, Monika

    2016-01-01

    We investigated the effect of cultivation system (conventional or organic), cooking method, and flesh color on the contents of ascorbic acid (AA) and total phenolics (TPs), and on total antioxidant activity (Trolox equivalents, TE) in Solanum tuberosum (potato) tubers. The research material, consisting of 4 potato cultivars, was grown in experimental fields, using organic and conventional systems, at the experimental station in 2012 and 2013. The analysis showed that organically grown potatoes with creamy, light yellow, and yellow flesh had significantly higher TPs than did potatoes grown conventionally. Flesh color and cooking method also affected AA. The greatest losses of AA occurred in yellow-fleshed potatoes grown conventionally and cooked in the microwave; such losses were not observed in potatoes grown organically. A dry cooking method (baking in a microwave) increased the TP contents in potatoes by about 30%, regardless of the flesh color and the production system. TE was significantly higher in organically grown potatoes (raw and cooked in a steamer) than in conventionally grown potatoes. TE and AA contents showed a significant positive correlation, but only in potatoes from the organic system [R2 = 0.686]. By contrast, the positive correlation between TE and TPs was observed regardless of the production system. Therefore, we have identified the effects of farming system, cooking method, and flesh color on the contents of bioactive compounds in potato tubers.

  6. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color.

    Directory of Open Access Journals (Sweden)

    Magdalena Grudzińska

    Full Text Available We investigated the effect of cultivation system (conventional or organic, cooking method, and flesh color on the contents of ascorbic acid (AA and total phenolics (TPs, and on total antioxidant activity (Trolox equivalents, TE in Solanum tuberosum (potato tubers. The research material, consisting of 4 potato cultivars, was grown in experimental fields, using organic and conventional systems, at the experimental station in 2012 and 2013. The analysis showed that organically grown potatoes with creamy, light yellow, and yellow flesh had significantly higher TPs than did potatoes grown conventionally. Flesh color and cooking method also affected AA. The greatest losses of AA occurred in yellow-fleshed potatoes grown conventionally and cooked in the microwave; such losses were not observed in potatoes grown organically. A dry cooking method (baking in a microwave increased the TP contents in potatoes by about 30%, regardless of the flesh color and the production system. TE was significantly higher in organically grown potatoes (raw and cooked in a steamer than in conventionally grown potatoes. TE and AA contents showed a significant positive correlation, but only in potatoes from the organic system [R2 = 0.686]. By contrast, the positive correlation between TE and TPs was observed regardless of the production system. Therefore, we have identified the effects of farming system, cooking method, and flesh color on the contents of bioactive compounds in potato tubers.

  7. Characterization and evaluation of stability of bioactive compounds in fruit smoothies

    Directory of Open Access Journals (Sweden)

    Sílvia Cristina Sobottka Rolim de MOURA

    Full Text Available Abstract Smoothies are drinks composed of a mixture of vegetables (fruits, vegetables, which can be added or not by milk or yogurt, being a high creamy, healthy beverage and a good source of energy, vitamins, and minerals. Samples of three commercial smoothies: Yellow Fruits (YF, Red Fruits (RF, and Green Vegetables (GV stored in a glass packaging (260 mL were characterized for pH, soluble solids (°Brix, water activity (aw, density, rheology and thermal properties, and stored at controlled temperatures of 10 °C and 25 °C in the absence of light. During the period of 180 days, the samples were evaluated for color, polyphenol and anthocyanin contents, and sensorially monitored by odor, taste, overall quality and color characteristics. The smoothies showed similar physicochemical and thermophysical properties to pulp fruit and juice concentrates. The rheological behavior of the samples followed the power law model and was adjusted to the Arrhenius model. All the samples showed a reduction in bioactive compounds, change in color, taste and odor, with these being more significant at the room temperature.

  8. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    Science.gov (United States)

    Hardoim, Cristiane C. P.; Costa, Rodrigo

    2014-01-01

    Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed. PMID:25272328

  9. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    Directory of Open Access Journals (Sweden)

    Cristiane C. P. Hardoim

    2014-09-01

    Full Text Available Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.

  10. Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage

    Directory of Open Access Journals (Sweden)

    Edmundo Juarez-Enriquez

    2016-02-01

    Full Text Available Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm2 and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake.

  11. Effect of the Addition of Propolis Extract on Bioactive Compounds and Antioxidant Activity of Craft Beer

    Directory of Open Access Journals (Sweden)

    Pablo A. Ulloa

    2017-01-01

    Full Text Available Antioxidant-rich foods and beverages play an essential role in the prevention of diseases. This study assessed the influence of the addition of ethanolic extract of propolis (EEP to beer at different concentrations (0.05, 0.15, and 0.25 g/L. Total phenolic content (TPC and total flavonoid content (TFC were determined. Antioxidant activity (AA was evaluated by radical scavenging activity (DPPH and ABTS and reducing power (FRAP. The addition of EEP in beer resulted in a linear increase in the TPC with values of 4.5%, 16.7%, and 26.7% above a control (no EEP added; 242 mg gallic acid equivalent/L. A similar increase was observed with TFC values 16.0%, 49.7%, and 59.2% above the control (16.9 mg quercetin equivalent/L. The FRAP assay indicated linear increases in AA relative to control with values of 1555, 1705, and 1892 μmol Trolox equivalent/L following EEP additions. The incorporation of EEP resulted in increases in the bioactive compounds and AA in beer without altering the physicochemical parameters of golden ale beer. The results indicate a promising use of propolis extract as a functional ingredient in beer.

  12. Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization.

    Science.gov (United States)

    Silva, Eric Keven; Zabot, Giovani L; Bargas, Matheus A; Meireles, M Angela A

    2016-11-05

    This paper presents novel outcomes about the effect of degree of inulin polymerization (DP) on the technological properties of annatto seed oil powder obtained by freeze-drying. Inulins with two DP's were evaluated: GR-inulin (DP≥10) and HP-inulin (DP≥23). Micrographs obtained by confocal microscopy were analyzed to confirm the encapsulation of bioactive compounds using both inulins, especially the encapsulation of the natural fluorescent substance δ-tocotrienol. Microparticles formed with both inulins presented the same capacity for geranylgeraniol retention (77%). Glass transitions of microparticles formed with GR-inulin and HP-inulin succeeded at 144°C and 169°C, respectively. Regarding water adsorption isotherms, microparticles formed with HP-inulin and GR-inulin presented behaviors of Types II (sigmoidal) and III (non-sigmoidal), respectively. Reduction of water adsorption capacity in the matrix at high relative moistures (>70%) was presented when HP-inulin was used. At low relative moistures (<30%), the opposite behavior was observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Low-density lipoprotein oxidation biomarkers in human health and disease and effects of bioactive compounds.

    Science.gov (United States)

    Winklhofer-Roob, Brigitte M; Faustmann, Gernot; Roob, Johannes M

    2017-10-01

    Based on the significance of oxidized low-density lipoprotein (LDL) in health and disease, this review focuses on human studies addressing oxidation of LDL, including three lines of biomarkers, (i) ex vivo LDL resistance to oxidation, a "challenge test" model, (ii) circulating oxidized LDL, indicating the "current in vivo status", and (iii) autoantibodies against oxidized LDL as fingerprints of an immune response to oxidized LDL, along with circulating oxysterols and 4-hydroxynonenal as biomarkers of lipid peroxidation. Lipid peroxidation and oxidized LDL are hallmarks in the development of various metabolic, cardiovascular and other diseases. Changes further occur across life stages from infancy to older age as well as in athletes and smokers. Given their responsiveness to targeted nutritional interventions, markers of LDL oxidation have been employed in a rapidly growing number of human studies for more than 2 decades. There is growing interest in foods, which, besides providing energy and nutrients, exert beneficial effects on human health, such as protection of DNA, proteins and lipids from oxidative damage. Any health claim, however, needs to be substantiated by supportive evidence derived from human studies, using reliable biomarkers to demonstrate such beneficial effects. A large body of evidence has accumulated, demonstrating protection of LDL from oxidation by bioactive food compounds, including vitamins, other micronutrients and secondary plant ingredients, which will facilitate the selection of oxidation biomarkers for future human intervention studies and health claim support. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. An Overview of LEDs' Effects on the Production of Bioactive Compounds and Crop Quality.

    Science.gov (United States)

    Hasan, Md Mohidul; Bashir, Tufail; Ghosh, Ritesh; Lee, Sun Keun; Bae, Hanhong

    2017-08-27

    Light-emitting diodes (LEDs) are characterized by their narrow-spectrum, non-thermal photon emission, greater longevity, and energy-saving characteristics, which are better than traditional light sources. LEDs thus hold the potential to revolutionize horticulture lighting technology for crop production, protection, and preservation. Exposure to different LED wavelengths can induce the synthesis of bioactive compounds and antioxidants, which in turn can improve the nutritional quality of horticultural crops. Similarly, LEDs increase the nutrient contents, reduce microbial contamination, and alter the ripening of postharvest fruits and vegetables. LED-treated agronomic products can be beneficial for human health due to their good nutrient value and high antioxidant properties. Besides that, the non-thermal properties of LEDs make them easy to use in closed-canopy or within-canopy lighting systems. Such configurations minimize electricity consumption by maintaining optimal incident photon fluxes. Interestingly, red, blue, and green LEDs can induce systemic acquired resistance in various plant species against fungal pathogens. Hence, when seasonal clouds restrict sunlight, LEDs can provide a controllable, alternative source of selected single or mixed wavelength photon source in greenhouse conditions.

  15. Occurrence of Chiral Bioactive Compounds in the Aquatic Environment: A Review

    Directory of Open Access Journals (Sweden)

    Cláudia Ribeiro

    2017-10-01

    Full Text Available In recent decades, the presence of micropollutants in the environment has been extensively studied due to their high frequency of occurrence, persistence and possible adverse effects to exposed organisms. Concerning chiral micropollutants in the environment, enantiomers are frequently ignored and enantiomeric composition often neglected. However, enantioselective toxicity is well recognized, highlighting the need to include enantioselectivity in environmental risk assessment. Additionally, the information about enantiomeric fraction (EF is crucial since it gives insights about: (i environmental fate (i.e., occurrence, distribution, removal processes and (biodegradation; (ii illicit discharges; (iii consumption pattern (e.g., illicit drugs, pharmaceuticals used as recreational drugs, illicit use of pesticides; and (iv enantioselective toxicological effects. Thus, the purpose of this paper is to provide a comprehensive review about the enantioselective occurrence of chiral bioactive compounds in aquatic environmental matrices. These include pharmaceuticals, illicit drugs, pesticides, polychlorinated biphenyls (PCBs and polycyclic musks (PCMs. Most frequently analytical methods used for separation of enantiomers were liquid chromatography and gas chromatography methodologies using both indirect (enantiomerically pure derivatizing reagents and direct methods (chiral stationary phases. The occurrence of these chiral micropollutants in the environment is reviewed and future challenges are outlined.

  16. Bioactive compounds and antioxidative activity of colored rice bran

    Directory of Open Access Journals (Sweden)

    Yu-Ping Huang

    2016-07-01

    Full Text Available The profiles of bioactive compounds (including phenolics and flavonoids in free and bound fractions, anthocyanins, proanthocyanidins, vitamin E, and γ-oryzanol of outer and inner rice bran from six colored rice samples collected from local markets were investigated. Proanthocyanidins could only be detected in red rice bran but not in black rice bran. The free fraction of the extracts dominated the total phenolics (72–92% and the total flavonoids (72–96% of colored rice bran. Most of the phenolic acids (83–97% in colored rice bran were present in the bound form. Protocatechualdehyde was identified for the first time in the bound fraction of red rice bran by high performance liquid chromatography-photodiode array/electrospray ionization tandem mass spectrometry. The antioxidative activities of the free fraction of the colored rice bran were attributed to the proanthocyanidins in red colored rice and anthocyanins in black rice, while that of the bound fraction was mainly due to the phenolic acids.

  17. BIOACTIVE COMPOUNDS IN CONVENTIONAL AND NO ADDED SUGARS RED STRAWBERRY GUAVA (Psidium cattleianum Sabine JELLIES

    Directory of Open Access Journals (Sweden)

    GABRIELA NIEMEYER REISSIG

    Full Text Available ABSTRACT This study aimed to prepare jellies of conventional type of red strawberry guava (with added sucrose and no added sugar and evaluate the physical and chemical composition and content of bioactive compounds in them. Four jellies formulations were prepared: conventional with addition of sucrose (F1, aspartame (F2, saccharin and cyclamate (F3, acesulfame and sucralose (F4. Physicochemical analysis of pH were carried out, as well as analysis of titratable acidity, total soluble solids, ashes, proteins, lipids, moisture, carbohydrates, calories, lightness, color tone, total phenols, anthocyanins, carotenoids, ascorbic acid and antioxidant activity, by the capture of DPPH and ABTS radicals. Conventional and no added sugars jellies did not differ for total phenols, total anthocyanins and ascorbic acid. However, processing exerted significant influence (p=0.05 on total carotenoids and antioxidant activity. It is feasible to use red strawberry guava for the preparation of conventional and no added sugar jellies. The products, however, show a significant difference in carotenoids content, with the highest content of these and higher antioxidant activity in processed jellies without sugars addition.

  18. Bioactivity Screening of the Selected Turkish Marine Sponges and Three Compounds from Agelas oroides

    Directory of Open Access Journals (Sweden)

    Ilkay Erdogan Orhan

    2012-07-01

    Full Text Available The extracts of various marine sponges (Agelas oroides and Axinella damicornis, Axinella cannabina, Ircinia spinulosa, I. fasciculata, and I. variabilis, Dysidea avara, and Sarcotragus spinulosus collected from different spots of the Turkish cost of the Mediterranean Sea have been evaluated for their antibacterial, antifungal, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging, and acetylcholinesterase (AChE inhibitory activities. Three compounds (oroidin, 4,5-dibromopyrrol-2-carboxylic acid, and 25-hydroxy-24-methylcholesterol were isolated from A. oroides and tested in the same manner. The sponge extracts showed notable antimicrobial and anti-AChE activity and low DPPH scavenging activity. Oroidin was found to have moderate anti-AChE and strong radical scavenging activities. The results demonstrated that the sponge extracts exerted a variable degree of antibacterial, anti-radical, and anti-AChE activity, whereas they seemed to have similar antifungal effect. Our findings point out to the fact that the collection site has an important influence on bioactivity of the sponges.

  19. Improvement of Bioactive Compound Classification through Integration of Orthogonal Cell-Based Biosensing Methods

    Directory of Open Access Journals (Sweden)

    Goran N. Jovanovic

    2007-01-01

    Full Text Available Lack of specificity for different classes of chemical and biological agents, and false positives and negatives, can limit the range of applications for cell-based biosensors. This study suggests that the integration of results from algal cells (Mesotaenium caldariorum and fish chromatophores (Betta splendens improves classification efficiency and detection reliability. Cells were challenged with paraquat, mercuric chloride, sodium arsenite and clonidine. The two detection systems were independently investigated for classification of the toxin set by performing discriminant analysis. The algal system correctly classified 72% of the bioactive compounds, whereas the fish chromatophore system correctly classified 68%. The combined classification efficiency was 95%. The algal sensor readout is based on fluorescence measurements of changes in the energy producing pathways of photosynthetic cells, whereas the response from fish chromatophores was quantified using optical density. Change in optical density reflects interference with the functioning of cellular signal transduction networks. Thus, algal cells and fish chromatophores respond to the challenge agents through sufficiently different mechanisms of action to be considered orthogonal.

  20. Study on bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis.

    Science.gov (United States)

    Wan, Tien-Chun; Cheng, Fu-Yuan; Liu, Yu-Tse; Lin, Liang-Chuan; Sakata, Ryoichi

    2009-12-01

    The purpose of the study was to investigate bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis obtained as valuable by-products from animals used for meat production. The results showed that the components of natural Calculus Bovis were rich in bilirubin and biliverdin and had higher content of essential amino acids. The major amino acids of in vitro cultured Calculus Suis were identified as glycine, alanine, glutamic acid and aspartic acid, and those for natural Calculus Bovis were found to be glutamic acid, aspartic acid, proline, and arginine. The methionine and cysteine contents of precursors for glutathione in natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The mineral contents of zinc, iron and manganese of natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The major bile acids in both products were cholic acid and dehydrocholic acid, respectively. The chenodeoxycholic and ursodeoxycholic acid content of in vitro cultured Calculus Suis was significantly higher than that of natural Calculus Bovis.

  1. Non-targeted metabolite profiling highlights the potential of strawberry leaves as a resource for specific bioactive compounds.

    Science.gov (United States)

    Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; McDougall, Gordon J; Stewart, Derek; Karjalainen, Reijo O

    2017-05-01

    The non-edible parts of horticultural crops, such as leaves, contain substantial amounts of valuable bioactive compounds which are currently only little exploited. For example, strawberry (Fragaria × ananassa) leaves may be a promising bioresource for diverse health-related applications. However, product standardization sets a real challenge, especially when the leaf material comes from varying cultivars. The first step towards better quality control of berry fruit leaf-based ingredients and supplements is to understand metabolites present and their stability in different plant cultivars, so this study surveyed the distribution of potentially bioactive strawberry leaf metabolites in six different strawberry cultivars. Non-targeted metabolite profiling analysis using LC/qTOF-ESI-MS with data processing via principal component analysis and k-means clustering analysis was utilized to examine differences and commonalities between the leaf metabolite profiles. Quercetin and kaempferol derivatives were the dominant flavonol groups in strawberry leaves. Previously described and novel caffeic and chlorogenic acid derivatives were among the major phenolic acids. In addition, ellagitannins were one of the distinguishing compound classes in strawberry leaves. In general, strawberry leaves also contained high levels of octadecatrienoic acid derivatives, precursors of valuable odour compounds. The specific bioactive compounds found in the leaves of different strawberry cultivars offer the potential for the selection of optimized leaf materials for added-value food and non-food applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Characterization of bioactive compounds from monascus purpureus fermented different cereal substrates

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2017-01-01

    Full Text Available Solid-state fermenting of cereals by Monascus is interesting strategy to produce cereals with more beneficial components.  The objective of this study was to determine selected primary and secondary metabolites in cereals (rice, wheat, barley, sorghum, corn, buckwheat fermented by Monascus purpreus and subsequently compare amount of these compounds with control sample (cereals without Monascus. In fermented cereals was determined higher protein, fat, reducing sugars, crude fiber and ash content with compare to non-fermented cereals. The antioxidant activity measured by DPPH assay, ABTS assay as well as reducing power assay was also higher in fermented Monascus cereals with the best results in rice (3.09 ±0.02; 62.9 ±2.24; 43.19 ±2.07 mg TEAC per g of dry weight. Sample of fermented rice contained the highest level of total polyphenols (15.31 ±3.62 mg GAE per g of dry weight, total flavonoids (1.65 mg QE per g of dry weight and total phenolic acids (9.47 ±0.56 mg CAE per g of dry weight. In fermented cereals was also determined higher contact of reducing sugars (highest value in rice 246.97 ±7.96 mg GE per g, proteins (highest value in buckwheat 28.47 ±1.24%, ash (highest value in sorghum 2.74 ±0.08% and fat (highest value in corn 4.89 ±0.03% with compare to non-fermented samples. Results of crude fiber content of both - fermented and non-fermented cereals were balanced with similar values. Results of this study shown that Monascus purpureus fermented cereal substrates might be a potential sources of several bioactive compounds in food products.

  3. Electrostatic extrusion as a dispersion technique for encapsulation of cells and bioactive compounds

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2012-01-01

    Full Text Available Significant development of cells and bioactive compound encapsulation technologies is taking place due to an exceptional possibility of their application in various scientific disciplines, including biomedicine, pharmacy, cosmetology, food and agricultural sciences, beverage production, industrial waste treatment. Despite the broad application of microencapsulation, the literature reviews on dispersion techniques for microcapsule/microbead production, their advantages, restrictions and drawbacks are scarce. The purpose of this paper is to assess the possibilities of electrostatic extrusion for encapsulation of biological material, including living cells in hydrogel microbeads. The paper presents an overview of the mechanisms of droplet formation and controlling experimental parameters for producing microbeads by means of electrostatic extrusion. Electrostatic droplet formation utilizes a special type of physical process taking advantage of electrostatic effects occurring in flowing conductive liquids after introduction of an electric field.When an electrostatic field is applied to the metal needle and an electric charge is induced in the liquid flowing out of the needle, the size of droplet detaching from the needle tip decreases as a funcion of applied electrostatic field. It has been shown that few parameters affect microbead size: applied voltage, electrode geometry, needle size, polarity arrangement and polymer concentration. The electrostatic droplet formation is one of the most precise methods, which enables one to produce spherical and uniform particles ranging from 100 μm up to 1000 μm. Most of the authors report that the encapsulated compounds (drugs, enzymes and living cells remain unaltered after electrostatic extrusion. This technique seems to be particularly promising in biotechnology, pharmaceutical and cosmetics industries, where a low-temperature process, preserving heat-sensitive material is a prerequisite. Future efforts in

  4. Evaluation of bioactive compounds of black mulberry juice after thermal, microwave, ultrasonic processing, and storage at different temperatures.

    Science.gov (United States)

    Jiang, Bo; Mantri, Nitin; Hu, Ya; Lu, Jiayin; Jiang, Wu; Lu, Hongfei

    2015-07-01

    The effect of different sterilization methods (thermal, microwave, and ultrasonic processing) on the main bioactive compounds and antioxidant activity of black mulberry juice during selected storage time (8 days) and temperatures (5, 15, and 25 ℃) was investigated. The antioxidant activity of thermal-treated juice depleted with storage time, whilst both ultrasound- and microwave-treated juices showed transient increase in antioxidant activity during the first 2 days that later decreased with storage time. Lower temperature storage preserved more bioactive compounds and antioxidant activity, especially in ultrasound sterilized samples. The activation energy values were 15.99, 13.07, and 12.81 kJ/mol for ultrasonic, microwave, and thermal pasteurization processes, respectively. In general, ultrasound-sterilized samples showed higher total phenolics, anthocyanin, and antioxidant activity compared to the microwave- and thermal-processed juice during the storage time especially at lower temperatures. © The Author(s) 2014.

  5. Electronic configurations and energies in some thermodynamically correlated laves compounds

    International Nuclear Information System (INIS)

    Campbell, G.M.

    1979-04-01

    The known electronic configurations of simple elements in Laves compounds are correlated with those of the more complex systems to determine their electronic configurations and gaseous state promotion energies

  6. Traceability of Functional Bioactive Compounds in Fresh and Pasteurized Milk Obtained from Goats Fed with Orange Pulp

    Directory of Open Access Journals (Sweden)

    Maria Simona Chiş

    2015-11-01

    Full Text Available Traceability is the ability to identify and trace the history, distribution, location, and application of products, parts, and materials. A traceability system records and follows the trail as products, parts, and materials come from suppliers and are processed and ultimately distributed as end products (Prache et al, 2002. In this work, were studied the bioactive compounds (total vitamin C, ascorbic acid, total phenols, flavonoids, carotenoids, vitamin A and vitamin E and antioxidant activity of goat fresh milk and pasteurized one. The goats were fed with a standard diet (control diet and then with a diet that incorporates orange pulp. The control diet (CD corresponded with a standard ration (a ration wich provide the energetic and proteic values, daily food for milking animals. From that ration, the Department of Animal Science, from Politechnic University of Valencia replaced the different proportions of the ingredients for incorporating orange pulp diet (OPD. The results of the present study show that the citrus pulp silage mixture used can be fed to goats without any negative effects on the performance of the animals. Results of this study indicate that citrus pulp silage can replace part of the conventional ration of goats, thus lowering the cost of production. The first aim of this study was to compare the two types of goat diets: a standard diet and a diet with orange pulp, by analyzing the bioactive compounds in fresh and pasteurized milk. The results demonstrate that all the bioactive compounds are bigger in the orange pulp diet than in the control diet. The second objective of this study was to analyze the bioavailability and traceability of bioactive compounds in fresh milk. 

  7. Effect of certain indigenous processing methods on the bioactive compounds of ten different wild type legume grains

    OpenAIRE

    Vadivel, Vellingiri; Biesalski, Hans K.

    2011-01-01

    In recent years, research efforts are under-way on the possibilities of utilization of natural source of bioactive compounds for the dietary management of certain chronic diseases such as diabetes, obesity, cardiovascular diseases, cancer etc. In this connection, seed materials of promising wild type under-utilized food legume grains such as Acacia nilotica (L.) Willd. Ex Delile, Bauhinia purpurea L., Canavalia ensiformis (L.) DC., Cassia hirsuta L., Caesalpinia bonducella F., Erythrina indic...

  8. Synergistic effects of dietary bioactive compounds and investigation of Nrf2/HO-1 axis in HIV-1 transgenic rat

    OpenAIRE

    Davinelli, Sergio

    2014-01-01

    Considerable evidence suggests that the combinatorial effect dietary bioactive compounds may be useful in preventing or reducing aging features. Therefore, a synergistic multi-target approach in dietary intervention may be effective in slowing down the aging process and increase healthy aging. Functional foods and nutraceuticals can exert specific anti-aging benefits such as improvement in mitochondrial function or induce neuroprotective effects to counteract the deleterious consequences of o...

  9. Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium malaccense (L.) Merr. & L.M. Perry

    OpenAIRE

    Nunes, Polyana Campos; Aquino, Jailane de Souza; Rockenbach, Ismael Ivan; Stamford, T?nia L?cia Montenegro

    2016-01-01

    The purpose of this study was to evaluate the physico-chemical characteristics, bioactive compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense) grown in Brazil with regard to the geographical origin and its peel fractions and edible portion analyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total phenolics (1293 mg gallic acid equivalent/100 g) a...

  10. Improvement of biosynthesis and accumulation of bioactive compounds by elicitation in adventitious root cultures of Polygonum multiflorum.

    Science.gov (United States)

    Ho, Thanh-Tam; Lee, Jong-Du; Jeong, Cheol-Seung; Paek, Kee-Yoeup; Park, So-Young

    2018-01-01

    We examined the effects of abiotic (methyl jasmonate [MeJA] and salicylic acid [SA]) and biotic (yeast extract and chitosan) elicitors for improvement of bioactive compounds production on adventitious root cultures in Polygonum multiflorum. The application of yeast extract resulted in significantly (p ≤ 0.05) higher dry root biomass (9.98 g/L) and relative growth rate versus the control. Cultures treated with abiotic elicitors showed higher percentage of dry weight than the other samples. Low concentrations of all elicitors (50 μM MeJA and SA, and 50 mg/L yeast extract) improved secondary metabolite production except for chitosan, whose performance was worse than that of the control. HPLC analysis of various bioactive compounds revealed significantly higher elicitation efficiency for MeJA than for the other treatments, with an approximately 2-fold increase in root dry weight (22.08 mg/g DW) under 50 μM MeJA treatment versus the control (10.35 mg/g DW). We also investigated the feasibility of scaling up the production process by comparing shake flask cultures with 3- and 5-L balloon type bubble bioreactors (BTBB) using 50 μM MeJA as an elicitor. Growth and metabolite accumulation increased in BTBB compared with shake flask cultures. We detected a non-significant difference in biomass productivity between 3 and 5-L BTBB, but the efficiency of bioactive compound accumulation decreased with increasing volume. These findings will be useful for developing a pilot-scale P. multiflorum adventitious root cultivation process for high biomass and bioactive compound production to meet the demands for natural ingredients by the pharmaceutical and cosmetic industries without affecting the natural habitat of this plant.

  11. Germination Time Dependence of Bioactive Compounds and Antioxidant Activity in Germinated Rough Rice (Oryza sativa L.)

    OpenAIRE

    Anuchita Moongngarm; Ekkalak Khomphiphatkul

    2011-01-01

    Problem statement: Germinated rice has been recognized as a functional food and its health benefits. However, most related studies were on germinated brown rice but our previous study indicated that germination of rough rice was an effective method to obtain high concentrations of bioactive compounds. Germination time is one of the most important factors affecting the level of biochemical compositions and antioxidant activity. Approach: Rough rice seeds were soaked in water for 2 days and ger...

  12. Volatile compounds from leaves of the African spider plant (Gynandropsis gynandra) with bioactivity against spider mite (Tetranychus urticae)

    DEFF Research Database (Denmark)

    Nyalala, Samuel Odeyo; Petersen, Mikael Agerlin; Grout, Brian William Wilson

    2013-01-01

    Previous studies have demonstrated that Gynandropsis gynandra emits acetonitrile as a foliar volatile from intact plants and isolated leaves, and that this compound is an effective spider mite repellent. This study has used gas chromatography–mass spectrometry to investigate volatile compounds...... emitted from homogenised G. gynandra leaves to evaluate their tissue acetonitrile content and to look for other compounds that might be exploited for the management of spider mites. Acetonitrile was absent from the homogenised tissues of five lines of G. gynandra, studied over two seasons. Thirteen...... volatile compounds were emitted by G. gynandra at significantly higher levels than mite-susceptible pot roses, including isothiocyanates, aldehydes, esters, alcohols and terpenes. Six representative compounds were selected to assess bioactivity. Spider mite populations were completely inactive after a 2¿h...

  13. Effect of different coatings on post-harvest quality and bioactive compounds of pomegranate (Punica granatum L.) fruits.

    Science.gov (United States)

    Meighani, Hossein; Ghasemnezhad, Mahmood; Bakhshi, Davood

    2015-07-01

    The effect of three different coatings; resin wax (Britex Ti), carnauba wax (Xedasol M14), and chitosan (1 and 2 % w/v) on postharvest quality of pomegranate fruits were investigated. Fruits quality characteristics and bioactive compounds were evaluated during 40, 80 and 120 days storage at 4.5 °C and 3 additional days at 20 °C. The results showed that uncoated fruits showed higher respiration rate, weight loss, L* and b* values of arils, total soluble solids (TSS)/titratable acidity (TA), and pH than coated fruits during storage. Coating treatments could delay declining TSS and TA percent, a* value of arils, as well as bioactive compounds such as total phenolics, flavonoids and anthocyanins content and antioxidant activity. The coated fruits with commercial resin and carnauba waxes showed significantly lower respiration rate and weight loss than other treatments, however carnauba wax could maintain considerably higher fruits quality and bioactive compounds than other coating treatments. The results suggested that postharvest application of carnauba wax have a potential to extend storage life of pomegranate fruits by reducing respiration rate, water loss and maintaining fruit quality.

  14. Ultra-High Temperature Effect on Bioactive Compounds and Sensory Attributes of Orange Juice Compared with Traditional Processing

    Directory of Open Access Journals (Sweden)

    Zvaigzne Gaļina

    2017-12-01

    Full Text Available Orange juices are an important source of bioactive compounds. Because of its unique combination of sensory attributes and nutritional value, orange juice is the world’s most popular fruit juice. Orange (Citrus sinensis juice of Greek Navel variety was used in this study. The impact of Conventional Thermal Pasteurisation (94 °C/30' (CTP and alternative Ultra-High Temperature (UHT (130 °C/2' processing on bioactive compounds and antioxidant capacity changes of fresh Navel orange juice was investigated. Sensory attributes of processed juices were evaluated. Results showed that using technologies CTP and UHT orange juice Navel significantly changed vitamin C concentration in comparison with fresh orange juice. The highest concentration of antioxidants (vitamin C, total phenols, hesperidin and carotenoids was observed in orange juice Navel produced by UHT technology. Sensory results indicated that characteristics of the orange juice obtained using UHT technology were more liked than the CTP heat treated juice. UHT technology emerges as an advantageous alternative process to preserve bioactive compounds in orange juice.

  15. Variation in Antioxidants, Bioactive Compounds and Antioxidant Capacity in Germinated and Ungerminated Grains of Ten Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Maninder Kaur

    2017-11-01

    Full Text Available Present study was conducted to characterise ten rice (Oryza sativa L. cultivars viz. IET-23466, Dhan-201, IET-23448, MAS-946, IET-23445, IET-23463, IET-23455, PR-123, PR-115 and IET-23449 based on antioxidants (total phenolics, flavonols and tannins, bioactive compounds (phytic acid, gamma amino butyric acid, tocopherol and reduced ascorbate and antioxidant activity (1,1-diphenyl-2- picrylhydrazyl radical scavenging activity, hydroxyl radical scavenging activity, free radical antioxidant power and total reducing power with an aim to identify cultivars containing higher health promoting components after germination. Three cultivars IET-23466, IET-23463 and PR-123 performed better as revealed by higher level of antioxidants, bioactive compounds and antioxidant activity before and after germination. Three cultivars MAS-946, IET-23445 and IET-23449 had moderate level of antioxidants, bioactive compounds and antioxidant activity. Four cultivars Dhan-201, IET-23448, IET-23455 and PR-115 performed intermediately. Strong positive correlation was observed among total phenolics and the antioxidant activity. Phytic acid was found to be negatively correlated to the antioxidant activity. Our results highlighted that cultivars IET-23466, IET-23463 and PR-123 hold great potential after germination and would open up a useful opportunity for the functional food industry, and consumption of these cultivars after germination would afford health benefits to consumers since they contain higher level of antioxidants.

  16. Study on antiviral activities, drug-likeness and molecular docking of bioactive compounds of Punica granatum L. to Herpes simplex virus - 2 (HSV-2).

    Science.gov (United States)

    Arunkumar, Jagadeesan; Rajarajan, Swaminathan

    2018-03-28

    Herpes simplex virus - 2 (HSV-2) causes lifelong persisting infection in the immunocompromised host and intermittent in healthy individuals with high morbidity in neonatals and also increase the transmission of HIV. Acyclovir is widely used drug to treat HSV-2 infection but it unable to control viral latency and recurrent infection and prolonged usage lead to drug resistance. Plant-based bioactive compounds are the lead structural bio-molecules play an inevitable role as a potential antiviral agent with reduced toxicity. Therefore, there is an urgent need to develop anti-HSV-2 bioactive molecules to prevent viral resistance and control of latent infection. Punica granatum fruit is rich in major bioactive compounds with potential antimicrobial properties. Hence, we evaluated the anti-HSV-2 efficacy of lyophilized extracts and bioactive compounds isolated from fruit peel of P. granatum. As a result, ethanolic peel extract showed significant inhibition at 62.5 μg/ml. Hence, the fruit peel ethanolic extract was subjected for the isolation of bioactive compounds isolation by bioactivity-guided fractionation. Among isolated bioactive compounds, punicalagin showed 100% anti-HSV-2 activity at 31.25 μg/ml with supportive evidence of desirable in silico ADMET properties and strong interactions to selected protein targets of HSV-2 by docking analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Chemopreventive properties and molecular mechanisms of the bioactive compounds in Hibiscus sabdariffa Linne.

    Science.gov (United States)

    Lin, Hui-Hsuan; Chen, Jing-Hsien; Wang, Chau-Jong

    2011-01-01

    Hibiscus sabdariffa Linne is a traditional Chinese rose tea and has been effectively used in folk medicines for treatment of hypertension, inflammatory conditions. H. sabdariffa aqueous extracts (HSE) were prepared from the dried flowers of H. sabdariffa L., which are rich in phenolic acids, flavonoids and anthocyanins. In this review, we discuss the chemopreventive properties and possible mechanisms of various H. sabdariffa extracts. It has been demonstrated that HSE, H. sabdariffa polyphenol-rich extracts (HPE), H. sabdariffa anthocyanins (HAs), and H. sabdariffa protocatechuic acid (PCA) exert many biologic effects. PCA and HAs protected against oxidative damage induced by tert-butyl droperoxide (t-BHP) in rat primary hepatocytes. In rabbits fed cholesterol and human experimental studies, these studies imply HSE could be pursued as atherosclerosis chemopreventive agents as they inhibit LDL oxidation, foam cell formation, as well as smooth muscle cell migration and proliferation. The extracts also offer hepatoprotection by influencing the levels of lipid peroxidation products and liver marker enzymes in experimental hyperammonemia. PCA has also been shown to inhibit the carcinogenic action of various chemicals in different tissues of the rat. HAs and HPE were demonstrated to cause cancer cell apoptosis, especially in leukemia and gastric cancer. More recent studies investigated the protective effect of HSE and HPE in streptozotocin induced diabetic nephropathy. From all these studies, it is clear that various H. sabdariffa extracts exhibit activities against atherosclerosis, liver disease, cancer, diabetes and other metabolic syndromes. These results indicate that naturally occurring agents such as the bioactive compounds in H. sabdariffa could be developed as potent chemopreventive agents and natural healthy foods.

  18. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses.

    Science.gov (United States)

    Ribeiro, L F; Ribani, R H; Francisco, T M G; Soares, A A; Pontarolo, R; Haminiuk, C W I

    2015-12-15

    The aim of this study was to characterize grape pomace (GP) from winemaking byproducts of different grape samples (Cabernet Sauvignon-CS; Merlot-ME; Mix composed of 65% Bordeaux, 25% Isabel and 10% BRS Violet-MI and Terci-TE) with a view to exploiting its potential as a source of bioactive compounds and an alternative to the reuse of waste. Bioactive compounds such as individual phenolic compounds and polyunsaturated fatty acids (PUFA) were identified and quantified by spectrophotometric, chromatographic and spectral analyses. The sample of MI had the highest concentrations for total phenolic compounds and total flavonoids, while TE had the highest content for total monomeric anthocyanins. For all samples it was possible to identify 13 different anthocyanins by high performance liquid chromatography (HPLC) and mass spectrometry (MS). Moreover, the GP samples showed phenolic acids; flavan-3-ols such as catechin; flavonols such as quercetin, rutin and kaempferol; and stilbenes such as trans-resveratrol. Therefore, grape pomace can be considered a source for the recovery of phenolic compounds having antioxidant activity as well as a rich source of PUFA. Thus it can be used as an ingredient in the development of new food products, since it is suitable for human consumption, and a viable alternative both to adding nutritional value to food and to reduce environmental contamination. Copyright © 2015. Published by Elsevier B.V.

  19. Bioactive compounds in edible flowers processed by radiation; Compostos bioativos em flores comestiveis processadas por radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda Cristina Ramos

    2015-07-01

    Edible flowers are increasingly being used in culinary preparations, being also recognized for their potential valuable effects in human health, which require new approaches to improve their conservation and safety. These highly perishable products should be grown without using any pesticide. Irradiation treatment might be the answer to these problems, ensuring food quality, increasing shelf-life and disinfestation of foods. Irradiation treatment might be the answer to these problems, to ensure food quality, to increase shelf-life and disinfestation of foods. Tropaeolum majus L. (nasturtium) and Viola tricolor L. (johnny-jump-up) flowers are widely used in culinary preparations, being also acknowledged for their antioxidant properties and high content of phenolics. The purpose of this study was to evaluate the dose-dependent effects of gamma and electron beam irradiation (doses of 0, 0.5, 0.8 and 1 kGy) on the antioxidant activity, phenolic compounds, physical aspects and antiproliferative potential of edible flowers. Kaempferol-O-hexoside-O-hexoside was the most abundant compound in all samples of Tropaeolum majus flower while pelargonidin-3-O-sophoroside was the major anthocyanin. In general, irradiated samples gave higher antioxidant activity, probably due to their higher amounts of phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source . The Viola tricolor samples displayed flavonols as the most abundant phenolic compounds, particularly those derived from quercetin. In general, gamma-irradiated samples, independently of the applied dose, showed higher amounts in phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source. The antioxidant activity was also higher among irradiated samples. The two species of edible flowers have not provided the samples did not show potential antiproliferative and cytotoxicity. Accordingly, the applied irradiation treatments seemed to represent a feasible technology

  20. The Use of Plant Bioactive Compounds to Mitigate Enteric Methane in Ruminants and its Application in Indonesia

    Directory of Open Access Journals (Sweden)

    Elizabeth Wina

    2012-03-01

    Full Text Available Worldwide, increasing greenhouse gas (GHG emissions have become a major concern as they are now considered to be the cause of global warming. Several strategies have been planned and taken by different countries including Indonesia to mitigate this situation. Agriculture is considered to be one of major contributors to GHG, especially methane coming from ruminant digestive processes. More than 85% of the methane produced by ruminants comes from enteric fermentation. Several options have been proposed to lower this enteric methane production. This paper describes a review on diet manipulation using feed additives, especially plant bioactive compounds, to mitigate the GHG emission from ruminant livestock. Plant bioactive compounds have been found with various chemical structures. Some of them such as saponin, tannin, essential oils, organosulphur compounds, have been reported to have ability to reduce enteric methane production. Indonesia has many plant resources that have potential as methane reducing agents. Sapindus rarak fruit especially its methanol extract contain saponins which reduce the activity of methanogens in the rumen in vitro, hence reduce methane production (11%. Feeding S. rarak to sheep increased daily weight gain but not that of local cattle. Shrub legumes such as Calliandra calothyrsus and Leucaena leucocephala contain tannins which can reduce methanogenesis (3 – 21% methane reduction. Besides tannin, these shrub legumes are a good source of protein. Feeding shrub legumes can be beneficial as a protein source and a methane reducer. Other sources of methane reducing agents have been tested in other countries and some can be applied for Indonesian situation. The strategy to reduce methane by plant bioactive compounds should be developed to be simple and relatively cheap so it will benefit the local farmers. Extraction of these compounds may be expensive, therefore, costs should be considered carefully when proposing to use the

  1. Extraction of bioactive compounds from sesame (Sesamum indicum L.) defatted seeds using water and ethanol under sub-critical conditions.

    Science.gov (United States)

    Bodoira, Romina; Velez, Alexis; Andreatta, Alfonsina E; Martínez, Marcela; Maestri, Damián

    2017-12-15

    Sesame seeds contain a vast array of lignans and phenolic compounds having important biological properties. An optimized method to obtain these seed components was designed by using water and ethanol at high pressure and temperature conditions. The maximum concentrations of lignans, total phenolics, flavonoids and flavonols compounds were achieved at 220°C extraction temperature and 8MPa pressure, using 63.5% ethanol as co-solvent. Under these conditions, the obtained sesame extracts gave the best radical scavenging capacity. Kinetic studies showed a high extraction rate of phenolic compounds until the first 50min of extraction, and it was in parallel with the highest scavenging capacity. The comparison of our results with those obtained under conventional extraction conditions (normal pressure, ambient temperature) suggests that recovery of sesame bioactive compounds may be markedly enhanced using water/ethanol mixtures at sub-critical conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.).

    Science.gov (United States)

    Bravo, Karent; Sepulveda-Ortega, Stella; Lara-Guzman, Oscar; Navas-Arboleda, Alejandro A; Osorio, Edison

    2015-05-01

    Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued for its organoleptic properties and bioactive compounds. Considering that the presence of phenolics and ascorbic acid could contribute to its functional capacity, it is important to investigate the quality parameters, bioactive contents and functional properties with respect to genotype and ripening time. In this study the genotype effect was evaluated in 15 cultivars for two different harvest times. Changes during maturation were recorded in two commercial cultivars within seven levels of maturity. Multivariate statistical analysis suggested that phenolic content and ORAC value were mainly affected by harvest time and that ascorbic acid content and DPPH level were mainly affected by genotype. In addition, acidity, phenolic content, ORAC value and inhibition of LDL oxidation decreased with maturity, but soluble solids content, ascorbic acid content, β-carotene content and DPPH-scavenging activity were higher in mature fruits. The phenolic content, ascorbic acid content and antioxidant properties of Cape gooseberry fruit were strongly affected by cultivar, harvest time and maturity state. Consequently, the harvest time must be scheduled carefully to gain the highest proportion of bioactive compounds according to the specific cultivar and the environment where it is grown. © 2014 Society of Chemical Industry.

  3. [Screening of anti-lung cancer bioactive compounds from Curcuma longa by target cell extraction and UHPLC/LTQ Orbitrap MS].

    Science.gov (United States)

    Zhou, Jian-Liang; Wu, Ye-Qing; Tan, Chun-Mei; Zhu, Ming; Ma, Lin-Ke

    2016-10-01

    A target cell extraction-chemical profiling method based on human alveolar adenocarcinoma cell line (A549 cells) and UHPLC/LTQ Orbitrap MS for screening the anti-lung cancer bioactive compounds from Curcuma longa has been developed in this paper. According to the hypothesis that when cells are incubated together with the extract of Curcuma longa, the potential bioactive compounds in the extract should selectively combine with the cells, then the cell-binding compounds could be separated and analyzed by LC-MS. The bioactive compounds in C. longa are lipophilic components. They intend to be absorbed on the inner wall of cell culture flask when they were incubated with A549 cells, which will produce interference in the blank solution. In this paper, by using cells digestion and multi-step centrifugation and transfer strategy, the interference problem has been solved. Finally, using the developed method, three cell-binding compounds were screened out and were identified as bisdemethoxycurcumin, demethoxycurcumin, and curcumin. These compounds are the main bioactive compounds with anti-lung cancer bioactivity in C. longa. The improved method developed in this paper could avoid the false positive results due to the absorption of lipophilic compounds on the inner wall of cell culture flask, which will to be an effective complementary method for current target cell extraction-chemical profiling technology. Copyright© by the Chinese Pharmaceutical Association.

  4. An ethnobotanical survey of medicinal plants of Laos toward the discovery of bioactive compounds as potential candidates for pharmaceutical development

    Science.gov (United States)

    Soejarto, D.D.; Gyllenhaal, C.; Kadushin, M.R.; Southavong, B.; Sydara, K.; Bouamanivong, S.; Xaiveu, M.; Zhang, H.-J.; Franzblau, S.G.; Tan, Ghee T.; Pezzuto, J.M.; Riley, M.C.; Elkington, B.G.; Waller, D.P.

    2012-01-01

    Context An ethnobotany-based approach in the selection of raw plant materials to study was implemented. Objective To acquire raw plant materials using ethnobotanical field interviews as starting point to discover new bioactive compounds from medicinal plants of the Lao People’s Democratic Republic. Methods Using semi-structured field interviews with healers in the Lao PDR, plant samples were collected, extracted, and bio-assayed to detect bioactivity against cancer, HIV/AIDS, TB, malaria. Plant species demonstrating activity were recollected and the extracts subjected to a bioassay-guided isolation protocol to isolate and identify the active compounds. Results Field interviews with 118 healers in 15 of 17 provinces of Lao PDR yielded 753 collections (573 species) with 955 plant samples. Of these 955, 50 extracts demonstrated activity in the anticancer, 10 in the anti-HIV, 30 in the anti-TB, and 52 in the antimalarial assay. Recollection of actives followed by bioassay-guided isolation processes yielded a series of new and known in vitro-active anticancer and antimalarial compounds from 5 species. Discussion Laos has a rich biodiversity, harboring an estimated 8000–11,000 species of plants. In a country highly dependent on traditional medicine for its primary health care, this rich plant diversity serves as a major source of their medication. Conclusions Ethnobotanical survey has demonstrated the richness of plant-based traditional medicine of Lao PDR, taxonomically and therapeutically. Biological assays of extracts of half of the 955 samples followed by in-depth studies of a number of actives have yielded a series of new bioactive compounds against the diseases of cancer and malaria. PMID:22136442

  5. Identification of tagitinin C from Tithonia diversifolia as antitrypanosomal compound using bioactivity-guided fractionation.

    Science.gov (United States)

    Sut, Stefania; Dall'Acqua, Stefano; Baldan, Valeria; Ngahang Kamte, Stephane L; Ranjbarian, Farahnaz; Biapa Nya, Prosper C; Vittori, Sauro; Benelli, Giovanni; Maggi, Filippo; Cappellacci, Loredana; Hofer, Anders; Petrelli, Riccardo

    2018-01-01

    Tithonia diversifolia (Asteraceae), is used as traditional medicine in tropical countries for the treatment of various diseases, including malaria. Although numerous studies have assessed the antimalarial properties, nothing is known about the effect of T. diversifolia extracts on trypanosomiasis. In this study extracts of T. diversifolia aerial parts were evaluated for their bioactivity against Trypanosoma brucei. The activity was studied against bloodstream forms of T. brucei (TC221), as well as against mammalian cells (BALB/3T3 mouse fibroblasts), as a counter-screen for toxicity. Both methanolic and aqueous extracts showed significant effects with IC 50 values of 1.1 and 2.2μg/mL against T. brucei (TC221) and 5.2 and 3.7μg/mL against BALB/3T3 cells, respectively. A bioassay-guided fractionation on the methanolic extract yielded in identification of active fractions (F8 and F9) with IC 50 values of 0.41 and 0.43μg/mL, respectively, against T. brucei (TC221) and 1.4 and 1.5μg/mL, respectively, against BALB/3T3 cells,. The phytochemical composition of the extracts and the purified fractions were investigated using HPLC-ESI-MS/MS and 1D and 2D NMR spectra showing the presence of sesquiterpene lactones that in turn were subjected to the isolation procedure. Tagitinin A and C were rather active but the latter presented a very strong inhibition on T. brucei (TC221) with an IC 50 value of 0.0042μg/mL. This activity was 4.5 times better than that of the reference drug suramin. The results of this study shed light on the antitrypanosomal effects of T. diversifolia extracts and highlighted tagitinin C as one of the possible responsible for this effect. Further structure activity relationships studies on tagitinins are needed to consider this sesquiterpenes as lead compounds for the development of new antitrypanosomal drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evaluation of Bioactive Compounds, Pharmaceutical Quality, and Anticancer Activity of Curry Leaf (Murraya koenigii L.

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2014-01-01

    Full Text Available In this study, we investigated some bioactive compounds and pharmaceutical qualities of curry leaf (Murraya koenigii L. extracts from three different locations in Malaysia. The highest TF and total phenolic (TP contents were observed in the extracts from Kelantan (3.771 and 14.371 mg/g DW, followed by Selangor (3.146 and 12.272 mg/g DW and Johor (2.801 and 12.02 mg/g DW, respectively. High quercetin (0.350 mg/g DW, catechin (0.325 mg/g DW, epicatechin (0.678 mg/g DW, naringin (0.203 mg/g DW, and myricetin (0.703 mg/g DW levels were observed in the extracts from Kelantan, while the highest rutin content (0.082 mg/g DW was detected in the leaves from Selangor. The curry leaf extract from Kelantan exhibited higher concentration of gallic acid (0.933 mg/g DW than that from Selangor (0.904 mg/g DW and Johor (0.813 mg/g DW. Among the studied samples, the ones from Kelantan exhibited the highest radical scavenging activity (DPPH, 66.41% and ferric reduction activity potential (FRAP, 644.25 μm of Fe(II/g followed by those from Selangor (60.237% and 598.37 μm of Fe(II/g and Johor (50.76% and 563.42 μm of Fe(II/g, respectively. A preliminary screening showed that the curry leaf extracts from all the locations exhibited significant anticarcinogenic effects inhibiting the growth of breast cancer cell line (MDA-MB-231 and maximum inhibition of MDA-MB-231 cell was observed with the curry leaf extract from Kelantan. Based on these results, it is concluded that Malaysian curry leaf collected from the North (Kelantan might be potential source of potent natural antioxidant and beneficial chemopreventive agents.

  7. Bioactive Compounds of Cold-pressed Thyme (Thymus vulgaris) Oil with Antioxidant and Antimicrobial Properties.

    Science.gov (United States)

    Assiri, Adel M A; Elbanna, Khaled; Abulreesh, Hussein H; Ramadan, Mohamed Fawzy

    2016-01-01

    Herbs rich in bioactive phytochemicals were recognized to have biological activities and possess many health-promoting effects. In this work, cold-pressed thyme (Thymus vulgaris L.) oil (TO) was studied for its lipid classes, fatty acid profile, tocols and phenolics contents. Antioxidant activity and radical scavenging potential of TO against free radicals (DPPH(・) and galvinoxyl) was determined. Antimicrobial activity (AA) of TO against food borne bacteria, food spoilage fungi and dermatophyte fungi were also evaluated. Neutral lipids accounted for the main lipid fraction in TO, followed by glycolipids and phospholipids. The major fatty acids in TO were linoleic, oleic, stearic, and palmitic. γ-Tocopherol (60.2% of total tocols) followed by α-tocotrienol (26.9%) and α-tocopherol (9.01% of total tocols) were the main tocols. TO contained high amounts of phenolic compounds (7.3 mg/g as GAE). TO had strong antiradical action wherein 65% of DPPH(・) radicals and 55% of galvinoxyl radical were quenched after 60 min of incubation. Rancimat assay showed that induction time (IT) for TO: sunflower oil blend (1:9, w/w) was 6.5 h, while TO: sunflower oil blend (2:8, w/w) recorded higher IT (9 h). TO inhibited the growth of all tested microorganisms. TO exhibited various degrees of AA against different food borne bacteria, food spoilage fungi and dermatophyte fungi, wherein the highest AA was recorded against dermatophyte fungi and yeasts including T. mentagrophytes (62 mm), T. rubrum (40 mm), and C. albicans (20 mm) followed by food spoilage fungi including A. flavus (32 mm) with minimal lethal concentrations (MLC) ranging between 80 to 320 μg/mL. Furthermore, TO exhibited broad-spectra activity against food borne bacteria including S. aureus (30 mm), E. coli (25 mm) and L. Monocytogenes (20 mm) with MLC ranging between 160 to 320 μg/mL. The results suggest that TO could be used economically as a valuable natural product with novel functional properties in food

  8. Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh.

    Science.gov (United States)

    Chowdhury, Mohammed; Kubra, Khadizatul; Ahmed, Sheikh

    2015-02-07

    For a long time mushrooms have been playing an important role in several aspects of the human activity. Recently edible mushrooms are used extensively in cooking and make part of new food in Bangladesh for their beneficial properties. The aim of this study is to screen some values of mushrooms used in Bangladesh. Methanolic extracts of 3 edible mushrooms (Pleurotus ostreatus, Lentinula edodes, Hypsizigus tessulatus) isolated from Chittagong, Bangladesh were used in this study. Phenolic compounds in the mushroom methanolic extracts were estimated by a colorimetric assay. The antioxidant activity was determined by radical 1, 1-diphenyl;-2-picrylhydrazyl (DPPH) radical scavenging assay. Eight microbial isolates were used for antimicrobial activity of methanolic extract of mushrooms by the agar well diffusion method with slight modification. Determination of antimicrobial activity indicated considerable activity against all bacteria and fungi reveling zone of inhibition ranged from 7 ± 0.2 to 20 ± 0.1 mm. Minimum inhibitory concentration values of the extracts showed that they are also active even in least concentrations ranged from 1 mg/ml to 9 mg/ml. Lentinula edodes showed the best antimicrobial activity than others. Pseudomonas aeruginosa was quite resistant and Saccharomyces cerevisiae was more sensitive than others microbial isolates. Antioxidant efficiency by inhibitory concentration on 1,1-Diphenly-2-picrylhydrazyl (DPPH) was found significant when compared to standard antioxidant like ascorbic Acid . The concentration (IC50) ranged from 100 ± 1.20 to 110 ± 1.24 μg/ml. Total phenols are the major bioactive component found in extracts of isolates expressed as mg of GAE per gram of fruit body, which ranged from 3.20 ± 0.05 to 10.66 ± 0.52 mg/ml. Average concentration of flavonoid ranged from 2.50 ± 0.008 mg/ml to 4.76 ± 0.11 mg/ml; followed by very small concentration of ascorbic acid (range, 0.06 ± 0.00 mg/ml to 0

  9. Evaluation of Bioactive Compounds, Pharmaceutical Quality, and Anticancer Activity of Curry Leaf (Murraya koenigii L.).

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah; Devarajan, Thiyagu

    2014-01-01

    In this study, we investigated some bioactive compounds and pharmaceutical qualities of curry leaf (Murraya koenigii L.) extracts from three different locations in Malaysia. The highest TF and total phenolic (TP) contents were observed in the extracts from Kelantan (3.771 and 14.371 mg/g DW), followed by Selangor (3.146 and 12.272 mg/g DW) and Johor (2.801 and 12.02 mg/g DW), respectively. High quercetin (0.350 mg/g DW), catechin (0.325 mg/g DW), epicatechin (0.678 mg/g DW), naringin (0.203 mg/g DW), and myricetin (0.703 mg/g DW) levels were observed in the extracts from Kelantan, while the highest rutin content (0.082 mg/g DW) was detected in the leaves from Selangor. The curry leaf extract from Kelantan exhibited higher concentration of gallic acid (0.933 mg/g DW) than that from Selangor (0.904 mg/g DW) and Johor (0.813 mg/g DW). Among the studied samples, the ones from Kelantan exhibited the highest radical scavenging activity (DPPH, 66.41%) and ferric reduction activity potential (FRAP, 644.25  μ m of Fe(II)/g) followed by those from Selangor (60.237% and 598.37  μ m of Fe(II)/g) and Johor (50.76% and 563.42  μ m of Fe(II)/g), respectively. A preliminary screening showed that the curry leaf extracts from all the locations exhibited significant anticarcinogenic effects inhibiting the growth of breast cancer cell line (MDA-MB-231) and maximum inhibition of MDA-MB-231 cell was observed with the curry leaf extract from Kelantan. Based on these results, it is concluded that Malaysian curry leaf collected from the North (Kelantan) might be potential source of potent natural antioxidant and beneficial chemopreventive agents.

  10. Drought stress affects bioactive compounds in potatoes (Solanum tuberosum L. relevant to non-communicable diseases

    Directory of Open Access Journals (Sweden)

    Christina B. Wegener

    2017-01-01

    Full Text Available Background:Potatoes react very sensitively to drought during growth. Thus, appropriate plant stress responses may affect metabolites associated with the health quality of tubers.Objective:The aim of this study was to determine the effects of drought stress (DS on soluble sugars, starch, crude protein, minerals, free amino acids (AAs, and fatty acids (FAs.Design:The experiment was carried out on three potato genotypes during two years with four replications. The plants were grown in pots in a glasshouse with optimal water supply and under drought stress conditions. After harvest, the tubers of these two variants were analyzed for nutritional and bioactive compounds relevant to human health. Results:Apart from genotypic differences in most parameters, the results revealed that the DS caused a decline in glucose and fructose (P <0.05, all in both years, while sucrose was increased, especially in the second year with severe stress (P < 0.01. Starch was significantly reduced by moderate stress in the first year (P < 0.01, but less affected in the second year. Crude proteins and total amounts of free amino acids (AAs were clearly enhanced by the stress in both years (P < 0.05, all. The minerals magnesium (Mg, potassium (K and phosphorus (P (P < 0.05, all were similarly enhanced, while calcium (Ca actually declined (P < 0.05. The portion of α-linolenic acid (ALA on total lipids was elevated in the stress variants (P < 0.01, while oleic acid (OLA, its precursor, decreased significantly (P < 0.05, but only in the first year. In the second year, ALA was generally higher andnot further induced by the stress. Additionally, OLA was less affected in that year, which was similar to all the other FAs in both years. Interestingly, Myo-inositol (MI and lipid acyl hydrolases (LAH associated with modulation in cell membrane lipids were raised by the drought stress in each year (P < 0.01, all. In the second year, MI and LAH data of the drought stressed tubers

  11. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness.

    Science.gov (United States)

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Pepper (Capsicum annuum L.) is an economically important agricultural crop and an excellent dietary source of natural colors and antioxidant compounds. The levels of these compounds can vary according to agricultural practices, like inoculation with plant growth-promoting rhizobacteria. In this work we evaluated for the first time the effect of the inoculation of two Rhizobium strains on C. annuum metabolites and bioactivity. The results revealed a decrease of organic acids and no effect on phenolics and capsaicinoids of leaves from inoculated plants. In the fruits from inoculated plants organic acids and phenolic compounds decreased, showing that fruits from inoculated plants present a higher ripeness stage than those from uninoculated ones. In general, the inoculation with Rhizobium did not improve the antioxidant activity of pepper fruits and leaves. Considering the positive effect on fruit ripening, the inoculation of C. annuum with Rhizobium is a beneficious agricultural practice for this nonlegume.

  12. Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds.

    Science.gov (United States)

    Yahia, Elhadi M; Gutiérrez-Orozco, Fabiola; Moreno-Pérez, Marco A

    2017-07-01

    Wild mushrooms are important for the diet of some communities in Mexico. However, limited information exists on their chemical composition, contribution to the diet, and health effects. We characterized seventeen wild mushroom species growing in the state of Queretaro in Central Mexico. Most species analyzed were edible, but also included nonedible, medicinal, poisonous and toxic specimens. Whole mushrooms (caps and stipes) were characterized for water content, color, and total content of phenolic compounds, flavonoids and anthocyanins. In vitro antioxidant capacity was measured by FRAP and DPPH assays. Phenolic compounds were identified and quantified by HPLC-mass spectrometry. All species analyzed were found to possess antioxidant activity in vitro and a wide range of phenolic and organic compounds were identified. Our results add to the limited information available on the composition and potential nutritional and health value of wild mushrooms. Further analyses of their bioactivities are warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cooking processes increase bioactive compounds in organic and conventional green beans.

    Science.gov (United States)

    Lima, Giuseppina Pace Pereira; Costa, Sergio Marques; Monaco, Kamila de Almeida; Uliana, Maira Rodrigues; Fernandez, Roberto Morato; Correa, Camila Renata; Vianello, Fabio; Cisneros-Zevallos, Luis; Minatel, Igor Otavio

    2017-12-01

    The influence of cooking methods on chlorophyl, carotenoids, polyamines, polyphenols contents and antioxidant capacity were analyzed in organic and conventional green beans. The initial raw material had a higher content of chlorophyl and total phenolics in conventional green beans, whereas organic cultive favored flavonoid content and antioxidant capacity. Polyamines and carotenoids were similar for the two crop systems. After the cooking process, carotenoids (β-carotene, lutein and zeaxanthin) increased. Microwave heating favored the enhancement of some polar compounds, whereas pressure cooking favored carotenoids. When we used the estimation of the radical scavenging activity by electron spin resonance (ESR) spectroscopy, a reduction of the DPPH radical signal in the presence of green bean extracts was observed, regardless of the mode of cultivation. The highest reduction of the ESR signal ocurred for microwave cooking in organic and conventional green beans, indicating a higher availability of antioxidants with this type of heat treatment.

  14. Rescuing compound bioactivity in a secondary cell-based screening by using γ-cyclodextrin as a molecular carrier

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Vega, Sonia; Grazu, Valeria; de la Fuente, Jesús M; Lanas, Angel; Velazquez-Campoy, Adrian; Abian, Olga

    2015-01-01

    In vitro primary screening for identifying bioactive compounds (inhibitors, activators or pharmacological chaperones) against a protein target results in the discovery of lead compounds that must be tested in cell-based efficacy secondary screenings. Very often lead compounds do not succeed because of an apparent low potency in cell assays, despite an excellent performance in primary screening. Primary and secondary screenings differ significantly according to the conditions and challenges the compounds must overcome in order to interact with their intended target. Cellular internalization and intracellular metabolism are some of the difficulties the compounds must confront and different strategies can be envisaged for minimizing that problem. Using a novel screening procedure we have identified 15 compounds inhibiting the hepatitis C NS3 protease in an allosteric fashion. After characterizing biophysically the interaction with the target, some of the compounds were not able to inhibit viral replication in cell assays. In order to overcome this obstacle and potentially improve cellular internalization three of these compounds were complexed with γ-cyclodextrin. Two of them showed a five- and 16-fold activity increase, compared to their activity when delivered as free compounds in solution (while γ-cyclodextrin did not show antiviral activity by itself). The most remarkable result came from a third compound that showed no antiviral activity in cell assays when delivered free in solution, but its γ-cyclodextrin complex exhibited a 50% effective concentration of 5 μM. Thus, the antiviral activity of these compounds can be significantly improved, even completely rescued, using γ-cyclodextrin as carrier molecule. PMID:25834436

  15. Characterization of Grape and Apple Peel Wastes’ Bioactive Compounds and Their Increased Bioavailability After Exposure to Thermal Process

    Directory of Open Access Journals (Sweden)

    Lavinia Florina CĂLINOIU

    2017-11-01

    Full Text Available 80% of the grape harvest is used in the winemaking industry, resulting in huge amounts of waste which are still rich in phenolic compounds, while the same percentage of polyphenols are found in apple peel, whose total antioxidant capacity is five-to-six-fold higher than that of apple flesh. The aim of this research is the characterization of grape and apple peels waste, before and after the thermal treatment (10 minutes, 80°C, with respect to its bioactive compounds to evaluate their potential enhancement with respect to bioavailability. Based on the obtained results, the highest antioxidant activity and phenolic content was exhibited by thermally processed red-grape waste. After the thermal treatment, the caffeic acid 4-O-glucoside increased with a 27% in apple waste. As a conclusion, the grape and apple peels waste can be exploited for their bioactive compounds after the thermal process, whose bioavailability increased and can be added in food formulations as health promoting products.

  16. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage.

    Science.gov (United States)

    Martínez-Flores, Héctor E; Garnica-Romo, Ma Guadalupe; Bermúdez-Aguirre, Daniela; Pokhrel, Prashant Raj; Barbosa-Cánovas, Gustavo V

    2015-04-01

    Thermosonication has been successfully tested in food for microbial inactivation; however, changes in bioactive compounds and shelf-life of treated products have not been thoroughly investigated. Carrot juice was thermo-sonicated (24 kHz, 120 μm amplitude) at 50 °C, 54 °C and 58 °C for 10 min (acoustic power 2204.40, 2155.72, 2181.68 mW/mL, respectively). Quality parameters and microbial growth were evaluated after processing and during storage at 4 °C. Control and sonicated treatments at 50 °C and 54 °C had 10, 12 and 14 d of shelf-life, respectively. Samples sonicated at 58 °C had the best quality; microbial growth remained low at around 3-log for mesophiles, 4.5-log for yeasts and molds and 2-log for enterobacteria after 20 d of storage. Furthermore, thermo-sonicated juice at 58 °C retained >98% of carotenoids and 100% of ascorbic acid. Phenolic compounds increased in all stored, treated juices. Thermo-sonication is therefore a promising technology for preserving the quality of carrot juice by minimising the physicochemical changes during storage, retarding microbial growth and retaining the bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice.

    Science.gov (United States)

    Escudero-López, Blanca; Cerrillo, Isabel; Gil-Izquierdo, Ángel; Hornero-Méndez, Dámaso; Herrero-Martín, Griselda; Berná, Genoveva; Medina, Sonia; Ferreres, Federico; Martín, Franz; Fernández-Pachón, María-Soledad

    2016-11-01

    Previously, we reported that alcoholic fermentation enhanced flavanones and carotenoids content of orange juice. The aim of this work was to evaluate the influence of pasteurization on the qualitative and quantitative profile of bioactive compounds and the antioxidant capacity of fermented orange juice. Ascorbic acid (203 mg/L), total flavanones (647 mg/L), total carotenoids (7.07 mg/L) and provitamin A (90.06 RAEs/L) values of pasteurized orange beverage were lower than those of fermented juice. Total phenolic remained unchanged (585 mg/L) and was similar to that of original juice. The flavanones naringenin-7-O-glucoside, naringenin-7-O-rutinoside, hesperetin-7-O-rutinoside, hesperetin-7-O-glucoside and isosakuranetin-7-O-rutinoside, and the carotenoids karpoxanthin and isomer, neochrome, lutein, ζ-carotene, zeaxanthin, mutatoxanthin epimers, β-cryptoxanthin and auroxanthin epimers were the major compounds. Pasteurization produced a decrease in antioxidant capacity of fermented juice. However, TEAC (5.45 mM) and ORAC (6353 μM) values of orange beverage were similar to those of original orange juice. The novel orange beverage could be a valuable source of bioactive compounds with antioxidant capacity and exert potential beneficial effects.

  18. Antioxidant, antimicrobial activity and bioactive compounds of Bergenia ciliata Sternb.: A valuable medicinal herb of Sikkim Himalaya.

    Science.gov (United States)

    Singh, Mithilesh; Pandey, Neha; Agnihotri, Vasudha; Singh, K K; Pandey, Anita

    2017-04-01

    Bergenia ciliata Sternb., commonly known as Paashaanbhed, is a well known herb of Sikkim Himalaya with various pharmaceutical properties. However, scientific exploration of B. ciliata , growing in the Sikkim Himalaya, for phytochemicals and pharmacological properties is in infancy. With this view, the present study was undertaken to investigate B. ciliata leaf extracts for antioxidant, antimicrobial activity and bioactive compounds. Three solvents viz., methanol, ethyl acetate and hexane were used for extraction and the respective leaf extracts were analyzed for total phenolic and flavonoid contents along with the antioxidant and antimicrobial activities. Amongst the tested solvents, methanol was found to be the best solvent for extraction with highest total phenolic contents and the lowest IC 50 values for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Methanol extract also exhibited effective antimicrobial activity, particularly against bacteria and actinomycetes. Further, high performance liquid chromatography (HPLC) analysis revealed that methanolic extract contains the highest amount of all the three analyzed bioactive compounds viz. bergenin, catechin and gallic acid. The current study suggests that the methanol extract of B. ciliata is a potential source of natural antioxidant and antimicrobial compounds that can be used in food and drug industries.

  19. Inhibitory Effect of Chemical Constituents Isolated from Artemisia iwayomogi on Polyol Pathway and Simultaneous Quantification of Major Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Yoon Kyoung Lee

    2017-01-01

    Full Text Available Blocking the polyol pathway plays an important role preventing diabetic complications. Therefore, aldose reductase (AR and advanced glycation endproducts (AGEs formation has significant effect on diabetic complications. Artemisia iwayomogi has long been used as treatment of various diseases in Korea. However, no literatures have reported on AR and AGEs formation inhibitory activities of A. iwayomogi. For these reasons, we aimed to assess that A. iwayomogi had potential as anti-diabetic complications agents. We led to isolation of two coumarins (1 and 2, nine flavonoids (3–11, five caffeoylquinic acids (12–16, three diterpene glycosides (17–19, and one phenolic compound (20 from A. iwayomogi. Among them, hispidulin (4, 6-methoxytricin (6, arteanoflavone (7, quercetin-3-gentiobioside (10, 1,3-di-O-caffeoylquinic acid (13, and suavioside A (18 were first reported on the isolation from A. iwayomogi. Not only two coumarins (1 and 2, nine flavonoids (3–11, and five caffeoylquinic acids (12–16 but also extracts showed significant inhibitor on AR and AGEs formation activities. We analyzed contents of major bioactive compounds in Korea’s various regions of A. iwayomogi. Overall, we selected Yangyang, Gangwon-do, from June, which contained the highest amounts of bioactive compounds, as suitable areas for cultivating A. iwayomogi as preventive or therapeutic agent in the treatment of diabetic complications.

  20. Effect of harvest time on physico-chemical properties and bioactive compounds of pulp and seeds of grape varieties.

    Science.gov (United States)

    Özcan, Mehmet Musa; Juhaimi, Fahad Al; Gülcü, Mehmet; Uslu, Nurhan; Geçgel, Ümit; Ghafoor, Kashif; Dursun, Nesim

    2017-07-01

    In this study, physicochemical properties and bioactive compounds of three grape varieties (Cardinal, Müşküle and Razaki) harvested at the three different harvest times (on time, one and two weeks earlier) were investigated. The highest antioxidant activity, total phenolic and flavonoid contents were observed in Razaki pulp and these were 82.854%, 127.422 mg/100 g, 3.873 mg/g, respectively. The contents of bioactive compounds in grape seeds were found higher than those in pulps. Similarly, seed of Razaki had higher antioxidant activity (91.267%) and total phenolic content (477.500 mg/100 g) when compared to results of other varieties. The key phenolic compounds of all grape variety and seeds were gallic acid, 3,4-dihydroxybenzoic acid, (+)-catechin ve 1,2-dihydroxybenzene. The oil content of grape seeds ranged from 8.50% (Razaki harvested one week ago) to 19.024% (Müşküle harvested one week ago). The main fatty acids of grapeseed oils were linoleic, oleic and palmitic acids. In addition, the oil of Razaki seeds was rich in tocopherols when compared to the other varieties.

  1. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes.

    Science.gov (United States)

    Amoutzias, Grigoris D; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-04-16

    Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  2. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Directory of Open Access Journals (Sweden)

    Grigoris D. Amoutzias

    2016-04-01

    Full Text Available Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs and polyketides (PKs are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes and type-I polyketide synthases (PKSes-I, respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  3. The bioactive compounds and antioxidant activity of ethanol and ethyl ecetate extracts of Candi Banana (Musa paradisiaca)

    Science.gov (United States)

    Laeliocattleya, R. A.; Estiasih, T.; Griselda, G.; Muchlisyiyah, J.

    2018-03-01

    Banana has various benefits for health. One local variety of banana is candi banana (Musa paradisiaca). The aim of this research was to study the content of the bioactive compounds of phenolics, flavonoids, tannin, carotenoids and the antioxidant activity of extract ethanol and ethyl acetate of candi banana. Powdered candi banana was extracted using ethanol and ethyl acetate in an ultrasonic bath. The results showed that the content of phenolics, flavonoids, tannin and carotenoids in ethanol extract were 58.76 ± 3.19 mg/kg, 416.08 ± 18.79 mg/kg, 209.83 ± 15.87 mg/kg and 74.55 ± 4.31 mg/kg, respectively. The content of phenolics, flavonoids, tannin and carotenoids in ethyl acetate extract were 0.83 ± 0.12 mg/kg, 4.31 ± 0.66 mg/kg, 49.97 ± 2.43 mg/kg and 304.40 ± 16.62 mg/kg. While the antioxidant activity (IC50) of ethanol extract and ethyl acetate were 3374.13 ± 123.46 ppm and 40318.19 ± 1014.90 ppm. This research showed that type of solvents of ethanol and ethyl acetate affected the content of bioactive compounds and antioxidant activity of candi banana. The antioxidant activity of ethanol extract was higher than that of ethyl acetate extract. It showed that ethanol was a better solvent than ethyl acetate to extract bioactive compounds in candi banana.

  4. Kinetics of a bioactive compound (caffeine) mobility at the vicinity of the mechanical glass transition temperature induced by gelling polysaccharide.

    Science.gov (United States)

    Jiang, Bin; Kasapis, Stefan

    2011-11-09

    An investigation of the diffusional mobility of a bioactive compound (caffeine) within the high-solid (80.0% w/w) matrices of glucose syrup and κ-carrageenan plus glucose syrup exhibiting distinct mechanical glass transition properties is reported. The experimental temperature range was from 20 to -60 °C, and the techniques of modulated differential scanning calorimetry, small deformation dynamic oscillation in shear, and UV spectrometry were employed. Calorimetric and mechanical measurements were complementary in recording the relaxation dynamics of high-solid matrices upon controlled heating. Predictions of the reaction rate theory and the combined WLF/free volume framework were further utilized to pinpoint the glass transition temperature (T(g)) of the two matrices in the softening dispersion. Independent of composition, calorimetry yielded similar T(g) predictions for both matrices at this level of solids. Mechanical experimentation, however, was able to detect the effect of adding gelling polysaccharide to glucose syrup as an accelerated pattern of vitrification leading to a higher value of T(g). Kinetic rates of caffeine diffusion within the experimental temperature range were taken with UV spectroscopy. These demonstrated the pronounced effect of the gelling κ-carrageenan/glucose syrup mixture to retard diffusion of the bioactive compound near the mechanical T(g). Modeling of the diffusional mobility of caffeine produced activation energy and fractional free-volume estimates, which were distinct from those of the carbohydrate matrix within the glass transition region. This result emphasizes the importance of molecular interactions between macromolecular matrix and small bioactive compound in glass-related relaxation phenomena.

  5. Agrobacterium rhizogenes mediated transformation of Rhodiola sp. – an approach to enhance the level of bioactive compounds

    DEFF Research Database (Denmark)

    Møller Hansen, Martin; Lauridsen, Uffe Bjerre; Hegelund, Josefine Nymark

    Agrobacterium rhizogenes mediated transformation of Rhodiola sp. – an approach to enhance the level of bioactive compounds. Martin Møller Hansen1, Uffe Bjerre Lauridsen2, Josefine Nymark Hegelund3, Renate Müller4, Jihong Liu Clarke5, Henrik Lütken6 University of Copenhagen, Faculty of Science...... to excessive gathering the natural populations have been declining. Natural transformation with root-loci (rol)-genes from a wildtype Agrobacterium rhizogenes causes hairy roots (HRs) to develop from the site of infection. These HRs often exhibit a higher rate of synthesis of secondary metabolites compared...

  6. ePlantLIBRA: A composition and biological activity database for bioactive compounds in plant food supplements.

    Science.gov (United States)

    Plumb, J; Lyons, J; Nørby, K; Thomas, M; Nørby, E; Poms, R; Bucchini, L; Restani, P; Kiely, M; Finglas, P

    2016-02-15

    The newly developed ePlantLIBRA database is a comprehensive and searchable database, with up-to-date coherent and validated scientific information on plant food supplement (PFS) bioactive compounds, with putative health benefits as well as adverse effects, and contaminants and residues. It is the only web-based database available compiling peer reviewed publications and case studies on PFS. A user-friendly, efficient and flexible interface has been developed for searching, extracting, and exporting the data, including links to the original references. Data from over 570 publications have been quality evaluated and entered covering 70 PFS or their botanical ingredients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Detection of Bioactive Compounds in the Mucus Nets of Dendropoma maxima, Sowerby 1825 (Prosobranch Gastropod Vermetidae, Mollusca

    Directory of Open Access Journals (Sweden)

    Anne Klöppel

    2013-01-01

    Full Text Available The sessile suspension-feeding wormsnail Dendropoma maxima, Sowerby 1825 (Vermetidae secretes a mucus net to capture planktonic prey. The nets are spread out over the corals and often have remarkable deleterious effects on them like changes in growth form and pigmentation shifts not uncommonly resulting in tissue necrosis. Until now, there is no explanation for this phenomenon although the indication as well as theories about its genesis is mentioned in several publications. Vermetids are well studied concerning the intraspecific competition with neighboring individuals but not in their interaction with other taxa like corals or fish. We did extensive in situ video recording and observed that fish avoided the plankton-load nets although several specialized taxa are known to be molluscivores, mucivores, and/or feed on plankton. As many molluscs use chemical weapons to combat feeding pressure and to defend themselves against predators, we screened empty and plankton-load mucus nets for potential bioactive metabolites. Bioactivity testing was performed with a recently developed system based on a chromatographic separation (high-performance thin-layer chromatography (HPTLC and a bioassay with luminescent bacteria Vibrio fischeri. Thus, we found at least two active compounds exclusively accumulated by the wormsnails themselves. This is the first record of bioactive properties in the whole family of Vermetidae.

  8. Optimized Solid Phase-Assisted Synthesis of Dendrons Applicable as Scaffolds for Radiolabeled Bioactive Multivalent Compounds Intended for Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Gabriel Fischer

    2014-05-01

    Full Text Available Dendritic structures, being highly homogeneous and symmetric, represent ideal scaffolds for the multimerization of bioactive molecules and thus enable the synthesis of compounds of high valency which are e.g., applicable in radiolabeled form as multivalent radiotracers for in vivo imaging. As the commonly applied solution phase synthesis of dendritic scaffolds is cumbersome and time-consuming, a synthesis strategy was developed that allows for the efficient assembly of acid amide bond-based highly modular dendrons on solid support via standard Fmoc solid phase peptide synthesis protocols. The obtained dendritic structures comprised up to 16 maleimide functionalities and were derivatized on solid support with the chelating agent DOTA. The functionalized dendrons furthermore could be efficiently reacted with structurally variable model thiol-bearing bioactive molecules via click chemistry and finally radiolabeled with 68Ga. Thus, this solid phase-assisted dendron synthesis approach enables the fast and straightforward assembly of bioactive multivalent constructs for example applicable as radiotracers for in vivo imaging with Positron Emission Tomography (PET.

  9. Study of bioactive compounds in spices (Syzygium aromaticum L, Cinnamomum zeylanicum Blume and Myristica fragrans Houtt) processed by ionizing radiation

    International Nuclear Information System (INIS)

    Duarte, Renato Cesar

    2014-01-01

    Spices and aromatic herbs are divided into leaves, flowers, bud, seeds bark or dry roots from different plants and it is possible to define them as products of highly flavored vegetal origin that volatize easily when incorporated in small quantities to food products and contribute to its aroma, flavor, color or even to its preservation. Nowadays, people look for its functional properties, bioactive compounds and sensory qualities. A big problem is the reduction of the quantity of these compounds throughout the production chain from the harvest process, storage and distribution. For a long time researchers and industries have concentrated on perfecting the processes of the production chain seeking to guarantee the sanitary and food safety, preserving foodstuffs for a long period and an increase in its lifespan without drastically altering its properties. Due to homemade products and the lack of compliance with good practices in its production chain, the spices can contain a high amount of microbiology causing serious complications to the health of the consumer and the radiation processing is often used for reduce these problems. With this finding, the objectives of this work were: Analyze the oil antifungal properties of spices irradiated with average doses (2.5; 5; 7.5 and 10 kGy); Study the average doses (5 and 10 kGy) and high dose (20 and 30 kGy) effects of gamma radiation 60 Co in the bioactive compounds of the spices - cloves, cinnamon and nutmeg; Identify the oils compounds; Identify the volatile compounds in the headspace of the oils and the in natura spices. Identify the compounds of the nonvolatile part of the nutmeg; Identify the chiral compounds of the cinnamon. Comparing the control samples (not irradiated) with the processed at the described doses, regarding the oil antifungal properties it was possible to verify the efficiency and later that the irradiation did not interfered in its efficiency; Regarding to the others tests in this work, the compounds

  10. Effects of bioactive compounds from carrots (Daucus carota L.), polyacetylenes, beta-carotene and lutein on human lymphoid leukaemia cells.

    Science.gov (United States)

    Zaini, Rana G; Brandt, Kirsten; Clench, Malcolm R; Le Maitre, Christine L

    2012-07-01

    New therapies for leukaemia are urgently needed. Carrots have been suggested as a potential treatment for leukaemia in traditional medicine and have previously been studied in other contexts as potential sources of anticancer agents. Indicating that carrots may contain bioactive compounds, which may show potential in leukaemia therapies. This study investigated the effects of five fractions from carrot juice extract (CJE) on human lymphoid leukaemia cell lines, together with five purified bioactive compounds found in Daucus carota L, including: three polyacetylenes (falcarinol, falcarindiol and falcarindiol-3-acetate) and two carotenoids (beta-carotene and lutein). Their effects on induction of apoptosis using Annexin V/PI and Caspase 3 activity assays analysed via flow cytometry and inhibition of cellular proliferation using Cell Titer Glo assay and cell cycle analysis were investigated. Treatment of all three lymphoid leukaemia cell lines with the fraction from carrot extracts which contained polyacetylenes and carotenoids was significantly more cytotoxic than the 4 other fractions. Treatments with purified polyacetylenes also induced apoptosis in a dose and time responsive manner. Moreover, falcarinol and falcarindiol-3-acetate isolated from Daucus carota L were more cytotoxic than falcarindiol. In contrast, the carotenoids showed no significant effect on either apoptosis or cell proliferation in any of the cells investigated. This suggests that polyacetylenes rather than beta-carotene or lutein are the bioactive components found in Daucus carota L and could be useful in the development of new leukemic therapies. Here, for the first time, the cytotoxic effects of polyacetylenes have been shown to be exerted via induction of apoptosis and arrest of cell cycle.

  11. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple.

    Science.gov (United States)

    Siqueira, Egle Machado de Almeida; Rosa, Fernanda Ribeiro; Fustinoni, Adriana Medeiros; de Sant'Ana, Lívia Pimentel; Arruda, Sandra Fernandes

    2013-01-01

    The bioactive compounds content and the antioxidant activity (AA) of twelve fruits native to the Cerrado were compared with the Red Delicious apple by means of the antiradical efficiency (using the 2,2-diphenyl-1-picrylhydrazil assay/DPPH), ferric reducing antioxidant power (FRAP) and the β-carotene/linoleic system. The antiradical efficiency (AE) and the kinetic parameters (Efficient concentration/EC50 and time needed to reach the steady state to EC50 concentration/TEC50) of the DPPH curve were also evaluated for comparison with the Trolox equivalent (TE) values. A strong, significant and positive correlation was observed between the TE and AE values, whereas a weak and negative correlation was observed between TE and EC50, suggesting that the values of AE and TE are more useful for the determination of antiradical activity in fruits than the widely used EC50. The total phenolic content found in the fruits corresponded positively to their antioxidant activity. The high content of bioactive compounds (flavanols, anthocyanins or vitamin C) relative to the apple values found in araticum, cagaita, cajuzinho, jurubeba, lobeira, magaba and tucum corresponded to the high antioxidant activity of these fruits. Flavanols and anthocyanins may be the main bioactive components in these Cerrado fruits. The daily consumption of at least seven of the twelve Cerrado fruits studied, particularly, araticum, cagaita, lobeira and tucum, may confer protection against oxidative stress, and thus, they may prevent chronic diseases and premature aging. The findings of this study should stimulate demand, consumption and cultivation of Cerrado fruits and result in sustainable development of the region where this biome dominates.

  12. Anti-inflammatory activity of aqueous extract and bioactive compounds identified from the fruits of Hancornia speciosa Gomes (Apocynaceae).

    Science.gov (United States)

    Torres-Rêgo, Manoela; Furtado, Allanny Alves; Bitencourt, Mariana Angélica Oliveira; Lima, Maira Conceição Jerônimo de Souza; Andrade, Rafael Caetano Lisbôa Castro de; Azevedo, Eduardo Pereira de; Soares, Thaciane da Cunha; Tomaz, José Carlos; Lopes, Norberto Peporine; da Silva-Júnior, Arnóbio Antônio; Zucolotto, Silvana Maria; Fernandes-Pedrosa, Matheus de Freitas

    2016-08-05

    Hancornia speciosa Gomes (Apocynaceae), popularly known as "mangabeira," has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and gastric disorders. Although the ethnobotany indicates that its fruits can be used for the treatment of ulcers and inflammatory disorders, only few studies have been conducted to prove such biological activities. This study investigated the anti-inflammatory properties of the aqueous extract of the fruits of H. speciosa Gomes as well as its bioactive compounds using in vivo experimental models. The bioactive compounds were identified by High Performance Liquid Chromatography coupled with diode array detector (HPLC-DAD) and Liquid Chromatography coupled with Mass Spectrometry (LC-MS). The anti-inflammatory properties were investigated through in vivo tests, which comprised xylene-induced ear edema, carrageenan-induced peritonitis and zymosan-induced air pouch. The levels of IL-1β, IL-6, IL-12 and TNF-α were determined using ELISA. Rutin and chlorogenic acid were identified in the extract as the main secondary metabolites. In addition, the extract as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and also reduced the cell migration in both carrageenan-induced peritonitis and zymosan-induced air pouch models. Reduced levels of cytokines were also observed. This is the first study that demonstrated the anti-inflammatory activity of the extract of H. speciosa fruits against different inflammatory agents in animal models, suggesting that its bioactive molecules, especially rutin and chlorogenic acid are, at least in part, responsible for such activity. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that its aqueous extract has therapeutical potential for the development of herbal drugs with anti-inflammatory properties.

  13. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple.

    Directory of Open Access Journals (Sweden)

    Egle Machado de Almeida Siqueira

    Full Text Available The bioactive compounds content and the antioxidant activity (AA of twelve fruits native to the Cerrado were compared with the Red Delicious apple by means of the antiradical efficiency (using the 2,2-diphenyl-1-picrylhydrazil assay/DPPH, ferric reducing antioxidant power (FRAP and the β-carotene/linoleic system. The antiradical efficiency (AE and the kinetic parameters (Efficient concentration/EC50 and time needed to reach the steady state to EC50 concentration/TEC50 of the DPPH curve were also evaluated for comparison with the Trolox equivalent (TE values. A strong, significant and positive correlation was observed between the TE and AE values, whereas a weak and negative correlation was observed between TE and EC50, suggesting that the values of AE and TE are more useful for the determination of antiradical activity in fruits than the widely used EC50. The total phenolic content found in the fruits corresponded positively to their antioxidant activity. The high content of bioactive compounds (flavanols, anthocyanins or vitamin C relative to the apple values found in araticum, cagaita, cajuzinho, jurubeba, lobeira, magaba and tucum corresponded to the high antioxidant activity of these fruits. Flavanols and anthocyanins may be the main bioactive components in these Cerrado fruits. The daily consumption of at least seven of the twelve Cerrado fruits studied, particularly, araticum, cagaita, lobeira and tucum, may confer protection against oxidative stress, and thus, they may prevent chronic diseases and premature aging. The findings of this study should stimulate demand, consumption and cultivation of Cerrado fruits and result in sustainable development of the region where this biome dominates.

  14. Bioactive Compounds in Some Culinary Aromatic Herbs and Their Effects on Human Health.

    Science.gov (United States)

    Guiné, Raquel P F; Gonçalves, Fernando J

    2016-01-01

    Culinary herbs are herbaceous (leafy) plants that add flavour and colour to all types of meals. There is a wide variety of herbs that are used for culinary purposes worldwide, which are also recognized for their beneficial health effects, and thus have also been used in folk medicine. Besides their nutritional value herbs are rich in many phytochemical components with bioactive effects, thus improving human health. The aim of the present work was to make a general overview of some of these herbs, including their gastronomic usage, their chemical composition in bioactive components and their reported health effects. This work showed that the health effects are very diverse and differ according to the herb in question. However, some of the most frequently citted biological activities include antioxidant, antimicrobial, and antiviral effects.

  15. Increase of content and bioactivity of total phenolic compounds from spent coffee grounds through solid state fermentation by Bacillus clausii.

    Science.gov (United States)

    Rochín-Medina, Jesús J; Ramírez, Karina; Rangel-Peraza, Jesús G; Bustos-Terrones, Yaneth A

    2018-03-01

    Spent coffee grounds are waste material generated during coffee beverage preparation. This by-product disposal causes a negative environmental impact, in addition to the loss of a rich source of nutrients and bioactive compounds. A rotating central composition design was used to determine the optimal conditions for the bioactivity of phenolic compounds obtained after the solid state fermentation of spent coffee grounds by Bacillus clausii . To achieve this, temperature and fermentation time were varied according to the experimental design and the total phenolic and flavonoid content, antioxidant activity and antimicrobial activity were determined. Surface response methodology showed that optimum bioprocessing conditions were a temperature of 37 °C and a fermentation time of 39 h. Under these conditions, total phenolic and flavonoid contents increased by 36 and 13%, respectively, in fermented extracts as compared to non-fermented. In addition, the antioxidant activity was increased by 15% and higher antimicrobial activity was observed against Gram positive and negative bacteria. These data demonstrated that bioprocessing optimization of spent coffee grounds using the surface response methodology was an important tool to improve phenolic extraction, which could be used as an antioxidant and antimicrobial agents incorporated into different types of food products.

  16. Evaluation of Agro-Industrial Co-Products as Source of Bioactive Compounds: Fiber, Antioxidants and Prebiotic

    Directory of Open Access Journals (Sweden)

    Hernández-Alcántara Annel M

    2016-12-01

    Full Text Available Agro-industrial co-products derived of fruit processing represents an important source of bioactive compounds as fiber, antioxidants and prebiotics. The objective of this work was to determine the content of fiber, antioxidant capacity and prebiotic activity of three flours obtained from commonly co-products (banana peel, apple peel, and carrot bagasse. The results showed a higher total fiber content in carrot bagasse, and lower in apple peel. Significantly differences were found in antioxidant activity. Fruit co-products flours were a suitable carbon source increasing specific growth rate with a reduction in duplication time as compared to glucose. The prebiotic activity was positive in the three co-products, all flours survived at pH 1.0 and showed resistance to simulated gastric acid for about 60 min. Banana peel, apple peel and carrot bagasse showed to be a good source of bioactive compounds as fiber and antioxidants and can be used as prebiotics for lactic acid bacteria.

  17. Multifunctions of Pleurotus sajor-caju (Fr.) Singer: A highly nutritious food and a source for bioactive compounds.

    Science.gov (United States)

    Finimundy, Tiane C; Barros, Lillian; Calhelha, Ricardo C; Alves, Maria José; Prieto, Miguel A; Abreu, Rui M V; Dillon, Aldo J P; Henriques, João A P; Roesch-Ely, Mariana; Ferreira, Isabel C F R

    2018-04-15

    A study with Pleurotus sajor-caju was conducted to: evaluate the nutritional and chemical composition of the fruiting bodies; optimize the preparation of bioactive phenolic extracts; and characterize the optimized extract in terms of bioactive compounds and properties. P. sajor-caju revealed an equilibrated nutritional composition with the presence of hydrophilic (sugars and organic acids) and lipophilic (tocopherols and PUFA) compounds. p-Hydroxybenzoic, p-coumaric and cinnamic acids were identified in the extract obtained with ethanol (30g/l ratio) at 55°C for 85min. This extract showed antioxidant properties (mainly reducing power and lipid peroxidation inhibition), antibacterial activity against MRSA and MSSA and cytotoxicity against NCI-H460, MCF-7 and HeLa. Furthermore, as the extract showed capacity to inhibit NO production in Raw 264.7 macrophages, molecular docking studies were performed to provide insights into the anti-inflammatory mechanism of action, through COX-2 inhibition by the phenolic acids identified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves.

    Science.gov (United States)

    Bursać Kovačević, Danijela; Barba, Francisco J; Granato, Daniel; Galanakis, Charis M; Herceg, Zoran; Dragović-Uzelac, Verica; Putnik, Predrag

    2018-07-15

    Stevia rebaudiana Bertoni leaves are a natural source of diterpenic glycosides, and various bioactive compounds. The objectives were to characterize antioxidants and steviol glycosides in the extracts obtained from Stevia after "green" pressurized hot water extraction (PHWE). PHWE extracts were obtained at different temperatures (100, 130, 160 °C); static extraction times (5 and 10 min), and cycle numbers (1, 2, 3) using a constant pressure of 10.34 MPa. Temperature was the most important parameter for extraction, where the highest recoveries of all bioactive compounds (except for carotenoids) were at 160 °C. Extracts obtained at longer static times had more steviol glycosides, condensed tannins, and chlorophyll A. Higher amounts of total phenols, condensed tannins, and steviol glycosides were obtained under higher cycle numbers. This study indicated that PHWE is useful for recovering polar and nonpolar antioxidants and steviol glycosides. PHWE may be a suitable technique for scale-up to industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. ALTERNATIVES FOR PRESERVATION OF BIOACTIVE COMPOUNDS IN BLUEBERRY PULP: HEAT TREATMENT ASSOCIATED WITH THE ADDITION OF XANTHAN PRUNI

    Directory of Open Access Journals (Sweden)

    JÚLIA BORIN FIORAVANTE

    Full Text Available ABSTRACT In this study, to increase the preservation of phenolic bioactive compounds and antioxidant activity in blueberry pulp, heat treatment associated with addition of xanthan gum was used. A commercial mixture of blueberries (Powerblue, Climax and Bluegen cultivars was added with 0.08% (w/w citric acid and subjected to heat treatment by direct heating until 90 °C in conventional open pan (OP and by direct application of steam (AS; both with and without the addition of xanthan pruni (OPX and ASX, followed by pulping. Samples of only frozed fruits were considered as control. The five treatments remained under freezing and were evaluated until 90 days of storage for antioxidant activity, phenols, flavonoids and total monomeric anthocyanins. The results show that, with the exception of phenolics, heat treatment with direct steam application and xanthan addition favored bioactive compounds preservation during storage. These factors influenced positively on the anthocyanins stability during frozen storage for 90 days. The xanthan addition favored antioxidant activity preservation; preservation for antioxidant activity by ABTS and DPPH, in all heat treatments, was observed.

  20. Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds.

    Science.gov (United States)

    Saavedra, M J; Aires, A; Dias, C; Almeida, J A; De Vasconcelos, M C B M; Santos, P; Rosa, E A

    2015-02-01

    The transformation of byproducts and wastes generated by agro-food companies is of high importance since only a small portion of plant material is utilized directly for human consumption. Squash pumpkin is greatly used in Portugal and as by-products of its processing are generated tons of shell and seeds. In this study we aim to evaluate the potential of these wastes as sources of beneficial and bioactive compounds (antioxidants and antimicrobials), studying the effect of different extraction solvents and drying methods. The samples (fresh and cooked) were freeze-dried and oven-dried followed by extraction with different solvents that revealed the following decreasing order of efficiency: 70 % ethanol, 70 % methanol, 70 % acetone, ultra-pure water and 100 % dichloromethane. The oven-dried samples showed higher values of antioxidant activity and phenolic content, with exception of the values of phenolics for the seeds material. The shell samples presented higher values (1.47 - 70.96 % inhibition) of antioxidant activity and total phenolic content (2.00 - 10.69 mg GAE/g DW). A positive correlation was found between these two parameters on the shell samples, however the squash seeds revealed a negative correlation between the phenolic content and the antioxidant activity. The results show that these industrial agro-food residues are potentially good sources of bioactive compounds with health benefits.

  1. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders.

    Science.gov (United States)

    Si, Xu; Chen, Qinqin; Bi, Jinfeng; Wu, Xinye; Yi, Jianyong; Zhou, Linyan; Li, Zhaolu

    2016-04-01

    Dehydration has been considered as one of the traditional but most effective techniques for perishable fruits. Raspberry powders obtained after dehydration can be added as ingredients into food formulations such as bakery and dairy products. In this study, raspberry powders obtained by hot air drying (HAD), infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD), infrared radiation and microwave vacuum drying (IR-MVD) and freeze drying (FD) were compared on physical properties, bioactive compounds and antioxidant activity. Drying techniques affected the physical properties, bioactive compounds and antioxidant activity of raspberry powders greatly. FD led to significantly higher (P raspberry powder compared with other drying methods. However, thermal drying techniques, especially combined drying methods, were superior to FD in final total polyphenol content, total flavonoid content and antioxidant activity. The combined drying methods, especially IR-MVD, showed the highest total polyphenol content (123.22 g GAE kg(-1) dw) and total flavonoid content (0.30 g CAE kg(-1) dw). Additionally, IR-MVD performed better in antioxidant activity retention. Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention. © 2015 Society of Chemical Industry.

  2. The effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices.

    Directory of Open Access Journals (Sweden)

    Ana Slatnar

    Full Text Available BACKGROUND: Berry fruit is known for its high contents of various bioactive compounds. The latter constitute of anthocyanins, flavonols and flavanols and posses high antioxidative activity. The highly dynamic antioxidant system can be evaluated in vitro and in vivo in several model organisms. These measurements represent a good approximation of the real potential of bioactive compounds in the cells of higher eucarions. The aim of the study was thus to determine in vitro and in vivo antioxidant activity of different berry juices, which reportedly contain high amounts of phenolics. METHODOLOGY/PRINCIPAL FINDINGS: Five different berry species were collected from several locations in central Slovenia and juice was extracted from each species separately. Juice was assessed for their in vitro and in vivo antioxidant activity. Phenolic profiles of berries were determined with the use of a HPLC/MS system, in vitro antioxidant activity with the DPPH radical scavenging method and in vivo antioxidative activity using Saccharomyces cerevisiae. The highest diversity of individual phenols was detected for bilberry juice. The highest in vitro antioxidant capacity was determined for blackcurrant juice. A decrease in intracellular oxidation compared to control was observed in the following order: blackcurrant < chokeberry = blueberry < bilberry. The results indicate important differences in antioxidant activity of berry juices between in vitro and in vivo studies. CONCLUSION/SIGNIFICANCE: In addition to the total content of phenolic compounds entering the cells, a key factor determining antioxidative activity of berry juices is also the ratio between the compounds. Where high content levels of anthocyanins and very low content levels of flavonols and hydroxycinnamic acids were measured a lower intracellular oxidation has been detected. Specifically, intracellular oxidation increased with higher consumption of hydroxycinnamic acids and lower consumption of

  3. Affinity Crystallography Reveals the Bioactive Compounds of Industrial Juicing Byproducts of Punica granatum for Glycogen Phosphorylase.

    Science.gov (United States)

    Stravodimos, George A; Kantsadi, Anastassia L; Apostolou, Anna; Kyriakis, Efthimios; Kafaski-Kanelli, Vassiliki-Nafsika; Solovou, Theodora; Gatzona, Pagona; Liggri, Panagiota G V; Theofanous, Stavroula; Gorgogietas, Vyron A; Kissa, Apostolia; Psachoula, Chariklia; Lemonakis, Angelos; Chatzileontiadou, Demetra S M; Psarra, Anna-Maria G; Skamnaki, Vassiliki T; Haroutounian, Serkos A; Leonidas, Demetres D

    2018-01-01

    Glycogen phosphorylase (GP) is a pharmaceutical target for the discovery of new antihyperglycaemic agents. Punica granatum is a well-known plant for its potent antioxidant and antimicrobial activities but so far has not been examined for antihyperglycaemic activity. The aim was to examine the inhibitory potency of eighteen polyphenolic extracts obtained from Punica granatum fruits and industrial juicing byproducts against GP and discover their most bioactive ingredients. Kinetic experiments were conducted to measure the IC50 values of the extracts while affinity crystallography was used to identify the most bioactive ingredient. The inhibitory effect of one of the polyphenolic extracts was also verified ex vivo, in HepG2 cells. All extracts exhibited significant in vitro inhibitory potency (IC50 values in the range of low μg/mL). Affinity crystallography revealed that the most bioactive ingredients of the extracts were chlorogenic and ellagic acids, found bound in the active and the inhibitor site of GP, respectively.While ellagic acid is an established GP inhibitor, the inhibition of chlorogenic acid is reported for the first time. Kinetic analysis indicated that chlorogenic acid is an inhibitor with Ki=2.5 x 10-3Mthat acts synergistically with ellagic acid. Our study provides the first evidence for a potential antidiabetic usage of Punica granatum extracts as antidiabetic food supplements. Although, more in vivo studies have to be performed before these extracts reach the stage of antidiabetic food supplements, our study provides a first positive step towards this process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Communic Acids: Occurrence, Properties and Use as Chirons for the Synthesis of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Alejandro F. Arteaga

    2012-02-01

    Full Text Available Communic acids are diterpenes with labdane skeletons found in many plant species, mainly conifers, predominating in the genus Juniperus (fam. Cupresaceae. In this review we briefly describe their distribution and different biological activities (anti- bacterial, antitumoral, hypolipidemic, relaxing smooth muscle, etc.. This paper also includes a detailed explanation of their use as chiral building blocks for the synthesis of bioactive natural products. Among other uses, communic acids have proven useful as chirons for the synthesis of quassinoids (formal, abietane antioxidants, ambrox and other perfume fixatives, podolactone herbicides, etc., featuring shorter and more efficient processes.

  5. Communic acids: occurrence, properties and use as chirons for the synthesis of bioactive compounds.

    Science.gov (United States)

    Barrero, Alejandro F; Herrador, M Mar; Arteaga, Pilar; Arteaga, Jesús F; Arteaga, Alejandro F

    2012-02-06

    Communic acids are diterpenes with labdane skeletons found in many plant species, mainly conifers, predominating in the genus Juniperus (fam. Cupresaceae). In this review we briefly describe their distribution and different biological activities (anti- bacterial, antitumoral, hypolipidemic, relaxing smooth muscle, etc.). This paper also includes a detailed explanation of their use as chiral building blocks for the synthesis of bioactive natural products. Among other uses, communic acids have proven useful as chirons for the synthesis of quassinoids (formal), abietane antioxidants, ambrox and other perfume fixatives, podolactone herbicides, etc., featuring shorter and more efficient processes.

  6. Bioactive Compounds of Endemic Species Sideritis raeseri subsp. raeseri Grown in National Park Galičica

    Directory of Open Access Journals (Sweden)

    Nebojša Menković

    2013-05-01

    Full Text Available Collection of Sideritis raeseri subsp. raeseri has a long tradition in local communities in the Ohrid-Prespa region. The aim of the present study was the analysis of bioactive compounds especially those with anti-inflammatory activity. Combination of the UV and MS data allowed the characterization of 17 compounds, which could be classified into flavonoid glycosides or hydroxycynnamic acid derivatives. Six of them were isolated using preparative HPLC: isoscutellarein 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]- β -D-glucopyranoside, 4′-O-methylhypolaetin 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]- β -D-glucopyranoside, hypolaetin 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]-6″-O-acetyl- β -D-glucopyranoside, 4′-O-methylisoscutellarein 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]- β -D-glucopyranoside, isoscutellarein 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]-6″-O-acetyl- β -D-glucopyranoside and 4′-O-methylhypolaetin 7-O-[6′″-O-acetyl- β -D-allopyranosyl-(1→2]-6″-O-acetyl- β -D-glucopyranoside. The presence of phenylpropanoid glycoside martynoside was reported for the first time in the wild growing S. raeseri subsp. raeseri. Hypolaetin derivatives, known for their antiinflammatory activity, dominated and were more abundant in S. raeseri subsp. raeseri grown in NPG in comparison with S. scardica grown nearby the NPG. The type of solvent affected distribution and the amount of bioactive compounds and the advantage was given to less polar extracts which were richer in hypolaetin derivatives.

  7. Bioactivity of essential oil of Artemisia argyi Lévl. et Van. and its main compounds against Lasioderma serricorne.

    Science.gov (United States)

    Zhang, Wen-Juan; You, Chun-Xue; Yang, Kai; Chen, Ran; Wang, Ying; Wu, Yan; Geng, Zhu-Feng; Chen, Hai-Ping; Jiang, Hai-Yan; Su, Yang; Lei, Ning; Ma, Ping; Du, Shu-Shan; Deng, Zhi-Wei

    2014-01-01

    Artemisia argyi Lévl. et Van., a perennial herb with a strong volatile odor, is widely distrbuted in the world. Essential oil obtained from Artemisia argyi was analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 32 components representing 91.74% of the total oil were identified and the main compounds in the oil were found to be eucalyptol (22.03%), β-pinene (14.53%), β-caryophyllene (9.24%) and (-)-camphor (5.45%). With a further isolation, four active constituents were obtained from the essential oil and identified as eucalyptol, β-pinene, β-caryophyllene and camphor. The essential oil and the four isolated compounds exhibited potential bioactivity against Lasioderma serricorne adults. In the progress of assay, it showed that the essential oil, camphor, eucalyptol, β-caryophyllene and β-pinene exhibited strong contact toxicity against L. serricorne adults with LD50 values of 6.42, 11.30, 15.58, 35.52, and 65.55 μg/adult, respectively. During the fumigant toxicity test, the essential oil, eucalyptol and camphor showed stronger fumigant toxicity against L. serricorne adults than β-pinene (LC50 = 29.03 mg/L air) with LC50 values of 8.04, 5.18 and 2.91 mg/L air. Moreover, the essential oil, eucalyptol, β-pinene and camphor also exhibited the strong repellency against L. serricorne adults, while, β-caryophyllene exhibited attracting activity relative to the positive control, DEET. The study revealed that the bioactivity properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components. The results indicate that the essential oil of A. argyi and the isolated compounds have potential to be developed into natural insecticides, fumigants or repellents in controlling insects in stored grains and traditional Chinese medicinal materials.

  8. The Compositional HJ-Biplot-A New Approach to Identifying the Links among Bioactive Compounds of Tomatoes.

    Science.gov (United States)

    Hernández Suárez, Marcos; Molina Pérez, Daniel; Rodríguez-Rodríguez, Elena M; Díaz Romero, Carlos; Espinosa Borreguero, Francisco; Galindo-Villardón, Purificación

    2016-11-02

    Tomatoes have been described as a functional food because of their particular composition of different bioactive compounds. In this study, the proximate composition, minerals and trace elements, and antioxidant compounds were determined in two tomato cultivars (Mariana and Dunkan) that were grown in Gran Canaria (Spain) either conventionally or hydroponically. Although compositional data of this type require being subjected to the specific statistical techniques of compositional analysis, this approach has not usually been considered in this context. In the present case, a compositional Mann-Whitney U test of the data showed significant differences for each factor (cultivar and cultivation system) in several of the compositional variables studied. For the differences between cultivars, these parameters were the protein, Mg, lycopene, ascorbic acid, citric acid, and fumaric acid contents. For the differences between cultivation systems, they were mainly those of the mineral and trace elements group. Although one-year data are insufficient to make clear relationship among compounds because more repetitions in several localities and years are necessary, the compositional HJ-biplot (in which the links provide estimates of the linear relationship among variables) results agreed with other scientific results about linear relationship among some compounds analyzed.

  9. The Compositional HJ-Biplot—A New Approach to Identifying the Links among Bioactive Compounds of Tomatoes

    Directory of Open Access Journals (Sweden)

    Marcos Hernández Suárez

    2016-11-01

    Full Text Available Tomatoes have been described as a functional food because of their particular composition of different bioactive compounds. In this study, the proximate composition, minerals and trace elements, and antioxidant compounds were determined in two tomato cultivars (Mariana and Dunkan that were grown in Gran Canaria (Spain either conventionally or hydroponically. Although compositional data of this type require being subjected to the specific statistical techniques of compositional analysis, this approach has not usually been considered in this context. In the present case, a compositional Mann–Whitney U test of the data showed significant differences for each factor (cultivar and cultivation system in several of the compositional variables studied. For the differences between cultivars, these parameters were the protein, Mg, lycopene, ascorbic acid, citric acid, and fumaric acid contents. For the differences between cultivation systems, they were mainly those of the mineral and trace elements group. Although one-year data are insufficient to make clear relationship among compounds because more repetitions in several localities and years are necessary, the compositional HJ-biplot (in which the links provide estimates of the linear relationship among variables results agreed with other scientific results about linear relationship among some compounds analyzed.

  10. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy.

    Science.gov (United States)

    Ballistreri, Gabriele; Continella, Alberto; Gentile, Alessandra; Amenta, Margherita; Fabroni, Simona; Rapisarda, Paolo

    2013-10-15

    The fruit quality characteristics, phenolic compounds and antioxidant capacities of 24 sweet cherry (Prunus avium L.) cultivars grown on the mountainsides of the Etna volcano (Sicily, Italy) were evaluated. High-performance liquid chromatographic methods were used to identify and quantify sugars, organic acids and phenolics. A total of seven phenolic compounds were characterised as hydroxycinnamic acid derivatives (neochlorogenic acid, p-coumaroylquinic acid and chlorogenic acid) and anthocyanins (cyanidin 3-glucoside, cyanidin 3-rutinoside, pelargonidin 3-rutinoside and peonidin 3-rutinoside). The total anthocyanin content ranged from 6.21 to 94.20mg cyanidin 3-glucoside equivalents/100g fresh weight (FW), while the total phenol content ranged from 84.96 to 162.21mg gallic acid equivalents/100g FW. The oxygen radical absorbance capacity (ORAC) assay indicated that fruit of all genotypes possessed considerable antioxidant activity. The high level of phenolic compounds and antioxidant capacity of some sweet cherry fruits implied that they might be sources of bioactive compounds that are relevant to human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effect of certain indigenous processing methods on the bioactive compounds of ten different wild type legume grains.

    Science.gov (United States)

    Vadivel, Vellingiri; Biesalski, Hans K

    2012-12-01

    In recent years, research efforts are under-way on the possibilities of utilization of natural source of bioactive compounds for the dietary management of certain chronic diseases such as diabetes, obesity, cardiovascular diseases, cancer etc. In this connection, seed materials of promising wild type under-utilized food legume grains such as Acacia nilotica (L.) Willd. Ex Delile, Bauhinia purpurea L., Canavalia ensiformis (L.) DC., Cassia hirsuta L., Caesalpinia bonducella F., Erythrina indica L., Mucuna gigantea (Willd.) DC., Pongamia pinnata (L.) Pierre, Sebania sesban (L.) Merr. and Xylia xylocarpa Roxb. Taub., collected from South India, were investigated for certain bioactive compounds. All the samples were found to constitute a viable source of total free phenolics (3.12-6.69 g/100 g DM), tannins (1.10-4.41 g/100 g DM), L-Dopa (1.34-5.45 g/100 g DM) and phytic acid (0.98-3.14 g/100 g DM). In general, the seed materials of X. xylocarpa recorded high levels of total free phenolics and tannins, whereas the maximum levels of L-Dopa and phytic acid were noticed in M. gigantea and S. sesban, respectively. Further, presently investigated all the bioactive compounds were drastically reduced during soaking in tamarind solution + cooking as well as soaking in alkaline solution + cooking, and thus these treatments were considered to be more aggressive practices. Open-pan roasting also demonstrated a significant reduction of total free phenolics, tannins and moderate loss of L-Dopa and phytic acid. Alternatively, sprouting + oil-frying showed significant level of increase of total free phenolics (9-27%) and tannins (12-28%), but diminishing effect on phytic acid and L-Dopa. Hence, among the presently employed treatments, sprouting + oil-frying could be recommended as a suitable treatment for the versatile utilization of these wild under-utilized legume grains for the dietary management of certain chronic diseases.

  12. X-ray electron investigation of technetium compounds

    International Nuclear Information System (INIS)

    Gerasimov, V.N.; Kryuchkov, S.V.; Kuzina, A.F.; Kulakov, V.M.; Pirozhkov, S.V.; Spitsyn, V.I.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1982-01-01

    Investigation results of a number of technetium compounds using the method of X-ray electron spectroscopy have been presented for the first time. Calculation of effective charge for compounds without Tc-Tc bond and cluster complexes with strong Tc-Tc bond is made. Strong interdependence of effective charge and properties of technetium clusters is shown. Binding energies for certain cluster complexes of technetium with halides are given

  13. An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars

    Science.gov (United States)

    Scully, Damhan S.; Jaiswal, Amit K.; Abu-Ghannam, Nissreen

    2016-01-01

    Conventional coffee brewing techniques generate vast quantities of spent espresso grounds (SEGs) rich in lignocellulose and valuable bioactives. These bioactive compounds can be exploited as a nutraceutical or used in a range of food products, while breakdown of lignocellulose generates metabolizable sugars that can be used for the production of various high-value products such as biofuels, amino acids and enzymes. Response surface methodology (RSM) was used to optimize the enzymatic saccharification of lignocellulose in SEGs following a hydrothermal pretreatment. A maximum reducing sugar yield was obtained at the following optimized hydrolysis conditions: 4.97 g of pretreated SEGs, 120 h reaction time, and 1246 and 250 µL of cellulase and hemicellulase, respectively. Industrially important sugars (glucose, galactose and mannose) were identified as the principal hydrolysis products under the studied conditions. Total flavonoids (p = 0.0002), total polyphenols (p = 0.03) and DPPH free-radical scavenging activity (p = 0.004) increased significantly after processing. A 14-fold increase in caffeine levels was also observed. This study provides insight into SEGs as a promising source of industrially important sugars and polyphenols. PMID:28952594

  14. Screening of marine seaweeds for bioactive compound against fish pathogenic bacteria and active fraction analysed by gas chromatography– mass spectrometry

    Directory of Open Access Journals (Sweden)

    Rajasekar Thirunavukkarasu

    2014-05-01

    Full Text Available Objective: To isolate bioactive molecules from marine seaweeds and check the antimicrobial activity against the fish pathogenic bacteria. Methods: Fresh marine seaweeds Gracilaria edulis, Kappaphycus spicifera, Sargassum wightii (S. wightii were collected. Each seaweed was extracted with different solvents. In the study, test pathogens were collected from microbial type culture collection. Antibacterial activity was carried out by using disc diffusion method and minimum inhibition concentration (MIC was calculated. Best seaweed was analysed by fourier transform infrared spectroscopy. The cured extract was separated by thin layer chromatography (TLC. Fraction was collected from TLC to check the antimicrobial activity. Best fraction was analysed by gas chromatography mass spectrometer (GCMS. Results: Based on the disc diffusion method, S. wightii showed a better antimicrobial activity than other seaweed extracts. Based on the MIC, methanol extract of S. wightii showed lower MIC than other solvents. S. wightii were separated by TLC. In this TLC, plate showed a two fraction. These two fractions were separated in preparative TLC and checked for their antimicrobial activity. Fraction 2 showed best MIC value against the tested pathogen. Fraction 2 was analysed by GCMS. Based on the GCMS, fraction 2 contains n-hexadecanoic acid (59.44%. Conclusions: From this present study, it can be concluded that S. wightii was potential sources of bioactive compounds.

  15. An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars

    Directory of Open Access Journals (Sweden)

    Damhan S. Scully

    2016-11-01

    Full Text Available Conventional coffee brewing techniques generate vast quantities of spent espresso grounds (SEGs rich in lignocellulose and valuable bioactives. These bioactive compounds can be exploited as a nutraceutical or used in a range of food products, while breakdown of lignocellulose generates metabolizable sugars that can be used for the production of various high-value products such as biofuels, amino acids and enzymes. Response surface methodology (RSM was used to optimize the enzymatic saccharification of lignocellulose in SEGs following a hydrothermal pretreatment. A maximum reducing sugar yield was obtained at the following optimized hydrolysis conditions: 4.97 g of pretreated SEGs, 120 h reaction time, and 1246 and 250 µL of cellulase and hemicellulase, respectively. Industrially important sugars (glucose, galactose and mannose were identified as the principal hydrolysis products under the studied conditions. Total flavonoids (p = 0.0002, total polyphenols (p = 0.03 and DPPH free-radical scavenging activity (p = 0.004 increased significantly after processing. A 14-fold increase in caffeine levels was also observed. This study provides insight into SEGs as a promising source of industrially important sugars and polyphenols.

  16. Innovative "Green" and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes-A Review.

    Science.gov (United States)

    Putnik, Predrag; Bursać Kovačević, Danijela; Režek Jambrak, Anet; Barba, Francisco J; Cravotto, Giancarlo; Binello, Arianna; Lorenzo, Jose Manuel; Shpigelman, Avi

    2017-04-27

    Citrus is a major processed crop that results in large quantities of wastes and by-products rich in various bioactive compounds such as pectins, water soluble and insoluble antioxidants and essential oils. While some of those wastes are currently valorised by various technologies (yet most are discarded or used for feed), effective, non-toxic and profitable extraction strategies could further significantly promote the valorisation and provide both increased profits and high quality bioactives. The present review will describe and summarize the latest works concerning novel and greener methods for valorisation of citrus by-products. The outcomes and effectiveness of those technologies such as microwaves, ultrasound, pulsed electric fields and high pressure is compared both to conventional valorisation technologies and between the novel technologies themselves in order to highlight the advantages and potential scalability of these so-called "enabling technologies". In many cases the reported novel technologies can enable a valorisation extraction process that is "greener" compared to the conventional technique due to a lower energy consumption and reduced utilization of toxic solvents.

  17. An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars.

    Science.gov (United States)

    Scully, Damhan S; Jaiswal, Amit K; Abu-Ghannam, Nissreen

    2016-11-21

    Conventional coffee brewing techniques generate vast quantities of spent espresso grounds (SEGs) rich in lignocellulose and valuable bioactives. These bioactive compounds can be exploited as a nutraceutical or used in a range of food products, while breakdown of lignocellulose generates metabolizable sugars that can be used for the production of various high-value products such as biofuels, amino acids and enzymes. Response surface methodology (RSM) was used to optimize the enzymatic saccharification of lignocellulose in SEGs following a hydrothermal pretreatment. A maximum reducing sugar yield was obtained at the following optimized hydrolysis conditions: 4.97 g of pretreated SEGs, 120 h reaction time, and 1246 and 250 µL of cellulase and hemicellulase, respectively. Industrially important sugars (glucose, galactose and mannose) were identified as the principal hydrolysis products under the studied conditions. Total flavonoids ( p = 0.0002), total polyphenols ( p = 0.03) and DPPH free-radical scavenging activity ( p = 0.004) increased significantly after processing. A 14-fold increase in caffeine levels was also observed. This study provides insight into SEGs as a promising source of industrially important sugars and polyphenols.

  18. Fracture toughness of heat cured denture base acrylic resin modified with Chlorhexidine and Fluconazole as bioactive compounds.

    Science.gov (United States)

    Al-Haddad, Alaa; Vahid Roudsari, Reza; Satterthwaite, Julian D

    2014-02-01

    This study investigated the impact of incorporating Chlorhexidine and Fluconazole as bioactive compounds on the fracture toughness of conventional heat cured denture base acrylic resin material (PMMA). 30 single edge-notched (SEN) samples were prepared and divided into three groups. 10% (mass) Chlorhexidine and 10% (mass) Diflucan powder (4.5% mass Fluconazole) were added to heat cured PMMA respectively to create the two study groups. A third group of conventional heat cured PMMA was prepared as the control group. Fracture toughness (3-point bending test) was carried out for each sample and critical force (Fc) and critical stress intensity factor (KIC) values measured. Data were subject to parametric statistical analysis using one-way ANOVA and Post hoc Bonferroni test (p=0.05). Fluconazole had no significant effect on the fracture toughness of the PMMA while Chlorhexidine significantly reduced the KIC and therefore affected the fracture toughness. When considering addition of a bioactive material to PMMA acrylic, Chlorhexidine will result in reduced fracture toughness of the acrylic base while Fluconazole has no effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Secondary electron emission from metals and semi-conductor compounds

    International Nuclear Information System (INIS)

    Ono, Susumu; Kanaya, Koichi

    1979-01-01

    Attempt was made to present the sufficient solution of the secondary electron yield of metals and semiconductor compounds except insulators, applying the free electron scattering theory to the absorption of secondary electrons generated within a solid target. The paper is divided into the sections describing absorption coefficient and escape depth, quantitative characteristics of secondary yield, angular distribution of secondary electron emission, effect of incident angle to secondary yield, secondary electron yield transmitted, and lateral distribution of secondary electron emission, besides introduction and conclusion. The conclusions are as follows. Based on the exponential power law for screened atomic potential, secondary electron emission due to both primary and backscattered electrons penetrating into metallic elements and semi-conductive compounds is expressed in terms of the ionization loss in the first collision for escaping secondary electrons. The maximum yield and the corresponding primary energy can both consistently be derived as the functions of three parameters: atomic number, first ionization energy and backscattering coefficient. The yield-energy curve as a function of the incident energy and the backscattering coefficient is in good agreement with the experimental results. The energy dependence of the yield in thin films and the lateral distribution of secondary yield are derived as the functions of the backscattering coefficient and the primary energy. (Wakatsuki, Y.)

  20. A New Acetylenic Compound and Other Bioactive Metabolites from a Shark Gill-derived Penicillium Strain

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-01-01

    Full Text Available Nine chiral compounds (1−9 were isolated from the static fermentation culture of a shark gill-derived fungus Penicillium polonicum AP2T1. These compounds include a new acetylenic aromatic ether (1 , (--WA , four alkaloids ( a urantiomide C ( 2 , fructigenine A (3, cyclopenin (4 and cyclopenol (5 and four oxygenated compounds ((R-penipratynolene (6, (3S,4S-3,4-dihydro-3,4,8-trihydroxyl-naphthalenone (7, verrucosidin (8 and norverrucosidin (9. Their structures were elucidated by MS, NMR , optical rotation and circular dichroism (CD . In antimicrobial tests , compounds 1–4, 6 and 8–9 showed weak antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and/or Escherichia coli.Compounds 3, 8 and 9 also exhibited moderate toxicity against Artemia salina larva , and showed cytotoxicity against human colon cancer cell line HCT116.

  1. Highly solvatochromic emission of electron donor-acceptor compounds containing propanedioato boron electron acceptors

    NARCIS (Netherlands)

    Brouwer, A.M.; Bakker, N.A.C.; Wiering, P.G.; Verhoeven, J.W.

    1991-01-01

    Light-induced electron transfer occurs in bifunctional compounds consisting of 1,3-diphenylpropanedioato boron oxalate or fluoride electron acceptors and simple aromatic electron-donor groups, linked by a methylene bridge; fluorescence from the highly polar charge-transfer excited state is

  2. Bioactive compounds of Aspergillus terreus-F7, an endophytic fungus from Hyptis suaveolens (L.) Poit.

    Science.gov (United States)

    da Silva, Igor Pereira; Brissow, Elson; Kellner Filho, Luis Claudio; Senabio, Jaqueline; de Siqueira, Kátia Aparecida; Vandresen Filho, Samuel; Damasceno, Jaqueline Lopes; Mendes, Suzana Amorim; Tavares, Denise Crispim; Magalhães, Lizandra Guidi; Junior, Policarpo Ademar Sales; Januário, Ana Helena; Soares, Marcos Antônio

    2017-03-01

    The compounds terrein (1), butyrolactone I (2), and butyrolactone V (3) were isolated from the ethyl acetate extract (EtOAc) of the endophytic fungus Aspergillus terreus-F7 obtained from Hyptis suaveolens (L.) Poit. The extract and the compounds presented schistosomicidal activity against Schistosoma mansoni; at 100 µg/mL for EtOAc extract, 1297.3 µM for compound 1, 235.6 µM for compound 2, and 454.1 µM for compound 3, they killed 100% of the parasites after 72 h of treatment. Compounds 1, 2, and 3 exerted moderate leishmanicidal activity against Leishmania amazonensis (IC 50 ranged from 23.7 to 78.6 µM). At 235.6 and 227.0 µM, compounds 2 and 3, respectively, scavenged 95.92 and 95.12% of the DPPH radical (2,2-diphenyl-1-picryl-hydrazyl), respectively. Regarding the cytotoxicity against the breast tumor cell lines MDA-MB-231 and MCF-7, compound 2 gave IC 50 of 34.4 and 17.4 µM, respectively, while compound 3 afforded IC 50 of 22.2 and 31.9 µM, respectively. At 117.6 µM, compound 2 inhibited the growth of and killed the pathogen Escherichia coli (ATCC 25922). Compounds 1, 2, and 3 displayed low toxicity against the normal line of human lung fibroblasts (GM07492A cells), with IC 50 of 15.3 × 10 3 , 3.4 × 10 3 , and 5.8 × 10 3  µM, respectively. This is the first report on (i) the in vitro schistosomicidal and leishmanicidal activities of the EtOAc extract of A. terreus-F7 and compounds 1, 2, and 3; and (ii) the antitumor activity of compounds 2 and 3 against MDA-MB-231 and MCF-7 cells.

  3. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review.

    Science.gov (United States)

    Yan, Liang-Gong; He, Lang; Xi, Jun

    2017-09-02

    How to extract bioactive compounds safely and efficiently is one of the problems for the food and pharmaceutical industry. In recent years, several novel extraction techniques have been proposed. To pursue a more efficient method for industrial production, high intensity pulsed electric field (HIPEF) extraction technique has been developed. HIPEF extraction technique, which is based on the conventional pulsed electric field (PEF), provided higher electric field intensity and a special continuous extraction system, and it has confirmed less extraction time, higher extraction yield, and mild processing temperature. So this innovative technique is promising for application of industrial production. This review was devoted to introducing the recent achievement of HIPEF extraction technique, including novel HIPEF continuous extraction system, principles and mechanisms; the critical process factors influencing its performance applications; and comparison of HIPEF extraction with other extraction techniques. In the end, the defects and future trends of HIPEF extraction were also discussed.

  4. An FDA-Drug Library Screen for Compounds with Bioactivities against Meticillin-Resistant Staphylococcus aureus (MRSA

    Directory of Open Access Journals (Sweden)

    Qiu Ying Lau

    2015-10-01

    Full Text Available The lack of new antibacterial drugs entering the market and their misuse have resulted in the emergence of drug-resistant bacteria, posing a major health crisis worldwide. In particular, meticillin-resistant Staphylococcus aureus (MRSA, a pathogen responsible for numerous human infections, has become endemic in hospitals worldwide. Drug repurposing, the finding of new therapeutic indications for approved drugs, is deemed a plausible solution to accelerate drug discovery and development in this area. Towards this end, we screened 1163 drugs approved by the Food and Drug Administration (FDA for bioactivities against MRSA in a 10 μM single-point assay. After excluding known antibiotics and antiseptics, six compounds were identified and their MICs were determined against a panel of clinical MRSA strains. A toxicity assay using human keratinocytes was also conducted to gauge their potential for repurposing as topical agents for treating MRSA skin infections.

  5. Exopolysaccharide from Ganoderma applanatum as a Promising Bioactive Compound with Cytostatic and Antibacterial Properties

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Błachowicz, Adriana; Wydrych, Jerzy; Polak, Jolanta; Jarosz-Wilkołazka, Anna; Kandefer-Szerszeń, Martyna

    2014-01-01

    A new exopolysaccharide preparation isolated from stationary cultures of the white rot fungus Ganoderma applanatum (GpEPS) was tested in terms of its bioactive properties including its cytotoxic and immunostimulatory effect. The results indicate that the tested GpEPS (at concentrations above 22.85 µg/mL and 228.5 µg/mL) may exhibit selective activity against tumor cells (cell lines SiHa) and stimulate production of TNF-α THP-1-derived macrophages at the level of 752.17 pg/mL. The GpEPS showed antibacterial properties against Staphyloccoccus aureus and a toxic effect against Vibrio fischeri cells (82.8% cell damage). High cholesterol-binding capacity and triglycerides-binding capacity (57.9% and 41.6% after 24 h of incubation with the tested substances, resp.) were also detected for the investigated samples of GpEPS. PMID:25114920

  6. Exopolysaccharide from Ganoderma applanatum as a Promising Bioactive Compound with Cytostatic and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Monika Osińska-Jaroszuk

    2014-01-01

    Full Text Available A new exopolysaccharide preparation isolated from stationary cultures of the white rot fungus Ganoderma applanatum (GpEPS was tested in terms of its bioactive properties including its cytotoxic and immunostimulatory effect. The results indicate that the tested GpEPS (at concentrations above 22.85 µg/mL and 228.5 µg/mL may exhibit selective activity against tumor cells (cell lines SiHa and stimulate production of TNF-α THP-1-derived macrophages at the level of 752.17 pg/mL. The GpEPS showed antibacterial properties against Staphyloccoccus aureus and a toxic effect against Vibrio fischeri cells (82.8% cell damage. High cholesterol-binding capacity and triglycerides-binding capacity (57.9% and 41.6% after 24 h of incubation with the tested substances, resp. were also detected for the investigated samples of GpEPS.

  7. Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties.

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Jaszek, Magdalena; Mizerska-Dudka, Magdalena; Błachowicz, Adriana; Rejczak, Tomasz Piotr; Janusz, Grzegorz; Wydrych, Jerzy; Polak, Jolanta; Jarosz-Wilkołazka, Anna; Kandefer-Szerszeń, Martyna

    2014-01-01

    A new exopolysaccharide preparation isolated from stationary cultures of the white rot fungus Ganoderma applanatum (GpEPS) was tested in terms of its bioactive properties including its cytotoxic and immunostimulatory effect. The results indicate that the tested GpEPS (at concentrations above 22.85 µg/mL and 228.5 µg/mL) may exhibit selective activity against tumor cells (cell lines SiHa) and stimulate production of TNF-α THP-1-derived macrophages at the level of 752.17 pg/mL. The GpEPS showed antibacterial properties against Staphyloccoccus aureus and a toxic effect against Vibrio fischeri cells (82.8% cell damage). High cholesterol-binding capacity and triglycerides-binding capacity (57.9% and 41.6% after 24 h of incubation with the tested substances, resp.) were also detected for the investigated samples of GpEPS.

  8. Emerging Anti-Mitotic Activities and Other Bioactivities of Sesquiterpene Compounds upon Human Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Bosco

    2017-03-01

    Full Text Available We review the bio-activities of natural product sesquiterpenes and present the first description of their effects upon mitosis. This type of biological effect upon cells is unexpected because sesquiterpenes are believed to inactivate proteins through Michael-type additions that cause non-specific cytotoxicity. Yet, certain types of sesquiterpenes can arrest cells in mitosis as measured by cell biology, biochemical and imaging techniques. We have listed the sesquiterpenes that arrest cells in mitosis and analyzed the biological data that support those observations. In view of the biochemical complexity of mitosis, we propose that a subset of sesquiterpenes have a unique chemical structure that can target a precise protein(s required for mitosis. Since the process of mitotic arrest precedes that of cell death, it is possible that some sesquiterpenes that are currently classified as cytotoxic might also induce a mitotic arrest. Our analysis provides a new perspective of sesquiterpene chemical biology

  9. Effects of low sulfur dioxide concentrations on bioactive compounds and antioxidant properties of Aglianico red wine.

    Science.gov (United States)

    Gabriele, Morena; Gerardi, Chiara; Lucejko, Jeannette J; Longo, Vincenzo; Pucci, Laura; Domenici, Valentina

    2018-04-15

    This study analyzed the effect of low sulfur dioxide concentrations on the chromatic properties, phytochemical composition and antioxidant activity of Aglianico red wines with respect to wines produced from conventional winemaking. We determined the phytochemical composition by spectrophotometric methods and HPLC-DAD analysis and the in vitro antioxidant activity of different wine samples by the ORAC assay. The main important classes of fluorophore molecules in red wine were identified by Front-Face fluorescence spectroscopy, and the emission intensity trend was investigated at various sulfur dioxide concentrations. Lastly, we tested the effects of both conventional and low sulfite wines on ex vivo human erythrocytes under oxidative stimulus by the cellular antioxidant activity (CAA) assay and the hemolysis test. The addition of sulfur dioxide, which has well-known side effects, increased the content of certain bioactive components but did not raise the erythrocyte antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development and characterization of nano-micro structures as carrier for bioactive compounds

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen

    New biopolymers are in high demand due to their excellent biocompatibility, biodegradability, and natural origin. In this PhD project, water soluble fish sarcoplasmic proteins (FSPs) from the North Atlantic cod (Gadus morhua) have been studied as a potential new biopolymer for development of nano-micro...... structures. Two kinds of nano-micro structures have been explored: electrospun fibers (Paper I, Paper II, and Paper III) and self-assembled nanocomplexes (NCXs) (Paper IV). FSP was observed to be highly suitable for electrospinning. The fiber morphology varied significantly with FSP concentration, from beads...... showed potential as carrier system for delivery of drugs, bioactive agents, and nutraceuticals. The dipeptide Ala-Trp, rhodamine B, or insulin was encapsulated into the fibers, and the release was studied in biorelevant media (Paper I, Paper II, and Paper III). Release of Ala-Trp was slightly decreased...

  11. Effectiveness of a bioactive food compound in anthropometric measures of individuals with HIV/AIDS: A nonrandomized trial.

    Directory of Open Access Journals (Sweden)

    Rosângela Dos Santos Ferreira

    Full Text Available Highly Active Antiretroviral therapy (HAART promotes anthropometric changes in lipid metabolism and glucose in patients with Human Immunodeficiency Virus (HIV. Functional foods play an important role on metabolism. Bioactive Food Compound (BFC has shown effective results in changes arising from decompensated lipid metabolism due to the effects of HAART on HIV patients. From this perspective, the objective of this study is to evaluate anthropometric indicators and the body composition of patients undergoing HAART before and after consumption of BFC.This is a prospective intervention with 180 individuals with HIV undergoing HAART. They formed two groups and were monitored for 3 months: the first group consisted of individuals who consumed BFC (n = 121 at the recommended daily intake of 40 g. The second group consisted of individuals who did not consume BFC (n = 59. We determined body mass index (BMI, waist circumference (WC, waist-hip ratio (WHR, conicity index (CI and antiretroviral regimen used by the patients.The BMI among adults (p<0.001, the WC (p<0.001 and p<0.014 for men and women, respectively and the CI (p = 0.001 and p<0.001 for men and women, respectively increased at the end of the study in the group of individuals who did not consume BFC and remained stable in the BFC group. There were no changes in WHR in any of the groups evaluated. Regarding the antiretroviral regimens used, we observed that there was no difference between regimens as for BMI, WC, WHR and CI.The BFC consumed by HIV patients undergoing HAART allowed the maintenance of anthropometric measures without increasing the mean values of conicity index, suggesting that the consumption of this bioactive compound protects the individual against the development of metabolic syndrome (MeS in patients infected with HIV undergoing antiretroviral therapy.

  12. Effect of adding ball-milled achenes to must on bioactive compounds and antioxidant activities in fruit wine.

    Science.gov (United States)

    Lee, Pao-Ju; Chen, Shaun

    2016-03-01

    This study reports the utilization of ball-milled achenes in fermentation to increase the levels of ellagic acid and total phenol content, as well as to enhance the antioxidant capacity of strawberry wine. Achenes were micronized using ball-milling process, and then added to strawberry must prior to fermentation. The effects of the addition of ball-milled achenes on the ellagic acid and total phenol content in strawberry wine were determined, and the free radical scavenging and iron chelation activities were also analyzed. Quality attributes and acceptance were studied in comparison with a leading commercial strawberry wine for market application. The particle sizes of achenes were reduced from 1.1 mm to 400 nm after 30 min of ball-milling, and this led to an increase in the amount of extracted ellagic acid from 550.72 to 915.24 μg/g. The addition of ball-milled achenes to must led to a 19.72 % and 52.37 % increase in ellagic acid and total phenol content in strawberry wine, respectively. The increase in bioactive compounds resulted in increases of 54.09 %, 51.49 % and 56.97 % in ABTS and DPPH radical scavenging, and ferrous ion chelating activities, respectively. Although the commercial strawberry wine showed greater aroma intensity, no significant differences in overall quality and acceptance among the conventional process, added ball-milled achenes and the leading commercial strawberry wines were found. This study demonstrates that supplementation of ball-milled achenes in fermentation can be beneficial in increasing the levels of bioactive compounds and antioxidative capacity, indicating a good market potential.

  13. Effect of photo-selective nettings on post-harvest quality and bioactive compounds in selected tomato cultivars.

    Science.gov (United States)

    Selahle, Maphoko Kamogelo; Sivakumar, Dharini; Soundy, Puffy

    2014-08-01

    Photo-selective coloured netting is referred to as a 'new agro-technological' concept adopted to manipulate light quality changes that can induce favourable responses in plants. Tomato (Solanum lycopersicum L.) cultivars AlvaV, Irit and SCX 248 grown under the black net (commercial net, 25% shading) showed higher weight loss, loss of firmness, ascorbic acid content and decline in the ratio of soluble solids content/titrable acidity during post-harvest storage (low-temperature storage at 10°C and 90% relative humidity for 21 days followed by market shelf conditions at 25°C for 2 days). During post-harvest storage, lycopene, β-carotene, total phenolic content and antioxidant scavenging activity were higher in cvs AlfaV and Irit grown under the black or pearl nets. However, the β-carotene, total phenolic content and antioxidant scavenging activity were higher in SCX 248 grown under the red net during post-harvest storage. Cultivar AlfaV grown under the red and pearl nets had a higher number of odour active aroma compounds during post-harvest storage. Panellists preferred cv. AlfaV grown under the pearl nets after storage based on taste, overall appearance and firm textured fruits. Pearl photo-selective nets retained the overall fruit quality and bioactive components in cvs AlfaV and Irit during post-harvest storage. Red photo-selective nets, however, showed greater influence on retention of overall fruit quality and bioactive compounds in cv. SCX 248 during post-harvest storage. © 2013 Society of Chemical Industry.

  14. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana.

    Science.gov (United States)

    Buniowska, Magdalena; Carbonell-Capella, Juana M; Frigola, Ana; Esteve, Maria J

    2017-04-15

    A comparative study of the bioaccessibility of bioactive compounds and antioxidant capacity in a fruit juice-Stevia rebaudiana mixture processed by pulsed electric fields (PEF), high voltage electrical discharges (HVED) and ultrasound (USN) technology at two equivalent energy inputs (32-256kJ/kg) was made using an in vitro model. Ascorbic acid was not detected following intestinal digestion, while HVED, PEF and USN treatments increased total carotenoid bioaccessibility. HVED at an energy input of 32kJ/kg improved bioaccessibility of phenolic compounds (34.2%), anthocyanins (31.0%) and antioxidant capacity (35.8%, 29.1%, 31.9%, for TEAC, ORAC and DPPH assay, respectively) compared to untreated sample. This was also observed for PEF treated samples at an energy input of 256kJ/kg (37.0%, 15.6%, 29.4%, 26.5%, 23.5% for phenolics, anthocyanins, and antioxidant capacity using TEAC, ORAC and DPPH method, respectively). Consequently, pulsed electric technologies (HVED and PEF) show good prospects for enhanced bioaccessibility of compounds with putative health benefit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds.

    Science.gov (United States)

    Bravo, Jimena; Juániz, Isabel; Monente, Carmen; Caemmerer, Bettina; Kroh, Lothar W; De Peña, M Paz; Cid, Concepción

    2012-12-26

    The main hydrophilic antioxidant compounds (3-, 4-, and 5-monocaffeoylquinic and 3,4-, 3,5-, and 4,5-dicaffeoylquinic acids, caffeine, and browned compounds, including melanoidins) and the antioxidant capacity (Folin-Ciocalteu, ABTS, DPPH, Fremy's salt, and TEMPO) were evaluated in Arabica and Robusta spent coffee obtained from the preparation of coffee brews with the most common coffeemakers (filter, espresso, plunger, and mocha). All spent coffee grounds, with the exception of those from the mocha coffeemaker, had relevant amounts of total caffeoylquinic acids (6.22-13.24 mg/g of spent coffee), mainly dicaffeoylquinic acids (3.31-5.79 mg/g of spent coffee), which were 4-7-fold higher than in their respective coffee brews. Caffeine ranged from 3.59 to 8.09 mg/g of spent coffee. The antioxidant capacities of the aqueous spent coffee extracts were 46.0-102.3% (filter), 59.2-85.6% (espresso), and coffee brews. This study obtained spent coffee extracts with antioxidant properties that can be used as a good source of hydrophilic bioactive compounds.

  16. Bioactive compounds and prebiotic activity in Thailand-grown red and white guava fruit (Psidium guajava L.).

    Science.gov (United States)

    Thuaytong, W; Anprung, P

    2011-06-01

    This research involves the comparison of bioactive compounds, volatile compounds and prebiotic activity of white guava (Psidium guajava L.) cv. Pansithong and red guava cv. Samsi. The antioxidant activity values determined by 2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) assays were 10.28 µg fresh weight (fw)/µg DPPH and 78.56 µg Trolox equivalent (TE)/g fw for white guava and 7.82 µg/µg DPPH, fw and 111.06 µM TE/g fw for red guava. Ascorbic acid contents were 130 and 112mg/100g fw total phenolics contents 145.52 and 163.36 mg gallic acid equivalents (GAE)/100 g fw and total flavonoids contents 19.06 and 35.85 mg catechin equivalents (CE)/100 g fw, in white and red guava, respectively. Volatile compounds in guava were analyzed by the solid-phase microextraction (SPME)/gas chromatography (GC)/mass spectrometry (MS) method. The major constituents identified in white and red guavas were cinnamyl alcohol, ethyl benzoate, ß-caryophyllene, (E)-3-hexenyl acetate and α-bisabolene. Prebiotic activity scores for Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 were 0.12 and 0.28 in white guava, respectively, and 0.13 and 0.29 in red guava, respectively.

  17. Italian Opuntia ficus-indica Cladodes as Rich Source of Bioactive Compounds with Health-Promoting Properties

    Science.gov (United States)

    Pellizzoni, Marco; Lucini, Luigi

    2018-01-01

    Natural by-products, especially phenolic compounds, are in great demand by the nutra-pharmaceutical and biomedical industries. An analytical study was performed to investigate, for the first time, the presence of antioxidant constituents and the corresponding in vitro antioxidant activity in the extract of cladodes from Ficodindia di San Cono (Opuntia ficus-indica) protected designation of origin (PDO). The cladode extracts were analysed for target determination of selected constituents, i.e., β-polysaccharides and total phenolic content. Moreover, the antioxidant activity of hydro-alcoholic extracts was assessed by means of two different methods: α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay. An untargeted UHPLC-ESI-QTOF-MS profiling approach was used to depict the phenolic profile of hydro-alcoholic cladode extracts. Interestingly, over 2 g/kg of polyphenols were detected in this matrix, and these compounds were mainly responsible for the antioxidant properties, as shown by the strong correlation between phenolic classes and antioxidant scores. Finally, this study provides basic information on the presence of bioactive compounds and in vitro antioxidant activities in cladode extracts from cactus that might recommend their novel applications at the industrial level in the field of nutraceutical products. PMID:29463028

  18. Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds

    Directory of Open Access Journals (Sweden)

    Margarida Costa

    2013-12-01

    Full Text Available The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT and lactic dehydrogenase release (LDH assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria.

  19. Italian Opuntia ficus-indica Cladodes as Rich Source of Bioactive Compounds with Health-Promoting Properties.

    Science.gov (United States)

    Rocchetti, Gabriele; Pellizzoni, Marco; Montesano, Domenico; Lucini, Luigi

    2018-02-18

    Natural by-products, especially phenolic compounds, are in great demand by the nutra-pharmaceutical and biomedical industries. An analytical study was performed to investigate, for the first time, the presence of antioxidant constituents and the corresponding in vitro antioxidant activity in the extract of cladodes from Ficodindia di San Cono ( Opuntia ficus-indica ) protected designation of origin (PDO). The cladode extracts were analysed for target determination of selected constituents, i.e. β-polysaccharides and total phenolic content. Moreover, the antioxidant activity of hydro-alcoholic extracts was assessed by means of two different methods: α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay. An untargeted UHPLC-ESI-QTOF-MS profiling approach was used to depict the phenolic profile of hydro-alcoholic cladode extracts. Interestingly, over 2 g/kg of polyphenols were detected in this matrix, and these compounds were mainly responsible for the antioxidant properties, as shown by the strong correlation between phenolic classes and antioxidant scores. Finally, this study provides basic information on the presence of bioactive compounds and in vitro antioxidant activities in cladode extracts from cactus that might recommend their novel applications at the industrial level in the field of nutraceutical products.

  20. Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation.

    Science.gov (United States)

    Schiassi, Maria Cecília Evangelista Vasconcelos; Souza, Vanessa Rios de; Lago, Amanda Maria Teixeira; Campos, Letícia Gabrielle; Queiroz, Fabiana

    2018-04-15

    Given the economic importance of fruit processing, this study aimed to analyze the chemical composition, antioxidant activity, and sensorial acceptance of six fruit pulps from the Brazilian Cerrado. For bioactive compounds of the selected fruits, buriti contains the highest carotenoid content (2.85 mg licopene/100 g e 4.65 mg β-carotene/100g), however showed the lowest ascorbic acid concentration (7.42 mg/100g); while mangaba contains the highest ascorbic acid concentration (175.06 mg/100g), but obtained the lowest total phenolic compounds (46.85 mg GAEs/100g) and antioxidant capacity. The marolo reported the highest total phenolic compounds (728.17 mg GAEs/100g), total fiber (21.62%), and a high antioxidant potential. Regarding the mineral composition, marolo stood out as potassium (378.69 mg/100g) and magnesium (31.78 mg/100g) contents, and yellow mombin as phosphorus (26.24 mg/100g) content. Finally, juice prepared using cagaita and marolo had greater sensorial acceptance. The composition of fruit pulps indicated the potential there for the development of new food products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Simultaneous analysis of eight bioactive compounds in Danning tablet by HPLC-ESI-MS and HPLC-UV.

    Science.gov (United States)

    Liu, Runhui; Zhang, Jiye; Liang, Mingjin; Zhang, Weidong; Yan, Shikai; Lin, Min

    2007-02-19

    A high performance liquid chromatography (HPLC) coupled with electrospray tandem mass spectrometry (ESI-MS) and ultraviolet detector (UV) has been developed for the simultaneous analysis of eight bioactive compounds in Danning tablet (including hyperin, hesperidin, resveratrol, nobiletin, curcumine, emodin, chrysophanol, and physcion), a widely used prescription of traditional Chinese medicine (TCM). The chromatographic separation was performed on a ZORBAX Extend C(18) analytical column by gradient elution with acetonitrile and formate buffer (containing 0.05% formic acid, adjusted with triethylamine to pH 5.0) at a flow rate of 0.8 ml/min. The eight compounds in Danning tablet were identified and their MS(n) fractions were elucidated by using HPLC-ESI-MS, and the contents of these compounds were determined by using HPLC-UV method. The standard calibration curves were linear between 5.0 and 100 microg/ml for hyperin, 10-200 microg/ml for hesperidin, 1.0-150 microg/ml for resveratrol, 2.0-120 microg/ml for nobiletin, 2.0-225 microg/ml for curcumine, 20-300 microg/ml for emodin, 2.0-200 microg/ml for chrysophanol, and 20-250 microg/ml for physcion with regression coefficient r(2)>0.9995. The intra-day and inter-day precisions of this method were evaluated with the R.S.D. values less than 0.7% and 1.3%, respectively. The recoveries of the eight investigated compounds were ranged from 99.3% to 100.2% with R.S.D. values less than 1.5%. This method was successfully used to determine the 8 target compounds in 10 batches of Danning tablet.

  2. Inhibitory effect of Sphagnum palustre extract and its bioactive compounds on aromatase activity

    Directory of Open Access Journals (Sweden)

    Hee Jeong Eom

    2016-09-01

    Full Text Available Sphagnum palustre (a moss has been traditionally used in Korea for the cure of several diseases such as cardiac pain and stroke. In this research, the inhibitory effect of S. palustre on aromatase (cytochrome P450 19, CYP19 activity was studied. [1β-3H] androstenedione was used as a substrate and incubated with S. palustre extract and recombinant human CYP19 in the presence of NADPH. S. palustre extract inhibited aromatase in a concentration-dependent manner (IC50 value: 36.4 ± 8.1 µg/mL. To elucidate the major compounds responsible for the aromatase inhibitory effects of S. palustre extract, nine compounds were isolated from the extract and tested for their inhibition of aromatase activity. Compounds 1, 6, and 7 displayed aromatase inhibition, while the inhibition by the other compounds was negligible.

  3. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds

    Directory of Open Access Journals (Sweden)

    S. L. VASOYA

    2005-10-01

    Full Text Available An efficient and high yield method for the synthesis of aminobenzylated Mannich bases is described. The synthesis occurs in aqueous medium at 0 ºC. The compounds show moderate antitubercular and antimicrobial activities.

  4. New compounds and secondary metabolites from bioactive extracts of the fungus Armillaria tabescens

    Science.gov (United States)

    Bandara Herath, H.M.T.; Jacob, Melissa; Wilson, A. Dan; Abbas, Hamed K.; Nanayakkara, N. P. Dhammika

    2012-01-01

    Ethyl acetate extracts of Armillaria tabescens (strain JNB-OZ344) showed significant fungistatic and bacteristatic activities against several major human pathogens including Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analysis of these extracts led to the isolation and identification of four new compounds emestrin-F (1), emestrin-G (2), 6-O-(4-O-methyl-β-D-glucopyranosyl)-8-hydroxy-2,7-dimethyl-4H-benzopyran-4-one (3) and cephalosporolide-J (4) along with five other previously known compounds, emestrin (5), cephalosporolide-E (6), decarestrictine-C2 (7), ergosterol and brassicasterol. Structural elucidation of all compounds was carried out by NMR and MS analysis. Antimicrobial assays revealed that compounds 1 and 5 were responsible for the observed growth-inhibitory activities of the fungal extracts against the human pathogens tested. PMID:23140424

  5. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Giulio Cerullo

    2008-10-01

    Full Text Available Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.

  6. Bioactive Compound Synthetic Capacity and Ecological Significance of Marine Bacterial Genus Pseudoalteromonas

    OpenAIRE

    Bowman, John P.

    2007-01-01

    The genus Pseudoalteromonas is a marine group of bacteria belonging to the class Gammaproteobacteria that has come to attention in the natural product and microbial ecology science fields in the last decade. Pigmented species of the genus have been shown to produce an array of low and high molecular weight compounds with antimicrobial, anti-fouling, algicidal and various pharmaceutically-relevant activities. Compounds formed include toxic proteins, polyanionic exopolymers, substituted phenoli...

  7. Sapwood of carob tree (Ceratonia siliqua L.) as a potential source of bioactive compounds

    OpenAIRE

    Custódio, Luísa Margarida Batista; Escapa, Ana Luísa; Patarra, João; Aligué, Rosa; Alberício, Fernando; Neng, Nuno Rosa; Nogueira, José Manuel F.; Romano, Anabela

    2013-01-01

    Methanol (ME) and hot water extracts (WE) of carob tree sapwood (Ceratonia siliqua L.) exhibited high antioxidant activity and were rich in phenolic compounds, with the main compounds identified by HPLC/DAD as gentisic acid and (-)-epicatechin. The ME displayed a high in vitro antitumor activity against human tumoural cell lines and reduced intracellular ROS production by HeLa cells after treatment with H 2O 2. (-)-Epicatechin was shown to contribute to the cytotoxic activity of the ME. T...

  8. Bioactive compound loaded stable silver nanoparticle synthesis from microwave irradiated aqueous extracellular leaf extracts of Naringi crenulata and its wound healing activity in experimental rat model.

    Science.gov (United States)

    Bhuvaneswari, T; Thiyagarajan, M; Geetha, N; Venkatachalam, P

    2014-07-01

    An efficient and eco-friendly protocol for the synthesis of bioactive silver nanoparticles was developed using Naringi crenulata leaf extracts via microwave irradiation method. Silver nanoparticles were synthesized by treating N. crenulata leaf extracts with 1mM of aqueous silver nitrate solution. An effective bioactive compound such as alkaloids, phenols, saponins and quinines present in the N. crenulata reduces the Ag(+) into Ag(0). The synthesized silver nanoparticles were monitored by UV-vis spectrophotometer and further characterized by X-ray diffraction (XRD), Fourier Transform Infra Red (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM). UV-vis spectroscopy showed maximum absorbance at 390nm due to surface plasmon resonance of AgNPs. From FESEM results, an average crystal size of the synthesized nanoparticle was 72-98nm. FT-IR results showed sharp absorption peaks and they were assigned to phosphine, alkyl halides and sulfonate groups. Silver nanoparticles synthesized were generally found to be spherical and cubic shape. Topical application of ointment prepared from silver nanoparticles of N. crenulata were formulated and evaluated in vivo using the excision wound healing model on Wistar albino rats. The measurement of the wound areas was performed on 3rd, 6th, 9th, 12th and 15th days and the percentage of wound closures was calculated accordingly. By the 15th day, the ointment base containing 5% (w/w) of silver nanoparticles showed 100% wound healing activity compared with that of the reference as well as control bases. The results strongly suggested that the batch C ointment containing silver nanaoparticles synthesized from the leaf extracts of N. crenulata was found to be very effective in wound repair and encourages harnessing the potentials of the plant biomolecules loaded silver nanoparticle in the treatment of tropical diseases including wound healing. Copyright © 2014 Elsevier B.V. All rights

  9. An azobenzene-containing metal-organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds.

    Science.gov (United States)

    Hoang, Linh T M; Ngo, Long H; Nguyen, Ha L; Nguyen, Hanh T H; Nguyen, Chung K; Nguyen, Binh T; Ton, Quang T; Nguyen, Hong K D; Cordova, Kyle E; Truong, Thanh

    2015-12-14

    An azobenzene-containing zirconium metal-organic framework was demonstrated to be an effective heterogeneous catalyst for the direct amidation of benzoic acids in tetrahydrofuran at 70 °C. This finding was applied to the synthesis of several important, representative bioactive compounds.

  10. Identification and Bioactivity of Compounds from the Mangrove Endophytic Fungus Alternaria sp.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    2015-07-01

    Full Text Available Racemic new cyclohexenone and cyclopentenone derivatives, (±-(4R*,5S*,6S*-3-amino-4,5,6-trihydroxy-2-methoxy-5-methyl-2-cyclohexen-1-one (1 and (±-(4S*,5S*-2,4,5-trihydroxy-3-methoxy-4-methoxycarbonyl-5-methyl-2-cyclopenten-1-one (2, and two new xanthone derivatives 4-chloro-1,5-dihydroxy-3-hydroxymethyl-6-methoxycarbonyl-xanthen-9-one (3 and 2,8-dimethoxy-1,6-dimethoxycarbonyl-xanthen-9-one (4, along with one known compound, fischexanthone (5, were isolated from the culture of the mangrove endophytic fungus Alternaria sp. R6. The structures of these compounds were elucidated by analysis of their MS (Mass, one and two dimensional NMR (nuclear magnetic resonance spectroscopic data. Compounds 1 and 2 exhibited potent ABTS [2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid] scavenging activities with EC50 values of 8.19 ± 0.15 and 16.09 ± 0.01 μM, respectively. In comparison to Triadimefon, compounds 2 and 3 exhibited inhibitory activities against Fusarium graminearum with minimal inhibitory concentration (MIC values of 215.52 and 107.14 μM, respectively, and compound 3 exhibited antifungal activity against Calletotrichum musae with MIC value of 214.29 μM.

  11. Profiling of different bioactive compounds in functional drinks by high-performance liquid chromatography.

    Science.gov (United States)

    Mendiola, José A; Marin, Francisco R; Señoráns, F Javier; Reglero, Guillermo; Martín, Pedro J; Cifuentes, Alejandro; Ibáñez, Elena

    2008-04-25

    In the present work, an HPLC method is proposed to simultaneously detect and quantify water- and fat-soluble vitamins, phenolic compounds, carotenoids and chlorophylls in a single run, by using an ultradeactivated C18 column and gradient separation using trifluoroacetic acid, water and methanol. It is shown that the HPLC method provides baseline separation of all these compounds with good resolution values in 40 min. Moreover, other figures of merit of the method show a good linear response and low detection limits for all the compounds considered in the present study. Furthermore, the usefulness of this method is demonstrated via its successful application to the analysis of different beverages from different natural origin (orange, strawberry, apple, peach pineapple, plum and blackcurrant juices, soybean milk, beers) without the need of any previous sample preparation. A good correlation is also found by comparing the total phenol content (measured by Folin-Ciocalteu method) with the sum of total phenolic compounds obtained using the proposed HPLC method. By using statistical tools, the main compounds associated with antioxidant activity of the extracts (measured by 1,1-diphenyl-2-picrylhydrazyl radical scavenging) were assessed.

  12. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  13. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions.

    Science.gov (United States)

    Teiten, Marie-Hélène; Gaascht, François; Dicato, Mario; Diederich, Marc

    2013-11-01

    Since centuries, natural compounds from plants, animals and microorganisms were used in medicinal traditions to treat various diseases without a solid scientific basis. Recent studies have shown that plants that were used or are still used in the medieval European medicine are able to provide relieve for many diseases including cancer. Here we summarize impact and effect of selected purified active natural compounds from plants used in European medieval medicinal traditions on cancer hallmarks and enabling characteristics identified by Hanahan and Weinberg. The aim of this commentary is to discuss the pharmacological effect of pure compounds originally discovered in plants with therapeutic medieval use. Whereas many reviews deal with Ayurvedic traditions and traditional Chinese medicine, to our knowledge, the molecular basis of European medieval medicinal approaches are much less documented. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Hydroquinone; A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce

    Science.gov (United States)

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-05-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus, Aloe vera, Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from Ginkgo biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10 and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.

  15. Comparative analysis of minor bioactive constituents (CoQ10, tocopherols and phenolic compounds) in Arbequina extra virgin olive oils from Brazil and Spain

    OpenAIRE

    Borges, Thays H.; López, Luis Carlos; Pereira, J.A.; Cabrera-Vique, Carmen; Seiquer, Isabel

    2017-01-01

    There is currently an emerging production of olive oil in Brazil but it is still poorly characterized. In this study, we performed a comparative analysis of minor bioactive constituents (CoQ 10 tocopherols and phenolic compounds) in extra virgin olive oil from different regions of Brazil and Spain, of Arbequina cultivar. Significant variations (P < 0.05) in the concentration of the compounds analyzed were observed among oils from the different growing areas, not only between Spanish and Bra...

  16. Sapwood of Carob Tree (Ceratonia siliqua L. as a Potential Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Luísa Custódio

    2013-05-01

    Full Text Available Methanol (ME and hot water extracts (WE of carob tree sapwood (Ceratonia siliqua L. exhibited high antioxidant activity and were rich in phenolic compounds, with the main compounds identified by HPLC/DAD as gentisic acid and (--epicatechin. The ME displayed a high in vitro antitumor activity against human tumoural cell lines and reduced intracellular ROS production by HeLa cells after treatment with H 2O 2. (--Epicatechin was shown to contribute to the cytotoxic activity of the ME. This is the first report on the biological activity of carob tree sapwood.

  17. Variation in Essential Oil and Bioactive Compounds of Curcuma kwangsiensis Collected from Natural Habitats.

    Science.gov (United States)

    Zhang, Lanyue; Yang, Zhiwen; Huang, Zebin; Zhao, Mincong; Li, Penghui; Zhou, Wei; Zhang, Kun; Zheng, Xi; Lin, Li; Tang, Jian; Fang, Yanxiong; Du, Zhiyun

    2017-07-01

    The chemical compositions of essential oils (EOs) extracted from Curcuma kwangsiensis rhizomes collected from six natural habitats in P. R. China were evaluated using gas chromatography/mass spectrometry (GC/MS). Fifty-seven components were identified from the six EOs, and their main constituents were 8,9-dehydro-9-formyl-cycloisolongifolene (2.37 - 42.59%), germacrone (6.53 - 22.20%), and l-camphor (0.19 - 6.12%). The six EOs exhibited different DPPH radical-scavenging activities (IC 50 , 2.24 - 31.03 μg/ml), with the activity of most of EOs being much higher than that of Trolox C (IC 50 , 10.49 μg/ml) and BHT (IC 50 , 54.13 μg/ml). Most EOs had potent antimicrobial effects against the tested bacteria and fungus. They also exhibited cytotoxicity against B16 (IC 50 , 4.44 - 147.4 μg/ml) and LNCaP cells (IC 50 , 73.94 - 429.25 μg/ml). The EOs showed excellent anti-inflammatory action by significantly downregulating expression of pro-inflammatory cytokines, cyclooxygenase-2, and tumor necrosis factor-α. This study provides insight into the interrelation among growth location, phytoconstituents, and bioactivities, and the results indicate the potential of C. kwangsiensis as natural nutrients, medicines, and others additives. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  18. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health.

    Science.gov (United States)

    Pereira, Aline; Maraschin, Marcelo

    2015-02-03

    Banana is a fruit with nutritional properties and also with acclaimed therapeutic uses, cultivated widely throughout the tropics as source of food and income for people. Banana peel is known by its local and traditional use to promote wound healing mainly from burns and to help overcome or prevent a substantial number of illnesses, as depression. This review critically assessed the phytochemical properties and biological activities of Musa spp fruit pulp and peel. A survey on the literature on banana (Musa spp, Musaceae) covering its botanical classification and nomenclature, as well as the local and traditional use of its pulp and peel was performed. Besides, the current state of art on banana fruit pulp and peel as interesting complex matrices sources of high-value compounds from secondary metabolism was also approached. Dessert bananas and plantains are systematic classified into four sections, Eumusa, Rhodochlamys, Australimusa, and Callimusa, according to the number of chromosomes. The fruits differ only in their ploidy arrangement and a single scientific name can be given to all the edible bananas, i.e., Musa spp. The chemical composition of banana's peel and pulp comprise mostly carotenoids, phenolic compounds, and biogenic amines. The biological potential of those biomasses is directly related to their chemical composition, particularly as pro-vitamin A supplementation, as potential antioxidants attributed to their phenolic constituents, as well as in the treatment of Parkinson's disease considering their contents in l-dopa and dopamine. Banana's pulp and peel can be used as natural sources of antioxidants and pro-vitamin A due to their contents in carotenoids, phenolics, and amine compounds, for instance. For the development of a phytomedicine or even an allopathic medicine, e.g., banana fruit pulp and peel could be of interest as raw materials riches in beneficial bioactive compounds. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Two new naphthalene glucosides and other bioactive compounds from the carnivorous plant Nepenthes mirabilis.

    Science.gov (United States)

    Thanh, Nguyen Van; Thao, Nguyen Phuong; Dat, Le Duc; Huong, Phan Thi Thanh; Lee, Sang Hyun; Jang, Hae Dong; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Kiem, Phan Van; Minh, Chau Van; Kim, Young Ho

    2015-10-01

    Two new naphthalene diglucosides named nepenthosides A (1) and B (2), together with eleven known compounds (3-13), were isolated from the carnivorous plant Nepenthes mirabilis. The structures of these compounds were elucidated based on extensive spectroscopic analysis, including 1D- and 2D-NMR, and MS. The antioxidant activities of compounds 1-13 were evaluated in terms of their peroxyl radical-scavenging (trolox equivalent, TE) and reducing capacities. All isolates showed peroxyl radical-scavenging and reducing activities at concentrations of 1.0 and 10.0 μM. Anti-osteoporotic activities were investigated using murine osteoclastic RAW 264.7 cells. Compounds 1-7 and 9-12 significantly suppressed tartrate-resistant acid phosphatase activity down to 91.13 ± 1.18 to 42.39 ± 1.11%, relative to the control (100%) in nuclear factor-κB ligand (RANκL)-induced osteoclastic RAW 264.7 macrophage cells.

  20. Quality parameters, bioactive compounds and their correlation with antioxidant capacity of commercial fruit-based baby foods.

    Science.gov (United States)

    Carbonell-Capella, Juana M; Barba, Francisco J; Esteve, María J; Frígola, Ana

    2014-10-01

    Comprehensive research is required to achieve the optimization of the antioxidant protection through baby foods, in particular, the commercially available fruit-based baby foods. This study investigated the physicochemical properties, ascorbic acid (AA), total carotenoids (TC), total phenolic content (TPC), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) of 23 different commercially available fruit-based baby foods. The main contribution to the total antioxidant capacity (trolox equivalent antioxidant capacity and oxygen radical absorbance capacity) was provided by ascorbic acid, followed by phenolic compounds, in accordance with a mathematical equation obtained from the data: TEAC = 245.906 + 7.727 × (AA) + 1.988 × (TPC) - 0.008 × (TC) and ORAC = 318.662 + 2.775 × (AA) - 0.531 × (TPC) - 0.073 × (TC). Moreover, a positive correlation (r = 0.346, p antioxidant capacity methods. Baby foods with different kind of fruits used as ingredients showed higher antioxidant capacity. Among the commercial baby foods analysed in this work, that treated by gentle steam cooking process had high levels of bioactive compounds and antioxidant capacity. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Electrically induced changes in amaranth seed enzymatic activity and their effect on bioactive compounds content after germination.

    Science.gov (United States)

    Ozuna, César; Cerón-García, Abel; Elena Sosa-Morales, Ma; Salazar, Julián Andrés Gómez; Fabiola León-Galván, Ma; Del Rosario Abraham-Juárez, Ma

    2018-02-01

    Electric treatment applied to seeds and sprouts can change their phytochemical composition. However, only a handful of studies have investigated the effects of treating seeds with electric current prior to their germination on the enzymatic antioxidant system of their sprouts. The aim of this study was to determine the changes in bioactive compounds and the enzymatic antioxidant activities in seeds and amaranth sprouts under direct electric current (DC) treatments. Amaranth seeds were treated with DC at 500 mA for different periods of time (0, 2, 5, 10 and 30 min) and let sprout (85% RH, 25 ± 2 °C) for 6 days. Significant changes were found in the antioxidant enzymatic activities and in the total content of flavonoids (15.44 ± 0.56 mg RE/gDW) and phenolic compounds (35.87 ± 0.17 mg GAE/gDW) in 6-day-old sprouts from DC-treated seeds in comparison to sprouts form non-treated seeds. The results suggested that DC treatment for short period (5 min) can induce quantitative changes to the enzymatic antioxidant system of amaranth sprouts, thus representing a relatively cost-effective method for enhancing health-improving properties of sprouts.

  2. Characterization of autochthonous sweet cherry cultivars (Prunus avium L.) of southern Italy for fruit quality, bioactive compounds and antioxidant activity.

    Science.gov (United States)

    Di Matteo, Antonio; Russo, Rosa; Graziani, Giulia; Ritieni, Alberto; Di Vaio, Claudio

    2017-07-01

    Characterizing germplasm collections of autochthonous cultivars for fruit quality traits could be a successful approach for selection, improvement of organoleptic quality and levels of antioxidants of crop produce, and development of new market opportunities and coherent strategies for conservation and valorization. The aim of the study was the evaluation of fruit physicochemical traits as well as the content of bioactive compounds and the antioxidant capacity in 25 sweet cherry autochthonous cultivars. Cultivars were a source of statistically significant variation for all evaluated traits. Notably, average fruit ascorbate levels ranged from 34.45 to 244.68 µg g -1 fresh weight (FW) , total flavonoids from 1396.40 to 4694.75 µg quercetin equiv. g -1 FW, monomeric anthocyanins from 4.80 to 360.90 µg g -1 FW, and total antioxidant capacity from 1.53 to 2.58 nmol Trolox equiv. mg -1 FW. Fruit profiling of eight cultivars by high-resolution mass spectrometry identified a total of eight different anthocyanins and twenty-five non-anthocyanin polyphenolic compounds - mostly coumaroylquinic acid and neochlorogenic acid. Among the better-performing cultivars for fruit quality traits, Mulegnana Nera and Pagliarella shared high fruit levels of phenolics, flavonoids and antioxidant capacity. This is a forerunner work on the characterization of genetic resources, which is critical to researchers and breeders for exploitation of the genetic potential of cultivars and for their conservation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Simultaneous determination of bioactive compounds in Piper nigrum L. and a species comparison study using HPLC-PDA.

    Science.gov (United States)

    Rao, Vidadala Rama Subba; Raju, Sagi Satyanarayana; Sarma, Vanka Umamaheswara; Sabine, Fouriner; Babu, Kothapalli Hari; Babu, Katragadda Suresh; Rao, Janaswamy Madhusudana

    2011-08-01

    Piper nigrum L. is a traditional medicine widely used in India for illnesses such as constipation, diarrhoea, earache, gangrene, heart disease, hernia, hoarseness, indigestion, insect bites, insomnia, joint pain, liver problems, lung disease, oral abscesses, sunburn, tooth decay and toothaches. In this study, six bioactive compounds, namely piperine (1), pellitorine (2), guineensine (3), pipnoohine (4), trichostachine (5) and piperonal (6) were quantified in different extracts of P. nigrum L. and compared with those of P. longum L. and P. chaba Hunter. To evaluate the quality of P. nigrum, a simple, accurate and precise HPLC-PDA method was developed for the simultaneous determination of the above-mentioned six compounds. The separation was achieved by Phenomenex Luna RP C(18) column (150 × 4.6 mm, 5 µm, Phenomenex Inc, CA, USA) with a binary gradient solvent system of water-acetonitrile, at a flow rate of 1.0 mL min(-1) and detected at 210, 232, 262 and 343 nm. All six calibration curves showed good linearity (R (2) > 0.9966). The method was reproducible with intra- and inter-day variations of less than 2% and 5%, respectively. The results demonstrated that this method is simple, reliable and suitable for the quality control of these plants.

  4. Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium malaccense (L. Merr. & L.M. Perry].

    Directory of Open Access Journals (Sweden)

    Polyana Campos Nunes

    Full Text Available The purpose of this study was to evaluate the physico-chemical characteristics, bioactive compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense grown in Brazil with regard to the geographical origin and its peel fractions and edible portion analyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total phenolics (1293 mg gallic acid equivalent/100 g and total anthocyanins (1045 mg/100 g contents were higher in the peel, with the major anthocyanin identified using HPLC-DAD-MS/MS as cyanidin 3-glucoside. Higher values for DPPH antiradical scavenging activity (47.52 μMol trolox equivalent antioxidant capacity/g and Ferric Reducing Antioxidant Potential (FRAP, 0.19 mM ferreous sulfate/g were also observed in the peel fraction. All extracts tested showed the ability to inhibit oxidation in the β-carotene/linoleic acid system. This study highlights the potential of Malay apple fruit as a good source of antioxidant compounds with potential benefits to human health.

  5. Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium malaccense (L.) Merr. & L.M. Perry].

    Science.gov (United States)

    Nunes, Polyana Campos; Aquino, Jailane de Souza; Rockenbach, Ismael Ivan; Stamford, Tânia Lúcia Montenegro

    2016-01-01

    The purpose of this study was to evaluate the physico-chemical characteristics, bioactive compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense) grown in Brazil with regard to the geographical origin and its peel fractions and edible portion analyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total phenolics (1293 mg gallic acid equivalent/100 g) and total anthocyanins (1045 mg/100 g) contents were higher in the peel, with the major anthocyanin identified using HPLC-DAD-MS/MS as cyanidin 3-glucoside. Higher values for DPPH antiradical scavenging activity (47.52 μMol trolox equivalent antioxidant capacity/g) and Ferric Reducing Antioxidant Potential (FRAP, 0.19 mM ferreous sulfate/g) were also observed in the peel fraction. All extracts tested showed the ability to inhibit oxidation in the β-carotene/linoleic acid system. This study highlights the potential of Malay apple fruit as a good source of antioxidant compounds with potential benefits to human health.

  6. Validation of determination of plasma metabolites derived from thyme bioactive compounds by improved liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Rubió, Laura; Serra, Aida; Macià, Alba; Borràs, Xenia; Romero, Maria-Paz; Motilva, Maria-José

    2012-09-15

    In the present study, a selective and sensitive method, based on microelution solid-phase extraction (μSPE) plate and ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was validated and applied to determine the plasma metabolites of the bioactive compounds of thyme. For validation process, standards of the more representative components of the phenolic and monoterpene fractions of thyme were spiked in plasma samples and then the quality parameters of the method were studied. Extraction recoveries (%R) of the studied compounds were higher than 75%, and the matrix effect (%ME) was lower than 18%. The LODs ranged from 1 to 65 μg/L, except for the thymol sulfate metabolite, which was 240 μg/L. This method was then applied for the analysis of rat plasma obtained at different times, from 0 to 6h, after an acute intake of thyme extract (5 g/kg body weight). Different thyme metabolites were identified and were mainly derived from rosmarinic acid (coumaric acid sulfate, caffeic acid sulfate, ferulic acid sulfate, hydroxyphenylpropionic acid sulfate, dihydroxyphenylpropionic acid sulfate and hydroxybenzoic acid) and thymol (thymol sulfate and thymol glucuronide). The most abundant thyme metabolites generated were hydroxyphenylpropionic acid sulfate and thymol sulfate, their respective concentrations in plasma being 446 and 8464 μM 1h after the intake of the thyme extract. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Flavonols and Carotenoids in Yellow Petals of Rose Cultivar ( Rosa 'Sun City'): A Possible Rich Source of Bioactive Compounds.

    Science.gov (United States)

    Wan, Huihua; Yu, Chao; Han, Yu; Guo, Xuelian; Ahmad, Sagheer; Tang, Aoying; Wang, Jia; Cheng, Tangren; Pan, Huitang; Zhang, Qixiang

    2018-04-25

    Rose flowers have received increasing interest as rich sources of bioactive compounds. The composition of flavonols and carotenoids in yellow petals of Rosa 'Sun City' was determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometric detectors (HPLC-PDA-MS). In total, 19 flavonols and 16 carotenoids were identified, some of which were first discovered in rose petals. Significant changes were observed in their profiles during seven blooming stages. Total flavonol contents showed the highest levels at stage 2 (S2; 1152.29 μg/g, FW). Kaempferol 7- O-glucoside and kaempferol 3- O-rhamnoside were the predominant individual flavonols. Total carotenoid concentration was highest at S4 (142.71 μg/g, FW). Violaxanthins with different geometrical configurations appeared as the major carotenoids across all blooming stages. These results indicated that 'Sun City' petals are rich sources of flavonols and carotenoids. Moreover, it is important to choose the appropriate harvest time on the basis of the targeted compounds.

  8. Olive oil bioactive compounds increase body weight, and improve gut health and integrity in gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Gisbert, Enric; Andree, Karl B; Quintela, José C; Calduch-Giner, Josep A; Ipharraguerre, Ignacio R; Pérez-Sánchez, Jaume

    2017-02-01

    An olive oil bioactive extract (OBE) rich in bioactive compounds like polyphenols, triterpenic acids, long-chain fatty alcohols, unsaturated hydrocarbons, tocopherols and sterols was tested (0, 0·08, 0·17, 0·42 and 0·73 % OBE) in diets fed to sea bream (Sparus aurata) (initial weight: 5·4 (sd 1·2) g) during a 90-d trial (four replicates). Fish fed diets containing 0·17 and 0·42 % OBE were 5 % heavier (61·1 (sd 1·6) and 60·3 (sd 1·1) g, respectively) than those of the control group (57·0 (sd 0·7) g), although feed conversion ratio and specific feed intake did not vary. There were no differences in lipid peroxidation (LPO) levels, catalase, glutathione reductase and glutathione S-transferase activities in the intestine and liver, although there was a tendency of lower intestinal and hepatic LPO levels in fish fed OBE diets. No differences in villus size were found among treatments, whereas goblet cell density in the control group was on average14·3 % lower than in fish fed OBE diets. The transcriptomic profiling of intestinal markers, covering different biological functions like (i) cell differentiation and proliferation, (ii) intestinal permeability, (iii) enterocyte mass and epithelial damage, (iv) IL and cytokines, (v) pathogen recognition receptors and (vi) mitochondria function, indicated that among the eighty-eight evaluated genes, twenty-nine were differentially expressed (0·17 % OBE diet), suggesting that the additive has the potential of improving the condition and defensive role of the intestine by enhancing the maturation of enterocytes, reducing oxidative stress, improving the integrity of the intestinal epithelium and enhancing the intestinal innate immune function, as gene expression data indicated.

  9. Production of bioactive compounds with antitumor activity against sarcoma 180 by Pleurotus sajor-caju.

    Science.gov (United States)

    Assis, Ivaneliza Simionato; Chaves, Mariane Bonatti; Silveira, Marcia Luciane Lange; Gern, Regina Maria Miranda; Wisbeck, Elisabeth; Júnior, Agenor Furigo; Furlan, Sandra Aparecida

    2013-11-01

    This work studied the influence of culture medium composition and pH on exopolysaccharide (EPS) production by Pleurotus sajor-caju and validates the antitumor activity of the produced EPSs and of the mycelial biomass (intracellular polysaccharides [IPSs]) against Sarcoma 180 (S180) cells. The effect of the initial concentrations of (NH₄)₂SO₄, yeast extract and soy peptone on EPS production by P. sajor-caju was studied in shake flasks. A bioreactor was used to evaluate the pH values and the initial CaCO₃ and glucose concentrations. Extracts of EPSs (PE1) and IPSs obtained through two different separation processes (PM1 and PM2) were tested on mice inoculated with S180 cells. A medium containing 2.5, 1.0, and 1.0 g/L of (NH₄)₂SO₄, yeast extract and soy peptone, respectively, provided the highest EPS concentration (0.6 g/L). The use of pH 4.0, 1.0 g/L CaCO₃ and 20 g/L initial glucose concentration enhanced EPS productivity (3.84 g/L per hour). The PE1 extract promoted the highest reduction of S180 growth (86%), followed by the PM2 extract (80%); growth reduction was dose-independent for both substances. This work provides information about culture medium and conditions that enhanced the production of extracellular polysaccharides by P. sajor-caju. The results can contribute to the search for new bioactive products bringing novel aspects to the medical and pharmaceutical areas.

  10. Bioactive Compounds from a Gorgonian Coral Echinomuricea sp. (Plexauridae

    Directory of Open Access Journals (Sweden)

    Jih-Jung Chen

    2012-05-01

    Full Text Available A new labdane-type diterpenoid, echinolabdane A (1, and a new sterol, 6-epi-yonarasterol B (2, were isolated from a gorgonian coral identified as Echinomuricea sp. The structures of metabolites 1 and 2 were elucidated by spectroscopic methods. Echinolabdane A (1 possesses a novel tetracyclic skeleton with an oxepane ring jointed to an α,β-unsaturated-γ-lactone ring by a hemiketal moiety, and this compound is the first labdane-type diterpenoid to be obtained from marine organisms belonging to the phylum Cnidaria. 6-epi-Yonarasterol B (2 is the first steroid derivative to be isolated from gorgonian coral belonging to the genus Echinomuricea, and this compound displayed significant inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils.

  11. Polyfunctionalized carbohydrate-derived scaffolds for the production of libraries of bioactive compounds

    OpenAIRE

    Silva, Ana Catarina de Araújo, 1979-

    2010-01-01

    Tese de doutoramento, Química (Química Orgânica), Universidade de Lisboa, Faculdade de Ciências, 2010. Inspired by the role of carbohydrates as natural scaffolds, we exploited the sugar skeleton to generate new libraries of polyfunctionalized compounds as GABAA receptor ligands. Hybrids of benzodiazepines, γ-butyrolactone and -lactam derivatives, and a GABA analogue were developed. The incorporated sugar moiety offered the possibility of diverse and controlled functionalization...

  12. Phytochemical characterization of bioactive compounds on methanolic and ethanolic leaf extracts of Myrciaria sp.

    Directory of Open Access Journals (Sweden)

    Nathalia F. Naspolini

    2016-06-01

    Full Text Available Among the native species of importance in Brazil, jabuticabeira (Myrciaria sp. is a native fruit tree from several Brazilian regions. Few studies report the chemical constituents of the leaves and its pharmacological and nutraceutical properties. The aim of this study was to identify the phenolic compounds of the methanolic (MeOH and ethanolic (EtOH leaf extracts of Myrciaria sp. Phytochemical profile of the extracts was carried-out using High Performance Liquid Chromatography (HPLC analysis. Antioxidant potential was evaluated by radical scavenging capacity with 2,2-diphenyl-1-picryl-hydrazyl (DPPH and total phenolics were determined with Folin-Ciocalteau reagent. A total of nine different compounds were identified in the free and bound phenolics extractions: 2,4 dihydroxybenzoic, vanillin, p-coumaric, ferulic, sinapinic, rutin, epicatechin, trans-caffeic and myricetin. The extracts demonstrated high radical scavenging capacity (MeOH: 1.83 and EtOH: 8.05 mg/mL and high phenolic content (MeOH: 1.15; and EtOH: 1.04 mg/g dry matter. The wide variability of compounds revealed and the amount of peaks not identified, gives us a background of a potential plant matrix for further investigations in order to develop a nutraceutical agent.

  13. A Simplified Method to Estimate Sc-CO2 Extraction of Bioactive Compounds from Different Matrices: Chili Pepper vs. Tomato By-Products

    Directory of Open Access Journals (Sweden)

    Francesca Venturi

    2017-04-01

    Full Text Available In the last few decades, the search for bioactive compounds or “target molecules” from natural sources or their by-products has become the most important application of the supercritical fluid extraction (SFE process. In this context, the present research had two main objectives: (i to verify the effectiveness of a two-step SFE process (namely, a preliminary Sc-CO2 extraction of carotenoids followed by the recovery of polyphenols by ethanol coupled with Sc-CO2 in order to obtain bioactive extracts from two widespread different matrices (chili pepper and tomato by-products, and (ii to test the validity of the mathematical model proposed to describe the kinetics of SFE of carotenoids from different matrices, the knowledge of which is required also for the definition of the role played in the extraction process by the characteristics of the sample matrix. On the basis of the results obtained, it was possible to introduce a simplified kinetic model that was able to describe the time evolution of the extraction of bioactive compounds (mainly carotenoids and phenols from different substrates. In particular, while both chili pepper and tomato were confirmed to be good sources of bioactive antioxidant compounds, the extraction process from chili pepper was faster than from tomato under identical operating conditions.

  14. Electron energy-loss spectroscopy on fullerenes and fullerene compounds

    International Nuclear Information System (INIS)

    Armbruster, J.

    1996-03-01

    A few years ago, a new form of pure carbon, the fullerenes, has been discovered, which shows many fascinating properties. Within this work the spatial and electronic structure of some selected fullerene compounds have been investigated by electron-energy-loss spectroscopy in transmission. Phase pure samples of alkali intercalated fullerides A x C 60 (A=Na, K, Cs) have been prepared using vacuum distillation. Measruements of K 3 C 60 show a dispersion of the charge carrier plasmon close to zero. This can be explained by calculations, which take into account both band structure and local-field (inhomogeneity) effects. The importance of the molecular structure can also be seen from the A 4 C 60 compounds, where the non-metallic properties are explained by a splitting of the t 1u and t 1g derived bands that is caused by electron-correlation and Jahn-Teller effects. First measurements of the electronic structure of Na x C 60 (x>6) are presented and reveal a complete transfer from the sodium atoms but an incomplete transfer onto the C 60 molecules. This behaviour can be explained by taking into account additional electronic states that are situated between the sodium atoms in the octahedral sites and are predicted by calculations using local density approximation. The crystal structure of the higher fullerenes C 76 and C 84 is found to be face-centered cubic

  15. Nutritional Value and Bioactive Compounds Characterization of Plant Parts From Cynara cardunculus L. (Asteraceae Cultivated in Central Greece

    Directory of Open Access Journals (Sweden)

    Spyridon A. Petropoulos

    2018-04-01

    Full Text Available In the present study, the nutritional value of the edible parts (immature capitula of cardoon plants was evaluated, while further analyses were carried out in order to assess antioxidant properties and phenolic compounds composition of the various plant parts and seed oils. Cardoon capitula (heads were a rich source of carbohydrates, with the main detected free sugar being sucrose, as well as of macro- and micro-minerals (K, Ca, Mg, and Fe. Heads were also abundant in saturated fatty acids (palmitic, behenic, linoleic, stearic, caproic, and oleic acid, whereas seed oils in unsaturated fatty acids (linoleic, oleic, palmitic, and stearic acid. Total phenolic compounds (TPC content and phenolics composition differed between the various plant parts, with heads and leaf blades having higher TPC than midribs and petioles. Moreover, heads and leaf midribs and petioles consisted mainly of phenolic acids (5-O-caffeoylquinic and 3,5-O-dicaffeoylquinic acid, with flavonoids being detected in lower amounts. In contrast, the composition of polyphenols in leaf blades consisted mostly of flavonoids (Luteolin-7-O-glucoside and luteolin-7-O-malonylhexoside, whereas phenolic acids were also detected in considerable amounts (5-O-feruloylquinic and 3-O-caffeoylquinic acid. Regarding antioxidant properties, leaf blades and seeds exhibited the highest potency for all the tested assays which could be partly attributed to the synergistic effects of the phenolic compounds present in each sample. In conclusion, cardoon plant parts may find various uses in the food and pharmaceutical industry, since they contain considerable amounts of bioactive molecules, while seed oils can be considered as alternative vegetable oils for human consumption.

  16. Bioactive compounds fractionated from endophyte Streptomyces SUK 08 with promising ex-vivo antimalarial activity

    Directory of Open Access Journals (Sweden)

    Noraziah Mohamad Zin

    2017-12-01

    Full Text Available Objective: To determine ex vivo antimalarial activity and cytotoxicity of endophytic Streptomyces SUK 08 as well as the main core structure fractionated from its crude extract. Methods: The activities of SUK 08 crude extract were evaluated by using the Plasmodium lactate dehydrogenase assay and synchronization test against rodent malaria parasite Plasmodium berghei, instead of human malarial parasite Plasmodium falciparum. The cytotoxicity of the crude extract was determined by MTT assay. The crude extract was analyzed by thin-layer chromatography and gas chromatography–mass spectrophotometry. Results: The ethyl acetate crude extract showed very promising antimalarial activity with IC50 of 1.25 mg/mL. The synchronization tests showed that ethyl acetate extraction could inhibit all stages of the Plasmodium life cycle, but it was most effective at the Plasmodium ring stage. On the basis of a MTT assay on Chang Liver cells, ethyl acetate and ethanol demonstrated IC50 values of >1.0 mg/mL. The IC50 of parasitemia at 5% and 30% for this extract was lower than chloroquine. Thin-layer chromatography, with 1: 9 ratio of ethyl acetate: hexane, was used to isolate several distinct compounds. Based on gas chromatography–mass spectrophotometry analysis, three core structures were identified as cyclohexane, butyl propyl ester, and 2,3-heptanedione. Structurally, these compounds were similar to currently available antimalarial drugs. Conclusions: The results suggest that compounds isolated from Streptomyces SUK 08 are viable antimalarial drug candidates that require further investigations. Keywords: Butyl–propyl–ester, Cyclohexane, 2,3-Heptanedione, Endophyte, Streptomyces, Antimalarial

  17. Phytochemical characterization of bioactive compounds on methanolic and ethanolic leaf extracts of Myrciaria sp.

    Directory of Open Access Journals (Sweden)

    Nathalia F. Naspolini

    2016-01-01

    Full Text Available Among the native species of importance in Braz il, jabuticabeira ( Myrciaria sp. is a native fruit tree from several Brazilian regions. Few studies report the chemical constituents of the leaves and its pharmacological and nutraceutical properties. The aim of this study was to identify the phenolic com pounds of the methanolic (MeOH and ethanolic (EtOH leaf extracts of Myrciaria sp. Phytochemical profile of the extracts was carried - out using High Performance Liquid Chromatography (HPLC analysis. Antioxidant potential was evaluated by radical scavengin g capacity with 2,2 - diphenyl - 1 - picryl - hydrazyl (DPPH and total phenolics were determined with Folin -Ciocalteau reagent. A total of nine different compounds were identified in the free and bound phenolics extractions: 2,4 dihydroxybenzoic, vanillin, p- coumaric, ferulic, sinapinic, rutin, epicatechin, trans- caffeic and myricetin. The extracts demonstrated high radical scavenging capacity (MeOH: 1.83 and EtOH: 8.05 mg/mL and high phenolic content (MeOH: 1.15; and EtOH: 1.04 mg/g dry matter. The wide variability of compounds revealed and the amount of peaks not identified, gives us a background of a potential plant matrix for further investigations in order to develop a nutraceutical agent.

  18. Assessment of wild mint from Tunceli as source of bioactive compounds, and its antioxidant Activity.

    Science.gov (United States)

    Turkoglu, S

    2015-12-19

    The types of wild mint (Mentha spicata L.) were sampled from different geographical regions in Tunceli (Turkey) in order to find out their vitamin, mineral, phenolic contents and their antioxidant properties. The total phenol varied from 77.7±0.242 to 52.34±0.351 mg of GAEs/g of dry mint. The highest radical effect of scavenging was observed in Mazgirt parting of the ways 7.5 km with 6.17±0.245 mg/mL. The highest reducing power and metal chelating were observed in the mint from Cicekli parting of the ways 6.5 km Demirkapı. Among the various macronutrients which were estimated in the plant samples, potassium was presented in the highest quantity followed by calcium and phosphate. Although rutin and resveratrol were not determined in any samples, kaempferol and catechin levels were found out in almost all samples. The concentrations of vitamin A ranged between 42,14±5.70 and 13.61±3.00 (mg/kg dry weight). These results show that plants of mint are quite rich in phenolic compounds, and these have been appeared to have antioxidant activity, which agrees with this work, since the extract showed a higher content of phenolic compounds and higher antioxidant activity and mint may be considered as a natural alternative source for food, pharmacology and medicine sectors.

  19. Vitis vinifera L. cv Pinot noir pomace and lees as potential sources of bioactive compounds.

    Science.gov (United States)

    Reis, Gabriel M; Faccin, Henrique; Viana, Carine; Rosa, Marcelo Barcellos da; de Carvalho, Leandro M

    2016-11-01

    Food and agricultural industries generate substantial quantities of phenolic-rich by-products that could be valuable natural sources of antioxidants. The aim of this study was to identify and quantify the phenolic compounds and radical scavenging activities of two by-products (pomace and lees) from Vitis vinifera L. cv Pinot noir. We found a different distribution of phenolic classes (flavanols, flavonols, phenolic acids and stilbenes) and singular scavenging activity against free radicals (hydroxyl, superoxide and peroxyl radicals). The major class of phenolics in pomace was flavanols and in lees was flavonols, with catechin (117.9 ± 2.5 μg g(-1)) and quercetin (42.4 ± 1.2 μg g(-1)) being the most abundant individual compounds. We also found high potential on scavenging activity against superoxide radicals in pomace (80% of scavenging activity) and radical peroxyl (67% scavenging activity). These results show the possibility of using Pinot noir by-products as promising additives or as a source for the development of new products in different segments of the food and cosmetic industries.

  20. Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process.

    Science.gov (United States)

    Kelebek, Hasim; Selli, Serkan; Kadiroğlu, Pınar; Kola, Osman; Kesen, Songul; Uçar, Burçak; Çetiner, Başak

    2017-04-01

    The effects of hot and cold break industrial tomato paste production steps on phenolic compounds, carotenoids, organic acids, hydroxy methyl furfural (HMF) and other quality parameters of tomato pastes were investigated in this study. Phenolic compounds, carotenoids, organic acids, and HMF analyses were performed with LC-DAD-ESI-MS/MS and LC-DAD-RID was used for the sugar analyses. Furthermore, the antioxidant capacities of tomato pastes were assessed via the DPPH and ABTS methods. The increase of phenol acids at the processing steps of cold break production method was higher than the hot break production method. According to PCA analyses, phenolic acids characterized cold break tomato pastes while hot break tomato pastes were characterized by flavanols and flavanones. The total amount of organic acids decreased with processing and the loss of organic acids was lower in cold break pastes. Heating and evaporation were determined as the most important processing steps in which the amount of different quality parameters change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of solid-state fermentation with Rhizopus oligosporus on bioactive compounds and antioxidant capacity of raw and roasted buckwheat groats

    Directory of Open Access Journals (Sweden)

    Wronkowska Małgorzata

    2015-12-01

    Full Text Available The effect of solid-state fermentation with Rhizopus oligosporus on the changes in the total phenolic compounds, rutin, vitamin B and C, tocopherol, phytic acid and antioxidant capacity of raw and roasted buckwheat groats was studied. The roasted groats contained reduced level of studied bioactive compounds as compared to raw groats. In this study was evidenced that the solidstate fermentation with Rhizopus oligosporus enhanced water soluble vitamins (thiamine, pyridoxine and L-ascorbic acid as well as tocopherols contents. In contrast the decrease of the inositol hexaphosphate, phenolic compounds, the rutin content and antioxidant capacity determined by ACL and ABTS methods was noticed.

  2. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  3. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds.

    Science.gov (United States)

    Bounda, Guy-Armel; Feng, Y U

    2015-01-01

    Polygonum multiflorum Thunb. (PMT), officially listed in the Chinese Pharmacopoeia, is one of the most popular perennial Chinese traditional medicines known as He shou wu in China and East Asia, and as Fo-ti in North America. Mounting pharmacological studies have stressed out its key benefice for the treatment of various diseases and medical conditions such as liver injury, cancer, diabetes, alopecia, atherosclerosis, and neurodegenerative diseases as well. International databases such as PubMed/Medline, Science citation Index and Google Scholar were searched for clinical studies recently published on P. multiflorum. Various clinical studies published articles were retrieved, providing information relevant to pharmacokinetics-pharmacodynamics analysis, sleep disorders, dyslipidemia treatment, and neurodegenerative diseases. This review is an effort to update the clinical picture of investigations ever carried on PMT and/or its isolated bio-compounds and to enlighten its therapeutic assessment.

  4. Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters

    Data.gov (United States)

    U.S. Environmental Protection Agency — In vitro bioactivity concentrations and chemical concentrations of estrogens, androgens, and glucocorticoids from a nationwide screen of United States stream water...

  5. Immunomodulatory Effects of a Bioactive Compound Isolated from Dryopteris crassirhizoma on the Grass Carp Ctenopharyngodon idella

    Directory of Open Access Journals (Sweden)

    Cheng Chi

    2016-01-01

    Full Text Available In the present study, we investigated effects of compound kaempferol 3-a-L-(4-O-acetylrhamnopyranoside-7-a-L-rhamnopyranoside (SA isolated from Dryopteris crassirhizoma during immune-related gene expression in Ctenopharyngodon idella head kidney macrophages (CIHKM. The expression of immune-related genes (IL-1β, TNF-α, MyD88, and Mx1 were investigated using real-time PCR at 2 h, 8 h, 12 h, and 24 h after incubation with 1, 10, and 50 μg mL−1 of SA. Furthermore, fish were injected intraperitoneally with 100 μL of SA, and immune parameters such as lysozyme activity, complement C3, SOD, phagocytic activity, and IgM level were examined at 1, 2, and 3 weeks after injection. The differential expression of cytokines was observed after exposure to SA. IL-1β genes displayed significant expression at 2 and 8 h after exposure to 1–10 μg mL−1 of SA. SA also induced gene expression of cytokines such as MyD88, Mx1, and TNF-α. Furthermore, enhanced immune parameters in grass carp confirmed the immunomodulatory activity of SA. Interestingly, this compound has no toxic effect on CIHKM cells as tested by MTT assay. In addition, fish immunised with 10 μg mL−1 of SA exhibited maximum resistance against Aeromonas hydrophila infection. These results suggest that SA has the potential to stimulate immune responses in grass carp.

  6. Two immunosuppressive compounds from the mushroom Rubinoboletus ballouii using human peripheral blood mononuclear cells by bioactivity-guided fractionation.

    Science.gov (United States)

    Li, Long-Fei; Chan, Ben Chung-Lap; Yue, Grace Gar-Lee; Lau, Clara Bik-San; Han, Quan-Bin; Leung, Ping-Chung; Liu, Ji-Kai; Fung, Kwok-Pui

    2013-10-15

    Rubinoboletus ballouii is an edible mushroom wildly grown in Yunnan province, China. Up till now, little was known about the chemical and biological properties of this mushroom. The aim of this study was to investigate the immunomodulatory effects of the ethanolic extract of Rubinoboletus ballouii and its fractions on human peripheral blood mononuclear cells (PBMCs) using bioactivity-guided fractionation. The crude extract of the fruiting bodies of RB was fractionated by high-speed counter current chromatography (HSCCC). Twelve fractions were obtained and the third fraction (Fraction C) exerted the most potent anti-inflammatory activities in mitogen-activated PBMCs. Further fractionation of fraction C led to the isolation of two single compounds which were elucidated as 1-ribofuranosyl-s-triazin-2(1H)-one and pistillarin, respectively. The results showed that both 1-ribofuranosyl-s-triazin-2(1H)-one and pistillarin exhibited significant immunosuppressive effects on phytohemagglutinin (PHA)-stimulated human PBMCs by inhibiting [methyl-(3)H]-thymidine uptake and inflammatory cytokines productions such as tumor necrosis factor (TNF)-α, interleukin (IL)-10, interferon (IFN)-γ and IL-1β. Besides, 1-ribofuranosyl-s-triazin-2(1H)-one was firstly found in natural resources, and pistillarin was also isolated from the family Boletaceae for the first time. They exhibited great potential in developing as anti-inflammatory reagents. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Synergistic, additive and antagonistic effects of fruit mixtures on total antioxidant capacities and bioactive compounds in tropical fruit juices.

    Science.gov (United States)

    Pereira, Ana Carolina da Silva; Wurlitzer, Nedio Jair; Dionisio, Ana Paula; Lacerda Soares, Marcia Valéria; Rocha Bastos, Maria do Socorro; Elesbão Alves, Ricardo; Montenegro Brasil, Isabella

    2015-06-01

    The objective of this work was investigate the synergistic, additive and antagonistic effects of fruit mixtures on total antioxidant capacities and bioactive compounds in tropical fruit juices, and optimize its formulation by the response surface methodology based on the responses: total polyphenols (TP), total antioxidant capacity (TAC), ascorbic acid content and sensorial acceptance. Camu-camu, acerola and acai were the major factors that influenced the antioxidant potential of the juice; and the yellow mombin showed a positive effect on the acceptance of the tropical juice. It was observed an/antagonistic effect between acerola and camu-camu for the TAC response. The optimum formulation obtained was 20% acerola, 10% camu-camu, 10% yellow mombin, 10% cashew apple and 10% acai, which was responsible for a response of 155.46 mg.100 g(-1) of ascorbic acid, 103.01 mg of GAE.100 g-1 of TP, 10.27 µM Trolox g(-1) of TAC and approximately 6.1 of acceptance.

  8. Preponderance of Bioactive Medicinal Compounds and ATR-FTIR Spectroscopy of Coriander and Mustard Floral Honey from Apis mellifera

    Directory of Open Access Journals (Sweden)

    Ishan Ullah Khan

    2017-11-01

    Full Text Available The physicochemical, total phenolics, flavonoids, and antioxidant activity were evaluated for biochemical characterization of coriander and mustard floral honey. The total phenolics, flavonoids and antioxidant activity were analyzed using UV-VIS spectrophotometer. Fourier transform infrared spectroscopy (FT-IR was used to evaluate the chemical characteristic of coriander and mustard floral honey. The total phenolics content was ranged from 294 to 462 mg gallic acid equivalent kg-1 of honey. The total flavonoid content was ranged from 43 to 53 mg quercetin equivalent kg-1 of honey. Antioxidant activity results were expressed as inhibitory concentration (IC50 value ranged from 4.58 to 5.54 mg mL-1. FT-IR spectra showed the presence of alcohols, carboxylic acids, esters, ethers, phenols, and amines in both floral honey samples. This study discovered that coriander floral honey is more affluent than mustard floral honey in nutritional as well as medicinal aspects. At a glance the processing of honey by heating did not affect the phenolics, flavonoid, and antioxidants of honey; even processed honey contains higher phenols and antioxidants. The FT-IR spectra showed the similarity in both kinds of honey refers to chemical constituents. This study will help the researcher and honey consumer to find out the higher bioactive medicinal compounds containing honey.

  9. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

    2014-04-16

    Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries.

  10. Bioactivity of essential oil from Artemisia stolonifera (Maxim.) Komar. and its main compounds against two stored-product insects.

    Science.gov (United States)

    Zhang, Wen-Juan; Yang, Kai; You, Chun-Xue; Wang, Ying; Wang, Cheng-Fang; Wu, Yan; Geng, Zhu-Feng; Su, Yang; Du, Shu-Shan; Deng, Zhi-Wei

    2015-01-01

    Artemisia stolonifera, a perennial herb, is widely distrbuted in China. The aim of this study was to analyze the essential oil from the aerial parts of Artemisia stolonifera, as well as to evaluate the bioactivity of the oil and its main constituents. The essential oil was analyzed by gas chromatography-flame ionization detector and gas chromatography-mass spectrometry that allowed characterizing 22 compounds. The main components were eucalyptol (32.93%), β-pinene (8.18%), camphor (6.12%) and terpinen-4-ol (6.11%), and obtained from the essential oil after a further isolation. During the contact toxicity tests, the essential oil (LD50 = 8.60 μg/adult) exhibited stronger toxicity against Tribolium castaneum adults than those isolated constituents, however, camphor and terpinen-4-ol showed 1 and 2 times toxicity against Lasioderma serricorne adults than the essential oil (LD50 = 12.68 μg/adult) with LD50 values of 11.30 and 5.42 μg/adult, respectively. In the fumigant toxicity tests, especially on Tribolium castaneum, the essential oil (LC50 = 1.86 mg/L air) showed almost the same level toxicity as positive control, methyl bromide (LC50 = 1.75 mg/L air). Moreover, the essential oil and its four isolated constituents also exhibited strong repellency against two stored-product insects.

  11. Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris.

    Science.gov (United States)

    Lin, Qunying; Long, Liangkun; Wu, Liangliang; Zhang, Fenglun; Wu, Shuling; Zhang, Weiming; Sun, Xiaoming

    2017-08-01

    In commercial production of Cordyceps militaris (a famous Chinese medicine), cereal grains are usually utilized as cultivation substrates. This study aimed to evaluate the efficiency of agricultural wastes as substitute materials in the low-cost production of C. militaris. Cottonseed shells (CS), corn cob particles (CCP), Italian poplar sawdusts (IPS) and substrates spent by Flammulina velutipes (SS) were employed to cultivate C. militaris, using rice medium as control. CS and CCP were suitable for fruit body formation of C. militaris, with yields of 22 and 20 g per bottle respectively. Fruit bodies grown on CCP showed the highest levels of cordycepin and adenosine, up to 9.45 and 5.86 mg g -1 respectively. The content of d-mannitol in fruit bodies obtained on CS was 120 mg g -1 (80% of the control group), followed by that on CCP, 100 mg g -1 . Fruit bodies cultivated on CCP displayed a high crude polysaccharide level of 26.9 mg g -1 , which was the closest to that of the control group (34.5 mg g -1 ). CS and CCP are effective substrates for the production of fruit bodies and bioactive compounds by C. militaris. This study provides a new approach to decreasing the cost of C. militaris cultivation and dealing with these agricultural wastes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use.

    Science.gov (United States)

    Amirul Alam, Md; Juraimi, A S; Rafii, M Y; Hamid, A A; Aslani, F; Alam, M Z

    2015-02-15

    Dry matter (DM), total phenolics, flavonoids, carotenoid contents, and antioxidant activity of 12 purslane accessions were investigated against five levels of salinity (0, 8, 16, 24 and 32dSm(-1)). In untreated plants, the DM contents ranged between 8.0-23.4g/pot; total phenolics contents (TPC) between 0.96-9.12mgGAEg(-1)DW; total flavonoid contents (TFC) between 0.15-1.44mgREg(-1)DW; and total carotenoid contents (TCC) between 0.52BCEg(-1)DW. While FRAP activity ranged from 8.64-104.21mgTEg(-1)DW (about 12-fold) and DPPH activity between 2.50-3.30mgmL(-1) IC50 value. Different levels of salinity treatment resulted in 8-35% increases in TPC; about 35% increase in TFC; and 18-35% increases in FRAP activity. Purslane accessions Ac4, Ac5, Ac6 and Ac8 possessed potentials for salinity-induced augmented production of bioactive compounds which in turn can be harnessed for possible human health benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bioactive Compounds and Antioxidant Properties of Goji fruits (Lycium barbarum L.) Cultivated in Serbia.

    Science.gov (United States)

    Vulić, Jelena J; Čanadanović-Brunet, Jasna M; Ćetković, Gordana S; Djilas, Sonja M; Tumbas Šaponjac, Vesna T; Stajčić, Sladjana S

    2016-01-01

    Goji fruit extracts, methanol (MGE) and hexane (HGE), were subjected to evaluation as potential source of phenolic antioxidants and antiradical activity. Some phenolic compounds (gallic, protocatechuic, vanillic, chlorogenic, coumaric, caffeic and ferulic acid and catechin and rutin), vitamin C and carotenoids were identified and quantified by HPLC. Antioxidant activity was tested by measuring ability to scavenge DPPH and hydroxyl radicals. Also, reducing power of goji fruit extracts was determined. HPLC analysis results showed predominance of gallic acid (40.44 mg/g g.f). Vitamin C content in MGE was 716.91 mg vitC/100 g g.f. IC 50 DPPH · varied from 26.64 μmolTEAC/g for HGE to 62.15 μmolTEAC/g for MGE, while RP 0.5 values varied from 952.23 μmolTEAC/g for MGE to 1360.48 mg/mL for HGE. IC 50 · OH for MGE was 1844.01 μmolTEAC/g. Our results support the use of goji fruits as rich sources of phytochemicals for further utilization in the food industry as supplements and functional food ingredients.

  14. Some bioactive compounds and antioxidant activities of the bitter almond kernel (prunus dulcis var. amara)

    International Nuclear Information System (INIS)

    Keser, S.; Yilmaz, O.

    2014-01-01

    in this study, it was determined antioxidant activities and phenolic, flavonoid, phytosterol, lipid soluble vitamin and fatty acid contents of bitter almond kernel extract (bae). antioxidant activities of bae was investigated by dppho, abtso+, oho radical scavenging, metal chelating activity and determination of lipid peroxidation levels (tbars). bae was scavenged 83.49% of the abts radical, 68.34% of the hydroxyl radical, and 68.65% of the dpph radical. this extract was shown 49.36% of the metal chelating activity myricetin (1831.52 mu g/g), kaempferol (104.52 mu g/g), naringenin (2.51 mu g/g), vanillic acid (91.70 mu g/g), caffeic acid (85.92 mu g/g), ferulic acid (27.11 mu g/g) rosmarinic acid (0.95 mu g/g), hydroxycinnamic acid (1.35 mu g/g), delta-tocopherol (4.95 mg/kg), mu-tocopherol (104.15 mg/kg), vitamin k (42.25 mg/kg), beta-sitosterol (366.95 mg/kg) and stigmasterol (242.65 mg/kg) were determined in the bae. the major fatty acids were oleic acid (70.61%) and linoleic acid (20.68%) in the bae. these results indicate that bitter almond can be a good natural source of fatty acids, lipid soluble vitamins, phytosterols, flavonoid, phenolic compounds. (author)

  15. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga.

    Science.gov (United States)

    Rodríguez-Meizoso, I; Jaime, L; Santoyo, S; Señoráns, F J; Cifuentes, A; Ibáñez, E

    2010-01-20

    In this work, extraction and characterization of compounds with antioxidant and antimicrobial activity from Haematococcus pluvialis microalga in red phase have been carried out. To do this, subcritical water extraction (SWE) has been combined with analytical techniques such as HPLC-DAD, HPLC-QqQ-MS and GC-MS and in vitro assays (i.e., for antioxidant and antimicrobial activity). The effect of the extraction temperature (50, 100, 150 and 200 degrees C) and solvent polarity has been studied in terms of yield and activity of the extracts. Results demonstrate that the extraction temperature has a positive influence in the extraction yield and antioxidant activity. Thus, the extraction yield achieved with this process was higher than 30% of dry weight at 200 degrees C as extraction temperature. Moreover, the extract obtained at 200 degrees C presented the highest antioxidant activity by far, while temperature does not seem to significatively affect the antimicrobial activity. Chemical composition was determined by HPLC-DAD, HPLC-QqQ-MS and GC-MS. Short chain fatty acids turned out to be responsible of the antimicrobial activity, whereas the antioxidant activity was correlated to vitamin E (present exclusively in the 200 degrees C extract), together with simple phenols, caramelization products and possible Maillard reaction products obtained during the extraction at high temperatures.

  16. Profile of bioactive compounds of Capparis spinosa var. aegyptiaca growing in Egypt

    Directory of Open Access Journals (Sweden)

    Riham Omar Bakr

    Full Text Available ABSTRACT The present study was designed to investigate polyphenolic and sulphur contents of the aerial parts of Capparis spinosa var. aegyptia (Lam. Boiss., Capparaceae, wildly growing in Egypt. The chemical compositions of the water distilled essential oil were investigated by GC/MS analysis where the major constituent of the oil was methyl isothiocyanate (24.66%. Hydroethanolic extract was evaluated by LC-HRESI-MS–MS in both positive and negative modes. Forty-two compounds were identified including quercetin, kaempferol and isorhamnetin derivatives in addition to myricetin, eriodictyol, cirsimaritin and gallocatechin derivatives. Quercetin tetrahexoside dirhamnoside as well as kaempferol dihexoside dirhamnoside have not been identified before in genus Capparis. Phenolic acids, such as quinic acid, p-coumaroyl quinic acid and chlorogenic acid were also identified. Evaluation of cytotoxic activity of hydroethanolic extract against three human cancer cell lines (MCF-7; breast adenocarcinoma cells, Hep-G2; hepatocellular carcinoma cells and HCT-116; colon carcinoma using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay showed significant effect with IC50 values 24.5, 24.4 and 11 µg/ml, compared to Doxorubicin as a standard cytotoxic drug. C. spinosa revealed itself as a promising candidate for nutraceutical researches.

  17. Microwave-assisted Olefin Metathesis as Pivotal Step in the Synthesis of Bioactive Compounds.

    Science.gov (United States)

    Etse, Koffi Senam; Ngendera, Alice; Ntumba, Nelly Tshibalonza; Demonceau, Albert; Delaude, Lionel; Dragutan, Ileana; Dragutan, Valerian

    2017-01-01

    Over the last two decades, olefin metathesis has emerged as a new avenue in the design of new routes for the synthesis of natural products and active pharmaceutical ingredients. In many cases, syntheses based on olefin metathesis strategies provide significant routes in terms of increasing the overall yields, improving the synthesis scope, and decreasing the number of steps. On the other hand, over the last decade, microwave-assisted chemistry has experienced an incredible development, which rapidly opened new areas in organic synthesis and in homogeneous catalysis. In this review article, we highlight applications of microwaveheated olefin metathesis reactions as pivotal steps in the total synthesis of biologically active compounds. By drawing selected examples from the recent literature, we aim to illustrate the great synthetic power and variety of metathesis reactions, as well as the beneficial effects of microwave irradiation over conventional heating sources. The majority of the selected applications of microwave-assisted olefin metathesis cover the synthesis of medium-ring cycles, macrocycles, and peptidomimetics by means of ring-closing metathesis (RCM) and crossmetathesis (CM) routes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Diversity of Micromonospora strains from the deep Mediterranean Sea and their potential to produce bioactive compounds

    Directory of Open Access Journals (Sweden)

    Andrea Gärtner

    2016-06-01

    Full Text Available During studies on bacteria from the Eastern Mediterranean deep-sea, incubation under in situ conditions (salinity, temperature and pressure and heat treatment were used to selectively enrich representatives of Micromonospora. From sediments of the Ierapetra Basin (4400 m depth and the Herodotos Plain (2800 m depth, 21 isolates were identified as members of the genus Micromonospora. According to phylogenetic analysis of 16S rRNA gene sequences, the Micromonospora isolates could be assigned to 14 different phylotypes with an exclusion limit of ≥ 99.5% sequence similarity. They formed 7 phylogenetic clusters. Two of these clusters, which contain isolates obtained after enrichment under pressure incubation and phylogenetically are distinct from representative reference organism, could represent bacteria specifically adapted to the conditions in situ and to life in these deep-sea sediments. The majority of the Micromonospora isolates (90% contained at least one gene cluster for biosynthesis of secondary metabolites for non-ribosomal polypeptides and polyketides (polyketide synthases type I and type II. The determination of biological activities of culture extracts revealed that almost half of the strains produced substances inhibitory to the growth of Gram-positive bacteria. Chemical analyses of culture extracts demonstrated the presence of different metabolite profiles also in closely related strains. Therefore, deep-sea Micromonospora isolates are considered to have a large potential for the production of new antibiotic compounds.

  19. Genotype-by-environment effect on bioactive compounds in strawberry (Fragaria x ananassa Duch.).

    Science.gov (United States)

    Palmieri, Luisa; Masuero, Domenico; Martinatti, Paolo; Baratto, Giuseppe; Martens, Stefan; Vrhovsek, Urska

    2017-09-01

    The assessment of the relative contribution of genotype, environment and the genotype-by-environmental (G × E) interaction to the performance of varieties is necessary when determining adaptation capacity. The influence of temperature, ultraviolet (UV)-irradiation and sunshine duration on the quality and the composition of fruits was investigated in nine strawberry cultivars grown at three different altitudes. The UV-radiation intensity affected both pH and sugar content, which were higher for most of the varieties at low altitudes, whereas total titratable acidity was less. Fruits from plants grown at low elevation generally had a higher benzoic acid derivative content. A significant correlation was found between phenylpropanoid content and UV-radiation and sunshine duration. The flavone class appeared to be affected most by the variety effect, in contrast to flavonols and ellagitannins, which were highly affected by the environment. The accumulation of a number of secondary metabolites in strawberry fruits grown in an unusual environmental condition highlighted the acclimation effects in terms of the response of plants to abiotic stress. Finally, the genetic factor only appears to be more influential for the varieties 'Sveva' and 'Marmolada' with respect to all of the parameters considered. A 'plant environmental metabolomics' approach has been used successfully to assess the phenotypic plasticity of varieties that showed different magnitudes with respect to the relationship between environmental conditions and the accumulation of healthy compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Bioactive Compounds of Chamber-Dried Blueberries at Controlled Temperature and Wines Obtained from Them

    Directory of Open Access Journals (Sweden)

    Juan Martin-Gomez

    2017-01-01

    Full Text Available The effects of chamber drying under controlled temperature and moisture conditions and fermentation process on blueberry juices to obtain three wines were studied in this work. Drying was carried out with a view to increase the sugar content and obtain wines with an ethanol content similar to a commercial grape wine or to obtain sweet wines. Analyses included color parameters; browning index; and anthocyanin, flavonols, flavan-3-ol derivatives, and tannin concentrations, as well as vitamin C concentration and antioxidant activity. Based on the results, drying increases color and the concentration of anthocyanins and tannins most probably by the effect of dehydration of the berries and diffusion of the colored compounds from the skin to the pulp due to the structural alterations in their skin. In addition, drying decreases flavonols, flavan-3-ol derivatives, and vitamin C concentrations. The browning index, anthocyanins, and tannins decreased with the fermentation time, and vitamin C was constant with the fermentation time. The sensory analysis showed that the wines with the best sensory characteristics were those with residual sugar, partial fermented wines 1 and 2.

  1. Antioxidant, Hepatoprotective, and Antidepression Effects of Rumex tingitanus Extracts and Identification of a Novel Bioactive Compound

    Directory of Open Access Journals (Sweden)

    Dhekra Mhalla

    2018-01-01

    Full Text Available Over the last few decades, Rumex species have been recognized as a promising source of new compounds with numerous pharmacological activities. Therefore, the antioxidant activity of Rumex tingitanus (R. tingitanus leaves extracts was evaluated in vitro and then confirmed in vivo as well as the antidepressant-like and toxicological effects of the extracts. The ethyl acetate fraction (Rt EtOAcF followed by hydroalcoholic extract (Rt EtOH-H2O showed a remarkable in vitro antioxidant activity. The hydroalcoholic extract (Rt EtOH-H2O showed significant hepatoprotective activity against carbon tetrachloride- (CCl4- induced liver toxicity which is seen from inhibition of the malondialdehyde (MDA accumulation and enhancement of the liver antioxidant enzymes activities. The Rt EtOH-H2O and Rt EtOAcF extracts were able to reduce the immobility time in mice and then elicited a significant antidepressant-like effect. The ethyl acetate fraction (Rt EtOAcF was purified and resulted in the identification of a new antioxidant component called 4′-p-acetylcoumaroyl luteolin. The Rt EtOAcF and the 4′-p-acetylcoumaroyl luteolin revealed a strong antioxidant activity using DPPH test with IC50 of 11.7 ± 0.2 and 20.74 ± 0.6 μg/ml, respectively, and AAI of 3.39 and 1.92 better than that of BHT, used as control.

  2. Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives.

    Science.gov (United States)

    Pérez, Miriam; García, Mónica; Blustein, Guillermo

    2015-08-01

    Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Inhibitory activity of bio-active compounds isolated from Anadara granosa in shrimp health management.

    Science.gov (United States)

    Sunil Kumar, D; Janakiram, P; Murali Krishna Kumar, M; Krishna Geetha, G

    2017-11-03

    The crude extract isolated from the visceral mass of Anadara granosa, an intertidal bivalve mollusc was tested for inhibitory activity against pathogenic bacteria of the shrimp and fish viz. Vibrio harveyi and Staphylococcus aureus respectively by agar well diffusion and contact bioautography methods. Maximum inhibitory activity was shown against V. harveyi by methanol and chloroform (9:1) extract. Twelve fractions (1-12) could be separated from the crude extract through column chromatography. Five out of twelve fractions (7, 8, 9, 10, and 11) showed antibacterial activity and they were further run on column chromatography for purity. The fraction no. 9 showed highest antibacterial activity among the five and was subjected to NMR for the proton, C 13 and H 1 -H 1 correlation, IR and mass spectral analysis for structural elucidation. Structure of the compound isolated from fraction no: 9 was determined as 1-(((2Z, 4Z)-dodeca-2,4-dienoyl)oxy)-3-hydroxypropan-2-yl tetradecanoate.

  4. Moringa oleifera: bioactive compounds and nutritional potential Moringa oleifera: compostos bioativos e potencialidade nutricional

    Directory of Open Access Journals (Sweden)

    Paulo Michel Pinheiro Ferreira

    2008-08-01

    Full Text Available This work aims to review the nutritional properties of the Moringa oleifera tree, emphasizing its main constituents and nutritional applications for humans and animals. Moringa oleifera (Moringaceae is a cosmopolitan tree that grows in many tropical countries showing uncountable folk uses due to its various nutritional and pharmacological applications. The young leaves, flowers and pods are common vegetables in the Asian diet. All parts of this plant are renewable sources of tocopherols (γ and α, phenolic compounds, β-carotene, vitamin C and total proteins, including the essential sulfur amino acids, methionine and cysteine. The seed protein and fat contents are higher than those reported for important grain legumes and soybean varieties, respectively. Unsaturated fatty acids, especially oleic acid, carbohydrates and minerals are present in the seed in reasonable amounts. In general, there are low concentrations of antinutritional factors in the plant, although the seeds possess glucosinolates (65.5µmol/g dry matter, phytates (41g/kg and hemagglutination activity while the leaves have appreciable amounts of saponins (80g/kg, besides low quantity of phytates (21g/kg and tannins (12g/kg. Taking into consideration the excellent nutritional properties, the low toxicity of the seeds and the excellent ability of the plant to adapt to poor soils and dry climates, Moringa oleifera can be an alternative to some leguminous seeds as a source of high-quality protein, oil and antioxidant compounds and a way to treat water in rural areas where appropriate water resources are not available.O objetivo deste trabalho é fazer uma revisão sobre as propriedades nutricionais da planta Moringa oleifera, enfatizando seus principais constituintes e suas aplicações nutricionais para o homem e os animais. Moringa oleifera é uma planta que cresce em muitos países tropicais, possuindo inúmeros usos populares devido às suas aplicações nutricionais e farmacol

  5. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania.

    Science.gov (United States)

    Roman, Ioana; Stănilă, Andreea; Stănilă, Sorin

    2013-04-23

    The theoretical, but especially the practical values of identifying the biochemical compounds from the Rosa canina L. fruits are of present interest, this aspect being illustrated by the numerous researches. It was reported that the Rosa canina L. fruit, with its high ascorbic acid, phenolics and flavonoids contents, have antioxidant, antimutagenic and anticarcinogenic effects.This study was performed on order to evaluate the amount of the main phytochemicals (vitamin C, total polyphenols, and total flavonoids) content and their antioxidant activity. The results obtained revealed that the average amounts of vitamin C within the studied genotypes were: 360.22 mg/100 g frozen pulp (var. transitoria f. ramosissima, altitude 1250 m) and 112.20 mg/100 g frozen pulp (var. assiensis, altitude 440 m), giving a good correlation between the vitamin C content of the rosehip and the altitude. The total polyphenols content varied from 575 mg/100 g frozen pulp (var. transitoria f. ramosissima) to 326 mg/100 g frozen pulp (var. lutetiana f. fallens). The total flavonoids content showed the highest value for var. assiensis variant 163.3 mg/100 g frozen pulp and the lowest value attributed to var. transitoria f. montivaga 101.3 mg/100 g frozen pulp. The antioxidant activity of eight rose hip extracts from wild Transylvania populations was investigated through DPPH method. The antioxidant activity revealed a good correlation only with vitamin C content and total polyphenols. Eight Rose hip fruit species were compared taking into consideration the ascorbic acid, total polyphenols, total flavonoids contents and their antioxidant activity. Based on these results, two of the rosehip genotypes that were analysed could be of perspective for these species' amelioration, due to their content of phytochemicals mentioned above. These varieties are var. transitoria f. ramosissima (Bistrita-Nasaud, Agiesel) and var. transitoria f. montivaga (Bistrita-Nasaud, Salva) which can be used as a

  6. Electronic structure and properties of uranyl compounds. Problems of electron-donor conception

    International Nuclear Information System (INIS)

    Glebov, V.A.

    1982-01-01

    Comparison of the series of the ligand mutual substitution in the uranyl compounds with the ligand series of d-elements and with the uranyl ''covalent model'', is made. The data on ionization potentials of the ligand higher valent levels and on the structure of some uranyl nitrate compounds are considered. It is concluded that the mechanism of the ligand effect on the properties of uranyl grouping is more complex, than it is supposed in the traditional representations on the nature of electron-donor interactions in the uranyl compounds

  7. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits.

    Science.gov (United States)

    de Souza, Vanessa Rios; Pereira, Patrícia Aparecida Pimenta; da Silva, Thais Lomônaco Teodoro; de Oliveira Lima, Luiz Carlos; Pio, Rafael; Queiroz, Fabiana

    2014-08-01

    This study aimed to evaluate the chemical composition, identify the bioactive compounds and measure the antioxidant activity present in blackberry, red raspberry, strawberry, sweet cherry and blueberry fruits produced in the subtropical areas of Brazil and to verify that the chemical properties of these fruit are similar when compared to the temperate production zones. Compared with berries and cherries grown in temperate climates, the centesimal composition and physical chemical characteristics found in the Brazilian berries and cherries are in agreement with data from the literature. For the mineral composition, the analyzed fruits presented lower concentrations of P, K, Ca, Mg and Zn and higher levels of Fe. The values found for the bioactive compounds generally fit the ranges reported in the literature with minor differences. The greatest difference was found in relation to ascorbic acid, as all fruits analyzed showed levels well above those found in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Dietary fibre: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds.

    Science.gov (United States)

    Macagnan, Fernanda Teixeira; da Silva, Leila Picolli; Hecktheuer, Luisa Helena

    2016-07-01

    There is a growing need for a global consensus on the definition of dietary fibre and the use of appropriate methodologies for its determination in different food matrices. Oligosaccharides (prebiotic effect) and bioactive compounds (antioxidant effect) are important constituents of dietary fibre, which enhance its beneficial effects in the body, such as those related to maintaining intestinal health. These dietary components need to be quantified and addressed in conjunction with fibre in nutritional studies due to the close relationship between them and their common destiny in the human body. This review discusses updates to the concept of dietary fibre, with an emphasis on biological and methodological aspects, and highlights the physiological importance of fibre as a carrier of bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Influence of synthesis and processing conditions on the release behavior and stability of sol-gel derived silica xerogels embedded with bioactive compounds.

    Science.gov (United States)

    Morpurgo, M; Teoli, D; Palazzo, B; Bergamin, E; Realdon, N; Guglielmi, M

    2005-08-01

    The influence of processing parameters and synthetic strategies in the properties of sol-gel derived silica matrices intended for the release of bioactive compounds was investigated. The time-evolution of the matrix properties during its aging at room temperature in the dry and wet forms was investigated by measuring some of its physical and drug retaining properties. The results indicate that long term gel aging in the wet form is fundamental for the obtainment of dry matrices that are stable upon storage, a fundamental requirement for any practical application. In the case of hybrid matrices obtained by replacing part of the tetraethoxysilane precursor with mono-methyl trimethoxysilane, the order of addition of the reaction component is also important in determining the properties of the final dry gel, probably by influencing the polymer structural properties. This parameter acts synergistically with the matrix composition in determining the release properties of xerogels embedded with bioactive compounds.

  10. Comparative Study on the Antivirus Activity of Shuang?Huang?Lian Injectable Powder and Its Bioactive Compound Mixture against Human Adenovirus III In Vitro

    OpenAIRE

    Ma, Qinhai; Liang, Dedong; Song, Shuai; Yu, Qintian; Shi, Chunyu; Xing, Xuefeng; Luo, Jia-Bo

    2017-01-01

    Shuang?Huang?Lian injectable powder (SHL)?a classical purified herbal preparation extracted from Scutellaria baicalensis, Lonicera japonica, and Forsythia suspense?has been used against human adenovirus III (HAdV3) for many years. The combination herb and its major bioactive compounds, including chlorogenic acid, baicalin, and forsythia glycosides A, are effective inhibitors of the virus. However, no comprehensive studies are available on the antiviral effects of SHL against HAdV3. Moreover, ...

  11. Isolation and characterization of bioactive compounds of Clematis gouriana Roxb. ex DC against snake venom phospholipase A2 (PLA2) computational and in vitro insights.

    Science.gov (United States)

    Muthusamy, Karthikeyan; Chinnasamy, Sathishkumar; Nagarajan, Subbiah; Sivaraman, Thirunavukkarasu; Chinnasamy, Selvakumar

    2017-07-01

    Bioactive compounds were isolated from Clematis gouriana Roxb. ex DC. The compounds were separated, characterized, the structures elucidated and submitted to the PubChem Database. The PubChem Ids SID 249494134 and SID 249494135 were tested against phospholipases A 2 (PLA 2 ) of Naja naja (Indian cobra) venom for PLA 2 activity. Both the compounds showed promising inhibitory activity; computational data also substantiated the results. The two compounds underwent density functional theory calculation to observe the chemical stability and electrostatic potential profile. Molecular interactions between the compounds and PLA 2 were observed at the binding pocket of the PLA 2 protein. Further, this protein-ligand complexes were simulated for a timescale of 100 ns of molecular dynamics simulation. Experimental and computational results showed significant PLA 2 inhibition activity.

  12. Electron beam treatment of toxic volatile organic compounds and dioxins

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2006-01-01

    Considerations of wastes based on the reduction, reuse and recycle in daily life are primary measures to conserve our environment, but the control technology is necessary to support these measures. The electron beam (EB) process is promising as an advanced purification process having advantages such as a quick treatment of big volume gas, applicability even for very low concentration pollutants as the further purification at the downstream of existing process, and decomposition of pollutants into non-toxic substances by one process. The EB technology has been developed for treatment of toxic volatile organic compounds (VOCs) in ventilation gas and dioxins in solid waste incineration flue gas. (author)

  13. Essential oil of Mitracarpus frigidus as a potent source of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Rodrigo L. Fabri

    2012-12-01

    Full Text Available In our previous work (Fabri et al. 2009, we showed that different extracts of Mitracarpus frigidus had significant antibacterial, antifungal and leishmanicidal activities. In order to increase our knowledge about this species, this work assesses the chemical composition and the in vitro biological activity of its essential oil. Thus, the essential oil obtained by hydrodistillation of the aerial parts of M. frigidus was analyzed by GC/MS. Among several compounds detected, 11 were identified, being linalool and eugenol acetate the major components. The essential oil exhibited a moderate antibacterial effect against Staphyloccocus aureus, Bacillus cereus, Pseudomonas aeruginosa and Enterobacter cloacae (MIC 250 µg/mL. On the other hand, it showed a strong antifungal effect against Cryptoccocus neoformans (MIC 8 µg/mL and Candida albicans (MIC 63 µg/mL. Expressive activity against L. major and L. amazonensis promastigote forms with IC50 values of 47.2 and 89.7 µg/mL, respectively, were also observed. In addition, the antioxidant activity was investigated through DPPH radical-scavenging and showed a significative activity with IC50 of 38 µg/mL. The cytotoxicity against Artemia salina was moderate with LC50 of 88 µg/mL. The results presented here are the first report on the chemical composition and biological properties of M. frigidus essential oil.Em nosso trabalho anterior (Fabri et al. 2009, mostramos que diferentes extratos de Mitracarpus frigidus apresentaram atividades antibacteriana, antifúngica e leishmanicida significativas. Com o objetivo de aprofundar o conhecimento sobre essa espécie, esse trabalho objetiva identificar os constituintes químicos e avaliar as atividades biológicas in vitro de seu óleo essencial. Dessa forma, o óleo essencial das partes aéreas de M.frigidus foi obtido por hidrodestilação e analisado por CG/EM. Entre os compostos detectados, 11 foram identificados, sendo linalol e o acetato de eugenol os

  14. Rebelling against the (Insulin Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Jaime L. Clark

    2018-03-01

    Full Text Available Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance.

  15. Effect of storage time and temperature on stability of bioactive compounds in aseptically packed beverages prepared from rose hips and sea buckthorn berries

    Directory of Open Access Journals (Sweden)

    Staffan C Andersson

    2015-12-01

    Full Text Available Rose hips and sea buckthorn berries contain high amounts of beneficial bioactive compounds. In this study the content and stability of natural vitamins and antioxidants were investigated in two fruit beverages made from rose hip powder, sea buckthorn berry purée and white grape juice concentrate, and wheat germ oil in one of the beverages. Beverages were formulated, pasteurised and filled aseptically in Tetra Brik packages and stored up to 35 days at 4 °C or 22 °C. Samples were analysed for the content of ascorbic acid, carotenoids, major phenolics, tocochromanols, total phenols and total antioxidant capacity as ferric reducing ability. The largest changes occurred during the first 5 days of storage, thereafter mainly ascorbic acid decreased. In the wheat germ oil supplemented beverage, α-tocopherol was more rapidly degraded. Negative correlations between the decrease of some carotenoids and tocochromanols, and the increase of some phenolics, suggest relationships of redox reactions specific to the amount of oil supplemented. From the present study we can conclude that additions of oil to beverages should be carefully selected to avoid oxidations of bioactive compounds. Furthermore, packaging of the beverages should be carried out at higher temperatures and thereafter it should be stored at low temperatures (4 °C, which decreased oxidation of all bioactive compounds except ascorbic acid.

  16. In Silico and In Vitro Anticancer Activity of Isolated Novel Marker Compound from Chemically Modified Bioactive Fraction from Curcuma longa (NCCL).

    Science.gov (United States)

    Naqvi, Arshi; Malasoni, Richa; Gupta, Swati; Srivastava, Akansha; Pandey, Rishi R; Dwivedi, Anil Kumar

    2017-10-01

    Turmeric ( Curcuma longa ) is reported to possess wide array of biological activities. Herbal Medicament (HM) is a standardized hexane-soluble fraction of C. longa and is well known for its neuroprotective effect. In this study, we attempted to synthesize a novel chemically modified bioactive fraction from HM (NCCL) along with isolation and characterization of a novel marker compound (I). NCCL was prepared from HM. The chemical structure of the marker compound isolated from NCCL was determined from 1D/2D nuclear magnetic resonance, mass spectroscopy, and Fourier transform infrared. The compound so isolated was subjected to in silico and in vitro screenings to test its inhibitory effect on estrogen receptors. Molecular docking studies revealed that the binding poses of the compound I was energetically favorable. Among NCCL and compound I taken for in vitro studies, NCCL had exhibited good anti-cancer activity over compound I against MCF-7, MDA-MB-231, DU-145, and PC-3 cells. This is the first study about the synthesis of a chemically modified bioactive fraction which used a standardized extract since the preparation of the HM. It may be concluded that NCCL fraction having residual components induce more cell death than compound I alone. Thus, NCCL may be used as a potent therapeutic drug. In the present paper, a standardized hexane soluble fraction of Curcuma longa (HM) was chemically modified to give a novel bioactive fraction (NCCL). A novel marker compound was isolated from NCCL and was characerized using various spectral techniques. The compound so isolated was investigated for in-silico screenings. NCCL and isolated compound was subjected to in-vitro anti-cancer screenings against MCF 7, MDA MB 231 (breast adenocarcinoma) and DU 145 and PC 3 cell lines (androgen independent human prostate cancer cells). The virtual screenings reveals that isolated compound has shown favourable drug like properties. NCCL fraction having residual components induces more cell

  17. Electronic structure of UPd 3 — A localized f compound

    Science.gov (United States)

    Norma, M. R.; Oguchi, T.; Freeman, A. J.

    1987-10-01

    Various experiments on UPd 3, the analogue of the heavy fermion superconductor, UPt 3, have ascertained that there are two f electrons per U which are localized in a magnetic singlet state. Recently, both photoemission (PES) and de Haas-van Alphen (dHvA) experiments have been reported on UPd 3. To complement this experimental work, local density energy band calculations have been performed on UPd 3 where the f electrons have been treated as core states. The resulting density of states is found to be in good agreement with photoemission data. The theoretical Fermi surface is found to be more complex than current dHvA data indicate, but one can still unambiguously assign theoretical extremal orbits to the experimental data. Thus again, the data is consistent with a local f 2 configuration. Since the band calculations can explain the dHvA data in heavy fermion UPt 3 with the f electrons treated as band states, one finds that the Kohn-Sham ansatz for treating the f electrons as Bloch states breaks down between these two cases. This finding is confirmed by recent U(Pd xPt 3- x) alloy experiments which show a sudden decrease in the specific heat coefficient when alloying these two compounds.

  18. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design

    Directory of Open Access Journals (Sweden)

    J. Prakash Maran

    2017-02-01

    Full Text Available In this study, four factors at three level central composite face centered design was employed to study and optimize the process variables on extraction of bioactive compounds (total anthocyanin, phenolic and flavonoid content from Nephelium lappaceum L. fruit peel. The effect of process variables such as extraction temperature (30–50 °C, power of ultrasound (20–40 W, extraction time (10–30 min and solid–liquid ratio (1:10–1:20 g/ml is studied. Multiple regression analysis was done on the experimental data to develop second-order polynomial models with high coefficient of determination value (R2 > 0.99. The optimal conditions based on both individual and combinations of all process variables (extraction temperature of 50 °C, ultrasound power of 20 W, extraction time of 20 min and solid–liquid ratio of 1:18.6 g/ml were determined by Derringer’s desired function methodology. Under these conditions, total anthocyanin (10.26 ± 0.39 (mg/100 g, phenolics (552.64 ± 1.57 (mg GAE/100 g and flavonoid (104 ± 1.13 (mg RE/100 g content values were determined and it is closely related with the predicted values (10.17 mg/100 g of total anthocyanin, 546.98 mg GAE/100 g of total phenolics and 100.93 mg RE/100 g of total flavonoid content and indicted the suitability of the developed models.

  19. Opuntia ficus-indica cladodes as a functional ingredient: bioactive compounds profile and their effect on antioxidant quality of bread.

    Science.gov (United States)

    Msaddak, Lotfi; Abdelhedi, Ola; Kridene, Amani; Rateb, Mostafa; Belbahri, Lassaâd; Ammar, Emna; Nasri, Moncef; Zouari, Nacim

    2017-02-07

    In the context of a balanced diet, the antioxidant-rich food consumption is a preventive way of many degenerative diseases. Consequently, improving the nutraceutical quality of traditional foods such as bakery products is an interesting approach. Considering the present consumer's demand, cladodes from prickly pear that were traditionally used as a valuable food as well as in folk medicine for the treatment of several chronic diseases were investigated for their use in bread production to improve its functionality. Bioactive substances were determined by liquid chromatography-high resolution electrospray ionization mass spectrometry (LC-HRESIMS) analysis. Dough rheological properties were characterized by alveographic measurements. Bread antioxidant quality was evaluated by total phenolics content, DPPH• radical-scavenging, metal (Fe 2+ ) chelating and Fe 3+ reducing power determinations. LC-HRESIMS analysis of the cladodes extract allowed the identification of 9 flavonoids, 2 phenolics, 1 alkaloid and 1 terpenoid compounds. Cladodes powder enrichment induced important modifications on the dough rheological parameters in terms of the extensibility (L) and deformation energy (W) decrease. Moreover, cladodes powder addition to bread resulted in a decrease in both crust and crumb colour parameters (L*, a* and b*). A 5% supplementation resulted in an increase of the bread yield and bread specific volume by 8.9 and 25%, respectively. Interestingly, Bread containing cladodes powder showed enhanced total phenolics content and antioxidant potential as compared to the control. Substitution of wheat flour by the cladodes powder at 5% level was optimal for improving the total phenolics content and the antioxidant potential of bread without having any negative effect on its sensory acceptability. Cladodes from Opuntia ficus-indica could be considered as a potential health-promoting functional ingredient in bakery products.

  20. Nutritional composition, antinutritional factors, bioactive compounds and antioxidant activity of guava seeds (Psidium Myrtaceae) as affected by roasting processes.

    Science.gov (United States)

    El Anany, Ayman Mohammed

    2015-04-01

    The purpose of this study was to explore the influences of roasting process on the nutritional composition and nutritive value, antinutritional factors, bioactive compounds and antioxidant activity of guava seeds. Roasting process caused significant (P ≤ 0.05) decreases in moisture content, crude protein, crude fiber, ash and mineral contents, isoleucine, arginine, glutamic and total aromatic and sulfur amino acids, antinutritional factors (tannins and phytic acid) and flavonoids, while oil content increased. Subjecting guava seeds to 150 °C for 10, 15 and 20 min increased the total essential amino acids from 35.19 g/100 g protein in the raw sample to 36.96, 37.30 and 37.47 g/100 g protein in roasted samples, respectively. Protein efficiency ratio (PER) of guava seeds roasted at 150 °C for 10, 15 and 20 min were about 1.08, 1.14 and 1.18 times as high as that in unroasted seeds. Lysine was the first limiting amino acid, while leucine was the second limiting amino acid in raw and roasted guava seeds. Total phenolic contents was significantly (P ≤ 0.05) increased by roasting at 150 °C for 10 min. However, roasting at 150 °C for 15 and 20 min caused significant decrease in the phenolic content of guava seeds. Guava seeds subjected to roasting process showed higher DPPH radical scavenging and reducing power activities.

  1. Colon carcinogenesis: influence of Western diet-induced obesity and targeting stem cells using dietary bioactive compounds.

    Science.gov (United States)

    Kasdagly, Maria; Radhakrishnan, Sridhar; Reddivari, Lavanya; Veeramachaneni, D N Rao; Vanamala, Jairam

    2014-01-01

    Colon cancer strikes more than 1 million people annually and is responsible for more than 500,000 cancer deaths worldwide. Recent evidence suggests that the majority of malignancies, including colon cancer are driven by cancer stem cells (CSCs) that are resistant to current chemotherapeutic approaches leading to cancer relapse. Wnt signaling plays a critical role in colon stem cell renewal and carcinogenesis. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a Wnt target gene, and aldehyde dehydrogenase 1 B1 (ALDH1B1) are good markers for normal and malignant human colon stem cells. Diet contributes to 20% to 42% of all human cancers and 50% to 90% of colon cancer. Recent evidence shows that the Western diet has a causative link to colon cancer; however, mechanisms of action are not fully elucidated. Western diet-induced obesity elevates systemic insulin-like growth factor-1 and insulin levels, which could lead to elevated proliferation and suppressed apoptosis of CSCs through PI3K/AKT/Wnt pathway. Although conventional chemotherapy targets the PI3K/AKT pathways and can significantly reduce tumor size, it fails to eliminate CSCs and has serious side effects. Dietary bioactive compounds such as grape seed extract, curcumin, lycopene, and resveratrol have promising chemopreventive effects, without serious side effects on various types of cancers due to their direct and indirect actions on CSC self-renewal pathways such as the Wnt pathway. Understanding the role of CSCs in diet-induced colon cancer will aid in development of evidence-based dietary chemopreventive strategies and/or therapeutic agents targeting CSCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Identification of Secondary Metabolite Gene Clusters in the Pseudovibrio Genus Reveals Encouraging Biosynthetic Potential toward the Production of Novel Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Lynn M. Naughton

    2017-08-01

    Full Text Available Increased incidences of antimicrobial resistance and the emergence of pan-resistant ‘superbugs’ have provoked an extreme sense of urgency amongst researchers focusing on the discovery of potentially novel antimicrobial compounds. A strategic shift in focus from the terrestrial to the marine environment has resulted in the discovery of a wide variety of structurally and functionally diverse bioactive compounds from numerous marine sources, including sponges. Bacteria found in close association with sponges and other marine invertebrates have recently gained much attention as potential sources of many of these novel bioactive compounds. Members of the genus Pseudovibrio are one such group of organisms. In this study, we interrogate the genomes of 21 Pseudovibrio strains isolated from a variety of marine sources, for the presence, diversity and distribution of biosynthetic gene clusters (BGCs. We expand on results obtained from antiSMASH analysis to demonstrate the similarity between the Pseudovibrio-related BGCs and those characterized in other bacteria and corroborate our findings with phylogenetic analysis. We assess how domain organization of the most abundant type of BGCs present among the isolates (Non-ribosomal peptide synthetases and Polyketide synthases may influence the diversity of compounds produced by these organisms and highlight for the first time the potential for novel compound production from this genus of bacteria, using a genome guided approach.

  3. Identification of Secondary Metabolite Gene Clusters in the Pseudovibrio Genus Reveals Encouraging Biosynthetic Potential toward the Production of Novel Bioactive Compounds

    Science.gov (United States)

    Naughton, Lynn M.; Romano, Stefano; O’Gara, Fergal; Dobson, Alan D. W.

    2017-01-01

    Increased incidences of antimicrobial resistance and the emergence of pan-resistant ‘superbugs’ have provoked an extreme sense of urgency amongst researchers focusing on the discovery of potentially novel antimicrobial compounds. A strategic shift in focus from the terrestrial to the marine environment has resulted in the discovery of a wide variety of structurally and functionally diverse bioactive compounds from numerous marine sources, including sponges. Bacteria found in close association with sponges and other marine invertebrates have recently gained much attention as potential sources of many of these novel bioactive compounds. Members of the genus Pseudovibrio are one such group of organisms. In this study, we interrogate the genomes of 21 Pseudovibrio strains isolated from a variety of marine sources, for the presence, diversity and distribution of biosynthetic gene clusters (BGCs). We expand on results obtained from antiSMASH analysis to demonstrate the similarity between the Pseudovibrio-related BGCs and those characterized in other bacteria and corroborate our findings with phylogenetic analysis. We assess how domain organization of the most abundant type of BGCs present among the isolates (Non-ribosomal peptide synthetases and Polyketide synthases) may influence the diversity of compounds produced by these organisms and highlight for the first time the potential for novel compound production from this genus of bacteria, using a genome guided approach. PMID:28868049

  4. Relationship between the elemental composition of grapeyards and bioactive compounds in the Cabernet Sauvignon grapes Vitis vinífera harvested in Mexico.

    Science.gov (United States)

    Acuña-Avila, Pedro Estanislao; Vásquez-Murrieta, María Soledad; Franco Hernández, Marina Olivia; López-Cortéz, Ma Del Socorro

    2016-07-15

    The red grape Vitis vinífera is an important source of phenolic compounds, which can prevent disease if included as a part of a diet. The levels of these compounds in grapes have been associated with various environmental factors, such as climate, soil composition, and biotic stress. The purpose of this study was to determine the relationship between the elemental compositions of the soil and the grapes and the presence of bioactive compounds, such as catechin, epicatechin, piceid and resveratrol. Ethanol-based extracts of red grapes were used to quantify total and individual phenolic compounds by HPLC. It was observed that the elemental compositions of the soil and the grapes were related to their locations within different wine-producing regions. A principal component analysis showed a relationship between high metal content (Sr, Mn, Si and Pb) and higher concentrations of antioxidants in the grapes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Production of the Bioactive Compounds Violacein and Indolmycin Is Conditional in a maeA Mutant of Pseudoalteromonas luteoviolacea S4054 Lacking the Malic Enzyme

    DEFF Research Database (Denmark)

    Schmidt Thøgersen, Mariane; Delpin, Marina; Melchiorsen, Jette

    2016-01-01

    It has previously been reported that some strains of the marine bacterium Pseudoalteromonas luteoviolacea produce the purple bioactive pigment violacein as well as the antibiotic compound indolmycin, hitherto only found in Streptomyces. The purpose of the present study was to determine the relative...... role of each of these two compounds as antibacterial compounds in P. luteoviolacea S4054. Using Tn10 transposon mutagenesis, a mutant strain that was significantly reduced in violacein production in mannose-containing substrates was created. Full genome analyses revealed that the vio-biosynthetic gene...... produced by the mutant strain was about 300% that of the wild type. Since inhibition of V. anguillarum and S. aureus by the mutant strain was similar to that of the wild type, it is concluded that violacein is not the major antibacterial compound in P. luteoviolacea. We furthermore propose that production...

  6. Effect of Stevia rebaudiana addition on bioaccessibility of bioactive compounds and antioxidant activity of beverages based on exotic fruits mixed with oat following simulated human digestion.

    Science.gov (United States)

    Carbonell-Capella, Juana M; Buniowska, Magdalena; Esteve, María J; Frígola, Ana

    2015-10-01

    In order to determine the impact of Stevia rebaudiana (SR) addition on bioactive compounds bioaccessibility of a new developed functional beverage based on exotic fruits (mango juice, papaya juice and açaí) mixed with orange juice and oat, an in vitro gastrointestinal digestion was performed. Ascorbic acid, total carotenoids, total phenolics, total anthocyanins, total antioxidant capacity and steviol glycosides were evaluated before and after a simulated gastrointestinal digestion. Salivary and gastric digestion had no substantial effect on any of the major phenolic compounds, ascorbic acid, total antioxidant capacity and steviol glycosides, whereas carotenoids and anthocyanins diminished significantly during the gastric step. All analysed compounds were significantly altered during the pancreatic-bile digestion and this effect was more marked for carotenoids and total anthocyanins. However, phenolic compounds, anthocyanins, total antioxidant capacity and steviol glycosides bioaccessibility increased as did SR concentration. Ascorbic acid bioaccessibility was negatively affected by the SR addition. Copyright © 2015. Published by Elsevier Ltd.

  7. Machine learning of molecular electronic properties in chemical compound space

    International Nuclear Information System (INIS)

    Montavon, Grégoire; Müller, Klaus-Robert; Rupp, Matthias; Gobre, Vivekanand; Hansen, Katja; Tkatchenko, Alexandre; Vazquez-Mayagoitia, Alvaro; Anatole von Lilienfeld, O

    2013-01-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure–property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost. (paper)

  8. Molecular docking studies of bioactive compounds from Annona muricata Linn as potential inhibitors for Bcl-2, Bcl-w and Mcl-1 antiapoptotic proteins.

    Science.gov (United States)

    Mohamad Rosdi, Mohamad Norisham; Mohd Arif, Shahkila; Abu Bakar, Mohamad Hafizi; Razali, Siti Aisyah; Mohamed Zulkifli, Razauden; Ya'akob, Harisun

    2018-01-01

    Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.

  9. Effect of bioactive compounds from Sainfoin ( Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides.

    Science.gov (United States)

    Barrau, E; Fabre, N; Fouraste, I; Hoste, H

    2005-10-01

    Anthelmintic bioactivity against gastrointestinal nematodes has been associated with leguminous forages supporting the hypothesis of a role of condensed tannins. However, the possibility that other compounds might also been involved has received less consideration. Using bio-guided fractionation, the current study aimed at characterizing the biochemical nature of the active compounds present in sainfoin (Onobrychis viciifolia ), previously identified as an anthelmintic leguminous forage. The effects of sainfoin extracts were evaluated on 3rd-stage larvae (L3) of Haemonchus contortus by using a larval migration inhibition (LMI) assay. Comparison of extracts obtained with several solvent systems showed that the bioactivity was associated with the 70ratio30 acetone/water extract. Further fractionation of the later allowed the separation of phenolic compounds. By use of a dialysis method, compounds were separated with a molecular weight cut-off of 2000 Da. The in vitro anthelmintic effect of the fraction with condensed tannins was confirmed. In the fraction containing molecules of MW <2000 Da, 3 flavonol glycosides were identified as rutin, nicotiflorin and narcissin. At 1200 mug/ml, each inhibited significantly the migration of larvae. Addition of polyvinyl pyrrolidone (PVPP) to both fractions before incubation restored larval migration. These results confirmed the role of both tannins and flavonol glycosides in the anthelmintic properties of sainfoin.

  10. USING OF Agrobacterium-MEDIATED TRANSFORMATION FOR THE BIOTECHNOLOGICAL IMPROVEMENT OF COMPOSITAE PLANTS. ІІ. SYNTHESIS OF BIOACTIVE COMPOUNDS IN TRANSGENIC PLANTS AND «HAIRY» ROOTS

    Directory of Open Access Journals (Sweden)

    N. A. Matvieieva

    2015-04-01

    Full Text Available The review focused on the data concerning current state in the field of Compositae “hairy” roots and transgenic plants construction using A.tumefaciens- and A. rhizogenes-mediated transformation to obtain biologically active compounds, including recombinant proteins. The article presents data on the results of genetic transformation of Cichorium intybus, Lactuca sativa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera and other Compositae plants as well as studies on the artemisinin, flavonoids, polyphenols, fructans and other compounds accumulation in transgenic plants and roots. The data show that the use of biotechnological approaches for construction of "hairy" roots and transgenic plants with new features are of great interest. The possibility of increase in the accumulation of naturally synthesized bioactive compounds and recombinant proteins production via A. tumefaciens and A. rhizogenes-mediated transformation have been shown. In vitro cultivation of transgenic plants characterized by high level of bioactive compounds accumulation and synthesis of recombinant proteins makes it possible to obtain guaranteed pure raw material. Using of biotechnological approaches preserved natural populations of plants is particularly important for rare and endangered plant species.

  11. Bioactive compounds and antifungal activity of three different seaweed species Ulva lactuca, Sargassum tenerrimum and Laurencia obtusa collected from Okha coast, Western India

    Directory of Open Access Journals (Sweden)

    Megha Barot

    2016-04-01

    Full Text Available Objective: To evaluate bioactive compounds responsible for antifungal activity from seaweeds of Okha coast, Western India. Methods: Each species were extracted with different solvents with increasing polarity: hexane, ethyl acetate, chloroform and methanol using Soxhlet apparatus. The antifungal activity was determined by agar diffusion plate method by using fluconazole, ketoconazole and amphotericin B as standards. Gas chromatography-mass spectrometer analysis was done for identification of bioactive compounds present in crude extract. Results: The gas chromatography-mass spectrometer analysis of all the extracts revealed the presence of steroids, fatty acids and esters compounds. Among the three species, the maximum crude extract yield (53.46% and the largest inhibition zone (36 mm were recorded in methanol extract of Ulva lactuca, whereas the minimum crude extract yield and inhibition zone were recorded in chloroform extract of the same species as 0.5% and 10 mm, respectively. Methanol and ethyl acetate extract showed the maximum antifungal activity and the major important compounds like steroids, fatty acids and esters were detected with higher amount in all the extracts. Conclusions: The present study revealed that the different seaweed extracts showed moderate to significant antifungal activity against the strains tested as compared with the standard fungicides, and polar solvents methanol and ethyl acetate were comparatively efficient for extraction of different metabolites that are responsible for antifungal activity.

  12. Determinação de compostos bioativos em amostras comerciais de café torrado Determination of bioactive compounds in Brazilian roasted coffees

    Directory of Open Access Journals (Sweden)

    Mariana Costa Monteiro

    2005-08-01

    Full Text Available Coffee is a product consumed all around the world, Brazil being the biggest exporter. However, little is known about the difference in composition of the different brands in terms of bioactive substances. In the present study, ten of the most consumed brands of coffee in Rio de Janeiro were analyzed. Caffeine contents, trigonelline and total chlorogenic acid varied from 0.8 g/100g to 1.4 g/100g; 0.2 g/100g to 0.5 g/100g and from 3.5 g kg-1 to 15.9 g kg-1, respectively. The large heterogeneity observed in the amounts of the bioactive compounds can be attributed to different formulations of the various brands, as well as to different roasting conditions.

  13. Biomimetic in vitro oxidation of lapachol: a model to predict and analyse the in vivo phase I metabolism of bioactive compounds.

    Science.gov (United States)

    Niehues, Michael; Barros, Valéria Priscila; Emery, Flávio da Silva; Dias-Baruffi, Marcelo; Assis, Marilda das Dores; Lopes, Norberto Peporine

    2012-08-01

    The bioactive naphtoquinone lapachol was studied in vitro by a biomimetic model with Jacobsen catalyst (manganese(III) salen) and iodosylbenzene as oxidizing agent. Eleven oxidation derivatives were thus identified and two competitive oxidation pathways postulated. Similar to Mn(III) porphyrins, Jacobsen catalyst mainly induced the formation of para-naphtoquinone derivatives of lapachol, but also of two ortho-derivatives. The oxidation products were used to develop a GC-MS (SIM mode) method for the identification of potential phase I metabolites in vivo. Plasma analysis of Wistar rats orally administered with lapachol revealed two metabolites, α-lapachone and dehydro-α-lapachone. Hence, the biomimetic model with a manganese salen complex has evidenced its use as a valuable tool to predict and elucidate the in vivo phase I metabolism of lapachol and possibly also of other bioactive natural compounds. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Bio-active Compounds of Bitter Melon Genotypes (Momordica charantia L. in Relation to Their Physiological Functions

    Directory of Open Access Journals (Sweden)

    Navam S. Hettiarachchy

    2011-02-01

    protein, most of the essential amino acid contents of Bitter Melon were similar as in soy proteins. Some amino acids such as Alanine, Glycine, and Valanine were relatively higher in Bitter Melon flesh than in soy protein. Phenolics contents of the flesh, seed, and seed coat tissue [SCT] were significantly different [p<0.05] among the four varieties. The four varieties were similar in their antioxidant activities of the flesh tissues; however, they were significantly different in their antioxidant activities in the seed and seed coat tissues [SCT]. Bitter melon varieties IW and CG, tested for antimutagenic effects, both flesh and seed had considerably high activities against benzo[a]pyrene with Salmonella TA98 [92-100% inhibition] and Salmonella TA100 [79-86% inhibition].Conclusion: Based on these studies, Bitter Melon is a good source of phenolic compounds. All four varieties tested showed considerably high antioxidant and antimutagenic activities. Therefore, these natural plant phenolics can be a good source of biologically active compounds that may be applied in many food systems to enhance food values and special nutritional qualities. Further studies will be needed using more genetically diverse varieties to pin point the bioactive and functional compounds and their physiological properties.

  15. Compostos bioativos presentes em amora-preta (Rubus spp. Bioactive compounds of blackberry fruits (Rubus spp. grown in Brazil

    Directory of Open Access Journals (Sweden)

    Daniela Souza Ferreira

    2010-09-01

    and, or, inhibitors of degenerative disorders; however, data regarding the bioactive compounds in blackberry cultivated in Brazil are rare. Thus, the objectives of the present study were to identify the anthocyanins and carotenoids in blackberry (Rubus spp., to determine the total contents of phenolic compounds, flavonoids, carotenoids, and total, monomeric, polimeric and co-pigmented anthocyanins, and the antioxidant capacity against the free radicals ABTS and DPPH. The total carotenoids level was low (86.5 ± 0.2 µg/100 g, with all-trans-β-carotene (39.6 % and all-trans-lutein (28.2 % as the major ones. The blackberries showed high antioxidant status mainly due to the high level of monomeric anthocyanins (104.1 ± 1.8 mg/100 g de fruta, presence of polimeric anthocyanins (22.9 ± 0.4 %, low percentage of co-pigmented anthocyanins (1.6 ± 0.1 % and high contents of phenolic compounds (241.7 ± 0.8 mg gallic acid equivalent/100 g and total flavonoids (173.7 ± 0.7 mg catechin equivalent/100 g. Cyanidin 3-glucoside was the major anthocyanin (92.9 %. These results indicate that the blackberry cultivated in Brazil can be considered a rich natural source of antioxidants and pigments.

  16. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Directory of Open Access Journals (Sweden)

    Vodnar Dan C

    2012-07-01

    Full Text Available Abstract Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C for 10 days and at refrigerated temperature (4°C for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea

  17. Fishing and knockout of bioactive compounds using a combination of high-speed counter-current chromatography (HSCCC) and preparative HPLC for evaluating the holistic efficacy and interaction of the components of Herba Epimedii.

    Science.gov (United States)

    Jin, Jing; Li, Yubo; Kipletting Tanui, Emmanuel; Han, Liwen; Jia, Yuan; Zhang, Lu; Wang, Yuming; Zhang, Xiuxiu; Zhang, Yanjun

    2013-05-20

    Due to the complex chemical compositions and pharmacological effects of traditional Chinese medicines, we developed a strategy based on fishing and knockout of bioactive compounds using a combination of high-speed counter-current chromatography (HSCCC) and preparative HPLC for evaluating the holistic activity and interaction of the components of Herba Epimedii. First, osteoblast target cell extraction was used for preliminary screening of the potential bioactive compounds of Herba Epimedii. Second, the bioactive compounds identified (epimedin A, epimedin B, epimedin C and icariin) were fished and knocked out using high-speed counter-current chromatography and preparative HPLC. Third, the bioactivity of resulting fractions was assessed by determining their influence on cell proliferation and differentiation, thereby allowing for an evaluation of their interaction.The pharmacodynamic contribution ratio of each bioactive compound to the efficacy of the herbal medicine could then be comprehensively and intuitively determined based on the spectra-activity correlations (VIP values) of the tested compositions using partial least-squares regression (PLS-R), through which the reliability of the screening and isolation of bioactive compounds by the target cell extraction technique were verified. The proposed strategy is a useful approach with potential application in other traditional Chinese medicines. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Electronic structure of magnesium diboride and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Paduani, C. [Departamento de Fisica, Universidade Federal de Santa Catarina, UFSC, Florianopolis, CEP 88040-900, SC (Brazil)

    2003-11-01

    The electronic structure of AlB{sub 2}-type diborides and related compounds has been investigated in first-principles calculations with the molecular cluster discrete variational method. For MgB{sub 2} was studied the effect of the lattice relaxation on the total density of states at the Fermi energy (N({epsilon}{sub F})). The results indicated that a contraction of about 2% in the lattice spacings a and c can lead to a slight increase of N({epsilon}{sub F}) for boron. In the MB{sub 2} diborides, M=Al, Ti, V, Cr, Zr, Nb, Mo and Ta, the largest contributions to N({epsilon}{sub F}) is observed for Cr, Mo and Nb. TiB{sub 2} possess the highest chemical stability in the series. The electronic specific heat coefficient {gamma} also is calculated for the diborides. The method is employed to obtain the partial B2p contribution to the total DOS at the Fermi level with the introduction of a monolayer of solute atoms as a substitution for Mg atoms of Na, Al, Ca, Ti, V, Cr, Zr, Nb, Mo and Ta in layered superstructures.. /M/B{sub 2}/Mg/B{sub 2}/.. A stronger covalent bonding between boron atoms is identified in these cases. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Electronic structure of magnesium diboride and related compounds

    International Nuclear Information System (INIS)

    Paduani, C.

    2003-01-01

    The electronic structure of AlB 2 -type diborides and related compounds has been investigated in first-principles calculations with the molecular cluster discrete variational method. For MgB 2 was studied the effect of the lattice relaxation on the total density of states at the Fermi energy (N(ε F )). The results indicated that a contraction of about 2% in the lattice spacings a and c can lead to a slight increase of N(ε F ) for boron. In the MB 2 diborides, M=Al, Ti, V, Cr, Zr, Nb, Mo and Ta, the largest contributions to N(ε F ) is observed for Cr, Mo and Nb. TiB 2 possess the highest chemical stability in the series. The electronic specific heat coefficient γ also is calculated for the diborides. The method is employed to obtain the partial B2p contribution to the total DOS at the Fermi level with the introduction of a monolayer of solute atoms as a substitution for Mg atoms of Na, Al, Ca, Ti, V, Cr, Zr, Nb, Mo and Ta in layered superstructures.. /M/B 2 /Mg/B 2 /.. A stronger covalent bonding between boron atoms is identified in these cases. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Anti-Inflammatory Effects of the Bioactive Compound Ferulic Acid Contained in Oldenlandia diffusa on Collagen-Induced Arthritis in Rats

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2014-01-01

    Full Text Available Objectives. This study aimed to identify the active compounds in Oldenlandia diffusa (OD decoction and the compounds absorbed into plasma, and to determine whether the absorbed compounds derived from OD exerted any anti-inflammatory effects in rats with collagen induced arthritis (CIA. Methods. The UPLC-PDA (Ultra Performance Liquid Chromatography Photo-Diode Array method was applied to identify the active compounds both in the decoction and rat plasma. The absorbable compound was administered to the CIA rats, and the effects were dynamically observed. X-ray films of the joints and HE stain of synovial tissues were analyzed. The levels of IL-1β and TNF-α in the rats from each group were measured by means of ELISA. The absorbed compound in the plasma of CIA rats was identified as ferulic acid (FA, following OD decoction administration. Two weeks after the administration of FA solution or OD decoction, the general conditions improved compared to the model group. The anti-inflammatory effect of FA was inferior to that of the OD decoction (P<0.05, based on a comparison of IL-1β TNF-α levels. FA from the OD decoction was absorbed into the body of CIA rats, where it elicited anti-inflammatory responses in rats with CIA. Conclusions. These results suggest that FA is the bioactive compound in OD decoction, and FA exerts its effects through anti-inflammatory pathways.

  1. Nuclear magnetic resonance and high-performance liquid chromatography techniques for the characterization of bioactive compounds from Humulus lupulus L. (hop).

    Science.gov (United States)

    Bertelli, Davide; Brighenti, Virginia; Marchetti, Lucia; Reik, Anna; Pellati, Federica

    2018-01-19

    Humulus lupulus L. (hop) represents one of the most cultivated crops, it being a key ingredient in the brewing process. Many health-related properties have been described for hop extracts, making this plant gain more interest in the field of pharmaceutical and nutraceutical research. Among the analytical tools available for the phytochemical characterization of plant extracts, quantitative nuclear magnetic resonance (qNMR) represents a new and powerful technique. In this ambit, the present study was aimed at the development of a new, simple, and efficient qNMR method for the metabolite fingerprinting of bioactive compounds in hop cones, taking advantage of the novel ERETIC 2 tool. To the best of our knowledge, this is the first attempt to apply this method to complex matrices of natural origin, such as hop extracts. The qNMR method set up in this study was applied to the quantification of both prenylflavonoids and bitter acids in eight hop cultivars. The performance of this analytical method was compared with that of HPLC-UV/DAD, which represents the most frequently used technique in the field of natural product analysis. The quantitative data obtained for hop samples by means of the two aforementioned techniques highlighted that the amount of bioactive compounds was slightly higher when qNMR was applied, although the order of magnitude of the values was the same. The accuracy of qNMR was comparable to that of the chromatographic method, thus proving to be a reliable tool for the analysis of these secondary metabolites in hop extracts. Graphical abstract Graphical abstract related to the extraction and analytical methods applied in this work for the analysis of bioactive compounds in Humulus lupulus L. (hop) cones.

  2. Antifouling effect of bioactive compounds from marine sponge Acanthella elongata and different species of bacterial film on larval attachment of Balanus amphitrite (cirripedia, crustacea

    Directory of Open Access Journals (Sweden)

    Viswambaran Ganapiriya

    2012-06-01

    Full Text Available The antifouling activity of bioactive compounds from marine sponge Acanthella elongata (Dendy and five species of bacterial biofilm were studied. Larvae of Balanus amphitrite (Cyprids and nauplii were used to monitor the settlement inhibition and the extent to which inhibition was due to toxicity. The crude extract and partially purified fractions of A.elongata showed significant inhibition over the settlement individually, and with the interaction of bacterial species. No bacterial film stimulated the barnacle settlement. The high but variable levels of antifouling activity in combination with less amount of toxicity showed the potential of these metabolites in environmentally-friendly antifouling preparations.

  3. Effect of storage time and temperature on stability of bioactive compounds in aseptically packed beverages prepared from rose hips and sea buckthorn berries

    OpenAIRE

    Staffan C Andersson; Anders Ekholm; Eva Johansson; Marie E Olsson; Ingegerd Sjöholm; Lena Nyberg; Annika Nilsson; Kimmo Rumpunen

    2015-01-01

    Rose hips and sea buckthorn berries contain high amounts of beneficial bioactive compounds. In this study the content and stability of natural vitamins and antioxidants were investigated in two fruit beverages made from rose hip powder, sea buckthorn berry purée and white grape juice concentrate, and wheat germ oil in one of the beverages. Beverages were formulated, pasteurised and filled aseptically in Tetra Brik packages and stored up to 35 days at 4 °C or 22 °C. Samples were analysed for t...

  4. Evaluation of quality of kefir from milk obtained from goats supplemented with a diet rich in bioactive compounds.

    Science.gov (United States)

    Cais-Sokolińska, Dorota; Pikul, Jan; Wójtowski, Jacek; Danków, Romualda; Teichert, Joanna; Czyżak-Runowska, Grażyna; Bagnicka, Emilia

    2015-04-01

    The composition of bioactive components in dairy products depends on their content in raw milk and the processing conditions. The experimental material consisted of the milk of dairy goats supplemented with 120 g d(-1) per head of false flax cake. The aim of the study was to evaluate the quality of kefir produced from goat's milk with a higher content of bioactive components resulting from supplementation of the goats' diet with false flax cake. The administration of false flax cake to goats had a positive effect on the fatty acid profile of the raw milk, causing an increase in the proportion of polyunsaturated fatty acids (PUFA), including conjugated linoleic acid (CLA) and n-3 fatty acids. Their increased percentage was detected in the kefir after production as well as after storage. The processing value of the harvested milk did not differ from the qualitative characteristics of milk from goats of the control group. Increasing the proportion of bioactive components in goat's milk did not result in changes in the acidity, texture, colour, flavour, aroma or consistency of the kefir obtained. Milk and kefir obtained after the administration of false flax cake to goats contain bioactive components (PUFA including CLA, n-3 and monoenic trans fatty acids) in significant amounts. Kefir from experimental goat's milk did not differ in quality from kefir made from the milk of the control group. © 2014 Society of Chemical Industry.

  5. Assessment of Exposure to Sensitizing Rosin-derived Compounds from Electronics Soldering

    National Research Council Canada - National Science Library

    Bowerbank, Christopher

    1998-01-01

    Exposure potential for rosin-derived compounds, including volatile and semivolatile organic compounds produced during electronics soldering operations using rosin-based fluxes and rosin core solders, was investigated...

  6. [Electron microscopic study of a case of compound odontoma in an adolescent].

    Science.gov (United States)

    González Rodríguez, E; Carreño García, J

    1991-03-01

    We describe a case of compound odontome in a adolescent thirteen years old. The electronics microscopy reveale that the compound odontome is constituted for various dental formations which histologically composition is similar to the normal teeth.

  7. A study of a few compounds with unpaired f electrons

    International Nuclear Information System (INIS)

    Soulie, Edgar.

    1977-07-01

    Ligand field theory is applied to compounds of uranium (V) (configuration f 1 ), uranium (IV) (f 2 ), and to hexagonal neodymium sesquioxide A-Nd 2 O 3 (f 3 ). The reinterpretation of the electronic absorption and paramagnetic resonance spectra of UF 6 Cs allows a determination of the spin-orbit coupling constant, the Newman intrinsic crystal field parameters, and the orbital angular momentum reduction factors, pointing to a degree of sigma covalence for the 5f orbitals. Raman diffusion and carbon 13 SMR spectra of U(NCS) 8 [N(C 2 H 5 ) 4 ] 4 dissolved in CD 3 NO 2 show that cubical coordination for uranium, known for the solid, is maintained in solution. Thermal variation of the magnetic susceptibility of this complex, quantitatively interpreted, leads to the description of the energy levels of f 2 configuration. For U(CH 3 -CO-CH-CO-CH 3 ) 4 the interpretation of the susceptibility curve results into the prediction of the susceptibility anisotropy, and the calculation of the unpaired spin density on the methin proton. Last, it was shown by proton magnetic resonance that U(CF 3 -CO-CH-CO-C 6 H 5 ) 4 behaves as a chemical shift reagent [fr

  8. Electronic structure and thermoelectric properties of skutterudite compounds

    International Nuclear Information System (INIS)

    Kurmaev, E Z; Moewes, A; Shein, I R; Finkelstein, L D; Ivanovskii, A L; Anno, H

    2004-01-01

    We present soft x-ray fluorescence measurements of skutterudite compounds (CoAs 3 and CoSb 3 ). Our results are compared with x-ray photoelectron spectra (XPS) and band structure calculations. The occupancy of d states is found to increase in transition metal antimonides with respect to that of pure metals. The experimental spectra are interpreted in terms of our LDA band structure calculations and we find that electron correlation does not have to be taken into account. The intensity ratio of the Co L 2 to L 3 emission lines is found to be 0.20 and 0.15 for CoAs 3 and CoSb 3 , respectively, which we attribute to the decrease in Coster-Kronig processes in CoAs 3 compared to CoSb 3 with its smaller carrier density. The calculated values of the thermoelectric figures of merit show that CoSb 3 is the most promising thermoelectric material, which is in accordance with experimental measurements of the electrical conductivity and Seebeck coefficient

  9. Bioactive compounds in green tea leaves attenuate the injury of retinal ganglion RGC-5 cells induced by H2O2 and ultraviolet radiation.

    Science.gov (United States)

    Jin, Jianchang; Ying, Hao; Huang, Meirong; Du, Qizhen

    2015-11-01

    The Chinese commonly believe that tea helps maintain clear vision. This viewpoint has been recorded in Chinese medical books also. The key bioactive compounds in green tea leaves, (-)-epigallocatechin gallate (EGCG), L-theanine (theanine) and caffeine, were investigated for their abilities to attenuate the injury of retinal ganglion cells (RGC-5) induced by H2O2 and ultraviolet radiation. Theanine and caffeine promoted cell growth while concentrations of EGCG greater than 10μg/ml inhibited cell growth. The nine and caffeine both protected RGC-5 cells from injury as well as enhanced their recovery, while EGCG only protected the cells from injury and did not help them to recover. Tea is a unique drink, which is simultaneously enriched with EGCG, theanine and caffeine. The role of these compounds in optic nerve protection may partially explain why some tea drinkers feel enhanced vision.

  10. Technological characteristics and selected bioactive compounds of Opuntia dillenii cactus fruit juice following the impact of pulsed electric field pre-treatment.

    Science.gov (United States)

    Moussa-Ayoub, Tamer E; Jaeger, Henry; Youssef, Khaled; Knorr, Dietrich; El-Samahy, Salah; Kroh, Lothar W; Rohn, Sascha

    2016-11-01

    Selected technological characteristics and bioactive compounds of juice pressed directly from the mash of whole Opuntia dillenii cactus fruits have been investigated. The impact of pulsed electric fields (PEF) for a non-thermal disintegration on the important juice characteristics has been evaluated in comparison to microwave heating and use of pectinases. Results showed that the cactus juice exhibited desirable technological characteristics. Besides, it also contained a high amount of phenolic compounds being the major contributors to the overall antioxidant activity of juice. HPLC-DAD/ESI-MS(n) measurements in the fruits' peel and pulp showed that isorhamnetin 3-O-rutinoside was determined as the single flavonol found only in the fruit's peel. Treating fruit mash with a moderate electric field strength increased juice yield and improved juice characteristics. Promisingly, the highest release of isorhamnetin 3-O-rutinoside from fruit's peel into juice was maximally achieved by PEF. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Extraction of bioactive compounds and free radical scavenging activity of purple basil (Ocimum basilicum L.) leaf extracts as affected by temperature and time.

    Science.gov (United States)

    Pedro, Alessandra C; Moreira, Fernanda; Granato, Daniel; Rosso, Neiva D

    2016-05-13

    In the current study, response surface methodology (RSM) was used to assess the effects of extraction time and temperature on the content of bioactive compounds and antioxidant activity of purple basil leaf (Ocimum basilicum L.) extracts. The stability of anthocyanins in relation to temperature, light and copigmentation was also studied. The highest anthocyanin content was 67.40 mg/100 g extracted at 30 °C and 60 min. The degradation of anthocyanins with varying temperatures and in the presence of light followed a first-order kinetics and the activation energy was 44.95 kJ/mol. All the extracts exposed to light showed similar half-lives. The extracts protected from light, in the presence of copigments, showed an increase in half-life from 152.67 h for the control to 856.49 and 923.17 h for extract in the presence of gallic acid and phytic acid, respectively. These results clearly indicate that purple basil is a potential source of stable bioactive compounds.

  12. Pre-harvest treatments of pepper plants with nitrophenolates increase crop yield and enhance nutritive and bioactive compounds in fruits at harvest and during storage.

    Science.gov (United States)

    Valero, D; Zapata, P J; Martínez-Romero, D; Guillén, F; Castillo, S; Serrano, M

    2014-06-01

    Pepper plants (Capsicum annuum L. cv Lamuyo) were treated with a mix of nitrophenolates either by foliar spray or in the irrigation system, and its effect on crop yield and the content of nutritive and bioactive compounds in fruit were analysed at harvest and after post-harvest storage. Treatments were applied at 2-week intervals from the development of first floral bunch (1 March) to end of August. Pepper fruits were harvested at commercial ripening stage (red surface colour) along the growth cycle (from May to September). Total yield (cumulative kilogram per plant) was increased ( 4.5% more) by nitrophenolate treatments due to significant increases in fruit mass, although the number of fruits per plant was unaffected. Pepper fruit quality (weight, firmness and pericarp thickness), its content in nutritive (sugars and organic acids) and bioactive compounds (vitamin C and total phenolics) and antioxidant activity were also enhanced by nitrophenolate treatments at the three harvested dates assayed (end May, mid July and end August). In addition, all these parameters were maintained at higher levels in treated peppers during storage, while diminutions in these parameters occurred generally in control fruit. Thus, nitrophenolate treatments were able to improve crop yield as well as the nutritional value and antioxidant properties of peppers at harvest and after fruit storage.

  13. Metabolomic-Based Study of the Leafy Gall, the Ecological Niche of the Phytopathogen Rhodococcus fascians, as a Potential Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Pierre Duez

    2013-06-01

    Full Text Available Leafy gall is a plant hyperplasia induced upon Rhodococcus fascians infection. Previously, by genomic and transcriptomic analysis, it has been reported that, at the early stage of symptom development, both primary and secondary metabolisms are modified. The present study is based on the hypothesis that fully developed leafy gall, could represent a potential source of new bioactive compounds. Therefore, non-targeted metabolomic analysis of aqueous and chloroform extracts of leafy gall and non-infected tobacco was carried out by 1H-NMR coupled to principal component analysis (PCA and orthogonal projections to latent structures-discriminant analysis (OPLS-DA. Polar metabolite profiling reflects modifications mainly in the primary metabolites and in some polyphenolics. In contrast, main modifications occurring in non-polar metabolites concern secondary metabolites, and gas chromatography and mass spectrometry (GC-MS evidenced alterations in diterpenoids family. Analysis of crude extracts of leafy galls and non-infected tobacco leaves exhibited a distinct antiproliferative activity against all four tested human cancer cell lines. A bio-guided fractionation of chloroformic crude extract yield to semi-purified fractions, which inhibited proliferation of glioblastoma U373 cells with IC50 between 14.0 and 2.4 µg/mL. Discussion is focused on the consequence of these metabolic changes, with respect to plant defense mechanisms following infection. Considering the promising role of diterpenoid family as bioactive compounds, leafy gall may rather be a propitious source for drug discovery.

  14. Impact of high pressure processing on color, bioactive compounds, polyphenol oxidase activity, and microbiological attributes of pumpkin purée.

    Science.gov (United States)

    González-Cebrino, Francisco; Durán, Rocío; Delgado-Adámez, Jonathan; Contador, Rebeca; Bernabé, Rosario Ramírez

    2016-04-01

    Physicochemical parameters, bioactive compounds' content (carotenoids and total phenols), total antioxidant activity, and enzymatic activity of polyphenol oxidase (PPO) were evaluated after high pressure processing (HPP) on a pumpkin purée (cv. 'Butternut'). Three pressure levels (400, 500, and 600 MPa) were combined with three holding times (200, 400, and 600 s). The applied treatments reduced the levels of total aerobic mesophilic (TAM), total psychrophilic and psychrotrophic bacteria (TPP), and molds and yeasts (M&Y). All applied treatments did not affect enzymatic activity of PPO. Pressure level increased CIE L* values, which could enhance the lightness perception of high pressure (HP)-treated purées. No differences were found between the untreated and HP-treated purées regarding total phenols and carotenoids content (lutein, α-carotene, and β-carotene) and total antioxidant activity. HPP did not affect most quality parameters and maintained the levels of bioactive compounds. However, it did not achieve the complete inhibition of PPO, which could reduce the shelf-life of the pumpkin purée. © The Author(s) 2015.

  15. Extraction of bioactive compounds and free radical scavenging activity of purple basil (Ocimum basilicum L. leaf extracts as affected by temperature and time

    Directory of Open Access Journals (Sweden)

    ALESSANDRA C. PEDRO

    2016-06-01

    Full Text Available In the current study, response surface methodology (RSM was used to assess the effects of extraction time and temperature on the content of bioactive compounds and antioxidant activity of purple basil leaf (Ocimum basilicum L. extracts. The stability of anthocyanins in relation to temperature, light and copigmentation was also studied. The highest anthocyanin content was 67.40 mg/100 g extracted at 30 °C and 60 min. The degradation of anthocyanins with varying temperatures and in the presence of light followed a first-order kinetics and the activation energy was 44.95 kJ/mol. All the extracts exposed to light showed similar half-lives. The extracts protected from light, in the presence of copigments, showed an increase in half-life from 152.67