WorldWideScience

Sample records for bioactive coatings formed

  1. Bioactive borate glass coatings for titanium alloys.

    Science.gov (United States)

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  2. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  3. Bioactive glass-ceramics coatings on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Brovarone, C.; Verne, E.; Lupo, F. [Politecnico di Torino (Italy). Materials Science and Chemical Eng. Dept.; Moisescu, C. [Jena Univ. (Germany). Otto-Schott-Inst. fuer Glaschemie; Zanardi, L.; Bosetti, M.; Cannas, M. [Eastern Piemont Univ., Novara (Italy). Medical Science Dept.

    2001-07-01

    In this work, aiming to combine the mechanical performances of alumina with the surface properties of a bioactive material, we coated full density alumina substrates by a bioactive glass-ceramic GC. This latter was specially tailored, in term of costituents and specific quantity to have a thermal expansion coefficient close to that of alumina (8.5-9{sup *}10{sup -6}/ C) which is lower than most of the bioactive glasses and glass-ceramics already in use. In this way, we sought to avoid, as much as possible, the crack formation and propagation due to residual stresses generated by the thermal expansion coefficients mismatch. Furthermore, the high reactivity of alumina toward the glass-ceramic was carefully controlled to avoid deep compositional modification of the GC that will negatively affect its bioactivity. At this purpose, an intermediate layer of an appropriate glass G was coated prior to coat the bioactive glass-ceramic. On the materials obtained, preliminary biological tests have been done to evaluate glass-ceramic biocompatibility respect to alumina. (orig.)

  4. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  5. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    Science.gov (United States)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  6. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Janković, Ana; Eraković, Sanja [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Mitrić, Miodrag [Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11 000 Belgrade (Serbia); Matić, Ivana Z.; Juranić, Zorica D. [Institute of Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade (Serbia); Tsui, Gary C.P.; Tang, Chak-yin [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Mišković-Stanković, Vesna [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Park, Soo Jin [Chemistry, College of Natural Sciences, Inha University, Incheon 402-751 (Korea, Republic of)

    2015-03-05

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  7. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    Directory of Open Access Journals (Sweden)

    Yun HS

    2011-10-01

    Full Text Available Hui-suk Yun1, Sang-Hyun Kim2, Dongwoo Khang3, Jungil Choi4, Hui-hoon Kim2, Minji Kang31Functional Materials Division, Korea Institute of Materials Science, Gyeongnam, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Jung-Gu, Daegu, Korea; 3School of Nano and Advanced Materials Science and Engineering and Center for NMBE, Gyeongsang National University, Jinju, Korea; 4Department of Anatomy, Institute of Health Science and School of Medicine, Gyeongsang National University, Jinju, Gyeongnam, KoreaBackground: Mesoporous bioactive glasses (MBGs are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA in simulated body fluid (SBF, which is a major inorganic component of bone extracellular matrix (ECM and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs.Methods and materials: The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed.Results: The ECM components were fully

  8. Edible coatings as encapsulating matrices for bioactive compounds: a review.

    Science.gov (United States)

    Quirós-Sauceda, Ana Elena; Ayala-Zavala, Jesús Fernando; Olivas, Guadalupe I; González-Aguilar, Gustavo A

    2014-09-01

    Edible coatings can extend the shelf-life of many foods, controlling moisture and solute migration, gas exchange and oxidative reaction rates. Besides, edible coatings can be used as carriers of bioactive compounds to improve the quality of food products such as antioxidants, antimicrobials, flavors and probiotics. These approaches can be useful to extend shelf-life as well as provide a functional product. When edible coatings are used as a matrix holding bioactive compounds remarkable benefits arise; off odors and flavors can be masked, bioactive compounds are protected from the environment, and controlled release is allowed. In this sense, the present review will be focused on analyzing the potential use of encapsulation with edible coatings to incorporate bioactive compounds, solving the disadvantages of direct application.

  9. A novel graded bioactive high adhesion implant coating

    Energy Technology Data Exchange (ETDEWEB)

    Brohede, Ulrika [Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Zhao, Shuxi [Division for Solid State Physics, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Lindberg, Fredrik [Division for Materials Science, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Mihranyan, Albert; Forsgren, Johan [Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Stromme, Maria, E-mail: maria.stromme@angstrom.uu.se [Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Engqvist, Hakan, E-mail: hakan.engqvist@angstrom.uu.se [Division for Materials Science, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden)

    2009-06-15

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 deg. C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 deg. C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  10. A novel graded bioactive high adhesion implant coating

    Science.gov (United States)

    Brohede, Ulrika; Zhao, Shuxi; Lindberg, Fredrik; Mihranyan, Albert; Forsgren, Johan; Strømme, Maria; Engqvist, Håkan

    2009-06-01

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 °C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 °C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  11. Synthesis of bio-active titanium oxide coatings stimulated by electron-beam plasma

    Directory of Open Access Journals (Sweden)

    Vasilieva Tatiana

    2014-11-01

    Full Text Available Advantages of the electron-beam plasma (EBP for production of bioactive titanium oxide coatings were experimentally studied. The coatings were synthesized in EBP of oxygen on the surface of plane titanium substrates. A number of analytical techniques were used to characterize morphology, chemical composition, and structure of the synthesized titanium oxide. The analysis showed the titanium oxide (IV in the rutile form to predominate in the coatings composition.

  12. Bioactive and thermally compatible glass coating on zirconia dental implants.

    Science.gov (United States)

    Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H

    2015-02-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants.

  13. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Energy Technology Data Exchange (ETDEWEB)

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  14. Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy

    Science.gov (United States)

    Shruti, S.; Andreatta, F.; Furlani, E.; Marin, E.; Maschio, S.; Fedrizzi, L.

    2016-08-01

    Surface modification is one of the methods for improving the performance of medical implants in biological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5 mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 V substrates by dip-coating method in order to obtain an inorganic-organic hybrid coating (MBG-PCL). Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 μm. Glass and polymer phases were detected in the coating along with the presence of biologically potent elements cerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samples in simulated body fluid (SBF) for up to 30 days at 37 °C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In this way, an attempt was made to develop a new biomaterial with improved in vitro bioactive response due to bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biological properties of cerium, gallium and zinc.

  15. Nanocrystalline β-Ta Coating Enhances the Longevity and Bioactivity of Medical Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Linlin Liu

    2016-09-01

    Full Text Available A β-Ta nanocrystalline coating was engineered onto a Ti-6Al-4V substrate using a double cathode glow discharge technique to improve the corrosion resistance and bioactivity of this biomedical alloy. The new coating has a thickness of ~40 μm and exhibits a compact and homogeneous structure composed of equiaxed β-Ta grains with an average grain size of ~22 nm, which is well adhered on the substrate. Nanoindentation and scratch tests indicated that the β-Ta coating exhibited high hardness combined with good resistance to contact damage. The electrochemical behavior of the new coating was systematically investigated in Hank’s physiological solution at 37 °C. The results showed that the β-Ta coating exhibited a superior corrosion resistance as compared to uncoated Ti-6Al-4V and commercially pure tantalum, which was attributed to a stable passive film formed on the β-Ta coating. The in vitro bioactivity was studied by evaluating the apatite-forming capability of the coating after seven days of immersion in Hank’s physiological solution. The β-Ta coating showed a higher apatite-forming ability than both uncoated Ti-6Al-4V and commercially pure Ta, suggesting that the β-Ta coating has the potential to enhance functionality and increase longevity of orthopaedic implants.

  16. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2012-09-11

    In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellu-larized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm2, human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization. © 2012 Wiley Periodicals, Inc.

  17. Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation

    Science.gov (United States)

    Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong

    2016-12-01

    Magnesium and its alloys have the potential to serve as lightweight, degradable, biocompatible and bioactive orthopedic implants for load-bearing applications. However, severe local corrosion attack and high corrosion rate have prevented their further clinical use. Micro-arc oxidation (MAO) is proved to be a simple, controllable and efficient electrochemistry technique that can prepare protective ceramic coatings on magnesium alloys. In this paper, electrolyte containing silicate salts was used for microarc oxidation to form ceramic bioactive coatings on the ZK61 alloy substrate. The structure characteristics and element distributions of the coating were investigated by XRD, TEM, SEM and EPMA. The MAO samples were immersed in simulated body fluid (SBF) for 7 and 14 days, respectively. The surface characteristic of the immersed coatings was investigated by Fourier-transform infrared (FTIR) spectroscopy. The results show that these MAO coatings have low crystallinity and are mainly composed of MgO, Mg2SiO4 and Mg2Si2O6. The coating surface is porous. During the SBF immersion period, the nucleation and precipitation of bone-like apatites occur on the MAO coating surface. The corrosion resistance of the substrate is improved by the MAO coatings.

  18. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass.

    Science.gov (United States)

    Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Pawłowski, Lech; Cannillo, Valeria

    2014-04-01

    Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014.

  19. The Bioactivated Interfacial Behavior of the Fluoridated Hydroxyapatite-Coated Mg-Zn Alloy in Cell Culture Environments

    OpenAIRE

    Jianan Li; Lei Cao; Yang Song; Shaoxiang Zhang; Changli Zhao; Fan Zhang; Xiaonong Zhang

    2011-01-01

    A partially fluorine substituted hydroxyapatite- (FHA-) coated Mg-Zn alloy was prepared to investigate the interfacial behavior of degradable Mg-based biomaterials with degradable bioactive coatings in a cell culture environment. Peaks from the results of X-ray diffraction (XRD) were characterized and compared before and after cell culture. It was found that Ca-P, including poorly crystalline ion-substituted Ca-deficient HA (CDHA), was formed in greater amounts on the interface of coated samp...

  20. Bioactivity and corrosion properties of gelatin-containing and strontium-doped calcium phosphate composite coating

    Science.gov (United States)

    Huang, Yong; Yan, Yajing; Pang, Xiaofeng; Ding, Qiongqiong; Han, Shuguang

    2013-10-01

    To improve coating corrosion resistance and bioactivity, strontium (Sr) and gelatin (GLT) were simultaneously incorporated in calcium phosphate (Ca-P) to form Sr-Ca-P/GLT composite coating on titanium (Ti) by electrodeposition. The surface morphology, chemical composition, phase identification, bond strength, corrosion resistance, and cytocompatibility of the films were studied. Results revealed that the Sr-Ca-P/GLT layer was rough and inhomogeneous, with floral-like crystals or flake agglomerate morphology. The Sr-Ca-P crystals were Sr-doped apatite (hydroxyapatite and brushite), and Sr2+ ions and GLT were homogeneously distributed in the Ca-P coating. The thickness of the composite coating was almost 10 μm without delamination and/or cracking at the interface. The bond strength of the composite coating was 5.6 ± 1.8 MPa. The Sr-Ca-P/GLT coated Ti had lower corrosion rates than bare Ti, suggesting a protective character of the composite coating. Osteoblast cellular tests demonstrated that the Sr-Ca-P/GLT composite coating better enhanced the in vitro biocompatibility of Ti than Ca-P coating.

  1. Bioactivity and corrosion properties of gelatin-containing and strontium-doped calcium phosphate composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: pxf2012@yahoo.com.cn [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015 (China); Ding, Qiongqiong; Han, Shuguang [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2013-10-01

    To improve coating corrosion resistance and bioactivity, strontium (Sr) and gelatin (GLT) were simultaneously incorporated in calcium phosphate (Ca–P) to form Sr–Ca–P/GLT composite coating on titanium (Ti) by electrodeposition. The surface morphology, chemical composition, phase identification, bond strength, corrosion resistance, and cytocompatibility of the films were studied. Results revealed that the Sr–Ca–P/GLT layer was rough and inhomogeneous, with floral-like crystals or flake agglomerate morphology. The Sr–Ca–P crystals were Sr-doped apatite (hydroxyapatite and brushite), and Sr{sup 2+} ions and GLT were homogeneously distributed in the Ca–P coating. The thickness of the composite coating was almost 10 μm without delamination and/or cracking at the interface. The bond strength of the composite coating was 5.6 ± 1.8 MPa. The Sr–Ca–P/GLT coated Ti had lower corrosion rates than bare Ti, suggesting a protective character of the composite coating. Osteoblast cellular tests demonstrated that the Sr–Ca–P/GLT composite coating better enhanced the in vitro biocompatibility of Ti than Ca–P coating.

  2. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition.

    Science.gov (United States)

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C P; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-07-11

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC).

  3. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Sanja Erakovic

    2014-07-01

    Full Text Available Hydroxyapatite (HAP is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC.

  4. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    Directory of Open Access Journals (Sweden)

    Sigrid Seuss

    2014-07-01

    Full Text Available Alternating current (AC electrophoretic deposition (EPD was used to produce multifunctional composite coatings combining bioactive glass (BG particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA forming ability in simulated body fluid (SBF for up to 21 days. Fourier transform infrared (FTIR spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings.

  5. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

    Directory of Open Access Journals (Sweden)

    Bill G. X. Zhang

    2014-07-01

    Full Text Available Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.

  6. Engineered plant biomass particles coated with bioactive agents

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James H; Lanning, David N

    2013-07-30

    Plant biomass particles coated with a bioactive agent such as a fertilizer or pesticide, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  7. Bioactivity response of Ta1-xOx coatings deposited by reactive DC magnetron sputtering.

    Science.gov (United States)

    Almeida Alves, C F; Cavaleiro, A; Carvalho, S

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft-hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar+O2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates.

  8. Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials

    Indian Academy of Sciences (India)

    J Z Shi; C Z Chen; H J Yu; S J Zhang

    2008-11-01

    Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition, influence of heat treatment on magnetron sputtered coatings is discussed. The heat treated coatings have been shown to exhibit bioactive behaviour both in vivo and in vitro. At last, the future application of the bioactive ceramic coating deposited by magnetron sputtering is mentioned.

  9. In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid

    Directory of Open Access Journals (Sweden)

    Wei Yi

    2014-09-01

    Full Text Available 3D Ti-mesh has been coated with bioceramics under different coating conditions, such as material compositions and micro-porosity, using a dip casting method. Hydroxyapatite (HA, micro-HA particles (HAp, a bioglass (BG and their different mixtures together with polymer additives were used to control HA-coating microstructures. Layered composites with the following coating-to-substrate designs, such as BG/Ti, HA + BG/BG/Ti and HAp + BG/BG/Ti, were fabricated. The bioactivity of these coated composites and the uncoated Ti-mesh substrate was then investigated in a simulated body fluid (SBF. The Ti-mesh substrate and BG/Ti composite did not induce biomimetic apatite deposition when they were immersed in SBF for the selected BG, a pressable dental ceramic, used in this study. After seven days in SBF, an apatite layer was formed on both HA + BG/BG/Ti and HAp + BG/BG/Ti composites. The difference is the apatite layer on the HAp + BG/BG/Ti composite was rougher and contained more micro-pores, while the apatite layer on the HA + BG/BG/Ti composite was dense and smooth. The formation of biomimetic apatite, being more bioresorbable, is favored for bone regeneration.

  10. Functionally graded bioactive glass coating on magnesia partially stabilized zirconia (Mg-PSZ) for enhanced biocompatibility.

    Science.gov (United States)

    Rahaman, Mohamed N; Li, Yadong; Bal, B Sonny; Huang, Wenhai

    2008-06-01

    The coating of magnesia partially stabilized zirconia (Mg-PSZ) with a bioactive glass was investigated for enhancing the bioactivity and bone-bonding ability of Mg-PSZ orthopedic implants. Individual coatings of three different bioactive glasses were prepared by depositing a concentrated suspension of the glass particles on Mg-PSZ substrates, followed by sintering at temperatures between 750 degrees C and 850 degrees C. Two silicate-based glass compositions (designated 13-93 and 6P68), and a borosilicate glass composition (H12) were investigated. The microstructure and adhesive strength of the coatings were characterized, and the in vitro bioactivity of the glasses was compared by measuring their conversion kinetics to hydroxyapatite in an aqueous phosphate solution at 37 degrees C. The 6P68 glass provided the highest adhesive strength (40 +/- 2 MPa) but showed very limited bioactivity, whereas the H12 glass had lower adhesive strength (18 +/- 2 MPa) but the highest bioactivity. A functionally graded coating, consisting of a 6P68 interfacial layer and an H12 surface layer, was developed to provide a coating with high adhesive strength coupled with rapid in vitro bioactivity.

  11. The development of bioactive triple helix-forming oligonucleotides.

    Science.gov (United States)

    Seidman, Michael M; Puri, Nitin; Majumdar, Alokes; Cuenoud, Bernard; Miller, Paul S; Alam, Rowshon

    2005-11-01

    We are developing triple helix-forming oligonucleotides (TFOs) as gene targeting reagents in mammalian cells. We have described psoralen-conjugated TFOs containing 2'-O-methyl (2'OMe) and 2'-O-aminoethoxy (AE) ribose substitutions. TFOs with a cluster of 3-4 AE residues, with all other sugars as 2'OMe, were bioactive in a gene knockout assay in mammalian cells. In contrast, TFOs with one or two clustered, or three dispersed, AE residues were inactive. Thermal stability analysis of the triplexes indicated that there were only incremental differences between the active and inactive TFOs. However the active and inactive TFOs could be distinguished by their association kinetics. The bioactive TFOs showed markedly greater on-rates than the inactive TFOs. It appears that the on-rate is a better predictor of TFO bioactivity than thermal stability. Our data are consistent with a model in which a cluster of 3-4 AE residues stabilizes the nucleation event that precedes formation of a complete triplex. It is likely that triplexes in cells are much less stable than triplexes in vitro probably as a result of elution by chromatin-associated translocases and helicases. Consequently the biologic assay will favor TFOs that can bind and rebind genomic targets quickly.

  12. In vivo evaluation of titanium implants coated with bioactive glass by pulsed laser deposition.

    Science.gov (United States)

    Borrajo, Jacinto P; Serra, Julia; González, Pío; León, Betty; Muñoz, Fernando M; López, M

    2007-12-01

    During the past years, different techniques, like chemical treatment, plasma spraying, sputtering, enamelling or sol-gel; and materials, like metals, hydroxylapatite, calcium phosphates, among others, have been applied in different combinations to improve the performance of prostheses. Among the techniques, Pulsed Laser Deposition (PLD) is very promising to produce coatings of bioactive glass on any metal alloy used as implant. In this work the biocompatibility of PLD coatings deposited on titanium substrates was examined by implantation in vivo. Different coating compositions were checked to find the most bioactive that was then applied on titanium and implanted into paravertebral muscle of rabbit.

  13. Bioactive coating with low-fouling polymers for the development of biocompatible vascular implants

    Science.gov (United States)

    Thalla, Pradeep Kumar

    The replacement of occluded blood vessels and endovascular aneurysm repair (EVAR) are performed with the use of synthetic vascular grafts and stent grafts, respectively. Both implants lead to frequent clinical complications that are different but due to a similar problem, namely the inadequate surface properties of the polymeric biomaterials used (generally polyethylene terephthalate (PET) or expanded polytetrafluoroethylene (ePTFE)). Therefore the general objective of this thesis was to create a versatile bioactive coating on vascular biomaterials that reduce material-induced thrombosis and promote desired cell interactions favorable to tissue healing around implants. The use of low-fouling backgrounds was decided in order to reduce platelet adhesion as well as the non-specific protein adsorption and thus increase the bioactivity of immobilized biomolecules. As part of the preliminary objective, a multi-arm polyethylene glycol (PEG) was chosen to create a versatile low-fouling surface, since the current coating methods are far from being versatile and rely on the availability of compatible functional groups on both PEG and the host surface. This PEG coating method was developed by taking advantage of novel primary amine-rich plasma polymerized coatings (LP). As demonstrated by quartz crystal microbalance with dissipation (QCM-D), fluorescence measurements and platelet adhesion assays, our PEG coatings exhibited low protein adsorption and almost no platelet adhesion after 15 min perfusion in whole blood. Although protein adsorption was not completely abrogated and short-term platelet adhesion assay was clearly insufficient to draw conclusions for long-term prevention of thrombosis in vivo, the low-fouling properties of this PEG coating were sufficient to be exploited for further coupling of bioactive molecules to create bioactive coatings. Therefore, as a part of the second objective, an innovative and versatile bioactive coating was developed on PEG and

  14. Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages.

    Science.gov (United States)

    Dávila-Aviña, Jorge E; Villa-Rodríguez, José A; Villegas-Ochoa, Mónica A; Tortoledo-Ortiz, Orlando; Olivas, Guadalupe I; Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A

    2014-10-01

    This work evaluated the effect of carnauba and mineral oil coatings on the bioactive compounds and antioxidant capacity of tomato fruits (cv. "Grandela"). Carnauba and mineral oil coatings were applied on fresh tomatoes at two maturity stages (breaker and pink) over 28 day of storage at 10 °C was evaluated. Bioactive compound and antioxidant activity assays included total phenols, total flavonoids, ascorbic acid (ASA), lycopene, DPPH radical scavenging activity (%RSA), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity assay (ORAC). The total phenolic, flavonoid and lycopene contents were significantly lower for coated fruit than control fruits. However, ascorbic acid content was highest in fruits treated with carnauba, followed by mineral oil coating and control fruits. The ORAC values were highest in breaker tomatoes coated with carnauba wax, followed by mineral oil-coated fruits and controls. No significant differences in ORAC values were observed in pink tomatoes. % RSA and TEAC values were higher for controls than for coated fruit. Edible coatings preserve the overall quality of tomatoes during storage without affecting the nutritional quality of fruit. We found that the physiological response to the coatings is in function of the maturity stage of tomatoes. The information obtained in this study support to use of edible coating as a safe and good alternative to preserve tomato quality, and that the changes of bioactive compounds and antioxidant activity of tomato fruits, was not negatively affected. This approach can be used by producers to preserve tomato quality.

  15. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: Mechanical properties and in-vitro bioactivity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R., E-mail: aldo.boccaccini@ww.uni-erlangen.de

    2014-07-01

    PVA reinforced alginate–bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate–Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications. - Highlights: • PVA reinforced alginate–bioactive glass composite coating on stainless steel produced by EPD • The co-deposition mechanism was experimentally confirmed. • Homogeneous and compact coating microstructure obtained by the addition of PVA • Improved adhesion strength of PVA reinforced coatings confirmed qualitatively and quantitatively • Controlled degradation rate and rapid HA forming ability of PVA-containing coatings in SBF.

  16. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  17. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr.

    Science.gov (United States)

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation.

  18. Bioactive Glass-Ceramic Coatings Synthesized by the Liquid Precursor Plasma Spraying Process

    Science.gov (United States)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Chen, Jiyong; Wu, Yao; Wu, Fang

    2011-03-01

    In this study, the liquid precursor plasma spraying process was used to manufacture P2O5-Na2O-CaO-SiO2 bioactive glass-ceramic coatings (BGCCs), where sol and suspension were used as feedstocks for plasma spraying. The effect of precursor and spray parameters on the formation and crystallinity of BGCCs was systematically studied. The results indicated that coatings with higher crystallinity were obtained using the sol precursor, while nanostructured coatings predominantly consisting of amorphous phase were synthesized using the suspension precursor. For coatings manufactured from suspension, the fraction of the amorphous phase increased with the increase in plasma power and the decrease in liquid precursor feed rate. The coatings synthesized from the suspension plasma spray process also showed a good in vitro bioactivity, as suggested by the fast apatite formation when soaking into SBF.

  19. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface.

    Science.gov (United States)

    Wang, Guocheng; Meng, Fanhao; Ding, Chuanxian; Chu, Paul K; Liu, Xuanyong

    2010-03-01

    A monoclinic zirconia coating with a nanostructural surface was prepared on the Ti-6Al-4V substrate by an atmospheric plasma-spraying technique, and its microstructure and composition, as well as mechanical and biological properties, were investigated to explore potential application as a bioactive coating on bone implants. X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Raman spectroscopy revealed that the zirconia coating was composed of monoclinic zirconia which was stable at low temperature, and its surface consists of nano-size grains 30-50 nm in size. The bond strength between the coating and the Ti-6Al-4V substrate was 48.4 + or - 6.1 MPa, which is higher than that of plasma-sprayed HA coatings. Hydrothermal experiments indicated that the coating was stable in a water environment and the phase composition and Vickers hardness were independent of the hydrothermal treatment time. Bone-like apatite is observed to precipitate on the surface of the coating after soaking in simulated body fluid for 6 days, indicating excellent bioactivity in vitro. The nanostructured surface composed of monoclinic zirconia is believed to be crucial to its bioactivity. Morphological observation and the cell proliferation test demonstrated that osteoblast-like MG63 cells could attach to, adhere to and proliferate well on the surface of the monoclinic zirconia coating, suggesting possible applications in hard tissue replacements.

  20. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhenyu; Qin, Jinli [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ma, Jun, E-mail: caltary@gmail.com [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-04-01

    Cellulose acetate (CA) nanofibers were deposited on stainless steel plates by electrospinning technique. The composite of hydroxyapatite (HAP) nanoparticles and chitosan (CHI) was coated subsequently by dip-coating. The structure and morphology of the obtained coatings were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The stability of the coatings in physiological environment was studied using electrochemical polarization and impedance spectroscopy. The CA nanofibers were embedded in the HAP/CHI coating and the resulted composite film was densely packed and uniform on the substrate. The in vitro biomineralization study of the coated samples immersed in simulated body fluid (SBF) confirmed the formation ability of bone-like apatite layer on the surface of HAP-containing coatings. Furthermore, the coatings could provide corrosion resistance to the stainless steel substrate in SBF. The electrochemical results suggested that the incorporation of CA nanofibers could improve the corrosion resistance of the HAP/CHI coating. Thus, biocompatible CA/HAP/CHI coated metallic implants could be very useful in the long-term stability of the biomedical applications. - Highlights: • The composite coatings were prepared by electrospinning and dip-coating. • Good in vitro bioactivity of the CA/HAP/CHI coating was confirmed. • Electrochemical behaviors in SBF of the coatings have been studied. • The CA/HAP/CHI coating shows better resistance property than HAP/CHI.

  1. Effects of Alloying Element Ca on the Corrosion Behavior and Bioactivity of Anodic Films Formed on AM60 Mg Alloys

    Directory of Open Access Journals (Sweden)

    Anawati Anawati

    2016-12-01

    Full Text Available Effects of alloying element Ca on the corrosion behavior and bioactivity of films formed by plasma electrolytic oxidation (PEO on AM60 alloys were investigated. The corrosion behavior was studied by conducting electrochemical tests in 0.9% NaCl solution while the bioactivity was evaluated by soaking the specimens in simulated body fluid (SBF. Under identical anodization conditions, the PEO film thicknesses increased with increasing Ca content in the alloys, which enhanced the corrosion resistance in NaCl solution. Thicker apatite layers grew on the PEO films of Ca-containing alloys because Ca was incorporated into the PEO film and because Ca was present in the alloys. Improvement of corrosion resistance and bioactivity of the PEO-coated AM60 by alloying with Ca may be beneficial for biodegradable implant applications.

  2. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.

    Science.gov (United States)

    Nelson, G M; Nychka, J A; McDonald, A G

    2014-03-01

    Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20±2MPa (n=5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to

  3. Synthesis of bioactive β-TCP coatings with tailored physico-chemical properties on zirconia bioceramics.

    Science.gov (United States)

    Stefanic, Martin; Milacic, Radmila; Drazic, Goran; Škarabot, Miha; Budič, Bojan; Krnel, Kristoffer; Kosmač, Tomaž

    2014-10-01

    The objective of this work was to develop a synthesis procedure for the deposition of β-TCP coatings with tailored physico-chemical properties on zirconia bioceramics. The synthesis procedure involved two steps: (i) a rapid wet-chemical deposition of a biomimetic CaP coating and (ii) a subsequent post-deposition processing of the biomimetic CaP coating, which included a heat treatment between 800 and 1200 °C, followed by a short sonication in a water bath. By regulating the heating temperature the topography of the β-TCP coatings could be controlled. The average surface roughness (Ra) ranged from 42 nm for the coating that was heated at 900 °C (TCP-900) to 630 nm for the TCP-1200 coating. Moreover, the heating temperature also affected the dissolution rate of the coatings in a physiological solution, their protein-adsorption capacity and their bioactivity in a simulated body fluid.

  4. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate-Bioglass® composite coating on stainless steel: mechanical properties and in-vitro bioactivity assessment.

    Science.gov (United States)

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R

    2014-07-01

    PVA reinforced alginate-bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate-Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications.

  5. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, G.M.; Nychka, J.A. [Department of Chemical and Materials Engineering, University of Alberta, 7th Floor, Electrical and Computer Engineering Research Facility, Edmonton, Alberta T6G 2V4 (Canada); McDonald, A.G., E-mail: andre2@ualberta.ca [Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta T6G 2G8 (Canada)

    2014-03-01

    Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20 ± 2 MPa (n = 5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to

  6. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system.

    Science.gov (United States)

    Pishbin, F; Mouriño, V; Gilchrist, J B; McComb, D W; Kreppel, S; Salih, V; Ryan, M P; Boccaccini, A R

    2013-07-01

    Composite orthopaedic coatings with antibacterial capability containing chitosan, Bioglass® particles (9.8μm) and silver nanoparticles (Ag-np) were fabricated using a single-step electrophoretic deposition (EPD) technique, and their structural and preliminary in vitro bactericidal and cellular properties were investigated. Stainless steel 316 was used as a standard metallic orthopaedic substrate. The coatings were compared with EPD coatings of chitosan and chitosan/Bioglass®. The ability of chitosan as both a complexing and stabilizing agent was utilized to form uniformly deposited Ag-np. Due to the presence of Bioglass® particles, the coatings were bioactive in terms of forming carbonated hydroxyapatite in simulated body fluid (SBF). Less than 7wt.% of the incorporated silver was released over the course of 28days in SBF and the possibility of manipulating the release rate by varying the deposition order of coating layers was shown. The low released concentration of Ag ions (effects. This was attributed to the relatively high concentration of Ag-np incorporated in the coatings.

  7. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application.

    Science.gov (United States)

    Fereshteh, Zeinab; Nooeaid, Patcharakamon; Fathi, Mohammadhossein; Bagri, Akbar; Boccaccini, Aldo R

    2015-09-01

    This article presents data related to the research article entitled "The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering" [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG) scaffolds coated by poly (ε-caprolactone) (PCL) and zein used as a controlled release device for tetracycline hydrochloride (TCH). By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds) to 0.15±0.02 MPa (PCL/zein coated BG scaffolds). A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF). The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research.

  8. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application

    Directory of Open Access Journals (Sweden)

    Zeinab Fereshteh

    2015-09-01

    Full Text Available This article presents data related to the research article entitled “The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering” [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG scaffolds coated by poly (ε-caprolactone (PCL and zein used as a controlled release device for tetracycline hydrochloride (TCH. By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds to 0.15±0.02 MPa (PCL/zein coated BG scaffolds. A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF. The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research.

  9. Dry coating, a novel coating technology for solid pharmaceutical dosage forms.

    Science.gov (United States)

    Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui

    2008-06-24

    Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.

  10. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process.

    Science.gov (United States)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti-6Al-4V are necessary for biomedical applications. Together, HAP and Ti-6Al-4V are biocompatible and bioactive. The challenges of depositing HAP on Ti-6Al-4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti-6Al-4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic-ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications.

  11. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    Science.gov (United States)

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility.

  12. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  13. Plasma Spray Forming of Nanostructured Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nanostructure composite coating is obtained via plasma spraying of Al2O3-13 wt pct TiO2 powder. Brittle and hard lamella results from melted nanostructured powder. Ductile nanostructured matrix forms from unmelted nanostructured particles. Through the adjustment of constituent and nanostructure, hardness/strength and toughness/ductility are balanced and overall properties of the structure composite are achieved.

  14. In Situ Laser Coating of Calcium Phosphate on TC4 Surface for Enhancing Bioactivity

    Institute of Scientific and Technical Information of China (English)

    DENG Chi; WANG Yong; ZHANG Ya-ping; GAO Jia-cheng

    2007-01-01

    Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight,toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 ·2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m-2 and a scanning velocity of 10. 5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2P2O7, and other Ca-P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.

  15. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    Science.gov (United States)

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.

  16. Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Arias, L.; Cabanas-Polo, S.; Goudouri, O.M. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany); Misra, S.K. [Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Ahmedabad 382424 (India); Gilabert, J. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Valsami-Jones, E. [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanchez, E. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Virtanen, S. [Institute for Surface Science and Corrosion (LKO, WW4), Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen (Germany); Boccaccini, A.R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany)

    2015-10-01

    Two organic/inorganic composite coatings based on alginate, as organic matrix, and zinc oxide nanoparticles (n-ZnO) with and without bioactive glass (BG), as inorganic components, intended for biomedical applications, were developed by electrophoretic deposition (EPD). Different n-ZnO (1–10 g/L) and BG (1–1.5 g/L) contents were studied for a fixed alginate concentration (2 g/L). The presence of n-ZnO was confirmed to impart antibacterial properties to the coatings against gram-negative bacteria Escherichia coli, while the BG induced the formation of hydroxyapatite on coating surfaces thereby imparting bioactivity, making the coating suitable for bone replacement applications. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings. Polarization curves of the coated substrates made in cell culture media at 37 °C confirmed the corrosion protection function of the novel organic/inorganic composite coatings. - Highlights: • Organic–inorganic nanocomposite coatings fabricated by electrophoretic deposition • nZnO and bioactive glass containing alginate coatings exhibit antibacterial effect. • Bioactive character and anticorrosion function of coatings demonstrated.

  17. Bioactive ZnO Coatings Deposited by MAPLE—An Appropriate Strategy to Produce Efficient Anti-Biofilm Surfaces

    Directory of Open Access Journals (Sweden)

    Alexandra Elena Oprea

    2016-02-01

    Full Text Available Deposition of bioactive coatings composed of zinc oxide, cyclodextrin and cefepime (ZnO/CD/Cfp was performed by the Matrix Assisted Pulsed Laser Evaporation (MAPLE technique. The obtained nanostructures were characterized by X-ray diffraction, IR microscopy and scanning electron microscopy. The efficient release of cefepime was correlated with an increased anti-biofilm activity of ZnO/CD/Cfp composites. In vitro and in vivo tests have revealed a good biocompatibility of ZnO/CD/Cfp coatings, which recommend them as competitive candidates for the development of antimicrobial surfaces with biomedical applications. The release of the fourth generation cephalosporin Cfp in a biologically active form from the ZnO matrix could help preventing the bacterial adhesion and the subsequent colonization and biofilm development on various surfaces, and thus decreasing the risk of biofilm-related infections.

  18. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium

    Science.gov (United States)

    Yan, Yajing; Zhang, Xuejiao; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2014-09-01

    Hydroxyapatite doped with Ag+ ions (AgHAp) was synthesized via electrochemical deposition method on anodized titanium. The samples were characterized via X-ray diffraction, Fourier transform infrared spectrum analysis, X-Ray photoelectron spectroscopy and scanning electron microscopy to investigate the phase formation and microstructure of the samples. Highly ordered TiO2 nanotubes with a diameter of 100 nm were successfully synthesized, and the AgHAp coating was deposited on the TiO2 nanotubes, which has a thickness of about 17.7 ± 1.5 μm. Moreover, silver was uniformly-distributed on the nanotubes. Bioactivity and electrochemical studies were performed for the AgHAp-coated TiO2 in a simulated body fluid, where significant good bioactivity and corrosion resistance were exhibited. The antibacterial and osteoblast cell adhesion tests in vitro revealed that the AgHAp coating with 2.03 wt% silver had significant antibacterial and osteogenic properties. Thus, the AgHAp coating was regarded as a promising candidate for coating orthopedic implants.

  19. Stability of dry coated solid dosage forms.

    Science.gov (United States)

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2009-01-01

    The dry coating process was evaluated in terms of storage stability investigating drug release and agglomeration tendency of the different coated oral dosage forms; hydroxypropyl methylcellulose acetate succinate (HPMCAS) was used with triethylcitrate (TEC) as plasticizer and acetylated monoglyceride (Myvacet) as wetting agent. Talc or colloidal silicon dioxide (Aerosil) was used as anti-tacking agents. In contrast to coating formulations consisting of HPMCAS and Myvacet all formulations containing TEC showed enteric resistance and no agglomeration tendency after preparation. After storage at 10% RH +/- 5% enteric resistance is increased slightly. This increase is more pronounced at 60% RH +/- 5%. The formulations without anti-tacking agents showed higher drug releases after 12 and 24 months due to the damage of the film's integrity during sample preparation caused by the high tackiness of the film. Tackiness is not affected by storing if samples are stored at low relative humidity. At high relative humidity tackiness increases upon storage especially for formulations without anti-tacking agents. The sieving results of the agglomeration measurements after storage can be confirmed by ring shear measurements performed immediately after preparation and approved to be a tool, which is able to predict the agglomeration during storage.

  20. Sol-gel derived bioactive coating on zirconia: Effect on flexural strength and cell proliferation.

    Science.gov (United States)

    Shahramian, Khalil; Leminen, Heidi; Meretoja, Ville; Linderbäck, Paula; Kangasniemi, Ilkka; Lassila, Lippo; Abdulmajeed, Aous; Närhi, Timo

    2016-09-07

    The purpose of this study was to evaluate the effect of sol-gel derived bioactive coatings on the biaxial flexural strength and fibroblast proliferation of zirconia, aimed to be used as an implant abutment material. Yttrium stabilized zirconia disc-shaped specimens were cut, ground, sintered, and finally cleansed ultrasonically in each of acetone and ethanol for 5 minutes. Three experimental groups (n = 15) were fabricated, zirconia with sol-gel derived titania (TiO2 ) coating, zirconia with sol-gel derived zirconia (ZrO2 ) coating, and non-coated zirconia as a control. The surfaces of the specimens were analyzed through images taken using a scanning electron microscope (SEM), and a non-contact tapping mode atomic force microscope (AFM) was used to record the surface topography and roughness of the coated specimens. Biaxial flexural strength values were determined using the piston-on-three ball technique. Human gingival fibroblast proliferation on the surface of the specimens was evaluated using AlamarBlue assay™. Data were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test. Additionally, the biaxial flexural strength data was also statistically analyzed with the Weibull distribution. The biaxial flexural strength of zirconia specimens was unaffected (p > 0.05). Weibull modulus of TiO2 coated and ZrO2 coated groups (5.7 and 5.4, respectively) were lower than the control (8.0). Specimens coated with ZrO2 showed significantly lower fibroblast proliferation compared to other groups (p sol-gel derived coatings have no influence on the flexural strength of zirconia. ZrO2 coated specimens showed significantly lower cell proliferation after 12 days than TiO2 coated or non-coated control. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  1. Bioactive and Porous Metal Coatings for Improved Tissue Regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2000-01-01

    Our first objective was to develop the SIM process for the deposition of calcium phosphate films. This process is based on the observation that, in nature, living organisms use macromolecules to control the nucleation and growth of mineral phases. These macromolecules act as templates where various charged functional groups, contained within the molecule, can interact with the ions in the surrounding media, thus stimulating crystal nucleation and growth. Rather than using complex proteins or biopolymers, surface modification schemes were developed to place simple functional groups on the underlying substrate using self-assembling monolayers. Once the substrate was chemically modified, it was then placed into an aqueous solution containing soluble precursors of the desired mineral coating. Solution pH, ionic concentration and temperature is maintained in a regime where the solution is supersaturated with respect to the desired mineral phase, thereby creating the driving force for nucleation and growth.

  2. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition.

    Science.gov (United States)

    Eraković, Sanja; Janković, Ana; Veljović, Djordje; Palcevskis, Eriks; Mitrić, Miodrag; Stevanović, Tatjana; Janaćković, Djordje; Mišković-Stanković, Vesna

    2013-02-14

    Hydroxyapatite is the most suitable biocompatible material for bone implant coatings. However, its brittleness is a major obstacle, and that is why, recently, research focused on creating composites with various biopolymers. In this study, hydroxyapatite coatings were modified with lignin in order to attain corrosion stability and surface porosity that enables osteogenesis. Incorporating silver, well known for its antimicrobial properties, seemed the best strategy for avoiding possible infections. The silver/hydroxyapatite (Ag/HAP) and silver/hydroxyapatite/lignin (Ag/HAP/Lig) coatings were cathaphoretically deposited on titanium from ethanol suspensions, sintered at 900 °C in Ar, and characterized by X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, attenuated total reflection Fourier transform infrared, and X-ray photoelectron spectroscopy. The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubo's simulated body fluid (SBF) at 37 °C using electrochemical impedance spectroscopy. Bioactivity was estimated by immersion in SBF to evaluate the formation of hydroxyapatite on the coating surface. A microcrystalline structure of newly formed plate-shaped carbonate-hydroxyapatite was detected after only 7 days, indicating enhanced bioactive behavior. Both coatings had good corrosion stability during a prolonged immersion time. Among the two, the Ag/HAP/Lig coating had a homogeneous surface, less roughness, and low values of contact angle.

  3. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Kanayama I

    2014-07-01

    Full Text Available Izumi Kanayama,1 Hirofumi Miyaji,1 Hiroko Takita,2 Erika Nishida,1 Maiko Tsuji,3 Bunshi Fugetsu,4,5 Ling Sun,4,5 Kana Inoue,1 Asako Ibara,1 Tsukasa Akasaka,6 Tsutomu Sugaya,1 Masamitsu Kawanami1 1Department of Periodontology and Endodontology, 2Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; 3Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan; 4Division of Frontier Research, Research Department, Creative Research Institution Sousei, 5Graduate School of Environmental Science, 6Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan Background: Graphene oxide (GO is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. Methods: GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbic acid or sodium hydrosulfite solution, resulting in preparation of RGO films. The biological properties of each film were evaluated by scanning electron microscopy (SEM, atomic force microscopy, calcium adsorption tests, and MC3T3-E1 cell seeding. Subsequently, GO- and RGO-coated collagen scaffolds were prepared and characterized by SEM and compression tests. Each scaffold was implanted into subcutaneous tissue on the backs of rats. Measurements of DNA content and cell ingrowth areas of implanted scaffolds were performed 10 days post-surgery.Results: The results show that GO and RGO possess different biological properties. Calcium adsorption and alkaline phosphatase activity were strongly enhanced by RGO, suggesting that RGO is effective for osteogenic differentiation. SEM showed that

  4. A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol-gel process.

    Science.gov (United States)

    Jun, Shin-Hee; Lee, Eun-Jung; Yook, Se-Won; Kim, Hyoun-Ee; Kim, Hae-Won; Koh, Young-Hag

    2010-01-01

    A bioactive coating consisting of a silica xerogel/chitosan hybrid was applied to Ti at room temperature as a novel surface treatment for metallic implants. A crack-free thin layer (coated on Ti with a chitosan content of >30 vol.% through a sol-gel process. The coating layer became more hydrophilic with increasing silica xerogel content, as assessed by contact angle measurement. The hybrid coatings afforded excellent bone bioactivity by inducing the rapid precipitation of apatite on their surface when immersed in a simulated body fluid (SBF). Osteoblastic cells cultured on the hybrid coatings were more viable than those on a pure chitosan coating. Furthermore, the alkaline phosphate activity of the cells was significantly higher on the hybrid coatings than on a pure chitosan coating, with the highest level being achieved on the hybrid coating containing 30% chitosan. These results indicate that silica xerogel/chitosan hybrids are potentially useful as room temperature bioactive coating materials on titanium-based medical implants.

  5. Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK.

    Science.gov (United States)

    Durham, John W; Rabiei, Afsaneh

    2016-09-15

    Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength.

  6. Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration.

    Science.gov (United States)

    Gao, Chunxia; Gao, Qiang; Li, Yadong; Rahaman, Mohamed N; Teramoto, Akira; Abe, Koji

    2012-05-01

    An important objective in bone tissue engineering is to fabricate biomimetic three-dimensional scaffolds that stimulate mineralization for rapid regeneration of bone. In this work, scaffolds of electrospun poly(vinyl alcohol) (PVA) fibers (diameter = 286 ± 14 nm) were coated with a sol-gel derived bioactive glass (BG) and evaluated in vitro for potential applications in bone repair. Structural and chemical analyses showed that the BG coating was homogeneously deposited on the PVA fibers. In vitro cell culture studies showed that the BG-coated PVA scaffold had a greater capacity to support proliferation of osteogenic MC3T3-E1 cells, alkaline phosphatase activity, and mineralization than the uncoated PVA scaffold. The BG coating improved the tensile strength of the PVA scaffold from 18 ± 2 MPa to 21 ± 2 MPa, but reduced the elongation to failure from 94 ± 4% to 64 ± 5%. However, immersion of the BG-coated PVA scaffolds in a simulated body fluid for 5 days resulted in an increase in the tensile strength (24 ± 2 MPa) and elongation to failure (159 ± 4%). Together, the results show that these BG-coated PVA scaffolds could be considered as candidate materials for bone tissue engineering applications.

  7. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Razavi, Mehdi [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Pothineni, Venkata Raveendra [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Rajadas, Jayakumar [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2015-05-30

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  8. Electrophoretic deposition of a bioactive Si, Ca-rich glass coating on 316L stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    H. H. Rodríguez

    2011-12-01

    Full Text Available This work consisted in the development and characterization of a vitroceramic coating on 316L stainless steel bymeans of electrophoretic deposition (EPD. This vitroceramic coating was obtained through a Si-, Ca-rich glas coating crystallization. The electrophoretic deposition tests were performed on 316L stainless steel mechanically polished substrates. The results suggest that the electrophoretic coatings adhered well to the metallic surfaces. Theresults demonstrate that the crystallized coatings are potentially bioactive, because a dense and homogeneous apatite layer, similar to a bone, makes up.

  9. Antimicrobial Nanostructured Bioactive Coating Based on Fe3O4 and Patchouli Oil for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Marius Rădulescu

    2016-04-01

    Full Text Available The aim of this study was to develop a biocompatible coating for wound dressings, containing iron oxide nanoparticles functionalized with patchouli essential oil in order to obtain improved antimicrobial properties able to prevent biofilm development and consecutive associated infections. The bioactive coating was prepared by the co-precipitation of a precursor in an alkaline solution of patchouli oil. The prepared surface was characterized by XRD (X ray diffraction, TEM (transmission electron microscopy, SAED (selected area diffraction, SEM (scanning electron microscopy and FT-IR (Fourier transform infrared spectroscopy. The bioevaluation of the obtained coating consisted in antimicrobial, as well as in vitro and in vivo biocompatibility and biodistribution assays. The obtained coating revealed a strong anti-biofilm activity maintained up to 72 h, as well as a low cytotoxicity on mammalian cells and a good biodistribution after intraperitoneal injection in mice. These results demonstrate the promising potential of the respective coatings for the management of wound infections and for the development of soft materials with improved resistance to microbial colonization.

  10. Bioactive ceramic coating on orthopedic implants for enhanced bone tissue integration

    Science.gov (United States)

    Aniket

    Tissue integration between bone and orthopedic implant is essential for implant fixation and longevity. An immunological response leads to fibrous encapsulation of metallic implants leading to implant instability and failure. Bioactive ceramics have the ability to directly bond to bone; however, they have limited mechanical strength for load bearing applications. Coating bioactive ceramics on metallic implant offers the exciting opportunity to enhance bone formation without compromising the mechanical strength of the implant. In the present study, we have developed a novel bioactive silica-calcium phosphate nanocomposite (SCPC) coating on medical grade Ti-6Al-4V orthopedic implant using electrophoretic deposition (EPD) and evaluated bone tissue response to the coated implant at the cellular level. The effect of SCPC composition and suspending medium pH on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however the difference was not statistically significant. Ti-6Al-4V discs were passivated, coated with SCPC50 (200 nm - 10 mum) and thermally treated at 600 - 800 ºC to produce a coating thickness in the range of 43.1 +/- 5.7 to 30.1 +/- 4.6 μm. After treatment at 600, 700 and 800 ºC, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 +/- 3.6, 44.7 +/- 8.7 and 47.2 +/- 4.3 MPa, respectively. XRD analyses of SCPC50 before and after EPD coating indicated no change in the crystallinity of the material. Fracture surface analyses showed that failure occurred within the ceramic layer or at the ceramic/polymer interface; however, the ceramic/metal interface was intact in all samples. The adhesion strength of SCPC50-coated substrates after immersion in PBS for 2 days (11.7 +/- 3.9 MPa) was higher than that measured on commercially available hydroxyapatite (HA) coated substrates (5.5 +/- 2.7 MPa), although the

  11. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

    OpenAIRE

    Zhang, Bill G. X.; Myers, Damian E.; Gordon G. Wallace; Milan Brandt; Choong, Peter F. M.

    2014-01-01

    Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracell...

  12. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Milovac, Dajana, E-mail: dmilovac@fkit.hr [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia); Gallego Ferrer, Gloria [Center for Biomaterials and Tissue Engineering, Polytechnic University of Valencia (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Ivankovic, Marica; Ivankovic, Hrvoje [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia)

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200 °C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88 MPa) and the elastic modulus (15.5 MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffolds with interconnected pores were prepared. • Hydrothermal transformation of cuttlefish bone and vacuum impregnation were used. • A material with improved mechanical properties was obtained. • The in vitro mineralization of calcium phosphate was observed.

  13. Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating.

    Science.gov (United States)

    Greque de Morais, Michele; Greque de Morais, Etiele; Vaz, Bruna da Silva; Gonçalves, Carolina Ferrer; Lisboa, Cristiane; Costa, Jorge Alberto Vieira

    2016-01-01

    Microalgae have been studied in biotechnological processes due to the various biocompounds that can be obtained from their biomasses, including pigments, proteins, antioxidants, biopeptides, fatty acids and biopolymers. Microalgae biopolymers are biodegradable materials that present similar characteristics to traditional polymers, with the advantage of being rapidly degraded when discarded. In addition, nanoencapsulation is capable of increasing the availability of bioactive compounds by allowing the release of these biocompounds to occur slowly over time. The use of polymers in the nanoencapsulation of active ingredients can mask the undesired physicochemical properties of the compounds to be encapsulated, thereby enhancing consumer acceptability. This covering also acts as a barrier against several foreign substances that can react with bioactive compounds and reduce their activity. Studies of the development of poly-3-hydroxybutyrate (PHB) nanocapsules from microbial sources are little explored; this review addresses the use of nanotechnology to obtain bioactive compounds coated with biopolymer nanocapsules, both obtained from Spirulina biomasses. These microalgae are Generally Recognized as Safe (GRAS) certified, which guarantees that the biomass can be used to obtain high added value biocompounds, which can be used in human and animal supplementation.

  14. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  15. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Daniel [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States); Higuita, Natalia [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States); Grupo de Investigacion en Ingenieria Biomedica CES-EIA (GIBEC), Carrera 43 A No. 52 Sur - 99, Sabaneta (Colombia); Garcia, Felipe [Grupo de Investigacion en Ingenieria Biomedica CES-EIA (GIBEC), Carrera 43 A No. 52 Sur - 99, Sabaneta (Colombia); Ferrell, Nicholas [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States); Hansford, Derek J. [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States)], E-mail: hansford.4@osu.edu

    2008-04-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO{sub 2} atmosphere, allowing the formation of CaCO{sub 3}. The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO{sub 2} atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH){sub 2} on C-, and CaCO{sub 3} on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications.

  16. Bioactivity assessment of hydroxyapatite coatings produced by alkali conversion of monetite

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.H.P. da [Military Inst. of Engineering, Rio de Janeiro, RJ (Brazil); Soares, G.A. [Federal Univ. of Rio de Janeiro, RJ (Brazil); Elias, C.N. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Matematica; Gibson, I.R. [London Univ. (United Kingdom). IRC Biomedical Materials; Best, S.M. [Cambridge Univ. (United Kingdom). Dept. of Metallurgy and Materials Science

    2001-07-01

    Commercially pure titanium sheets were coated with hydroxyapatite using three different routes: alkali conversion of monetite to hydroxyapatite utilising NH{sub 4}OH, KOH and NaOH solutions with pH=12.5. The hydroxyapatite coatings produced by each of the three different routes all exhibited similar morphologies and crystallinities, and hydroxyapatite was the only crystalline phase observed in all the coatings. The crystallinity and identification of the phases present were obtained by X-ray diffraction (XRD) analysis and the bioactivity was assessed according to the method developed by KOKUBO and co-workers. SEM analysis showed that all specimens exhibited areas with apatite precipitation from the SBF solution after 3 days immersion in SBF solution, irrespective of the alkaline solution used for the conversion process. This finding was confirmed by XRD analysis, which revealed a pattern corresponding to poorly-crystallinity hydroxyapatite. There appeared to be no effect of the ammonium, sodium or potassium ions from the different alkaline solutions used on the chemical conversion of monetite to hydroxyapatite on the properties of the resulting coating. (orig.)

  17. Forming limits of nickel coating on right region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The forming limits of nickel coating on the right region were studied, so as to direct the preparation of the material and help the production of workpieces. The electrodeposited nickel coating was prepared on steel substrate to form advanced structures,and its plastic instability was investigated by the Swift Plastic Instability Theory. By using the compound law for laminated sheet metals, explicit equations for the calculation of the instable eigen values were deduced. The forming limit diagrams of the nickel coating on the right region were plotted. It is exhibited that the forming limit of the coating sheet is between the forming limits of the individual nickel coating and steel substrate. The forming limit of the nickel coating is not so good as that of the steel substrate, and the forming limit strain of the coating sheet tends to diminish with the increase of thickness of the coating. The greater the normal anisotropic coefficient of the materials is, the better the forming limit is.

  18. The Effect of 58S Bioactive Glass Coating on Polyethylene Terephthalates in Graft-Bone Healing

    Institute of Scientific and Technical Information of China (English)

    Yang Wu; Shiyi Chen; Jia Jiang; Hong Li; Kai Gao; Pengyun Zhang

    2012-01-01

    In this study the effects of surface modification of Polyethylene Terephthalates (PET) fibers with 58S bioactive glasses on osteoblasts proliferation and osseointegration in the tibia-articular tendon-bone healing model were investigated.PET sheets were coated with 58S bioactive glass and uncoated PET sheets were used as a control.Scanning Electron Microscope (SEM) and X-ray photoelectron spectrometer were adopted to analyze the surface characteristics of the fibers.MT3T3-E 1 cells were cultured with the PET fibers and the MTT and ALP were tested at 1,3,5 days.Twenty-four skeletally mature male New Zealand white rabbits were randomly divided into two groups,the 58S-PET group and the PET group.Both groups underwent a surgical procedure to establish a tibia-articular tendon-bone healing model.Mechanical examinations and histological assays were taken to verify the coating effects in vivo.Results of both MTT and ALP tests show significant differences (P < 0.01) between the 58S-PET group and the PET group.At 6 weeks and 12 weeks,the max load-to-failure was significantly higher in the 58S-PET group.In the histological assays,distinct new bone formation was observed only in the 58S-PET group and stronger osseointegration was seen in the 58S-PET group than that in the control group.The 58S-coating on PET could enhance the proliferation and activity of the osteoblasts and therefore promote the new bone formation and tendon-bone healing.

  19. Morphology, composition, and bioactivity of strontium-doped brushite coatings deposited on titanium implants via electrochemical deposition.

    Science.gov (United States)

    Liang, Yongqiang; Li, Haoyan; Xu, Jiang; Li, Xin; Qi, Mengchun; Hu, Min

    2014-06-04

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials.

  20. Morphology, Composition, and Bioactivity of Strontium-Doped Brushite Coatings Deposited on Titanium Implants via Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yongqiang Liang

    2014-06-01

    Full Text Available Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials.

  1. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm

    2016-06-01

    Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process.

  2. Coating-substrate-simulations applied to HFQ® forming tools

    Directory of Open Access Journals (Sweden)

    Leopold Jürgen

    2015-01-01

    Full Text Available In this paper a comparative analysis of coating-substrate simulations applied to HFQTM forming tools is presented. When using the solution heat treatment cold die forming and quenching process, known as HFQTM, for forming of hardened aluminium alloy of automotive panel parts, coating-substrate-systems have to satisfy unique requirements. Numerical experiments, based on the Advanced Adaptive FE method, will finally present.

  3. Laser alloying of Ti–Si compound coating on Ti–6Al–4V alloy for the improvement of bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan 430079 (China); Wang, A.H., E-mail: ahwang@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Z.; Zheng, R.R. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xia, H.B.; Wang, Y.N. [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan 430079 (China)

    2014-06-01

    Laser alloying of Ti–Si compound coating on Ti–6Al–4V alloy is carried out by a pulsed Nd:YAG laser. The corresponding microstructure, phase structure, microhardness profiles, corrosion properties and bioactivity of the laser-alloyed coatings are investigated to optimize the atomic ratio of Ti–Si. The laser alloyed Ti–Si compound coatings are free of cracks, and primarily present block-like crystals, lath-like crystals and dendrite crystals. The phase structures of both laser-alloyed Ti + Si and 5Ti + 3Si coatings are mainly consisted of α-Ti and Ti{sub 5}Si{sub 3}, while the laser-alloyed Si coating is mainly consisted of TiSi{sub 2} and Ti{sub 5}Si{sub 3}. Microhardness test indicates that the laser-alloyed Si coating has the highest microhardness. Also, corrosion resistance measurement reveals that the corrosion resistance of the laser-alloyed Si coating is much better than that of the Ti–6Al–4V alloy. Evaluation of bioactivity shows that cell growth on the laser-alloyed Si coating with high volume fraction of Ti–Si compounds is faster than that of the Ti–6Al–4V alloy.

  4. Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications.

    Science.gov (United States)

    Cordero-Arias, L; Cabanas-Polo, S; Goudouri, O M; Misra, S K; Gilabert, J; Valsami-Jones, E; Sanchez, E; Virtanen, S; Boccaccini, A R

    2015-10-01

    Two organic/inorganic composite coatings based on alginate, as organic matrix, and zinc oxide nanoparticles (n-ZnO) with and without bioactive glass (BG), as inorganic components, intended for biomedical applications, were developed by electrophoretic deposition (EPD). Different n-ZnO (1-10 g/L) and BG (1-1.5 g/L) contents were studied for a fixed alginate concentration (2 g/L). The presence of n-ZnO was confirmed to impart antibacterial properties to the coatings against gram-negative bacteria Escherichia coli, while the BG induced the formation of hydroxyapatite on coating surfaces thereby imparting bioactivity, making the coating suitable for bone replacement applications. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings. Polarization curves of the coated substrates made in cell culture media at 37 °C confirmed the corrosion protection function of the novel organic/inorganic composite coatings.

  5. Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating.

    Science.gov (United States)

    Li, Kai; Yu, Jiangming; Xie, Youtao; Huang, Liping; Ye, Xiaojian; Zheng, Xuebin

    2011-12-01

    Calcium silicate ceramic coatings have received considerable attention in recent years due to their excellent bioactivity and bonding strength. However, their high dissolution rates limit their practical applications. In this study, zinc incorporated calcium silicate based ceramic Ca(2)ZnSi(2)O(7) coating was prepared on Ti-6Al-4V substrate via plasma spraying technology aiming to achieve higher chemical stability and additional antibacterial activity. Chemical stability of the coating was assessed by monitoring mass loss and ion release of the coating after immersion in the Tris-HCl buffer solution and examining pH value variation of the solution. Results showed that the chemical stability of zinc incorporated coating was improved significantly. Antimicrobial activity of the Ca(2)ZnSi(2)O(7) coating was evaluated, and it was found that the coating exhibited 93% antibacterial ratio against Staphylococcus aureus. In addition, in vitro bioactivity and cytocompatibility were confirmed for the Ca(2)ZnSi(2)O(7) coating by simulated body fluid test, MC3T3-E1 cells adhesion investigation and cytotoxicity assay.

  6. Process for forming a metal compound coating on a substrate

    Science.gov (United States)

    Sharp, D.J.; Vernon, M.E.; Wright, S.A.

    1988-06-29

    A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

  7. Ammonia volatilization from coated urea forms

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Costa do Nascimento

    2013-08-01

    Full Text Available Nitrogen fertilization is a major component of the cost of agricultural production, due to the high cost and low efficiency of fertilizers. In the case of urea, the low efficiency is mainly due to losses by volatilization, which are more pronounced in cultivation systems in which plant residues are left on the soil. The objective of this work was to compare the influence of urea coated with sulfur or boric acid and copper sulfate with conventional N fertilizers on N volatilization losses in sugar cane harvested after stubble burning. The sources urea, sulfur-coated urea, urea coated with boric acid and copper sulfate, as well as nitrate and ammonium sulfate, were tested at amounts containing N rates of 120 kg ha-1 N. The integration of new technologies in urea fertilization can reduce N losses by volatilization. These losses were most reduced when using nitrate and ammonium sulfate. The application of a readily acidified substance (boric acid to urea was more efficient in reducing volatilization losses and nutrient removal by sugar cane than that of a substance with gradual acidification (elemental sulfur.

  8. On the geometry of coating layers formed by overlap

    NARCIS (Netherlands)

    Ocelik, V.; Nenadl, O.; Palavra, A.; De Hosson, J. Th. M.

    2014-01-01

    A recursive model is presented for the prediction of the profile of a coating layer formed by single track overlap. A known shape of single track is assumed and on the base of simple physical assumptions the recursive sequence is deduced to construct an entire profile of such coatings. Calculations

  9. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  10. Effect of different coatings on post-harvest quality and bioactive compounds of pomegranate (Punica granatum L.) fruits.

    Science.gov (United States)

    Meighani, Hossein; Ghasemnezhad, Mahmood; Bakhshi, Davood

    2015-07-01

    The effect of three different coatings; resin wax (Britex Ti), carnauba wax (Xedasol M14), and chitosan (1 and 2 % w/v) on postharvest quality of pomegranate fruits were investigated. Fruits quality characteristics and bioactive compounds were evaluated during 40, 80 and 120 days storage at 4.5 °C and 3 additional days at 20 °C. The results showed that uncoated fruits showed higher respiration rate, weight loss, L* and b* values of arils, total soluble solids (TSS)/titratable acidity (TA), and pH than coated fruits during storage. Coating treatments could delay declining TSS and TA percent, a* value of arils, as well as bioactive compounds such as total phenolics, flavonoids and anthocyanins content and antioxidant activity. The coated fruits with commercial resin and carnauba waxes showed significantly lower respiration rate and weight loss than other treatments, however carnauba wax could maintain considerably higher fruits quality and bioactive compounds than other coating treatments. The results suggested that postharvest application of carnauba wax have a potential to extend storage life of pomegranate fruits by reducing respiration rate, water loss and maintaining fruit quality.

  11. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  12. Sputtered titanium oxynitride coatings for endosseous applications: Physical and chemical evaluation and first bioactivity assays

    Energy Technology Data Exchange (ETDEWEB)

    Banakh, Oksana, E-mail: oksana.banakh@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Moussa, Mira, E-mail: mira.moussa@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Matthey, Joel, E-mail: joel.matthey@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Pontearso, Alessandro, E-mail: alessandro.pontearso@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Cattani-Lorente, Maria, E-mail: maria.cattani-lorente@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Sanjines, Rosendo, E-mail: rosendo.sanjines@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Condensed Matter Physics, Station 3, CH-1015 Lausanne (Switzerland); Fontana, Pierre, E-mail: Pierre.Fontana@hcuge.ch [Haemostasis laboratory, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1205 Geneva (Switzerland); Wiskott, Anselm, E-mail: anselm.wiskott@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Durual, Stephane, E-mail: stephane.durual@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland)

    2014-10-30

    Highlights: • Titanium oxynitride coatings (TiN{sub x}O{sub y}) with chemical composition ranging from TiN to TiO{sub 2} were deposited by magnetron sputtering from a metallic Ti target using a mixture of O{sub 2} + N{sub 2}. • The coatings structure as well as physical, chemical and mechanical properties progressively changes as a function of oxygen content in the TiN{sub x}O{sub y.} • All TiN{sub x}O{sub y} coatings show a significantly higher level of bioactivity as compared to bare Ti substrates (1.2 to 1.4 fold increase in cell proliferation). Despite variations in surface chemistry, topography and surface tension observed on films as a function of chemical composition, no significant differences in the films’ biological activity were observed after 3 days of testing. - Abstract: Titanium oxynitride coatings (TiN{sub x}O{sub y}) are considered a promising material for applications in dental implantology due to their high corrosion resistance, their biocompatibility and their superior hardness. Using the sputtering technique, TiN{sub x}O{sub y} films with variable chemical compositions can be deposited. These films may then be set to a desired value by varying the process parameters, that is, the oxygen and nitrogen gas flows. To improve the control of the sputtering process with two reactive gases and to achieve a variable and controllable coating composition, the plasma characteristics were monitored in-situ by optical emission spectroscopy. TiN{sub x}O{sub y} films were deposited onto commercially pure (ASTM 67) microroughened titanium plates by reactive magnetron sputtering. The nitrogen gas flow was kept constant while the oxygen gas flow was adjusted for each deposition run to obtain films with different oxygen and nitrogen contents. The physical and chemical properties of the deposited films were analyzed as a function of oxygen content in the titanium oxynitride. The potential application of the coatings in dental implantology was assessed by

  13. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Science.gov (United States)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  14. Bioactivity of nanosilver in Caenorhabditis elegans: Effects of size, coat, and shape

    Directory of Open Access Journals (Sweden)

    Piper Reid Hunt

    2014-01-01

    Full Text Available The in vivo toxicity to eukaryotes of nanosilver (AgNP spheres and plates in two sizes each was assessed using the simple model organism Caenorhabditis elegans. For each shape, smaller AgNP size correlated with higher toxicity, as indicated by reduced larval growth. Smaller size also correlated with significant increases in silver uptake for silver nanospheres. Citrate coated silver spheres of 20 nm diameter induced an innate immune response that increased or held steady over 24 h, while regulation of genes involved in metal metabolism peaked at 4 h and subsequently decreased. For AgNP spheres, coating altered bioactivity, with a toxicity ranking of polyethylene glycol (PEG > polyvinylpyrrolidone (PVP ≅ branched polyethyleneimine (BPEI > citrate, but silver uptake ranking of PEG > PVP > citrate > BPEI. Our findings in C. elegans correlate well with findings in rodents for AgNP size vs. uptake and toxicity, as well as for induction of immune effectors, while using methods that are faster and far less expensive, supporting the use of C. elegans as an alternative model for early toxicity screening.

  15. Electrochemical and biological characterization of coatings formed on Ti-15Mo alloy by plasma electrolytic oxidation.

    Science.gov (United States)

    Kazek-Kęsik, Alicja; Krok-Borkowicz, Małgorzata; Pamuła, Elżbieta; Simka, Wojciech

    2014-10-01

    β-Type titanium alloys are considered the future materials for bone implants. To improve the bioactivity of Ti-15Mo, the surface was modified using the plasma electrolytic oxidation (PEO) process. Tricalcium phosphate (TCP, Ca3PO4), wollastonite (CaSiO3) and silica (SiO2) were selected as additives in the anodizing bath to enhance the bioactivity of the coatings formed during the PEO process. Electrochemical analysis of the samples was performed in Ringer's solution at 37°C. The open-circuit potential (EOCP) as a function of time, corrosion potential (ECORR), corrosion current density (jCORR) and polarization resistance (Rp) of the samples were determined. Surface modification improved the corrosion resistance of Ti-15Mo in Ringer's solution. In vitro studies with MG-63 osteoblast-like cells were performed for 1, 3 and 7 days. After 24h, the cells were well adhered on the entire surfaces, and their number increased with increasing culture time. The coatings formed in basic solution with wollastonite exhibited better biological performance compared with the as-ground sample.

  16. Influence of PCL on mechanical properties and bioactivity of ZrO{sub 2}-based hybrid coatings synthesized by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Veronesi, Paolo [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Lamanna, Giuseppe [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy)

    2014-06-01

    The biological properties of medical implants can be enhanced through surface modifications such as to provide a firm attachment of the implant. In this study, organic–inorganic hybrid coatings have been synthesized via sol–gel dip coating. They consist of an inorganic ZrO{sub 2} matrix in which different amounts of poly(ε-caprolactone) have been entrapped to improve the mechanical properties of the films. The influence of the PCL amount on the microstructural, biological and mechanical properties of the coating has been investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses have shown that the hybrids used for the coating are homogenous and totally amorphous materials; Fourier transform infrared spectroscopy (FT-IR) has demonstrated that hydrogen bonds arise between the organic and inorganic phases. SEM and atomic force microscopy (AFM) have highlighted the nanostructured nature of the film. SEM and EDS analyses, after soaking the samples in a simulated body fluid (SBF), have pointed out the apatite formation on the coating surface, which proves the bone-bonding ability of the nanocomposite bioactive films. Scratch and nano-indentation tests have shown that the coating hardness, stiffness and Young's modulus decrease in the presence of large amounts of the organic phase. - Highlights: • ZrO{sub 2}/PCL organic-inorganic hybrid coatings synthesis via sol-gel dip coating. • Coatings porosity and bioactivity increase in presence of high PCL amount. • Coatings Hardness and Young’s modulus decrease in presence of high PCL amount.

  17. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses.

    Science.gov (United States)

    Oudadesse, H; Dietrich, E; Gal, Y L; Pellen, P; Bureau, B; Mostafa, A A; Cathelineau, G

    2011-06-01

    The use of bone grafts permits the filling of a bone defect without risk of virus transmission. In this work, pure bioactive glass (46S6) and zinc-doped bioactive glass (46S6Zn10) with 0.1 wt% zinc are used to elaborate highly bioactive materials by melting and rapid quenching. Cylinders of both types of glasses were soaked in a simulated body fluid (SBF) solution with the aim of determining the effect of zinc addition as a trace element on the chemical reactivity and bioactivity of glass. Several physico-chemical characterization methods such as x-ray diffraction, Fourier transform infrared spectroscopy and nuclear magnetic resonance methods, with particular focus on the latter, were chosen to investigate the fine structural behaviour of pure and Zn-doped bioactive glasses as a function of the soaking time of immersion in SBF. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to measure the concentrations of Ca and P ions in the SBF solution after different durations of immersion. The effect of the investigated samples on the proliferation rate of human osteoblast cells was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and tested on two different sizes of pure and zinc-doped glasses in powder form, with particle sizes that ranged between 40 to 63 µm and 500 to 600 µm. The obtained results showed the delay release of ions by Zn-doped glass (46S6Zn10) and the slower CaP deposition. Cytotoxicity and cell viability were affected by the particle size of the glass. The release rate of ions was found to influence the cell viability.

  18. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Oudadesse, H; Dietrich, E; Gal, Y L; Pellen, P; Bureau, B; Mostafa, A A; Cathelineau, G, E-mail: hassane.oudadesse@univ-rennes1.fr [SCR, UMR-CNRS 6226, Campus de Beaulieu, Universite de Rennes 1, 263 Avenue du General Leclerc, 35042 Rennes Cedex (France)

    2011-06-15

    The use of bone grafts permits the filling of a bone defect without risk of virus transmission. In this work, pure bioactive glass (46S6) and zinc-doped bioactive glass (46S6Zn10) with 0.1 wt% zinc are used to elaborate highly bioactive materials by melting and rapid quenching. Cylinders of both types of glasses were soaked in a simulated body fluid (SBF) solution with the aim of determining the effect of zinc addition as a trace element on the chemical reactivity and bioactivity of glass. Several physico-chemical characterization methods such as x-ray diffraction, Fourier transform infrared spectroscopy and nuclear magnetic resonance methods, with particular focus on the latter, were chosen to investigate the fine structural behaviour of pure and Zn-doped bioactive glasses as a function of the soaking time of immersion in SBF. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to measure the concentrations of Ca and P ions in the SBF solution after different durations of immersion. The effect of the investigated samples on the proliferation rate of human osteoblast cells was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and tested on two different sizes of pure and zinc-doped glasses in powder form, with particle sizes that ranged between 40 to 63 {mu}m and 500 to 600 {mu}m. The obtained results showed the delay release of ions by Zn-doped glass (46S6Zn10) and the slower CaP deposition. Cytotoxicity and cell viability were affected by the particle size of the glass. The release rate of ions was found to influence the cell viability.

  19. Utility of tantalum (Ta) coating to improve surface hardness in vitro bioactivity and biocompatibility of Co–Cr

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Vuong-Hung [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No 1, Dai Co Viet Road, Ha Noi (Viet Nam); Lee, Seung-Hee; Li, Yuanlong; Kim, Hyoun-Ee [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Shin, Kwan-Ha [Department of Dental Laboratory Science and Engineering, Korea University, Seoul, 136-703 (Korea, Republic of); Koh, Young-Hag, E-mail: kohyh@korea.ac.kr [Department of Dental Laboratory Science and Engineering, Korea University, Seoul, 136-703 (Korea, Republic of)

    2013-06-01

    This study reports the utility of tantalum (Ta) coating for improving the surface hardness, in vitro bioactivity and biocompatibility of Co–Cr implants. The use of direct current sputtering allowed for the deposition of a dense and uniform Ta film onto a Co–Cr substrate, which was composed of β-phase Ta grains. This hard Ta coating significantly improved the surface hardness of the Co–Cr by a factor of > 2.3. In addition, the Ta-deposited Co–Cr substrate showed a vigorous precipitation of apatite crystals on its surface after 4 weeks of immersion in simulated body fluid, suggesting its excellent in vitro bioactivity. This bioactive Ta coating led to a considerable improvement in the in vitro biocompatibility of the Co–Cr, which was assessed in terms of the attachment, proliferation and differentiation of pre-osteoblasts (MC3T3-E1). - Highlights: • Dense and uniform Ta film was deposited onto a Co–Cr substrate using DC sputtering. • The Ta coating significantly enhanced the surface hardness of the Co–Cr. • The in vitro biocompatibility of the Co–Cr was also significantly improved.

  20. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO{sub 2} nanotube composite coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-09-30

    Highlights: • Silver-substituted hydroxyapatite coating was successfully deposited on anodic TiO{sub 2} nanotubes by electrochemical deposition. • The bond strength between the AgHAp coatings and the substrate was improved by anodization pretreatment. • The antibacterial capability of the HAp coatings were enhanced with Ag{sup +} incorporation against E. coli. • The AgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Hydroxyapatite doped with Ag{sup +} ions (AgHAp) was synthesized via electrochemical deposition method on anodized titanium. The samples were characterized via X-ray diffraction, Fourier transform infrared spectrum analysis, X-Ray photoelectron spectroscopy and scanning electron microscopy to investigate the phase formation and microstructure of the samples. Highly ordered TiO{sub 2} nanotubes with a diameter of 100 nm were successfully synthesized, and the AgHAp coating was deposited on the TiO{sub 2} nanotubes, which has a thickness of about 17.7 ± 1.5 μm. Moreover, silver was uniformly-distributed on the nanotubes. Bioactivity and electrochemical studies were performed for the AgHAp-coated TiO{sub 2} in a simulated body fluid, where significant good bioactivity and corrosion resistance were exhibited. The antibacterial and osteoblast cell adhesion tests in vitro revealed that the AgHAp coating with 2.03 wt% silver had significant antibacterial and osteogenic properties. Thus, the AgHAp coating was regarded as a promising candidate for coating orthopedic implants.

  1. Controlling film topography to form highly hydrophobic waterborne coatings.

    Science.gov (United States)

    López, Ana B; de la Cal, José C; Asua, José M

    2016-08-17

    Coatings have a tremendous impact on economy as they reduce corrosion that has an estimated cost of 3% of the world's GDP. Hydrophobic coatings are particularly efficient for this purpose and the challenge is to produce cost effective and environmentally friendly, highly hydrophobic, cohesive and non-porous coatings applicable to large and irregular surfaces. This work shows that this goal can be achieved by forming wrinkles on the surface of waterborne coatings through fine-tuning of the film forming conditions. The proof of concept was demonstrated by using waterborne dispersions of copolymers of 1H,1H,2H,2H-perfluorodecyl acrylate and 2-ethylhexyl acrylate, and using the temperature and hardness of the copolymer as control variables during film formation. This allowed the formation of transparent films with a wrinkled surface that had a contact angle of 133°, which represents an increase of 20° with respect to the film cast under standard conditions.

  2. Method of forming corrosion resistant coatings on metal articles

    Energy Technology Data Exchange (ETDEWEB)

    Restall, J.E.

    1983-05-10

    A metallic or ceramic layer is deposited on a component by plasma spraying. This produces a rough, still porous, coating which is poorly bonded at the interface with the substrate. Aluminium or chromium is vapor deposited under pulsating pressure to react with the substrate to form an oxidation resistant coating of Ni Al (intermetallic) or Ni Cr (solid solution) which may include ceramic particles and is aerodynamically smooth.

  3. Characterization of bioactive ceramic coatings prepared on titanium implants by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Micro-arc oxidation (MAO) is an enhanced chemical technology in an electrolyte medium to obtain coating structures on valve-metal surfaces. Titanium oxide films obtained by MAO in the sodium phosphate electrolyte were investigated. The films were composed mainly of TiO2 phases in the form of anatase and rutile and enriched with Na and P elements at the surface. Their apatite-inducing ability was evaluated in a simulated body fluid (SBF). When immersing in SBF for over 30 d, a preferential carbonated-hydroxyapatite was formed on the surfaces of the films, which suggests that the MAO-treated titanium has a promising positive biological response.

  4. Surface Modifications of Titanium Implants by Multilayer Bioactive Coatings with Drug Delivery Potential: Antimicrobial, Biological, and Drug Release Studies

    Science.gov (United States)

    Ordikhani, Farideh; Zustiak, Silviya Petrova; Simchi, Abdolreza

    2016-04-01

    Recent strategies to locally deliver antimicrobial agents to combat implant-associated infections—one of the most common complications in orthopedic surgery—are gaining interest. However, achieving a controlled release profile over a desired time frame remains a challenge. In this study, we present an innovative multifactorial approach to combat infections which comprises a multilayer chitosan/bioactive glass/vancomycin nanocomposite coating with an osteoblastic potential and a drug delivery capacity. The bioactive drug-eluting coating was prepared on the surface of titanium foils by a multistep electrophoretic deposition technique. The adopted deposition strategy allowed for a high antibiotic loading of 1038.4 ± 40.2 µg/cm2. The nanocomposite coating exhibited a suppressed burst release with a prolonged sustained vancomycin release for up to 6 weeks. Importantly, the drug release profile was linear with respect to time, indicating a zero-order release kinetics. An in vitro bactericidal assay against Staphylococcus aureus confirmed that releasing the drug reduced the risk of bacterial infection. Excellent biocompatibility of the developed coating was also demonstrated by in vitro cell studies with a model MG-63 osteoblast cell line.

  5. Cracking of textured zinc coating during forming process

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Z.; Morris, J.W. Jr.

    1993-09-01

    A model is presented to relate cracking of a zinc coating on steel during forming process with its crystallographic texture. There are three deformation modes that can accommodate strains in a zinc coating caused by external loadings; basal slip, twinning, and cleavage cracking. Twinning of a zinc hexagonal crystal induces a contraction along its c-axis while cleavage relaxes tensile strain along its c-axis. Because of this, when basal slip in grains of a textured zinc coating is difficult under a given loading, either twinning or cleavage occurs, depending on whether the basal plane is parallel or normal to the loading axis and whether the loading is tensile or compressive. The loadings during formability or surface friction tests cause twinning in the basal-textured coating and cleavage cracking in the prism-textured coating. The prism-textured coating contains in extraordinarily high hardness since none of the three deformation modes may be operative under compression. These results derived from the model are confirmed with recent studies on electrogalvanized steels.

  6. Preparation of Bioactive Calcium Phosphate Coating on Porous C/C Substrate by a Novel Deposition Technique

    Institute of Scientific and Technical Information of China (English)

    XIONG Xinbo; ZENG Xierong; LI Xiaohua; Xie Shenghui; ZOU Chunli

    2008-01-01

    A novel heat substrate technique,high frequency inductive heat deposition(IHD),was introduced to coat porous carbon materials,C/C and carbon felt to improve their bioactivity.The morphologies,composition and microstructure of the resulting coatings were examined by scanning electron microscopy(SEM),energy dispersive spectra(EDS),X-ray diffractometer(XRD)and Fourier transform infrared spectroscopy (FTIR).The results show that,the calcium phosphate consisted of non-stoichiometric,CO3-containing and plate-like octacalcium phosphate(Ca8-xH2(PO4)6,OCP)could uniformly cover the entire porous surfaces of carbon materials.Good adhesion of the coating to carbon material substrates was observed.

  7. Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings

    Directory of Open Access Journals (Sweden)

    Hass Jamie L

    2012-01-01

    Full Text Available Abstract Background The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue. Methods We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells. Results Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt. Conclusion We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of

  8. Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications

    Science.gov (United States)

    Machado López, M. M.; Espitia Cabrera, M. I.; Faure, J.; Contreras García, M. E.

    2016-04-01

    Titanium and its alloys are widely used as implant materials because of their mechanical properties and non-toxic behavior. Unfortunately, they are not bioinert, which means that they can release ions and can only fix the bone by mechanical anchorage, this can lead to the encapsulation of dense fibrous tissue in the body. The bone fixation is required in clinical conditions treated by orthopedic and dental medicine. The proposal is to coat metallic implants with bioactive materials to establish good interfacial bonds between the metal substrate and bone by increasing bioactivity. Bioactive glasses, ceramics specifically 45 S5 Bioglass, have drawn attention as a serious functional biomaterial because osseointegration capacity. The EPD method of bioglass gel precursor was proposed in the present work as a new method to obtain 45S5/Ti6A14V for dental applications. The coatings, were thermally treated at 700 and 800°C and presented the 45 S5 bioglass characteristic phases showing morphology and uniformity with no defects, quantification percentages by EDS of Si, Ca, Na, P and O elements in the coating scratched powders, showed a good proportional relationship demonstrating the obtention of the 45S5 bioglass. The corrosion tests were carried out in Hank's solution. By Tafel extrapolation, Ti6Al4V alloy showed good corrosion resistance in Hank's solution media, by the formation of a passivation layer on the metal surface, however, in the system 45S5/Ti6Al4V there was an increase in the corrosion resistance; icon-, Ecorr and corrosion rate decreased, the mass loss and the rate of release of ions, were lower in this system than in the titanium alloy without coating.

  9. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys.

    Science.gov (United States)

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2014-07-01

    An antibacterial and bioactive titanium (Ti)-based material was developed for use as a bone substitute under load-bearing conditions. As previously reported, Ti metal was successively subjected to NaOH, CaCl2, heat, and water treatments to form a calcium-deficient calcium titanate layer on its surface. When placed in a simulated body fluid (SBF), this bioactive Ti formed an apatite layer on its surface and tightly bonded to bones in the body. To address concerns regarding deep infection during orthopedic surgery, Ag(+) ions were incorporated on the surface of this bioactive Ti metal to impart antibacterial properties. Ti metal was first soaked in a 5 M NaOH solution to form a 1 μm-thick sodium hydrogen titanate layer on the surface and then in a 100 mM CaCl2 solution to form a calcium hydrogen titanate layer via replacement of the Na(+) ions with Ca(2+) ions. The Ti material was subsequently heated at 600 °C for 1 h to transform the calcium hydrogen titanate into calcium titanate. This heat-treated titanium metal was then soaked in 0.01-10 mM AgNO3 solutions at 80 °C for 24 h. As a result, 0.1-0.82 at.% Ag(+) ions and a small amount of H3O(+) ions were incorporated into the surface calcium titanate layers. The resultant products formed apatite on their surface in an SBF, released 0.35-3.24 ppm Ag(+) ion into the fetal bovine serum within 24 h, and exhibited a strong antibacterial effect against Staphylococcus aureus. These results suggest that the present Ti metals should exhibit strong antibacterial properties in the living body in addition to tightly bonding to the surrounding bone through the apatite layer that forms on their surfaces in the body.

  10. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    Science.gov (United States)

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications.

  11. Porous SiO{sub 2} nanofiber grafted novel bioactive glass–ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant

    Energy Technology Data Exchange (ETDEWEB)

    Das, Indranee [Nano-Structured Materials Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); De, Goutam, E-mail: gde@cgcri.res.in [Nano-Structured Materials Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Hupa, Leena [Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo (Finland); Vallittu, Pekka K. [Turku Clinical Biomaterials Centre—TCBC, University of Turku, FI-20520 Turku (Finland); Institute of Dentistry, University of Turku, Department of Biomaterials Science and City of Turku, Welfare Division, Turku (Finland)

    2016-05-01

    A composite bioactive glass–ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. - Highlights: • Fabricated porous SiO{sub 2} nanofibers grafted composite bioactive glass–ceramic coating on inert glass. • The newly engineered coating facilitates uniformly dense apatite precipitation. • Embedded porous silica nanofibers enhance hydrophilicity of the coated surface. • Cells proliferate well on the entire coating following a particular orientation by the assistance of nanofibers. • The coatings have potential to be used as biological scaffold on the surface of implants.

  12. Effect of Ti-OH groups on microstructure and bioactivity of TiO2 coating prepared by micro-arc oxidation

    Science.gov (United States)

    Zhang, Peng; Zhang, Zhiguo; Li, Wei; Zhu, Min

    2013-03-01

    Titanium and its alloys are promising biomedical metal materials. In order to improve the bioactivity of TiO2 coatings, three processes including micro-arc oxidation (MAO) in a Ca and P ion electrolyte (Ti-MAO), MAO in a 1 M NaOH electrolyte (Ti-NaOH) which was heated to 60 °C and a two-step MAO process in which specimens were first treated by MAO in Ca and P ion solution and then further in a 1 M heated NaOH electrolyte in succession (Ti-MAO-NaOH) were carried out. Round pores were found to form on the surface of the Ti-MAO sample while homogeneously distributed hollow spherical particles were found on both the Ti-NaOH and Ti-MAO-NaOH sample surfaces. The bioactivity evaluation showed that the combination of MAO processes in different electrolytes induced more rapid formation of apatite in contrast to the simple MAO treatment in heated alkaline electrolyte. The Ti-OH groups formed in alkaline electrolyte are found to be response for the rapid formation of hydroxyapatite during a SBF soaking. The previous introduction of Ca and P can increase the opportunity to form hydroxyapatite.

  13. Influence of PCL on mechanical properties and bioactivity of ZrO2-based hybrid coatings synthesized by sol-gel dip coating technique.

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Veronesi, Paolo; Lamanna, Giuseppe

    2014-06-01

    The biological properties of medical implants can be enhanced through surface modifications such as to provide a firm attachment of the implant. In this study, organic-inorganic hybrid coatings have been synthesized via sol-gel dip coating. They consist of an inorganic ZrO2 matrix in which different amounts of poly(ε-caprolactone) have been entrapped to improve the mechanical properties of the films. The influence of the PCL amount on the microstructural, biological and mechanical properties of the coating has been investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses have shown that the hybrids used for the coating are homogenous and totally amorphous materials; Fourier transform infrared spectroscopy (FT-IR) has demonstrated that hydrogen bonds arise between the organic and inorganic phases. SEM and atomic force microscopy (AFM) have highlighted the nanostructured nature of the film. SEM and EDS analyses, after soaking the samples in a simulated body fluid (SBF), have pointed out the apatite formation on the coating surface, which proves the bone-bonding ability of the nanocomposite bioactive films. Scratch and nano-indentation tests have shown that the coating hardness, stiffness and Young's modulus decrease in the presence of large amounts of the organic phase.

  14. Fabrication of bioactive titania coating on nitinol by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Siu, H.T.; Man, H.C., E-mail: mfhcman@polyu.edu.hk

    2013-06-01

    Surface modification was attempted on Nitinol (NiTi) by plasma electrolytic oxidation (PEO) in aqueous solutions of sodium sulphate and sodium hydroxide (Na{sub 2}SO{sub 4}-NaOH) using an AC power supply. A thick and porous oxide layer with micron-sized pores was formed on the Nitinol substrate, with the thickness of the oxide layer ranging from a few μm to over 10 μm, depending on the processing time. X-ray diffraction (XRD) analysis confirmed that the oxide formed was anatase. Potentiodynamic polarization tests in Hanks’ solution showed that the corrosion resistance of PEO-coated Nitinol was much higher than that of the substrate. More importantly, the apatite-forming ability of the PEO-treated NiTi was found to be enhanced. This could be attributed to the anatase crystalline structure of the titanium oxide and the porous structure that facilitates the anchorage of the hydroxyapatite particles.

  15. Tribological Behaviour of the Ceramic Coating Formed on Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; ZHOU Hai; CHEN Qiang; GE Yuanjing; LV Fanxiu

    2007-01-01

    Micro-arc oxidation is a recently developed surface treatment technology under anodic oxidation. Through micro-arc oxidation, a ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is significantly improved. In this paper, a dense ceramic oxide coating was prepared on an AZ31 magnesium alloy by micro-arc oxidation in a NaOH-Na2SiO3-NaB4O7-(NaPO3)6 electrolytic solution. Micro-structure, surface morphology and phase composition were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tribological behavior of the micro-arc oxidation ceramic coating under dry sliding against GCrl5 steel was evaluated on a ball-on-disc test rig. The results showed that the AZ31 alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing conditions. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel.

  16. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    Science.gov (United States)

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  17. Characteristic and in vitro bioactivity of a microarc-oxidized TiO(2)-based coating after chemical treatment.

    Science.gov (United States)

    Wei, Daqing; Zhou, Yu; Jia, Dechang; Wang, Yaming

    2007-09-01

    Microarc oxidation (MAO) was used to prepare a TiO(2)-based coating containing Ca and P on titanium alloy. An alkali treatment was developed to modify the surface of the MAO coating to improve the apatite-forming ability of the coating. The chemically treated MAO coating exhibits a modified layer, with the main constituents being O, Ti, Ca and Na, showing anatase. The modified MAO coating shows a rough and porous morphology containing numerous nanoflakes of approximately 100nm thickness. During the alkali treatment process, P on the surface of the MAO coating shows a main dynamic process of dissolution; however, Ca exhibits a re-deposition process as well as dissolution. The formation of the modified layer could be explained by this mechanism: negatively charged HTiO(3)(-) ions are formed on the MAO coating due to the attack of OH(-) ions on the TiO(2) phase. The HTiO(3)(-) ions could incorporate sodium from the alkali solution and calcium from the alkali solution and MAO coating. The apatite-forming ability of the MAO coating is improved remarkably by the simple chemical treatment, since the surface of the alkali-treated MAO coating could provide abundant Ti-OH groups probably formed by ionic exchanges between (Ca2+, Na+) ions of the alkali-treated MAO coating and H3O+ ions of a simulated body fluid (SBF). Moreover, Ca released from the alkali-treated MAO coating increases the degree of supersaturation of SBF, promoting the formation of apatite. The apatite induced by the alkali-treated MAO coating possesses carbonated structure and pore networks on the nanometer scale.

  18. Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: mechanisms and development of new bioactive materials based on polysaccharides

    OpenAIRE

    Cordero Arias, Luis Eduardo

    2015-01-01

    Regarding the need to improve the usually encountered osteointegration of metallic implants with the surrounding body tissue in bone replacement applications, bioactive organic/inorganic composite coatings on metallic substrates were developed in this work using electrophoretic deposition (EPD) as coating technology. In the present work three polysaccharides, namely alginate, chondroitin sulfate and chitosan were used as the organic part, acting as the matrix of the coating and enabling the c...

  19. Bioactive titanate layers formed on titanium and its alloys by simple chemical and heat treatments.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device.

  20. Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying.

    Science.gov (United States)

    Yugeswaran, S; Yoganand, C P; Kobayashi, A; Paraskevopoulos, K M; Subramanian, B

    2012-05-01

    Yttria stabilized zirconia reinforced hydroxyapatite coatings were deposited by a gas tunnel type plasma spray torch under optimum spraying conditions. For this purpose, 10, 20 and 30 wt% of yttria stabilized zirconia (YSZ) powders were premixed individually with hydroxyapatite (HA) powder and were used as the feedstocks for the coatings. The effect of YSZ reinforcement on the phase formation and mechanical properties of the coatings such as hardness, adhesive strength and sliding wear rates was examined. The results showed that the reinforcement of YSZ in HA could significantly enhance the hardness and adhesive strength of the coatings. The potentiodynamic polarization and impedance measurements showed that the reinforced coatings exhibited superior corrosion resistance compared to the HA coating in SBF solution. Further the results of the bioactivity test conducted by immersion of coatings in SBF showed that after 10 days of immersion of the obtained coatings with all the above compositions commonly exhibited the onset of bioactive apatite formation except for HA+10%YSZ coating. The cytocompatibility was investigated by culturing the green fluorescent protein (GFP)-labeled marrow stromal cells (MSCs) on the coating surface. The cell culture results revealed that the reinforced coatings have superior cell growth than the pure HA coatings.

  1. In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A

    Science.gov (United States)

    Ham, Hyun Ok; Qu, Zheng; Haller, Carolyn A.; Dorr, Brent M.; Dai, Erbin; Kim, Wookhyun; Liu, David R.; Chaikof, Elliot L.

    2016-04-01

    Surface immobilization of bioactive molecules is a central paradigm in the design of implantable devices and biosensors with improved clinical performance capabilities. However, in vivo degradation or denaturation of surface constituents often limits the long-term performance of bioactive films. Here we demonstrate the capacity to repeatedly regenerate a covalently immobilized monomolecular thin film of bioactive molecules through a two-step stripping and recharging cycle. Reversible transpeptidation by a laboratory evolved Staphylococcus aureus sortase A (eSrtA) enabled the rapid immobilization of an anti-thrombogenic film in the presence of whole blood and permitted multiple cycles of film regeneration in vitro that preserved its biological activity. Moreover, eSrtA transpeptidation facilitated surface re-engineering of medical devices in situ after in vivo implantation through removal and restoration film constituents. These studies establish a rapid, orthogonal and reversible biochemical scheme to regenerate selective molecular constituents with the potential to extend the lifetime of bioactive films.

  2. Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants.

    Science.gov (United States)

    Roy, Mangal; Vamsi Krishna, B; Bandyopadhyay, Amit; Bose, Susmita

    2008-03-01

    Laser-engineered net shaping (LENS), a commercial rapid prototyping (RP) process, was used to coat titanium with tricalcium phosphate (TCP) ceramics to improve bone cell-materials interactions. During LENS coating process, the Nd:YAG laser melts the top surface of Ti substrate in which calcium phosphate powder is fed to create a TCP-Ti composite layer. It was found that an increase in laser power and/or powder feed rate increases the thickness of the coating. However, coating thickness decreased with increasing laser scan speed. TCP coating showed columnar titanium grains at the substrate side of the coating and transitioned to equiaxed titanium grains at the outside. When the scan speed was reduced from 15 to 10mms(-1), coating hardness increased from 882+/-67 to 1049+/-112Hv due to an increase in the volume fraction of TCP in the coating. Coated surfaces showed uniformly distributed TCP particles and X-ray diffraction data confirmed the absence of any undesirable phases, while maintaining a high level of crystallinity. The effect of TCP coating on cell-material interaction was examined by culturing osteoprecursor cells (OPC1) on coated surfaces. The results indicated that TCP coating had good biocompatibility where OPC1 cells attached and proliferated on the coating surface. The coating also initiated cell differentiation, ECM formation and biomineralization.

  3. Effect of CeO2 and Y2O3 on microstructure, bioactivity and degradability of laser cladding CaO-SiO2 coating on titanium alloy.

    Science.gov (United States)

    Li, H C; Wang, D G; Chen, C Z; Weng, F

    2015-03-01

    To solve the lack of strength of bulk biomaterials for load-bearing applications and improve the bioactivity of titanium alloy (Ti-6Al-4V), CaO-SiO2 coatings on titanium alloy were fabricated by laser cladding technique. The effect of CeO2 and Y2O3 on microstructure and properties of laser cladding coating was analyzed. The cross-section microstructure of ceramic layer from top to bottom gradually changes from cellular-dendrite structure to compact cellular crystal. The addition of CeO2 or Y2O3 refines the microstructure of the ceramic layer in the upper and middle regions. The refining effect on the grain is related to the kinds of additives and their content. The coating is mainly composed of CaTiO3, CaO, α-Ca2(SiO4), SiO2 and TiO2. Y2O3 inhibits the formation of CaO. After soaking in simulated body fluid (SBF), the calcium phosphate layer is formed on the coating surface, indicating the coating has bioactivity. After soaking in Tris-HCl solution, the samples doped with CeO2 or Y2O3 present a lower weight loss, indicating the addition of CeO2 or Y2O3 improves the degradability of laser cladding sample.

  4. Composition for forming an optically transparent, superhydrophobic coating

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, John T.; Lewis, Linda A.

    2015-12-29

    A composition for producing an optically clear, well bonded superhydrophobic coating includes a plurality of hydrophobic particles comprising an average particle size of about 200 nm or less, a binder at a binder concentration of from about 0.1 wt. % to about 0.5 wt. %, and a solvent. The hydrophobic particles may be present in the composition at a particle concentration of from about 0.1 wt. % to about 1 wt. %. An optically transparent, superhydrophobic surface includes a substrate, a plurality of hydrophobic particles having an average particle size of about 200 nm or less dispersed over the substrate, and a discontinuous binder layer bonding the hydrophobic particles to the substrate, where the hydrophobic particles and the binder layer form an optically transparent, superhydrophobic coating.

  5. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    Science.gov (United States)

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  6. Responses of broilers to Aloe vera bioactives as feed additive: The effect of different forms and levels of bioactives on performances of broilers

    Directory of Open Access Journals (Sweden)

    A.P Sinurat

    2002-06-01

    Full Text Available Feed additives are commonly used in poultry feed as growth promotors or to improve feed efficiency. Previous results showed that Aloe vera bioactives could improve feed efficiency in broilers. Therefore, a further study was designed in order to obtain optimum doses and application methods of bioactives for broiler chickens. Aloe vera was prepared in different forms (fresh gel, dry gel, fresh whole leaf or dry whole leaf. The aloe was supplemented into the feed with concentrations of 0.25; 0.5 and 1 g/kg (equal to dry gel. Standard diets with or without antibiotics were also included as control. The diets were fed to broilers from day old to 5 weeks and the performances were observed. Results showed that the aloe-bioactives did not significantly (P>0.05 affect final body weight of broilers as compared with the control. Supplementation of 0.25 g/kg fresh gel, 0.25 and 1.0 g/kg dry gel significantly improved feed convertion by 4.7; 4.8 and 8.2%, respectively as compared with the control. This improvement was a result of reduction in feed intake or dry matter intake without reducing the weight gain. However, supplementation of whole aloe leafs could not improve feed convertion in boilers. It is concluded that the bioactives of Aloe vera could be used as feed supplement to improve feed efficiency in broilers with no deleterious effect on weight gain, carcass yield, abdominal fat levels and internal organs. The effective concentrations of aloe gell as a feed supplement based on dry matter convertion were from 0.25 g/kg fresh gel, 0.25 and 1.0 g/kg dry gel.

  7. Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured Ca-P coating.

    Science.gov (United States)

    Paital, Sameer R; Cao, Zheng; He, Wei; Dahotre, Narendra B

    2010-06-01

    Calcium phosphate (Ca-P) coating on the Ti-6Al-4V alloy enhances osteoblast adhesion and tissue formation at the bone implant interface. In light of this, in the current work a laser-based coating technique was used to synthesize two different micro-textured (100 microm and 200 microm spaced line patterns) Ca-P coatings on the Ti-6Al-4V alloy and its effect on wettability and osteoblast cell adhesion were systematically studied. X-ray diffraction (XRD) analysis of the coated samples indicated the presence of precursor material, Ca10(PO4)6(OH)2 (HA) and various other additional phases such as CaTiO3, Ca3(PO4)2, TiO2 (anatase) and TiO2 (rutile) owing to the reaction between the precursor (HA) and substrate (Ti-6Al-4V) during laser processing. Confocal laser scanning microscopy-based characterization of coated samples indicated that the samples processed at 100 microm line spacing demonstrated a reduced surface roughness and smaller texture parameter value as compared to the samples processed at 200 microm spacing. The surface energy and wettability of the 100 microm spaced samples measured using a static sessile drop technique demonstrated higher surface energy and increased hydrophilicity as compared to the control (untreated Ti-6Al-4V) and the samples processed at 200 microm spacing. The tendency of coated samples for mineralization through generation of an apatite-like phase during immersion in a simulated body fluid was indicative of their in vitro bioactive nature. In light of higher surface energy and increased hydrophilicity the in vitro biocompatibility of the samples with 100 microm line spacing was demonstrated through increased cell proliferation and cell adhesion of mouse MC3T3-E1 osteoblast-like cells.

  8. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhensheng [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Yang Xiaozhan [Chongqing University of Technology, School of Optoelectronic Information (China); Guo Hongfeng [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China); Yang Xiaochao; Sun Lili [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Dong Shiwu, E-mail: shiwudong@gmail.com [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China)

    2012-09-15

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO{sub 2} porous ceramics were also prepared as a control. After sintered at 1,000 Degree-Sign C with a pressureless sintering method, the particle size of the pure TiO{sub 2} and TiO{sub 2}/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 {mu}m. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO{sub 2}/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO{sub 2} ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO{sub 2}/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO{sub 2} ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  9. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Science.gov (United States)

    Li, Zhensheng; Yang, Xiaozhan; Guo, Hongfeng; Yang, Xiaochao; Sun, Lili; Dong, Shiwu

    2012-09-01

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO2 porous ceramics were also prepared as a control. After sintered at 1,000 °C with a pressureless sintering method, the particle size of the pure TiO2 and TiO2/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 μm. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO2/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO2 ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO2/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO2 ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  10. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  11. Surface characteristics and bioactivity of a novel natural HA/Zircon nanocomposite coated on dental implants

    NARCIS (Netherlands)

    Karamian, E.; Khandan, A.; Motamedi, M.R.K.; Mirmohammadi, H.

    2014-01-01

    The surface characteristics of implant which influence the speed and strength of osseointegration include surface chemistry, crystal structure and crystallinity, roughness, strain hardening, and presence of impurities. The aim of this study was to evaluate the bioactivity and roughness of a novel na

  12. Doping inorganic ions to regulate bioactivity of Ca-P coating on bioabsorbable high purity magnesium

    Institute of Scientific and Technical Information of China (English)

    Hongliu Wu; Xiaonong Zhang; Ruopeng Zhang; Xiao Li; Jiahua Ni; Changli Zhao; Yang Song; Jiawei Wang; Shaoxiang Zhang; Yufeng Zheng

    2014-01-01

    Performance of biomaterials was strongly affected by their surface properties and could be designed artificially to meet specific biomedical requirements. In this study, F-(F), SiO42-(Si), or HCO3-(C)-doped Ca–P coatings were fabricated by biomimetic deposition on the surface of biodegradable high-purity magnesium (HP Mg). The crystalline phases, morphologies and compositions of Ca–P coatings had been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The biomineralization and corrosion resistance of doped Ca–P coatings had also been investigated. The results showed that the Ca–P coating with or without doped elements mainly contained the plate-like dicalcium phosphate dehydrate (DCPD) phase. The doped F, Si, or C changed the surface morphology of Ca–P coatings after mineralization. Doped F enhanced the mineralization of Ca–P coating, and doped Si retarded the mineralization of Ca–P coating. However, H2 evolution of HP Mg discs with different Ca–P coatings was close to 0.4–0.7 ml/cm2 after two-week immersion. That meant that the corrosion resistance of the Ca–P coatings with different or without doped elements did not change significantly.

  13. 改进酸碱联合处理法制备钛基羟基磷灰石活性涂层%PREPARATION OF BIOACTIVE HYDROXYAPATITE COATING ON TITANIUM ALLOY SUBSTRATE WITH AN IMPROVED ACID-ALKALI-COMBINATION METHOD

    Institute of Scientific and Technical Information of China (English)

    杨辉; 肖兵娟

    2009-01-01

    In order to prepare bioactive hydroxyapatite (Ca10(PO4)6(OH)2, HA) coating with ideal bioactivity, the surface of titanium alloy was treated with acidity, alkalinity and their combination. After precalcification, the treated titanium alloy plates were immersed in simulated body fluid (SBF) to form HA coating on their surface, and then heat-treated. The chemical composition of the coating was analyzed by an X-ray diffraction (XRD) and the morphology was observed by a scanning electron microscope (SEM). The results indicate that the ideal titanium surface treatment is the acid-alkali-combination method. The treated surface is a porous structure and its roughness is favorable for the deposition of HA and the improvement of its coating adhesion strength. The formed bioactive coa-tings are mainly composed of HA crystal taking the shape of a cloud or sphere. Compared with the results reported in other documents, the prepared coating in this study has a higher HA content, no cracks, and some sheet crystals, which are tightly wrapped to the alloy surface and are evenly distributed. Many pores are distributed in the coating, which is useful for new bone to form and combine with the coating firmly.%为了制备理想的钛基羟基磷灰石(hydroxyapatite,HA)生物活性涂层,对钛合金表面分别采用酸处理、碱处理和酸碱联合处理,经过预钙化和热处理后,于模拟体液中进行HA沉积试验.采用X射线粉末衍射仪分析HA涂层的化学组成,以扫描电镜观察所得涂层的表面形态.结果表明:酸碱联合处理法是理想的钛合金表面处理法,所得表面呈多孔状,表面粗糙,对HA涂层沉积和结合强度的改善极为有利;模拟体液法所得涂层主要由HA组成,沉积物为云团状或球状;与相关文献比较,涂层HA含量高,没有裂纹,并且在钛基金属表面形成了片状晶体,均匀覆盖于金属表面,球状颗粒间有空隙存在,有利于新骨形成和牢固的结合.

  14. Novel bioactive tetracycline-containing electrospun polymer fibers as a potential antibacterial dental implant coating.

    Science.gov (United States)

    Shahi, R G; Albuquerque, M T P; Münchow, E A; Blanchard, S B; Gregory, R L; Bottino, M C

    2016-09-01

    The purpose of this investigation was to determine the ability of tetracycline-containing fibers to inhibit biofilm formation of peri-implantitis-associated pathogens [i.e., Porphyromonas gingivalis (Pg), Fusobacterium nucleatum (Fn), Prevotella intermedia (Pi), and Aggregatibacter actinomycetemcomitans (Aa)]. Tetracycline hydrochloride (TCH) was added to a poly(DL-lactide) [PLA], poly(ε-caprolactone) [PCL], and gelatin [GEL] polymer blend solution at distinct concentrations to obtain the following fibers: PLA:PCL/GEL (TCH-free, control), PLA:PCL/GEL + 5 % TCH, PLA:PCL/GEL + 10 % TCH, and PLA:PCL/GEL + 25 % TCH. The inhibitory effect of TCH-containing fibers on biofilm formation was assessed by colony-forming units (CFU/mL). Qualitative analysis of biofilm inhibition was done via scanning electron microscopy (SEM). Statistical significance was reported at p < 0.05. Complete inhibition of biofilm formation on the fibers was observed in groups containing TCH at 10 and 25 wt%. Fibers containing TCH at 5 wt% demonstrated complete inhibition of Aa biofilm. Even though a marked reduction in CFU/mL was observed with an increase in TCH concentration, Pi proved to be the most resilient microorganism. SEM images revealed the absence of or a notable decrease in bacterial biofilm on the TCH-containing nanofibers. Collectively, our data suggest that tetracycline-containing fibers hold great potential as an antibacterial dental implant coating.

  15. Results of bone regenerate study after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants in experimental femoral neck fractures (experimental study

    Directory of Open Access Journals (Sweden)

    K. S. Kazanin

    2015-01-01

    Full Text Available Objective - to analyze the results of X-ray, cytomorphometric and immunohistochemistry experimental studies of bone regenerates after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants. Material and methods. The study was conducted on experimental femoral neck fractures in rabbit males. Reparative osteogenesis processes were studied in groups of bioinert titanium implant osteosynthesis and calcium phosphate-coated bioactive titanium implant osteosynthesis. The animals were clinically followed-up during the postoperative period. X-ray, cytomorphometric and immunohistochemistry studies of samples extracted from femoral bones were conducted over time on days 1, 7, 14, 30 and 60. The animal experiments were kept and treated according to recommendations of international standards, Helsinki Declaration on animal welfare and approved by the local ethics committee. All surgeries were performed under anesthesia, and all efforts were made to minimize the suffering of the animals. Results. In the animal group without femoral neck fracture osteosynthesis, femoral neck pseudoarthrosis was observed at the end of the experiment. The results of cytomorphometric and immunohistochemistry studies conducted on day 60 of the experiment confirmed that the cellular composition of the bone regenerate in the group of calcium phosphate-coated bioactive titanium implants corresponded to a more mature bone tissue than in the group of bioinert titanium implants. Conclusion. The results of the statistical analysis of cytomorphometric and immunohistochemistry data show that the use of calcium phosphate-coated bioactive titanium implants allows to achieve significantly earlier bone tissue regeneration.

  16. Characterization of new bioactive coatings of hydroxyapatite and TiO{sub 2} obtained by High-Velocity Oxy-Fuel; Caracterizacion de nuevos recubrimientos biocompatibles de hidroxiapatita-TiO{sub 2} obtenidos mediante Proyeccion Termica de Alta Velocidad

    Energy Technology Data Exchange (ETDEWEB)

    Melero, H.; Fernandez, J.; Dosta, S.; Guilemany, J. M.

    2011-07-01

    Hydroxyapatite (Hap: Ca{sub 1}0(PO{sub 4}){sub 6}OH{sub 2}) is a biocompatible and bioactive ceramic material widely used as a coating on metal surfaces (dental implants, hip replacements ...), but the low adhesion between Hap and the substrate, due to differences in thermal expansion coefficients of both (very important in thermal spraying because of the fast cooling of the coating, which can produce a lost of adherence), and the degradation of Hap, have been tried to be improved through the incorporation of TiO{sub 2} to get a good combination of mechanical properties. Therefore, the objective of this project is to produce coatings of Hap 80% TiO{sub 2} and 20% (by weight) on Ti6Al4V by High-Speed Thermal Spray (HVOF). The study of the microstructure has been carried out using scanning electron microscopy and characterization of the crystalline phases by X-ray diffraction and Raman spectrometry. The coatings adhesion has been measured by tensile tests according to ASTM C633-01 (2008), and their bioactivity also has been evaluated through its immersion in simulated body fluid (SBF), in order to measure their capacity to form an apatite layer on their surface. (Author) 26 refs.

  17. Laser surface alloying of 316L stainless steel coated with a bioactive hydroxyapatite-titanium oxide composite.

    Science.gov (United States)

    Ghaith, El-Sayed; Hodgson, Simon; Sharp, Martin

    2015-02-01

    Laser surface alloying is a powerful technique for improving the mechanical and chemical properties of engineering components. In this study, laser surface irradiation process employed in the surface modification off 316L stainless steel substrate using hydroxyapatite-titanium oxide to provide a composite ceramic layer for the suitability of applying this technology to improve the biocompatibility of medical alloys and implants. Fusion of the metal surface incorporating hydroxyapatite-titania ceramic particles using a 30 W Nd:YAG laser at different laser powers, 40, 50 and 70% power and a scan speed of 40 mm s(-1) was observed to adopt the optimum condition of ceramic deposition. Coatings were evaluated in terms of microstructure, surface morphology, composition biocompatibility using XRD, ATR-FTIR, SEM and EDS. Evaluation of the in vitro bioactivity by soaking the treated metal in SBF for 10 days showed the deposition of biomimetic apatite.

  18. Interfacial shear strength of bioactive-coated carbon fiber reinforced polyetheretherketone after in vivo implantation.

    Science.gov (United States)

    Nakahara, Ichiro; Takao, Masaki; Goto, Tomoyo; Ohtsuki, Chikara; Hibino, Shigeru; Sugano, Nobuhiko

    2012-10-01

    Despite the excellent osseointegration of carbon-fiber-reinforced polyetheretherketone (CFR/PEEK) with a surface hydroxyapatite (HA) coating, the bone-implant interfacial shear strength of HA-coated CFR/PEEK after osseointegration is unclear. We examined the interfacial shear strength of HA-coated CFR/PEEK implants after in vivo implantation in a rabbit femur-implant pull-out test model. HA coating was performed by a newly developed method. Uncoated CFR/PEEK, HA-coated blasted titanium alloy, and uncoated blasted titanium alloy were used as control implants. The implants were inserted into drilled femoral cortex, and pull-out tests were conducted after 6 and 12 weeks of implantation to determine maximum interfacial shear strength. The HA-coated CFR/PEEK (15.7  ± 4.5 MPa) and HA-coated titanium alloy (14.1  ±  6.0 MPa) exhibited significantly larger interfacial shear strengths than the uncoated CFR/PEEK (7.7 ± 1.8 MPa) and the uncoated titanium alloy (7.8  ±  2.1 MPa) at 6 weeks. At 12 weeks, only the uncoated CFR/PEEK (8.3  ±  3.0 MPa) exhibited a significantly smaller interfacial shear strength, as compared to the HA-coated CFR/PEEK (17.4  ±  3.6 MPa), HA-coated titanium alloy (14.2  ±  4.8 MPa), and uncoated titanium alloy (15.0  ±  2.6 MPa). Surface analysis of the removed implants revealed detachment of the HA layer in both the HA-coated CFR/PEEK and titanium alloy implants. The proposed novel HA coating method of CFR/PEEK significantly increased interfacial shear strength between bone and CFR/PEEK. The achieved interfacial shear strength of the HA-coated CFR/PEEK implant is of the same level as that of grit-blasted titanium alloy with HA.

  19. Deactivating Chemical Agents Using Enzyme-Coated Nanofibers Formed by Electrospinning

    Science.gov (United States)

    2016-01-01

    January 2012 4. TITLE AND SUBTITLE DEACTIVATING CHEMICAL AGENTS USING ENZYME- COATED NANOFIBERS FORMED BY ELECTROSPINNING 5a. CONTRACT NUMBER 5b...298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 MATS COATINGS ELECTROSPINNING CHEMICAL WARFARE...This page intentionally left blank 1 Deactivating Chemical Agents Using Enzyme- Coated Nanofibers formed by Electrospinning D

  20. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    Science.gov (United States)

    Branagan, Daniel J.; Hyde, Timothy A.; Fincke, James R.

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  1. Effect of hydrothermal treatment model on stability and bioactivity of microarc oxidized titania coatings

    Science.gov (United States)

    Zhou, Jianhong; Shao, Jianmin; Han, Yong

    2014-06-01

    Different types of Sr-doped hydroxyapatite (Sr-HA) nanorod arrays were prepared on microarc oxidized (MAOed) TiO2 coatings after hydrothermal treatment (HT) for 24 h in the case of different HT models, namely the MAOed TiO2 coatings to be hanged up in the autoclave without touching the HT solution (termed as H-HT) and immersed in the HT solution (termed as I-HT). The MAO+H-HT (HT in the case of H-HT model) and MAO+I-HT (HT in the case of I-HT model) coatings are multilayered by nanorod-shaped Sr-HA as outer layer, Ca0.5Sr0.5TiO3 as middle layer and TiO2 as inner layer adjacent to Ti substrate. The Sr-HA nanorods on the coatings are randomly oriented, homogeneous and a similar mean diameter of 70 nm. However, the lateral spacing between the Sr-HA nanorods on MAO+H-HT coating is much smaller compared with those on MAO+I-HT coating. The effects of the HT models on the roughness, in vitro structure and bond strength stability and apatite inducing ability of the coatings were examined. AFM evaluation reveals that the coatings have a similar microscale roughness. The as-MAOed, MAO+H-HT and MAO+I-HT coatings exhibit long-term structure and adhesive strength stability as indicated by immersion tests in physiological saline solutions for 0-48 weeks, although their adhesive strengths decrease a little after immersion in physiological saline solutions, for example, to about 10.2%, 7.8% and 6.9% at 48 weeks, respectively. Furthermore, the MAO+H-HT coating can induce apatite formation after 12 h of SBF immersion due to the compacted Sr-HA nanorods layer, and the induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanorods.

  2. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Directory of Open Access Journals (Sweden)

    Vodnar Dan C

    2012-07-01

    Full Text Available Abstract Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C for 10 days and at refrigerated temperature (4°C for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea

  3. Application of Bioactive Coatings Based on Chitosan for Soybean Seed Protection

    Directory of Open Access Journals (Sweden)

    Defang Zeng

    2012-01-01

    Full Text Available Soybean seeds suffer attacks of various pests that result in a decreased yield in northeastern China. Until recently, people use pesticides such as insecticides to achieve the goal of controlling pests. Chitosan extracted from deacetylation of chitin is promising candidates as a seed-coating agent to control agrotis ypsilon, soybean pod borer, and soybean aphid effectively. An experimental study on influences of chitosan with different concentrations on pest controlling and soybean growth was made in the paper. Coating based on chitosan was used as a feeding deterrent and for enhancing the germination and quality of soybean seeds. Results indicated that all chitosan coating had a significant effect on antifeeding against pests; with the increasing concentration, antifeedant rate (AR were increased obviously, especially when in the concentration of 5%, santifeedant rate of agrotis ypsilon, soybean pod borer, and soybean aphid reached 82.89%, 87.24%, and 80.21%, respectively. Also chitosan coating increased seed germination, plant growth, and soybean yield efficiently, especially when, in the concentration of 5%, the yield was increased by about 20% compared with CK. The application of chitosan in soybean seed coated is an appropriate option to control pests replacing high-toxicity pesticides and enhance soybean yield.

  4. Coatings of titanium substrates with xCaO · (1 - x)SiO2 sol-gel materials: characterization, bioactivity and biocompatibility evaluation.

    Science.gov (United States)

    Catauro, M; Papale, F; Bollino, F

    2016-01-01

    The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0sol-gel route starting from tetraethyl orthosilicate and calcium nitrate tetrahydrate. Those materials, still in the sol phase, have been used to coat titanium substrates by means of the dip-coating technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) allowed the materials to be characterized and a microstructural analysis of the coatings obtained was performed using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated titanium was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. To investigate cell-material interactions, mouse embryonic fibroblast cells (3T3) were seeded onto the specimens and the cell viability was evaluated by a WST-8 assay.

  5. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  6. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  7. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    Science.gov (United States)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  8. CCK-58 prolongs the intermeal interval, whereas CCK-8 reduces this interval: not all forms of cholecystokinin have equal bioactivity.

    Science.gov (United States)

    Sayegh, Ayman I; Washington, Martha C; Raboin, Shannon J; Aglan, Amnah H; Reeve, Joseph R

    2014-05-01

    It has been accepted for decades that "all forms of cholecystokinin (CCK) have equal bioactivity," despite accumulating evidence to the contrary. To challenge this concept, we compared two feeding responses, meal size (MS, 10% sucrose) and intermeal interval (IMI), in response to CCK-58, which is the major endocrine form of CCK, and CCK-8, which is the most abundantly utilized form. Doses (0, 0.1, 0.5, 0.75, 1, 3 and 5 nmol/kg) were administered intraperitoneally over a 210-min test to Sprague Dawley rats that had been food-deprived overnight. We found that (1) all doses of CCK-58, except the lowest dose, and all doses of CCK-8, except the lowest two doses, reduced food intake more than vehicle did; (2) at two doses, 0.75 and 3 nmol/kg, CCK-58 increased the IMI, while CCK-8 failed to alter this feeding response; and (3) CCK-58, at all but the lowest two doses, increased the satiety ratio (IMI between first and second meals (min) divided by first MS (ml)) relative to vehicle, while CCK-8 did not affect this value. These findings demonstrate that the only circulating form of CCK in rats, CCK-58, prolongs the IMI more than CCK-8, the peptide generally utilized in feeding studies. Taken together, these results add to a growing list of functions where CCK-8 and CCK-58 express qualitatively different bioactivities. In conclusion, the hypothesis that "all forms of cholecystokinin (CCK) have equal bioactivity" is not supported.

  9. Structure and Bioactivity of Hydroxyapatite Coatings on Pure Titanium Fabricated by Microarc Oxidation%钛表面微弧氧化羟基磷灰石陶瓷膜的结构及其生物活性

    Institute of Scientific and Technical Information of China (English)

    于维先; 刘歆婵; 王闻天; 张玉凤; 王海瑞

    2014-01-01

    Porous hydroxyapatite (HA )ceramic coating on pure titanium (TA2 ) substrate was fabricated by microarc oxidation (MAO ) in electrolytic solution containing calcium acetate monohydrate and sodium biphosphate dihydrate salt.The morphology,phase and composition of the coating were characterized by scanning electron microscopy (SEM),X-ray diffraction (XRD),energy dispersive X-ray spectrometry (EDS)and Fourier transmission infrared spectrometry (FT-IR).The bioactivity of the HA ceramic coating was investigated by simulated body fluid (SBF)tests invitro. The result shows that the ceramic coating was formed on pure titanium substrate,and hydroxyapatite phase was found in the ceramic coating after the microarc oxidation for 10 min.Moreover,HA ceramic coating was proved to be of excellent bioactivity from the carbonate-containing HA formation on the ceramic coating surfaces.The coatings of MAO are covered completely by the carbonate-containing HA ceramic coatings after 48 h exposure to simulated body fluid.%采用微弧氧化技术(MAO),以纯钛(TA2)为基体,在醋酸钙和磷酸二氢钠电解液体系中,制备含羟基磷灰石(H A)的生物活性陶瓷膜,并利用扫描电子显微镜(SEM)、X 射线衍射(XRD)、X射线能谱(EDS)和红外光谱(FT-IR)对膜层进行表征,通过体外模拟体液浸泡实验检测膜层的生物活性。结果表明,纯钛经微弧氧化处理10 min后,在其表面能生成一层含羟基磷灰石成分的多孔陶瓷膜,该膜层经模拟体液浸泡48 h 后,其表面覆盖一层含有CO2-3的羟基磷灰石(类骨磷灰石),即该陶瓷膜层具有良好的生物活性。

  10. Bioactive coating on titanium implants modified by Nd:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Filho, Edson de, E-mail: edsonafilho@yahoo.com.br [Universidade Estadual Paulista - UNESP, Instituto de Quimica, Grupo de Biomateriais, Caixa Postal 355, 14800-900, Araraquara, SP (Brazil); Fraga, Alexandre F. [Universidade Federal de Sao Carlos - UFSCar- Departamento de Engenharia de Materiais-DEMa Rodovia Washington Luis, km 235 - SP-310 13565-905, Sao Carlos, SP (Brazil); Bini, Rafael A.; Guastaldi, Antonio C. [Universidade Estadual Paulista - UNESP, Instituto de Quimica, Grupo de Biomateriais, Caixa Postal 355, 14800-900, Araraquara, SP (Brazil)

    2011-03-01

    Apatite coating was applied on titanium surfaces modified by Nd:YVO{sub 4} laser ablations with different energy densities (fluency) at ambient pressure and atmosphere. The apatites were deposited by biomimetic method using a simulated body fluid solution that simulates the salt concentration of bodily fluids. The titanium surfaces submitted to the fast melting and solidification processes (ablation) were immersed in the simulated body fluid solution for four days. The samples were divided into two groups, one underwent heat treatment at 600 deg. C and the other dried at 37 deg. C. For the samples treated thermally the diffractograms showed the formation of a phase mixture, with the presence of the hydroxyapatite, tricalcium phosphate, calcium deficient hydroxyapatite, carbonated hydroxyapatite and octacalcium phosphate phases. For the samples dried only the formation of the octacalcium phosphate and hydroxyapatite phases was verified. The infrared spectra show bands relative to chemical bonds confirmed by the diffraction analyses. The coating of both the samples with and without heat treatment present dense morphology and made up of a clustering of spherical particles ranging from 5 to 20 {mu}m. Based on the results we infer that the modification of implant surfaces employing laser ablations leads to the formation of oxides that help the formation of hydroxyapatite without the need of a heat treatment.

  11. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate Bone Cement on Mechanical Properties and Bioactivity.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA bone cement after addition of the nano-hydroxyapatite(HA coated bone collagen (mineralized collagen, MC.The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis.15.0%(wt impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA.MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.

  12. Plasma spray for forming nanostructured thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    LIN; Feng; JIANG; Xian-liang; YU; Yue-guang; ZENG; Ke-li; REN; Xian-jing

    2005-01-01

    Nanocrystalline powders of yttrium partially stabilized zirconia (YPSZ) are reprocessed into agglomerated feedstocks for plasma spraying thermal barrier coatings (TBCs), using the methods of ball milling, slurry dispersion, spray drying, and heat treatment. Atmospheric plasma is used to spray the agglomerated nanocrystalline particle feedstocks and coatings were deposited on the substrate of Ni-based superalloy. Scanning electron microscopy (SEM) is used to examine the morphology and cross-section of the agglomerated feedstocks and the free-section and cross-section of the nanostructured TBCs. Experimental results show that the agglomerated nanocrystalline particles are spherical and dense. Unlike conventional plasma-sprayed coatings, the micron/nano/micron sandwich structure can be found in the nanostructured YPSZ coatings deposited by atmospheric plasma spraying.

  13. Cassava starch edible coating incorporated with propolis on bioactive compounds in strawberries

    Directory of Open Access Journals (Sweden)

    Ariela Betsy Thomas

    2016-02-01

    Full Text Available ABSTRACT Strawberry is a fruit appreciated throughout the world due to its attractive quality attributes and stands out due to its high phenolic compound content, which positively contribute to biological properties of nutritional interest. The objective of this study was to evaluate the effect of cassava starch coatings incorporated with propolis combinations on the phytochemical content and the maintenance and increase of the strawberry antioxidant activity. The treatments were 3% cassava starch (CS, 3% cassava starch + 33% ethanolic propolis extract (CS + P33%, 3% cassava starch + 66% ethanolic propolis extract (CS + P66% and control (C. The fruits were stored at 4 °C ± 0.5 ºC and 90%RH for 16 days, making up a completely randomized design with 4 treatments and 5 time evaluations. Vitamin C, phenolic compound, anthocyanin, and antioxidant activity levels were evaluated through two methods. The coating with 66% of propolis promoted higher Vitamin C content than fruits submitted to the other treatments at 8 and 12 days of storage. For antioxidant activity, fruits treated with CS maintained a higher FRS percentage (free radical scavenging at all time evaluations. Control fruits presented higher anthocyanin content at the last evaluation time when the highest antioxidant capacity, by the ABTS method (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, was observed in fruits with CS and CS + P66% treatments. There was an increase tendency of the phenolic content during storage in all evaluated fruits. The propolis concentrations used, however, were not sufficient to increase or maintain the antioxidant capacity and phenolic contents of strawberries.

  14. Optical Coatings Formed by Gradient Refractive Index Materials

    Directory of Open Access Journals (Sweden)

    Kęstutis Juškevičius

    2012-01-01

    Full Text Available Recent advances in ion beam sputtering technology enabled efficient deposition of different oxide mixture coatings. In the present investigation, coating materials ZrO2 and SiO2 were utilized for the synthesis of different mixtures. The goal of the conducted investigation was to explore the potential of ZrO2/SiO2 mixtures, especially for applications in the range of the UV spectral. Deposited dielectric mirrors having classical quarter-wave and “rised” design with ZrO2/SiO2 mixture for 266 nm and 355 nm showed good resistance to laser radiation.We also investigated the “fatigue” behavior of LIDT’s in LBO crystals with single, dual and triple wavelength anti-reflective coatings (AR@355, AR@532+1064 and AR@355+532+1064 in order to optimize design and layer materials. The influence of gradient refractive index profiles on damage resistance is of a special interest. We selected a few designs of antireflective coatings which demonstrated the best resistance to laser radiation.An experimental study on rugate filter coatings showed the need for a more accurate characterization of optical properties of metal oxides and their corresponding mixtures.Article in Lithuanian

  15. Plasma spray forming of tungsten coatings on copper electrodes

    Institute of Scientific and Technical Information of China (English)

    JIANG Xian-liang(蒋显亮); F.Gitzhofer; M.I.Boulos

    2004-01-01

    Both direct current dc plasma and radio frequency induction plasma were used to deposit tungsten coatings on copper electrodes. Fine tungsten powder with mean particle size of 5μm and coarse tungsten powder with particle size in the range from 45 μm to 75 μm were used as plasma spray feedstock. It is found that dc plasma is only applicable to spray the fine tungsten powder and induction plasma can be used to spray both the coarse powder and the fine powder. The tungsten coating deposited by the induction plasma spraying of the coarse powder is extremely dense. Such a coating with an interlocking structure and an integral interface with the copper substrate demonstrates high cohesion strength and adhesion strength.

  16. In Vitro Bioactivity Study of RGD-Coated Titanium Alloy Prothesis for Revision Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Zhentao Man

    2016-01-01

    Full Text Available Total hip arthroplasty (THA is a common procedure for the treatment of end-stage hip joint disease, and the demand for revision THA will double by 2026. Ti6Al4V (Titanium, 6% Aluminum, and 4% Vanadium is a kind of alloy commonly used to make hip prothesis. To promote the osseointegration between the prothesis and host bone is very important for the revision THA. The peptide Arg-Gly-Asp (RGD could increase cell attachment and has been used in the vascular tissue engineering. In this study, we combined the RGD with Ti6Al4V alloy using the covalent cross-linking method to fabricate the functional Ti6Al4V alloy (FTA. The distribution of RGD oligopeptide on the FTA was even and homogeneous. The FTA scaffolds could promote mouse osteoblasts adhesion and spreading. Furthermore, the result of RT-qPCR indicated that the FTA scaffolds were more beneficial to osteogenesis, which may be due to the improvement of osteoblast adhesion by the RGD oligopeptide coated on FTA. Overall, the FTA scaffolds developed herein pave the road for designing and building more efficient prothesis for osseointegration between the host bone and prothesis in revision THA.

  17. Platelet-rich plasma and fibrin glue-coated bioactive ceramics enhance growth and differentiation of goat bone marrow-derived stem cells.

    Science.gov (United States)

    Nair, Manitha B; Varma, H K; John, Annie

    2009-07-01

    New biotechnologies such as tissue engineering require functionally active cells within supportive matrices where the physical and chemical stimulus provided by the matrix is indispensable to determine the cellular behavior. This study has investigated the influence of platelet-rich plasma (PRP) and fibrin glue (FG) on the functional activity of goat bone marrow-derived mesenchymal stem cells (gBMSCs) that differentiated into the osteogenic lineage. To achieve this goal, PRP and FG were separately coated on bioactive ceramics like hydroxyapatite (HA) and silica-coated HA (HASi), on which gBMSCs were seeded and induced to differentiate into the osteogenic lineage for 28 days. The cells were then analyzed for viability (lactate dehydrogenase assay: acridine orange and ethidium bromide staining), morphology (scanning electron microscopy), proliferation (picogreen assay), cell cycle assay (propidium iodide staining), and differentiation (alkaline phosphatase [ALP] activity and real-time PCR analysis of ALP, osteocalcin, and osteopontin gene). It has been observed that PRP and FG have appreciably favored the viability, spreading, and proliferation of osteogenic-induced gBMSCs. The osteopontin and osteocalcin expression was significantly enhanced on PRP- and FG-coated HA and HASi, but PRP had effect on neither ALP expression nor ALP activity. The results of this study have depicted that FG-coated ceramics were better than PRP-coated and bare matrices. Among all, the excellent performance was shown by FG coated HASi, which may be attributed to the communal action of the stimulus emanated by Si in HASi and the temporary extracellular matrix provided by FG over HASi. Thus, we can conclude that PRP or FG in combination with bioactive ceramics could possibly enhance the functional activity of cells to a greater extent, promoting the hybrid composite as a promising candidate for bone tissue engineering applications.

  18. Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental mice.

    Science.gov (United States)

    Prasannaraj, Govindaraj; Venkatachalam, Perumal

    2017-02-01

    animals group. Histopathological investigation reveals decreased fat accumulation, appearance of binucleated cells in nanoparticle treated animals and showed mere normal cells induced by DEN. Argyrophilic nucleolar organiser region (AgNORs) had a significant decrease in number of acidic proteins and mast cells assay showed decrease of metachromatic cells in nanoparticles treated animal groups over control. Present results strongly suggest that biomolecule coated silver nanoparticles exposure showed potential hepatoprotective effect against DEN induced liver cancer and could be used as an effective anticancer nanodrug.

  19. Pack Aluminide Coatings Formed at 650℃ for Enhancing Oxidation Resistance of Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Z.D.Xiang; S.R.Rose; P.K.Datta

    2004-01-01

    This study aims to investigate the feasibility of forming iron aluminide coatings on a commercial 9Cr-1Mo (wt.%) alloy steel by pack cementation at 650℃ in an attempt to improve its high temperature oxidation resistance. Pack powders containing Al, Al2O3 and a series of halide salts were used to carry out the coating deposition experiments, which enabled identification of the most suitable activator for the pack aluminising process at the intended temperature. The effect of pack aluminium content on the growth kinetics and microstructure of the coatings was then studied by keeping deposition conditions and pack activator content constant while increasing the pack aluminium content from 1.4 wt.% to 6 wt.%. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were used to analyse the phases and microstructures of the coatings formed and to determine depth profiles of coating elements in the coating layer. Oxidation resistance of the coating was studied at 650 ~C in air by intermittent weight measurement at room temperature. It was observed that the coating could substantially enhance the oxidation resistance of the steel under these testing conditions, which was attributed to the capability of the iron aluminide phases to form alumina scale on the coating surface through preferential A1 oxidation.

  20. Pack Aluminide Coatings Formed at 650 ℃ for Enhancing Oxidation Resistance of Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Z. D. Xiang; S. R. Rose; P. K. Datta

    2004-01-01

    This study aims to investigate the feasibility of forming iron aluminide coatings on a commercial 9Cr-lMo (wt.%)alloy steel by pack cementation at 650 ℃ in an attempt to improve its high temperature oxidation resistance. Pack powders containing Al, Al2O3 and a series of halide salts were used to carry out the coating deposition experiments, which enabled identification of the most suitable activator for the pack aluminising process at the intended temperature. The effect of pack aluminium content on the growth kinetics and microstructure of the coatings was then studied by keeping deposition conditions and pack activator content constant while increasing the pack aluminium content from 1.4 wt.% to 6 wt.%. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were used to analyse the phases and microstructures of the coatings formed and to determine depth profiles of coating elements in the coating layer. Oxidation resistance of the coating was studied at 650 ℃ in air by intermittent weight measurement at room temperature. It was observed that the coating could substantially enhance the oxidation resistance of the steel under these testing conditions, which was attributed to the capability of the iron aluminide phases to form alumina scale on the coating surface through preferential Al oxidation.

  1. GRINDING OF SURFACES WITH COATINGS FORMED BY ELECTROMAGNETIC FACING WITH SURFACE PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    Zh. A. Mrochek

    2011-01-01

    Full Text Available The paper presents investigation results on machining of surfaces having a coating formed by electromagnetic facing with surface plastic deformation and using abrasive and diamond wheels having a porous metal binder with orientated drains.

  2. TRIBOLAYER FORMED ON MULTIFUNCTIONAL COATINGS: INFLUENCE OF THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    José Daniel Biasoli de Mello

    2012-06-01

    Full Text Available Friction and wear control can be achieved primarily by considering the nature of the counter faces, together with the environmental conditions. In most cases, a transfer film is found on the sliding surfaces. Environment plays a crucial role on the kinetics of formation and on the composition of the transfer film, and thus strongly influences friction levels and wear rates. In this paper, the effect of the actual environment (refrigerant present in hermetic compressors on the tribological behaviour of a Si rich multifunctional DLC coating deposited on 1020 steel is analyzed. Unlubricated reciprocating pin-on- disk tests are performed using a High Pressure Tribometer under different atmospheres (Air, CO2 and R600a. Samples tested in R600a environment present the lowest friction coefficient and the lowest wear rate for both body and counter-body

  3. Method of forming oxide coatings. [for solar collector heating panels

    Science.gov (United States)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  4. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    Science.gov (United States)

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials.

  5. Novel Bioactive Titanate Layers Formed on Ti Metal and Its Alloys by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Tadashi Kokubo

    2009-12-01

    Full Text Available Sodium titanate formed on Ti metal by NaOH and heat treatments induces apatite formation on its surface in a body environment and bonds to living bone. These treatments have been applied to porous Ti metal in artificial hip joints, and have been used clinically in Japan since 2007. Calcium titanate formed on Ti-15Zr-4Nb-4Ta alloy by NaOH, CaCl2, heat, and water treatments induces apatite formation on its surface in a body environment. Titanium oxide formed on porous Ti metal by NaOH, HCl, and heat treatments exhibits osteoinductivity as well as osteoconductivity. This is now under clinical tests for application to a spinal fusion device.

  6. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk [Research and Development Center, VENTEX Co. Ltd., Seoul (Korea, Republic of)

    2016-09-15

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats.

  7. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    Energy Technology Data Exchange (ETDEWEB)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V., E-mail: veerajendran@gmail.com

    2013-10-15

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid.

  8. Hard and low friction nitride coatings and methods for forming the same

    Science.gov (United States)

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  9. Preparation, Characterization and Utilization of Electrodes Coated with Polymeric Networks Formed by Gamma Radiation Crosslinking.

    Science.gov (United States)

    1987-04-01

    CHARACTERIZATION, AND UTILIZATION OF ELECTRODES COATED WITH POLYMERIC NETWORKS FORMED BY GAMMA RADIATION CROSSLINKING FINAL REPORT Accession For NTIS GRA... radiation crosslinking . The polymers and their structures are shown in Table I. All of these have been found to form cross-linked networks when exposed

  10. Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys

    Directory of Open Access Journals (Sweden)

    Stela Maria de Carvalho Fernandes

    2004-03-01

    Full Text Available The addition of small quantities of reactive elements such as rare earths (RE to chromia or alumina forming alloys improves the high temperature oxidation resistance. Traditionally, these elements are alloying additions or are added as oxides to form a dispersion. The alloys can also be coated with RE oxides. Several methods can be used to coat alloy substrates with RE oxides and the sol-gel process is considered to be quite efficient, as it generates the very small oxide particles. This paper presents the influence of surface coatings of Ce, La, Pr, and Y oxide gels on the oxidation behavior of an Fe-20Cr alloy at 1000 °C. The morphology of the rare earth (RE oxide coatings varied with the nature of RE. The oxidation rate of RE oxide coated Fe-20Cr was significantly less than that of the uncoated alloy. The extent of influence the RE oxide coating exercised on the oxidation rate decreased in the following order: La, Ce, Pr, Y. The scale formed in the presence of RE oxide was very thin, fine grained and adherent chromia. A direct correlation between rare earth ion radius and the extent of influence on chromia growth rate at 1000 °C was observed.

  11. Vanadium Alloyed PVD CrAlN Coatings for Friction Reduction in Metal Forming Applications

    Directory of Open Access Journals (Sweden)

    K. Bobzin

    2012-06-01

    Full Text Available Hard coatings deposited on forming tools are used to improve the forming process and to increase tool life. The decrease of tool wear and reduction of friction are the main motivations for the development of self-lubricating coatings for forming applications at elevated temperatures. In the present study (Cr,Al,VN (Physical Vapour Deposition coatings with 5, 11 and 20 at % vanadium were deposited via a combination of HPPMS (High Power Pulse Magnetron Sputtering technology and direct current (DC Magnetron Sputter Ion Plating (MSIP PVD. The hardness and Young’s Modulus of the coatings were investigated by nanoidentation. Furthermore, high temperature Pin-on-Disk (PoD tribometer measurements against Ck15 (AISI 1015 were realized at different temperatures and compared with a (Cr,AlN reference hard coating. The samples were analyzed by means of SEM (Scanning Electron Microscopy and XRD (X-Ray Diffraction measurements after Pin-on-Disk (PoD tests. Moreover TEM (Transmission Electron Microscopy analyses were carried out after 4 h annealing at 800 °C in ambient air to investigate the diffusion of vanadium to the coating surface. The tribological results at 800 °C show no improvement of the friction coefficient for the pure (Cr,AlN coating and for the layer with 5 at % V. A time-dependent decrease of the friction coefficient was achieved for the coatings with 11 at % V (µ=0.4 and 20 at % V (µ=0.4 at 800 °C.

  12. Morphology, Composition, and Bioactivity of Strontium-Doped Brushite Coatings Deposited on Titanium Implants via Electrochemical Deposition

    OpenAIRE

    2014-01-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and...

  13. Alternate drop coating for forming dual biointerfaces composed of polyelectrolyte multilayers.

    Science.gov (United States)

    Watanabe, Junji; Shen, Heyun; Akashi, Mitsuru

    2009-03-01

    Two types of polyelectrolyte multilayers were formed on both sides of a quartz crystal microbalance (QCM) substrate by a novel alternate drop coating process. In this study, poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrene sulfonate) (PSS) were used as strong-strong polyelectrolytes. On the other hand, PDDA and poly(acrylic acid) (PAA) were used as strong-weak polyelectrolytes. The novel alternate drop coating process can separately fabricate each polyelectrolyte multilayer on both sides of the substrate. The substrate provides dual biointerfaces, both sides of which comprise different multilayers, by employing a combination of polymers. The formation of the multilayer by alternate drop coating was evaluated in terms of changes in the frequency of the QCM and model protein adsorption for proteins such as bovine serum albumin, and their characteristics were investigated with those of the conventional alternate adsorption process by performing dip coating. There was no significant difference between the surface properties resulting from the two formation conditions. This result strongly supported the fact that the multilayers fabricated by alternate drop coating were similar in quality to those fabricated by conventional dip coating. The resulting dual biointerfaces with polyelectrolyte multilayers provide alternative biofunctions in terms of individual protein loading. In summary, the novel alternate drop coating process for substrates is a good candidate for the preparation of dual biointerfaces in the biomedical field.

  14. Preparation of sustained-release composite coating formed by dexamethasone and oxidated sodium alginate.

    Science.gov (United States)

    Gao, Wenqing; Li, Tong; Yu, Meili; Hu, Xiaomin; Duan, Dawei; Lin, Tingting

    2014-01-01

    Inflammatory reaction and thrombosis are the unsolved main problems of non-coated biomaterials applied in cardiac surgery. In the present study, a series of sustained composite coating was prepared and characterized, such as in the chemical modification of polyvinyl chloride (PVC) for applications in cardiac surgery and the assessment of the biological property of modified PVC. The composite coatings were mainly formed by dexamethasone (DXM) and oxidated sodium alginate (OSA) through ionic and covalent bond methods. The biocompatibility and hemocompatibility of the coating surface were evaluated. Scanning electron microscopy analysis of the surface morphologies of the thrombus and platelets revealed that DXM-OSA coating improved the antithrombogenicity and biocompatibility of PVC circuits, which were essential for cardiac pulmonary bypass surgery. Evaluation of in vitro release revealed that the DXM on group PPC was gradually released in 8 h. Thus, DXM that covalently combined on the PVC surface showed sustained release. By contrast, DXM on groups PPI and PPD was quickly or shortly released, suggesting that groups PPI and PPD did not have sustained-release property. Overall, results indicated that the DXM-OSA composite coating may be a promising coating for the sustained delivery of DXM.

  15. Bioactivity effect of two macrophyte extracts on growth performance of two bloom-forming cyanophytes

    Directory of Open Access Journals (Sweden)

    M.G. Ghobrial

    2015-01-01

    Full Text Available Allelopathy is a biological phenomenon by which an organism produces one or more biochemicals that influence the growth, survival, and reproduction of other organisms. These biochemicals are known as allelochemicals and can have beneficial (positive allelopathy or detrimental (negative allelopathy effects on the target organisms. The current research aims at using selected brackish water adapted submerged aquatic macrophytes allelopathy to combat bloom-forming cyanophytes, in laboratory bioassay experiments. Dry matters of macrophytes were extracted in solvents and the initial cyanophytes inoculum, derived from unialgal culture media, was used. Therefore, aqueous extracts with 50% and 100% acetone and ethanol solvents of two freshwater macrophytes; Potamogeton pectinatus and Ceratophyllum demersum were used to test their growth performance exhibited on two bloom-forming cyanophytes, Microcystis aeruginosa and Oscillatoria tenuis. The results revealed insignificant difference between the overall total average growth performance at treatment with 50% and 100% Ceratophyllum acetone extracts expressed by optical density (OD as well as chlorophyll a (chl a. Results showed, also, stimulation of M. aeruginosa growth. The highest growth increase in 100 μl/100 ml treatment with 50% acetone extract had a percentage rate (R of 94.66. On the contrary, treatment with ethanol extract recorded the highest inhibitory effect, thus in 1.5 μl/100 ml treatment with 50% Ceratophyllum ethanol extract R recorded −87.54, sustaining LC50 value of 1.12 μl/100 ml. The highest stimulating effect in 105 μl/100 ml treatment with 50% Ceratophyllum acetone extracts against O. tenuis was; R, 169.4. The highest inhibition in 1500 μl/100 ml treatment with 50% Ceratophyllum ethanol extracts against O. tenuis was; R −74.32, with LC50 0.830 μl/100 ml. While, the highest inhibition by 50% and 100% Potamogeton acetone or ethanol extracts against M. aeruginosa was

  16. Study of a New Chromium-Free Conversion Coating Formed on ZnAl Alloy

    Institute of Scientific and Technical Information of China (English)

    LONG Jin-ming; GUO Zhong-cheng; HAN Xia-yun; YANG Ning

    2004-01-01

    A new chromium-free conversion film was obtained on surface of a ZnAl alloy by chemical conversion process.Influence of the additives in treating solution containing cerium salt on the corrosion protection of the conversion film formed on zinc alloy was investigated. Corrosion tests and electrochemical measurements in sodium chloride solution were performed. The microstructure and composition of the coatings were examined by means of SEM, EDS and XRD. It was found that the corrosion protection capabilities of the conversion film are markedly increased with the cerium nitride plus additives (hydrogen fluoride acid and an organic inhibitor) treating process. The modified conversion film is an organic/inorganic composite coating and is much more corrosion resistant than the conventional chromate conversion coating and the single cerium conversion coating.

  17. Study of a New Chromium-Free Conversion Coating Formed on ZnAl Alloy

    Institute of Scientific and Technical Information of China (English)

    LONGJin-ming; GUOZhong-cheng; HANXia-yun; YANGNing

    2004-01-01

    A new chromium-free conversion film was obtained on surface of a ZnA1 alloy by chemical conversion process. Influence of the additives in treating solution containing cerium salt on the corrosion protection of the conversion film formed on zinc alloy was investigated. Corrosion tests and electrochemical measurements in sodium chloride solution were performed. The microstructure and composition of the coatings were examined by means of SEM, EDS and XRD. It was found that the corrosion protection capabilities of the conversion film are markedly increased with the cerium nitride plus additives (hydrogen fluoride acid and an organic inhibitor) treating process. The modified conversion film is an organic/inorganic composite coating and is much more corrosion resistant than the conventional chromate conversion coating and the single cerium conversion coating.

  18. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.

  19. Diverse supramolecular structures formed by self-assembling proteins of the B acillus subtilis spore coat

    OpenAIRE

    2015-01-01

    Summary Bacterial spores (endospores), such as those of the pathogens C lostridium difficile and B acillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. B acillus subtilis is the best studied spore‐former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B . subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in E scherichia coli can arrange...

  20. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Akatsu, T; Yamada, Y; Hoshikawa, Y; Onoki, T; Shinoda, Y; Wakai, F

    2013-12-01

    Plasma electrolytic oxidation (PEO) was used to make a multifunctional porous titanium oxide (TiO2) coating on a titanium substrate. The key finding of this study is that a highly crystalline TiO2 coating can be made by performing the PEO in an ammonium acetate (CH3COONH4) solution; the PEO coating was formed by alternating between rapid heating by spark discharges and quenching in the solution. The high crystallinity of the TiO2 led to the surface having multiple functions, including apatite forming ability and photocatalytic activity. Hydroxyapatite formed on the PEO coating when it was soaked in simulated body fluid. The good apatite forming ability can be attributed to the high density of hydroxyl groups on the anatase and rutile phases in the coating. The degradation of methylene blue under ultraviolet radiation indicated that the coating had high photocatalytic activity.

  1. Bioactivity of Gradient Rare Earths Bioceramic Coating Produced by Wide-Band Laser Cladding%宽带激光熔覆梯度稀土生物陶瓷涂层的生物活性

    Institute of Scientific and Technical Information of China (English)

    李明; 汪震

    2012-01-01

    To decrease thermal crack and to raise bonding strength between substrate and bioceramic coating during laser cladding, a kind of gradient rare earths bioceramics coating is designed. And the rare earth active gradient bioceramic coating with HA and β-TCP on Ti allloy was prepared by using wide-band laser cladding technique. The surface morphologies and microstructure were analyzed by OM, SEM and XRD; the bioceramic coating was immersed in SBF to examine its bioactivity ; and the corrosion resistance of bioceramic was examed by the Electrochemical Analyzer. Results show that the rare earth active bioceramic gradient coatings which have excellent chemical metallurgy bonding at the interface consists of substrate, alloying layer and bioceramic coating. When content of Nd2O3 is up to 0.6wt.%, the amount of HA+β — TCP catalyzed during wide-band laser cladding becomes largest. Bioactivity and corrosion resistance of bioceramic coating is dependent on the amount of HA + β—TCP catalyzed. The largest amount of apatite formed on the surface of gradient bioceramic coating is complied with 0.6wt.% Nd2O3. At the same time, the corrosion resistence is best.%为了减少激光熔覆过程中基材与生物陶瓷涂层之间的热裂纹,提高涂层与基材的结合强度,设计了一种梯度稀土生物陶瓷涂层,采用宽带激光熔覆技术,在TC4钛合金表面制备了含HA+β-TCP活性相的稀土活性梯度生物陶瓷复合涂层.利用SEM、XRD分析手段对涂层形貌、相组成进行了研究;通过模拟体液(SBF)浸泡实验(浸泡7、14 d)考察了生物陶瓷涂层的生物活性;利用电化学分析仪测试了生物活性陶瓷涂层的耐腐蚀性.结果表明,当稀土氧化物Nd2O3添加量为w(Nd2O3) =0.6%时,宽带激光熔覆过程中催化合成HA +3-TCP活性相的数量最多,具有优异的表面形貌;当稀土氧化物Nd2O3添加量为w(Nd2O3)=0.6%时,梯度稀土生物陶瓷涂层在SBF中浸泡不同时间点后表面沉

  2. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value.

  3. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    Science.gov (United States)

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  4. Ceramic coatings of LA141 alloy formed by plasma electrolytic oxidation for corrosion protection.

    Science.gov (United States)

    Li, Zhijun; Yuan, Yi; Sun, Pengpeng; Jing, Xiaoyan

    2011-09-01

    Superlight Mg-Li alloy is a promising structural materials in aerospace, automobile, and electronics because of its excellent properties such as low density, high ductility, superior strength-to-weight ratio, and good damping ability. The fabrication of compact plasma electrolytic oxidation coatings with excellent corrosion resistance is valuable for the widespread application of Mg-Li alloy. Here we present a ceramic coating on the surface of Mg-14Li-1Al (LA141) alloy for corrosion protection via plasma electrolytic oxidation (PEO) in an alkaline silicate electrolyte with tungstate as an additive. X-ray photoelectron spectroscopy and thin film-X-ray diffraction analysis of coatings show that the surface coating is mainly comprised of Mg(2)SiO(4), MgO and WO(3). Scanning electron microscopy observations have revealed that the dense and compact coating formed in the presence of tungstate has less structural imperfections in comparison to the control one fabricated without use of tungstate. The effect of oxidation time on the morphology and phase composition of coatings is also examined in detail.

  5. Thickness and waviness of surface coatings formed by overlap : Modelling and experiment

    NARCIS (Netherlands)

    Ocelík, V.; Nenadl, O.; Hemmati, I.; De Hosson, J.T.M.

    2013-01-01

    Several surface engineering techniques are known that form a hard facing coating on an inexpensive substrate by a successive overlap of individual cladding tracks. Typical examples include laser cladding and laser additive manufacturing. Realistic predicting the final thickness and waviness of the c

  6. Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior.

    Science.gov (United States)

    Shangguan, Yongming; Wan, Peng; Tan, Lili; Fan, Xinmin; Qin, Ling; Yang, Ke

    2016-11-01

    Magnesium-based metals are considered as promising biodegradable orthopedic implant materials due to their potentials of enhancing bone healing and reconstruction, and in vivo absorbable characteristic without second operation for removal. However, the rapid corrosion has limited their clinical applications. Ca-P coating by electrodeposition has been supposed to be effective to control the degradation rate and enhance the bioactivity. In this work, a brushite coating was fabricated on the Mg-Sr alloy by pulse electrodeposition (PED) to evaluate its efficacy for orthopedic application. Interestingly, an inner corrosion layer was observed between the PED coating and the alloy substrate. Meanwhile the results of in vitro immersion and electrochemical tests showed that the corrosion resistance of the coated alloy was undermined in comparison with the uncoated alloy. It was deduced that the existence of this corrosion layer was attributed to the worse corrosion performance of the alloy. The mechanism on formation of the inner corrosion layer and its influence on consequent degradation were analyzed. It can be concluded that the electrodeposition coating should be not suitable for those magnesium alloys with poor corrosion resistance such as the Mg-Sr alloy. More importantly, it should be noted that the process of coating formation combined with the nature of substrate alloy is important to evaluate the efficacy of coating for biodegradable Mg-based implants application.

  7. Development of fi lm forming formulation and technology of polymeric fi lm coating on Indotril tablets

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2013-09-01

    Full Text Available Introduction. In previous researches we grounded expedience of «Indotril» tablets development; formulation and technology of "Indotril" tablet cores were developed. Received tablet cores should be covered by protective polymeric film with the purpose of unpleasant taste elimination, increase of tablets expiration date. Objective. The aim of our investigation was to develop the film forming composition and technology of polymeric film coating on «Indotril» tablets in pseudo-fluidized layer. Materials and Methods. As “Indotril” tablets cores should be covered by protective polymeric film we performed research designed to select efficient film forming solution. Thus modern filming agents were studied, besides such factors were investigated: concentration of film forming suspension, increase of tablet coat in mass, air temperature under gas distribution grid. Obtained tablets were checked according to pharmacopeia methods. Results and discussion. First we studied tablet compression force influence on main parameters of «Indotril» cores tablets: on crushing strength, abrasion in pseudo-fluidized layer unit and disintegration. Then for further investigation we chose «Indotril» cores tablets with crushing strength near 70 H, abrasion - up to 0,5% and disintegration time - not more than 10 minutes. We performed research to select film forming solution for covering “Indotril” tablets in pseudo-fluidized layer unit. As filming agents we used different samples of hydroxypropyl methylcellulose (HPMC by Japan company Shin-Etsu Chemical Co and English company Colorcon. Water HPMC solutions were prepared which contained plasticizer (propylene glycol, pigment (titanium IV dioxide and dye (tartrazine. Coating process of “Indotril” tablets was performed in laboratory pseudo-fluidized layer unit with the air temperature 75ºC under gas distribution grid. Variance analysis of experimental data on quality of coat surface showed insignificance as

  8. Structural and mechanical characterization of detonation coatings formed by reaction products of titanium with components of the spraying atmosphere

    Science.gov (United States)

    Ulianitsky, Vladimir Yu.; Dudina, Dina V.; Panin, Sergey V.; Vlasov, Ilya V.; Batraev, Igor S.; Bokhonov, Boris B.

    2016-11-01

    Structural characterization of detonation deposits formed by reaction products of titanium with the components of the spraying atmosphere showed that ceramic-based coatings of unique microstructures—consisting of alternating layers of different compositions—can be formed. For the first time, mechanical characteristics of the coatings formed by reaction-accompanied detonation spraying of titanium were evaluated. It was found that high-yield transformation of titanium into oxides and nitrides during spraying can result in the formation of coatings with high fracture resistance and interface fracture toughness. The hardness of the coatings measured along the cross-section of the specimens was higher than that on the surface of the coatings, which indicated mechanical anisotropy of the deposited material. In terms of mechanical properties, coatings formed by the reaction products appear to be more attractive than those specially treated to preserve metallic titanium.

  9. Leukocyte-Mimicking Stem Cell Delivery via In situ Coating of Cells with a Bioactive Hyperbranched Polyglycerol (HPG)

    Science.gov (United States)

    Jeong, Jae Hyun; Schmidt, John J.; Kohman, Richie E.; Zill, Andrew T.; DeVolder, Ross J.; Smith, Cartney E.; Lai, Mei-Hsiu; Shkumatov, Artem; Jensen, Tor W.; Schook, Lawrence G.; Zimmerman, Steven C.; Kong, Hyunjoon

    2013-01-01

    Since stem cells emerged as a new generation of medicine, there are increasing efforts to deliver the stem cells to a target tissue via intravascular injection. However, the therapeutic stem cells lack a capacity to detect and adhere to the target tissue. Therefore, this study presents synthesis of a bioactive hyper-branched polyglycerol (HPG) which can non-invasively associate with stem cells and further guide them to target sites, such as inflamed endothelium. The overall process is analogous to the way in which leukocytes are mobilized to the injured endothelium. PMID:23590123

  10. Leukocyte-mimicking stem cell delivery via in situ coating of cells with a bioactive hyperbranched polyglycerol.

    Science.gov (United States)

    Jeong, Jae Hyun; Schmidt, John J; Kohman, Richie E; Zill, Andrew T; DeVolder, Ross J; Smith, Cartney E; Lai, Mei-Hsiu; Shkumatov, Artem; Jensen, Tor W; Schook, Lawrence G; Zimmerman, Steven C; Kong, Hyunjoon

    2013-06-19

    Since stem cells emerged as a new generation of medicine, there are increasing efforts to deliver stem cells to a target tissue via intravascular injection. However, the therapeutic stem cells lack the capacity to detect and adhere to the target tissue. Therefore, this study presents synthesis of a bioactive hyperbranched polyglycerol (HPG) that can noninvasively associate with stem cells and further guide them to target sites, such as inflamed endothelium. The overall process is analogous to the way in which leukocytes are mobilized to the injured endothelium.

  11. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants.

    Science.gov (United States)

    Madhan Kumar, A; Nagarajan, S; Ramakrishna, Suresh; Sudhagar, P; Kang, Yong Soo; Kim, Hyongbum; Gasem, Zuhair M; Rajendran, N

    2014-10-01

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb2O5 nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb2O5 nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb2O5 nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb2O5 nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb2O5 nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings.

  12. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles

    Science.gov (United States)

    Agostoni, V.; Horcajada, P.; Noiray, M.; Malanga, M.; Aykaç, A.; Jicsinszky, L.; Vargas-Berenguel, A.; Semiramoth, N.; Daoud-Mahammed, S.; Nicolas, V.; Martineau, C.; Taulelle, F.; Vigneron, J.; Etcheberry, A.; Serre, C.; Gref, R.

    2015-01-01

    Nanoparticles made of metal-organic frameworks (nanoMOFs) attract a growing interest in gas storage, separation, catalysis, sensing and more recently, biomedicine. Achieving stable, versatile coatings on highly porous nanoMOFs without altering their ability to adsorb molecules of interest represents today a major challenge. Here we bring the proof of concept that the outer surface of porous nanoMOFs can be specifically functionalized in a rapid, biofriendly and non-covalent manner, leading to stable and versatile coatings. Cyclodextrin molecules bearing strong iron complexing groups (phosphates) were firmly anchored to the nanoMOFs' surface, within only a few minutes, simply by incubation with aqueous nanoMOF suspensions. The coating procedure did not affect the nanoMOF porosity, crystallinity, adsorption and release abilities. The stable cyclodextrin-based coating was further functionalized with: i) targeting moieties to increase the nanoMOF interaction with specific receptors and ii) poly(ethylene glycol) chains to escape the immune system. These results pave the way towards the design of surface-engineered nanoMOFs of interest for applications in the field of targeted drug delivery, catalysis, separation and sensing. PMID:25603994

  13. Advanced surface characterization of silver nanocluster segregation in Ag-TiCN bioactive coatings by RBS, GDOES, and ARXPS.

    Science.gov (United States)

    Escobar Galindo, R; Manninen, N K; Palacio, C; Carvalho, S

    2013-07-01

    Surface modification by means of wear protective and antibacterial coatings represents, nowadays, a crucial challenge in the biomaterials field in order to enhance the lifetime of bio-devices. It is possible to tailor the properties of the material by using an appropriate combination of high wear resistance (e.g., nitride or carbide coatings) and biocide agents (e.g., noble metals as silver) to fulfill its final application. This behavior is controlled at last by the outmost surface of the coating. Therefore, the analytical characterization of these new materials requires high-resolution analytical techniques able to provide information about surface and depth composition down to the nanometric level. Among these techniques are Rutherford backscattering spectrometry (RBS), glow discharge optical emission spectroscopy (GDOES), and angle resolved X-ray photoelectron spectroscopy (ARXPS). In this work, we present a comparative RBS-GDOES-ARXPS study of the surface characterization of Ag-TiCN coatings with Ag/Ti atomic ratios varying from 0 to 1.49, deposited at room temperature and 200 °C. RBS analysis allowed a precise quantification of the silver content along the coating with a non-uniform Ag depth distribution for the samples with higher Ag content. GDOES surface profiling revealed that the samples with higher Ag content as well as the samples deposited at 200 °C showed an ultrathin (1-10 nm) Ag-rich layer on the coating surface followed by a silver depletion zone (20-30 nm), being the thickness of both layers enhanced with Ag content and deposition temperature. ARXPS analysis confirmed these observations after applying general algorithm involving regularization in addition to singular value decomposition techniques to obtain the concentration depth profiles. Finally, ARXPS measurements were used to provide further information on the surface morphology of the samples obtaining an excellent agreement with SEM observations when a growth model of silver islands with

  14. Porosity and surface roughness simulation of nickel-aluminum coating in plasma spray forming

    Institute of Scientific and Technical Information of China (English)

    ZENG Hao-ping; FANG Jian-cheng; XU Wen-ji; ZHAO Zi-yu; WANG Li

    2006-01-01

    As the important evaluation parameters concerning the spray qualities, the porosity and surface roughness of the coatings obtained by thermal spray forming have great influence on their forming accuracy, mechanical properties and service lifetime. But it is difficult to predict or control the two parameters for such a highly nonlinear process. A two-dimensional simulation of coating porosity and surface roughness of nickel-aluminum alloy (Ni-5%Al) in plasma spray forming was presented, which was based on the multi-dimensional statistical behaviors of the droplets as well as the simplification and digitization of the typical splat cross sections. Further analysis involving the influence of the droplet diameters and the scanning velocities of the spray gun on the two parameters was conducted. The simulation and analysis results indicate that the porosity and surface roughness are more influenced by the droplet diameters, but less influenced by the spray gun velocities. The results will provide basis for the prediction or control of coating mechanical properties by depositing parameters.

  15. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer.

    Science.gov (United States)

    Dong, Yixiao; Hassan, Waqar U; Kennedy, Robert; Greiser, Udo; Pandit, Abhay; Garcia, Yolanda; Wang, Wenxin

    2014-05-01

    Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing.

  16. XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Oktay, Serkan; Kahraman, Zafer; Urgen, Mustafa; Kazmanli, Kursat, E-mail: kursat@itu.edu.tr

    2015-02-15

    Graphical abstract: - Highlights: • The (Ti,Re)N coating (8 ± 1.9 at.% Re) consisted of TiN and ReNx (x > 1.33) phases. • TiO{sub 2} provided low friction coefficient to TiN coating at 150 °C. • Re addition to TiN drastically dropped the friction coefficients to 0.17–0.22. • Re{sub 2}O{sub 7} provided very low friction coefficient to (Ti,Re)N coating. • Re addition to TiN improved the wear behavior. - Abstract: TiN and (Ti,Re)N coatings were deposited on high-speed-steel substrates by a hybrid coating system composed of cathodic arc PVD and magnetron sputtering techniques. In order to keep rhenium content low (8 ± 1.9 at.%) in the coating, magnetron sputtering technique was utilized to evaporate rhenium. The (Ti,Re)N coating consisted of TiN and ReN{sub x} (x > 1.33) phases. The hardness of TiN and (Ti,Re)N were 31 GPa and 29 GPa ( ± 2 GPa), respectively. Tribological behaviors of the samples were tested against Al{sub 2}O{sub 3} balls at 21 °C (RT) and 150 °C (HT) by reciprocating wear technique. The tribolayers were analyzed by XPS technique. Friction coefficients of TiN were 0.56, 0.35 for 21 °C and 150 °C tests, respectively. Rhenium addition to TiN drastically dropped the friction coefficients to 0.22 and 0.17 for RT and HT samples. Rhenium addition also improved the wear resistance of the coating at both test temperatures. For TiN, main oxide component of the tribolayers was Ti{sub 2}O{sub 3} for RT tests and TiO{sub 2} for HT tests. The oxide layer formed on (Ti,Re)N were the mixture of TiO{sub 2}, Ti−O−N, ReO{sub 2} and Re{sub 2}O{sub 7} for both test temperatures. Re{sub 2}O{sub 7} provided very low friction coefficient to (Ti,Re)N. The findings are consistent with the crystal chemistry approach.

  17. Edible films and coatings from whey proteins: a review on formulation, and on mechanical and bioactive properties.

    Science.gov (United States)

    Ramos, Oscar L; Fernandes, João C; Silva, Sara I; Pintado, Manuela E; Malcata, F Xavier

    2012-01-01

    The latest decade has witnessed joint efforts by the packaging and the food industries to reduce the amount of residues and wastes associated with food consumption. The recent increase in environmental awareness has also contributed toward development of edible packaging materials. Viable edible films and coatings have been successfully produced from whey proteins; their ability to serve other functions, viz. carrier of antimicrobials, antioxidants, or other nutraceuticals, without significantly compromising the desirable primary barrier and mechanical properties as packaging films, will add value for eventual commercial applications. These points are tackled in this review, in a critical manner. The supply of whey protein-based films and coatings, formulated to specifically address end-user needs, is also considered.

  18. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  19. Bio-active coating of decellularized vascular grafts with a temperature-sensitive VEGF-conjugated hydrogel accelerates autologous endothelialization in vivo.

    Science.gov (United States)

    Iijima, Makoto; Aubin, Hug; Steinbrink, Meike; Schiffer, Franziska; Assmann, Alexander; Weisel, Richard D; Matsui, Yoshiro; Li, Ren-Ke; Lichtenberg, Artur; Akhyari, Payam

    2016-09-30

    The ideal small-diameter vascular graft for widespread clinical application has not yet been developed and current approaches still suffer from graft failure because of thrombosis or degeneration. Decellularized vascular grafts are a promising strategy as they preserve native vessel architecture while eliminating cell-based antigens and allowing for autologous recellularization. In this study, we used a functional in vivo rodent aortic transplantation model in order to evaluate the benefit of bio-active coating of decellularized vascular grafts with vascular endothelial growth factor (VEGF) conjugated to a temperature-sensitive aliphatic polyester hydrogel (HG). Luminal HG-VEGF coating persistence up to 4 weeks was confirmed in vivo by rhodamine-labeling. Doppler-sonography showed that the grafts were functional for up to 8 weeks in vivo. Histological and immunohistochemical analysis of the explanted grafts after 4 and 8 weeks in vivo demonstrated significantly increased endothelium formation in the HG-VEGF group as compared to the control group (luminal surface covered with single-layered endothelium, 4 weeks: 64.8 ± 7.6% vs. 40.4 ± 8.3%, p = 0.025) as well as enhanced media recellularization (absolute cell count, 8 weeks: 22.1 ± 13.0 vs. 3.2 ± 3.6, p = 0.0039). However, HG-VEGF coating also led to increased neo-intimal hyperplasia, resulting in a significantly increased intima-to-media ratio in the peri-anastomotic regions (intima-to-media-ratio, 8 weeks: 1.61 ± 0.17 vs. 0.93 ± 0.09, p = 0.008; HG-VEGF vs. control). Our findings indicate that HG-VEGF coating has potential for the development of engineered small-diameter artificial grafts, although further research is needed to prevent neo-intimal hyperplasia.

  20. Fatigue property of a bioabsorbable magnesium alloy with a hydroxyapatite coating formed by a chemical solution deposition.

    Science.gov (United States)

    Hiromoto, Sachiko; Tomozawa, Masanari; Maruyama, Norio

    2013-09-01

    A hydroxyapatite (HAp) coating was directly formed on an extruded AZ31 magnesium alloy by a single-step chemical solution deposition. The HAp coating consists of an outer porous HAp layer, an inner continuous HAp layer, and a thin intermediate MgO layer, and the inner HAp and MgO layers are composed of nanocrystals. Tensile and fatigue tests were performed on the HAp-coated AZ31 in air. The HAp coating microscopically showed neither crack nor detachment at 5% static elongation (1.5% residual strain). With further elongation under tensile stress, cracks were formed perpendicularly to the tensile direction, and fragments of the coating detached with a fracture inside the inner continuous HAp layer. The fatigue strengths at 10(7) cycles (fatigue limit) of HAp-coated and mechanically polished AZ31 were ca. 80 MPa and ca. 90 MPa, respectively. The slight decrease in the fatigue limit with the HAp coating is attributed to small pits with a depth of ca. 10 μm formed on the substrate during the HAp-coating treatment. The HAp coating remained on the specimen without cracks after 10(7) cycles at the fatigue limit, which provides ca. 3% cyclic elongation.

  1. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A. [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Surmenev, R.A., E-mail: rsurmenev@gmail.com [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Surmeneva, M.A.; Mukhametkaliyev, T. [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Loza, K.; Prymak, O.; Epple, M. [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany)

    2015-02-28

    Highlights: • A biocomposite of hydroxyapatite film and silver nanoparticles (AgNPs) was tested. • The concentration of the released silver in phosphate or acetate buffer was studied. • The concentration and release rate of AgNPs can be controlled in a tailored manner. - Abstract: In this work, we describe fabrication techniques used to prepare a multifunctional biocomposite based on a hydroxyapatite (HA) coating and silver nanoparticles (AgNPs). AgNPs synthesized by a wet chemical reduction method were deposited on Ti substrates using a dripping/drying method followed by deposition of calcium phosphate (CaP) coating via radio-frequency (RF) magnetron sputter-deposition. The negatively charged silver nanoparticles (zeta potential −21 mV) have a spherical shape with a metallic core diameter of 50 ± 20 nm. The HA coating was deposited as a dense nanocrystalline film over a surface of AgNPs. The RF-magnetron sputter deposition of HA films on the AgNPs layer did not affect the initial content of AgNPs on the substrate surface as well as NPs size and shape. SEM cross-sectional images taken using the backscattering mode revealed a homogeneous layer of AgNPs under the CaP layer. The diffraction patterns from the coatings revealed reflexes of crystalline HA and silver. The concentration of Ag ions released from the biocomposites after 7 days of immersion in phosphate and acetate buffers was estimated. The obtained results revealed that the amount of silver in the solutions was 0.27 ± 0.02 μg mL{sup −1} and 0.54 ± 0.02 μg mL{sup −1} for the phosphate and acetate buffers, respectively, which corresponded well with the minimum inhibitory concentration range known for silver ions in literature. Thus, this work establishes a new route to prepare a biocompatible layer using embedded AgNPs to achieve a local antibacterial effect.

  2. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  3. Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mengchao Shi

    2014-01-01

    Full Text Available It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

  4. Characterization of plasma electrolytic oxidation coatings on Zircaloy-4 formed in different electrolytes with AC current regime

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yingliang, E-mail: chengyingliang@hnu.edu.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Matykina, Enzhe [Dpt. Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Madrid 28040 (Spain); Skeldon, Peter; Thompson, George [Corrosion and Protection Centre, School of Materials, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom)

    2011-10-01

    Highlights: > ZrO{sub 2} coatings are grown on Zircaloy-4 by AC plasma electrolytic oxidation. > Tetragonal and monoclinic ZrO{sub 2} are formed using silicate electrolyte. > Pyrophosphate electrolyte results in flawed coatings of monoclinic ZrO{sub 2}. > Silicate favours formation of tetragonal ZrO{sub 2}, with coating hardness {approx}8 GPa. > Microstructures are related to temperature gradients and solidification rates. - Abstract: Plasma electrolytic oxidation was undertaken on Zircaloy-4 in alkaline silicate and pyrophosphate electrolytes, with a square waveform AC current regime. The resultant coatings were examined using scanning electron spectroscopy, X-ray diffraction and nanoindentation. The coatings formed in silicate electrolyte comprised mainly a porous inner layer and a more compact outer layer, with characteristic solidification structures being evident following prolonged treatment. The coatings contained monoclinic and tetragonal ZrO{sub 2}, the latter being mainly present in the outer layer, which was of hardness up to {approx}8 GPa. In contrast, extensively cracked coatings resulted from use of pyrophosphate electrolyte; the coating integrity was improved by the addition of silicate to the pyrophosphate electrolyte. The different morphologies of the coatings appeared to be related to the differing nature of the microdischarges and to the incorporation of silicon species that enhanced the formation of t-ZrO{sub 2}.

  5. Composition and hardness of mullite coatings formed with direct current power supply on LY12 aluminum alloy surface

    Institute of Scientific and Technical Information of China (English)

    XIN Shi-gang; JIANG Zhao-hua; LI Yan-ping; ZHANG Ji-lin

    2005-01-01

    The surface modification of aluminum and its alloys using plasma technology is increasingly being investigated. Thick ceramic coatings with high hardness on aluminum alloys can be prepared successfully using a micro-plasma oxidation (MPO) technique. In this work, the composition, microstructure and elemental distribution of ceramic coatings formed by MPO on LY 12 aluminum alloy and its hardness are investigated using XRD, EPMA and microhardness instruments. The results show that the ceramic coatings consist of mullite, γ -Al2 O3 and a lot of amorphous matter. The content of silicon in the coatings increases from interface to the coatings, however, the content of aluminum decreases along this direction. The maximum hardness of ceramic coatings is up to 9. 2 GPa.

  6. Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; HAN Jing; YU Shengxue

    2006-01-01

    In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied.The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings.Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface.There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase.And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.

  7. An evaluation of the adhesion of solid oral dosage form coatings to the oesophagus.

    Science.gov (United States)

    Smart, John D; Dunkley, Sian; Tsibouklis, John; Young, Simon

    2015-12-30

    There is a requirement for the development of oral dosage forms that are adhesive and allow extended oesophageal residence time for localised therapies, or are non-adhesive for ease of swallowing. This study provides an initial assessment of the in vitro oesophageal retention characteristics of several widely utilised pharmaceutical coating materials. To this end, a previously described apparatus has been used to measure the force required to pull a coated disc-shaped model tablet across a section of excised oesophageal tissue. Of the materials tested, the well-studied mucoadhesive polymer sodium alginate was found to be associated with significant oesophageal adhesion properties that was capable of 'self-repairing'. Hydroxypropylmethylcellulose exhibited less pronounced bioadhesive behaviour and blending this with plasticiser or with low molecular weight polymers and surfactants did not significantly affect this. Low molecular weight water soluble polymers, were found to behave similarly to the uncoated glass control disc. Polysorbates exhibited bioadhesion behaviour that was majorly influenced by the nature of the surfactant. The insoluble polymer ethylcellulose, and the relatively lipophilic surfactant sorbitan monooleate were seen to move more readily than the uncoated disc, suggesting that these may have a role as 'easy-to-swallow' coatings.

  8. Diverse supramolecular structures formed by self‐assembling proteins of the B acillus subtilis spore coat

    Science.gov (United States)

    Jiang, Shuo; Wan, Qiang; Krajcikova, Daniela; Tang, Jilin; Tzokov, Svetomir B.; Barak, Imrich

    2015-01-01

    Summary Bacterial spores (endospores), such as those of the pathogens C lostridium difficile and B acillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. B acillus subtilis is the best studied spore‐former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B . subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in E scherichia coli can arrange intracellularly into highly stable macro‐structures through processes of self‐assembly. Using electron microscopy, we demonstrate the capacity of these proteins to generate ordered one‐dimensional fibres, two‐dimensional sheets and three‐dimensional stacks. In one case (CotY), the high degree of order favours strong, cooperative intracellular disulfide cross‐linking. Assemblies of this kind could form exquisitely adapted building blocks for higher‐order assembly across all spore‐formers. These physically robust arrayed units could also have novel applications in nano‐biotechnology processes. PMID:25872412

  9. Investigation of Corrosion Behavior of Bioactive Coverings on Commercially Pure Titanium and its Alloys

    Directory of Open Access Journals (Sweden)

    M.Yu. Gazizova

    2015-12-01

    Full Text Available A microporous and macroporous bioactive coatings on boimedical titanium alloys (VT1-0, VT6, Ti-6Al-7Nb were formed by a micro-arc oxidation method. The effect of the phase composition of microporous and macroporous coatings on corrosion behavior titanium and its alloys was investigated. The results show that phase composition of the coatings microporous presented only titanium oxides: anatase and rutile, at that the phase composition macroporous coatings consists of anatase, rutile and calcium phosphate compounds: tricalcium phosphate (TCP α-Ca3(PO42 and calcium deficient hydroxyapatite Ca9HPO4(PO45OH. Corrosion behavior of MAO coatings was investigated in solution 0.9 % NaCl using potentiodynamic polarization tests. The microporous coatings exhibited a more highest corrosion resistance than macroporous coatings, it is connected with containing calcium phosphate compounds in macroporous coatings.

  10. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  11. Carboxyl Terminus Truncated Human Papillomavirus Type 58 L1 Protein Maintains Its Bioactivity and Ability to Form Virus-like Particles

    Institute of Scientific and Technical Information of China (English)

    李文生; 刘红莉; 郑瑾; 陈宏伟; 杨军; 王丽秀; 闫小飞; 王一理; 司履生

    2004-01-01

    To prepare carboxyl terminus truncated human papillomavirus type 58 L1 (HPV58L1)protein and evaluate its ability to form virusqike particles, the baculovirus and Sf-9 insect cells was used to express HPV58L1 protein, and pFastBac-Htb containing HPV58L1 gene sequence of carboxyl terminus truncation was generated. Then Sf-9 cells were infected with recombinant baculovirus. After being cultured, the post-infected cells expressing - HPV58L1 protein were harvested and analyzed by SDS-PAGE and Western blot. The ProBondTM purification system was used for protein purification. The bio-activity of purified protein was identified by mouse erythrocyte hemagglutination assay, and the VLP formation was examined with transmission electron microscope.Our results showed that the recombinant baculovirus was generated and the Sf-9 cells was infected with the recombinant baculovirus, and after collecting, total cellular proteins were extracted. Truncated HPV58L1 protein with MW 58KD was revealed by SDS-PAGE and confirmed by Western blot. The purified L1 proteins under native condition could cause mouse erythrocytes to agglutinate and form VLP. It is concluded that HPV58L1 protein with carboxyl terminus truncation could be efficiently expressed. In baculovirus Sf-9 cells expression system, the purified protein could self-assemble into virions in vitro, and induce agglutination of mouse erythrocytes, indicating that carboxyl terminus truncation does not interfere with the bioactivity of HPV58L1 protein.

  12. TiO2-Bioactive Glass Nanostructure Composite Films Produced by a Sol-Gel Method: In Vitro Behavior and UV-Enhanced Bioactivity

    Science.gov (United States)

    Omid-Bakhtiari, Marzie; Nasr-Esfahani, Mojtaba; Nourmohamadi, Abolghasem

    2014-01-01

    The aim of this study is to develop TiO2, titania, -based composite films for 316 stainless steel substrate and to improve their apatite-forming activity. A series of sol-gel derived bioactive glass (49S) and bioactive glass (49S)-TiO2 films were deposited on the 316L stainless steel substrates by the spin-coating method. Amorphous bioactive glass (49S) film and polycrystalline titania-bioactive glass composite films were obtained after annealing the deposited layers at 600 °C. The microstructure and in vitro bioactivity of the composite films as well as the effect of titania nanopowder content and ultra violet (UV) irradiation on the in vitro bioactivity were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). While bioactivity tests are often carried out within 28-day periods, SEM and EDS data show that, after soaking in SBF for just 7 days, the prepared composite surfaces are covered with an apatite layer. The grown apatite layer consists of spherulites formed by nanosized needle-like aggregates. Fourier transform infrared spectroscopy investigations confirm apatite formation and suggest that the formed apatite is carbonated.

  13. Photochromic glass thin film formed by the sol-gel coating method

    Science.gov (United States)

    Nakazumi, Hiroyuki; Nagashiro, Rie; Matsumoto, Shinya; Isagawa, Kakuzoh

    1994-10-01

    The photochromic gel thin films using 1'-butyl-3',3'-dimethyl-6-nitro-spiro[2H-1- benzopyran-2,2'-indoline] (1) and 1'-butyl-spiro[2H-indole-2,3'- [3H]naphtho[2,1-b][1,4]oxazine] (2) dispersed in sol in the sol-gel processing were prepared and photochromic behaviors of these films were investigated. A good transparent coating layer on glass surface was formed in the range of ca. 6 - 10 wt% of 1 or 2 to alkoxysilane, and was colored by UV irradiation. The absorption band formed by UV-irradiation disappeared by thermal decay and also by Vis irradiation for 1. The thermal fading of the colored form to the spiro form 1 or 2 is dependent on a matrix of the gels, the colored forms in the film starting from methyltriethoxysilane (MTES), which is expected to include larger pores than in the film starting from tetraethoxysilane (TEOS) or silane oligomer, show faster thermal fading which roughly follows the first order kinetics. The colored form in the gel is stabilized, compared with that in solution or bulk gel, and it is suggested that there are some kinds of colored species in thin gel films containing spiropyran 1, which may be some aggregates, whereas only a colored species from spironaphthooxazine 2 is suggested. Photochromic behavior of 2 in sol was also examined.

  14. Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO2-SiO2 nano composite coatings on stainless steel substrates.

    Science.gov (United States)

    Dadash, Mohammad Saleh; Karbasi, Saeed; Esfahani, Mojtaba Nasr; Ebrahimi, Mohammad Reza; Vali, Hojatollah

    2011-04-01

    Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO(2)-calcinated NBG and TiO(2)-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.

  15. Bioactivity in Vitro of Hydroxyapatite Coatings on Carbon/Carbon Composites%碳/碳复合材料基体上羟基磷灰石涂层的体外生物活性

    Institute of Scientific and Technical Information of China (English)

    隋金玲; 吴波; 周海; 李木森

    2011-01-01

    通过分析碳/碳复合材料表面等离子喷涂羟基磷灰石(简称HA)涂层在模拟体液中浸泡后的钙离子浓度和pH值的变化,涂层表面沉积物的微观结构、相组成和钙、磷原子数比,研究了该涂层的体外生物活性。结果表明:随着浸泡时间的延长,浸泡液的钙离子浓度降低,pH值升高,涂层表面的CaO完全溶解,α—TCP和β-TCP轻微溶解;涂层表面的沉积物主要是晶相HA,涂层具有良好的体外生物活性。%Hydroxyapatite (HA) coatings on carbon/carbon composites deposited by a plasma spraying technique were immersed in a simulated body fluid (SBF). By analyzing the change of calcium ion concentration and pH value, microstructure, phase composition and calcium to phasphorus ratio of the precipitates on HA coatings, the bioactivity in vitro of HA coatings was discussed. The results show that the calcium ion concentration decreased and the pH value increased with increasing the immersing time. The CaO on the coating surface dissolved completely and the α-TCP and β-TCP dissolved slightly. The precipitation deposited on the surface of coatings was mainly composed of crystalline HA, and the coatings had excellent bioactivity in vitro.

  16. The Influence of Electrolytic Concentration on the Electrochemical Deposition of Calcium Phosphate Coating on a Direct Laser Metal Forming Surface

    Science.gov (United States)

    Yang, Yuhui; Luo, Wenjing

    2017-01-01

    A calcium phosphate (CaP) coating on titanium surface enhances its biocompatibility, thus facilitating osteoconduction and osteoinduction with the inorganic phase of the human bone. Electrochemical deposition has been suggested as an effective means of fabricating CaP coatings on porous surface. The purpose of this study was to develop CaP coatings on a direct laser metal forming implant using electrochemical deposition and to investigate the effect of electrolytic concentration on the coating's morphology and structure by X-ray diffraction, scanning electron microscopy, water contact angle analysis, and Fourier transform infrared spectroscopy. In group 10−2, coatings were rich in dicalcium phosphate, characterized to be thick, layered, and disordered plates. In contrast, in groups 10−3 and 10−4, the relatively thin and well-ordered coatings predominantly consisted of granular hydroxyapatite. Further, the hydrophilicity and cell affinity were improved as electrolytic concentration increased. In particular, the cells cultured in group 10−3 appeared to have spindle morphology with thick pseudopodia on CaP coatings; these spindles and pseudopodia strongly adhered to the rough and porous surface. By analyzing and evaluating the surface properties, we provided further knowledge on the electrolytic concentration effect, which will be critical for improving CaP coated Ti implants in the future. PMID:28250771

  17. Hyaluronan-Phosphatidylethanolamine Polymers Form Pericellular Coats on Keratinocytes and Promote Basal Keratinocyte Proliferation

    Directory of Open Access Journals (Sweden)

    Caitlin J. Symonette

    2014-01-01

    Full Text Available Aged keratinocytes have diminished proliferative capacity and hyaluronan (HA cell coats, which are losses that contribute to atrophic skin characterized by reduced barrier and repair functions. We formulated HA-phospholipid (phosphatidylethanolamine, HA-PE polymers that form pericellular coats around cultured dermal fibroblasts independently of CD44 or RHAMM display. We investigated the ability of these HA-PE polymers to penetrate into aged mouse skin and restore epidermal function in vivo. Topically applied Alexa647-HA-PE penetrated into the epidermis and dermis, where it associated with both keratinocytes and fibroblasts. In contrast, Alexa647-HA was largely retained in the outer cornified layer of the epidermis and quantification of fluorescence confirmed that significantly more Alexa647-HA-PE penetrated into and was retained within the epidermis than Alexa647-HA. Multiple topical applications of HA-PE to shaved mouse skin significantly stimulated basal keratinocyte proliferation and epidermal thickness compared to HA or vehicle cream alone. HA-PE had no detectable effect on keratinocyte differentiation and did not promote local or systemic inflammation. These effects of HA-PE polymers are similar to those reported for endogenous epidermal HA in youthful skin and show that topical application of HA-PE polymers can restore some of the impaired functions of aged epidermis.

  18. 钛金属表面微弧氧化处理制备抗菌性生物活性涂层%Antibiotic bioactive coatings on ,Ti surfaces by microarc oxidation technology

    Institute of Scientific and Technical Information of China (English)

    王静; 孙凤莲; 孟祥才; 陈玉义

    2012-01-01

    Antibiotic bioactive coatings containing Ca, P, Zn, 0 and Ti elements were prepared by means of a microarc oxidation technology (MAO) on pure titanium surfaces in an electrolytic solution of (NH4 )2HPO4and (CH3 COO)2Ca·H20 as well as ZnO precursor. The oxide coatings were analyzed for surface morphology, cross section morphology and microstructure with SEM and XRD respectively. The surface roughness, bond strength and inhibition rate were also measured. The results show that the main crystalline phase on surface is TiO2 , and a small amount of zinc oxide and Ca-P salts exist in the coatings. Oxide coating consisting of compact inner layer and porous outer layer with micropore of 1-5μm in diameter is formed on the pure titanium after microarc oxidation treating. The surface roughness (Ra ) and bonding strength have significant increase and reach (1. 627±0.054)μm and (40.34±0. 014) MPa, respectively. At presence of zinc oxide, the inhibition rate of 90% indicate that the coating has a good antibacterial activity and it is beneficial to improve success rate of planting.%在电解液配方中,采用微弧氧化(MAO)工艺处理纯钛金属表面,构建含有钙、磷、锌、钛、氧元素的粗化、活化种植体表面。用扫描电子显微镜、X射线衍射仪、表面粗糙度轮廓仪、万能电子试验机分别观察其形貌特点、晶相结构、表面粗糙度及测定其结合强度,并进行抗菌性试验测定其抑菌率。结果表明:经过微弧氧化工艺处理后的钛种植体表面主要有二氧化钛晶相,存在少量氧化锌和钙磷盐;纯钛金属表面生成了内层致密外层疏松多孔的氧化膜,微孔似火山丘状,直径约1—5μm;试样表面粗糙度明显增加,轮廓算术平均偏差值(Ra)为(1.627±0.054)μm,相对于纯钛金属(0.685±0.012)μm提高了两倍多。涂层与基体结合紧密达(40.34±0.014)MPa。氧化

  19. Structure and properties of ceramic coatings formed on aluminum alloys by microarc oxidation

    Institute of Scientific and Technical Information of China (English)

    LIU Wan-hui; BAO Ai-lian; LIU Rong-xiang; WU Wan-liang

    2006-01-01

    The thick and hard ceramic coatings were deposited on 2024 Al alloy by microarc oxidation in the electrolytic solution.Microstructure, phase composition and wear resistance of the oxide coatings were investigated by SEM, XRD and friction and wear tester. The microhardness and thickness of the oxide coatings were measured. The results show that the ceramic coating is mainly composed of α-Al2O3 and γ-Al2O3. During oxidation, the temperature in the microarc discharge channel is very high to make the local coating molten. From the surface to interior of the coating, microhardness increases gradually. The microhardness of the ceramic coating is HV1 800, and the microarc oxidation coatings greatly improve the antiwear properties of aluminum alloys.

  20. Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation

    Science.gov (United States)

    Stojadinović, Stevan; Radić, Nenad; Grbić, Boško; Maletić, Slavica; Stefanov, Plamen; Pačevski, Aleksandar; Vasilić, Rastko

    2016-05-01

    of Eu3+ incorporated into coatings is an important factor affecting PA; TiO2:Eu3+ coating formed after 1 min of PEO time showed the highest PA.

  1. The Influence of Electrolytic Concentration on the Electrochemical Deposition of Calcium Phosphate Coating on a Direct Laser Metal Forming Surface

    Directory of Open Access Journals (Sweden)

    Qianyue Sun

    2017-01-01

    Full Text Available A calcium phosphate (CaP coating on titanium surface enhances its biocompatibility, thus facilitating osteoconduction and osteoinduction with the inorganic phase of the human bone. Electrochemical deposition has been suggested as an effective means of fabricating CaP coatings on porous surface. The purpose of this study was to develop CaP coatings on a direct laser metal forming implant using electrochemical deposition and to investigate the effect of electrolytic concentration on the coating’s morphology and structure by X-ray diffraction, scanning electron microscopy, water contact angle analysis, and Fourier transform infrared spectroscopy. In group 10−2, coatings were rich in dicalcium phosphate, characterized to be thick, layered, and disordered plates. In contrast, in groups 10−3 and 10−4, the relatively thin and well-ordered coatings predominantly consisted of granular hydroxyapatite. Further, the hydrophilicity and cell affinity were improved as electrolytic concentration increased. In particular, the cells cultured in group 10−3 appeared to have spindle morphology with thick pseudopodia on CaP coatings; these spindles and pseudopodia strongly adhered to the rough and porous surface. By analyzing and evaluating the surface properties, we provided further knowledge on the electrolytic concentration effect, which will be critical for improving CaP coated Ti implants in the future.

  2. Silver-doped hydroxyapatite coatings formed on Ti–6Al–4V substrates and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yanovska, A.A., E-mail: biophy@yandex.ru [Institute of Applied Physics National Academy of Sciences of Ukraine, 58, Sumy 40000 (Ukraine); Stanislavov, A.S. [Institute of Applied Physics National Academy of Sciences of Ukraine, 58, Sumy 40000 (Ukraine); Sukhodub, L.B. [Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine, 14-Puschinskaya St., Kharkov 61057 (Ukraine); Kuznetsov, V.N.; Illiashenko, V.Yu.; Danilchenko, S.N. [Institute of Applied Physics National Academy of Sciences of Ukraine, 58, Sumy 40000 (Ukraine); Sukhodub, L.F. [Sumy State University, Medical Institute, Ministry of Education and Science of Ukraine, R. Korsakova Str. 2, Sumy 40007 (Ukraine)

    2014-03-01

    Coatings with antibacterial components for medical implants are recommended to reduce the risk of bacterial infections. Therefore hydroxyapatite (HA) coatings with addition of chitosan (CS) and silver (Ag) are proposed in this work in an attempt to resolve this problem. Ti–6Al–4V substrates were modified by a chitosan film to study the influence of surface modification on the formation of the HA–Ag and HA–CS–Ag coatings. Using a thermal substrate method, HA and HA–CS coatings doped with Ag{sup +} were prepared at low substrate temperatures (90 °C). Coated surfaces were examined using X-ray diffraction and scanning electron microscopy. The amount of silver in the deposited coatings was analyzed by atomic absorption spectroscopy. From this study it is concluded that the substrate surface modified by a chitosan film promotes the coating formation and increases the antibacterial activity of produced coatings against a strain of Escherichia coli. The adhesion of E. coli (ATCC 25922) to sheep erythrocytes was decreased by 14% as compared with the reference samples without Ag. It could be explained by the inhibition of bacterial adhesins by Ag{sup +} ions released. The combined action of silver ions and chitosan resulted in a 21% decrease in adhesive index. - Highlights: • Silver doped hydroxyapatite (HA) coatings are deposited by thermal substrate method. • Surface modification of Ti–6Al–4V substrates by chitosan film is proposed. • The influence of surface modification on HA–Ag coating formation is investigated. • Substrates modified by a chitosan film promote the nucleation of the HA coatings. • Antibacterial effect on the E. coli is more expressed for coatings on modified surface.

  3. Conference Elliptic Curves, Modular Forms and Iwasawa Theory : in honour of John H. Coates' 70th birthday

    CERN Document Server

    Zerbes, Sarah

    2016-01-01

    Celebrating one of the leading figures in contemporary number theory – John H. Coates – on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference Elliptic Curves, Modular Forms and Iwasawa Theory, held in honour of the 70th birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields. .

  4. TiB2 coating formed on nickel substrates by electroplating in molten salt of fluoride

    Institute of Scientific and Technical Information of China (English)

    LONG Jin-ming; GUO Zhong-cheng; HAN Xia-yun

    2004-01-01

    The TiB2 coatings deposited over nickel substrate by electroplating was investigated, which is in molten salt of a fluoride mixture involving KF, NaF, K2 TiF6 and KBF4. Effects of temperature, cathodic current density (Jc) and duration on the coating's formation were examined. The composition, morphology and structure of the coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray detector (EDS) and X-ray diffraction (XRD). The results show that the coatings, with black, smooth and uniform appearance, are composed of predominating TiB2 and small amounts of nickel titanium oxide (Ni0.75 Ti0.125 O). The coatings show a nodular morphology and the grain size is dependent on the Jc and ranges about 1 - 10 μm. There is a linear relationship between the coating's thickness and the time of electrolysis within certain duration range. The reduction of the potassium can take place simultaneously with the electrochemical synthesis of TiB2 as the Jc is in excess of certain level. The hardness of the TiB2 coatings is likely to be deteriorated due to the presence of potassium and Ni0.75Ti0.125 O in the coatings.

  5. The Properties and Applications of MoS2/Ti Composite Coatings in Dry Cutting and Forming

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Zhang; Hailin Sun; D. Becker; S. Wagner; D.G. Teer

    2004-01-01

    MoS2/Ti composite coatings (MoSTM), have been deposited by a closed-field unbalanced magnetron sputter ion-plating system. The high ion-current densities at low substrate bias voltage of the system ensures that the MoSTTM coatings are characteristic of dense coherent structures, with high adhesion (critical scratch load above 120 N), high load bearing capacity up to 5 GPa., low friction (0.02-0.1), high wear resistance (less than 4xl0-17 m3/N m) even at a relative humidity of 40%, and high temperature resistance up to 350 ℃. The successful applications of MoSTTM coatings in largescale productions for dry cutting and forming, with increasing lifetime and productivity are presented.

  6. FORMING A PARTING LAYER OF COATING ON THE SURFACE OF THE MOULD DURING DIE-CASTING

    Directory of Open Access Journals (Sweden)

    A. Pivovarchik

    2015-01-01

    Full Text Available The paper presents the results of research on the study of the possibility of accumulation of the lubricating layer coating on the surface of the separation process of foundry equipment with high pressure die casting aluminum alloys.

  7. Purification and biochemical characterization of a monomeric form of papaya mosaic potexvirus coat protein.

    Science.gov (United States)

    Lecours, Katia; Tremblay, Marie-Hélène; Gagné, Marie-Eve Laliberté; Gagné, Stéphane M; Leclerc, Denis

    2006-05-01

    Papaya mosaic virus (PapMV) is a flexuous rod shape virus made of 1400 subunits that assemble around a plus sense genomic RNA. The structure determination of PapMV and of flexuous viruses in general is a major challenge for both NMR and X-ray crystallography. In this report, we present the characterization of a truncated version of the PapMV coat protein (CP) that is suitable for NMR study. The deletion of the N-terminal 26 amino acids of the PapMV CP (CP27-215) generates a monomer that can be expressed to high level and easily purified for production of an adequate NMR sample. The RNA gel shift assay showed that CP27-215 lost its ability to bind RNA in vitro, suggesting that the multimerization of the subunit is important for this function. The fusion of a 6x His tag at the C-terminus improved the solubility of the monomer and allowed its concentration to 0.2 mM. The CD spectra of the truncated and the wild-type proteins were similar, suggesting that both proteins are well ordered and have a similar secondary structure. CP27-215 was 15N labeled for NMR studies and a 2D 1H-15N-HSQC spectrum confirmed the presence of a well-ordered structure and the monomeric form of the protein. These results show that CP27-215 is amenable to a complete and exhaustive NMR study that should lead to the first three-dimensional structure determination of a flexuous rod shape virus.

  8. Endothelialization and the bioactivity of Ca-P coatings of different Ca/P stoichiometry electrodeposited on the Nitinol superelastic alloy.

    Science.gov (United States)

    Etminanfar, M R; Khalil-Allafi, J; Montaseri, A; Vatankhah-Barenji, R

    2016-05-01

    An alternative approach to improve the cardiovascular stents with less restenosis than drug eluting stents, involves an improvement in endothelialization of implants. In this study, the bio compatibility of the modified Ti-50.9 Ni alloy was investigated. At the first step, a thermo-chemical surface modification process was used to control the Ni release of the alloy. XPS and Raman analysis revealed that the surface of the alloy contains titanium dioxide after the modification process. According to the Ni release test, this surface condition has a good durability in Ringer's solution and offers a standard range to the leached Ni. At the next step, porous Ca-P films were electrodeposited on the modified surface. The results of endothelial cell culture on the coated samples revealed that the Ca-P coating, which has the highest value of Ca/P ratio shows the best result. The coating revealed a moderately wettable surface with a water contact angle of 53.3°. According to Ca content analysis of the cell culture medium, this coating has the lowest amount of Ca as a result of minimum solubility of the coating. In the other Ca-P coatings with lower Ca/P ratios, the solubility of coatings results in the detachment of the cells. Also nano-indentation and SEM studies revealed that the low stiffness in the calcium deficient coating can result in the failure of the coating as a result of the tensions created by the cells.

  9. Examination of the Oxidation Protection of Zinc Coatings Formed on Copper Alloys and Steel Substrates

    Science.gov (United States)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  10. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samaneh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vali, Hojatollah [Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7 (Canada); Faghihi, Shahab, E-mail: sfaghihi@nigeb.ac.ir [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-02-14

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  11. Anti-fouling bioactive surfaces.

    Science.gov (United States)

    Yu, Qian; Zhang, Yanxia; Wang, Hongwei; Brash, John; Chen, Hong

    2011-04-01

    Bioactive surfaces refer to surfaces with immobilized bioactive molecules aimed specifically at promoting or supporting particular interactions. Such surfaces are of great importance for various biomedical and biomaterials applications. In the past few years, considerable effort has been made to create bioactive surfaces by forming specific biomolecule-modified surfaces on a non-biofouling "base" or "background". Hydrophilic and bioinert polymers have been widely used as anti-fouling layers that resist non-specific protein interactions. They can also serve as "spacers" to effectively move the immobilized biomolecule away from the surface, thus enhancing its bioactivity. In this review we summarize several successful approaches for the design and preparation of bioactive surfaces based on different types of anti-fouling/spacer materials. Some perspectives on future research in this area are also presented.

  12. Calcium aluminate coated and uncoated free form fabricated CoCr implants: a comparative study in rabbit.

    Science.gov (United States)

    Palmquist, A; Jarmar, T; Hermansson, L; Emanuelsson, L; Taylor, A; Taylor, M; Engqvist, H; Thomsen, P

    2009-10-01

    The purpose of this study was to compare the integration in bone of uncoated free form fabricated cobalt chromium (CoCr) implants to the same implant with a calcium aluminate coating. The implants of cylindrical design with a pyramidal surface structure were press-fit into the limbs of New Zealand white rabbits. After 6 weeks, the rabbits were sacrificed, and samples were retrieved and embedded. Ground sections were subjected to histological analysis and histomorphometry. The section counter part was used for preparing an electron transparent transmission electron microscopy sample by focused ion beam milling. Calcium aluminate dip coating provided a significantly greater degree of bone contact than that of the native CoCr. The gibbsite hydrate formed in the hardening reaction of the calcium aluminate was found to be the exclusive crystalline phase material in direct contact with bone.

  13. Porous nickel coatings on steel tubes formed by aqueous colloidal processing

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, B.; Sanchez-Herencia, A.J.; Moreno, R. [Instituto de Ceramica y Vidrio, CSIC, Carretera de Valencia Km. 24,300, Arganda del Rey, E-28500 Madrid (Spain)

    2002-09-01

    A main goal in the manufacture of composite materials is the possibility of applying the colloidal approach to powder metallurgy. Here porous nickel coatings have been prepared in the inner walls of steel tubes by a simple, low-cost colloidal process. Coatings treated at 650 C show good adhesion to the steel surface and a higher porosity that bulk bodies, as desired for manufacturing inner linings on long steel tubes such as those used for heat-exchange applications. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  14. A Finite Difference Method for Determining Interdiffusivity of Aluminide Coating Formed on Superalloy

    Institute of Scientific and Technical Information of China (English)

    Hua WEI; Xiaofeng SUN; Qi ZHENG; Guichen HOU; Hengrong GUAN; Zhuangqi HU

    2004-01-01

    A numerical method has been developed to extract the composition-dependent interdiffusivity from the concentration profiles in the aluminide coating prepared by pack cementation. The procedure is based on the classic finite difference method (FDM). In order to simplify the model, effect of some alloying elements on interdiffusivity can be negligible.Calculated results indicate the interdiffusivity in aluminide coating strongly depends on the composition and give the formulas used to calculate interdiffusivity at 850, 950 and 1050℃. The effect on interdiffusivity is briefly discussed.

  15. Porous bioactive materials

    Science.gov (United States)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a network of smaller (<10

  16. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    Science.gov (United States)

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant.

  17. Bioactive phytochemicals in flaxseed

    OpenAIRE

    Johnsson, Pernilla

    2009-01-01

    Flaxseed (Linum usitatissimum L.) is rich in health-promoting bioactive compounds. Among plant foods, flaxseed has the highest content of lignans, mainly in the form of secoisolariciresinol diglucoside (SDG). Flaxseed oil also has a very high concentration of the essential omega-3 fatty acid alpha-linolenic acid (ALA). This thesis presents studies on both SDG and ALA. An HPLC method for quantification of SDG in hydrolysed flaxseed extracts was developed and used to compare the SDG content in ...

  18. In-line Ultrasonic Array System for Monitoring Dynamic of Coating Forming by Cold Spray Process

    Science.gov (United States)

    Lubrick, M.; Titov, S.; Leshchynsky, V.; Maev, R. Gr.

    This study attempts to test the viability of studying the cold spray process using acoustic methods, specifically testing during the actual spray process itself. Multiple composites studied by flat and multi channel transducers as well as actual online measurements are presented. It is shown that the final thickness as well as the dynamics of buildup can be evaluated (including plotting rates of buildup). Cross sections of the coating thickness are also easy to obtain and show true profiles of the coating. The data can also be used to generate real estimates for nozzle speed and spray diameter. Finally comparisons of real thickness and acoustically estimated thickness show a close linear relationship with the y intercept seeming to depend on the composition. The data clearly shows that online acoustic measurement is a viable method for estimating thickness buildup.

  19. Metallurgical characterization and determination of residual stresses of coatings formed by thermal spraying

    Science.gov (United States)

    Laribi, M.; Mesrati, N.; Vannes, A. B.; Treheux, D.

    2003-06-01

    This work presents an experimental determination of residual stresses in 35CrMo4 (Euronorm) low alloyed steel substrates with thermally sprayed coatings. Two different materials were separately deposited. The first one consisted of a blend of two superalloys: Cr-Ni steel and Cr-Mn steel, designated 55E and 65E, respectively. The second material was molybdenum. In a first part, basic characteristics of the deposited layers (metallographic analysis, hardness, and adhesion) are presented. In a second part, the determination of the residual stresses, in both substrate and thermal sprayed layers is performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The influence of a nickel-aluminum (80:20%) bond-coat and/or a post-annealing at 850 °C in air for 1 h is studied.

  20. Adhesion of Streptococcus mutans to Saliva-coated Hydroxyapatite formed in situ in Microtitre Plates

    OpenAIRE

    Laar, J. H. Van; de Soet, J.J.; Hogeveen, R.; De Graaff, J

    2011-01-01

    Adhesion of Streptococcus mutans to the salivary pellicle was studied in vitro by using microtitre plates coated in situ with hydroxyapatite (HA). Adhesion of S. mutans to these plates did not exhibit saturation kinetics and there was an almost linear relationship between the number of adhering cells and the total input of cells. This is in accordance with results obtained by scanning electron microscopy. S. mutans adhered not only to the salivary pellicle but also to bound S. mutans cells. T...

  1. Multifunctional bioactive and improving the performance durability nanocoatings for finishing PET/CO woven fabrics by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, Dorota, E-mail: dkowalczyk@iw.lodz.pl; Brzeziński, Stefan; Kamińska, Irena

    2015-11-15

    The paper presents the results of studies on multifunctional thin-coatings of textiles, simultaneously imparting to them bioactive properties in relations to bacteria and fungi as well as an increased abrasion resistance and anti-pilling effect with the use of modified hybrid materials produced by the sol–gel method from two precursors: (3-glycidoxypropyl)trimethoxysilane (GPTMS) and aluminum isopropoxide (ALIPO). The sol obtained was modified with bioactive particles in the form of nanopowder of metallic silver and copper alloy (Ag/Cu). Al{sub 2}O{sub 3}/SiO{sub 2} sol containing nanoparticles of Ag/Cu alloy was deposited on a polyester/cotton blend woven fabric (PET/CO 67/33) by the padding method. After drying and curing process, a thin and elastic bioactive silica coating was obtained on the fabric fibers surfaces. The fabrics with deposited nanocoatings were characterized by very good bioactive properties and increased resistance to abrasion and formation of pilling. - Highlights: • Multifunctional thin coating layer was prepared on the fabric using sol–gel method. • Modification of the hybrid Al{sub 2}O{sub 3}/SiO{sub 2} sol by Ag/Cu alloy nanoparticles. • Bioactive fabric created by deposition of Al{sub 2}O{sub 3}/SiO{sub 2} sol with Ag/Cu. • 30% increase the abrasion resistance of the thin coating fabric.

  2. Effect of Al2O3 Micro-powder Additives on the Properties of Micro-arc Oxidation Coatings Formed on 6061 Aluminum Alloy

    Science.gov (United States)

    Wang, Ping; Wu, Ting; Xiao, You Tao; Pu, Jun; Guo, Xiao Yang; Huang, Jun; Xiang, Chun Lang

    2016-09-01

    Al2O3 micro-powder was suspended in the basis electrolyte to form micro-arc oxidation (MAO) coatings on 6061 aluminum alloy by MAO. During the stage of micro-arc oxidation, Al2O3 micro-powder with negative surface charge was melted by the micro-arc around the anode and incorporated into the MAO coatings. With the continuous addition of Al2O3 micro-powder, the oxidation voltages rose up firstly and then decreased. The surface and cross-sectional morphologies showed that the size of micropores decreased and the MAO coatings surface got loosened following the variation in Al2O3 micro-powder concentration. As a consequence of the changing coating structure, the corrosion resistance of the coatings decreased apparently. The micro-hardness of the coatings increased firstly and then decreased, opposite to the trend of the average friction coefficient. It revealed the minimum average friction coefficient of MAO coatings and maximum adhesion between the coatings and substrate when 2.0 g/L Al2O3 micro-powder was added into electrolyte. There were visible cracks and peelings on the coating surface merely at 4.0 g/L after thermal shock tests. The x-ray diffraction results indicated that the addition of Al2O3 micro-powder had less effect on the phase composition of MAO coatings.

  3. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte

    Science.gov (United States)

    Zhuang, J. J.; Guo, Y. Q.; Xiang, N.; Xiong, Y.; Hu, Q.; Song, R. G.

    2015-12-01

    ZrO2-containing ceramic coatings formed on the AZ31 Mg alloy were fabricated in an alkaline electrolyte containing sodium phosphate and potassium fluorozirconate (K2ZrF6) by plasma electrolytic oxidation (PEO). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques were used to study the phase structure and composition of the coatings. It is indicated that the coatings formed in the K2ZrF6-containing electrolyte were composed of MgO, MgF2 and t-ZrO2. Morphological investigation carried out by scanning electron microscopy (SEM) and stereoscopic microscopy, revealed that the uniformity of coatings increased and roughness of coatings decreased after the addition of K2ZrF6. Electrochemical investigation was achieved by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coating formed in K2ZrF6-containing electrolyte exhibited an improved corrosion resistance than that of the coating formed in K2ZrF6-free electrolyte. In addition, the polarization and EIS tests results both showed that the suitable concentration (2.5 g/l) of K2ZrF6 is of significant ability to improve the corrosion resistance of coatings. However, 5 g/l and 10 g/l K2ZrF6 has a negative effect on improving the corrosion resistance of PEO coatings compared with the coating formed in 2.5 g/l K2ZrF6-containing electrolyte.

  4. Effect of forming technique BixSiyOz coatings obtained by sol- gel and supported on 316L stainless steel

    Science.gov (United States)

    Bautista Ruiz, J.; Olaya Flórez, J.; Aperador, W.

    2016-02-01

    BixSiyOz type coatings via sol-gel synthesized from bismuth nitrate pentahydrate, and tetraethyl orthosilicate as precursors; glacial acetic acid and 2-ethoxyethanol as solvents, and ethanolamine as complexing. The coatings were supported on AISI 316L stainless steel substrate through dip-coating and spin-coating techniques. The study showed that the spin-coating technique is efficient than dip-coating because it allows more dense and homogeneous films.

  5. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  6. Enhancement of bioactivity of pulsed magnetron sputtered TiC{sub x}N{sub y} with bioactive glass (BAG) incorporated polycaprolactone (PCL) composite scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Anusha Thampi, V.V.; Subramanian, B., E-mail: subramanianb3@gmail.com

    2015-11-15

    Titanium carbonitride (TiC{sub x}N{sub y}) thin films were fabricated on SS 316 L by pulsed reactive DC magnetron sputtering using titanium and graphite targets. The sputtered film was characterized microstructurally by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD pattern revealed that the film was preferentially oriented along (200) axis with a grain size of 20 nm. A globular morphology was observed from electron micrograph while Energy dispersive X-ray spectroscopy (EDS) showed the compositional purity of the film. To improve the bioactivity, bioactive glass (BAG) nanopowders of size 60 nm, synthesized by sol–gel method, was incorporated into a polycaprolactone (PCL) scaffold (BAG-PCL), which was applied over TiC{sub x}N{sub y}/SS (BAG-PCL/TiCN/SS). In-vitro bioactivity studies of BAG-PCL showed the apatite formation, which was confirmed from fourier transform infrared (FTIR) spectrum and SEM. In-vitro corrosion studies in simulated body fluid (SBF) solution showed that the coated specimen had a higher charge transfer resistance than stainless steel (SS) bare. The enhancement of bioactivity was monitored by hemocompatibility and cytocompatibility, where an improved cell attachment and lower thrombus formation was observed for the coatings with BAG-PCL. - Highlights: • Fabrication of TiC{sub x}N{sub y} thin films on SS 316 L (TiCN/SS) by reactive pulsed DC magnetron sputtering. • Synthesis of BAG nanopowders (45S5) by sol–gel method. • Incorporation of BAG nanopowders into PCL matrix to form polymer composite scaffold. • BAG-PCL scaffold was coated on TiCN/SS to enhance the bioactivity.

  7. Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process.

    Science.gov (United States)

    Chen, Dianying; Jordan, Eric H; Gell, Maurice; Wei, Mei

    2008-05-01

    A dense titania (TiO2) coating was deposited from an ethanol-based solution containing titanium isopropoxide using the solution precursor plasma spray (SPPS) process. XRD and Raman spectrum analyses confirmed that the coating is exclusively composed of rutile TiO2. SEM micrographs show the as-sprayed coating is dense with a uniform thickness and there are no coarse splat boundaries. The as-sprayed coating was chemically treated in 5M NaOH solution at 80 degrees C for 48 h. The bioactivity of as-sprayed and alkaline-treated coatings was investigated by immersing the coatings in simulated body fluid (SBF) for 14-28 days, respectively. After 28 days immersion, there is a complete layer of carbonate-containing apatite formed on the alkaline-treated TiO2 coating surface, but none formed on the as-sprayed coating.

  8. Research status of dry coating technologies on solid dosage forms%固体制剂干法包衣工艺的研究进展

    Institute of Scientific and Technical Information of China (English)

    乔明曦; 李可欣; 陈大为

    2012-01-01

    Objective To review the recent progress of dry coating technologies on dosage forms. Methods The processes and principles of several dry coating methods included heat dry coating,electrostatic dry powder coating,plasticizer dry powder coating,and plasticizer electrostatic dry powder coating were discussed in the paper. Results The developed dry powder coating technologies are capable of eliminating the water in the coating process. Conclusions Dry coating technologies are promising to be applied in the pharmaceutical industrial manufacture.%目的 对近年来国内外固体制剂的非溶剂包衣工艺进行介绍.方法 通过查阅文献,综述了目前比较常用的几种包衣方式,包括静电干粉包衣、增塑剂干法包衣、增塑剂静电干粉包衣、热溶包衣、压制包衣和光固化包衣,以及各种包衣工艺的原理、过程与特点.结果 干法包衣工艺可以避免水性或有机溶剂的使用.结论 干法包衣工艺具有很大潜力,可用于固体制剂包衣的工业化生产.

  9. PIIID-formed (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti coatings on NiTi shape memory alloy for medical applications.

    Science.gov (United States)

    Sun, Tao; Wang, Lang-Ping; Wang, Min; Tong, Ho-Wang; Lu, William W

    2012-08-01

    (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti composite coatings were fabricated on NiTi shape memory alloy via plasma immersion ion implantation and deposition (PIIID). Surface morphology of samples was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cross-sectional morphology indicated that the PIIID-formed coatings were dense and uniform. X-ray diffraction (XRD) was used to characterize the phase composition of samples. X-ray photoelectron spectroscopy (XPS) results showed that the surface of coated NiTi SMA samples was Ni-free. Nanoindentation measurements and pin-on-disc tests were carried out to evaluate mechanical properties and wear resistance of coated NiTi SMA, respectively. For the in vitro biological assessment of the composite coatings in terms of cell morphology and cell viability, osteoblast-like SaOS-2 cells and breast cancer MCF-7 cells were cultured on NiTi SMA samples, respectively. SaOS-2 cells attached and spread better on coated NiTi SMA. Viability of MCF-7 cells showed that the PIIID-formed composite coatings were noncytotoxic and coated samples were more biocompatible than uncoated samples.

  10. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  11. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion.

    Science.gov (United States)

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H; Zalzal, Paul; Clarkin, Owen M; Papini, Marcello; Towler, Mark R

    2016-12-01

    Silica-based and borate-based glass series, with increasing amounts of TiO₂ incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate's (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO₂ in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO₂ to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO₂ incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass(®) and Pyrex.

  12. [Synthesis and bioactivity of the folate receptor targeted gamma-cyclodextrin-folate inclusion-coated CdSe/ZnS quantum dots].

    Science.gov (United States)

    Zhao, Mei-Xia; Li, Yang; Wang, Chao-Jie

    2013-04-01

    The gamma-cyclodextrin-folate (gamma-CD/FA) inclusion-coated CdSe/ZnS quantum dots (QDs) with folate-receptor (FR) targeted were synthesized by simple and convenient sonochemical method. The products were studied using Fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H NMR), utraviolet-visible spectrometry (UV-vis), fluorescence spectrum and transmission electron micrographs (TEM). The results showed that the gamma-CD/FA-coated CdSe/ZnS QDs not only have good monodispersity and smaller size, but also have good optical performance, such as higher quantum yield (QY) and a long fluorescence lifetime. The cytotoxicity experiments showed that the gamma-CD/FA-coated CdSe/ZnS QDs have lower cytotoxicity and could more effectively enter cancer cells with FR over-expression. The QDs with 4-5 nm in diameter were relatively easy to enter the cell and to be removed through kidneys, so it is more suitable for biomedical applications for bioprobes and bioimaging.

  13. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  14. Hygroscopicity of a sugarless coating layer formed by the interaction between mannitol and poly(vinyl alcohol) (PVA).

    Science.gov (United States)

    Higuchi, Masaharu; Tanaka, Shouko; Tamura, Koichi; Sakata, Yukoh

    2014-11-01

    A sugarless layer that provides protection against moisture is formed on tablets when a coating solution comprising mannitol and poly(vinyl alcohol) (PVA) is applied. The objective of this study is to investigate the relationship between the formation of such a sugarless layer and the resulting hygroscopic properties in order to derive an appropriate sugarless coating. The hygroscopicity of the sugarless layer is shown to be strongly affected by the addition of PVA, and has the lowest at concentration ratios between 15:2.5 and 15:4 (w/w) of mannitol and PVA. The polymorphic form of mannitol is different in formulations with different mannitol:PVA concentration ratios. Mannitol occurs in the α-form at mannitol:PVA concentration ratios between 15:1 and 15:4 (w/w). Moreover, PVA affects the molecular motions in the region associated with the OH stretch, OH deformation, and CH2 wag of mannitol. In particular, the molecular motions change considerably at mannitol:PVA concentration ratio of 15:2.5 and 15:4 (w/w). In addition, the surface state of the sugarless layer depends on the amount of PVA added, and exhibits the smoothest surface at a mannitol:PVA concentration ratio between 15:2.5 and 15:4 (w/w). Thus, the hygroscopicity is related to the surface states of the sugarless layer, which, in turn, is affected by the change in the molecular motions of mannitol due to the interactions between mannitol and PVA.

  15. PREPARATION OF TITANIA SOL-GEL COATINGS CONTAINING SILVER IN VARIOUS FORMS AND MEASURING OF THEIR BACTERICIDAL EFFECTS AGAINST E. COLI

    Directory of Open Access Journals (Sweden)

    Diana Horkavcova

    2015-09-01

    Full Text Available The work describes titania coatings containing various forms of silver applied on a titanium substrate by a dip-coating sol-gel technique. Silver was added into the basic titania sol in form of colloid particles of Ag, crystals of AgNO3, particles of AgI, particles of Ag3PO4 and Ag3PO4 developed in situ (in the sol by reaction of AgNO3 with added calcium phosphate (brushite or monetite. Mechanically and chemically treated titanium substrates were dipped at a constant rate into individual types of sols. Subsequently, they were slowly fired. The fired coatings contained microcracks. All over the surface there were evenly distributed spherical nanoparticles of silver (Ag, AgNO3 or microcrystals of AgI and Ag3PO4. The prepared coatings were tested under static conditions for their bactericidal effects against gram-negative bacteria Escherichia coli (E. coli. The coated substrates were immersed into a suspension of E. coli in physiological solution for 24 and 4 hours. The basic titania coatings with no silver demonstrated no bactericidal properties. Very good bactericidal effect against E. coli in both types of bactericidal test showed the titania coatings with AgNO3, Ag3PO4 crystals and Ag3PO4 developed in situ.

  16. Effects of laser energy density on forming accuracy and tensile strength of selective laser sintering resin coated sands

    Institute of Scientific and Technical Information of China (English)

    Xu Zhifeng; Liang Pei; Yang Wei; Li Sisi; Cai Changchun

    2014-01-01

    Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density (E =P/v), with different laser power (P) and scanning velocity (v), on the dimensional accuracy and tensile strength of sintered parts. The experimental results indicate that with the constant scanning velocity, the tensile strength of sintered samples increases with an increase in laser energy density; while the dimensional accuracy apparently decreases when the laser energy density is larger than 0.032 J·mm-2. When the laser energy density is 0.024 J·mm-2, the tensile strength shows no obvious change; but when the laser energy density is larger than 0.024 J·mm-2, the sample strength is featured by the initial increase and subsequent decrease with simultaneous increase of both laser power and scanning velocity. In this study, the optimal energy density range for laser sintering is 0.024-0.032 J·mm-2. Moreover, samples with the best tensile strength and dimensional accuracy can be obtained whenP = 30-40 W andv = 1.5-2.0 m·s-1. Using the optimized laser energy density, laser power and scanning speed, a complex coated sand mould with clear contour and excelent forming accuracy has been successfuly fabricated.

  17. Mussel-Inspired Surface Chemistry for Multifunctional Coatings

    Science.gov (United States)

    Lee, Haeshin; Dellatore, Shara M.; Miller, William M.; Messersmith, Phillip B.

    2007-10-01

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

  18. Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition

    Science.gov (United States)

    Ogawa, Fumio; Masuda, Chitoshi

    2015-01-01

    The van der Waals agglomeration of carbon nanofibers (CNFs) and the weight difference and poor wettability between CNFs and aluminum hinder the fabrication of dense CNF-reinforced aluminum matrix composites with superior properties. In this study, to improve this situation, CNFs were coated with aluminum by a simple and low-cost in situ chemical vapor deposition (in situ CVD). Iodine was used to accelerate the transport of aluminum atoms. The coating layer formed by the in situ CVD was characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Fourier transform-infrared spectroscopy, and x-ray photoelectron spectroscopy. The results confirmed that the CNFs were successfully coated with aluminum. The composites were fabricated to investigate the effect of the aluminum coating formed on the CNFs. The dispersion of CNFs, density, Vickers micro-hardness and thermal conductivity of the composites fabricated by powder metallurgy were improved. Pressure-less infiltration experiments were conducted to fabricate composites by casting. The results demonstrated that the wettability and infiltration were dramatically improved by the aluminum coating layer on CNFs. The aluminum coating formed by the in situ CVD technique was proved to be effective for the fabrication of CNF-reinforced aluminum matrix composites.

  19. Transformation of nacre coatings into apatite coatings in phosphate buffer solution at low temperature.

    Science.gov (United States)

    Guo, Yaping; Zhou, Yu

    2008-08-01

    Nacre coatings were deposited on Ti6Al4V substrates by electrophoretic technique, and subsequently converted into apatite coatings with hierarchical porous structures by treatment with a phosphate buffer solution. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy (XPS), and N(2) adsorption-desorption isotherms. The results show that the nacre coatings are converted into the plate-like apatite coatings via a dissolution-precipitation reaction, while the organic components of the nacre are reserved. The mesopores with pore size of 4.4 nm are formed within the plate-like structure, and the macropores are formed among the plate-like structure. Simulated body fluid (SBF) immersion tests reveal that the apatite coatings have a good in vitro bioactivity. Bone-like apatite crystals are formed on the surfaces of the apatite coatings after soaking in SBF for 12 h, and fill up the macropores on the coatings with increasing the soaking time. In addition, XPS indicates that a TiO(x) layer and PO(4) (3-) ions appear on the substrate surfaces by pretreatment with a H(3)PO(4)/HF solution. The TiO(x) layer and PO(4) (3-) ions can induce the formation of apatite crystals, resulting in a composition gradient from the oxide layer to the external apatite layer.

  20. Influence of potassium pyrophosphate in electrolyte on coated layer of AZ91 Mg alloy formed by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    Jin-Young CHO; Duck-Young HWANG; Dong-Heon LEE; Bongyoung YOO; Dong-Hyuk SHIN

    2009-01-01

    The effect of potassium pyrophosphate in the electrolyte on plasma electrolytic oxidation (PEO) process for AZ91 Mg alloy was investigated. The morphologies and chemical compositions of the coating layer on the AZ91 Mg alloy were evaluated and corrosion resistance was also estimated by potentiodynamic polarization analysis. The coating layer on AZ91 Mg alloy coated from the Bath 2 containing 0.03 mol/L of potassium pyrophosphate for 360 s exhibited considerably dense structure and contained 11%-18% (mass fraction) of phosphorous. The higher content of phosphorous of coating layer coated from Bath 2 could be detected at the bottom of oxide layer, which strongly implied that the phosphorous ion might be concentrated at the barrier layer. Corrosion potential of coating layer of AZ91 Mg alloy increased and corrosion current density decreased with increasing the concentration of potassium pyrophosphate. The polarization resistance (Rp) of coating layer of AZ91 Mg alloy coated from Bath 2 was 4.65×107 Ω/cm2, which was higher than that (Rp=3.56×104 Ω/cm2) of the sample coated from electrolyte without potassium pyrophosphate. The coating layer coated from Bath 2 containing 0.03 mol/L potassium pyrophosphate exhibited the best corrosion resistance.

  1. Optimizing cathodic electrodeposition parameters of ceria coating to enhance the oxidation resistance of a Cr{sub 2}O{sub 3}-forming alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu, E-mail: xuw388@mail.usask.ca; Fan, Fan; Szpunar, Jerzy A.

    2016-07-29

    Nano-ceria coating was deposited onto a chromium oxide forming alloy through galvanostatic cathodic electro-deposition method in cerium nitrate electrolyte. The electrochemical behavior and influence of main deposition parameters of current density, deposition time, and temperature were studied. It was seen that the crystal size decreased with increasing of current density while micro-cracks were also observed at higher current density. Slightly increasing of crystal size and smoothing of surface morphology were seen with increasing of deposition time. It was reported that the bath temperature has the most significant effect on crystal size and surface morphology of the deposit. Green rust as corrosion product was also observed with deposition temperatures higher than 35 °C. Optimized deposition parameters were used to produce homogeneous, continuous and green rust-free coatings which enhance the oxidation resistance of alloy 230. The electro-deposition process was found to be an accessible and efficient method to prepare nano-crystalline ceria coating. - Highlights: • Electrodeposition was used to make ceria coating on a chromium oxide forming alloy; • Deposition parameters of current density, time and temperature were investigated; • Crystal size and morphology of coating vary with changing of deposition parameters; • Coating prepared with optimized parameters reduced oxidation rate of alloy 230.

  2. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    . In particular, 3-15% of very low birth weight preterm infants suffer from the most servere form of intestinal inflammation, known as necrotizing enterocolitis (NEC). This disease is incurable with a high mortality rate of 15-30%. Mother’s breast milk consists of different bioactive constituents...... several steps of thermal processing, which are known to decrease/abolish bioactivity of milk constituents. This may explain for high NEC incidence in formula-fed preterm infants. We therefore in this PhD project investigated whether gentle thermal processing conditions increase the bioavailability...... of infant formula. Thereafter, bioactive milk components which were preserved in gently-processed infant formula were selected for further investigation of their immunomodulatory activity in cell and preterm pig models. We hope this project will contribute to the research on the development of new...

  3. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  4. [Preparation and evaluation of press-coated aminophylline tablet using crystalline cellulose and polyethylene glycol in the outer shell for timed-release dosage forms].

    Science.gov (United States)

    Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko

    2002-02-01

    In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p 24) between the press-coated tablet and aminophylline solution. These results suggest that the press-coated aminophylline tablet (with the timed-release characteristic) offers a promising forms of theophylline chronotherapy for asthma.

  5. Preparation, characterization and mechanical properties of microarc oxidation coating formed on titanium in Al(OH)3 colloidal solution

    Science.gov (United States)

    Li, Y.; Yao, B.; Long, B. Y.; Tian, H. W.; Wang, B.

    2012-04-01

    A ceramic coating with thickness of 20-70 μm was grown on titanium plate in Al(OH)3 colloidal solution by microarc oxidation (MAO) in constant current mode. It is found that the as-grown coating consists of rutile TiO2 phase together with a thin layer of Ai2TiO5 phase near the surface of the coating. After removing the Ai2TiO5 layer by polishing, a single phase of rutile TiO2 coating is achieved, which is different from results reported previously, where the coating is usually composed of two phases of rutile and anatase TiO2. It is suggested that the formation of the coating with single phase of rutile TiO2 is related to the existence of Al(OH)3 in the solution. The growth rate of the coating increases with increasing current density in the range of 17-23 A/dm2, but it increases little in the range of 23-30 A/dm2. The rutile TiO2 coating looks compactness and solidity in the coating grown in the density range of 17-23 A/dm2 but looseness and insubstantiality in the range of 23-30 A/dm2. The hardness and elastic modulus of the rutile TiO2 decreases with the density increasing. The mechanism of formation of the coating is discussed in the present work.

  6. Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; SHEN Xiong-jun

    2007-01-01

    Bioactive and bioresorbable composite was fabricated by a solvent evaporation technique using poly-L-lactide(PLLA) and bioactive glass (average particle size: 6.8 μm). Bioactive glass granules are homogeneously distributed in the composite with microcrack structure. The formation of hydroxyapatite(HA) on the composite in simulated body fluid(SBF) was analyzed by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and Raman spectra. Rod-like HA crystals deposit on the surface of PLLA/bioactive glass composite after soaking for 3 d. Both rod-like crystals and HA layer form on the surface for 14 d in SBF. The high bioactivity of PLLA/bioactive glass composite indicates the potential of materials for integration with bone.

  7. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    M.Laleh; Farzad Kargar; A.Sabour Rouhaghdam

    2012-01-01

    Magnesium and its alloys have been used in many industries,but they are reactive and require protection against aggressive environments.In this study,oxide coatings were applied on AZ91D magnesium alloy using micro-arc oxidation (MAO) process.Then,in order to seal the pores of the MAO coatings,the samples were immersed in cerium bath for different times.The surface morphologies and compositions of the coatings were analyzed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS),respectively.The corrosion behavior of the coatings was investigated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution.The amount of the porosity of the coating was measured by electrochemical method.It was found that the sealing treatments by immersion in cerium bath successfully sealed the pores of the MAO coatings.The results of the corrosion tests showed that the MAO coating which was sealed in Ce bath for 10 min enhanced the corrosion resistance of the substrate significantly.Furthermore,this coating had the lowest amount of the porosity among the coatings.

  8. The Influence of Various Additives on the Properties of Peo Coatings Formed on AZ31 mg Alloy

    Science.gov (United States)

    Rehman, Zeeshan Ur; Ahn, Byung-Hyun; Jeong, Yeong Seung; Song, Jung-Il; Koo, Bon-Heun

    2016-03-01

    In this work, plasma electrolytic oxidation (PEO) ceramic coatings were prepared on magnesium AZ31B alloy. Various electrolyte solutions including phosphate, aluminate and silicate as additives and NaOH + Na2SiF6 as constant agent were used to prepare the coatings. Influence of the additives on chemical composition and structure of the PEO coatings were examined by means of scanning electron microscope (SEM) and XRD. From structural analysis it was found that coatings prepared in the aluminate-based electrolyte have the best structural features. Microhardness and tribological characteristics of the PEO coatings were investigated using Vickers hardness test and pin-on-disc test. Microhardness for aluminate-based coating was found to be 1169.63HV while those for silicate-and phosphate-based coatings were 1093.42HV and 285.91HV, respectively. Wear rate of the aluminate-based coating was found to be lowest than all other coatings having a value of 2.78×10-3mg/Nm.

  9. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbiao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Science, Lanzhou University of Technology, Lanzhou 730050 (China); Liang, Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, Baixing; Peng, Zhenjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Qing [School of Science, Lanzhou University of Technology, Lanzhou 730050 (China)

    2014-04-01

    Highlights: • The PEO coating growth rate increased with the cathodic voltage increasing. • Higher cathodic voltage resulted in more compact coating structure. • The compact structure led to low surface roughness and high wear resistance. - Abstract: Plasma electrolytic oxidation (PEO) coatings were prepared on aluminium alloy using pulsed bipolar power supply at constant anodic voltage and different cathodic voltages. The samples were prepared to attain the same coating thickness by adjusting the processing time. The scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and tribometer were employed to investigate the microstructure, element content, phase composition and wear resistance of the coatings respectively. It was found that the coating growth rate enhanced obviously and the coatings exhibited a more compact structure with thicker inner layer and lower surface roughness when the cathodic voltage increased. The coatings were mainly composed of crystalline γ-Al{sub 2}O{sub 3} and amorphous silicate oxides and their relative content changed with the cathodic voltage. The wear resistance of the coatings improved significantly with the increase of cathodic voltage.

  10. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.

    Science.gov (United States)

    Najeeb, Shariq; Bds, Zohaib Khurshid; Bds, Sana Zohaib; Bds, Muhammad Sohail Zafar

    2016-12-01

    Polyetheretherketone (PEEK) has been suggested as an alternative to replace titanium as a dental implant material. However, PEEK's bioactivity and osseointegration are debatable. This review has systematically analyzed studies that have compared PEEK (or PEEK-based) implants with titanium implants so that its feasibility as a possible replacement for titanium can be determined. The focused question was: "Are the bioactivity and osseointegration of PEEK implants comparable to or better than titanium implants?" Using the key words "dental implant," "implant," "polyetheretherketone," "PEEK," and "titanium" in various combinations, the following databases were searched electronically: PubMED/MEDLINE, Embase, Google Scholar, ISI Web of Knowledge, and Cochrane Database. 5 in vitro and 4 animal studies were included in the review. In 4 out of 5 in vitro studies, titanium exhibited more cellular proliferation, angiogenesis, osteoblast maturation, and osteogenesis compared to PEEK; one in vitro study observed comparable outcomes regardless of the implant material. In all animal studies, uncoated and coated titanium exhibited a more osteogenic behavior than did uncoated PEEK, while comparable bone-implant contact was observed in HA-coated PEEK and coated titanium implants. Unmodified PEEK is less osseoconductive and bioactive than titanium. Furthermore, the majority of studies had multiple sources of bias; hence, in its unmodified form, PEEK is unsuitable to be used as dental implant. Significantly more research and long-term trials must focus on improving the bioactivity of PEEK before it can be used as dental implant. More comparative animal and clinical studies are warranted to ascertain the potential of PEEK as a viable alternative to titanium.

  11. Characterization of titanium–hydroxyapatite biocomposites processed by dip coating

    Indian Academy of Sciences (India)

    R Baptista; D Gadelha; M Bandeira; D Arteiro; M I Delgado; A C Ferro; M Guedes

    2016-02-01

    Ti orthopaedic implants are commonly coated with hydroxyapatite (HA) to achieve increased biocompatibility and osseointegration with natural bone. In this work the dip-coating technique was used to apply HA films on Ti foil. A gel was used as the support vehicle for commercial HA particles. The experimental parameters like surface roughness of the metallic substrate and immersion time were studied. All coated substrates were heat treated and sintered under vacuum atmosphere. The produced coatings were characterized by field-emission gun scanning electron microscopy coupled with energy-dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, microhardness, scratch test and profilometry. Additionally, the apatite-forming ability of the produced material was tested by exposure to a simulated body fluid. Higher substrate surface roughness and longer immersion time produce thicker, denser films, with higher surface roughness. Lower film porosity is accompanied by higher hardness values. However, thicker coating promotes differential shrinkage and crack formation during sintering. Both coating thickness and coating roughness increase with coating time. HA films $\\sim$30–40 $\\mu$m thick with 45–50% HA theoretical density produced on Ti substrates with surface roughness of $R_z\\sim 1.0–1.7$ $\\mu$m, display an attractive combination of high hardness and resistance to spallation. Attained results are encouraging regarding the possibility of straightforward production of biocompatible and bioactive prosthetic coatings for orthopaedic applications using commercial HA.

  12. Ti-WC nanocrystalline coating formed by surface mechanical attrition treatment process on 316L stainless steel.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour; Ghobadi, E

    2011-10-01

    Nanocrystalline coatings were performed on the surface of 316L stainless steel plates mechanically with a mixture of Ti and WC powders under vacuum conditions. The targets were replaced in the end of the high energy milling rig, while Ti-WC mixture was milled as usual. It is shown that the coatings are nanocrystalline in nature with narrow distribution of average size of nanocrystallites. X-ray diffraction and scanning electron microscopy (with energy-dispersive spectrometer) revealed that the top layer of the coatings is uniform. Microhardness, roughness and primary corrosion tests (tafel tests) proved enhancement of coated samples with respect to raw materials. Transmission electron microscope image of deformed surface confirmed surrounding of nanoparticles by dislocation loops after plastic deformation.

  13. Bioactivation of particles

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Fabien (Berkeley, CA); King, David (San Francisco, CA); Weiss, Shimon (Los Angeles, CA)

    2011-08-16

    Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

  14. Atmospheric pressure plasma-initiated chemical vapor deposition (AP-PiCVD) of poly(diethylallylphosphate) coating: a char-forming protective coating for cellulosic textile.

    Science.gov (United States)

    Hilt, Florian; Boscher, Nicolas D; Duday, David; Desbenoit, Nicolas; Levalois-Grützmacher, Joëlle; Choquet, Patrick

    2014-01-01

    An innovative atmospheric pressure chemical vapor deposition method toward the deposition of polymeric layers has been developed. This latter involves the use of a nanopulsed plasma discharge to initiate the free-radical polymerization of an allyl monomer containing phosphorus (diethylallylphosphate, DEAP) at atmospheric pressure. The polymeric structure of the film is evidence by mass spectrometry. The method, highly suitable for the treatment of natural biopolymer substrate, has been carried out on cotton textile to perform the deposition of an efficient and conformal protective coating.

  15. Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte

    Institute of Scientific and Technical Information of China (English)

    DING Jun; LIANG Jun; HU Li-tian; HAO Jing-cheng; XUE Qun-ji

    2007-01-01

    Oxide coatings on AM60B magnesium alloy were prepared using the microarc oxidation(MAO) technique in silicate-KOH electrolyte with addition of 0-6.0 g/L Na2WO4. The MAO processes in base electrolyte with different concentrations of Na2WO4 were studied. The microstructure, compositions and mechanical tribological characteristics of the oxide coatings were also investigated by SEM, XRD, XPS, microhardness analysis and ball-on-disc friction testing, respectively. It is found that the addition of Na2WO4 into the base electrolyte has direct effect on the characteristics of voltage-time curves and breakdown voltage in MAO process. The number of micropores at top of the coating surface is increased by the addition of Na2WO4. The fraction of forsterite Mg2SiO4 in the oxide coating increases with increasing concentration of Na2WO4 in base electrolytes. Furthermore, the microhardness and wear resistance of oxide coatings are enhanced as well.

  16. PREPARATION OF BIOACTIVE NANOSTRUCTURE SCAFFOLD WITH IMPROVED COMPRESSIVE STRENGTH

    Directory of Open Access Journals (Sweden)

    R. EMADI

    2011-03-01

    Full Text Available Highly porous scaffolds with open structure are today the best candidates for bone substitution to ensure bone oxygenation and angiogenesis. In this study, we developed a new route to enhance the compressive strength of porous hydroxyapatite scaffold made of natural bone. Briefly, the spongy bone of an adult bovine was extracted, annealed, and coated by a nanostructure bioactive glass layer to be subsequently sintered at different temperatures. The apatite formation ability on the surfaces of the coated scaffolds was investigated by standard procedures. Our results showed that the scaffold and coating microstructure consisted of the grains smaller than 100 nm. These nanostructures improved the compressive strength and bioactivity of highly porous scaffold. The results showed that with increasing the sintering temperature, the compressive strength of scaffolds increased while their in vitro bioactivity decreased.

  17. Electrodeposited silk coatings for functionalized implant applications

    Science.gov (United States)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  18. Microwave assisted apatite coating deposition on Ti6Al4V implants.

    Science.gov (United States)

    Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B

    2013-10-01

    In this work we report a novel microwave assisted technology to deposit a uniform, ultra-thin apatite coating without any cracks on titanium implants in minutes. This method comprises of conventional biomimetic coating in synergism with microwave irradiation to result in alkaline earth phosphate nucleation. The microwave assisted coating process mainly follows the initial stages of biomimetic coating until the step of the Ca-P nuclei formation. After that, due to microwave irradiation more Ca-P nuclei are formed to cover the whole surface of the implant instead of the growth of deposited Ca-P nuclei to Ca-P globules and coatings. It is interesting to note the doping of Mg(2+) to Ca-P apatite coating can significantly change the properties and performances of as-deposited coatings. The hydrophilicity, physical properties, bioactivity, cell adhesion, and growth capability of as-deposited microwave assisted coatings were investigated. The study shows that this coating technology has great potential in biomedical applications. Additionally, since biomimetic coating can be applied to series of implant materials such as polymer, metals and glass, it is expected this microwave assisted coating technology can also be applied to these materials if they can remains stable at 100 °C, the boiling point of water.

  19. Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group.

    Science.gov (United States)

    Kreuze, J F; Karyeija, R F; Gibson, R W; Valkonen, J P

    2000-01-01

    Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) infects sweet potatoes (Ipomoea batatas) worldwide, but no sequence data on isolates from Africa are available. Coat protein (CP) gene sequences from eight East African isolates from Madagascar and different districts of Uganda (the second biggest sweet potato producer in the world) and two West African isolates from Nigeria and Niger were determined. They were compared by phylogenetic analysis with the previously reported sequences of ten SPFMV isolates from other continents. The East African SPFMV isolates formed a distinct cluster, whereas the other isolates were not clustered according to geographic origin. These data indicate that East African isolates of SPFMV form a genetically unique group.

  20. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation.

    Science.gov (United States)

    Kim, Hyeongil; Choi, Seong-Ho; Chung, Sung-Min; Li, Long-Hao; Lee, In-Seop

    2010-08-01

    With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of approximately 500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 degrees C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.

  1. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeongil [Restorative Dentistry, School of Dental Medicine, University at Buffalo, NY 14214 (United States); Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Chung, Sung-Min; Li, Long-Hao [Dentium Clinic Implantium Institute, Seoul 135-879 (Korea, Republic of); Lee, In-Seop, E-mail: inseop@yonsei.ac.k [Atomic-Scale Surface Science Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-08-01

    With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of {approx}500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 {sup 0}C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.

  2. Bioactive alkaloids in vertically transmitted fungal endophytes

    Science.gov (United States)

    Plants form mutualistic symbioses with a variety of microorganisms, including endophytic fungi that live inside the plant and cause no symptoms of infection. Some endophytic fungi form defensive mutualisms based on the production of bioactive metabolites that protect the plant from herbivores in exc...

  3. Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-fan; Akram, Muhammad; Alshemary, Ammarz [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@comsats.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2016-11-30

    Highlights: • PLA/Chitosan nanofibers were coated with functional bioglass. • Polymer/ceramic composite fibers exhibited good in-vitro bioactivity. • Nanofibers coated with Ag doped bioglass exhibited good antibacterial activity. - Abstract: In this study, we have presented the structural and in vitro characterization of electrospun polylactic acid (PLA)/Chitosan nanofibers coated with cerium, copper or silver doped bioactive glasses (CeBG/CuBG/AgBG). Bead-free, smooth surfaced nanofibers were successfully prepared by using electrospinning technique. The nanocomposite fibers were obtained using a facile dip-coating method, their antibacterial activities against E. coliE. coli (ATCC 25922 strains) were measured by the disk diffusion method after 24 h of incubation at 37 °C. CeBG and CuBG decorated PLA/Chitosan nanofibers did not develop an inhibition zone against the bacteria. On the other hand, nanofibers coated with AgBG developed an inhibition zone against the bacteria. The as-prepared nanocomposite fibers were immersed in SBF for 1, 3 and 7 days in Simulated Body Fluid (SBF) for evaluation of in vitro bioactivity. All samples induced the formation of crystallites with roughly ruffled morphology and the pores of fibers were covered with the extensive growth of crystallites. Energy Dispersive X-ray (EDX) composition analysis showed that the crystallites possessed Ca/P ratio close to 1.67, confirming the good in-vitro bioactivity of the fibers.

  4. Application of nuclear and physico-chemical analysis methods in the study of an after-implanting bioactive glass deposition on a titanium alloy, in view of optimizing the long-term bio-compatibility and operability; Application de methodes nucleaires et physico-chimiques d`analyse a l`etude, apres implantation, d`un depot de bioverre sur un alliage de titane, en vue d`une optimisation de la biocompatibilite et de la fonctionnalite a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Vanessa [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1999-01-27

    To improve the anchorage of orthopedic prosthesis into surrounding bone, osteo-conductive biomaterials are usually used as coatings. Among usual coatings, we find bioactive glasses. The bioactive glass A9 is analyzed before and after implantation. It is plasma sprayed onto titanium alloy cylinders (Ti-6Al-4V). Neutron Activation Analysis and Coupled Plasma-Atomic Emission Spectrometry allow us to get the precise composition of A9 before implantation, and to observe a volatilization of some A9 oxides during plasma spraying. Scanning Electron Microscopy shows a coating constituted by pores and by A9 particles of different sizes, into a non compact and non homogeneous form of variable thickness. Wavelength Dispersive Spectroscopy is applied to the analysis of A9 major element composition, in surface and thickness: the composition of the coating is homogeneous in volume. Ti alloy cylinders coated with A9 are implanted in ovine femur epiphysis. At different times after implantation they are extracted to be analyzed. The formation of an in vivo gel in contact with the coated implant and neo-formed bone was found. Time variations in the concentration of the bioactive glass constituents were observed in the gel. Titanium is detected within gel and neo-formed bone, in a higher quantity than within an old bone. P.I.X.E. method enables us to get elemental mapping of several interesting areas and to trace elements (zinc, strontium) in the neo-formed bone. The percentages of bone surface in contact and of bone volume are calculated and the results show that at 12 months, the bone surface in contact is equivalent for coated and uncoated cylinders. However, the bone volume is higher for coated cylinders. This last point clearly stresses the interest of A9 bioactive glass shows its osteo-conductivity 63 refs., 74 figs., 12 tabs.

  5. Bioactives from microalgal dinoflagellates.

    Science.gov (United States)

    Gallardo-Rodríguez, J; Sánchez-Mirón, A; García-Camacho, F; López-Rosales, L; Chisti, Y; Molina-Grima, E

    2012-01-01

    Dinoflagellate microalgae are an important source of marine biotoxins. Bioactives from dinoflagellates are attracting increasing attention because of their impact on the safety of seafood and potential uses in biomedical, toxicological and pharmacological research. Here we review the potential applications of dinoflagellate toxins and the methods for producing them. Only sparing quantities of dinoflagellate toxins are generally available and this hinders bioactivity characterization and evaluation in possible applications. Approaches to production of increased quantities of dinoflagellate bioactives are discussed. Although many dinoflagellates are fragile and grow slowly, controlled culture in bioreactors appears to be generally suitable for producing many of the metabolites of interest.

  6. Study on microstructure of Fe-Cr-C-Ni-B-Si coating formed by plasma jet surface metallurgy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The technical connotation of surface metallurgical technology by DC-Plasma-Jet is a kind of rapid, non-equilibrium metallurgical process which is similar to powder metallurgy. Accordingly the specialized equipment is developed all by ourselves, which is not subjected to limitation of solubility, melting point, density of constituents, therefore pre-alloy powders are not needed. The plasma surface metallurgical coating using Fe-Cr-C-Ni-B-Si mixed alloy powders has good wettability with substrate material. The metallurgical coating has apparent characteristics of rapid and layered crystallization from planar crystal-cell to dendritic transition zone at the interface, from dendritic crystal to equiaxed crystal in the midst, from equiaxed crystal to spike crystal on the surface. Its metastable microstructure is complex phase of supersaturated-γ(Fe,Ni) dendritic crystal solutioning great amount of alloy element and interdendritic eutectic structure (Cr, Fe)7(C,B)3 and γ(Fe,Ni).

  7. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    Science.gov (United States)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  8. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    Science.gov (United States)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2016-12-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  9. Effects of TiN film coating on electrochemical behaviors ofnanotube formed Ti-xHf alloys

    Institute of Scientific and Technical Information of China (English)

    Kang LEE; Won-Gi KIM; Joo-Young CHO; Sang-Won EUN; Han-Cheol CHOE

    2009-01-01

    Ti-xHf (x=10%, 20%, 30% and 40%, mass fraction) alloys were prepared by arc melting, and the microstructure was controlled for 24 h at 1 000 ℃ in argon atmosphere. The formation of nanotube was conducted by anodizing on Ti-Hf alloys in 1.0 mol/L H3PO4 electrolytes with small amounts of NaF at room temperature. And then TiN coatings were coated by DC-sputtering on the anodized surface. Microstructures and nanotube morphology of the alloys were examined by field emission scanning electron microscopy(FE-SEM) and X-ray diffractometry(XRD). The corrosion properties of the specimens were examined through potentiodynamic test (potential range from -1 500 to 2 000 mV) in 0.9 % NaCl solution by potentiostat. The microstructure shows the acicular phase and α′ phase with Hf content. The amorphous oxide surface is transformed to crystalline anatase phase. TiN coated nanotube surface has a good corrosion resistance.

  10. Novel alginate based coatings on Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K.; Roy, Abhijit [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Singh, Satish [Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Boeun [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-12-15

    Coatings on yttrium doped magnesium (Mg4Y) alloy substrates were prepared using alginate hydrogels by dip coating method to improve the surface bioactive properties of the substrate. Furthermore, composite coatings containing nano-sized calcium phosphate corresponding to hydroxyapatite (HA) phase entrapped within alginate hydrogel were also synthesized on the Mg4Y substrates. Surface characteristics of these coated substrates have been investigated using FTIR-ATR, SEM and EDS. The results show that the coatings with alginate alone are not stable in vitro; however, incorporation of NanoCaPs slightly improves the stability of these coatings. In addition, these composite coatings showed cell attachments with fibronectin incorporation. These results indicate that alginate hydrogels have the potential to be used as bioactive coating materials for different biofunctional applications.

  11. Current Strategies to Improve the Bioactivity of PEEK

    Directory of Open Access Journals (Sweden)

    Rui Ma

    2014-03-01

    Full Text Available The synthetic thermoplastic polymer polyetheretherketone (PEEK is becoming a popular component of clinical orthopedic and spinal applications, but its practical use suffers from several limitations. Although PEEK is biocompatible, chemically stable, radiolucent and has an elastic modulus similar to that of normal human bone, it is biologically inert, preventing good integration with adjacent bone tissues upon implantation. Recent efforts have focused on increasing the bioactivity of PEEK to improve the bone-implant interface. Two main strategies have been used to overcome the inert character of PEEK. One approach is surface modification to activate PEEK through surface treatment alone or in combination with a surface coating. Another strategy is to prepare bioactive PEEK composites by impregnating bioactive materials into PEEK substrate. Researchers believe that modified bioactive PEEK will have a wide range of orthopedic applications.

  12. Fabrication of nano-structured HA/CNT coatings on Ti6Al4V by electrophoretic deposition for biomedical applications.

    Science.gov (United States)

    Zhang, Bokai; Kwok, Chi Tat; Cheng, Fai Tsun; Man, Hau Chung

    2011-12-01

    In order to improve the bone bioactivity and osteointegration of metallic implants, hydroxyapatite (HA) is often coated on their surface so that a real bond with the surrounding bone tissue can be formed. In the present study, cathodic electrophoretic deposition (EPD) has been attempted for depositing nanostructured HA coatings on titanium alloy Ti6Al4V followed by sintering at 800 degrees C. Nano-sized HA powder was used in the EPD process to produce dense coatings. Moreover, multiwalled carbon nanotubes (CNTs) were also used to reinforce the HA coating for enhancing its mechanical strength. The surface morphology, compositions and microstructure of the monolithic coating of HA and nanocomposite coatings of HA with different CNT contents (4 to 25%) on Ti6Al4V were investigated by scanning-electron microscopy, energy-dispersive X-ray spectroscopy and Xray diffractometry, respectively. Electrochemical corrosion behavior of the various coatings in Hanks' solution at 37 degrees C was investigated by means of open-circuit potential measurement and cyclic potentiodynamic polarization tests. Surface hardness, adhesion strength and bone bioactivity of the coatings were also studied. The HA and HA/CNT coatings had a thickness of about 10 microm, with corrosion resistance higher than that of the substrate and adhesion strength higher than that of plasma sprayed HA coating. The properties of the composite coatings were optimized by varying the CNT contents. The enhanced properties could be attributed to the use of nano-sized HA particles and CNTs. Compared with the monolithic HA coating, the CNT-reinforced HA coating markedly increased the coating hardness without deteriorating the corrosion resistance or adhesion strength.

  13. The 3D-tomography of the nano-clusters formed by Fe-coating and annealing of diamond films for enhancing their surface electron field emitters

    Directory of Open Access Journals (Sweden)

    Huang-Chin Chen

    2012-09-01

    Full Text Available The Fe-coating and H2-annealed processes markedly increased the conductivity and enhanced the surface electron field emission (s-EFE properties for the diamond films. The enhancement on the s-EFE properties for the diamond films is presumably owing to the formation of nano-graphite clusters on the surface of the films via the Fe-to-diamond interaction. However, the extent of enhancement varied with the granular structure of the diamond films. For the microcrystalline (MCD films, the s-EFE process can be turned on at (E0MCD = 1.9 V/μm, achieving a large s-EFE current density of (JeMCD = 315 μA/cm2 at an applied field of 8.8 V/μm. These s-EFE properties are markedly better than those for Fe-coated/annealed ultrananocrystalline diamond (UNCD films with (E0UNCD = 2.0 V/μm and (JeUNCD = 120 μA/cm2. The transmission electron microscopy showed that the nano-graphite clusters formed an interconnected network for MCD films that facilitated the electron transport more markedly, as compared with the isolated nano-graphitic clusters formed at the surface of the UNCD films. Therefore, the Fe-coating/annealing processes improved the s-EFE properties for the MCD films more markedly than that for the UNCD films. The understanding on the distribution of the nano-clusters is of critical importance in elucidating the authentic factor that influences the s-EFE properties of the diamond films. Such an understanding is possible only through the 3D-tomographic investigations.

  14. Deposition of calcium phosphate coatings using condensed phosphates (P2O7(4-) and P3O10(5-)) as phosphate source through induction heating.

    Science.gov (United States)

    Zhou, Huan; Hou, Saisai; Zhang, Mingjie; Yang, Mengmeng; Deng, Linhong; Xiong, Xinbo; Ni, Xinye

    2016-12-01

    In present work condensed phosphates (P2O7(4-) and P3O10(5-)) were used as phosphate source in induction heating to deposit calcium phosphate coatings. The phase, morphology, and composition of different phosphate-related coatings were characterized and compared using XRD, FTIR, and SEM analyses. Results showed that P2O7(4-)formed calcium pyrophosphate hydrate coatings with interconnected cuboid-like particles. The as-deposited calcium tripolyphosphate hydrate coating with P3O10(5-) was mainly composed of flower-like particles assembled by plate-like crystals. The bioactivity and cytocompatibility of the coatings were also studied. Moreover, the feasibility of using hybrid phosphate sources for preparing and depositing coatings onto magnesium alloy was investigated.

  15. Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

    Science.gov (United States)

    Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli

    2015-01-01

    We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.

  16. Bioactive behaviour of sol-gel derived antibacterial bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Bellantone, M.; Hench, L.L. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    A new four-component bioactive glass containing Ag{sub 2}O was produced via the sol-gel process. This system releases Ag{sup +} which is a powerful antibacterial agent. The work reported herein is a comparative study of the bioactivity levels of conventional bioactive glass and of the new antibacterial glass. On the basis of XRD patterns, FTIR spectra, and ICP data, the bioactive behaviour of the two biomaterials is nearly equivalent. (orig.)

  17. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Charlotte Vichery

    2016-04-01

    Full Text Available Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented.

  18. Bioceramics for implant coatings

    Directory of Open Access Journals (Sweden)

    Allison A Campbell

    2003-11-01

    Early research in this field focused on understanding the biomechanical properties of metal implants, but recent work has turned toward improving the biological properties of these devices. This has led to the introduction of calcium phosphate (CaP bioceramics as a bioactive interface between the bulk metal impart and the surrounding tissue. The first CaP coatings were produced via vapor phase processes, but more recently solution-based and biomimetic methods have emerged. While each approach has its own intrinsic materials and biological properties, in general CaP coatings promise to improve implant biocompatibility and ultimately implant longevity.

  19. Bioactivity and Surface Reactivity of RF-sputtered Calcium Phosphate Thin Films

    NARCIS (Netherlands)

    Wal, Edwin van der

    2003-01-01

    Calcium phosphates (CaP) are known to be bioactive, i.e. able to bond to bone. This makes CaPs very suitable to be aplied as thin coatings on bone-implants. In this work we studied the physicochemical behaviour of CaP coatings applied with radio frequency (RF) magnetron sputtering, a deposition tech

  20. Bioactive protein fraction DLBS1033 containing lumbrokinase isolated from Lumbricus rubellus: ex vivo, in vivo, and pharmaceutic studies

    Directory of Open Access Journals (Sweden)

    Tjandrawinata RR

    2014-09-01

    Full Text Available Raymond R Tjandrawinata,1 Jessica Trisina,1 Puji Rahayu,1 Lorentius Agung Prasetya,1 Aang Hanafiah,2 Heni Rachmawati3 1Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, Indonesia; 2National Nuclear Energy Agency, Bandung, Indonesia; 3School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia Abstract: DLBS1033 is a bioactive protein fraction isolated from Lumbricus rubellus that tends to be unstable when exposed to the gastrointestinal environment. Accordingly, appropriate pharmaceutical development is needed to maximize absorption of the protein fraction in the gastrointestinal tract. In vitro, ex vivo, and in vivo stability assays were performed to study the stability of the bioactive protein fraction in gastric conditions. The bioactive protein fraction DLBS1033 was found to be unstable at low pH and in gastric fluid. The “enteric coating” formulation showed no leakage in gastric fluid–like medium and possessed a good release profile in simulated intestinal medium. DLBS1033 was absorbed through the small intestine in an intact protein form, confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE analysis. This result confirmed that an enteric coating formula using methacrylic acid copolymer could protect DLBS1033 from the acidic condition of the stomach by preventing the release of DLBS1033 in the stomach, while promoting its release when reaching the intestine. From the blood concentration–versus-time curve, 99mTc-DLBS1033 showed a circulation half-life of 70 minutes. This relatively long biological half-life supports its function as a thrombolytic protein. Thus, an enteric delivery system is considered the best approach for DLBS1033 as an oral thrombolytic agent. Keywords: bioactive protein fraction, enteric coated tablet, pharmacodynamic

  1. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  2. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis

    Science.gov (United States)

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-11-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (~100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  3. ZrO(2)/hydroxyapatite coating on titanium by electrolytic deposition.

    Science.gov (United States)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Yang, Chih-Hsiung; Ho, Wen-Fu

    2009-02-01

    In this study, hydroxyapatite (HA) was coated on a titanium (Ti) substrate over a ZrO(2) layer by the electrolytic deposition method, this double layer coating was then compared with a single layer coating of HA. The HA layer was used to increase the bioactivity and osteoconductivity of the Ti substrate, and the ZrO(2) layer was intended to improve the bonding strength between the HA layer and Ti substrate, and to prevent the corrosion of the Ti substrate. The electrolytic deposition formed an HA layer with a thicknesses of approximately 20 mum, which adhered tightly to the Ti substrate. The bonding strength of the HA/ZrO(2) double layer coating on Ti was markedly improved when compared to that of the HA single coating on Ti. The improvement in bonding strength with the use of a ZrO(2) base layer was attributed to the resulting increase in chemical affinity of the ZrO(2) to the HA layer and to the Ti substrate. The osteoblast-like cells cultured on the HA/ZrO(2) coating surface, proliferated in a similar manner to those on the HA single coating and on the pure Ti surfaces. At the same time, the corrosion resistance of Ti was improved by the presence of the ZrO(2) coating, as shown by a potentiodynamic polarization test.

  4. Development of bioactive materials using reticulated ceramics for bone substitute

    Science.gov (United States)

    Jiang, Gengwei

    For hard tissue prosthetics, it is necessary to seek novel synthesis routes by which a real structural bone can be simulated in terms of bioactivity, porosity, and mechanical behavior. The work presented here deals with the development of such a component by a novel synthesis route for bone implantation. To enhance the mechanical properties, an industrial alumina has been selected as the substrate. Alumina is not only bio inert but also mechanically strong which makes it an ideal substrate for bone substitute. The high porosity is achieved via a sponge technique by which both pore size and density can be changed easily. The bioactivity is induced by coating a highly bioactive HA film onto the inner pore surfaces of the reticulated alumina. Based on this concept, the research has focused on the coating of HA onto inner pore surfaces of the reticulated alumina via several effective methods that are developed in our laboratory. No previous studies have so far been reported on coating inner surfaces of small-diameter pores ranging from 0.1--1.0 mm. The key materials processing issues dealt with in this work include precursor chemistry, coating procedures, synthesis of coated component, interface structure study, film adhesion strength testing, and mechanical properties of the component. This novel approach has shown great promise in synthesizing bone substitutes. To determine the applicability of the coated component in hard tissue prosthetics, a bioactivity study has been carried out. By immersing the synthetic HA into simulated body fluid (SBF), the bioresponse has been measured for a variety of samples with different processing conditions. Fundamental aspects of this study are centered on the effects of structural characteristics of HA on the bioactivity. Based on extensive IR and XRD experimental data, it has been found that the bioactivity of HA is sensitively controlled by the structural crystallinity of the HA and its specific surface area. Furthermore, based on

  5. SOL-GEL SILICA-BASED Ag–Ca–P COATINGS WITH AGRESSIVE PRETREATMENT OF TITANIUM SUBSTRATE

    Directory of Open Access Journals (Sweden)

    ELENA BORSHCHEVA

    2011-12-01

    Full Text Available The aim of the experiment was the obtaining of thin silica coatings on titanium by sol-gel method, using mechanical (SiC - paper No.180 and chemical (leaching in HF pretreatments of the titanium substrates. The solutions were based on TEOS. For the sol-gel dipping process 4 different solutions were prepared: silica, silica with AgNO3 and silica + AgNO3 with brushite (CaHPO4·2H2O or monetite (CaHPO4 powders. The solutions were aged for 7 and 14 days at laboratory temperature. After sol-gel dip-coating process the samples were dried and fired. The adhesion of fired coatings was measured by tape test according to ASTM procedure and the bioactivity of the coatings was tested using in vitro test. The surfaces of the samples after firing, tape test and in vitro test were observed with the optical and electron microscopes. The firing results showed that silica-silver coatings did not change, brushite sol-gel coatings have cracked and the monetite sol-gel coatings have cracked also, but less than brushite ones. In spite of coating´s crackings, the square’s frames made on the surfaces were without any breakdowns after tape tests and the adhesion of all coatings was very good, classified by the highest grade 5. The results of in vitro tests showed that all coatings interacted with simulated body fluid (SBF. After exposition in SBF the new layer formed on substrates. In case of 7 days aged coatings containing brushite the new layer was uniform and compact. In case of 7 days aged coatings containing monetite the new layer was formed by crystals aggregated tightly together. The monetite and brushite coatings prepared from 14 days aged sol were the same as previous ones, but they were thicker. X-ray analyses after in vitro test confirmed dellaite, titanate and hydroxyapatite phases.

  6. Calcium phosphate coating on magnesium alloy for modification of degradation behavior

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Magnesium alloy has similar mechanical properties with natural bone,but its high susceptibility to corrosion has limited its application in orthopedics.In this study,a calcium phosphate coating is formed on magnesium alloy (AZ31) to control its degradation rate and enhance its bioactivity and bone inductivity.Samples of AZ31 plate were placed in the supersaturated calcification solution prepared with Ca(NO3)2,NaH2PO4 and NaHCO3,then the calcium phosphate coating formed.Through adjusting the immersion time,the thickness of uniform coatings can be changed from 10 to 20 μm.The composition,phase structure and morphology of the coatings were investigated.Bonding strength of the coatings and substrate was 2-4 MPa in this study.The coatings significantly decrease degradation rate of the original Mg alloy,indicating that the Mg alloy with calcium phosphate coating is a promising degradable bone material.

  7. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  8. Phenol-formaldehyde intumescent coating composition and coating prepared therefrom

    Science.gov (United States)

    Salyer, Ival O. (Inventor); Fox, Bernard L. (Inventor)

    1986-01-01

    Intumescent coatings which form a thick, uniform, fine celled, low density foam upon exposure to a high intensity heat flux or flame are disclosed, the invention coatings comprise phenolic resin prepolymer containing a blowing agent and a nucleating agent; in the preferred embodiments the coatings also contains a silicone surfactant, the coatings are useful in thermal and fire protection systems.

  9. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  10. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments.

    Science.gov (United States)

    Shah, Furqan A

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F(-)) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F(-) ions may be incorporated into the glass in the form of calcium fluoride (CaF2) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F(-) incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential.

  11. Sugar matrices in stabilization of bioactives by dehydration

    OpenAIRE

    Zhou, Yankun

    2013-01-01

    Development of functional foods with bioactive components requires component stability in foods and ingredients. Stabilization of sensitive bioactive components can be achieved by entrapment or encapsulation of these components in solid food matrices. Lactose or trehalose was used as the structure-forming material for the entrapment of hydrophilic ascorbic acid and thiamine hydrochloride or the encapsulation of oil particles containing hydrophobic α-tocopherol. In the delivery of hydrophobic ...

  12. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2015-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  13. Characteristics of porous zirconia coated with hydroxyapatite as human bones

    Indian Academy of Sciences (India)

    V V Narulkar; S Prakash; K Chandra

    2007-08-01

    Since hydroxyapatite has excellent biocompatibility and bone bonding ability, porous hydroxyapatite ceramics have been intensively studied. However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared by ceramic slurry infiltration of expanded polystyrene bead compacts, followed by firing at 1500°C. Then slurry of hydroxyapatite–borosilicate glass mixed powder was used to coat the porous ceramics, followed by firing at 1200°C. The porous structures without the coating had high porosities of 51–69%, high pore interconnectivity, and sufficiently large pore window sizes (300–500 m). The porous ceramics had compressive strengths of 5.3∼36.8 MPa, favourably comparable to the mechanical properties of cancellous bones. In addition, porous hydroxyapatite surface was formed on the top of the composite coating, whereas a borosilicate glass layer was found on the interface. Thus, porous zirconia-based ceramics were modified with a bioactive composite coating for biomedical applications.

  14. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  15. Preparation of bioactive porous HA/PCL composite scaffolds

    Science.gov (United States)

    Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J.

    2008-12-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  16. Bioactive glass thin films synthesized by advanced pulsed laser techniques

    Science.gov (United States)

    Mihailescu, N.; Stan, George E.; Ristoscu, C.; Sopronyi, M.; Mihailescu, Ion N.

    2016-10-01

    Bioactive materials play an increasingly important role in the biomaterials industry, and are extensively used in a range of applications, including biodegradable metallic implants. We report on Bioactive Glasses (BG) films deposition by pulsed laser techniques onto biodegradable substrates. The BG coatings were obtained using a KrF* excimer laser source (λ= 248 nm, τFWHM ≤ 25 ns).Their thickness has been determined by Profilometry measurements, whilst their morphology has been analysed by Scanning Electron Microscopy (SEM). The obtained coatings fairly preserved the targets composition and structure, as revealed by Energy Dispersive X-Ray Spectroscopy, Grazing Incidence X-Ray Diffraction, and Fourier Transform Infra-Red Spectroscopy analyses.

  17. 基于实际应力-应变曲线的电沉积镍涂层的冲压成形极限%Forming Limit of Electrodeposited Nickel Coating Based on Actual Stress-strain Curves

    Institute of Scientific and Technical Information of China (English)

    周里群; 邓晶; 周凯; 李玉平

    2011-01-01

    Hill localized instability theory was used to derive the stress-strain equations of nickel coating sheet during forming process.By using polynomial fitting for experimental data,actual stress-strain curves of the electrodeposited nickel coating sheet were obtained.The forming limit left region of the nickel coating sheet was calculated by solving a nonlinear equation,and compared with one by using strain hardening curves.The research results show that the forming limit of the nickel coating by polynomial fitting is higher in security than the one by strain hardening curves,and the substrate anisotropy,coating thickness and substrate thickness have little influences on the formed limit curves.The results may play a directive role on the electrodeposited nickel coating sheet preparation.%基于Hill集中失稳理论推导出了冲压成形过程中涂层与基体的应力-应变方程,通过求解非线性方程计算出各主应变。依据实验数据采用多项式拟合法拟合了材料的应力-应变曲线,对电沉积镍涂层的冲压成形极限的左边进行了计算,并和应变硬化曲线求得的成形极限进行了比较。计算结果表明,用多项式拟合法求得的电沉积镍涂层的成形极限安全区域比用应变硬化曲线求得的安全区域要高,基体厚向异性、涂层厚度和基体厚度对板料成形极限左边影响不大。

  18. Apolar Bioactive Fraction Of Melipona Scutellaris Geopropolis On Streptococcus Mutans Biofilm.

    OpenAIRE

    Marcos Guilherme da Cunha; Marcelo Franchin; Lívia Câmara de Carvalho Galvão; Bruno Bueno-Silva; Masaharu Ikegaki; Severino Matias de Alencar; Pedro Luiz Rosalen

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop a...

  19. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    OpenAIRE

    2012-01-01

    The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings cont...

  20. Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass

    Science.gov (United States)

    Goh, Yi-fan; Akram, Muhammad; Alshemary, Ammarz; Hussain, Rafaqat

    2016-11-01

    In this study, we have presented the structural and in vitro characterization of electrospun polylactic acid (PLA)/Chitosan nanofibers coated with cerium, copper or silver doped bioactive glasses (CeBG/CuBG/AgBG). Bead-free, smooth surfaced nanofibers were successfully prepared by using electrospinning technique. The nanocomposite fibers were obtained using a facile dip-coating method, their antibacterial activities against E. coliE. coli (ATCC 25922 strains) were measured by the disk diffusion method after 24 h of incubation at 37 °C. CeBG and CuBG decorated PLA/Chitosan nanofibers did not develop an inhibition zone against the bacteria. On the other hand, nanofibers coated with AgBG developed an inhibition zone against the bacteria. The as-prepared nanocomposite fibers were immersed in SBF for 1, 3 and 7 days in Simulated Body Fluid (SBF) for evaluation of in vitro bioactivity. All samples induced the formation of crystallites with roughly ruffled morphology and the pores of fibers were covered with the extensive growth of crystallites. Energy Dispersive X-ray (EDX) composition analysis showed that the crystallites possessed Ca/P ratio close to 1.67, confirming the good in-vitro bioactivity of the fibers.

  1. Calcium phosphate coating on magnesium alloy by biomimetic method :Investigation of morphology ,composition and formation process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Magnesium alloy has similar mechanical properties with natural bone and can degrade via corrosion in the electrolytic environment of the human body.Calcium phosphate has been proven to possess bioactivity and bone inductivity.In order to integrate both advantages,calcium phosphate coating was fabricated on magnesium alloy by a biomimetic method.Supersaturated calcification solutions (SCSs) with different Ca/P ratio and C1- concentration were used as mimetic solutions.The morphology,composition and formation process of the coating were studied with scanning electron microscopy (SEM),energy dispersive spectrometer (EDS),Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD).The results show that a uniform calcium phosphate coating was observed on magnesium alloy,the properties of which could be adjusted by the SCSs with different Ca/P ratio.The formation process of the coating was explored by immersing magnesium alloy in SCSs with different Cl- concentration which could adjust the hydrogen production.According to SEM results,the hydrogen bubbles were associated with the formation of grass-like and flower-like coating morphologies.In conclusion,the biomimetic method was effective to form calcium phosphate coating on magnesium alloy and the morphology and composition of the coating could be accommodated by the Ca/P ratio and Cl- concentration in SCSs.

  2. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Mello, A [Instituto Militar de Engenharia, IME, Rio de Janeiro, 22290-270, RJ (Brazil); Hong, Z [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Rossi, A M [Centro Brasileiro de Pesquisas FIsicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, RJ (Brazil); Luan, L [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Farina, M [Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ, 21941-590 (Brazil); Querido, W [Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ, 21941-590 (Brazil); Eon, J [Inst. QuImica, PUC/RJ, Rio de Janeiro, 21941-590, RJ (Brazil); Terra, J [Centro Brasileiro de Pesquisas FIsicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, RJ (Brazil); Balasundaram, G [Division of Engineering, Brown University, Providence, RI, 02912 (United States); Webster, T [Division of Engineering, Brown University, Providence, RI, 02912 (United States); Feinerman, A [Department of Electrical and Computer Engineering, University of Illinois, Chicago, IL, 60612 (United States); Ellis, D E [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Ketterson, J B [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Ferreira, C L [Instituto Militar de Engenharia, IME, Rio de Janeiro, 22290-270, RJ (Brazil)

    2007-06-01

    Right angle magnetron sputtering (RAMS) was used to produce hydroxyapatite (HA) film coatings on pure titanium substrates and oriented silicon wafer (Si(0 0 1)) substrates with flat surfaces as well as engineered surfaces having different forms. Analyses using synchrotron XRD, AFM, XPS, FTIR and SEM with EDS showed that as-sputtered thin coatings consist of highly crystalline hydroxyapatite. The HA coatings induced calcium phosphate precipitation when immersed in simulated body fluid, suggesting in vivo bioactive behavior. In vitro experiments, using murine osteoblasts, showed that cells rapidly adhere, spread and proliferate over the thin coating surface, while simultaneously generating strong in-plane stresses, as observed on SEM images. Human osteoblasts were seeded at a density of 2500 cells cm{sup -2} on silicon and titanium HA coated substrates by RAMS. Uncoated glass was used as a reference substrate for further counting of cells. The highest proliferation of human osteoblasts was achieved on HA RAMS-coated titanium substrates. These experiments demonstrate that RAMS is a promising coating technique for biomedical applications.

  3. Dense and porous titanium substrates with a biomimetic calcium phosphate coating

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.A., E-mail: aantunesr@yahoo.com.br [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Balestra, R.M. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Rocha, M.N. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Peripolli, S.B. [Materials Metrology Division, National Institute of Metrology, Normalization and Quality, No. 50 Nossa Senhora das Gracas Street, Building 3, 25250-020 Duque de Caxias, RJ (Brazil); Andrade, M.C. [Polytechnic Institute of Rio de Janeiro, Rio de Janeiro State University, s/n, Alberto Rangel Street, 28630-050 Nova Friburgo, RJ (Brazil); Pereira, L.C. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, M.V. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A biomimetic coating method with simplified solution is proposed. Black-Right-Pointing-Pointer Titanium substrates are submitted to chemical and heat treatments. Black-Right-Pointing-Pointer Titanium substrates are coated with biocompatible calcium phosphate phases. Black-Right-Pointing-Pointer The simplified solution shows potential to be applied as a coating technique. - Abstract: The present work studied a biomimetic method using a simplified solution (SS) with calcium and phosphorus ions for coating titanium substrates, in order to improve their bioactivity. Commercially pure titanium dense sheet, microporous and macroporous titanium samples, both produced by powder metallurgy, were treated in NaOH solution followed by heat-treating and immersed in SS for 7, 14 or 21 days. The samples characterization was performed by quantitative metallographic analysis, confocal scanning optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and low angle X-ray diffraction. The results showed coatings with calcium phosphate precipitation in all samples, with globular or plate-like morphology, typical of hydroxyapatite and octacalcium phosphate, respectively, indicating that the solution (SS) has potential for coating titanium substrates. In addition, the different surfaces of substrates had an effect on the formed calcium phosphate phase and thickness of coatings, depending on the substrate type and imersion time in the simplified solution.

  4. [An investigation of HAP/organic polymer composite coatings prepared by electrochemical co-deposition technique].

    Science.gov (United States)

    Hu, Haobing; Lin, Changjian; Leng, Yang

    2003-03-01

    An electrochemical co-deposition technique has been developed to prepare a hydroxyapatite (HAP)/organic polymer composite coatings on Ti surface as new biomaterial of hard tissue. The composite coating of organic polymer and calcium phosphate is formed by adding a water soluble polymer of the ethylene series to NH4H2PO4-Ca (NO3)2 solution when conducting an appropriate electrochemical co-deposition experiment. The XRD, SEM, XPS, SIMS and nano indent measurements were performed to characterize the morphology, composition, structure and surface stiffness of the composite coating. It was found that the morphology and surface hardness of the coatings showed a remarkable modification when introducing a minor polymer to HAP coating, and the bonding force between the coating and metal substrate was distinctly increased. The incorporation of minor organic polymer into the HAP compound at molecular level will improve the mechanical properties and morphology of the composite coatings, and this may be helpful to raising its bio-activity.

  5. Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings.

    Directory of Open Access Journals (Sweden)

    Sarah Strauss

    Full Text Available Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells.

  6. Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings.

    Science.gov (United States)

    Strauss, Sarah; Neumeister, Anne; Barcikowski, Stephan; Kracht, Dietmar; Kuhbier, Jörn W; Radtke, Christine; Reimers, Kerstin; Vogt, Peter M

    2013-01-01

    Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells.

  7. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    Science.gov (United States)

    Kim, In Ae; Rhee, Sang-Hoon

    2010-01-01

    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.

  8. Cytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels.

    Science.gov (United States)

    Ossa, C P O; Rogero, S O; Tschiptschin, A P

    2006-11-01

    Stainless steel has been frequently used for temporary implants but its use as permanent implants is restricted due to its low pitting corrosion resistance. Nitrogen additions to these steels improve both mechanical properties and corrosion resistance, particularly the pitting and crevice corrosion resistance. Many reports concerning allergic reactions caused by nickel led to the development of nickel free stainless steel; it has excellent mechanical properties and very high corrosion resistance. On the other hand, stainless steels are biologically tolerated and no chemical bonds are formed between the steel and the bone tissue. Hydroxyapatite coatings deposited on stainless steels improve osseointegration, due their capacity to form chemical bonds (bioactive fixation) with the bone tissue. In this work hydroxyapatite coatings were plasma-sprayed on three austenitic stainless steels: ASTM-F138, ASTM-F1586 and the nickel-free Böhler-P558. The coatings were analyzed by SEM and XDR. The cytotoxicity of the coatings/steels was studied using the neutral red uptake method by quantitative evaluation of cell viability. The three uncoated stainless steels and the hydroxyapatite coated Böhler-P558 did not have any toxic effect on the cell culture. The hydroxyapatite coated ASTM-F138 and ASTM-F1586 stainless steels presented cytotoxicity indexes (IC50%) lower than 50% and high nickel contents in the extracts.

  9. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  10. Marine actinobacteria: an important source of bioactive natural products.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms.

  11. Bioactivity of mica/apatite glass ceramics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.

  12. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Tian, Peng; Xu, Demin; Liu, Xuanyong

    2016-05-01

    The rapid degradation of magnesium-based implants in physiological environments in vivo not only will quickly deteriorate their mechanical strengths but will also lead to a severe change of the micro-environment around the implants, which may cause the final failure of magnesium-based implants. In this work, a polycaprolactone (PCL) layer was prepared to seal the plasma electrolytic oxidization coating (PEO) to form a PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy, followed by further surface functionalization with polydopamine. The in vitro degradation behaviors of the bare AZ31 alloy and coated samples were evaluated in a simulated body fluid (SBF) using the potentiodynamic polarization curve test and the static immersion test. The bioactivity of the samples was investigated using the SBF soaking test. The cytocompatibility of all samples was evaluated using the cytotoxicity test and analysis of the adhesion and proliferation of osteoblast cells (MC3T3-E1) directly cultivated on the sample surface. The results showed that the PCL layer successfully sealed the pores of the PEO coating, and then the polydopamine layer formed on its surface. The in vitro degradation tests showed that the PEO/PCL composite coating improved the corrosion resistance of the AZ31 alloy in SBF with a more positive corrosion potential and a lower corrosion current density. Due to the protection of the PEO/PCL composite coating, the surrounding environment showed nearly no influence on the degradation of the coated sample, which led to no obvious local alkalization and hydrogen evolution. Moreover, compared with the AZ31 alloy and PEO coating, the PEO/PCL composite coating was more suitable for cell adhesion and proliferation. After further surface functionalization by polydopamine, the corrosion resistance of the composite coating was maintained, while its bioactivity was significantly enhanced with a large amount of hydroxyapatite (HA) formed on its surface after

  13. RECENT TECHNIQUES OF PHARMACEUTICAL SOLVENTLESS COATING: A REVIEW

    OpenAIRE

    Shital Dhuppe , S.S. Mitkare*, D.M. Sakarkar

    2012-01-01

    The coating of solid pharmaceutical dosage forms began in the 9th century B. C., with the Egyptians. Conventional coating techniques are based on solvents or water. Solventless coatings are alternative technique of coating. In solventless coating, the coating material is directly spread on the core and then it is cured by special method to form coat. Solventless coating avoids the use of water or it reduces to very small amounts with respect t...

  14. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Furqan A., E-mail: furqan.ali.shah@biomaterials.gu.se

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F{sup −}) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F{sup −} ions may be incorporated into the glass in the form of calcium fluoride (CaF{sub 2}) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F{sup −} incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. - Highlights: • Fluoride ions form charged CaF{sup +} species rather than Si–F bonds. • Fluoride incorporation lowers glass transition and crystallisation temperatures. • Oxynitride and oxyfluoronitride glasses with superior mechanical properties • Mixed-alkali and alkali-free compositions with better processing characteristics.

  15. Mesoporous silica coatings for cephalosporin active release at the bone-implant interface

    Energy Technology Data Exchange (ETDEWEB)

    Rădulescu, Dragoş [Bucharest University Hospital, Department of Orthopedics and Traumatology, 169 Splaiul Independentei, 050098 Bucharest (Romania); Voicu, Georgeta; Oprea, Alexandra Elena; Andronescu, Ecaterina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Grumezescu, Valentina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, PO Box MG-36, Măgurele, Bucharest (Romania); Holban, Alina Maria [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, Bucharest (Romania); Research Institute of the University of Bucharest, Bd. Mihail Kogălniceanu 36-46, 050107 Bucharest (Romania); Vasile, Bogdan Stefan; Surdu, Adrian Vasile [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); and others

    2016-06-30

    Graphical abstract: - Highlights: • Silica/Zinforo thin coatings by matrix assisted pulsed laser evaporation. • Anti-adherent coating on medical surfaces against E. coli. • Thin coatings show a great biocompatibility in vitro and in vivo. - Abstract: In this study, we investigated the potential of MAPLE-deposited coatings mesoporous silica nanoparticles (MSNs) to release Zinforo (ceftarolinum fosmil) in biologically active form. The MSNs were prepared by using a classic procedure with cetyltrimethylammonium bromide as sacrificial template and tetraethylorthosilicate as the monomer. The Brunauer–Emmett–Teller (BET) and transmission electron microscopy (TEM) analyses revealed network-forming granules with diameters under 100 nm and an average pore diameter of 2.33 nm. The deposited films were characterized by SEM, TEM, XRD and IR. Microbiological analyses performed on ceftaroline-loaded films demonstrated that the antibiotic was released in an active form, decreasing the microbial adherence rate and colonization of the surface. Moreover, the in vitro and in vivo assays proved the excellent biodistribution and biocompatibility of the prepared systems. Our results suggest that the obtained bioactive coatings possess a significant potential for the design of drug delivery systems and antibacterial medical-use surfaces, with great applications in bone implantology.

  16. Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian, E-mail: tanwaikian@cie.ignite.tut.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Pulau Pinang 14300 Malaysia (Malaysia); Matsuda, Atsunori, E-mail: matsuda@tut.ee.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan)

    2015-02-15

    The morphological evolution of the zinc oxide (ZnO) nanostructures generated by hot-water treatment (HWT) of sol–gel derived coatings as a function of temperature from 30 to 90 °C was investigated. With increasing HWT temperature, the ZnO crystals evolved from nanoparticles to rod-like and needle-like nanostructures. High-resolution transmission electron microscope observations of rod-like and needle-like nanostructures generated at 60 and 90 °C indicated single crystal ZnO wurtzite structure was obtained. All the hot-water treated samples exhibited blue emission at approximately 440 nm in room temperature. The intensity of blue emission increased with higher HWT temperatures. The unique photoluminescence emission characteristic remained even after heat-treatment at 400 °C for 1 h. As the emission peak obtained in our work is approximately 440 nm (2.82 eV), the emission peak is corresponding to the electron transition from the interstitial Zn to the top of valence band. This facile formation of blue-emitting ZnO nanostructures at low-temperature can be utilized on substrate with low thermal stability for optoelectronic applications such as light emitting devices and biological fluorescence labeling. - Highlights: • Facile and novel formation of ZnO nanostructures by low temperature hot-water treatment. • No catalyst or inhibitor is used. • Evolution of ZnO nanostructures formation as a function of temperature is reported. • Dominant blue emissions are observed from the as-formed and annealed ZnO films. • Ultraviolet and visible emissions are observed for hot-water treated films.

  17. Elaboración del plan HACCP para gestión de inocuidad en la línea de proceso de salchichas de una planta de productos cárnicos cárnicos1 Cytotoxic and genotoxic study of in vitro released productos of stainless steel 316L with bioactive ceramic coatings

    Directory of Open Access Journals (Sweden)

    Diana Cortés

    2003-01-01

    test, on CHO cells, of the released products in a MEM media, after a period of 30 days, of the stainless steel 316L with no coat, coated with a coat of silica glass (MC, or with two coats of the same glass, containing bioactive particles of hydroxyapatite (HA, glass (V or glassceramic powder (VC. The results show that there is not citotoxic effects in a test with an aging of 30 days in MEM media; a genotoxic effect was found in the A and MC samples, but without real risk for cell systems.

  18. Estudio in vitro de la citotoxicidad y genotoxicidad de los productos liberados del acero inoxidable 316L con recubrimientos cerámicos bioactivos Cytotoxic and genotoxic study of in Vitro released products of stainless Steel 316l with bioactive ceramic Coatings

    Directory of Open Access Journals (Sweden)

    María Elena Márquez Fernández

    2007-03-01

    species (ERO and damages of the ADN, increasing the possibility of local tumors and mechanical failure of the implant. A strategy used to minimize the generation of ions is the superficial modification of the implants by means of inorganic coatings, ceramic or vitreous, applied by the sol-gel process; this method has a series of comparative advantages, compared to other deposition methods, as good adherence, easy application, minimum drying problems, low densification temperatures and the possibility of adding particles and/or organic groups that improve the adhesion of the cell to the implant, increasing the biocompatibility. In the present work, the citotoxic effects were valuated by means of the MTT technique, and the genotoxic ones by electrophoresis of individual cell gels (Cometa test, on CHO cells, of the released products in a MEM media, after a period of 30 days, of the stainless steel 316L with no coat, coated with a coat of silica glass (MC, or with two coats of the same glass, containing bioactive particles of hydroxyapatite (HA, glass (V or glassceramic powder (VC. The results show that there is not citotoxic effects in a test with an aging of 30 days in MEM media; a genotoxic effect was found in the A and MC samples, but without real risk for cell systems.

  19. Effects of Al2O3 Nano-Particles on Corrosion Performance of Plasma Electrolytic Oxidation Coatings Formed on 6061 Aluminum Alloy

    Science.gov (United States)

    Vakili-Azghandi, Mojtaba; Fattah-alhosseini, Arash; Keshavarz, Mohsen K.

    2016-12-01

    Corrosion resistance improvement of plasma electrolyte oxidation coatings on 6061 aluminum alloy in silicate electrolyte containing Al2O3 nano-particles was studied, with particular emphasis on the microstructure, coating growth, and corrosion behavior in 3.5 wt.% NaCl solution. The microstructure of coatings, their thickness, and phase composition were characterized using scanning electron microscopy and x-ray diffraction. All characterization data showed that the maximum coating thickness and lowest amount of porosity were obtained in a low concentration of KOH, a high concentration of Na2SiO3, and moderate concentration of Al2O3 nano-particles in the electrolyte. This combination describes the optimum plasma electrolytic oxidation electrolyte, which has the best conductivity and oxidizing state, as well as the highest incorporation of electrolyte components in the coating growth process. On the other hand, incorporation and co-deposition of Al2O3 nano-particles were more pronounced than SiO3 2- ions in some level of molar concentration, which is due to the higher impact of electron discharge force on the adsorption of Al2O3 nano-particles. The electrochemical results showed that the best protective behavior was obtained in the sample having a coat with the lowest porosity and highest thickness.

  20. Slurry Erosion Characteristics and Erosive Wear Mechanisms of Co-Based and Ni-Based Coatings Formed by Laser Surface Alloying

    Science.gov (United States)

    Shivamurthy, R. C.; Kamaraj, M.; Nagarajan, R.; Shariff, S. M.; Padmanabham, G.

    2010-02-01

    In the present work, an attempt has been made to study the slurry erosion properties and operating erosive wear mechanisms of Co-based Stellite 6 and Ni-based Colmonoy 88 coatings, and also to list the conditions at which maximum and minimum erosion rates occur. Laser surface alloying (LSA) has been done on 13Cr-4Ni steels with commercial Co-based Stellite 6 and Ni-based Colmonoy 88 powders. Slurry erosion tests have been conducted on LSA-modified steels for a constant slurry velocity of 12 m/s and for a fixed slurry concentration of 10 kg/m3 of irregular, sharp-edged SiO2 particles with average sizes of 375 and 100 μm and at impingement angles of 30, 45, 60, and 90 deg. A mixed (neither ductile nor brittle) mode of erosion behavior for Stellite 6 coatings and a brittle mode of erosion behavior for Colmonoy 88 coatings were observed when these materials were impacted with particles with an average size of 375 μm, whereas only a brittle mode of erosion was observed for both Stellite 6 and Colmonoy 88 coatings when impacted with particles with an average size of 100 μm. Mainly, chip formation, chip fracture, microcutting, plowing, and crater lip and platelet formation were observed for Stellite 6 coatings and progressive fracture of carbides, carbide pullout and carbide/boride intact were observed for the case of Colmonoy 88 coatings.

  1. 紫珠止血涂膜剂成膜材料及附加剂的优选%Optimization of Film-forming Materials and Additives for Zizhu Zhixue Film Coating Agent

    Institute of Scientific and Technical Information of China (English)

    谢玲; 钟晓红; 刘东波; 左亚杰; 刘静

    2012-01-01

    目的:优选紫珠止血涂膜剂成膜材料和附加剂.方法:以成膜时间、外观质量作为评价指标采用综合加权评分法进行成膜材料及附加剂的筛选.结果:90%乙醇溶解的聚乙烯醇(PVA1788-PVA124 1∶3)2 g作为成膜材料,并添加甘油lmL,聚山梨酯-80(吐温-80)0.2 mL,制成的紫珠止血涂膜剂成膜时间较短且成膜性能好.结论:优选的成膜材料和附加剂可用于紫珠止血涂膜剂的制备.%Objective: To optimize film-forming materials and additives of Zizhu Zhixue film coating agent with a satisfactory film-forming property. Method: Film-forming materials and additives were selected by synthetic weighted mark method with film-forming time and appearance quality as evaluation indexes. Result: Polyvinyl alcohol ( PVA1788-PVA124 1 : 3) dissolved by 90% ethanol as film-forming material, and added glycerin 1 mL and Tween -80 0. 2 mL. This prepared Zizhu Zhixue film coating agent had advantages of short film-forming time and film-forming property was well. Conclusion: It suggested that these film-forming materials and additives in this test could be used for forming process of Zizhu Zhixue film coating agent.

  2. 铝合金表面纳米化--微弧氧化复合涂层摩擦行为%Tribological behavior of SNC-MAO composite coatings formed on the surface of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    文磊; 王亚明; 金莹

    2015-01-01

    通过表面机械研磨处理在LY12CZ铝合金表面制备表面纳米化( SNC)过渡层,再采用微弧氧化( MAO)技术对纳米晶过渡层进行微结构重构,设计制备出纳米化-微弧氧化( SNC-MAO)复合涂层,并对比研究了铝合金表面微弧氧化涂层及纳米化-微弧氧化复合涂层的摩擦学行为。与微弧氧化涂层相比,纳米化-微弧氧化复合涂层因硬度较高而具有较好的耐磨性。微弧氧化涂层及纳米化-微弧氧化复合涂层与GCr15钢球对磨时具有相同的磨损机理,为对磨钢球向涂层的材料转移和氧化磨损。%A duplex process was designed to modify the surface of LY12CZ aluminum alloy by using surface mechanical attrition treatment ( SMAT) prior to microarc oxidation ( MAO) . A surface nanocrystalline ( SNC) layer was formed on the alloy surface by SMAT, a ceramic outer layer grew on the SNC layer by MAO, and finally an SNC-MAO composite coating was fabricated. The tribo-logical behaviors of the MAO coating and SNC-MAO composite coating were comparatively evaluated. Experimental results showed that the SNC-MAO composite coating had a better wear resistance than the MAO coating in the same test condition due to a higher hardness of the ceramic coating. The wear mechanism of the MAO coating and SNC-MAO composite coating involved materials transfer from the steel ball to the coating and oxidation wear.

  3. 超音速氧焰喷涂HA/BG涂层的制备及表征%Research on Properties of HA/BG Coatings Prepared by HVOF Spraying

    Institute of Scientific and Technical Information of China (English)

    鲍益富; 翁杰; 冯波; 段可

    2009-01-01

    Hydroxyapatite (HA) coatings with bioactive glass (BG) was prepared on Ti6A14V matrix by high velocity oxygen-fuel spray. The phase morphology and bioactivity of the coatings were studied. The X-ray diffraction shows that the coatings are mainly crystalline HA and exhibit no thermal decomposition byproducts. The addition of BG does not affect the coating phases. The SEM observation shows that the HA particles are partially melted, with melting fraction of 13%, and spherical BG particles are incorporated on the HA coating. The BG content of the surface coating is lower than that in input powder. After soaking in simulated body fluid for 7 days, only the coating with 20% BG forms a bone-like apatite, which indicates that the addition of BG increases the bioactivity of the coating.%利用超音速氧焰喷涂(HVOF)在Ti6A14V基体上制备了羟基磷灰石(HA)/生物玻璃(BG)涂层,考察了涂层的相组成、表面形貌及生物活性.XRD显示:涂层的结晶相为HA,未检测到HA分解产物,添加生物玻璃不影响涂层的相组成;SEM结果表明:HA颗粒熔化较少,计算熔化比例为13%,BG颗粒以球形方式镶嵌在涂层表面,含量小于粉末中的比例:涂层浸泡在模拟体液中7天后发现:添加20%BG的涂层表面有类骨类磷灰石涂层生成,说明添加BG可以提高涂层的生物活性.

  4. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.-M. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, L.; Kantiranis, N. [Department of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lazaridis, N.K. [Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K.; Chatzistavrou, X. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M., E-mail: kpar@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  5. Cementless Hydroxyapatite Coated Hip Prostheses

    Directory of Open Access Journals (Sweden)

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  6. Combined Effect of Long Processing Time and Na2SiF6 on the Properties of PEO Coatings Formed on AZ91D

    Science.gov (United States)

    Rehman, Zeeshan Ur; Koo, Bon Heun

    2016-08-01

    In this study, protective ceramic coatings were prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) to improve the corrosion and mechanical properties of AZ91D magnesium alloy. The process was conducted in silicate-fluoride-based electrolyte solution. It was found that the average micro-hardness of the coating was significantly increased with an increase in the PEO processing time. The highest value of the average micro-hardness ~1271.2 HV was recorded for 60-min processing time. The phase analysis of the coatings indicated that they were mainly composed of Mg2SiO4, MgO, and MgF2 phases. The surface and cross-sectional study demonstrated that porosity was largely reduced with processing time, together with the change in pore geometry from irregular to spherical shape. The results of the polarization test in 3.5 wt.% NaCl solution revealed that aggressive corrosion took place for 5-min sample; however, the corrosion current was noticeably decreased to 0.43 × 10-7 A/cm2 for the 60-min-coated sample. The superior nobility and hardness for long processing time are suggested to be due to the dense and highly thick coating, coupled with the presence of MgF2 phase.

  7. Coated electroactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  8. Preparation and characterization of laser cladding wollastonite derived bioceramic coating on titanium alloy.

    Science.gov (United States)

    Li, Huan-cai; Wang, Dian-gang; Chen, Chuan-zhong; Weng, Fei; Shi, Hua

    2015-09-25

    The bioceramic coating is fabricated on titanium alloy (Ti6Al4V) by laser cladding the preplaced wollastonite (CaSiO3) powders. The coating on Ti6Al4V is characterized by x-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy, and attenuated total reflection Fourier-transform infrared. The interface bonding strength is measured using the stretching method using an RGD-5-type electronic tensile machine. The microhardness distribution of the cross-section is determined using an indentation test. The in vitro bioactivity of the coating on Ti6Al4V is evaluated using the in vitro simulated body fluid (SBF) immersion test. The microstructure of the laser cladding sample is affected by the process parameters. The coating surface is coarse, accidented, and microporous. The cross-section microstructure of the ceramic layer from the bottom to the top gradually changes from cellular crystal, fine cellular-dendrite structure to underdeveloped dendrite crystal. The coating on Ti6Al4V is composed of CaTiO3, CaO, α-Ca2SiO4, SiO2, and TiO2. After soaking in the SBF solution, the calcium phosphate layer is formed on the coating surface.

  9. Study of preparation of BG/HA gradient coating on titanium alloy by electrophoretic deposition method

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ming; HAN Qing-rong; LI Shi-pu; XU Chuan-bo

    2001-01-01

    In this paper, a gradient bioactive coating made from modified bioglass (BG) and hydroxyapatite (HA) was prepared by electrophoretic deposition method(EPD)on the surface of titanium alloy. Strong bonding between the matrix and BG/HA gradient coating was got by sintering. Crystal composition of the coating was analyzed by XRD. The characteristics of surface and cross section of the coating were observed by SEM. Adhesive strength of the coating was tested by pull method. The optimizing technological parameters were determined.

  10. Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2015-01-01

    Full Text Available Purpose. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material. Study Selection. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords “PEEK dental implants,” “nano,” “osseointegration,” “surface treatment,” and “modification.” A total of 16 in vivo and in vitro studies were found suitable to be included in this review. Results. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials. Conclusion. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.

  11. Effect of Coated PHB on Properties of Abradable Seal Coating

    Institute of Scientific and Technical Information of China (English)

    CHENG Xudong; XIANG Hongyu; YE Weiping; MENG Xiaoming; MIN Jie; LIU Minzhi; ZHANG Pu; LU Wei

    2014-01-01

    As pore-forming materials, the coated poly-p-hydroxybenzoate(short for PHB) and h-BN can be applied in the preparation of abradable seal coatings at high temperature. The characteristics of coating such as morphology, thermal stability and composition were studied by SEM, EDS and FTIR. The results show that the modified PHB will change the remained carbon amount, porosity and pore morphology of the coating, which can affect the properties of coatings. If the pore is small enough in uniform distribution, the coating with 5 MPa bond strength, 30-55 HR45Y superficial hardness and certain of carbon can be suitable to well abradability.

  12. Bioactive proteins from pipefishes

    Institute of Scientific and Technical Information of China (English)

    E. Rethna Priya; S. Ravichandran; R. Ezhilmathi

    2013-01-01

    Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment.Methods:Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains.Results:Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm) and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm). In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm) and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm). Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups.Conclusions:It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  13. How useful is SBF in predicting in vivo bone bioactivity?

    Science.gov (United States)

    Kokubo, Tadashi; Takadama, Hiroaki

    2006-05-01

    The bone-bonding ability of a material is often evaluated by examining the ability of apatite to form on its surface in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. However, the validity of this method for evaluating bone-bonding ability has not been assessed systematically. Here, the history of SBF, correlation of the ability of apatite to form on various materials in SBF with their in vivo bone bioactivities, and some examples of the development of novel bioactive materials based on apatite formation in SBF are reviewed. It was concluded that examination of apatite formation on a material in SBF is useful for predicting the in vivo bone bioactivity of a material, and the number of animals used in and the duration of animal experiments can be reduced remarkably by using this method.

  14. Fabrication and in vitro characterization of magnetic hydroxycarbonate apatite coatings with hierarchically porous structures.

    Science.gov (United States)

    Guo, Yaping; Zhou, Yu; Jia, Dechang; Meng, Qingchang

    2008-07-01

    Hydroxycarbonate apatite/Fe(3)O(4) composite coatings (MHACs) with hierarchically porous structures were fabricated by electrophoretic deposition of CaCO(3)/Fe(3)O(4) particles on Ti6Al4V substrates followed by treatment with phosphate buffer solution (PBS) at 37 degrees C. The effects of Fe(3)O(4) on the conversion rate of calcium carbonate to hydroxycarbonate apatite and the porous structures and in vitro bioactivity of MHACs were investigated. After soaking CaCO(3)/Fe(3)O(4) coatings in PBS, hydroxycarbonate apatite nucleates heterogeneously on the surfaces of CaCO(3)/Fe(3)O(4) particles and forms a plate-like structure. Fe(3)O(4) increases the velocity of nucleus formation of hydroxycarbonate apatite. After soaking for 1day, the percentage of unreacted calcium carbonate for MHACs is approximately 9.1%, lower than the approximately 41.0% for hydroxycarbonate apatite coatings (HCACs). As the CaCO(3)/Fe(3)O(4) coatings are converted to MHACs, macropores with a pore size of approximately 4mum on the coatings and mesopores with a pore size of approximately 3.9nm within the hydroxycarbonate apatite plates are formed. The mesopores remain in the MHACs after treatment with PBS for 9 days, while they disappear in the HCACs. Simulated body fluid immersion tests reveal that Fe(3)O(4) improves the in vitro bioactivity of biocoatings. The amount of bone-like apatite precipitated on the surfaces of MHACs is greater than that on the surfaces of HCACs.

  15. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H2SO4 and CaCl2. Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H2SO4 and CaCl2; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites.

  16. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    Science.gov (United States)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  17. RECENT TECHNIQUES OF PHARMACEUTICAL SOLVENTLESS COATING: A REVIEW

    Directory of Open Access Journals (Sweden)

    Shital Dhuppe , S.S. Mitkare*, D.M. Sakarkar

    2012-07-01

    Full Text Available The coating of solid pharmaceutical dosage forms began in the 9th century B. C., with the Egyptians. Conventional coating techniques are based on solvents or water. Solventless coatings are alternative technique of coating. In solventless coating, the coating material is directly spread on the core and then it is cured by special method to form coat. Solventless coating avoids the use of water or it reduces to very small amounts with respect to the coating material hence it overcomes the limitations of conventional coating such as need for time, energy consuming, drying steps and the most important drug stability issues. A variety of solventless coating approaches are described in this review as powder coating, hot melt coating, supercritical fluid coating, magnetically assisted impaction coating, Plasma enhanced chemical vapor deposition. This review summarizes basic principle and process of the coating techniques.

  18. Reduction of protein adsorption on silica and polysulfone surfaces coated with complex coacervate core micelles with poly(vinyl alcohol) as a neutral brush forming block

    NARCIS (Netherlands)

    Brzozowska, A. M.; Zhang, Q.; de Keizer, A.; Norde, W.; Stuart, M. A. Cohen

    2010-01-01

    We have studied the formation and stability of complex coacervate core micelles (C3Ms) in solution, and the influence of C3M coatings on the adsorption of the proteins beta-lactoglobulin (beta-lac), bovine serum albumin (BSA). and lysozyme (Lsz) on silica and polysulfone surfaces. The C3M5 consist o

  19. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.M., E-mail: menti.goudouri@ww.uni-erlangen.de [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Theodosoglou, E. [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Will, J. [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Chrissafis, K. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, A.R. [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis of an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.

  20. Composite hydrophilic coating for conditioner aluminum fins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To solve the so-called "white rust" and 'water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.

  1. Microbial Fouling Characteristics of Slime-forming Bacteria on Composite Coating of Ni-P-PTFE%Ni-P-PTFE镀层表面黏液形成菌的污垢特性

    Institute of Scientific and Technical Information of China (English)

    徐志明; 姚响; 白文玉; 刘坐东; 王景涛

    2016-01-01

    目的 研究Ni-P-PTFE镀层改性换热面对微生物污垢的抑制作用.方法 调整化学镀工艺,在换热器常用的低碳钢表面制备不同性能的复合镀层,获取镀层厚度、镀速和表面能等参数.对低碳钢和Ni-P-PTFE复合镀层进行微观形貌对比,并进行黏液形成菌污垢静置实验,测量菌悬液中的细菌数量变化及试样质量变化.分析复合镀层表面在黏液形成菌污垢实验前后的宏观和微观形貌,与低碳钢试样进行对比,研究复合镀层试样表面能和镀层表面污垢沉积的关联性.结果 Ni-P-PTFE复合镀层改变了换热面的表面性能,接触角明显增大,表面能由改性前的49.16 mJ/m2降低到7.54 mJ/m2.与低碳钢的静置结果 相比,悬挂复合镀层试样的菌悬液中黏液形成菌数量显著减少,复合镀层试样表面平均污垢沉积量减少到2.3 g/m2(低碳钢表面为12.1 g/m2).结论 Ni-P-PTFE镀层可以有效抑制黏液形成菌的生长,低表面能有效减少了微生物污垢的沉积,使其表现出良好的耐蚀性和抗垢性.%Objective In order to investigate the influence of the modified surface on microbial fouling, the microbial fouling ex-periment of slime-forming bacteria on the composite coating of Ni-P-PTFE was conducted in this study. Methods Several composite coatings with different properties were prepared by electroless plating on the surface of carbon steel and the parameters such as plat-ing thickness, plating speed and surface energy were obtained. The microstructure of electroless composite plating of Ni-P-PTFE and low carbon was compared by scanning electron microscopy, and the slime-forming bacteria microbial fouling experiments of low carbon steel and the composite coatings samples were conducted. The variation of bacteria amount in the bacterial suspension and weight variation of the samples were documented; The macroscopic and microscopic morphologies of the composite coatings were obtained and analyzed

  2. 钛合金表面氟化物-磷酸盐转化膜的制备及性能研究%Preparation and Properties of Fluoride-Phosphate Conversion Coating Formed on Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    叶君; 杜楠; 王力强; 尹茂生; 周国华; 王帅星

    2015-01-01

    目的:研究一种钛合金化学转化工艺,增强钛合金表面防护能力及其与涂层的结合能力。方法通过单因素实验确定TC1钛合金氟化物-磷酸盐转化工艺,采用SEM,EDS,XRD分析膜层的微观形貌及成分,同时测试转化膜的有关性能。结果在Na3 PO440 g/L,NaF 15 g/L,酸度调节剂A 25 mL/L,pH控制在4.4~4.6之间,温度30益条件下,可在TC1钛合金表面获得均匀一致的灰色转化膜。转化膜由许多细小的球状晶粒组成,主要相成分为Na3 TiOF5及Na2 TiF6。转化膜的摩擦系数仅为0.3~0.5,明显低于TC1基体。转化膜与TB06-9底漆的干性附着力为0级,浸泡48 h后的湿态附着力仍可达1级,远远好于TC1基体。结论氟化物-磷酸盐转化膜可以降低TC1钛合金的摩擦系数,提高其与有机涂层的附着力。%ABSTRACT:Objective A chemical conversion technique was researched to enhance the protective ability of titanium alloy surface and the adhesion between titanium alloy and organic coating. Methods The preparation technique of fluoride-phosphate conversion coating formed on TC1 alloy was determined by the single-factor experiments. The microstructure and composition of conversion coating were analyzed by SEM, EDS and XRD. Besides, the related properties of the conversion coating were researched. Results A uniform, coherent and gray conversion coating could be obtained on the surface of TC1 alloy when Na3 PO4 , NaF, Acidity Regu-lator A, pH and temperature were 40 g/L, 15 g/L, 25 mL/L, 4. 4~4. 6 and 30 ℃, respectively. The microstructure of the coa-ting showed many small spherical grains. The main phase components were Na3 TiOF5 and Na2 TiF6 . The friction coefficient of the fluoride-phosphate conversion coating was only 0. 3~0. 5, which was significantly lower than that of TC1 alloy. The dry adhesion level between conversion coating and TB06-9 organic coating was 0, and the wet adhesion level after 48 h immersion could still reach 1, both were far

  3. The future of bioactive ceramics.

    Science.gov (United States)

    Hench, Larry L

    2015-02-01

    Two important worldwide needs must be satisfied in the future; (1) treatment of the deteriorating health of an aging population and, (2) decreasing healthcare costs to meet the needs of an increased population. The ethical and economic dilemma is how to achieve equality in quality of care while at the same time decreasing cost of care for an ever-expanding number of people. The limited lifetime of prosthetic devices made from first-generation nearly inert biomaterials requires new approaches to meet these two large needs. This paper advises an expanded emphasis on: (1) regeneration of tissues and (2) prevention of tissue deterioration to meet this growing need. Innovative use of bioactive ceramics with genetic control of in situ tissue responses offers the potential to achieve both tissue regeneration and prevention. Clinical success of use of bioactive glass for bone regeneration is evidence that this concept works. Likewise the use of micron sized bioactive glass powders in a dentifrice for re-mineralization of teeth provides evidence that prevention of tissue deterioration is also possible. This opinion paper outlines clinical needs that could be met by innovative use of bioactive glasses and ceramics in the near future; including: regeneration of skeletal tissues that is patient specific and genetic based, load-bearing bioactive glass-ceramics for skeletal and ligament and tendon repair, repair and regeneration of soft tissues, and rapid low-cost analysis of human cell-biomaterial interactions leading to patient specific diagnoses and treatments using molecularly tailored bioceramics.

  4. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  5. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.

    Science.gov (United States)

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration.

  6. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  7. In vitro bioactivity and osteoblast response of porous NiTi synthesized by SHS using nanocrystalline Ni-Ti reaction agent.

    Science.gov (United States)

    Gu, Y W; Li, H; Tay, B Y; Lim, C S; Yong, M S; Khor, K A

    2006-08-01

    Porous NiTi with an average porosity of 55 vol % and a general pore size of 100-600 microm was synthesized by self-propagating high temperature synthesis (SHS) with the addition of mechanically alloyed nanocrystalline Ni-Ti as the reaction agent. The SHS of porous NiTi using elemental powders was also performed for comparison. To enhance the bioactivity of the metal surface, porous NiTi synthesized by nanocrystalline Ni-Ti was subjected to chemical treatment to form a layer of TiO(2) coating. The porous NiTi with TiO(2) coating was subsequently immersed in a simulated body fluid (SBF) to investigate its apatite forming ability. The effects of the addition of nanocrystalline Ni-Ti as reaction agent and the application of apatite coating on osteoblastic behavior were studied in primary cultures of human osteoblast cells. Results showed that the main phases in porous NiTi synthesized by elemental powders were NiTi, Ti(2)Ni, and unreacted free Ni. By using nanocrystalline Ni-Ti as reaction agent, the secondary intermetallic phase of Ti(2)Ni was significantly reduced and the free Ni was eliminated. TiO(2) coating with anatase phase was formed on the surface of porous NiTi after the chemical treatment. A layer consisting of nanocrystalline carbonate-containing apatite was formed on the surface of TiO(2) coating after soaking in SBF. The preliminary cell culture studies showed that the porous NiTi synthesized with the addition of nanocrystalline Ni-Ti attracted marked attachment and proliferation of the osteoblast cells. This gives the evidence of the potential biomedical applications of the porous NiTi.

  8. Dynamic residual stress in thermal sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiping; Yang Yuanyuan

    2005-01-01

    With the modified Almen method, the forming and development process of residual stress in a thermal sprayed coating has been obtained. The test results identify that the residual stress in a coating is depend on coating material properties, technique and coating thickness. The paper pays much attention to the hysteresis between the coating temperature and residual stress in the coating or between the applied stress and the strain of the coating, and confirms that the fact is resulted from the"Gas Fix" character of a thermal sprayed coating.

  9. Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode

    Science.gov (United States)

    Dai, Libin; Li, Wenfang; Zhang, Guoge; Fu, Nianqing; Duan, Qi

    2017-01-01

    In this study, a uniform and less defective ceramic coating was prepared on high Si content aluminium alloys by a sectionalized plasma electrolytic oxidation (PEO) mode. The PEO process of Al-9 wt. % Si binary alloy was performed under constant current mode followed by constant voltage mode. The surface micrographs and chemical compositions of different samples were analysed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Micro-hardness and reciprocal-sliding testers were used to measure the coatings hardness and tribological performance. It was found that the sectionalized PEO mode could produce hard and anti-friction passive oxide layers with smaller holes and fewer cracks on the Al-Si alloy, comparing with the single constant current mode. In addition, the results of polarization curves and electrochemical impedance spectroscopy (EIS) tests conducted in 3.5 wt. % NaCl solution revealed that the coatings obtained by sectionalized PEO mode had a higher corrosion resistance and provided better corrosion protection for Al-Si alloy.

  10. Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications

    Science.gov (United States)

    Coletta, D.J.; Lozano, D.; Rocha-Oliveira, A.A.; Mortarino, P.; Bumaguin, G.E.; Vitelli, E.; Vena, R.; Missana, L.; Jammal, M. V.; Portal-Núñez, S.; Pereira, M.; Esbrit, P.; Feldman, S.

    2014-01-01

    Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds PMID:24772196

  11. Dense protective coatings, methods for their preparation and coated articles

    Energy Technology Data Exchange (ETDEWEB)

    Tulyani, Sonia; Bhatia, Tania; Smeggil, John G.

    2015-12-29

    A method for depositing a protective coating on a complex shaped substrate includes the steps of: (1) dipping a complex shaped substrate into a slurry to form a base coat thereon, the slurry comprising an aqueous solution, at least one refractory metal oxide, and at least one transient fluid additive present in an amount of about 0.1 percent to 10 percent by weight of the slurry; (2) curing the dipped substrate; (3) dipping the substrate into a precursor solution to form a top barrier coat thereon; and (4) heat treating the dipped, cured substrate to form a protective coating.

  12. Plant-derived bioactive compounds produced by endophytic fungi.

    Science.gov (United States)

    Zhao, J; Shan, T; Mou, Y; Zhou, L

    2011-02-01

    Plant endophytic fungi are an important and novel resource of natural bioactive compounds with their potential applications in agriculture, medicine and food industry. In the past two decades, many valuable bioactive compounds with antimicrobial, insecticidal, cytotoxic, and anticancer activities have been successfully discovered from endophytic fungi. During the long period of co-evolution, a friendly relationship was formed between each endophyte and its host plant. Some endophytes have the ability to produce the same or similar bioactive compounds as those originated from their host plants. This review mainly deals with the research progress on endophytic fungi for producing plant-derived bioactive compounds such as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin, and diosgenin. The relations between endophytic fungi and their host plants, biological activities and action mechanisms of these compounds from endophytic fungi, some available strategies for efficiently promoting production of these bioactive compounds, as well as their potential applications in the future will also be discussed. It is beneficial for us to better understand and take advantage of plant endophytic fungi.

  13. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  14. Preparation and bioactivity of sol-gel macroporous bioactive glass

    Institute of Scientific and Technical Information of China (English)

    Zhihua Zhou; Jianming Ruan; Jianpeng Zou; Zhongcheng Zhou

    2008-01-01

    Bioactive glass is well known for its ability of bone regeneration, and sol-gel bioactive glass has many advantages com-pared with melt-derived bioactive glass. 3-D scaffold prepared by the sol-gel method is a promising substrate material for bone tissue engineering and large-scale bone repair. Porous sol-gel glass in the CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by the addition of stearic acid as a pore former. The diameter of the pore created by the pore former varied from 100 to 300μm. The formation of a hydroxyapatite layer on the glass was analyzed by studying the surface of the porous glass by scanning elec-tron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Raman spectra after they had been immersed in simulated body fluid (SBF) for some time, and the porous glass shows good bioactivity.

  15. Bioactive glasses potential biomaterials for future therapy

    CERN Document Server

    Kaur, Gurbinder

    2017-01-01

    This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.

  16. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    Directory of Open Access Journals (Sweden)

    Mozafari M

    2013-04-01

    Full Text Available Masoud Mozafari,1,2 Erfan Salahinejad,1,3 Vahid Shabafrooz,1 Mostafa Yazdimamaghani,1 Daryoosh Vashaee,4 Lobat Tayebi1,5 1Helmerich Advanced Technology Research Center, School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK, USA; 2Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence, Amirkabir University of Technology, Tehran, Iran; 3Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran; 4Helmerich Advanced Technology Research Center, School of Electrical and Computer Engineering, Oklahoma State University, Tulsa, OK, USA; 5School of Chemical Engineering, Oklahoma State University, Tulsa, OK, USA Abstract: Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. Keywords: bioactive glass, zirconium titanate, spin-coating, microstructural properties, bone/dental applications, tissue engineering

  17. Study on Forming Mechanism of Laser Cladding Composite Coating Reinforced by WC Particles%激光熔覆WC颗粒增强涂层成形机理研究

    Institute of Scientific and Technical Information of China (English)

    张三川

    2005-01-01

    In this paper, making use of dynamics theory of two-phase fluid, the author discussed the forming mechanism of laser cladding coat that it contained solid phase WC particles, which they were not dissolved in forming process of cladding coat. The results showed that the distributing state of WC particles depended mainly on the fluid of main phase melting material (Ni60 self-melting alloy) in the pool, and the fluid was related with laser energy density. The forming physical models were built by means of energy theory, and a test example was applied to testify these results.%利用两相流体动力学原理,讨论了含碳化钨不混溶颗粒增强涂层的成形机理,结果表明碳化钨粒子在涂层中的分布状态主要取决于熔池中的熔融主相合金材料的流动性,依据激光能量与流动性关系,建立了相应的物理模型,并列举了一个实验实例.

  18. A new approach to fabricate bioactive silica binary and ternary hybrid microspheres.

    Science.gov (United States)

    Angelopoulou, A; Efthimiadou, E K; Kordas, G

    2015-08-01

    Bioactive microspheres represent an extremely developing field in biomedical applications, such as bone tissue engineering and bone pathologies (metabolic bone disease, trauma or bone cancer). Their innate osteogenic properties have turned them to biomaterials with improved added value. The aim of this study was to prepare binary and ternary hybrid silica microspheres with enhanced bioactive properties according to our previous synthetic procedure. In brief, the synthetic approach based on the emulsifier free-emulsion polymerization method, by which polystyrene (PS) microspheres were produced and used as core template for the sol-gel coating method. During the coating reaction an inorganic shell was fabricated by silane and phosphate precursors (tetraethoxysilane, trimethylphosphate). The final microspheres were treated by different catalyst concentrations, during the coating process, which resulted in the formation of diffused voids (a porous-like structure). The in vitro bioactivity of the resultant microspheres was studied by treatment in simulated body fluids (SBF). The bioassay evaluation indicates the deposition of a bone-like apatite layer on microspheres' surface with enhanced bioresorbability, which verifies their bioactivity and permits their application in the treatment of bone pathologies.

  19. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.

    Science.gov (United States)

    Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

    2015-01-01

    In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications.

  20. In vitro bioactivity and cytotoxicity of chemically treated glass fibers

    Directory of Open Access Journals (Sweden)

    Ângela Leão Andrade

    2004-12-01

    Full Text Available Samples of a commercial glass fiber FM® (Fiber Max were used to test the efficacy of a chemical sol-gel surface treatment to enhance their bioactivity. After treatment with tetraethoxysilane (TEOS, individual fiber samples were soaked into a simulated body fluid (SBF solution, from which they were removed at intervals of 5 and 10 days. Micrographs obtained by scanning electron microscopy (SEM analysis of samples chemically treated with TEOS revealed the formation of a hydroxyapatite (HA coating layer after 5 days into SBF solution. Fourier transform infrared spectroscopic (FTIR analyses confirmed that the coating layer has P-O vibration bands characteristic of HA. The in vitro cytotoxicity was evaluated using a direct contact test, minimum essential medium elution test (ISO 10993-5 and MTT assay. Fibers immersed in SBF and their extracts exhibited lower cytotoxicity than the controls not subjected to immersion, suggesting that SBF treatment improves the biocompatibility of the fiber.

  1. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    Science.gov (United States)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  2. Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings

    Directory of Open Access Journals (Sweden)

    Storey Dan

    2007-01-01

    Full Text Available AbstractBioactive coatings are in high demand to control cellular functions for numerous medical devices. The objective of this in vitro study was to characterize for the first time fibroblast (fibrous scar tissue forming cells adhesion and proliferation on an important polymeric biomaterial (silicone coated with titanium using a novel ionic plasma deposition (IPD process. Fibroblasts are one of the first anchorage-dependent cells to arrive at an implant surface during the wound healing process. Persistent excessive functions of fibroblasts have been linked to detrimental fibrous tissue formation which may cause implant failure. The IPD process creates a surface-engineered nanostructure (with features usually below 100 nm by first using a vacuum to remove all contaminants, then guiding charged metallic ions or plasma to the surface of a medical device at ambient temperature. Results demonstrated that compared to currently used titanium and uncoated silicone, silicone coated with titanium using IPD significantly decreased fibroblast adhesion and proliferation. Results also showed competitively increased osteoblast (bone-forming cells over fibroblast adhesion on silicone coated with titanium; in contrast, osteoblast adhesion was not competitively increased over fibroblast adhesion on uncoated silicone or titanium controls. In this manner, this study strongly suggests that IPD should be further studied for biomaterial applications in which fibrous tissue encapsulation is undesirable (such as for orthopedic implants, cardiovascular components, etc..

  3. The effect of magnetic field on electrochemically deposited calcium phosphate/collagen coatings.

    Science.gov (United States)

    Zhao, Xueni; He, Jianpeng; Zhang, Jing; Wang, Xudong; Wang, Wanying

    2014-01-01

    Nanostructured calcium phosphate/collagen (CaP/COL) coatings were deposited on the carbon/carbon (C/C) composites through electrochemical deposition (ECD) under magnetic field. The effect of magnetic fields with different orientations on the morphology and composition was investigated. Both the morphology and composition of the coatings could be altered by superimposed magnetic field. Under zero magnetic field and magnetic field, three-dimensional network structure consisting of collagen fibers and CaP were formed on the C/C substrate. The applied magnetic field in the electric field helped to form nanostructured and plate-like CaP on collagen fibers. For the ECD under magnetic field, the Ca/P molar ratio of the coatings was lower than the one under B=0. This may be contributed to the decreased electrical resistance or the increased electrical conductivity of electrolyte solutions under magnetic field. The nanosized CaP/COL coatings exhibited the similar morphology to the human bone and could present excellent cell bioactivity and osteoblast functions.

  4. Microencapsulation as a tool for incorporating bioactive ingredients into food.

    Science.gov (United States)

    Kuang, S S; Oliveira, J C; Crean, A M

    2010-11-01

    Microencapsulation has been developed by the pharmaceutical industry as a means to control or modify the release of drug substances from drug delivery systems. In drug delivery systems microencapsulation is used to improve the bioavailability of drugs, control drug release kinetics, minimize drug side effects, and mask the bitter taste of drug substances. The application of microencapsulation has been extended to the food industry, typically for controlling the release of flavorings and the production of foods containing functional ingredients (e.g. probiotics and bioactive ingredients). Compared to the pharmaceutical industry, the food industry has lower profit margins and therefore the criteria in selecting a suitable microencapsulation technology are more stringent. The type of microcapsule (reservoir and matrix systems) produced and its resultant release properties are dependent on the microencapsulation technology, in addition to the physicochemical properties of the core and the shell materials. This review discusses the factors that affect the release of bioactive ingredients from microcapsules produced by different microencapsulation technologies. The key criteria in selecting a suitable microencapsulation technology are also discussed. Two of the most common physical microencapsulation technologies used in pharmaceutical processing, fluidized-bed coating, and extrusion-spheronization are explained to highlight how they might be adapted to the microencapsulation of functional bioactive ingredients in the food industry.

  5. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties

    Science.gov (United States)

    Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.

    2015-10-01

    Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.

  6. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants

    NARCIS (Netherlands)

    Barrere, F.; Valk, van der C.M.; Dalmeijer, R.A.J.; Blitterswijk, van C.A.; Groot, de K.; Layrolle, P.

    2003-01-01

    Calcium phosphate (Ca-P) coatings have been applied onto titanium alloys prosthesis to combine the srength of metals with the bioactivity of Ca-P. It has been clearly shown in many publications that Ca-P coating accelerates bone formation around the implant. However, longevity of the Ca-P coating fo

  7. Fabrication and characterization of bioactive glass-ceramic using soda–lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Mojtaba; Hashemi, Babak, E-mail: hashemib@shirazu.ac.ir

    2014-04-01

    Soda–lime–silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. - Highlights: • A bioactive glass-ceramic was synthesized using soda–lime–silica waste glass. • Solid-state reaction method was used to synthesize bioactive glass-ceramic. • Ca{sub 2}Na{sub 2}Si{sub 3}O{sub 9} and CaNaPO{sub 4} were formed with a one-step thermal treatment condition. • The amounts of crystalline and amorphous phases influenced the bioactivity. • The sample with a smaller amount of the crystalline phase had a higher bioactivity.

  8. Synthesis and characterization of TEP-EDTA-regulated bioactive hydroxyapatite

    Science.gov (United States)

    Haders, Daniel Joseph, II

    Hydroxyapatite (HA), Ca10(PO4)6(OH) 2, the stoichiometric equivalent of the ceramic phase of bone, is the preferred material for hard tissue replacement due to its bioactivity. However, bioinert metals are utilized in load-bearing orthopedic applications due to the poor mechanical properties of HA. Consequently, attention has been given to HA coatings for metallic orthopedic implants to take advantage of the bioactivity of HA and the mechanical properties of metals. Commercially, the plasma spray process (PS-HA) is the method most often used to deposit HA films on metallic implants. Since its introduction in the 1980's, however, concerns have been raised about the consequences of PS-HA's low crystallinity, lack of phase purity, lack of film-substrate chemical adhesion, passivation properties, and difficulty in coating complex geometries. Thus, there is a need to develop inexpensive reproducible next-generation HA film deposition techniques, which deposit high crystallinity, phase pure, adhesive, passivating, conformal HA films on clinical metallic substrates. The aim of this dissertation was to intelligently synthesize and characterize the material and biological properties of HA films on metallic substrates synthesized by hydrothermal crystallization, using thermodynamic phase diagrams as the starting point. In three overlapping interdisciplinary studies the potential of using ethylenediamine-tetraacetic acid/triethyl phosphate (EDTA/TEP) doubly regulated hydrothermal crystallization to deposit HA films, the TEP-regulated, time-and-temperature-dependent process by which films were deposited, and the bioactivity of crystallographically engineered films were investigated. Films were crystallized in a 0.232 molal Ca(NO3)2-0.232 molal EDTA-0.187 molal TEP-1.852 molal KOH-H2O chemical system at 200°C. Thermodynamic phase diagrams demonstrated that the chosen conditions were expected to produce Ca-P phase pure HA, which was experimentally confirmed. EDTA regulation of

  9. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method.

    Science.gov (United States)

    Ning, C Q; Zhou, Y

    2002-07-01

    Traditionally, hydroxyapatite was used as a coating material on titanium substrate by various techniques. In the present work, a biocomposite was successfully fabricated from hydroxyapatite and titanium powders by powder metallurgy method. Bioactivity of the composite in a simulated body fluid (SBF) was investigated. Main crystal phases of the as-fabricated composite are found to be Ti2O, CaTiO3, CaO, alpha-Ti and a TiP-like phase. When the composite is immersed in the simulated body fluid for a certain time, a poor-crystallized, calcium-deficient, carbonate-containing apatite film will form on the surface of the composite. The time required to induce apatite nucleation is within 2 h. In addition, the apatite is also incorporated with a little magnesium and chlorine element. It is found that Ti2O has the ability to induce the formation of bone-like apatite in the SBF. And a dissolve of the CaO phase could also provide favorable conditions for the apatite formation, by forming open pores on the surface of the composite and increasing the degree of supersaturation of the SBF with respect to the apatite.

  10. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    Science.gov (United States)

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices.

  11. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  12. Fluorescent Bioactive Corrole Grafted-Chitosan Films.

    Science.gov (United States)

    Barata, Joana F B; Pinto, Ricardo J B; Vaz Serra, Vanda I R C; Silvestre, Armando J D; Trindade, Tito; Neves, Maria Graça P M S; Cavaleiro, José A S; Daina, Sara; Sadocco, Patrizia; Freire, Carmen S R

    2016-04-11

    Transparent corrole grafted-chitosan films were prepared by chemical modification of chitosan with a corrole macrocycle, namely, 5,10,15-tris(pentafluorophenyl)corrole (TPFC), followed by solvent casting. The obtained films were characterized in terms of absorption spectra (UV-vis), FLIM (fluorescence lifetime imaging microscopy), structure (FTIR, XPS), thermal stability (TGA), thermomechanical properties (DMA), and antibacterial activity. The results showed that the chemical grafting of chitosan with corrole units did not affect its film-forming ability and that the grafting yield increased with the reaction time. The obtained transparent films presented fluorescence which increases with the amount of grafted corrole units. Additionally, all films showed bacteriostatic effect against S. aureus, as well as good thermomechanical properties and thermal stability. Considering these features, promising applications may be envisaged for these corrole-chitosan films, such as biosensors, bioimaging agents, and bioactive optical devices.

  13. A bioactive elastin-like recombinamer reduces unspecific protein adsorption and enhances cell response on titanium surfaces.

    Science.gov (United States)

    Salvagni, Emiliano; Berguig, Geoffrey; Engel, Elisabeth; Rodriguez-Cabello, J Carlos; Coullerez, Geraldine; Textor, Marcus; Planell, Josep A; Gil, F Javier; Aparicio, Conrado

    2014-02-01

    We present the immobilization on synthetic substrates of elastin-like recombinamers (ELR) that combine a bioactive motif for cell adhesion with protein antifouling properties. Physical adsorption of the recombinamers and covalent-grafting through organosilane chemistry were investigated. The biochemically-modified surfaces were thoroughly characterized and tested for protein absorption in serum by fluorescence-labelling, XPS, Ellipsometry, and OWLS. The ELR were successfully grafted and stable, even upon mechanical stresses; being the covalent bonding favourable over physical adsorption. The coated metal surfaces exhibited excellent reduction of serum protein adsorption (9 ng/cm(2)) compared to the bare metal surface (310 ng/cm(2)). Non-specific protein adsorption may mask the introduced bioactive motifs; therefore, the bioactivated surfaces should display serum-protein antifouling properties. Finally, improved hMSCs response was assessed on the bioactivated substrates. In summary, the coatings simultaneously displayed anti-fouling and bioactive properties. These studies investigated key factors to enhance tissue material interactions fundamental for the design of bioactive devices and future biomedical applications.

  14. 丙三醇在铝合金微弧氧化膜形成中作用的研究%Study on Function of Glycerin in Forming Ceramic Coating on Aluminum Alloy by MAO

    Institute of Scientific and Technical Information of China (English)

    刘彩文; 刘向东

    2012-01-01

    在Na2SiO3-NaOH复合电解液体系下,对ZAlSi12Cu2Mg1微弧氧化陶瓷膜的形成进行了研究;通过改变丙三醇的含量,研究了其对电解液的电导率、微弧氧化的临界起弧电压、稳定氧化时间和陶瓷膜层厚度的影响,分析了丙三醇的作用.结果表明,丙三醇含量从0ml/L到12 ml/L变化时,临界起弧正向电压由360V逐渐升高至410V,稳定氧化时间由16 min延长到26 min;含量从0 ml/L增加到4 ml/L时,膜厚从65μm迅速增加到152 μm.含量超过4 ml/L,膜厚缓慢增加.电解液中加入丙三醇,膜层中除了莫来石相,还出现了α-Al2O3、y-Al2O3、WO3和SiO2相.%The forming of ceramic coatings on the surface of ZAlSi2Cu2Mgl by MAO in a Na2Si03-Na0H compound electrolyte were investigated. The influences of Glycerin content on the conductivity of electrolytes, arc starting voltage, stable oxidation time and thicknesses of ceramic coatings were analyzed, respectively. The results show that, when the content of Glycerin rises from 0 to 12 ml/L, arc starting voltage increases from 360 V to 410 V , stable oxidation time increases from 16 min to 26 min; When the content of Glycerin rises from 0 to 4 ml/L, the thickness of ceramic coatings rises gradually from 63 μm to 152 μm and rises slowly subsequently. The ceramic coatings formed from the electrolyte with Glycerin are composed of mullite, α-Al2O3, γ-Al2O3, WO3 and SiO2.

  15. Fabrication and Characterization of Hierarchically Nanostructured Porous Carbonated Hydroxyapatite Coatings

    Institute of Scientific and Technical Information of China (English)

    吕君英; 郭亚平

    2012-01-01

    Hierarchically nanostructured porous carbonated hydroxyapatite coatings (HNPCs) on Ti6A14V substrate were fabricated by a two-stage application route:fabrication of nacre coatings (NCs) on Ti6A14V substrate by electrophoretic technique,and conversion of NCs to HNPCs in a phosphate buffer solution (PBS) by microwave irradiation method.Their samples were characterized by using XRD,FT-IR,SEM,TEM,and N2 adsorption-desorption isotherms.The results show that the microwave irradiation technique improves obviously the conversion rate of NCs to HNPCs as compared with conventional method.After soaking the NCs in the PBS,calcium ions are released from the nacre particles and react with phosphate ions to form carbonated hydroxyapatite nanoparticles.These nanoparticles aggregate to form the plate-like carbonated apatite.The mesopores with a size of about 3.9 nm and macropores with the diameters of 1~4 μm exist within and among the carbonated apatite plates,respectively.Simulated body fluid immersion tests reveal that the HNPCs have a good in vitro bioactivity.

  16. Structure, dielectric and bioactivity of P2O5-CaO-Na2O-B2O3 bioactive glass

    Science.gov (United States)

    Maheswaran, A.; Hirankumar, G.; Heller, Nithya; Karthickprabhu, S.; Kawamura, Junichi

    2014-06-01

    Bioactive phosphate glasses have been widely investigated for bone repair. Phosphate glass system of 47P2O5-30.5CaO-(22.5-x)Na2O-xB2O3 has been prepared by melt quenching technique. From the Raman analysis, it is confirmed that phosphate network form metaphosphate structure. Bioactivity of the glass is studied by immersing the prepared glass in simulated body fluid (SBF). All the glasses exhibited bioactivity after soaking in SBF. Addition of B2O3 to the glass by replacing the Na2O produces considerable effect on the dielectric and bioactivity of the glass. Ion dynamics are also analyzed through imaginary modulus and imaginary dielectric permittivity.

  17. Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design.

    Science.gov (United States)

    Cui, Haitao; Zhu, Wei; Nowicki, Margaret; Zhou, Xuan; Khademhosseini, Ali; Zhang, Lijie Grace

    2016-09-01

    A biphasic artificial vascularized bone construct with regional bioactive factors is presented using dual 3D bioprinting platform technique, thereby forming a large functional bone grafts with organized vascular networks. Biocompatible mussel-inspired chemistry and "thiol-ene" click reaction are used to regionally immobilize bioactive factors during construct fabrication for modulating or improving cellular events.

  18. An overview of the effects of thermal processing on bioactive glasses

    Directory of Open Access Journals (Sweden)

    Bellucci D.

    2010-01-01

    Full Text Available Bioglass® 45S5 is widely used in biomedical applications due to its ability to bond to bone and even to soft tissues. The sintering ability of Bioglass® powders is a key factor from a technological point of view, since its govern the production of advanced devices, ranging from highly porous scaffolds to functionalized coatings. Unfortunately this particular glass composition is prone to crystallize at the temperature required for sintering and this may impair the bioactivity of the original glass. For these reasons, a prerequisite to tailor the fabrication of Bioglass®-derived implants is to understand the interaction between sintering, crystallization and bioactivity. In this work the structural transformations which occur during the heat treatment of Bioglass® are reviewed and a special attention is paid to the sintering and crystallization processes. Moreover the bioactivity of the final glass-ceramics is discussed and some alternative glass formulations are reported.

  19. 膜控微丸:口服缓控释固体制剂新兴产业方向%Coated pellets:the emerging direction of oral modified-release solid dosage forms

    Institute of Scientific and Technical Information of China (English)

    高春生

    2014-01-01

    Oral modified-release multiple-unit dosa ge forms such as coated pellets have always been more effective therapeutic alternative to conventional single-unit dosage forms. Coated pellets ranging in size,typically,between 0.5-1.0 mm,are produced primarily for the purpose of oral controlled-release dosage forms having gastro-resistant or sustained-release properties or the capability of site-specific drug delivery. With regards to the final dosage form,the multi-particulates are usually formulated into single-unit dosage forms such as filling them into hard gelatin capsules or compressing them into tablets. As drug-delivery systems become more sophisticated,the role of pellets in the design and development of dosage forms is increasing. The safety and efficacy of the formulation is higher than that of other dosage forms. This review provides an update on this research area and discusses the phenomena and mechanisms of the multi-particulate system concluding multiple-unit pellet system and pellet-containing tablets.%膜控微丸作为一种新型的剂量分散型调释制剂,具有比常规制剂更佳的治疗效果。它的粒径大多分布在0.5~1.0 mm,终剂型为胶囊剂或微丸压片剂,可实现药物的恒定释放、定时脉冲释放或肠道定位释药等。膜控微丸的安全性和有效性优势显著。随着新型释药系统研究和应用的不断深入,膜控微丸在新产品研发中的角色正被广泛关注,已成为缓控释制剂的主要发展方向。本文综述了膜控微丸的典型特性和应用,及其在行业发展中的巨大潜力,并分析其在产业化过程中的优势与不足。

  20. The addition of rosehip oil to Aloe gels improves their properties as postharvest coatings for maintaining quality in plum.

    Science.gov (United States)

    Martínez-Romero, Domingo; Zapata, Pedro J; Guillén, Fabián; Paladines, Diego; Castillo, Salvador; Valero, Daniel; Serrano, María

    2017-02-15

    The effect of Aloe vera gel (AV) and Aloe arborescens gel (AA) alone or in combination with rosehip oil (RO) at 2% on ethylene production, respiration rate, quality parameters, bioactive compounds and antioxidant activity during plum postharvest storage was studied. Coated plums showed a delay in ethylene production and respiration rate at 20°C and during cold storage and subsequent shelf life, the main effect being observed for those fruits coated with AA+RO. Quality parameters such as softening, colour and maturity index was also delayed during storage by the use of the coatings, which led to a 2-fold increase in plum storability. Accumulation of bioactive compounds was also delayed although at the end of the experiment the content of bioactive compounds was higher than those found for control fruits at the estimated shelf life. The most effective coating for maintaining plum quality and bioactive compounds was AA+RO.

  1. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    Science.gov (United States)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  2. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    Science.gov (United States)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  3. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  4. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility.

    Science.gov (United States)

    Kim, Hae-Won; Georgiou, George; Knowles, Jonathan C; Koh, Young-Hag; Kim, Hyoun-Ee

    2004-08-01

    MPa, an improvement of approximately 80% with respect to the pure HA coating. The composite coatings showed much higher dissolution rates than the pure HA coating due to the newly formed crystallines (TCP and DCP) and the remaining glass phase. The osteoblast-like cells grew and spread actively on the composite coating samples. The proliferation numbers and alkaline phosphate (ALP) activities of the cells on the composite coatings were improved by approximately 30-40% when compared to Thermanox control and ZrO(2) substrate, and were comparable to the pure HA coating. These findings suggested that the CaP and P-glass composites are potentially useful for hard tissue coating system, due to their morphological and mechanical integrity, enhanced bioactivity, and favorable responses to the osteoblast-like cells.

  5. Multispectral Coatings

    Science.gov (United States)

    2010-01-01

    nanowires. 2.2 Project Objectives  This project used spin coating technology, new and commercial nanoparticle composites, and ODC’s patented...of this project. The spin coating method to deposit polymers has been widely studied and allows for simple, low cost depositions of thin films...Figure 5). Spin coating controls the layer thickness by balancing the centrifugal forces of a developing thin film to the viscous forces that increase

  6. Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2.

    Science.gov (United States)

    Poth, Nils; Seiffart, Virginia; Gross, Gerhard; Menzel, Henning; Dempwolf, Wibke

    2015-01-08

    A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.

  7. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    Directory of Open Access Journals (Sweden)

    Nils Poth

    2015-01-01

    Full Text Available A simple method for the functionalization of a common implant material (Ti6Al4V with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2, using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.

  8. Method for making nanoporous hydrophobic coatings

    Science.gov (United States)

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  9. Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating

    Energy Technology Data Exchange (ETDEWEB)

    Hanas, T. [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); School of Nano Science and Technology, National Institute of Technology Calicut, Calicut, Kerala 673601 (India); Sampath Kumar, T.S., E-mail: tssk@iitm.ac.in [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Perumal, Govindaraj; Doble, Mukesh [Department of Biotechnology - Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-08-01

    AZ31 magnesium alloy was coated with polycaprolactone (PCL) nano-fibrous layer using electrospinning technique so as to control degradation in physiological environment. Before coating, the alloy was treated with HNO{sub 3} to have good adhesion between the coating and substrate. To elucidate the role of pre-treatment and coating, samples only with PCL coating as well as HNO{sub 3} treatment only were prepared for comparison. Best coating adhesion of 4B grade by ASTM D3359–09 tape test was observed for pre-treated samples. The effect of coating on in vitro degradation and biomineralization was studied using supersaturated simulated body fluid (SBF 5 ×). The weight loss and corrosion results obtained by immersion test showed that the combination of HNO{sub 3} pre-treatment and PCL coating is very effective in controlling the degradation rate and improving bioactivity. Cytotoxicity studies using L6 cells showed that PCL coated sample has better cell adhesion and proliferation compared to uncoated samples. Nano-fibrous PCL coating combined with prior acid treatment seems to be a promising method to tailor degradation rate with enhanced bioactivity of Mg alloys. - Highlights: • PCL electrospun coating on HNO{sub 3} pre-treated AZ31 alloy controls biodegradation. • Acid pre-treatment stabilizes the substrate - coating interface. • Electrospun porous coating improves biomineralization. • Coating similar to extracellular matrix enhances cell adhesion.

  10. Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: Plasma sprayed glass-coatings.

    Science.gov (United States)

    Miola, M; Ferraris, S; Di Nunzio, S; Robotti, P F; Bianchi, G; Fucale, G; Maina, G; Cannas, M; Gatti, S; Massé, A; Vitale Brovarone, C; Verné, E

    2009-03-01

    A 57% SiO(2), 3% Al(2)O(3), 34% CaO and 6% Na(2)O glass (SCNA) has been produced in form of powders and deposited by plasma spray on titanium alloy and stainless steel substrates. The obtained coatings have been subjected to a patented ion-exchange treatment to introduce silver ions in the surface inducing an antibacterial behavior. Silver surface-enriched samples have been characterized by means of X-ray diffraction, SEM observation, EDS analysis, in vitro bioactivity tests, leaching tests by GFAAS (graphite furnace atomic adsorption spectroscopy) analyses, cells adhesion and proliferation, and antibacterial tests using Staphylococcus Aureus strain. In vitro tests results showed that the modified samples acquired an antimicrobial action against tested bacteria maintaining unaffected the biocompatibility of the glass. Furthermore the ion-exchange treatment can be successfully applied to glass-coated samples without affecting the properties of the coatings; the simplicity and reproducibility of the method make it suitable for glass or glass-ceramic coatings of different composition in order to produce coated devices for bone healing and/or prostheses, able to reduce bacterial colonization and infections risks.

  11. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  12. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  13. Preparation of Ti6Al4V/BG/HA graded coating by electrophoresis deposition in absolute alcohol medium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A codeposition of bioglass (BG) and hydroxyapatite (HA) on the substrate Ti6Al4V is realized in a nonaqueous solution system by inducing crystallization of HA on surface of the BG grain and electrophoresis deposition (EPD), and then a bioactive graded ceramic coating was obtained after sintering of the coating. This technique is a new method for making bioactive graded coating. The adhesive strength between the coating and the substrate reaches 18?MPa, and the better electrophoresis depositing parameters and optimal sintering procedure are obtained.

  14. Bright Prospects for Fluorine Coatings

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Fluorine coatings are a category of new coatings with fluorine-containing resins as the major film forming substances.They have excellent weather resistance,solvent resistance, acid/alkali resistance, no toxicity and no hazards,and they contribute to film stability.

  15. Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy

    Science.gov (United States)

    Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah

    2016-03-01

    In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.

  16. Effect of deposition parameters on the photocatalytic activity and bioactivity of TiO2 thin films deposited by vacuum arc on Ti-6Al-4V substrates.

    Science.gov (United States)

    Lilja, Mirjam; Welch, Ken; Astrand, Maria; Engqvist, Håkan; Strømme, Maria

    2012-05-01

    This article evaluates the influence of the main parameters in a cathodic arc deposition process on the microstructure of titanium dioxide thin coatings and correlates these to the photocatalytic activity (PCA) and in vitro bioactivity of the coatings. Bioactivity of all as deposited coatings was confirmed by the growth of uniform layers of hydroxyapatite (HA) after 7 days in phosphate buffered saline at 37°C. Comparison of the HA growth after 24 h indicated enhanced HA formation on coatings with small titanium dioxide grains of rutile and anatase phase. The results from the PCA studies showed that coatings containing a mixed microstructure of both anatase and rutile phases, with small grain sizes in the range of 26-30 nm and with a coating thickness of about 250 nm, exhibited enhanced activity as compared with other microstructures and higher coating thickness. The results of this study should be valuable for the development of new bioactive implant coatings with photocatalytically induced on-demand antibacterial properties.

  17. Preparation of conversion coating on Ti-6Al-4V alloy in mixed solution of phytic acid and ammonium fluoride through chemical modification

    Science.gov (United States)

    Li, Lanlan; He, Jian; Yang, Xu

    2016-05-01

    Conversion coatings on Ti-6Al-4V alloy was prepared through chemical modification in phytic acid and ammonium fluoride mixed solution. The influences of pH, time and the composition of solution on the microstructure of alloy surface were investigated. Scanning electron microscopy was used to observe the microstructure. The chemical composition of alloy surface before and after modification was investigated by energy dispersive X-ray spectroscopy. The results indicated that a conversion coating could be formed on the Ti-6Al-4V alloy in a mixed solution of phytic acid and ammonium fluoride, the growth and microstructure of the conversion coatings were critically dependent on the pH, time and concentration of phytic acid and ammonium fluoride. In 100 mg/ml phytic acid containing 125 mg/ml ammonium fluoride solution with a pH of 6, a compact conversion coating with the thickness of about 4.7 μm formed after 30 min immersion on Ti-6Al-4V alloy surface. The preliminary evaluation of bioactivity of conversion coating was performed by in vitro cell experiments. The results showed that this chemical modification method is a promising surface modification technique for Ti-6Al-4V alloy inplants.

  18. Corrosion behaviour and bioactivity of electrophoretically deposited hydroxyapatite on titanium in physiological media (Hanks' solution)

    Science.gov (United States)

    Mohamed, S. G.; Abdeltawab, A. A.; Shoeib, M. A.

    2012-09-01

    Hydroxyapatite (HA) coatings were developed on titanium by electrophoretic deposition at various deposition potentials from 30 to 60 V and at a constant deposition time of 5 minutes using the synthetic HA (Ca10(PO4)6(OH)2,) powder in a suspension of dimethyleformamide (DMF, HCON(CH3)2). The electrochemical corrosion behavior of the HA coatings in simulated body fluid (SBF Hanks' solution) at 37 °C and pH 7.4 was investigated by means of open-circuit potential (OCP) measurement and potentiodynamic polarization tests. The OCP test showed that the values OCP for the coated samples shifted to more noble potential than for uncoated titanium, especially after addition of dispersants. The polarization test revealed that all HA coated specimens had a corrosion resistance higher than that of the substrate, especially after addition of dispersants such as polyvinyl butyral (PVB), polyethylene glycol (PEG) and triethanolamine (TEA) to the suspension. The coating morphology after polarization, characterized by scanning electron microscopy (SEM), showed penetration of electrolyte into the HA coats. Bone bioactivity of the coatings was also studied by immersion of coated specimens in Hanks' solution for 3 and 7 days. Apatite granules growth on the surface of the HA layers was observed.

  19. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  20. Moisture in organic coatings - a review

    NARCIS (Netherlands)

    Wel, G.K. van der; Adan, O.C.G.

    1999-01-01

    A review is given on transport and equilibrium sorption of moisture in polymer films and organic coatings. Polymeric material forms the continuous phase of a coating and is therefore important for transport properties. Besides polymer, coatings consist of pigments and fillers and various additives,

  1. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    Science.gov (United States)

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants.

  2. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function.

    Science.gov (United States)

    Li, Wei; Ding, Yaping; Rai, Ranjana; Roether, Judith A; Schubert, Dirk W; Boccaccini, Aldo R

    2014-08-01

    PHBV microsphere/45S5 bioactive glass (BG) composite scaffolds with drug release function were developed for bone tissue engineering. BG-based glass-ceramic scaffolds with high porosity (94%) and interconnected pore structure prepared by foam replication method were coated with PHBV microspheres (nominal diameter=3.5 μm) produced by water-in-oil-in-water double emulsion solvent evaporation method. A homogeneous microsphere coating throughout the porous structure of scaffolds was obtained by a simple dip coating method, using the slurry of PHBV microspheres in hexane. Compressive strength tests showed that the microsphere coating slightly improved the mechanical properties of the scaffolds. It was confirmed that the microsphere coating did not inhibit the bioactivity of the scaffolds in SBF. Hydroxyapatite crystals homogeneously grew not only on the struts of the scaffolds but also on the surface of microspheres within 7 days of immersion in SBF. Vancomycin was successfully encapsulated into the PHBV microspheres. The encapsulated vancomycin was released with a dual release profile involving a relatively low initial burst release (21%) and a sustained release (1 month), which is favorable compared to the high initial burst release (77%) and short release period (4 days) measured on uncoated scaffolds. The developed bioactive composite scaffold with drug delivery function has thus the potential to be used advantageously in bone tissue engineering.

  3. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.

    Science.gov (United States)

    Bakhtiyari, Sanaz Soleymani Eil; Karbasi, Saeed; Monshi, Ahmad; Montazeri, Mahbobeh

    2016-01-01

    To emulate bone structure, porous composite scaffold with suitable mechanical properties should be designed. In this research the effects of nano-titania (nTiO2) on the bioactivity and mechanical properties of nano-bioglass-poly-3-hydroxybutyrate (nBG/P3HB)-composite scaffold were evaluated. First, nBG powder was prepared by melting method of pure raw materials at a temperature of 1400 °C and then the porous ceramic scaffold of nBG/nTiO2 with 30 wt% of nBG containing different weight ratios of nTiO2 (3, 6, and 9 wt% of nTiO2 with grain size of 35-37 nm) was prepared by using polyurethane sponge replication method. Then the scaffolds were coated with P3HB in order to increase the scaffold's mechanical properties. Mechanical strength and modulus of scaffolds were improved by adding nTiO2 to nBG scaffold and adding P3HB to nBG/nTiO2 composite scaffold. The results of the compressive strength and porosity tests showed that the best scaffold is 30 wt% of nBG with 6 wt% of nTiO2 composite scaffold immersed for 30 s in P3HB with 79.5-80 % of porosity in 200-600 μm, with a compressive strength of 0.15 MPa and a compressive modulus of 30 MPa, which is a good candidate for bone tissue engineering. To evaluate the bioactivity of the scaffold, the simulated body fluid (SBF) solution was used. The best scaffold with 30 wt% of nBG, 6 wt% of P3HB and 6 wt% of nTiO2 was immersed in SBF for 4 weeks at an incubation temperature of 37 °C. The bioactivity of the scaffolds was characterized by AAS, SEM, EDXA and XRD. The results of bioactivity showed that bone-like apatite layer formed well at scaffold surface and adding nTiO2 to nBG/P3HB composite scaffold helped increase the bioactivity rate.

  4. An in silico study on antidiabetic activity of bioactive compounds in Euphorbia thymifolia Linn.

    Science.gov (United States)

    Nguyen Vo, T Hoang; Tran, Ngan; Nguyen, Dat; Le, Ly

    2016-01-01

    Herbal medicines have become strongly preferred treatment to reduce the negative impacts of diabetes mellitus (DM) and its severe complications due to lesser side effects and low cost. Recently, strong anti-hyperglycemic effect of Euphorbia thymifolia Linn. (E. thymifolia) on mice models has reported but the action mechanism of its bioactive compounds has remained unknown. This study aimed to evaluate molecular interactions existing between various bioactive compounds in E. thymifolia and targeted proteins related to Type 2 DM. This process involved the molecular docking of 3D structures of those substances into 4 targeted proteins: 11-β hydroxysteroid dehydrogenase type 1, glutamine: fructose-6-phosphate amidotransferase, protein-tyrosine phosphatase 1B and mono-ADP-ribosyltransferase sirtuin-6. In the next step, LigandScout was applied to evaluate the bonds formed between 20 ligands and the binding sites of each targeted proteins. The results identified seven bioactive compounds with high binding affinity (bioactive compounds, in silico approach is performed.

  5. Microstructure and Residual Stress of Shot Coating

    Science.gov (United States)

    Itoh, Yoshiyasu; Suyama, Shoko; Fuse, Toshiaki

    A shot coating process for metalizing at the surface of ceramics has been newly developed as the shot peening treatment. However, microstructure and residual stress of shot coatings, which have an important effect on the adherent strength of coatings and the strength of ceramic substrates, have not always been clarified. An experimental investigation on the microstructure and residual stress was carried out for the shot coating of aluminum on zinc-oxide substrate by comparison with the atmospheric plasma sprayed aluminum coatings. As a result, low porosity, low oxide content and flat surface could be obtained from the aluminum coatings formed by shot coating process in comparison with the atmospheric plasma sprayed aluminum coatings. Also, it was confirmed by the X-ray diffraction technique that the residual stress of shot coated aluminum over zinc-oxide substrate was high compressive in comparison with the atmospheric plasma spraying process.

  6. Development of coatings for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L. E-mail: dalesmith@anl.gov; Konys, J.; Muroga, T.; Evitkhin, V

    2002-12-01

    Coatings have been proposed as the solution to critical materials constraints for most of the blanket concepts under development for fusion power applications. However, the international programs on coating development are focused primarily on electrically insulating coatings to mitigate the magneto-hydrodynamic pressure drop in self-cooled lithium/vanadium blanket concepts, and on tritium permeation barriers to reduce tritium permeation from Pb-Li into the water coolant in water-cooled Pb-Li concepts. Emphasis of the insulator coating development is on CaO and AlN coatings formed on vanadium alloys either in situ in lithium or by vapor deposition processes. The tritium barrier coating development is focused on Al{sub 2}O{sub 3} formed on aluminized martensitic steels by several processes. This paper presents an overview of the fundamental materials issues associated with the various coatings and the status of coating development for the various applications.

  7. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    Science.gov (United States)

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites.

  8. TABLET COATING TECHNIQUES: CONCEPTS AND RECENT TRENDS

    OpenAIRE

    Gupta Ankit; Bilandi Ajay; Kataria Mahesh Kumar; Khatri Neetu

    2012-01-01

    Tablet coating is a common pharmaceutical technique of applying a thin polymer-based film to a tablet or a granule containing active pharmaceutical ingredients (APIs). Solid dosage forms are coated for a number of reasons, the most important of which is controlling the release profiles. The amount of coating on the surface of a tablet is critical to the effectiveness of the oral dosage form. Tablets are usually coated in horizontal rotating pans with the coating solution sprayed onto the free ...

  9. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. Preparation of hydrophobic coatings

    Science.gov (United States)

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  11. Press-coating of immediate release powders onto coated controlled release tablets with adhesives.

    Science.gov (United States)

    Waterman, Kenneth C; Fergione, Michael B

    2003-05-20

    A novel adhesive coating was developed that allows even small quantities of immediate-release (IR) powders to be press-coated onto controlled-release (CR), coated dosage forms without damaging the CR coating. The process was exemplified using a pseudoephedrine osmotic tablet (asymmetric membrane technology, AMT) where a powder weighing less than 25% of the core was pressed onto the osmotic tablet providing a final combination tablet with low friability. The dosage form with the adhesive plus the press-coated powder showed comparable sustained drug release rates to the untreated dosage form after an initial 2-h lag. The adhesive layer consisted of an approximately 100- microm coating of Eudragit RL, polyethylene glycol (PEG) and triethyl citrate (TEC) at a ratio of 5:3:1.2. This coating provides a practical balance between handleability before press-coating and good adhesion.

  12. Improved bone anchorage of hydroxypatite coated implants compared with tricalcium-phosphate coated implants in trabecular bone in dogs.

    Science.gov (United States)

    Lind, M; Overgaard, S; Bünger, C; Søballe, K

    1999-05-01

    Tricalcium phosphate (TCP) and hydroxyapatite (HA) ceramic coatings are bioactive coatings that have been shown to stimulate bone apposition onto ceramic-coated implants. TCP and HA ceramics have well-documented differences in physical properties, but both types of ceramics are used for stimulation of bone ongrowth to cementless endo-prosthetic components clinically. However, little is known about the difference in osteoconductive properties between these coatings when inserted into trabecular bone in a controlled experimental situation. Unloaded cylindrical gritblasted titanium (Ti-6A1-4V) implants (6 x 10 mm) coated with either hydroxyapatite (HA) or tricalcium phosphate (TCP) ceramic were inserted into the proximal humerus of 20 skeletally mature dogs. The implants were initially surrounded by a 2 mm gap. Each animal received one HA-coated implant and one TCP-coated implant. All dogs were sacrificed 6 weeks after surgery. Results were evaluated by histomorphometry and mechanical push-out test. Push-out tests demonstrated that HA-coated implants were 10-fold stronger fixated in comparison to TCP-coated implant. Bone ongrowth was significantly higher for HA-coated implants compared to TCP-coated implants. Bone volume in the gap showed a tendency to less bone volume around HA-coated implants compared to TCP-coated implants but this difference was insignificant. As expected almost all of the TCP coating were resorbed after 6 weeks and almost none of the HA coating. HA-coated implants with a grit-blasted surface provide a favorable early mechanical implant anchorage most likely due to superior ceramic stability compared to TCP-coated implants.

  13. Nutrient Acquisition: The Generation of Bioactive Vitamin B12 by Microalgae.

    Science.gov (United States)

    Grossman, Arthur

    2016-04-25

    Many microalgae acquire vitamin B12 from marine prokaryotes. A new study demonstrates that vitamin B12 is synthesized by planktonic cyanobacteria as pseudocobalamin, a form not bioactive in microalgae. However, some microalgae can remodel pseudocobalamin to the active cobalamin form, adding complexity to our assessment of active vitamin B12 in the environment.

  14. Electrodeposited silk coatings for bone implants.

    Science.gov (United States)

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Brunner, Teresa F; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-11-01

    The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment.

  15. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests.

    Science.gov (United States)

    Aparicio, Conrado; Padrós, Alejandro; Gil, Francisco-Javier

    2011-11-01

    We report on the in vivo histological and mechanical performance of titanium dental implants with a new surface treatment (2Step) consisting of an initial grit-blasting process to produce a micro-rough surface, followed by a combined chemical and thermal treatment that produces a potentially bioactive surface, i.e., that can form an apatitic layer when exposed to biomimetic conditions in vitro. Our aim was to assess the short- and mid-term bone regenerative potential and mechanical retention of 2Step implants in mandible and maxilla of minipigs and compare them with micro-rough grit-blasted, micro-rough acid-etched, and smooth as-machined titanium implants. The percent of bone-to-implant contact after 2, 4, 6, and 10 weeks of implantation as well as the mechanical retention after 4, and 6 weeks of implantation were evaluated with histometric and pull-out tests, respectively, as a measure of the osseointegration of the implants. We also aimed to assess the bioactive nature of 2Step surfaces in vivo. Our results demonstrated that the 2Step treatment produced micro-rough and bioactive implants that accelerated bone tissue regeneration and increased mechanical retention in the bone bed at short periods of implantation in comparison with all other implants tested. This was mostly attributed to the ability of 2Step implants to form in vivo a layer of apatitic mineral that coated the implant and could rapidly stimulate (a) bone nucleation directly on the implant surface, and (b) bone growing from the implant surface. We also proved that roughness values of Ra≈4.5 μm favoured osseointegration of dental implants at short- and mid-term healing periods, as grit-blasted implants and 2Step implants had higher retention values than as machined and acid-etched implants. The surface quality resulting from the 2Step treatment applied on cpTi provided dental implants with a unique combination of rapid bone regeneration and high mechanical retention.

  16. Sputtering process and apparatus for coating powders

    Science.gov (United States)

    Makowiecki, Daniel M.; Kerns, John A.; Alford, Craig S.; McKernan, Mark A.

    2002-01-01

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

  17. Corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2016-07-01

    Full Text Available The titanium alloys are used in defense, aerospace, automobile, chemical plants and biomedical applications due to their very high strength and lightweight properties. However, corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperatures. In the present paper, duplex NiCrAlY/WC–Co coating is coated onto Ti6Al4V substrate to investigate the corrosion behavior of both coated samples and the substrate. The duplex coating was performed with NiCrAlY as the intermediate coat of 200 μm thickness deposited by HVOF process and WC–Co ceramic top coat with varying thicknesses of 250 μm, 350 μm and 450 μm deposited by DS process. Potentiodynamic polarization tests were employed to investigate the corrosion performance of duplex coated samples and substrate in Ringer’s solution at 37 °C and pH value was set to 5.7. Finally the results reveal that 350 μm thick coated samples showed highest corrosion resistance compared to 250 μm thick samples as well as bare substrate. However, the 450 μm thick coated sample showed poor corrosion resistance compared to the substrate. The scale formed on the samples upon corrosion was characterized by using SEM analysis to understand the degree of corrosion behavior.

  18. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FAN Jin-juan; WANG Quan-sheng; ZHANG Wei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  19. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  20. Bioactivities and Health Benefits of Wild Fruits.

    Science.gov (United States)

    Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin

    2016-08-04

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits.

  1. Controlled reactions between chromia and coating on alloy surface

    DEFF Research Database (Denmark)

    Linderoth, Søren

    1996-01-01

    An electrically conducting Sr-doped lanthanum chromite (LSC) coating has been produced by reacting a coating of fine particles of La oxide and Sr oxide with chromia formed as an external scale on a metallic alloy. In addition to the formation of LSC the coating also resulted in much reduced...... buckling of the underlying chromia layer compared with a non-coated alloy....

  2. Bioactive Coating Systems for Protection Against Bio-Threats: Antimicrobial Coatings for Medical Shelters

    Science.gov (United States)

    2013-12-23

    properties to both fabrics (i.e., nylon and polyester) and other rigid materials (i.e., glass and metals ) of relevance to the US military. One... properties to both fabrics (i.e., nylon and polyester) and other rigid materials (i.e., glass and metals ) of relevance to the US military. One approach...Bayati, P.E. Petrochenko, S. Stafslien, J. Daniels, N. Cilz, D.J. Comstock, J.W. Elam, R.J. Narayan, S.A. Skoog. Antibacterial activity of zinc oxide

  3. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05).

  4. Bioactive compounds and antioxidant activity of wolfberry infusion

    Science.gov (United States)

    Sun, Yujing; Rukeya, Japaer; Tao, Wenyang; Sun, Peilong; Ye, Xingqian

    2017-01-01

    An infusion of the wolfberry (Lycium barbarum L.) is a traditional Asian herbal tea. This is the most commonly consumed form of dried wolfberry worldwide, yet little scientific information on wolfberry infusions is available. We investigated the effects of making infusions with hot water on the color, the content of bioactive compounds (polysaccharides, polyphenols, flavonoids and carotenoids) and the antioxidant ability of wolfberry infusions. The contents of bioactive compounds and the antioxidant activity of a wolfberry infusion increased with increased infusion temperature and time. Total polysaccharides content (TPOC), total polyphenols (TPC), total flavonoids (TFC) and total carotenoids contents (TCC) were important for determining the antioxidant capacity of wolfberry infusions with the contribution to antioxidant activity in the order TPC > TFC > TCC > TPOC. Hierarchical cluster analysis indicated preparation conditions of 100 °C for 1~3 h, 90 °C for 2~3 h and 80 °C for 2.5~3 h were equivalent as regards the value of TPC, TPOC, TFC, TCC, FRAP, DPPH and ABTS. The results of this study suggest the length of time of making a wolfberry infusion in actual real life practice is too short and different dietary habits associated with the intake of wolfberry infusion might provide the same bioactive nutrients. PMID:28102295

  5. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering.

    Science.gov (United States)

    Gantar, Ana; da Silva, Lucilia P; Oliveira, Joaquim M; Marques, Alexandra P; Correlo, Vitor M; Novak, Saša; Reis, Rui L

    2014-10-01

    This work presents bioactive-glass-reinforced gellan-gum spongy-like hydrogels (GG-BAG) as novel hydrophilic materials for use as the scaffolding in bone-tissue engineering. The reinforcement with bioactive-glass particles resulted in an improvement to the microstructure and to the mechanical properties of the material. These mechanical properties were found to be dependent on the composition and improved with the amount of bioactive glass; however, values necessary to accommodate biomechanical loading were not achieved in this study. Nevertheless, by incorporating the bioactive-glass particles, the composite material acquired the ability to form an apatite layer when soaked in simulated body fluid. Furthermore, human-adipose-derived stem cells were able to adhere and spread within the gellan-gum, spongy-like hydrogels reinforced with the bioactive glass, and remain viable, which is an important result when considering their use in bone-tissue engineering. Thus, hydrogels based on gellan gum and bioactive glass are promising biomaterials for use either alone or with cells, and with the potential for use in osteogenic differentiation.

  6. On the Electrodeposition of Ca-P Coatings on Nitinol Alloy: A Comparison Between Different Surface Modification Methods

    Science.gov (United States)

    Etminanfar, M. R.; Khalil-Allafi, J.

    2016-02-01

    In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.

  7. Marine Bioactives: Pharmacological Properties and Potential Applications against Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Graziano Riccioni

    2012-04-01

    Full Text Available Inflammation is a hot topic in medical research, because it plays a key role in inflammatory diseases: rheumatoid arthritis (RA and other forms of arthritis, diabetes, heart diseases, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, even cancer and many others. Over the past few decades, it was realized that the process of inflammation is virtually the same in different disorders, and a better understanding of inflammation may lead to better treatments for numerous diseases. Inflammation is the activation of the immune system in response to infection, irritation, or injury, with an influx of white blood cells, redness, heat, swelling, pain, and dysfunction of the organs involved. Although the pathophysiological basis of these conditions is not yet fully understood, reactive oxygen species (ROS have often been implicated in their pathogenesis. In fact, in inflammatory diseases the antioxidant defense system is compromised, as evidenced by increased markers of oxidative stress, and decreased levels of protective antioxidant enzymes in patients with rheumatoid arthritis (RA. An enriched diet containing antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic substances, has been suggested to improve symptoms by reducing disease-related oxidative stress. In this respect, the marine world represents a largely untapped reserve of bioactive ingredients, and considerable potential exists for exploitation of these bioactives as functional food ingredients. Substances such as n-3 oils, carotenoids, vitamins, minerals and peptides provide a myriad of health benefits, including reduction of cardiovascular diseases, anticarcinogenic and anti-inflammatory activities. New marine bioactives are recently gaining attention, since they could be helpful in combating chronic inflammatory degenerative conditions. The aim of this review is to examine the published studies concerning the potential pharmacological

  8. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  9. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  10. Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Faure Joel

    2013-11-01

    Full Text Available In this work, the 45S5 bioactive glass has been prepared by the sol-gel process using an organic acid catalyst instead of nitric acid usually used. The physico-chemical and structural characterizations confirmed and validated the elemental composition of the resulting glass. In addition, the 45S5 bioactive glass powder thus obtained was successfully used to elaborate by electrophoretic deposition a prosthetic coating on titanium alloy Ti6Al4V.

  11. Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair.

    Science.gov (United States)

    Ma, Rui; Tang, Songchao; Tan, Honglue; Qian, Jun; Lin, Wentao; Wang, Yugang; Liu, Changsheng; Wei, Jie; Tang, Tingting

    2014-08-13

    In this study, a nanocalcium silicate (n-CS)/polyetheretherketone (PEEK) bioactive composite was prepared using a process of compounding and injection-molding. The mechanical properties, hydrophilicity, and in vitro bioactivity of the composite, as well as the cellular responses of MC3T3-E1 cells (attachment, proliferation, spreading, and differentiation) to the composite, were investigated. The results showed that the mechanical properties and hydrophilicity of the composites were significantly improved by the addition of n-CS to PEEK. In addition, an apatite-layer formed on the composite surface after immersion in simulated body fluid (SBF) for 7 days. In cell culture tests, the results revealed that the n-CS/PEEK composite significantly promoted cell attachment, proliferation, and spreading compared with PEEK or ultrahigh molecular weight polyethylene (UHMWPE). Moreover, cells grown on the composite exhibited higher alkaline phosphatase (ALP) activity, more calcium nodule-formation, and higher expression levels of osteogenic differentiation-related genes than cells grown on PEEK or UHMWPE. These results indicated that the incorporation of n-CS to PEEK could greatly improve the bioactivity and biocompatibility of the composite. Thus, the n-CS/PEEK composite may be a promising bone repair material for use in orthopedic clinics.

  12. Teaching Form as Form

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2012-01-01

    understanding of form per se, or, to use an expression from this text, of form as form. This challenge can be reduced to one question: how can design teaching support students in achieving not only the ability to recognize and describe different form-related concepts in existing design (i.e. analytical...... means that form serves both as the connective value and as the concept for reflection. In other words, form is observed as form, not anything else. The didactical challenge of teaching form as form is accentuated by students’ everyday-based pre-orientation towards function at the expense of form....... In general, students enter design education as far more skilled observers with regards to function than form. They are, in other words, predisposed to observe objects asking ‘what is?’, rather than ‘how is?’. This habit has not only cognitive implications. It is closely intertwined with a rudimentary...

  13. Semifluorinated Alkylphosphonic Acids Form High-Quality Self-Assembled Monolayers on Ag-Coated Yttrium Barium Copper Oxide Tapes and Enable Filamentization of the Tapes by Microcontact Printing.

    Science.gov (United States)

    Park, Chul Soon; Lee, Han Ju; Lee, Dahye; Jamison, Andrew C; Galstyan, Eduard; Zagozdzon-Wosik, Wanda; Freyhardt, Herbert C; Jacobson, Allan J; Lee, T Randall

    2016-08-30

    A custom-designed semifluorinated phosphonic acid, (9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-heptadecafluorohexadecyl)phosphonic acid (F8H8PA), and a normal hexadecylphosphonic acid (H16PA) were synthesized and used to generate self-assembled monolayers (SAMs) on commercially available yttrium barium copper oxide (YBCO) tapes. In this study, we wished to evaluate the effectiveness of these monolayer films as coatings for selectively etching YBCO. Initial films formed by solution deposition and manual stamping using a non-patterned polydimethylsiloxane stamp allowed for a comparison of the film-formation characteristics. The resulting monolayers were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). To prepare line-patterned (filamentized) YBCO tapes, standard microcontact printing (μ-CP) procedures were used. The stamped patterns on the YBCO tapes were characterized by scanning electron microscopy (SEM) before and after etching to confirm the effectiveness of the patterning process on the YBCO surface and energy-dispersive X-ray spectroscopy (EDX) to obtain the atomic composition of the exposed interface.

  14. CHARACTERITICS OF THE BOUND INTERFACE BETWEEN THE COATING AND THE SUBSTRATE FORMED BY POWDER FEEDING LASER CLADDING%送粉激光熔覆界面特性及熔覆层稀释率

    Institute of Scientific and Technical Information of China (English)

    刘喜明; 连建设; 张庆茂

    2001-01-01

    ingle pass powder-feeding laser cladding is carried out with different scanning speeds, powder feeding rates and powder sizes. The influence of the processing parameters on the morphology and structure at and adjacent to the interface formed between the coating and the substrate is studied by means of optical and electron microscopy.%通过调整扫描速度、送粉速率、熔覆材料颗粒度进行单道送粉激光熔覆试验,借助显微组织分析、扫描电子显微分析、透射电子显微分析,研究了工艺参数对送粉式激光熔覆层与基体间结合界面形态及界面附近组织结构的影响规律:工艺参数对熔覆层稀释率的影响作用,提出熔覆层界面附近局部稀释率的概念。

  15. Going viral: designing bioactive surfaces with bacteriophage.

    Science.gov (United States)

    Hosseinidoust, Zeinab; Olsson, Adam L J; Tufenkji, Nathalie

    2014-12-01

    Bacteriophage-functionalized bioactive surfaces are functional materials that can be used as antimicrobial surfaces in medical applications (e.g., indwelling medical devices or wound dressings) or as biosensors for bacterial capture and detection. Despite offering immense potential, designing efficient phage-functionalized bioactive surfaces is hampered by a number of challenges. This review offers an overview of the current state of knowledge in this field and presents a critical perspective of the technological promises and challenges.

  16. Bioactivities and Health Benefits of Wild Fruits

    OpenAIRE

    Ya Li; Jiao-Jiao Zhang; Dong-Ping Xu; Tong Zhou; Yue. Zhou; Sha Li; Hua-Bin Li

    2016-01-01

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we rev...

  17. Microencapsulation of bioactives for food applications

    OpenAIRE

    Dias, Maria Inês; Isabel C. F. R. Ferreira; Barreiro, M.F.

    2015-01-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this co...

  18. Mesoporous silica coatings for cephalosporin active release at the bone-implant interface

    Science.gov (United States)

    Rădulescu, Dragoş; Voicu, Georgeta; Oprea, Alexandra Elena; Andronescu, Ecaterina; Grumezescu, Valentina; Holban, Alina Maria; Vasile, Bogdan Stefan; Surdu, Adrian Vasile; Grumezescu, Alexandru Mihai; Socol, Gabriel; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Balaure, Paul Cătălin; Rădulescu, Radu; Chifiriuc, Mariana Carmen

    2016-06-01

    In this study, we investigated the potential of MAPLE-deposited coatings mesoporous silica nanoparticles (MSNs) to release Zinforo (ceftarolinum fosmil) in biologically active form. The MSNs were prepared by using a classic procedure with cetyltrimethylammonium bromide as sacrificial template and tetraethylorthosilicate as the monomer. The Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analyses revealed network-forming granules with diameters under 100 nm and an average pore diameter of 2.33 nm. The deposited films were characterized by SEM, TEM, XRD and IR. Microbiological analyses performed on ceftaroline-loaded films demonstrated that the antibiotic was released in an active form, decreasing the microbial adherence rate and colonization of the surface. Moreover, the in vitro and in vivo assays proved the excellent biodistribution and biocompatibility of the prepared systems. Our results suggest that the obtained bioactive coatings possess a significant potential for the design of drug delivery systems and antibacterial medical-use surfaces, with great applications in bone implantology.

  19. Magnesium-containing mixed coatings on zirconia for dental implants: mechanical characterization and in vitro behavior.

    Science.gov (United States)

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Gerlach, Juergen W; Maendl, Stephan; Rezwan, Kurosch

    2015-07-01

    An important challenge in the field of dental and orthopedic implantology is the preparation of implant coatings with bioactive functions that feature a high mechanical stability and at the same time mimic structural and compositional properties of native bone for a better bone ingrowth. This study investigates the influence of magnesium addition to zirconia-calcium phosphate coatings. The mixed coatings were prepared with varying additions of either magnesium oxide or magnesium fluoride to yttria-stabilized zirconia and hydroxyapatite. The coatings were deposited on zirconia discs and screw implants by wet powder spraying. Microstructure studies confirm a porous coating with similar roughness and firm adhesion not hampered by the coating composition. The coating morphology, mechanical flexural strength and calcium dissolution showed a magnesium content-dependent effect. Moreover, the in vitro results obtained with human osteoblasts reveal an improved biological performance caused by the presence of Mg(2+) ions. The magnesium-containing coatings exhibited better cell proliferation and differentiation in comparison to pure zirconia-calcium phosphate coatings. In conclusion, these results demonstrate that magnesium addition increases the bioactivity potential of zirconia-calcium phosphate coatings and is thus a highly suitable candidate for bone implant coatings.

  20. Antialgal and Antilarval Activities of Bioactive Compounds Extracted from the Marine Dinoflagellate Amphidinium carterae

    Institute of Scientific and Technical Information of China (English)

    KONGXianyu; HAN Xiurong; GAO Min; SU Rongguo; WANG Ke; LI Xuzhao; LU Wei

    2016-01-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellateAmphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances fromAmphidinium carterae and tested their antialgal and antilarval activities. The crude extract ofAmphidinium carterae showed significant antialgal activity and the EC50 value againstSkeletonema costatum was 55.4μgmL−1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilar-val activities with EC50 of 12.9μgmL−1 againstSkeletonema costatum and LC50 of 15.1μgmL−1 againstAmphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatomSkeletonema costatum andAmphibalanus amphi-trite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  1. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    Science.gov (United States)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-12-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  2. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.

    Science.gov (United States)

    Park, Hyun-Ji; Yu, Seung Jung; Yang, Kisuk; Jin, Yoonhee; Cho, Ann-Na; Kim, Jin; Lee, Bora; Yang, Hee Seok; Im, Sung Gap; Cho, Seung-Woo

    2014-12-01

    Bioactive, functional scaffolds are required to improve the regenerative potential of stem cells for tissue reconstruction and functional recovery of damaged tissues. Here, we report a paper-based bioactive scaffold platform for stem cell culture and transplantation for bone reconstruction. The paper scaffolds are surface-engineered by an initiated chemical vapor deposition process for serial coating of a water-repellent and cell-adhesive polymer film, which ensures the long-term stability in cell culture medium and induces efficient cell attachment. The prepared paper scaffolds are compatible with general stem cell culture and manipulation techniques. An optimal paper type is found to provide structural, physical, and mechanical cues to enhance the osteogenic differentiation of human adipose-derived stem cells (hADSCs). A bioactive paper scaffold significantly enhances in vivo bone regeneration of hADSCs in a critical-sized calvarial bone defect. Stacking the paper scaffolds with osteogenically differentiated hADSCs and human endothelial cells resulted in vascularized bone formation in vivo. Our study suggests that paper possesses great potential as a bioactive, functional, and cost-effective scaffold platform for stem cell-mediated bone tissue engineering. To the best of our knowledge, this is the first study reporting the feasibility of a paper material for stem cell application to repair tissue defects.

  3. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    Science.gov (United States)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-09-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus Amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus Amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  4. Biomolecule immobilization techniques for bioactive paper fabrication.

    Science.gov (United States)

    Kong, Fanzhi; Hu, Yim Fun

    2012-04-01

    Research into paper-based sensors or functional materials that can perform analytical functions with active recognition capabilities is rapidly expanding, and significant research effort has been made into the design and fabrication of bioactive paper at the biosensor level to detect potential health hazards. A key step in the fabrication of bioactive paper is the design of the experimental and operational procedures for the immobilization of biomolecules such as antibodies, enzymes, phages, cells, proteins, synthetic polymers and DNA aptamers on a suitably prepared paper membrane. The immobilization methods are concisely categorized into physical absorption, bioactive ink entrapment, bioaffinity attachment and covalent chemical bonding immobilization. Each method has individual immobilization characteristics. Although every biomolecule-paper combination has to be optimized before use, the bioactive ink entrapment method is the most commonly used approach owing to its general applicability and biocompatibility. Currently, there are four common applications of bioactive paper: (1) paper-based bioassay or paper-based analytical devices for sample conditioning; (2) counterfeiting and countertempering in the packaging and construction industries; (3) pathogen detection for food and water quality monitoring; and (4) deactivation of pathogenic bacteria using antimicrobial paper. This article reviews and compares the different biomolecule immobilization techniques and discusses current trends. Current, emerging and future applications of bioactive paper are also discussed.