WorldWideScience

Sample records for bioactive ceramic-based materials

  1. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration

    OpenAIRE

    Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki

    2009-01-01

    Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of t...

  2. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  3. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  4. Porous bioactive materials

    Science.gov (United States)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a network of smaller (<10

  5. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  6. Sintered gahnite–cordierite glass-ceramic based on raw materials with different fluorine sources

    Indian Academy of Sciences (India)

    Esmat M A Hamzawy; Mohammed A Bin Hussain

    2015-12-01

    Glass-ceramic based on Zn-containing cordierite was prepared from kaolin, silica'sand and commercial ZnO. The addition of AlF3, MgF2 and CaF2 was performed as nucleation catalysts. Dark brown glasses were obtained from the glass batches. The transformation and crystallization temperatures were in the range of 739–773 and 972–1007°C, respectively. Gahnite, cordierite and very little enstatite were the development crystalline phases through the heating and sintering process between 1000 and 1340°C. The microstructure of crystallized samples at 1340°C showed the appearance of dominant euhedral octahedral crystals of gahnite and hexagonal cordierite, in the low micro-scale, disseminated in the glassy matrix. The microanalysis of the crystallized samples indicated that Zn and Mg may replace each other in gahnite and cordierite structure. Densities of the crystallized samples were between 2.2517 and 2.5278 g cm−3. The thermal expansion of the crystallized samples was ranging from 19.22 to 59.30 × 10−7°C−1. However, the higher crystallization of both cordierite and gahnite accompany with the higher values of densities and the lower values of coefficient of thermal expansion.

  7. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hui Zhang; Raman P. Singh

    2008-11-30

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  8. Bioactive Polymeric Materials for Tissue Repair

    Directory of Open Access Journals (Sweden)

    Diane R. Bienek

    2017-01-01

    Full Text Available Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field.

  9. Interactions of bioactive glass materials in the oral environment

    Science.gov (United States)

    Efflandt, Sarah Elizabeth

    The aim of this research was to investigate bioactive glass materials for their use in dental restorations. Mechanical properties such as strength, toughness and wear resistance were considered initially, but the focus of this thesis was the biological properties such as reactions with saliva and interactions with natural dental tissues. Bioactive composite materials were created by incorporating bioactive glass and alumina powders into an aqueous suspension, slip casting, and infiltrating with resin. Microstructure, mechanical properties and wear resistance were evaluated. Mechanically, the composites are comparable to natural dental tissues and current dental materials with a strength of 206 +/- 18.7 MPa and a toughness of 1.74 +/- 0.08 MPa(m)1/2. Interfacial reactions were examined using bulk bioactive glasses. Disks were prepared from a melt, placed in saliva and incubated at 37°C. Surfaces were analyzed at 2, 5, 10, 21, and 42 days using scanning electron microscopy (SEM) and microdiffraction. Results showed changes at 2 days with apatite crystallization by 10 days. These glass disks were then secured against extracted human dentin and incubated in saliva for 21 or 42 days. Results from SEM, electron microprobe analysis (EMPA) and microdiffraction showed that dentin and bioactive glasses adhered in this in vitro environment due to attraction of collagen to bioactive glasses and growth of an interfacial apatite. After investigating these bulk glass responses, particulate bioactive glasses were placed in in vitro and in vivo set-ups for evaluation. Particles immersed in biologically buffered saliva showed crystallization of apatite at 3 days. These bioactive glass particles were placed in the molars of mini-pigs and left in vivo. After 30 days the bioactive paste was evaluated using SEM, EMPA and microdiffraction analyses. Results showed that the paste gained structural integrity and had chemical changes in vivo. These sets of experiments show that bioactive

  10. The crystallization behaviour and bioactivity of wollastonite glass-ceramic based on Na2O–K2O–CaO–SiO2–F glass system

    Directory of Open Access Journals (Sweden)

    S.M. Salman

    2015-09-01

    Full Text Available The study concerns about the crystallization behaviour and in vitro bioactivity of a glass-ceramic prepared from a series of glasses in the Na2O–K2O–CaO–SiO2–F system. A minor amount of cerium oxide was also added instead of calcium oxide in some selective glass batches. The main crystalline phases, formed after the appropriate heat treatments, were wollastonite solid solution and pseudo-wollastonite-like phases. There is a preferential tendency for wollastonite (CaSiO3 to accommodate K, Na, F, and Ce ions in its structure forming wollastonite solid solution with variable formulas. The bioactivity of the resulting crystalline materials was examined in vitro by immersion in simulated body fluid at 37 °C. An increase of the surface bioactivity of glass-ceramic with the Na2O/K2O replacement was observed which is attributed to the augmentation solubility of the crystalline sample. On the other hand, the bioactivity of the crystalline sample with CeO2/CaO replacement was improved by the crystallization of pseudo-wollastonite phase together with wollastonite solid solution phase.

  11. A low temperature Co-fired ceramic-based dielectrophoretic device for manipulating micro and nanostructure materials.

    Science.gov (United States)

    Seon, Ji-Yun; Yoon, Young Joon; Choi, Jaekyoung; Kim, Hyo Tae; Kim, Chang-Yeoul; Kim, Jong-Hee; Baik, Hong Koo

    2013-11-01

    A dielectophoretic (DEP) device fabricated by a conventional low temperature co-fired ceramic (LTCC) process, for manipulating micro and nanostructure materials, such as spherical polystyrene microspheres, titanium dioxide (TiO2) nanotubes, and silver (Ag) nanowires, is described. To generate a non-uniform electric field, a castellated electrode configuration was applied to the LTCC-based DEP device using a screen printing method. The actual motions of the micro and nanostructure materials under both a positive and a negative DEP force were observed in detail and the findings compared with numerical simulation data for the electric field distribution. The performance of the LTCC-based DEP device for separating and trapping was evaluated and potential applications are discussed.

  12. Development of bioactive materials using reticulated ceramics for bone substitute

    Science.gov (United States)

    Jiang, Gengwei

    For hard tissue prosthetics, it is necessary to seek novel synthesis routes by which a real structural bone can be simulated in terms of bioactivity, porosity, and mechanical behavior. The work presented here deals with the development of such a component by a novel synthesis route for bone implantation. To enhance the mechanical properties, an industrial alumina has been selected as the substrate. Alumina is not only bio inert but also mechanically strong which makes it an ideal substrate for bone substitute. The high porosity is achieved via a sponge technique by which both pore size and density can be changed easily. The bioactivity is induced by coating a highly bioactive HA film onto the inner pore surfaces of the reticulated alumina. Based on this concept, the research has focused on the coating of HA onto inner pore surfaces of the reticulated alumina via several effective methods that are developed in our laboratory. No previous studies have so far been reported on coating inner surfaces of small-diameter pores ranging from 0.1--1.0 mm. The key materials processing issues dealt with in this work include precursor chemistry, coating procedures, synthesis of coated component, interface structure study, film adhesion strength testing, and mechanical properties of the component. This novel approach has shown great promise in synthesizing bone substitutes. To determine the applicability of the coated component in hard tissue prosthetics, a bioactivity study has been carried out. By immersing the synthetic HA into simulated body fluid (SBF), the bioresponse has been measured for a variety of samples with different processing conditions. Fundamental aspects of this study are centered on the effects of structural characteristics of HA on the bioactivity. Based on extensive IR and XRD experimental data, it has been found that the bioactivity of HA is sensitively controlled by the structural crystallinity of the HA and its specific surface area. Furthermore, based on

  13. 钢纤维和莫来石纤维增强陶瓷基摩擦材料的性能研究%Properties of Ceramic-based Friction Material Reinforced by Steel Fiber and Mullite Fiber

    Institute of Scientific and Technical Information of China (English)

    王发辉; 刘莹

    2012-01-01

    Ceramic-based friction material reinforced by steel fiber and mullite fiber was prepared by hot-pressing sin-treing. The mechanical and friction-wear properties of ceramic-based friction materials using steel fiber reinforcement, syn ergetic reinforcement by steel fiber and mullite fiber,mullite fiber reinforcement were investigated and compared. The worn surfaces and debris particles morphology at different temperatures was observed by scanning electron microscopy (SEM) , and wear mechanisms were studied. The results show that the ceramic-based friction material using synergetic reinforcement by steel fiber and mullite fiber has the highest mechanical strength, and exhibits excellent friction stability as well as wear resistance, mullite fiber reinforced ceramic-based friction material shows severe fade and has the lowest wear resistance. SEM analysis shows that from low-temperature to high-temperature the main wear mechanism of ceramic-based friction ma terial using synergetic reinforcement by steel fiber and mullite fiber converts from adhesion wear to a mixing of adhesion wear and abrasive wear, while the main wear type of mullite fiber reinforced ceramic-based friction material is abrasive wear.%采用热压烧结法制备出钢纤维和莫来石纤维增强陶瓷基摩擦材料,对比分析钢纤维、钢纤维和莫来石纤维的混杂纤维以及莫来石纤维增强陶瓷基摩擦材料的机械性能和摩擦磨损特性.利用扫描电子显微镜( SEM)观察不同温度下的磨损表面和磨屑形貌,并研究其磨损机制.研究结果表明,钢纤维和莫来石陶瓷混杂纤维增强的陶瓷基摩擦材料具有较高的机械强度以及良好的摩擦稳定性和耐磨性能,以莫来石纤维增强的陶瓷基摩擦材料,摩擦因数表现出严重的热衰退,且具有低的耐磨损性能.SEM分析表明,在从低温到高温的摩擦过程中,钢纤维和莫来石陶瓷混杂纤维增强的陶瓷基摩擦材料的磨损形式主要由

  14. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Charlotte Vichery

    2016-04-01

    Full Text Available Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented.

  15. Effects of Steel Fiber on Tribological Properties of Ceramic -Based Friction Material%钢纤维对陶瓷基摩擦材料摩擦学性能的影响

    Institute of Scientific and Technical Information of China (English)

    王发辉; 刘莹

    2012-01-01

    以钢纤维为增强材料,采用氮气保护烧结方法制备出了钢纤维增强陶瓷基摩擦材料,用XD-MSM型定速摩擦磨损试验机对比研究了不同钢纤维含量对陶瓷基摩擦材料的热衰退性能、恢复性能以及磨损性能的影响,利用扫描电子显微镜(SEM)观察磨损表面形貌,并探讨了其磨损机理.研究结果表明:钢纤维的添加量(质量百分数)为24%时,钢纤维同陶瓷基体界面结合良好,陶瓷基摩擦材料的耐磨性能有所提高,热衰退率仅为5.8%,恢复率达到了107.8%,表明此配方陶瓷基摩擦材料具有较高的抗热衰退性能和恢复性能;钢纤维的含量影响陶瓷基摩擦材料的磨损形式,当含钢纤维含量较少时,陶瓷基摩擦材料以脆性脱落和疲劳磨损混合磨损形式为主;而随添加钢纤维含量的增多,其磨损形式转变为磨粒磨损;钢纤维过量加入时,则主要磨损形式为脆性脱落和疲劳磨损,并伴有黏着磨损.%Steel fiber reinforced ceramic -based friction material is prepared by nitrogen protection sintering method. The effects of steel fiber content on fade, recovery and wear performance of the ceramic - based friction material are studied and compared using XD - MSM constant speed friction tester. The worn surface morphology is observed by using scanning electron microscopy (SEM) , and wear mechanism is discussed. The results show that the interface between steel fiber and ceramic matrix is good, the wear resistance of the friction material with a steel fiber content of 24% is improved. The fade ratio is as low as 5.8% and the recovery ratio is 107.8%, showing the excellent performances of heat fading resistance and recovery of the friction material. SEM analysis shows that steel fiber content has impact on the main wear mechanism of ceramic - based friction material. The main wear mechsanisms of ceramic - based friction material with a low

  16. Metal-Supported SOFC with Ceramic-Based Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Klemensø, Trine; Persson, Åsa Helen;

    2011-01-01

    materials are infiltrated after sintering. Initial area specific resistance as low as 0.3 cm2 at 700 ºC has been obtained with power densities > 1 Wcm-2. The initial results on the chemical compatibility, electrochemical performance, and galvanostatic durability of a ceramic based (Nb-doped SrTiO3...... the metal-supported cell concept can be combined with ceramic-based anode materials, such as Nb-doped SrTiO3. The paper shows that a metal-supported cell can have excellent performance by only having electronically conducting phases in the anode backbone structure, into which electrocatalytically active...

  17. High-hardness ceramics based on boron carbide fullerite derivatives

    Science.gov (United States)

    Ovsyannikov, D. A.; Popov, M. Yu.; Perfilov, S. A.; Prokhorov, V. M.; Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2017-02-01

    A new type of ceramics based on the phases of fullerite derivatives and boron carbide B4C is obtained. The material is synthesized at a temperature of 1500 K and a relatively low pressure of 4 GPa; it has a high hardness of 45 GPa and fracture toughness of 15 MPa m1/2.

  18. 增强纤维对陶瓷基摩擦材料摩擦磨损性能的影响%Effects of Reinforced Fibers on Friction and Wear Properties of Ceramic-based Friction Material

    Institute of Scientific and Technical Information of China (English)

    刘莹; 王发辉

    2012-01-01

    采用热压烧结法制备纤维增强陶瓷基摩擦材料,研究了钢纤维、钢纤维/莫来石纤维、莫来石纤维、钢纤维/硅酸铝纤维以及硅酸铝纤维增强陶瓷基摩擦材料的摩擦磨损特性.研究结果表明:不同纤维对陶瓷基摩擦材料摩擦系数的影响较为复杂.相比较添加单一纤维增强摩擦材料的情况,钢纤维增强的试样具有较好的耐磨性能,其次为莫来石纤维增强的试样,硅酸铝纤维增强的试样表现出最差的耐磨性能,钢纤维/莫来石纤维和钢纤维/硅酸铝纤维增强试样的磨损均低于相应的陶瓷纤维增强的试样;在高温下以莫来石纤维增强的试样,其磨损形式以磨粒磨损为主,而以硅酸铝纤维和钢纤维/硅酸铝纤维增强的试样的主要磨损形式为黏着磨损,钢纤维和钢纤维/莫来石纤维增强的试样的磨损属于磨粒磨损和黏着磨损.%Ceramic-based friction materials with different reinforced fibers was prepared by hot-pressing.The effects of steel fiber,steel/mullite fiber,mullite fiber,steel/aluminium-silicate fiber and aluminium-silicate fiber as reinforcing materials on the friction and wear properties of ceramic-based friction material were investigated.The results show a complex relationship between different kinds of reinforced fibers and the friction coefficients.For friction material reiforced by single fiber,steel fiber reinforced sample had the highest wear resistance,while aluminium-silicate fiber reinforced sample had the poorest wear resistance,mullite fiber reinforced sample had the moderate wear resistance.The wear rates of sample with steel/mullite fiber or steel/aluminium-silicate fiber were lower than that of the samples reinforced by the corresponding ceramic fibers.The friction and wear tests at elevated temperature reveal that the main wear mechanism of mullite fiber reinforced ceramic-based friction material was abrasive wear while the main wear mecanism for friction

  19. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    Science.gov (United States)

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  20. Bioactivity and degradability of hybrids nano-composites materials with great application as bone tissue substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Téllez, D.A.; Téllez-Jurado, L.; Chávez-Alcalá, J.F., E-mail: fchaveza@hotmail.com

    2014-12-05

    Highlights: • pH has an effect on the degradation process of the hybrid materials. • Weight loss depends on the change of pH during the degradation process. • Bioactivity in the materials is strongly related to calcium and pH. - Abstract: In this work, hybrids with great application as bioactive materials having different compositions based on siloxane network were prepared. In vitro bioactivity and in vitro degradability tests were carried out in the materials by soaking them into simulated body fluid (SBF) and into phosphate buffer solution (PBS) to prove their apatite-forming ability and to show their degradation process, respectively. In both in vitro tests, measurements of pH and loss weight were made to observe bioactivity and degradation processes. To prove growth of HA, the materials were characterized through X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. The results showed that some samples have better bioactivity than others. It was found that the incorporation of CaO component into the network of the materials results in an increase of the apatite-forming ability in SBF. Moreover, during the degradation tests, all the samples presented weight loss, especially the ones that contain CaO.

  1. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.

    Science.gov (United States)

    Arcaute, Karina; Mann, Brenda; Wicker, Ryan

    2010-03-01

    Challenges remain in tissue engineering to control the spatial, mechanical, temporal and biochemical architectures of scaffolds. Unique capabilities of stereolithography (SL) for fabricating multi-material spatially controlled bioactive scaffolds were explored in this work. To accomplish multi-material builds, a mini-vat setup was designed allowing for self-aligning X-Y registration during fabrication. The mini-vat setup allowed the part to be easily removed and rinsed, and different photocrosslinkable solutions to be easily removed and added to the vat. Two photocrosslinkable hydrogel biopolymers, poly(ethylene glycol) dimethacrylate (PEG-dma, MW 1000) and poly(ethylene glycol) diacrylate (PEG-da, MW 3400), were used as the primary scaffold materials. Multi-material scaffolds were fabricated by including controlled concentrations of fluorescently labeled dextran, fluorescently labeled bioactive PEG or bioactive PEG in different regions of the scaffold. The presence of the fluorescent component in specific regions of the scaffold was analyzed with fluorescent microscopy, while human dermal fibroblast cells were seeded on top of the fabricated scaffolds with selective bioactivity and phase contrast microscopy images were used to show specific localization of cells in the regions patterned with bioactive PEG. Multi-material spatial control was successfully demonstrated in features down to 500 microm. In addition, the equilibrium swelling behavior of the two biopolymers after SL fabrication was determined and used to design constructs with the specified dimensions at the swollen state. The use of multi-material SL and the relative ease of conjugating different bioactive ligands or growth factors to PEG allows for the fabrication of tailored three-dimensional constructs with specified spatially controlled bioactivity.

  2. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  3. Novel bioactive materials: silica aerogel and hybrid silica aerogel/pseudo wollastonite

    Energy Technology Data Exchange (ETDEWEB)

    Resendiz-Hernandez, P. J.; Cortes-Hernandez, D. a.; Saldivar-Ramirez, M. M. G.; Acuna-gutierrez, I. O.; Flores-Valdes, A.; Torres-rincon, S.; Mendez-Nonell, J.

    2014-07-01

    Silica aerogel and hybrid silica aerogel/pseudo wollastonite materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS) using also methanol (MeOH) and pseudo wollastonite particles. The gels obtained were dried using a novel process based on an ambient pressure drying. Hexane and hexamethyl-disilazane (HMDZ) were the solvents used to chemically modify the surface. In order to assess bioactivity, aerogels, without and with pseudowollastonite particles, were immersed in simulated body fluid (SBF) for 7 and 14 days. The hybrid silica aerogel/pseudo wollastonite showed a higher bioactivity than that observed for the single silica aerogel. However, as in both cases a lower bioactivity was observed, a biomimetic method was also used to improve it. In this particular method, samples of both materials were immersed in SBF for 7 days followed by their immersion in a more concentrated solution (1.5 SBF) for 14 days. A thick and homogeneous bonelike apatite layer was formed on the biomimetically treated materials. Thus, bioactivity was successfully improved even on the aerogel with no pseudowollastonite particles. As expected, the hybrid silica aerogel/pseudowollastonite particles showed a higher bioactivity. (Author)

  4. Sol-gel as methodology to obtain bioactive materials

    Directory of Open Access Journals (Sweden)

    THIAGO J. RIBEIRO

    2014-03-01

    Full Text Available We employed the solgel methodology to obtain a silica matrix modified with calcium and phosphate ions. We prepared the matrix by hydrolysis and condensation of the precursors triethyl phosphate, calcium nitrate, and tetraethylorthosilicate, which were the sources of phosphate, calcium, and silicon, respectively. We dried and heattreated the samples at 110 or 900°C and placed them in simulated body fluid (SBF for three days. We conducted scanning electron microscopy, Xray diffraction, and infrared spectroscopy analyses, which evidenced that the sample treated at 110°C contained calcium phosphate silicate and hydroxyapatite before and after contact with SBF, respectively. The sample treated at 900°C exhibited a hydroxyapatite phase before and after contact with SBF, but the crystalline phase was more evident after the contact. In conclusion, the solgel methodology provided bioactive samples for bone regeneration.

  5. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    Science.gov (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  6. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  7. Processing of Ceramic Based Nanocomposite Using α-Al2O3 Powder and FeCl2 Solution as Starting Materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Alumina-iron nanocomposite powders were prepared by a two-step process. In the first step, α-Al2O3-FeCl2 powder mixture was formed by mixing α-Al2O3 powders with FeCl2 solution followed by drying. In the second step, the FeCl2 in the dry power mixture was selectively reduced to iron particles. A reduction temperature of 750℃ for 15 min in dry H2 was chosen based on the thermodynamic calculations. The concentration of iron in FeCl2 solution was calculated to be 20 vol. pct in the final composite. Two techniques were used to produce composite bulk materials. The Al2O3 nanocomposite powders were divided to two batches. The first batch of the produced mixture was hot pressed at 1400℃ and 27 MPa for 30 min in a graphite die. To study the effect of oxygen on the Al2O3/Fe interface bonding and mechanical properties of the composite,the second batch was heat treated in air at 700℃ for 20 min to partially oxidize the iron particles before hot pressing. Characterization of the composites was undertaken by conventional density measurements, X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe micro analysis (EPMA). The suggested processing route (mixing, reduction and hot pressing)produces ceramic-metal nanocomposite much tougher than the pure Al2O3. The fracture strength of the produced Al2O3/Fe nanocomposite is nearly twice that of the pure Al2O3. The presence of spinel phase,FeAl2O4, as thick layer around the Fe particles in the Al2O3 matrix has a detrimental effect on interfacial bonding between Fe and Al2O3 and the fracture properties of the composite.

  8. Direct pulp capping in an immature incisor using a new bioactive material

    Directory of Open Access Journals (Sweden)

    Sham S Bhat

    2014-01-01

    Full Text Available Preservation of the pulp in a traumatized immature fractured incisor tooth is of prime importance in order to achieve apexogenesis, a natural apical closure. The main factor influencing this is pulpal protection by a bioactive material proving optimum marginal seal in preventing any microleakage. This case report presents an 8-year-old female diagnosed with Ellis Class 3 fracture of immature tooth 11 involving the mesial pulp horn. Under rubber dam isolation, a partial pulpotomy was performed and the pulp was sealed using a new bioactive material BIODENTINE to stimulate apexogenesis, dentine replacement and pulp protection. The fractured segment was reattached for optimum esthetics, which was a concern for the patient. The patient was followed-up for 1, 3, 6 and 12 months, which revealed continued apical closure and maintenance of pulp vitality. The patient remained asymptomatic. This case report provides evidence for the potential use of Biodentine as an effective pulp capping material in the future.

  9. Investigation of Mg and Zn doped 45S5 bioactive materials by XRD, FTIR and SEM techniques

    Science.gov (United States)

    Anand, Vikas; Singh, K. J.; Kaur, Kulwinder

    2014-04-01

    Magnesium and zinc doped 45S5 samples were prepared in the laboratory by sol gel technique., Structural properties of the samples have been studied by XRD, FTIR and SEM techniques. Both FTIR and XRD data indicate the primary bioactive behavior of the samples. Presented results may be useful to improve the antibacterial as well as osteoblast properties of the currently available bioactive materials.

  10. Fermentation of Plant Material - Effect on Sugar Content and Stability of Bioactive Compounds

    OpenAIRE

    Reis Bruno A. dos; Kosińska-Cagnazzo Agnieszka; Schmitt Rudolf; Andlauer Wilfried

    2014-01-01

    Extraction is a method often used to obtain products rich in bioactive compounds from plant material. Most of the solvents used for the poly-phenols extraction simultaneously extract also sugars, undesirable as a component of health-promoting food. Fermentation might be a simple, cheap and efficient way of sugar elimination. In our study, black tea and goji berries, both known for their health benefits, were used and alcoholic fermentation by Saccharomyces cerevisiae was carried out to elimin...

  11. 莫来石纤维含量对陶瓷基摩擦材料摩擦磨损性能的影响%Effects of Mullite Fiber Content on Friction and Wear Properties of Ceramic-based Friction Material

    Institute of Scientific and Technical Information of China (English)

    王发辉; 刘莹

    2012-01-01

    Ceramic-based friction material with 0%-24% (mass fraction) mullite fiber reinforcement was prepared by nitrogen protection hot-pressing sintering. The effect of mullite fiber content on friction and wear properties of ceramic-based friction material was studied on the XD-MSM constant speed friction tester. The worn surfaces morphology after tests was observed by scanning electron mic'rosco-py (SEM), and wear mechanism was discussed. The results show that mullite fiber could increase friction coefficients of ceramic-based friction material, and with increasing mullite fiber contents, friction coefficients continuously increase. While the wear rates also increase with increasing mullite fiber contents at high temperature. The dominant wear mechanism of ceramic-based friction material without mullite fiber is brittle spalling and fatigue wear, accompanying with abrasive wear; the main wear type converts into adhesion wear and abrasive wear when adding mullite fiber into ceramic friction material.%利用氮气保护热压烧结法制备含0%~24%(质量分数)莫来石纤维增强陶瓷基摩擦材料,采用XD-MSM型定速摩擦试验机研究莫来石纤维含量对摩擦材料摩擦磨损性能的影响,借助于扫描电子显微镜观察实验后试样的磨损表面形貌,并探讨其磨损机理.结果表明:莫来石纤维的加入能够显著提高陶瓷基摩擦材料的摩擦因数,且随莫来石纤维含量增加而增大.在高温下,陶瓷基摩擦材料的磨损率随莫来石纤维含量增加而增大.未添加莫来石纤维的陶瓷基摩擦材料磨损形式主要是脆性脱落和疲劳磨损,伴有磨粒磨损;而添加莫来石纤维的陶瓷基摩擦材料磨损形式转化为黏着磨损和磨粒磨损.

  12. Fermentation of Plant Material - Effect on Sugar Content and Stability of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Reis Bruno A. dos

    2014-12-01

    Full Text Available Extraction is a method often used to obtain products rich in bioactive compounds from plant material. Most of the solvents used for the poly-phenols extraction simultaneously extract also sugars, undesirable as a component of health-promoting food. Fermentation might be a simple, cheap and efficient way of sugar elimination. In our study, black tea and goji berries, both known for their health benefits, were used and alcoholic fermentation by Saccharomyces cerevisiae was carried out to eliminate sugars. In the course of fermentation the concentration of polyphenols, L-theanine and carotenoids was evaluated in order to verify the preservation of selected bioactive compounds. Decreases in sugar content, formation of ethanol and yeasts growth were monitored during fermentation. The fermentation of black tea decreased the sugar concentration by 84% within 6 h without decreasing total polyphenols and L-theanine contents. Goji berry fermentation yielded a sugars decrease of 87% within 24 h, without decrease in poly-phenol content. However, carotenoid content was reduced by 17%. The study showed that fermentation was an effective way to decrease sugar content in plant extracts, and therefore it might be a pertinent step to concentrate bioactives.

  13. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    J.N. Bruggeman; T.R. Alcorn; R. Jeltsch; T. Mroz

    2003-01-09

    The goal of the project was to develop the ceramic based materials, technology, and necessary engineering packages to retrofit existing aluminum reduction cells in order to reduce energy consumption required for making primary aluminum. The ceramic materials would be used in a drained cathode configuration which would provide a stable, molten aluminum wetted cathode surface, allowing the reduction of the anode-cathode distance, thereby reducing the energy consumption. This multi-tasked project was divided into three major tasks: (1) Manufacturing and laboratory scale testing/evaluation of the ceramic materials, (2) Pilot scale testing of qualified compositions from the first task, and (3) Designing, retrofitting, and testing the ceramic materials in industrial cells at Kaiser Mead plant in Spokane, Washington. Specific description of these major tasks can be found in Appendix A - Project Scope. Due to the power situation in the northwest, the Mead facility was closed, thus preventing the industrial cell testing.

  14. Main chain acid-degradable polymers for the delivery of bioactive materials

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  15. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    OpenAIRE

    Soo-Kyung Jun; Jung-Hwan Lee; Hae-Hyoung Lee

    2017-01-01

    The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive® [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal® [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) a...

  16. Development of bioactive food packaging materials using immobilised bacteriocins lacticin 3147 and nisaplin.

    Science.gov (United States)

    Scannell, A G; Hill, C; Ross, R P; Marx, S; Hartmeier, W; Elke; Arendt, K

    2000-09-25

    Immobilisation of the bacteriocins nisin and lacticin 3147 to packaging materials was investigated. Stability of both cellulose-based bioactive inserts and anti-microbial polyethylene/polyamide pouches was examined over time. Anti-microbial activity against the indicator strain Lactococcus lactis subsp. lactis HP, in addition to Listeria innocua DPC 1770 and Staphylococcus aureus MMPR3 was observed for all bacteriocin-adsorbed materials. Activity retention of the inserts showed an initial decrease in the first week of storage but remained stable for the remaining 3 months of the trial. However, adsorption of lacticin 3147 to plastic film was unsuccessful, nisin bound well and the resulting film maintained its activity for 3-month period, both at room temperature and under refrigeration. When applied to food systems, the anti-microbial packaging reduced the population of lactic acid bacteria in sliced cheese and ham stored in modified atmosphere packaging (MAP) at refrigeration temperatures, thus extending the shelf life. Nisin-adsorbed bioactive inserts reduced levels of Listeria innocua by > or = 2 log units in both products, and Staphylococcus aureus by approximately 1.5 log units in cheese, and approximately 2.8 log units in ham. Similar reductions were observed in cheese vacuum-packaged in nisin-adsorbed pouches.

  17. Application of Bioactive Natural Materials-based Products on Five Women's Diseases.

    Science.gov (United States)

    Yi, Sun Shin; Hwang, Eunmi; Baek, Hye Kyung; Kim, Tae-Hee; Lee, Hae-Hyeog; Jun, Hyun Sik; Kim, Sung-Jo

    2015-12-01

    Women's health has been threatened by various diseases mainly including heart disease, breast cancer, osteoporosis, depression, and autoimmune disease. But development of medication for these diseases has been restricted by high development costs and low success rates. Herein the attempt to develop valid bioactive materials from a traditional natural material has been made. Resveratrol has been reported to be effective in treatment of breast cancer and heart disease. Goji berry has received attention as a natural based therapeutic material to treat a diabetes, cardiovascular disease, and osteoporosis. Leonurus family has been reported to be effective particularly in pregnant women due to high contents of vitamin as well as stimulation of uterine contraction. Annona family has effects such as anti-anxiety, anticonvulsant and recently it is proposed to be as a therapeutic material to cure depression based on its strong antidepressant effect. Shiraia bambusicola has been utilized to cure angiogenesis-related disease from ancient China and furthermore recently it was proved to be effective in rheumatoid arthritis. Getting an understanding of utilization of these traditional natural materials not only enhances the interest in development of therapeutic materials for preventing and treating various women's diseases, but also makes it possible to develop novel therapeutic materials.

  18. Total Polyphenol, Flavonoid and Other Bioactive Materials in Different Asparagus Cultivars

    Directory of Open Access Journals (Sweden)

    Mária TAKÁCS-HÁJOS

    2015-04-01

    Full Text Available The favourable active ingredient composition of numerous vegetables is published frequently; however its value is often influenced by the variety and the given production year. In the current experiment the main aim was to determinate the bioactive materials (total polyphenol, flavonoid, vitamin C, sulphate-S, protein, nitrate-ion of blanched (white asparagus for three widely known varieties (‘Cumulus’, ‘Vitalin’, ‘Grolim’, grown on mouldy brown sandy soil, in 3 consecutive years (2012-2014. A significant difference has been found among the varieties in the average of the observed data. ‘Vitalin’ was prominent with its high total polyphenol (35.16 mg/100 g, vitamin C (59.34 mg/100 g and flavonoid (0.52 mg/100 g content. High sulphate-S content - which is characteristic for asparagus - has been measured in the case of ‘Cumulus’ (287.77 mg/100 g, together with the highest protein content (2.23%. The vitamin C content of the spears is significantly influenced by the production year, therefore higher temperature fluctuations had a negative effect on it, which resulted in its value reducing to one-tenth of the best years in some cases (89.06 mg/100 g. Additionally, it has been found that white asparagus develops under etiolated circumstances, it is not inclined to nitrate accumulation, which is well represented by the values under 20 mg/kg. Selecting the proper cultivar is important for raw asparagus extract production, which can be produced only of raw materials rich in bioactive materials (including high sulphur content. In this regard ‘Vitalin’ and ‘Cumulus’ seemed to be the most advantageous choices.

  19. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    Science.gov (United States)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  20. Optimization on Extraction Engineering of the Anti - inflammatory Bioactive Materials from Ainsliaea Fragrans Champ

    Directory of Open Access Journals (Sweden)

    Yang Jie

    2016-01-01

    Full Text Available Ainsliaea fragrans Champ.(A.fragrans is a traditional Chinese herbal, phenolic compounds was the major anti - inflammatory bioactive constituents. To improve the bioavailability and enhanced the curative effect of A.fragrans, the anti - inflammatory effect of phenolic acids and the “non-active” group of control vectors constitute a new biomedical material, which is of great significance to the treatment of diseases inflammation. Hence, in this thesis, regarding the total phenolic acid transfer rate as the indicator, L9(34 orthogonal design was used to optimize the extraction process of total Phenolic acid from A.fragrans by reflux extraction method on solvent dosage, extraction times and extraction time.The optimal extraction technology was as follows: 15 times of water volume, reflux extraction 3 times, extraction time 60 min. The result of pharmacological activity indicated anti-inflammatory effect: 95% ethanol extraction > water extraction > 30% ethanol extraction > 60% ethanol extraction.

  1. Design of Bioactive Organic-inorganic Hybrid Materials with Self-setting Ability

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, T; Machida, S; Morita, Y [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Japan); Ishida, E, E-mail: tmiya@life.kyutech.ac.jp [Faculty of Engineering, Kyushu Institute of Technology (Japan)

    2011-10-29

    Paste-like materials with ability of self-setting are attractive for bone substitutes, since they can be injected from the small hole with minimized invasion to the patient. Although bone cements which set as apatite are clinically used, there is limitation on clinical applications due to their mechanical properties such as high brittleness and low fracture toughness. To overcome this problem, organic-inorganic hybrids based on a flexible polymer are attractive. We have obtained an idea for design of self-setting hybrids using polyion complex fabricated by ionic interaction of anionic and cationic polymers. We aimed at preparation of organic-inorganic hybrids exhibiting self-setting ability and bioactivity. The liquid component was prepared from cationic chitosan aqueous solution. The powder component was prepared by mixing various carrageenans with {alpha}-tricalcium phosphate ({alpha}-TCP). The obtained cements set within 1 day. Compressive strength showed tendency to increase with increase in {alpha}-TCP content in the powder component. The prepared cements formed the apatite in simulated body fluid within 3 days. Novel self-setting materials based on organic-inorganic hybrid can be designed utilizing ionic interaction of polysaccharide.

  2. Low temperature synthesis of bioactive materials Síntese de materiais bioativos a baixas temperaturas

    Directory of Open Access Journals (Sweden)

    L. C. Bandeira

    2011-06-01

    Full Text Available Bioactive materials possess properties that allow them to interact with natural tissues to induce reactions that favor the development and regeneration of those tissues. In this study, silica was prepared by the sol-gel method, using tetraethylorthosilicate as the precursor. The calcium and phosphor sources used here were calcium ethoxy and phosphoric acid, respectively, in ethanol solvent. The solid obtained was dried at 50 ºC. In vitro bioactivity assays were performed by soaking the materials in simulated body fluid (SBF. The samples were characterized by transmission electron microscopy (TEM, thermal analysis and photoluminescence. TEM images of the samples before contact with SBF revealed amorphous aggregates and after 12 days in SBF showed two phases, one amorphous with large quantities of Si and O, and the other a crystalline phase whose composition contained Ca and P. The electron diffraction pattern showed a planar distance of 2.86 Å, corresponding to 2θ = 32.2º. This was ascribed to hydroxyapatite. The Eu III was used as structural probe. The relative band intensity correspondent the transition 5D0 → 7F2 / 5D0 → 7F1 showed a high symmetry surrounding the Eu III ion. These materials, produced by the sol-gel route, open up new possibilities for obtaining bioactive biomaterials for medical applications.Os materiais bioativos apresentam propriedades que permitem a sua interação com um tecido de origem natural podendo induzir a sua regeneração. Neste estudo, o método sol-gel foi utilizado para a preparação de sílica dopada com íons cálcio e fósforo, partindo dos precursores tetraetilortosilicato, etóxido de cálcio e ácido fosfórico em etanol como solvente. O sólido obtido foi seco a 50 ºC. Ensaios de bioatividade foram realizados in vitro em uma solução que simula o fluido corpóreo (SBF. As amostras foram caracterizadas por microscopia eletrônica de transmissão (MET, análise térmica e fotoluminescência. As

  3. Bioactive materials improve some physical properties of a MTA-like cement.

    Science.gov (United States)

    Flores-Ledesma, A; Barceló Santana, F; Bucio, L; Arenas-Alatorre, J A; Faraji, M; Wintergerst, A M

    2017-02-01

    One of the main disadvantages of MTA is its long setting time which could result in higher solubility and microleakage, producing a failed treatment. Studies have shown that the addition of bioactive glass may decrease the setting time. The aim of this study is to evaluate the compressive strength, setting time, solubility and radiopacity of a MTAlike experimental cement to which different percentage of wollastonite and bioactive glass are added. White MTA Angelus® was used as control; an experimental MTA-like cement (ExpC) was prepared using white Portland cement with 20wt% of Bi2O3; three wollastonite cement composites were prepared adding 10, 20 and 30wt% of wollastonite to ExpC, and three more adding the same proportions of bioactive glass. Compressive strength was tested according to ADA 30; radiopacity, setting time and solubility were tested according to ISO 6876. SEM observations of the surface were made after the solubility test. Compressive strength, setting time, solubility and radiopacity were reduced as the wollastonite increased; solubility increased with the addition of bioactive glass. The surfaces of MTA Angelus® and ExpC were smoother than Wollastonite and Bioactive glass groups. Addition of wollastonite and bioactive glass improved the physical properties of a MTA-like experimental cement, reducing the setting time with good solubility percentages, which would be an advantage in its clinical use.

  4. Lipoic Acid Gold Nanoparticles Functionalized with Organic Compounds as Bioactive Materials

    Science.gov (United States)

    Turcu, Ioana; Zarafu, Irina; Popa, Marcela; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Culita, Daniela; Ghica, Corneliu; Ionita, Petre

    2017-01-01

    Water soluble gold nanoparticles protected by lipoic acid were obtained and further functionalized by standard coupling reaction with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether. Derivatives of lipoic acid with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether were also obtained and characterized. All these were tested for their antimicrobial activity, as well as for their influence on mammalian cell viability and cellular cycle. In all cases a decreased antimicrobial activity of the obtained bioactive nanoparticles was observed as compared with the organic compounds, proving that a possible inactivation of the bioactive groups could occur during functionalization. However, both the gold nanoparticles as well as the functionalized bioactive nanosystems proved to be biocompatible at concentrations lower than 50 µg/mL, as revealed by the cellular viability and cell cycle assay, demonstrating their potential for the development of novel antimicrobial agents.

  5. Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials

    Indian Academy of Sciences (India)

    J Z Shi; C Z Chen; H J Yu; S J Zhang

    2008-11-01

    Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition, influence of heat treatment on magnetron sputtered coatings is discussed. The heat treated coatings have been shown to exhibit bioactive behaviour both in vivo and in vitro. At last, the future application of the bioactive ceramic coating deposited by magnetron sputtering is mentioned.

  6. Separators - Technology review: Ceramic based separators for secondary batteries

    Science.gov (United States)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  7. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  8. Terminal sterilization of BisGMA-TEGDMA thermoset materials and their bioactive surfaces by supercritical CO2.

    Science.gov (United States)

    Donati, Ivan; Benincasa, Monica; Foulc, Marie-Pierre; Turco, Gianluca; Toppazzini, Mila; Solinas, Dario; Spilimbergo, Sara; Kikic, Ireneo; Paoletti, Sergio

    2012-04-09

    The development of biomaterials endowed with bioactive features relies on a simultaneous insight into a proper terminal sterilization process. FDA recommendations on sterility of biomaterials are very strict: a sterility assurance level (SAL) of 10(-6) must be guaranteed for biomaterials to be used in human implants. In the present work, we have explored the potential of supercritical CO(2) (scCO(2)) in the presence of H(2)O(2) as a low-temperature sterilization process for thermoset materials and their bioactive surfaces. Different conditions allowing for terminal sterilization have been screened and a treatment time-amount of H(2)O(2) relationship proposed. The selected terminal sterilization conditions did not notably modify the mechanical properties of the thermoset nor of their fiber-reinforced composites. This was confirmed by μCT analyses performed prior to and after the treatment. On the contrary, terminal sterilization in the presence of H(2)O(2) induced a slight decrease in the surface hardness. The treatment of the thermoset material with scCO(2) led to a reduction in the residual unreacted monomers content, as determined by means of high performance liquid chromatography (HPLC) analyses. Finally, it was found that a thermoset coated with a polysaccharide layer containing silver nanoparticles maintained a very high antimicrobial efficacy even after the scCO(2)-based terminal sterilization.

  9. Immobilization of Trypsin in Lignocellulosic Waste Material to Produce Peptides with Bioactive Potential from Whey Protein

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Bassan

    2016-05-01

    Full Text Available In this study, trypsin (Enzyme Comission 3.4.21.4 was immobilized in a low cost, lignocellulosic support (corn cob powder—CCP with the goal of obtaining peptides with bioactive potential from cheese whey. The pretreated support was activated with glyoxyl groups, glutaraldehyde and IDA-glyoxyl. The immobilization yields of the derivatives were higher than 83%, and the retention of catalytic activity was higher than 74%. The trypsin-glyoxyl-CCP derivative was thermally stable at 65 °C, a value that was 1090-fold higher than that obtained with the free enzyme. The trypsin-IDA-glyoxyl-CCP and trypsin-glutaraldehyde-CCP derivatives had thermal stabilities that were 883- and five-fold higher, respectively, then those obtained with the free enzyme. In the batch experiments, trypsin-IDA-glyoxyl-CCP retained 91% of its activity and had a degree of hydrolysis of 12.49%, while the values for trypsin-glyoxyl-CCP were 87% and 15.46%, respectively. The stabilized derivative trypsin-glyoxyl-CCP was also tested in an upflow packed-bed reactor. The hydrodynamic characterization of this reactor was a plug flow pattern, and the kinetics of this system provided a relative activity of 3.04 ± 0.01 U·g−1 and an average degree of hydrolysis of 23%, which were suitable for the production of potentially bioactive peptides.

  10. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    Science.gov (United States)

    Jun, Soo-Kyung; Lee, Hae-Hyoung

    2017-01-01

    The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive® [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal® [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) activity and alizarin red staining (ARS). Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p 0.05). Ca (~110 ppm) and hydroxide ions (pH 11) were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions. PMID:28232937

  11. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Soo-Kyung Jun

    2017-01-01

    Full Text Available The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs. The product (Bioactive® [BA] was compared with a conventional calcium hydroxide-incorporated (Dycal [DC] and a light-curable (Theracal® [TC] counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP activity and alizarin red staining (ARS. Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p0.05. Ca (~110 ppm and hydroxide ions (pH 11 were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions.

  12. Vibrational study on the bioactivity of Portland cement-based materials for endodontic use

    Science.gov (United States)

    Taddei, P.; Tinti, A.; Gandolfi, M. G.; Rossi, P. L.; Prati, C.

    2009-04-01

    The bioactivity of a modified Portland cement (wTC) and a phosphate-doped wTC cement (wTC-P) was studied at 37 °C in Dulbecco's Phosphate Buffered Saline (DPBS). The cements, prepared as disks, were analysed at different ageing times (from 1 day to 2 months) by micro-Raman and ATR/FT-IR spectroscopies. The presence of deposits on the surface of the cements and the composition changes as a function of the storage time were investigated. The presence of an apatite deposit on the surface of both cements was already revealed after one day of ageing in DPBS. The trend of the I 965/I 991 Raman intensity ratio indicated the formation of a meanly thicker apatite deposit on the wTC-P cement at all the investigated times. This result was confirmed by the trend of the I 1030/I 945 IR intensity ratio calculated until 14 days of ageing. At 2 months, the thickness of the apatite deposit on wTC and wTC-P was about 200 and 500 μm, respectively, as estimated by micro-Raman spectroscopy, confirming the higher bioactivity of the phosphate-doped cement. Vibrational techniques allowed to gain more insights into the cement transformation and the different hydration rates of the various cement component. The setting of the cement and the formation of the hydrated silicate gel (C-S-H phase) was spectroscopically monitored through the I 830/I 945 IR intensity ratio.

  13. Ceramics based on calcium pyrophosphate nanopowders

    Directory of Open Access Journals (Sweden)

    Tatiana V. Safronova

    2013-03-01

    Full Text Available Present work is aimed at the fabrication of resorbable bioceramics based on calcium pyrophosphate (CPP from the synthesized powders of amorphous hydrated calcium pyrophosphate (AHCPP. Amorphous hydratedcalcium pyrophosphate in the form of nanopowders was precipitated from Ca(NO3 2 and (NH4 4P2O7 solutions at room temperature in the presence of PO3– ions. Crystalline CPP powder was fabricated from AHCPP by its thermal decomposition at 600 °C and consisted of β- and α- phase. Small particles, with the size less than 200 nm, were formed promoting sintering of the ceramic material. The final sample, sintered at 900 °C, exhibits microstructure with submicron grains, apparent density of 87% of theoretical density (TD and demonstrates tensile strength of 70 MPa.

  14. Effect of human adipose tissue-derived mesenchymal-stem-cell bioactive materials on porcine embryo development.

    Science.gov (United States)

    Park, Hyo-Young; Kim, Eun-Young; Lee, Seung-Eun; Choi, Hyun-Yong; Moon, Jeremiah Jiman; Park, Min-Jee; Son, Yeo-Jin; Lee, Jun-Beom; Jeong, Chang-Jin; Lee, Dong-Sun; Riu, Key-Jung; Park, Se-Pill

    2013-12-01

    Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.

  15. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  16. Leveraging "raw materials" as building blocks and bioactive signals in regenerative medicine.

    Science.gov (United States)

    Renth, Amanda N; Detamore, Michael S

    2012-10-01

    Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of "raw materials" used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies.

  17. Evaluation of nystatin containing chitosan hydrogels as potential dual action bio-active restorative materials: in vitro approach.

    Science.gov (United States)

    Perchyonok, V Tamara; Reher, Vanessa; Zhang, Shengmiao; Basson, Nicki; Grobler, Sias

    2014-11-28

    Healing is a specific biological process related to the general phenomenon of growth and tissue regeneration and is a process generally affected by several systemic conditions or as detrimental side-effects of chemotherapy- and radiotherapy-induced inflammation of the oral mucosa. The objectives of this study is to evaluate the novel chitosan based functional drug delivery systems, which can be successfully incorporated into "dual action bioactive restorative materials", capable of inducing in vitro improved wound healing prototype and containing an antibiotic, such as nystatin, krill oil as an antioxidant and hydroxyapatite as a molecular bone scaffold, which is naturally present in bone and is reported to be successfully used in promoting bone integration when implanted as well as promoting healing. The hydrogels were prepared using a protocol as previously reported by us. The physico-chemical features, including surface morphology (SEM), release behaviors, stability of the therapeutic agent-antioxidant-chitosan, were measured and compared to the earlier reported chitosan-antioxidant containing hydrogels. Structural investigations of the reactive surface of the hydrogel are reported. Release of nystatin was investigated for all newly prepared hydrogels. Bio-adhesive studies were performed in order to assess the suitability of these designer materials. Free radical defense capacity of the biomaterials was evaluated using established in vitro model. The bio-adhesive capacity of the materials in the in vitro system was tested and quantified. It was found that the favorable synergistic effect of free radical built-in defense mechanism of the new functional materials increased sustainable bio-adhesion and therefore acted as a functional multi-dimensional restorative material with potential application in wound healing in vitro.

  18. Marginal adaptation and performance of bioactive dental restorative materials in deciduous and young permanent teeth

    Directory of Open Access Journals (Sweden)

    Elizabeta Gjorgievska

    2008-02-01

    Full Text Available OBJECTIVE: The aim of this study was to investigate the adaptation of different types of restorations towards deciduous and young permanent teeth. MATERIAL AND METHODS: Class V cavities were prepared in deciduous and young permanent teeth and filled with different materials (a conventional glass-ionomer, a resin-modified glass-ionomer, a poly-acid-modified composite resin and a conventional composite resin. Specimens were aged in artificial saliva for 1, 6, 12 and 18 months, then examined by SEM. RESULTS: The composite resin and the polyacid-modified composite had better marginal adaptation than the glass-ionomers, though microcracks developed in the enamel of the tooth. The glass-ionomers showed inferior marginal quality and durability, but no microcracking of the enamel. The margins of the resin-modified glass-ionomer were slightly superior to the conventional glass-ionomer. Conditioning improved the adaptation of the composite resin, but the type of tooth made little or no difference to the performance of the restorative material. All materials were associated with the formation of crystals in the gaps between the filling and the tooth; the quantity and shape of these crystals varied with the material. CONCLUSIONS: Resin-based materials are generally better at forming sound, durable margins in deciduous and young permanent teeth than cements, but are associated with microcracks in the enamel. All fluoride-releasing materials give rise to crystalline deposits.

  19. Marginal adaptation and performance of bioactive dental restorative materials in deciduous and young permanent teeth.

    OpenAIRE

    Elizabeta Gjorgievska; John W. Nicholson; Snezana Iljovska; Slipper, Ian J.

    2008-01-01

    Objective: The aim of this study was to investigate the adaptation of different types of restorations towards deciduous and young permanent teeth. Materials and Methods: Class V cavities were prepared in deciduous and young permanent teeth and filled with different materials (a conventional glass-ionomer, a resin-modified glass-ionomer, a poly-acid-modified composite resin and a conventional composite resin). Specimens were aged in artificial saliva for 1, 6, 12 and 18 months, then examined b...

  20. Insights into functional tea infused-chitosan hydrogels as potential bio-active restorative materials

    Directory of Open Access Journals (Sweden)

    Tamara V Perchyonok

    2014-01-01

    Full Text Available Introduction: We described novel chitosan hydrogels (chitosan-H containing tea infusions (green, red and black as functional additive prototypes with special focus on the design and functionality of dual action composite restorative materials. Their intended uses include remineralizing bases/liners, therapeutically active restorative materials and/or functional additives as well as functional prototype of the drug delivery system. Materials and Methods: The above mentioned hydrogels were prepared by dispersion of the corresponding component in glycerol and acetic acid with the addition of chitosan gelling agent. The surface morphology scanning electron microscope (SEM, release behavior (physiological pH as well as acidic conditions, stability of the hydrogels as well as antioxidant capacity of the tea infused hydrogels was evaluated. Results: It was found that all the anti-oxidant chitosan-H hydrogels treated dentine gave significantly (P < 0.05; Non-parametric ANOVA test higher shear bond strength values than dentine treated or not treated with phosphoric acid. Overall, there was a small relapse in the shear bond strength after 6 months. The SEM is employed to observe the surface of the newly made functional restorative materials. The anti-oxidant capacity of various black, red and green tea infusions was investigated and demonstrated increased antioxidant stability of the newly prepared material stability. Conclusion: We have developed and evaluated several functional chitosan hydrogels with several targets as therapeutic restorative materials, the added benefits of their unique functionality involve increased dentin adhesive bond strengths (after 24 h and after 6 month, concept of using functional materials as carriers for pro-drugs as well as display certain degree of defense mechanism for a free radical damage.

  1. Evaluation of Nystatin Containing Chitosan Hydrogels as Potential Dual Action Bio-Active Restorative Materials: in Vitro Approach

    Directory of Open Access Journals (Sweden)

    V. Tamara Perchyonok

    2014-11-01

    Full Text Available Healing is a specific biological process related to the general phenomenon of growth and tissue regeneration and is a process generally affected by several systemic conditions or as detrimental side-effects of chemotherapy- and radiotherapy-induced inflammation of the oral mucosa. The objectives of this study is to evaluate the novel chitosan based functional drug delivery systems, which can be successfully incorporated into “dual action bioactive restorative materials”, capable of inducing in vitro improved wound healing prototype and containing an antibiotic, such as nystatin, krill oil as an antioxidant and hydroxyapatite as a molecular bone scaffold, which is naturally present in bone and is reported to be successfully used in promoting bone integration when implanted as well as promoting healing. The hydrogels were prepared using a protocol as previously reported by us. The physico-chemical features, including surface morphology (SEM, release behaviors, stability of the therapeutic agent-antioxidant-chitosan, were measured and compared to the earlier reported chitosan-antioxidant containing hydrogels. Structural investigations of the reactive surface of the hydrogel are reported. Release of nystatin was investigated for all newly prepared hydrogels. Bio-adhesive studies were performed in order to assess the suitability of these designer materials. Free radical defense capacity of the biomaterials was evaluated using established in vitro model. The bio-adhesive capacity of the materials in the in vitro system was tested and quantified. It was found that the favorable synergistic effect of free radical built-in defense mechanism of the new functional materials increased sustainable bio-adhesion and therefore acted as a functional multi-dimensional restorative material with potential application in wound healing in vitro.

  2. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties

    Energy Technology Data Exchange (ETDEWEB)

    Dziadek, Michal, E-mail: dziadek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Menaszek, Elzbieta, E-mail: elzbieta.menaszek@uj.edu.pl [Jagiellonian University, Collegium Medicum, Department of Cytobiology, 9 Medyczna St., 30-688 Krakow (Poland); Zagrajczuk, Barbara, E-mail: b.zagrajczuk@gmail.com [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Pawlik, Justyna, E-mail: pawlikj@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland); Cholewa-Kowalska, Katarzyna, E-mail: cholewa@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow (Poland)

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21 vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO{sub 2}–CaO–P{sub 2}O{sub 5} system differing in SiO{sub 2} and CaO contents were applied (mol%): S2: 80SiO{sub 2}, 16CaO, 4P{sub 2}O{sub 5} and A2: 40SiO{sub 2}, 54CaO, 6P{sub 2}O{sub 5}. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37 °C for 56 weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~ 67° for 21A2-PCL compared to ~ 78° for pure PCL) and also makes AS surface more hydrophobic (~ 94° for 21S2-PCL compared to ~ 86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38 GPa for pure PCL, 0.90 GPa for 12A2-PCL to 1.31 GPa for 21A2-PCL), which also depends on

  3. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods.

    Science.gov (United States)

    Lone, Ayesha; Anany, Hany; Hakeem, Mohammed; Aguis, Louise; Avdjian, Anne-Claire; Bouget, Marina; Atashi, Arash; Brovko, Luba; Rochefort, Dominic; Griffiths, Mansel W

    2016-01-18

    significantly reduce the growth of L. monocytogenes at both storage temperatures, 4°C and 10°C, for 25 days regardless of bacteriophage application format (immobilized or non-immobilized (free)). In conclusion, the developed phage-based materials demonstrated significant antimicrobial effect, when applied to the artificially contaminated foods, and can be used as prototypes for developing bioactive antimicrobial packaging materials capable of enhancing the safety of fresh produce and RTE meat.

  4. Bioactive glasses potential biomaterials for future therapy

    CERN Document Server

    Kaur, Gurbinder

    2017-01-01

    This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.

  5. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    Science.gov (United States)

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications.

  6. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

    Science.gov (United States)

    Dziadek, Michal; Menaszek, Elzbieta; Zagrajczuk, Barbara; Pawlik, Justyna; Cholewa-Kowalska, Katarzyna

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~67° for 21A2-PCL compared to ~78° for pure PCL) and also makes AS surface more hydrophobic (~94° for 21S2-PCL compared to ~86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38GPa for pure PCL, 0.90GPa for 12A2-PCL to 1.31GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher

  7. Coatings of titanium substrates with xCaO · (1 - x)SiO2 sol-gel materials: characterization, bioactivity and biocompatibility evaluation.

    Science.gov (United States)

    Catauro, M; Papale, F; Bollino, F

    2016-01-01

    The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0sol-gel route starting from tetraethyl orthosilicate and calcium nitrate tetrahydrate. Those materials, still in the sol phase, have been used to coat titanium substrates by means of the dip-coating technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) allowed the materials to be characterized and a microstructural analysis of the coatings obtained was performed using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated titanium was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. To investigate cell-material interactions, mouse embryonic fibroblast cells (3T3) were seeded onto the specimens and the cell viability was evaluated by a WST-8 assay.

  8. Bending strength of glass-ceramics based on 3CaO.P{sub 2}O{sub 5}-SiO{sub 2}-MgO glass system; Resistencia a fratura de vitroceramicos do sistema 3CaO.P{sub 2}O{sub 5}-SiO{sub 2}-MgO

    Energy Technology Data Exchange (ETDEWEB)

    Daguano, J.K.M.F.; Suzuki, P.A.; Santos, C. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de Lorena. Dept. de Engenharia de Materiais; Fernandes, M.H.V. [Universidade de Aveiro (UAveiro/CECICO), Aveiro (Portugal). Centro de Investigacao em Materiais Ceramicos e Compositos. Dept. de Engenharia Ceramica e do Vidro; Elias, C.N. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Lab. de Biomateriais

    2009-07-01

    In this work, the Modulus of Rupture of bioactive glass-ceramic based on 3CaO.P{sub 2}O{sub 5}-SiO{sub 2}-MgO system was investigated, aiming its use in bone-restorations. The mechanical property was correlated with microstructural and crystallographic features of this material. High-purity starting-powders, CaCO{sub 3}, SiO{sub 2}, MgO, Ca (H{sub 2}PO{sub 4}).H{sub 2}O, were used in this study. The powders were mixed in a stoichiometric ratio, using planetary ball-mill. The suspensions were dried, sieved and melted at 1600 deg C, for 4h. The casting ones were cooled quickly until annealing temperature 700 deg C, in which remained for 2h, with controlled cooling-rate until ambient temperature. Bulks of glass were heat-treated with temperatures varying between 700 deg C and 1100 deg C, for 4h, being after that, cooled at 3 deg C/min. Bioactive glass and glass-ceramic were characterized by HRXRD (high resolution X-ray diffraction), where whitlockite was main phase. The microstructure was analyzed by scanning electronic microscopy. Modulus of Rupture was determined by four-point bending testing using specimens of 1.5 x 2 x 25 mm and glasses presented strength near to 70MPa, while glass ceramics treated at 975 deg C-4h, presented bending strength of 120MPa. (author)

  9. Anti-fouling bioactive surfaces.

    Science.gov (United States)

    Yu, Qian; Zhang, Yanxia; Wang, Hongwei; Brash, John; Chen, Hong

    2011-04-01

    Bioactive surfaces refer to surfaces with immobilized bioactive molecules aimed specifically at promoting or supporting particular interactions. Such surfaces are of great importance for various biomedical and biomaterials applications. In the past few years, considerable effort has been made to create bioactive surfaces by forming specific biomolecule-modified surfaces on a non-biofouling "base" or "background". Hydrophilic and bioinert polymers have been widely used as anti-fouling layers that resist non-specific protein interactions. They can also serve as "spacers" to effectively move the immobilized biomolecule away from the surface, thus enhancing its bioactivity. In this review we summarize several successful approaches for the design and preparation of bioactive surfaces based on different types of anti-fouling/spacer materials. Some perspectives on future research in this area are also presented.

  10. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk [Research and Development Center, VENTEX Co. Ltd., Seoul (Korea, Republic of)

    2016-09-15

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats.

  11. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    Science.gov (United States)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  12. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    Energy Technology Data Exchange (ETDEWEB)

    Milly, Hussam [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Andiappan, Manoharan [Unit of Dental Public Health, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Thompson, Ian [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Banerjee, Avijit, E-mail: avijit.banerjee@kcl.ac.uk [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Unit of Conservative Dentistry, King' s College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom)

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  13. Preparation and characterization of Li$_2$O–CaO–Al$_2$O$_3$–P$_2$O$_5$–SiO$_2$ glasses as bioactive material

    Indian Academy of Sciences (India)

    HIMANSHU TRIPATHI; AREPALLI SAMPATH KUMAR; S P SINGH

    2016-04-01

    The aim of the present investigation was to study the role of Al$_2$O$_3$ in the Li$_2$O–CaO–P$_2$O$_5$–SiO$_2$ bioactive glass for improving the bioactivity and other physico-mechanical properties of glass. A comparative studyon structural and physico-mechanical properties and bioactivity of glasses were reported. The structural properties of glasses were investigated by X-ray diffraction, Fourier transform infrared spectrometry, scanning electronmicroscopy and the bioactivity of the glasses was evaluated by in vitro test in simulated body fluid (SBF). Density, compressive strength, Vickers hardness and ultrasonic wave velocity of glass samples were measured to investigatephysical and mechanical properties. Results indicated that partial molar replacement of Li$_2$O by Al$_2$O$_3$ resulted in a significant increase in mechanical properties of glasses. In vitro studies of samples in SBF had shown that the pH of the solution increased after immersion of samples during the initial stage and then after reaching maxima it decreased with the increase in the immersion time. In vitro test in SBF indicated that the addition of Al$_2$O$_3$ up to 1.5 mol% resulted in an increase in bioactivity where as further addition of Al$_2$O$_3$ caused a decrease in bioactivity of the samples. The biocompatibility of these bioactive glass samples was studied using human osteoblast (MG-63) cell lines. The results obtained suggested that Li$_2$O–CaO–Al$_2$O$_3$–P$_2$O$_5$–SiO$_2$-based bioactive glasses containing alumina would be potential materials for biomedical applications.

  14. Influence of the polymer amount on bioactivity and biocompatibility of SiO{sub 2}/PEG hybrid materials synthesized by sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-03-01

    SiO{sub 2}/PEG organic–inorganic hybrid materials, which differ in polyethylene glycol (PEG) content, were synthesized by sol–gel technique and the characterization of their structure and biological properties was carried out in order to evaluate the possible use in biomedical field. FT-IR spectroscopy detected that the two components of the hybrids (SiO{sub 2} and PEG) are linked by hydrogen bonds between the Si–OH groups of the inorganic phase and the terminal alcoholic groups and/or the ethereal oxygen atoms in the repeating units of polymer. X-ray diffraction analysis ascertained the amorphous nature of the gels and the observation of their morphology by SEM microscopy confirmed that the interpenetration of the two phases (organic and inorganic) occurs on nanometric scale. The biological characterization was carried out as a function of the polymer amount to study its influence on material behavior. The results showed that the synthesized materials were bioactive and biocompatible. The formation of a hydroxyapatite layer, indeed, was observed on their surface by SEM/EDX analysis after soaking in simulated body fluid. Moreover, the biocompatibility of SiO{sub 2}/PEG hybrids was assessed performing MTT and SRB cytotoxicity tests on fibroblast cell NIH 3T3 after 24 and 48 h of exposure, as well as Trypan Blue dye exclusion test. The response to the presence of the investigated materials was positive. The cell growth and proliferation showed dependence on polymer amount and time of exposure to the material extracts. Therefore, the obtained results are encouraging for the use of the obtained hybrids in dental or orthopedic applications. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Chemical and morphological characterization of hybrid materials • Chemical interactions between inorganic and organic components • Biological characterizations with MTT and SRB cytotoxicity tests

  15. Zn and Sr incorporated 64S bioglasses: Material characterization, in-vitro bioactivity and mesenchymal stem cell responses

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoli [College of Materials Science and Engineering, Sichuan University, Chengdu (China); Meng, Guolong [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu (China); Wang, Shanling [Analytical & Testing Center, Sichuan University, Chengdu 610064 (China); Wu, Fang, E-mail: fwu@scu.edu.cn [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu (China); Huang, Wanxia, E-mail: huangwanxia@126.com [College of Materials Science and Engineering, Sichuan University, Chengdu (China); Gu, Zhongwei [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu (China)

    2015-07-01

    Essential element like Zn or Sr is known to play an important role in bone remodeling process. In this study, we have used the sol–gel process to synthesize the Zn (2%) and Sr (5%) doped 64S bioglasses (BGs, 64SiO{sub 2}–5P{sub 2}O{sub 5}–31CaO, mol.%), alone and co-doped. The synthesized glasses were characterized by XRD, FTIR and STEM. For biological evaluation, the effects of Zn and Sr incorporation on the in vitro bioactivity of the synthesized BGs were studied using the simulated body fluid (SBF) soaking. The proliferation and differentiation (ALP, OCN) of rat mesenchymal stem cells (MSCs) on these BGs were studied using CCK-8 and ELISA analyses. The results indicated that Zn had been uniformly incorporated into the bioglass, and demonstrated a stimulating effect on apatite-like layer formation, MSC proliferation and differentiation. On the other hand, most of Sr appeared to form a secondary crystal phase with extremely high solubility in SBF, showing an enhancing effect only in MSC differentiation but not in proliferation, as well as an inhibitory effect on apatite-like layer formation. The different dissolution behaviors of Sr and Zn ions seemed to have a strong correlation with the different apatite-like layer formation capabilities and the cellular responses of Zn and Sr containing BGs. - Highlights: • We synthesized the Zn (2%) and Sr (5%) doped 64S bioglasses, alone and co-doped. • Most of Sr appeared to form a secondary crystal phase. • Sr demonstrated a stimulating effect only on MSC differentiation. • We suggest likely different stimulating mechanisms of Sr and Zn toward MSC responses.

  16. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  17. Bioactivity of Rosmarinus officinalis essential oils against Apis mellifera, Varroa destructor and Paenibacillus larvae related to the drying treatment of the plant material.

    Science.gov (United States)

    Maggi, M; Gende, L; Russo, K; Fritz, R; Eguaras, M

    2011-02-01

    In this study, chemical composition, physicochemical properties and bioactivity of two essential oils of Rosmarinus officinalis extracted from plant material with different drying treatments against Apis mellifera, Varroa destructor and Paenibacillus larvae were assessed. The lethal concentration 50 (LC50) for mites and bees was estimated using a complete exposure method test. The broth microdilution method was followed in order to determine the minimum inhibitory concentrations (MICs) of the essential oils against P. larvae. Physicochemical properties were similar in both the essential oils, but the percentage of components showed certain differences according to their drying treatment. β-Myrcene and 1,8-cineole were the main constituents in the oils. The LC50 for complete exposure method at 24, 48 and 72 h was minor for mites exposed to R. officinalis essential oil dried in oven conditions. MIC values were 700-800 µg mL(-1) and 1200 µg mL(-1) for R. officinalis dried in air and oven conditions, respectively. The results reported in this research show that oil toxicity against V. destructor and P. larvae differed depending on the drying treatment of the plant material before the distillation of essential oil.

  18. Stability of Chokeberry Bioactive Polyphenols during Juice Processing and Stabilization of a Polyphenol-Rich Material from the By-Product

    Directory of Open Access Journals (Sweden)

    Diana Behsnilian

    2012-09-01

    Full Text Available Chokeberries (Aronia melanocarpa are nowadays believed to exhibit potential cardioprotective and antidiabetic effects principally due to their high content in bioactive phenolic compounds. The stability of the phenolic compounds was studied during different stages of a juice production line and a method for the valorization of pomace was evaluated. Samples were taken from a commercial juice production plant, extracted and analyzed for phenolic constituents and antioxidant potential. Prototypes of functional food ingredients were produced from the pomace by wet milling and micro-milling. Alongside juice processing, the contents of phenolic berry constituents did not vary to a great extent and the overall antioxidant activity increased by about 34%. A high quality juice and a by-product still rich in polyphenols resulted from the process. The phenolic compounds content and the overall antioxidant activity remained stable when milling and micro-milling the pomace. During coarse milling, extractability of total phenolic compounds increased significantly (40% to 50%. Nanosized materials with averaged particle sizes (x50,0 of about 90 nm were obtained by micro-milling. These materials showed significantly enhanced extractability of total phenolic compounds (25% and total phenolic acid (30%, as well as antioxidant activity (35%, with unchanged contents of total procyanidins and anthocyanins contents.

  19. Effect of polyurethane (PU) - bioactive glass (BG) ratio on the development of BG reinforced PU scaffold

    Science.gov (United States)

    Lip, Lim Weng; Abdullah, Tuti Katrina; Zubir, Syazana Ahmad

    2016-12-01

    Nowadays, variety of biomaterials may be used to produce implanted scaffolds such as metal-based, ceramic-based and polymer-based materials. In this study, porous bioactive glass (BG) reinforced polyurethane (PU) composite scaffolds with different PU:BG mass ratio (10 to 40 wt%) were fabricated as a potential candidate for synthetic bone graft. The PU-BG scaffolds were prepared using solvent casting combined with salt leaching (SCPL) method and were subjected to several characterizations including fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). FTIR spectrum showed the trace of BG particles in the PU-BG scaffolds with high concentration of BG (30 and 40 wt%). EDX confirmed that the white particles in the PU-BG scaffold as observed via SEM micrograph were BG particles. A slightly round and irregular pore structures were observed for the PU-BG scaffolds prepared in this study. More homogeneous pore structures were observed as the amount of BG in the PU-BG scaffold is increased. The overall pore size for all scaffolds was in the range of 130 to 400 µm which is suitable for the growth of bone tissue.

  20. Preparation of Glass Ceramic Based on Granulated Slag and Cullet

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The glass-ceramic was prepared on the basis of materials of granulated slag containing high-calcium oxide and cullet.The content of granulated slag ranges from 50%-60%wt in the glass compositions. The samples were analyzed by DTA, SEM and XRD.The results show that the main crystal phase of the glass-ceramic is β-CaSiO3,Which is in scattering fiber or column form.The applying properties have also been measured.

  1. Strengthening of Ceramic-based Artificial Nacre via Synergistic Interactions of 1D Vanadium Pentoxide and 2D Graphene Oxide Building Blocks

    Science.gov (United States)

    Knöller, Andrea; Lampa, Christian P.; Cube, Felix von; Zeng, Tingying Helen; Bell, David C.; Dresselhaus, Mildred S.; Burghard, Zaklina; Bill, Joachim

    2017-01-01

    Nature has evolved hierarchical structures of hybrid materials with excellent mechanical properties. Inspired by nacre’s architecture, a ternary nanostructured composite has been developed, wherein stacked lamellas of 1D vanadium pentoxide nanofibres, intercalated with water molecules, are complemented by 2D graphene oxide (GO) nanosheets. The components self-assemble at low temperature into hierarchically arranged, highly flexible ceramic-based papers. The papers’ mechanical properties are found to be strongly influenced by the amount of the integrated GO phase. Nanoindentation tests reveal an out-of-plane decrease in Young’s modulus with increasing GO content. Furthermore, nanotensile tests reveal that the ceramic-based papers with 0.5 wt% GO show superior in-plane mechanical performance, compared to papers with higher GO contents as well as to pristine V2O5 and GO papers. Remarkably, the performance is preserved even after stretching the composite material for 100 nanotensile test cycles. The good mechanical stability and unique combination of stiffness and flexibility enable this material to memorize its micro- and macroscopic shape after repeated mechanical deformations. These findings provide useful guidelines for the development of bioinspired, multifunctional systems whose hierarchical structure imparts tailored mechanical properties and cycling stability, which is essential for applications such as actuators or flexible electrodes for advanced energy storage. PMID:28102338

  2. Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: assessment on carrot, cheese, and salami.

    Science.gov (United States)

    Moreira, Maria del Rosario; Pereda, Mariana; Marcovich, Norma E; Roura, Sara I

    2011-01-01

    Antimicrobial packaging is one of the most promising active packaging systems for controlling spoilage and pathogenic microorganisms. In this work, the intrinsic antimicrobial properties of chitosan (CH) were combined with the excellent thermoplastic and film-forming properties of sodium caseinate (SC) to prepare SC/CH film-forming solutions and films. The antimicrobial effectiveness of SC, CH, and SC/CH coatings on the native microfloras of cheese, salami, and carrots was evaluated. In vitro assays through the test tube assay indicated that the most significant antimicrobial effect was achieved by CH and SC/CH solutions on carrot and cheese native microfloras. SC film-forming solutions did not exert antimicrobial activity on any of the native microflora studied. SC, CH, and SC/CH films stored in controlled environments showed that the retention of the antimicrobial action was observed until 5-d storage, at 65% relative humidity in both temperatures (10 °C and 20 °C). In vivo assays were also performed with SC, CH, and SC/CH applied as coatings or wrappers on the 3 food substrates. CH and SC/CH applied at both immersion and wrapper exerted a significant bactericidal action on mesophilic, psychrotrophic, and yeasts and molds counts, showing the 3 microbial populations analyzed a significant reduction (2.0 to 4.5 log CFU/g). An improvement of the bactericidal properties of the CH/SC blend respect to those of the neat CH film is reported. The ionic interaction between both macromolecules enhances its antimicrobial properties. Practical Application: The continuous consumer interest in high quality and food safety, combined with environmental concerns has stimulated the development and study of biodegradable coatings that avoid the use of synthetic materials. Among them, edible coatings, obtained from generally recognized as safe (GRAS) materials, have the potential to reduce weight loss, respiration rate, and improve food appearance and integrity. They can be used in

  3. Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; SHEN Xiong-jun

    2007-01-01

    Bioactive and bioresorbable composite was fabricated by a solvent evaporation technique using poly-L-lactide(PLLA) and bioactive glass (average particle size: 6.8 μm). Bioactive glass granules are homogeneously distributed in the composite with microcrack structure. The formation of hydroxyapatite(HA) on the composite in simulated body fluid(SBF) was analyzed by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and Raman spectra. Rod-like HA crystals deposit on the surface of PLLA/bioactive glass composite after soaking for 3 d. Both rod-like crystals and HA layer form on the surface for 14 d in SBF. The high bioactivity of PLLA/bioactive glass composite indicates the potential of materials for integration with bone.

  4. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.

    Science.gov (United States)

    Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru

    2017-03-13

    Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (~25‒104 MPa) and flexural strength (~6‒18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8~12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.

  5. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  6. Preparation and bioactivity of sol-gel macroporous bioactive glass

    Institute of Scientific and Technical Information of China (English)

    Zhihua Zhou; Jianming Ruan; Jianpeng Zou; Zhongcheng Zhou

    2008-01-01

    Bioactive glass is well known for its ability of bone regeneration, and sol-gel bioactive glass has many advantages com-pared with melt-derived bioactive glass. 3-D scaffold prepared by the sol-gel method is a promising substrate material for bone tissue engineering and large-scale bone repair. Porous sol-gel glass in the CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by the addition of stearic acid as a pore former. The diameter of the pore created by the pore former varied from 100 to 300μm. The formation of a hydroxyapatite layer on the glass was analyzed by studying the surface of the porous glass by scanning elec-tron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Raman spectra after they had been immersed in simulated body fluid (SBF) for some time, and the porous glass shows good bioactivity.

  7. Going viral: designing bioactive surfaces with bacteriophage.

    Science.gov (United States)

    Hosseinidoust, Zeinab; Olsson, Adam L J; Tufenkji, Nathalie

    2014-12-01

    Bacteriophage-functionalized bioactive surfaces are functional materials that can be used as antimicrobial surfaces in medical applications (e.g., indwelling medical devices or wound dressings) or as biosensors for bacterial capture and detection. Despite offering immense potential, designing efficient phage-functionalized bioactive surfaces is hampered by a number of challenges. This review offers an overview of the current state of knowledge in this field and presents a critical perspective of the technological promises and challenges.

  8. Bioactivation of particles

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Fabien (Berkeley, CA); King, David (San Francisco, CA); Weiss, Shimon (Los Angeles, CA)

    2011-08-16

    Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

  9. Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: mechanisms and development of new bioactive materials based on polysaccharides

    OpenAIRE

    Cordero Arias, Luis Eduardo

    2015-01-01

    Regarding the need to improve the usually encountered osteointegration of metallic implants with the surrounding body tissue in bone replacement applications, bioactive organic/inorganic composite coatings on metallic substrates were developed in this work using electrophoretic deposition (EPD) as coating technology. In the present work three polysaccharides, namely alginate, chondroitin sulfate and chitosan were used as the organic part, acting as the matrix of the coating and enabling the c...

  10. Biomolecule immobilization techniques for bioactive paper fabrication.

    Science.gov (United States)

    Kong, Fanzhi; Hu, Yim Fun

    2012-04-01

    Research into paper-based sensors or functional materials that can perform analytical functions with active recognition capabilities is rapidly expanding, and significant research effort has been made into the design and fabrication of bioactive paper at the biosensor level to detect potential health hazards. A key step in the fabrication of bioactive paper is the design of the experimental and operational procedures for the immobilization of biomolecules such as antibodies, enzymes, phages, cells, proteins, synthetic polymers and DNA aptamers on a suitably prepared paper membrane. The immobilization methods are concisely categorized into physical absorption, bioactive ink entrapment, bioaffinity attachment and covalent chemical bonding immobilization. Each method has individual immobilization characteristics. Although every biomolecule-paper combination has to be optimized before use, the bioactive ink entrapment method is the most commonly used approach owing to its general applicability and biocompatibility. Currently, there are four common applications of bioactive paper: (1) paper-based bioassay or paper-based analytical devices for sample conditioning; (2) counterfeiting and countertempering in the packaging and construction industries; (3) pathogen detection for food and water quality monitoring; and (4) deactivation of pathogenic bacteria using antimicrobial paper. This article reviews and compares the different biomolecule immobilization techniques and discusses current trends. Current, emerging and future applications of bioactive paper are also discussed.

  11. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  12. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering.

    Science.gov (United States)

    Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E; Velez, Mariano

    2012-09-01

    The effect of particle size distribution, binder content, processing parameters, and sintering schedule on the microstructure and mechanical properties of porous constructs was investigated. The porous constructs were produced by indirect selective laser sintering (SLS) of 13-93 bioactive glass using stearic acid as a polymeric binder. The binder content and d(50) particle size in the feedstock powders were simultaneously reduced from 22 to 12 wt% and from 20 to 11 μm, respectively, to identify the minimum binder content required for the SLS fabrication. An average particle size of ∼16 μm with a binder content of 15 wt% significantly reduced post-processing time and improved mechanical properties. Increasing the laser power and scan speed at the energy density of 1 cal/cm² maintained the feature sharpness of the parts during the fabrication of green parts and could almost double the mechanical properties of the sintered parts. Changes in the heating rates, ranging from 0.1 to 2 °C/min, during the post-processing of the fabricated "green" scaffolds showed that the heating rate significantly affects the densification and mechanical properties of the sintered scaffolds. The compressive strength of the scaffolds manufactured with the optimized parameters varied from 41 MPa, for a scaffold with a porosity of ∼50%, to 157 MPa, for a dense part. The bioactive scaffolds soaked in simulated body fluids for durations up to 6 weeks were used to evaluate the change in mechanical properties in vitro.

  13. Bioactives from microalgal dinoflagellates.

    Science.gov (United States)

    Gallardo-Rodríguez, J; Sánchez-Mirón, A; García-Camacho, F; López-Rosales, L; Chisti, Y; Molina-Grima, E

    2012-01-01

    Dinoflagellate microalgae are an important source of marine biotoxins. Bioactives from dinoflagellates are attracting increasing attention because of their impact on the safety of seafood and potential uses in biomedical, toxicological and pharmacological research. Here we review the potential applications of dinoflagellate toxins and the methods for producing them. Only sparing quantities of dinoflagellate toxins are generally available and this hinders bioactivity characterization and evaluation in possible applications. Approaches to production of increased quantities of dinoflagellate bioactives are discussed. Although many dinoflagellates are fragile and grow slowly, controlled culture in bioreactors appears to be generally suitable for producing many of the metabolites of interest.

  14. RECENT PROGRESS AND APPLICATION OF NON-BIOACTIVE PROTEINS IN MATERIAL FIELDS%非生理活性蛋白质的研究进展及其在材料领域中的应用

    Institute of Scientific and Technical Information of China (English)

    文建川; 姚晋荣; 邵正中

    2011-01-01

    As biomacromolecules, non-bioactive proteins have been used with a history of more than millenaries, sharing the merits of abundant source supply, environmental-friendly, reproducible, biodegradable,biocompatible and facile morphological plasticity etc. In this paper, three of the most abundant non-bioactive proteins in nature,collagen, fibrion and soy protein are introduced. The review focuses on the structure of the proteins as well as the recent achievements of their applications in material fields, especially, as carrier for drug delivery and scaffold for tissue engineering, with the scope expanding to bio-related interdisciplines, such as biophotonic devices, optofiuidic devices, sensors, bio-integrated electronics, adhesives and superabsorbents, etc.%介绍了自然界产量最丰富、研究最深入的几种非生理活性蛋白质,如胶原蛋白、丝素蛋白和大豆蛋白,包括它们的基本结构和最新研究进展以及在材料领域的应用情况.

  15. Bioactive glass-ceramics coatings on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Brovarone, C.; Verne, E.; Lupo, F. [Politecnico di Torino (Italy). Materials Science and Chemical Eng. Dept.; Moisescu, C. [Jena Univ. (Germany). Otto-Schott-Inst. fuer Glaschemie; Zanardi, L.; Bosetti, M.; Cannas, M. [Eastern Piemont Univ., Novara (Italy). Medical Science Dept.

    2001-07-01

    In this work, aiming to combine the mechanical performances of alumina with the surface properties of a bioactive material, we coated full density alumina substrates by a bioactive glass-ceramic GC. This latter was specially tailored, in term of costituents and specific quantity to have a thermal expansion coefficient close to that of alumina (8.5-9{sup *}10{sup -6}/ C) which is lower than most of the bioactive glasses and glass-ceramics already in use. In this way, we sought to avoid, as much as possible, the crack formation and propagation due to residual stresses generated by the thermal expansion coefficients mismatch. Furthermore, the high reactivity of alumina toward the glass-ceramic was carefully controlled to avoid deep compositional modification of the GC that will negatively affect its bioactivity. At this purpose, an intermediate layer of an appropriate glass G was coated prior to coat the bioactive glass-ceramic. On the materials obtained, preliminary biological tests have been done to evaluate glass-ceramic biocompatibility respect to alumina. (orig.)

  16. Microencapsulation of bioactives for food applications.

    Science.gov (United States)

    Dias, Maria Inês; Ferreira, Isabel C F R; Barreiro, Maria Filomena

    2015-04-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this context, microencapsulation emerges as a potential approach to overcome these problems and, additionally, to provide controlled or targeted delivery or release. This work intends to contribute to the field of functional food development by performing a comprehensive review on the microencapsulation methods and materials, the bioactives used (extracts and isolated compounds) and the final application development. Although several studies dealing with microencapsulation of bioactives exist, they are mainly focused on the process development and the majority lack proof of concept for final applications. These factors, together with the lack of regulation, in Europe and in the United States, delay the development of new functional foods and, consequently, their market entry. In conclusion, the potential of microencapsulation to protect bioactive compounds ensuring their bioavailability is shown, but further studies are required, considering both its applicability and incentives by regulatory agencies.

  17. Bioactive behaviour of sol-gel derived antibacterial bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Bellantone, M.; Hench, L.L. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    A new four-component bioactive glass containing Ag{sub 2}O was produced via the sol-gel process. This system releases Ag{sup +} which is a powerful antibacterial agent. The work reported herein is a comparative study of the bioactivity levels of conventional bioactive glass and of the new antibacterial glass. On the basis of XRD patterns, FTIR spectra, and ICP data, the bioactive behaviour of the two biomaterials is nearly equivalent. (orig.)

  18. Bioactive glasses: Importance of structure and properties in bone regeneration

    Science.gov (United States)

    Hench, Larry L.; Roki, Niksa; Fenn, Michael B.

    2014-09-01

    This review provides a brief background on the applications, mechanisms and genetics involved with use of bioactive glass to stimulate regeneration of bone. The emphasis is on the role of structural changes of the bioactive glasses, in particular Bioglass, which result in controlled release of osteostimulative ions. The review also summarizes the use of Raman spectroscopy, referred to hereto forward as bio-Raman spectroscopy, to obtain rapid, real time in vitro analysis of human cells in contact with bioactive glasses, and the osteostimulative dissolution ions that lead to osteogenesis. The bio-Raman studies support the results obtained from in vivo studies of bioactive glasses, as well as extensive cell and molecular biology studies, and thus offers an innovative means for rapid screening of new bioactive materials while reducing the need for animal testing.

  19. 硼化物陶瓷基涂层制备技术的研究进展%Research Progress of Preparation Technology on the Boride Ceramic-based Coating

    Institute of Scientific and Technical Information of China (English)

    贾成科; 张鑫; 任先京; 冀晓鹃; 彭浩然

    2012-01-01

    Boride cermet is a new cermet with many excellent properties such as high melting temperature, bulk hardness, high chemical stability, high wearable property, and good anti-causticity, which is used in the fields such as fire-resistant material, engineering cermet, nuclear industry, and space navigation. The same excellent properties of the boride ceramic based coating prepared by many kinds of techniques, which are play important roles in many fields such as ultra high-temperature components, high wearable property units,good anti-causticity parts, anti-liquid metal-causticity component, and neutron-ratiant guard etc. The preparation methods of the boride ceramic- based coating with the strongpoint and disadvantage are introduced. The advances and the application of boride ceramic- based coating, mostly including duality boride ceramic based coatings and ternary ones, are also summarized as well as the existing problems and the prospects are analyzed.%硼化物陶瓷是一种新型陶瓷材料,具有诸如高熔点、高硬度、高化学稳定性以及高耐磨、抗腐蚀性等优异的综合性能,在耐火材料、工程陶瓷、核工业、宇航等领域有着广泛应用,而通过多种工艺制备的硼化物陶瓷基涂层同样具有很好的性质和功能,这些优异的特性使得目前硼化物涂层在很多工程领域发挥着极其重要的作用,如超高温部件、高耐磨蚀性部件以及抗金属液腐蚀性的部件、中子辐射防护装置等。本文介绍了硼化物陶瓷基涂层的制备方法,指出了各种方法的优缺点,综述了硼化物陶瓷基涂层的研究进展及其涂层的应用情况,主要包括二元硼化物陶瓷基涂层、多元硼化物基金属涂层等,总结了目前该领域存在的问题,并对今后的发展前景进行了展望。

  20. Characteristics of Carbon Material Formation on SBA-15 and Ni-SBA-15 Templates by Acetylene Decomposition and Their Bioactivity Effects

    Directory of Open Access Journals (Sweden)

    Hsiu-Mei Chiang

    2016-05-01

    Full Text Available Carbon spheres and tubes were formed from acetylene decomposition on SBA-15 and Ni-SBA-15 at 650–850 °C. At 650 °C, the decomposed carbons covered the surface of the support, and no carbon spheres and filament materials were formed. Carbon sphere formation occurred at 750 °C–850 °C; with diameters ranging from 0.8 μm–1.1 μm. For Ni-SBA-15, the diameters of the spheres and filaments were 0.8 μm and 62 nm, respectively, at 650 °C. At 750 °C, the diameter of the ball carbon materials ranged from 0.7 μm–0.8 μm, the diameter of the carbon tubes formed was 120–130 nm, and their pore diameter was 8.0 nm–11 nm. At 850 °C, the diameters of ball carbon materials and carbon tubes were similar to those of the materials at the formation temperature, 750 °C. Si, O and C were the main constituents of SBA-15; Ni-SBA-15 and carbon material formation supports. High-ring PAHs (such as BaP (five rings; IND (six rings; DBA (five rings and B[ghi]P (six rings exist in carbon materials. SBA-15 revealed insignificant cytotoxicity, but Ni-SBA-15 inhibited the proliferation of human lung cancer cells (A549. Less inhibition on cell viability and reactive oxidative species (ROS generation on A549 were determined for carbon material formation on the Ni-SBA-15 compared to the Ni-SBA-15.

  1. Bioactive phytochemicals in flaxseed

    OpenAIRE

    Johnsson, Pernilla

    2009-01-01

    Flaxseed (Linum usitatissimum L.) is rich in health-promoting bioactive compounds. Among plant foods, flaxseed has the highest content of lignans, mainly in the form of secoisolariciresinol diglucoside (SDG). Flaxseed oil also has a very high concentration of the essential omega-3 fatty acid alpha-linolenic acid (ALA). This thesis presents studies on both SDG and ALA. An HPLC method for quantification of SDG in hydrolysed flaxseed extracts was developed and used to compare the SDG content in ...

  2. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments.

    Science.gov (United States)

    Shah, Furqan A

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F(-)) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F(-) ions may be incorporated into the glass in the form of calcium fluoride (CaF2) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F(-) incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential.

  3. Sugar matrices in stabilization of bioactives by dehydration

    OpenAIRE

    Zhou, Yankun

    2013-01-01

    Development of functional foods with bioactive components requires component stability in foods and ingredients. Stabilization of sensitive bioactive components can be achieved by entrapment or encapsulation of these components in solid food matrices. Lactose or trehalose was used as the structure-forming material for the entrapment of hydrophilic ascorbic acid and thiamine hydrochloride or the encapsulation of oil particles containing hydrophobic α-tocopherol. In the delivery of hydrophobic ...

  4. 3种牙髓生物活性材料对小鼠间充质干细胞骨向分化的影响%Effects of three endodontic bioactive materials on osteogenic differentiation of murine MSCs

    Institute of Scientific and Technical Information of China (English)

    周媛; 叶茂昌; 武瑾; 陈梅梅; 白冰

    2016-01-01

    Objective To assess the biocompatibility of three kinds of endodontic bioactive materials, i. e. , mineral trioxide aggre-gate ( MTA) , bioaggrregate ( BA) and biodentine ( BD) , and to investigate the effects of these cements on osteogenic differentiation of the Mus musculus mesenchymal stem cells ( MSCs) . Methods The cell viability, mineralization and differentiation ability of Mus musculus MSCs were evaluated by XTT assay and ALP staining, and the effects of MTA, BA and BD on osteogenic differentiation of the MSCs were ob-served respectively. Results The cell viability of MSCs in various concentrations of BD (1, 1/2 and 1/4) were all significantly lower than that of MTA and BA (P0.05)。 MTA、BA和低浓度BD在显示分化矿化能力的ALP染色检测方面,与对照组相比染色值均升高,差异有统计学意义(P<0.05)。结论 MTA、BA以及低浓度BD与小鼠MSCs有良好的生物相容性;MTA、BA和低浓度BD在小鼠MSCs向成骨方向分化过程中有促进分化矿化作用,可以作为根管的根尖封闭材料。

  5. How useful is SBF in predicting in vivo bone bioactivity?

    Science.gov (United States)

    Kokubo, Tadashi; Takadama, Hiroaki

    2006-05-01

    The bone-bonding ability of a material is often evaluated by examining the ability of apatite to form on its surface in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. However, the validity of this method for evaluating bone-bonding ability has not been assessed systematically. Here, the history of SBF, correlation of the ability of apatite to form on various materials in SBF with their in vivo bone bioactivities, and some examples of the development of novel bioactive materials based on apatite formation in SBF are reviewed. It was concluded that examination of apatite formation on a material in SBF is useful for predicting the in vivo bone bioactivity of a material, and the number of animals used in and the duration of animal experiments can be reduced remarkably by using this method.

  6. Genetic variations of Lansium domesticum Corr. accessions from Java, Sumatra and Ceram based on Random Amplified Polymorphic DNA fingerprints

    Directory of Open Access Journals (Sweden)

    KUSUMADEWI SRI YULITA

    2011-07-01

    Full Text Available Yulita KS (2011 Genetic variations of Lansium domesticum Corr. accessions from Java, Bengkulu and Ceram based on Random Amplified Polymorphic DNA fingerprints. Biodiversitas 12: 125-130. Duku (Lansium domesticum Corr. is one of popular tropical fruits in SE Asia. The spesies has three varieties, known as duku, langsat and kokosan; and duku is the most popular one for being the sweetiest fruit. Indonesia has several local varieties of duku, such as duku Condet, duku Sumber and duku Palembang. This present study aimed to assess genetic diversity of 47 accessions of duku from Java, Sumatra, and Ceram based on RAPD fingerprints. Ten RAPD’s primers were initially screened and five were selected for the analysis. These five primers (OPA 7, 13, 18, OPB 7, and OPN 12 generated 53 scorable bands with an average of 10.6 polymorphic fragment per primer. Percentage of polymorphism ranged from 16.89% (OPA 7 and OPN 12 to 24.54% (OPB 7 with an average of 20.16% polymorphism. OPB 7 at 450 bp was exclusively possessed by accession 20 (Java, OPA 18 at 500 bp was by accession 6 (Java, 550 bp by 3 clones from Bengkulu. While OPN 12 at 300 bp and OPA 13 at 450 bp were shared among the accessions. Clustering analysis was performed based on RAPD profiles using the UPGMA method. The range of genetic similarity value among accessions was 0.02-0.65 suggesting high variation of gene pool existed among accessions.

  7. Current Strategies to Improve the Bioactivity of PEEK

    Directory of Open Access Journals (Sweden)

    Rui Ma

    2014-03-01

    Full Text Available The synthetic thermoplastic polymer polyetheretherketone (PEEK is becoming a popular component of clinical orthopedic and spinal applications, but its practical use suffers from several limitations. Although PEEK is biocompatible, chemically stable, radiolucent and has an elastic modulus similar to that of normal human bone, it is biologically inert, preventing good integration with adjacent bone tissues upon implantation. Recent efforts have focused on increasing the bioactivity of PEEK to improve the bone-implant interface. Two main strategies have been used to overcome the inert character of PEEK. One approach is surface modification to activate PEEK through surface treatment alone or in combination with a surface coating. Another strategy is to prepare bioactive PEEK composites by impregnating bioactive materials into PEEK substrate. Researchers believe that modified bioactive PEEK will have a wide range of orthopedic applications.

  8. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  9. LASER-INDUCED BIOACTIVITY IN DENTAL PORCELAIN MODIFIED BY BIOACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    ANASTASIA BEKETOVA

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of laser-liquid-solid interaction method in the bioactivity of dental porcelain modified by bioactive glass. Forty sol-gel derived specimens were immersed in Dulbecco's Modified Eagle's Medium, 31 and 9 specimens of which were treated with Er:YAG and Nd:YAG laser respectively. Untreated specimens served as controls. Incubation of specimens followed. Bioactivity was evaluated, using Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM/Energy Dispersive Spectroscopy (EDS and Transmission Electron Microscopy (TEM. FTIR detected peaks associated with hydroxyapatite on 1 Nd:YAG- and 4 Er:YAG-treated specimens. SEM analysis revealed that Er:YAG-treated specimens were covered by granular hydroxyapatite layer, while Nd:YAG treated specimen presented growth of flake-like hydroxyapatite. TEM confirmed the results. The untreated controls presented delayed bioactivity. In conclusion, Nd:YAG and Er:YAG laser treatment of the material, under certain fluencies, accelerates hydroxyapatite formation. Nd:YAG laser treatment of specific parameters causes the precipitation of flake-like hydroxyapatite in nano-scale.

  10. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    Science.gov (United States)

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials.

  11. Preparation of poly-L-lactide/bioactive glass composite and evaluation of cytotoxicity in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; CHEN Liang-long

    2008-01-01

    Bioactive and bioresorbable composite materials were fabricated from poly-L-lactide and bioactive glass (average particle size 6.8 μm) by a solvent evaporation technique. Cellular cultivation in vitro and MTT assay were conducted for evaluating the influence on morphology, growth and proliferation of cultured fibroblasts. The results of cytotoxicity testing show that cells cultured in extracts of PLLA/BG and on the surface of composites demonstrate normal growth and proliferation. The bioactive glass in PLLA composite facilitates both adhesion and proliferation of rat fibroblasts on PLLA/bioactive glass composite film.

  12. Fascinating properties of bioactive templated glasses: A new generation of nanostructured bioceramics

    Science.gov (United States)

    Izquierdo-Barba, Isabel; Vallet-Regí, María

    2011-04-01

    This review article, dedicated to Prof. Osamu Terasaki, is focused on current trends in nanostructured bioceramics in the field of bone repair and regeneration. This communication overviews the main characteristics of so called "templated glasses" recently described which exhibit an outstanding bioactive behavior compared with conventional bioactive glasses. A deep study regarding the control of textural, structural and compositional properties in the nanometric scale in relation to the charming bioactivity properties described for these nanostructured materials is herein discussed. The possibility to tailor such properties offers a wide range of reactivity/bioactivity depending on the medical application requested.

  13. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Furqan A., E-mail: furqan.ali.shah@biomaterials.gu.se

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F{sup −}) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F{sup −} ions may be incorporated into the glass in the form of calcium fluoride (CaF{sub 2}) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F{sup −} incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. - Highlights: • Fluoride ions form charged CaF{sup +} species rather than Si–F bonds. • Fluoride incorporation lowers glass transition and crystallisation temperatures. • Oxynitride and oxyfluoronitride glasses with superior mechanical properties • Mixed-alkali and alkali-free compositions with better processing characteristics.

  14. Bioactive proteins from pipefishes

    Institute of Scientific and Technical Information of China (English)

    E. Rethna Priya; S. Ravichandran; R. Ezhilmathi

    2013-01-01

    Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment.Methods:Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains.Results:Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm) and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm). In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm) and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm). Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups.Conclusions:It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  15. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.-M. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, L.; Kantiranis, N. [Department of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lazaridis, N.K. [Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K.; Chatzistavrou, X. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M., E-mail: kpar@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  16. Bioactivity and mechanical behaviour of cobalt oxide-doped bioactive glass

    Indian Academy of Sciences (India)

    Vikash Kumar Vyas; Arepalli Sampath Kumar; Sunil Prasad; S P Singh; Ram Pyare

    2015-08-01

    Bioactive glasses are materials capable of bonding implants to tissues. 45S5 Bio-glass® is one such material capable of bonding strongly to bone within 6 weeks. It develops a hydroxy-carbonate apatite layer on the implant that is chemically and crystallographically equivalent to the mineral phase of bone. However, it suffers from a mechanical weakness and low fracture toughness due to an amorphous glass network and is not suitable for load-bearing applications. In order to improve its mechanical strength and bioactivity, the present work explores the effects of cobalt oxide additions. Bioactivity of the glass samples was assessed through their hydroxyapatite formation ability by immersing them in the simulated body fluid for different soaking periods. The formation of hydroxyapatite was confirmed by Fourier transform infrared spectrometry, pH measurement and microstructure evaluation through scanning electron microscopy. Densities and mechanical properties of the samples were found to increase considerably with an increase in the concentration of cobalt oxide.

  17. Bioactive Peptides in Milk and Dairy Products: A Review

    OpenAIRE

    Park, Young Woo; Nam, Myoung Soo

    2015-01-01

    Functionally and physiologically active peptides are produced from several food proteins during gastrointestinal digestion and fermentation of food materials with lactic acid bacteria. Once bioactive peptides (BPs) are liberated, they exhibit a wide variety of physiological functions in the human body such as gastrointestinal, cardiovascular, immune, endocrine, and nervous systems. These functionalities of the peptides in human health and physiology include antihypertensive, antimicrobial, an...

  18. Bioactive Peptides in Milk and Dairy Products: A Review.

    Science.gov (United States)

    Park, Young Woo; Nam, Myoung Soo

    2015-01-01

    Functionally and physiologically active peptides are produced from several food proteins during gastrointestinal digestion and fermentation of food materials with lactic acid bacteria. Once bioactive peptides (BPs) are liberated, they exhibit a wide variety of physiological functions in the human body such as gastrointestinal, cardiovascular, immune, endocrine, and nervous systems. These functionalities of the peptides in human health and physiology include antihypertensive, antimicrobial, antioxidative, antithrombotic, opioid, anti-appetizing, immunomodulatory and mineral-binding activities. Most of the bioactivities of milk proteins are latent, being absent or incomplete in the original native protein, but full activities are manifested upon proteolytic digestion to release and activate encrypted bioactive peptides from the original protein. Bioactive peptides have been identified within the amino acid sequences of native milk proteins. Due to their physiological and physico-chemical versatility, milk peptides are regarded as greatly important components for health promoting foods or pharmaceutical applications. Milk and colostrum of bovine and other dairy species are considered as the most important source of natural bioactive components. Over the past a few decades, major advances and developments have been achieved on the science, technology and commercial applications of bioactive components which are present naturally in the milk. Although the majority of published works are associated with the search of bioactive peptides in bovine milk samples, some of them are involved in the investigation of ovine or caprine milk. The advent of functional foods has been facilitated by increasing scientific knowledge about the metabolic and genomic effects of diet and specific dietary components on human health.

  19. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  20. Experimental Study on LTCC Glass-Ceramic Based Dual Segment Cylindrical Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Gangwar

    2013-01-01

    Full Text Available The measured characteristics in C/X bands, including material properties of a dual segment cylindrical dielectric resonator antenna (CDRA fabricated from glass-ceramic material based on B2O3–La2O3–MgO glass and La(Mg0.5Ti0.5O3 ceramic, are reported. The sintering characteristic of the ceramic in presence of glass is determined from contact angle measurement and DTA. The return loss and input impedance versus frequency characteristics and radiation patterns of CDRA at its resonant frequency of 6.31 GHz are studied. The measured results for resonant frequency and return loss bandwidth of the CDRA are also compared with corresponding theoretical ones.

  1. The future of bioactive ceramics.

    Science.gov (United States)

    Hench, Larry L

    2015-02-01

    Two important worldwide needs must be satisfied in the future; (1) treatment of the deteriorating health of an aging population and, (2) decreasing healthcare costs to meet the needs of an increased population. The ethical and economic dilemma is how to achieve equality in quality of care while at the same time decreasing cost of care for an ever-expanding number of people. The limited lifetime of prosthetic devices made from first-generation nearly inert biomaterials requires new approaches to meet these two large needs. This paper advises an expanded emphasis on: (1) regeneration of tissues and (2) prevention of tissue deterioration to meet this growing need. Innovative use of bioactive ceramics with genetic control of in situ tissue responses offers the potential to achieve both tissue regeneration and prevention. Clinical success of use of bioactive glass for bone regeneration is evidence that this concept works. Likewise the use of micron sized bioactive glass powders in a dentifrice for re-mineralization of teeth provides evidence that prevention of tissue deterioration is also possible. This opinion paper outlines clinical needs that could be met by innovative use of bioactive glasses and ceramics in the near future; including: regeneration of skeletal tissues that is patient specific and genetic based, load-bearing bioactive glass-ceramics for skeletal and ligament and tendon repair, repair and regeneration of soft tissues, and rapid low-cost analysis of human cell-biomaterial interactions leading to patient specific diagnoses and treatments using molecularly tailored bioceramics.

  2. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  3. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    Directory of Open Access Journals (Sweden)

    Yun HS

    2011-10-01

    Full Text Available Hui-suk Yun1, Sang-Hyun Kim2, Dongwoo Khang3, Jungil Choi4, Hui-hoon Kim2, Minji Kang31Functional Materials Division, Korea Institute of Materials Science, Gyeongnam, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Jung-Gu, Daegu, Korea; 3School of Nano and Advanced Materials Science and Engineering and Center for NMBE, Gyeongsang National University, Jinju, Korea; 4Department of Anatomy, Institute of Health Science and School of Medicine, Gyeongsang National University, Jinju, Gyeongnam, KoreaBackground: Mesoporous bioactive glasses (MBGs are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA in simulated body fluid (SBF, which is a major inorganic component of bone extracellular matrix (ECM and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs.Methods and materials: The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed.Results: The ECM components were fully

  4. Surface characterization of silver-doped bioactive glass.

    Science.gov (United States)

    Vernè, E; Di Nunzio, S; Bosetti, M; Appendino, P; Brovarone, C Vitale; Maina, G; Cannas, M

    2005-09-01

    A bioactive glass belonging to the system SiO(2)-CaO-Na(2)O was doped with silver ions by ion exchange in molten salts as well as in aqueous solution. The ion exchange in the solution was done to check if it is possible to prepare an antimicrobial material using a low silver content. The doped glass was characterized by means of X-ray diffraction, SEM observation, EDS analysis, bioactivity test (soaking in a simulated body fluid), leaching test (GFAAS analyses) and cytotoxicity test. It is demonstrated that these surface silver-doped glasses maintain, or even improve, the bioactivity of the starting glass. The measured quantity of released silver into simulated body fluid compares those reported in literature for the antibacterial activity and the non-cytotoxic effect of silver. Cytotoxicity tests were carried out to understand the effect of the doped surfaces on osteogenic cell adhesion and proliferation.

  5. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H2SO4 and CaCl2. Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H2SO4 and CaCl2; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites.

  6. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    . In particular, 3-15% of very low birth weight preterm infants suffer from the most servere form of intestinal inflammation, known as necrotizing enterocolitis (NEC). This disease is incurable with a high mortality rate of 15-30%. Mother’s breast milk consists of different bioactive constituents...... several steps of thermal processing, which are known to decrease/abolish bioactivity of milk constituents. This may explain for high NEC incidence in formula-fed preterm infants. We therefore in this PhD project investigated whether gentle thermal processing conditions increase the bioavailability...... of infant formula. Thereafter, bioactive milk components which were preserved in gently-processed infant formula were selected for further investigation of their immunomodulatory activity in cell and preterm pig models. We hope this project will contribute to the research on the development of new...

  7. COMPARISON OF BIOACTIVE INGREDIENTS IN OCIMUM SPECIES

    Directory of Open Access Journals (Sweden)

    R.Caroline Jeba

    2013-08-01

    Full Text Available With the increasing demand for health care approaches, resurgence of herbal medicines has taken up great dimensions in changing the health care scenario across the globe. However, identification of the correct species of therapeutic importance is of utmost necessity to deliver quality products to the global market. Hence, modern approach in the standardization of single herbal preparations employing sophisticated techniques is the need of the hour. The evaluation of a product in its entirety, so-called “fingerprinting” can be accomplished by appropriate methods, which may include HPLC, GC-MS, HPTLC-densitometry, FT-NIR, high-field NMR or a combination of these techniques. Using chemical fingerprinting, plants can be demarcated on the basis of their species, strain and geographical origin. Chemical fingerprinting of plants, through chromatographic fingerprinting is highly informative which includes its use as an absolute indicator of the chemical characteristics of plants. Adulterants can be distinguished even in processed samples, enabling the authentication of the drug. Herein, in the present study two varieties of Ocimum species with green and purple coloured leaves collected from Tirunelvelli district commonly known as “Tulasi” in Tamil or “Holy Basil” in English and widely used in both ayurvedic and siddha drugs was subjected to chemical fingerprinting using HPTLC and GC. Moreover, the secondary metabolities such as polyphenols, tannins, and flavonoids were quantified to check the potency of the crude drug material. The bioactive molecule such as eugenol was found to be varying in both the species and the purple variety was found to contain more of the bioactive molecules. The fingerprinting of chemical profile as well as the quantification of the bioactive molecules in the two varieties of Ocimum species exemplified that fingerprinting using analytical techniques are comprehensive and more informative to identify and

  8. Enhanced luminescence in Er3+-doped chalcogenide glass-ceramics based on selenium

    Science.gov (United States)

    Hubert, Mathieu; Calvez, Laurent; Zhang, Xiang-Hua; Lucas, Pierre

    2013-10-01

    Rare earth doped glass-ceramics transparent in the infrared region up to 16 μm have been prepared and studied. The enhancement of the emission of Er3+ ions at 1.54 μm with increasing crystallinity was demonstrated in a selenium-based glass-ceramic having a composition of 80GeSe2-20Ga2Se3 + 1000 ppm Er. The optical transmission, microstructure and luminescence properties of a base glass and glass-ceramics were investigated. Luminescence intensities up to 7 times greater were obtained in glass-ceramics in comparison to the base glass. These materials are promising candidates for the production of new laser sources in the mid-infrared region.

  9. Yb:YAG ceramic-based laser driver for Inertial Fusion Energy (IFE)

    Science.gov (United States)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.

    2016-03-01

    We report on a new class of laser amplifiers for inertial confinement fusion (ICF) drivers based on a Yb:YAG ceramic disk in an edge-pumped configuration and cooled by a high-velocity gas flow. The Yb lasant offers very high efficiency and low waste heat. The ceramic host material has a thermal conductivity nearly 15-times higher than the traditionally used glass and it is producible in sizes suitable for a typical 10- to 20-kJ driver beam line. The combination of high lasant efficiency, low waste heat, edge-pumping, and excellent thermal conductivity of the host, enable operation at 10 to 20 Hz at over 20% wall plug efficiency while being comparably smaller and less costly than recently considered face-pumped alternative drivers using Nd:glass, Yb:S-FAP, and cryogenic Yb:YAG. Scalability of the laser driver over a broad range of sizes is presented.

  10. An Experimental Study on Mechanical Modeling of Ceramics Based on Microstructure

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang

    2015-11-01

    Full Text Available The actual grinding result of ceramics has not been well predicted by the present mechanical models. No allowance is made for direct effects of materials microstructure and almost all the mechanical models were obtained based on crystalline ceramics. In order to improve the mechanical models of ceramics, surface grinding experiments on crystalline ceramics and non-crystalline ceramics were conducted in this research. The normal and tangential grinding forces were measured to calculate single grit force and specific grinding energy. Grinding surfaces were observed. For crystalline alumina ceramics, the predictive modeling of normal force per grit fits well with the experimental result, when the maximum undeformed chip thickness is less than a critical depth, which turns out to be close to the grain size of alumina. Meanwhile, there is a negative correlation between the specific grinding energy and the maximum undeformed chip thickness. With the decreasing maximum undeformed chip thickness, the proportions of ductile removal and transgranular fracture increase. However, the grinding force models are not applicable for non-crystalline ceramic fused silica and the specific grinding energy fluctuates irregularly as a function of maximum undeformed chip thickness seen from the experiment.

  11. Exploring marine resources for bioactive compounds.

    Science.gov (United States)

    Kiuru, Paula; DʼAuria, M Valeria; Muller, Christian D; Tammela, Päivi; Vuorela, Heikki; Yli-Kauhaluoma, Jari

    2014-09-01

    Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications.

  12. Abrasive wear behaviour of bio-active glass ceramics containing apatite

    Indian Academy of Sciences (India)

    I Sevim; M K Kulekci

    2006-06-01

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture toughness equations using experimental hardness results of the bio-active glass ceramic material. Two fracture toughness equations in the literature were used to identify the wear behaviour of studied ceramics. Wear resistance results that identified with both of the equations were similar. The results showed that the abrasive wear resistance of the bio-active glass ceramics produced with hot pressing process was found to be higher than that of the ceramics produced by conventional casting and controlled crystallization process.

  13. Bioactive Nanocomposites for Tissue Repair and Regeneration: A Review

    Science.gov (United States)

    Bramhill, Jane; Ross, Sukunya; Ross, Gareth

    2017-01-01

    This review presents scientific findings concerning the use of bioactive nanocomposites in the field of tissue repair and regeneration. Bioactivity is the ability of a material to incite a specific biological reaction, usually at the boundary of the material. Nanocomposites have been shown to be ideal bioactive materials due the many biological interfaces and structures operating at the nanoscale. This has resulted in many researchers investigating nanocomposites for use in bioapplications. Nanocomposites encompass a number of different structures, incorporating organic-inorganic, inorganic-inorganic and bioinorganic nanomaterials and based upon ceramic, metallic or polymeric materials. This enables a wide range of properties to be incorporated into nanocomposite materials, such as magnetic properties, MR imaging contrast or drug delivery, and even a combination of these properties. Much of the classical research was focused on bone regeneration, however, recent advances have enabled further use in soft tissue body sites too. Despite recent technological advances, more research is needed to further understand the long-term biocompatibility impact of the use of nanoparticles within the human body. PMID:28085054

  14. Bioactive Nanocomposites for Tissue Repair and Regeneration: A Review

    Directory of Open Access Journals (Sweden)

    Jane Bramhill

    2017-01-01

    Full Text Available This review presents scientific findings concerning the use of bioactive nanocomposites in the field of tissue repair and regeneration. Bioactivity is the ability of a material to incite a specific biological reaction, usually at the boundary of the material. Nanocomposites have been shown to be ideal bioactive materials due the many biological interfaces and structures operating at the nanoscale. This has resulted in many researchers investigating nanocomposites for use in bioapplications. Nanocomposites encompass a number of different structures, incorporating organic-inorganic, inorganic-inorganic and bioinorganic nanomaterials and based upon ceramic, metallic or polymeric materials. This enables a wide range of properties to be incorporated into nanocomposite materials, such as magnetic properties, MR imaging contrast or drug delivery, and even a combination of these properties. Much of the classical research was focused on bone regeneration, however, recent advances have enabled further use in soft tissue body sites too. Despite recent technological advances, more research is needed to further understand the long-term biocompatibility impact of the use of nanoparticles within the human body.

  15. Experimental studies on bioactive potential of rutin

    Directory of Open Access Journals (Sweden)

    Shagun Dubey

    2013-01-01

    Full Text Available Background: Plant-derived phytochemicals are gaining wide popularity owing to their diverse therapeutic potential and less side effects. Rutin is one of the plant-derived flavonoid. Rutin has demonstrated cardio protective, analgesic, and anticancer effects. Aim: The current work was focused to evaluate bioactive potential of rutin. Materials and Methods: Rutin was isolated from tobacco leaves. The structure was confirmed by H 1 NMR spectroscopy. The isolated rutin was studied for possible antibacterial, antifungal, anthelmintic, larvicidal, and cytotoxic effects. Results: Results of studies demonstrated that rutin effectively inhibited growth of bacteria and fungi, as well as demonstrated anthelmintic potential. There was a positive response for larvicidal and cytotoxic effects. Conclusion: These studies justify chemotherapeutic potential of rutin.

  16. Thermal stability of bioactive enzymatic papers.

    Science.gov (United States)

    Khan, Mohidus Samad; Li, Xu; Shen, Wei; Garnier, Gil

    2010-01-01

    The thermal stability of two enzymes adsorbed on paper, alkaline phosphatase (ALP) and horseradish peroxidase (HRP), was measured using a colorimetric technique quantifying the intensity of the product complex. The enzymes adsorbed on paper retained their functionality and selectivity. Adsorption on paper increased the enzyme thermal stability by 2-3 orders of magnitude compared to the same enzyme in solution. ALP and HRP enzymatic papers had half-lives of 533 h and 239 h at 23 degrees C, respectively. The thermal degradation of adsorbed enzyme was found to follow two sequential first-order reactions, indication of a reaction system. A complex pattern of enzyme was printed on paper using a thermal inkjet printer. Paper and inkjet printing are ideal material and process to manufacture low-cost-high volume bioactive surfaces.

  17. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2015-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  18. HPLC ANALYSIS OF BIOACTIVE COMPOUNDS IN TEN DIFFERENT WILD TYPE UNDER-UTILIZED LEGUME GRAINS

    OpenAIRE

    Vellingiri Vadivel and Hans Konrad Biesalski

    2010-01-01

    In recent years, many food industries have been initiated the formulation of nutraceutical/functional foods by incorporating the bioactive ingredients for the prevention/treatment of certain chronic diseases. In this connection, certain promising wild type under-utilized legume grains received more attention, since they are naturally a rich source of L-Dopa (precursor of dopamine) and certain bioactive compounds including phenolics, tannins and phytic acid. In the present study, seed material...

  19. Bioactivity and phytochemical characterization of Arenaria montana L.

    OpenAIRE

    Pereira, Eliana; Barros, Lillian; Calhelha, Ricardo C.; Dueñas, Montserrat; Carvalho, Ana Maria; Santos-Buelga, Celestino; Isabel C. F. R. Ferreira

    2014-01-01

    The bioactivity (antioxidant and cytotoxic activities) of the aqueous and methanolic extracts of Arenaria montana L., a plant commonly used in Portuguese folk medicine, was evaluated and compared. Furthermore, the phytochemical composition was determined regarding hydrophilic (sugars, organic acids and phenolic compounds) and lipophilic (fatty acids and tocopherols) compounds, in order to valorize this plant material as a functional food/nutraceutical. Fructose, oxalic acid, methyl-luteolin 2...

  20. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  1. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering.

    Science.gov (United States)

    Gantar, Ana; da Silva, Lucilia P; Oliveira, Joaquim M; Marques, Alexandra P; Correlo, Vitor M; Novak, Saša; Reis, Rui L

    2014-10-01

    This work presents bioactive-glass-reinforced gellan-gum spongy-like hydrogels (GG-BAG) as novel hydrophilic materials for use as the scaffolding in bone-tissue engineering. The reinforcement with bioactive-glass particles resulted in an improvement to the microstructure and to the mechanical properties of the material. These mechanical properties were found to be dependent on the composition and improved with the amount of bioactive glass; however, values necessary to accommodate biomechanical loading were not achieved in this study. Nevertheless, by incorporating the bioactive-glass particles, the composite material acquired the ability to form an apatite layer when soaked in simulated body fluid. Furthermore, human-adipose-derived stem cells were able to adhere and spread within the gellan-gum, spongy-like hydrogels reinforced with the bioactive glass, and remain viable, which is an important result when considering their use in bone-tissue engineering. Thus, hydrogels based on gellan gum and bioactive glass are promising biomaterials for use either alone or with cells, and with the potential for use in osteogenic differentiation.

  2. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    Science.gov (United States)

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  3. A new synthesis route to high surface area sol gel bioactive glass through alcohol washing

    Science.gov (United States)

    M. Mukundan, Lakshmi; Nirmal, Remya; Vaikkath, Dhanesh; Nair, Prabha D.

    2013-01-01

    Bioactive glass is one of the widely used bone repair material due to its unique properties like osteoconductivity, osteoinductivity and biodegradability. In this study bioactive glass is prepared by the sol gel process and stabilized by a novel method that involves a solvent instead of the conventional calcinations process. This study represents the first attempt to use this method for the stabilization of bioactive glass. The bioactive glass stabilized by this ethanol washing process was characterized for its physicochemical and biomimetic property in comparison with similar composition of calcined bioactive glass. The compositional similarity of the two stabilized glass powders was confirmed by spectroscopic and thermogravimetric analysis. Other physicochemical characterizations together with the cell culture studies with L929 fibroblast cells and bone marrow mesenchymal stem cells proved that the stabilization was achieved with the retention of its inherent bioactive potential. However an increase in the surface area of the glass powder was obtained as a result of this ethanol washing process and this add up to the success of the study. Hence the present study exhibits a promising route for high surface area bioactive glass for increasing biomimicity. PMID:23512012

  4. Effect of nickel oxide substitution on bioactivity and mechanical properties of bioactive glass

    Indian Academy of Sciences (India)

    VIKASH KUMAR VYAS; A SAMPATH KUMAR; S P SINGH; RAM PYARE

    2016-09-01

    A small amount of nickel oxide is doped in bioglass$^{\\circledR}$ system and it is replaced by silica. The use of 45S5 glass composition is one such material able to bond strongly to bone within 42 days. The 45S5 bioglass$^{\\circledR}$ system develops a hydroxyl carbonate apatite (HCA) layer, which is chemically and crystallographically similar to mineral phase of bone. But it has low fracture toughness and mechanical weakness due to an amorphous glass network andit is not compatible for load-bearing applications. In the present work, the effect of addition of nickel oxide that annualizes the improvement in its mechanical strength and bioactivity is studied. Bioactivity of base glass and doped glass samples were tested through their HCA abilities by immersing them in simulated body fluid (SBF) for different days. The formation of HCA was confirmed by FTIR spectroscopy and pH measurement. Densities and mechanical properties of samples were also increased considerably by increasing the concentration of nickel oxide.

  5. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05).

  6. Fiber-reinforced bioactive and bioabsorbable hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, Mikko; Godinho, Pedro; Kellomaeki, Minna [Tampere University of Technology, Institute of Biomaterials, Hermiankatu 12, PO Box 589, FIN-33101 Tampere (Finland); Toermaelae, Pertti [Bioretec Ltd, Hermiankatu 22, PO Box 135, FI-33721 Tampere (Finland)], E-mail: mikko.huttunen@tut.fi

    2008-09-01

    Bioabsorbable polymeric bone fracture fixation devices have been developed and used clinically in recent decades to replace metallic implants. An advantage of bioabsorbable polymeric devices is that these materials degrade in the body and the degradation products exit via metabolic routes. Additionally, the strength properties of the bioabsorbable polymeric devices decrease as the device degrades, which promotes bone regeneration (according to Wolff's law) as the remodeling bone tissue is progressively loaded. The most extensively studied bioabsorbable polymers are poly-{alpha}-hydroxy acids. The major limitation of the first generation of bioabsorbable materials and devices was their relatively low mechanical properties and brittle behavior. Therefore, several reinforcing techniques have been used to improve the mechanical properties. These include polymer chain orientation techniques and the use of fiber reinforcements. The latest innovation for bioactive and fiber-reinforced bioabsorbable composites is to use both bioactive and bioresorbable ceramic and bioabsorbable polymeric fiber reinforcement in the same composite structure. This solution of using bioactive and fiber-reinforced bioabsorbable hybrid composites is examined in this study.

  7. Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2015-01-01

    Full Text Available Purpose. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material. Study Selection. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords “PEEK dental implants,” “nano,” “osseointegration,” “surface treatment,” and “modification.” A total of 16 in vivo and in vitro studies were found suitable to be included in this review. Results. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials. Conclusion. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.

  8. Essential oils: extraction, bioactivities, and their uses for food preservation.

    Science.gov (United States)

    Tongnuanchan, Phakawat; Benjakul, Soottawat

    2014-07-01

    Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products.

  9. Bioactive glass thin films synthesized by advanced pulsed laser techniques

    Science.gov (United States)

    Mihailescu, N.; Stan, George E.; Ristoscu, C.; Sopronyi, M.; Mihailescu, Ion N.

    2016-10-01

    Bioactive materials play an increasingly important role in the biomaterials industry, and are extensively used in a range of applications, including biodegradable metallic implants. We report on Bioactive Glasses (BG) films deposition by pulsed laser techniques onto biodegradable substrates. The BG coatings were obtained using a KrF* excimer laser source (λ= 248 nm, τFWHM ≤ 25 ns).Their thickness has been determined by Profilometry measurements, whilst their morphology has been analysed by Scanning Electron Microscopy (SEM). The obtained coatings fairly preserved the targets composition and structure, as revealed by Energy Dispersive X-Ray Spectroscopy, Grazing Incidence X-Ray Diffraction, and Fourier Transform Infra-Red Spectroscopy analyses.

  10. Photocleavable linker for the patterning of bioactive molecules

    Science.gov (United States)

    Wegner, Seraphine V.; Sentürk, Oya I.; Spatz, Joachim P.

    2015-12-01

    Herein, we report the use of a versatile photocleavable nitrobenzyl linker to micropattern a wide variety of bioactive molecules and photorelease them on demand. On one end, the linker has an NHS group that can be coupled with any amine, such as peptides, proteins or amine-linkers, and on the other end an alkyne for convenient attachment to materials with an azide functional group. This linker was conjugated with NTA-amine or the cell adhesion peptide cRGD to enable straightforward patterning of His6-tagged proteins or cells, respectively, on PEGylated glass surfaces. This approach provides a practical way to control the presentation of a wide variety of bioactive molecules with high spatial and temporal resolution. The extent of photocleavage can also be controlled to tune the biomolecule density and degree of cell attachment to the surface.

  11. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    Science.gov (United States)

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites.

  12. Preparation and characterization of bioactive glass nanoparticles prepared by sol-gel for biomedical applications

    Science.gov (United States)

    Luz, Gisela M.; Mano, João F.

    2011-12-01

    Bioactive glass nanoparticles (BG-NPs), based on both ternary (SiO2-CaO-P2O5) and binary (SiO2-CaO) systems, were prepared via an optimized sol-gel method. The pH of preparation and the effect of heat treatment temperature were evaluated, as well as the effect of suppressing P in the bioactivity ability of the materials. The morphology and composition of the BG-NPs were studied using FTIR, XRD and SEM. The bioactive character of these materials was accessed in vitro by analyzing the ability for apatite formation onto the surface after being immersed in simulated body fluid (SBF). XRD, EDX and SEM were used to confirm the bioactivity of the materials. The BG-NP effect on cell metabolic activity was assessed by seeding L929 cells with their leachables, proving the non-cytotoxicity of the materials. Finally the most bioactive BG-NPs developed (ternary system prepared at pH 11.5 and treated at 700 °C) were successfully combined with chitosan in the production of biomimetic nanocomposite osteoconductive membranes that could have the potential to be used in guided tissue regeneration.

  13. Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass–ceramic fabricated using soda-lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Street, Shiraz (Iran, Islamic Republic of); Hashemi, B., E-mail: hashemib@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Street, Shiraz (Iran, Islamic Republic of); Shokrollahi, H. [Electroceramics Group, Materials Science and Engineering Department, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2014-04-01

    The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass–ceramic prepared through the solid-state reaction method using soda-lime–silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5–20 wt% strontium hexaferrite to bioactive glass–ceramics, the ferrimagnetic bioactive glass–ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed. - Highlights: • A novel ferrimagnetic bioactive glass–ceramic was synthesized by an incorporation method. • The bioactive part was synthesized by the solid-state reaction method using soda-lime–silica waste glass. • The doping of SrFe{sub 12}O{sub 19} to Bioglass{sup ®} 45S5 glass–ceramic is likely to decrease bioactivity.

  14. Microencapsulation as a tool for incorporating bioactive ingredients into food.

    Science.gov (United States)

    Kuang, S S; Oliveira, J C; Crean, A M

    2010-11-01

    Microencapsulation has been developed by the pharmaceutical industry as a means to control or modify the release of drug substances from drug delivery systems. In drug delivery systems microencapsulation is used to improve the bioavailability of drugs, control drug release kinetics, minimize drug side effects, and mask the bitter taste of drug substances. The application of microencapsulation has been extended to the food industry, typically for controlling the release of flavorings and the production of foods containing functional ingredients (e.g. probiotics and bioactive ingredients). Compared to the pharmaceutical industry, the food industry has lower profit margins and therefore the criteria in selecting a suitable microencapsulation technology are more stringent. The type of microcapsule (reservoir and matrix systems) produced and its resultant release properties are dependent on the microencapsulation technology, in addition to the physicochemical properties of the core and the shell materials. This review discusses the factors that affect the release of bioactive ingredients from microcapsules produced by different microencapsulation technologies. The key criteria in selecting a suitable microencapsulation technology are also discussed. Two of the most common physical microencapsulation technologies used in pharmaceutical processing, fluidized-bed coating, and extrusion-spheronization are explained to highlight how they might be adapted to the microencapsulation of functional bioactive ingredients in the food industry.

  15. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    Science.gov (United States)

    Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied

    2010-12-01

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2-CaO-P 2O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 μm and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  16. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Mozafari, Masoud, E-mail: mmozafari@aut.ac.ir [Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied [Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2010-12-15

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO{sub 2}-CaO-P{sub 2}O{sub 5} system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 {mu}m and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  17. Comparison of Calcium Hydroxide and Bioactive Glass after Direct Pulp Capping in Primary Teeth

    Directory of Open Access Journals (Sweden)

    R. Haghgoo

    2007-12-01

    Full Text Available Objective: Bioactive glass is often used as a filler material for repair of dental bone defects.In different studies osteogenic potential of this material was proved, but its dentinogenesisproperty is in doubt. The purpose of this study was to evaluate the histological pulp responses of Calcium hydroxide and Bioactive glass placed directly on exposed pulp tissues.Materials and Methods: Twenty teeth to be extracted due to orthodontic reasons were selected. These teeth were divided into two groups and treated with direct pulp capping.Calcium hydroxide was used for 10 teeth and Bioactive glass for 10 teeth. After 60 daysthe teeth were extracted and prepared for histological evaluation. Finally the data was analyzed with exact Fisher test.Results: All teeth treated with Calcium hydroxide showed inflammation. Internal resorption was seen in six teeth, abscess in five teeth and dentinal bridge in two teeth. Inflammationwas seen in three Bioactive glass samples and dentinal bridge in seven teeth, but internal resorption and abscess were not seen.Conclusion: Bioactive glass appears to be superior to Calcium hydroxide as a pulp capping agent in primary teeth.

  18. Bioactivities and Health Benefits of Wild Fruits.

    Science.gov (United States)

    Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin

    2016-08-04

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits.

  19. Secondary metabolites and bioactivities of Myrtus communis

    Directory of Open Access Journals (Sweden)

    Mahmoud I Nassar

    2010-01-01

    Full Text Available Background: Myrtus species are characterized by the presence of phenolic acids, flavonoids, tannins, volatile oils and fatty acids. They are remedies for variety of ailments. This study therefore investigated medicinal effects of Myrtus communis L. Methods: Bioactivity studies of Myrtus communis L. leaves were carried out on volatile oil, 7% methanol and aqueous extracts and the isolated compounds myricetin 3-O-β-glucopyranoside, myricetin 3-O-∝-rhamnopyranoside and gallic acid. Results: Determination of the median lethal dose (LD 50 revealed that the volatile oil, alcoholic and aqueous extracts were practically nontoxic and highly safe as no lethality was observed. The tested materials (volatile oil, alcoholic and aqueous extracts, myricetin 3-O-β-glucopyranoside, myricetin 3-O-∝-rhamnopyranoside and gallic acid showed significant antihyperglycemic, anti-inflammatory and antinociceptive effects as compared with control groups and reference drugs. Conclusion : Administration of extracts of M. communis leaves could be safe at the dose used in this study.

  20. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  1. Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair.

    Science.gov (United States)

    Ma, Rui; Tang, Songchao; Tan, Honglue; Qian, Jun; Lin, Wentao; Wang, Yugang; Liu, Changsheng; Wei, Jie; Tang, Tingting

    2014-08-13

    In this study, a nanocalcium silicate (n-CS)/polyetheretherketone (PEEK) bioactive composite was prepared using a process of compounding and injection-molding. The mechanical properties, hydrophilicity, and in vitro bioactivity of the composite, as well as the cellular responses of MC3T3-E1 cells (attachment, proliferation, spreading, and differentiation) to the composite, were investigated. The results showed that the mechanical properties and hydrophilicity of the composites were significantly improved by the addition of n-CS to PEEK. In addition, an apatite-layer formed on the composite surface after immersion in simulated body fluid (SBF) for 7 days. In cell culture tests, the results revealed that the n-CS/PEEK composite significantly promoted cell attachment, proliferation, and spreading compared with PEEK or ultrahigh molecular weight polyethylene (UHMWPE). Moreover, cells grown on the composite exhibited higher alkaline phosphatase (ALP) activity, more calcium nodule-formation, and higher expression levels of osteogenic differentiation-related genes than cells grown on PEEK or UHMWPE. These results indicated that the incorporation of n-CS to PEEK could greatly improve the bioactivity and biocompatibility of the composite. Thus, the n-CS/PEEK composite may be a promising bone repair material for use in orthopedic clinics.

  2. Synthesis and characterization of TEP-EDTA-regulated bioactive hydroxyapatite

    Science.gov (United States)

    Haders, Daniel Joseph, II

    Hydroxyapatite (HA), Ca10(PO4)6(OH) 2, the stoichiometric equivalent of the ceramic phase of bone, is the preferred material for hard tissue replacement due to its bioactivity. However, bioinert metals are utilized in load-bearing orthopedic applications due to the poor mechanical properties of HA. Consequently, attention has been given to HA coatings for metallic orthopedic implants to take advantage of the bioactivity of HA and the mechanical properties of metals. Commercially, the plasma spray process (PS-HA) is the method most often used to deposit HA films on metallic implants. Since its introduction in the 1980's, however, concerns have been raised about the consequences of PS-HA's low crystallinity, lack of phase purity, lack of film-substrate chemical adhesion, passivation properties, and difficulty in coating complex geometries. Thus, there is a need to develop inexpensive reproducible next-generation HA film deposition techniques, which deposit high crystallinity, phase pure, adhesive, passivating, conformal HA films on clinical metallic substrates. The aim of this dissertation was to intelligently synthesize and characterize the material and biological properties of HA films on metallic substrates synthesized by hydrothermal crystallization, using thermodynamic phase diagrams as the starting point. In three overlapping interdisciplinary studies the potential of using ethylenediamine-tetraacetic acid/triethyl phosphate (EDTA/TEP) doubly regulated hydrothermal crystallization to deposit HA films, the TEP-regulated, time-and-temperature-dependent process by which films were deposited, and the bioactivity of crystallographically engineered films were investigated. Films were crystallized in a 0.232 molal Ca(NO3)2-0.232 molal EDTA-0.187 molal TEP-1.852 molal KOH-H2O chemical system at 200°C. Thermodynamic phase diagrams demonstrated that the chosen conditions were expected to produce Ca-P phase pure HA, which was experimentally confirmed. EDTA regulation of

  3. Bioactivities and Health Benefits of Wild Fruits

    OpenAIRE

    Ya Li; Jiao-Jiao Zhang; Dong-Ping Xu; Tong Zhou; Yue. Zhou; Sha Li; Hua-Bin Li

    2016-01-01

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we rev...

  4. Microencapsulation of bioactives for food applications

    OpenAIRE

    Dias, Maria Inês; Isabel C. F. R. Ferreira; Barreiro, M.F.

    2015-01-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this co...

  5. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  6. Bioactive polymers for cardiac tissue engineering

    Science.gov (United States)

    Wall, Samuel Thomas

    2007-05-01

    stabilized injured ventricles, reducing functional loss over 6 weeks, and promoted the survival of transplanted stem cells. In addition, modifications to the hydrogel to impart novel bioactivity through a developed tethered form of the protein sonic hedgehog were synthesized and characterized. This tethered form increased protein potency, induced angiogenesis, and could be incorporated into the hydrogel material for future implantation studies in the injured ventricle.

  7. Fluoride release and bioactivity evaluation of glass ionomer: Forsterite nanocomposite

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Sayyedan

    2013-01-01

    Full Text Available Background: The most important limitation of glass ionomer cements (GICs is the weak mechanical properties. Our previous research showed that higher mechanical properties could be achieved by addition of forsterite (Mg 2 SiO 4 nanoparticles to ceramic part of GIC. The objective of the present study was to fabricate a glass ionomer- Mg 2 SiO 4 nanocomposite and to evaluate the effect of addition of Mg 2 SiO 4 nanoparticles on bioactivity and fluoride release behavior of prepared nanocomposite. Materials and Methods: Forsterite nanoparticles were made by sol-gel process. X-ray diffraction (XRD technique was used in order to phase structure characterization and determination of grain size of Mg 2 SiO 4 nanopowder. Nanocomposite was fabricated via adding 3wt.% of Mg 2 SiO 4 nanoparticles to ceramic part of commercial GIC (Fuji II GC. Fluoride ion release and bioactivity of nanocomposite were measured using the artificial saliva and simulated body fluid (SBF, respectively. Bioactivity of specimens was investigated by Fourier transitioned-infrared spectroscopy (FTIR, scanning electronmicroscopy (SEM, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES and registration of the changes in pH of soaking solution at the soaking period. Statistical analysis was carried out by one Way analysis of variance and differences were considered significant if P < 0.05. Results: The results of XRD analysis confirmed that nanocrystalline and pure Mg 2 SiO 4 powder was obtained. Fluoride ion release evaluation showed that the values of released fluoride ions from nanocomposite are somewhat less than Fuji II GC. SEM images, pH changes of the SBF and results of the ICP-OES and FTIR tests confirmed the bioactivity of the nanocomposite. Statistical analysis showed that the differences between the results of all groups were significant (P < 0.05. Conclusion: Glass ionomer- Mg 2 SiO 4 nanocomposite could be a good candidate for dentistry and orthopedic

  8. Surface bioactivity of plasma implanted silicon and amorphous carbon

    Institute of Scientific and Technical Information of China (English)

    Paul K CHU

    2004-01-01

    Plasma immersion ion implantation and deposition (PⅢ&D) has been shown to be an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification single-crystal silicon and amorphous carbon is reviewed. Silicon is the most important material in the integrated circuit industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PⅢ into silicon and observed the biomimetic growth of apatite on its surface in simulated body fluid. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness. The use of this material in biomedical engineering has also attracted much attention. It has been observed in our laboratory that doping DLC with nitrogen by means of PⅢ can improve the surface blood compatibility. The properties as well as in vitro biological test results will be discussed in this article.

  9. Bioprospecting keratinous materials.

    Science.gov (United States)

    Jones, L N; Sinclair, R D; Carver, J; Ecroyd, H; Lui, Y; Bennett, L E

    2010-01-01

    The concept of bioprospecting for bioactive peptides from keratin-containing materials such as wool, hair, skin and feathers presents an exciting opportunity for discovery of novel functional food ingredients and nutraceuticals, while value-adding to cheap and plentiful natural sources. The published literature reports multiple examples of proline-rich peptides with productive bio-activity in models of human disease including tumour formation, hypertension control and Alzheimer's disease. Bioactive peptides have been identified from food and other protein sources however the bioactivity of keratin-related proteins and peptides is largely unknown. Considering the high representation of proline-rich peptides among proven bioactive peptides, the proline-rich character of keratinous proteins supports current research. A selection of mammalian (cow epidermis, sheep wool) and avian (chicken feather) keratinous materials were subjected to enzymatic hydrolysis using established processing methods. A bio-assay of determining inhibition of early stage amyloid aggregation involved using a model fibril-forming protein - reduced and carboxymethylated bovine K-casein (RCMk-CN) and quantitation of fibril development with the amyloid-specific fluorophore, Thioflavin T (ThT). The assay was fully validated for analytical repeatability and used together with appropriate positive controls. Peptide library products derived from chicken feather (n=9), sheep wool (n=9) and bovine epidermis (n=9) were screened in the fibril inhibition assay based on K-casein. 3 of 27 products exhibited interesting levels of bio-activity with regard to fibril inhibition. HPLC profiles provide an indication of the complexity of the assemblage of peptides in the three active products. We conclude the bioprospecting research using keratinous materials shows promise for discovery of useful bioactive peptides.

  10. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase.

  11. Optimization of liquid culture conditions of Philippine wild edible mushrooms as potential source of bioactive lipids

    Science.gov (United States)

    With remarkable bioactivities and delightful taste, mushrooms have been a commercial nutraceutical around the world. Mushrooms are cultivated on solid materials. Here we report the successful cultivation of four Philippine edible mushrooms in liquid medium. This work highlights the optimal liquid cu...

  12. A new synthesis route to high surface area sol gel bioactive glass through alcohol washing: a preliminary study.

    Science.gov (United States)

    Mukundan, Lakshmi M; Nirmal, Remya; Vaikkath, Dhanesh; Nair, Prabha D

    2013-01-01

    Bioactive glass is one of the widely used bone repair material due to its unique properties like osteoconductivity, osteoinductivity and biodegradability. In this study bioactive glass is prepared by the sol gel process and stabilized by a novel method that involves a solvent instead of the conventional calcinations process. This study represents the first attempt to use this method for the stabilization of bioactive glass. The bioactive glass stabilized by this ethanol washing process was characterized for its physicochemical and biomimetic property in comparison with similar composition of calcined bioactive glass. The compositional similarity of the two stabilized glass powders was confirmed by spectroscopic and thermogravimetric analysis. Other physicochemical characterizations together with the cell culture studies with L929 fibroblast cells and bone marrow mesenchymal stem cells proved that the stabilization was achieved with the retention of its inherent bioactive potential. However an increase in the surface area of the glass powder was obtained as a result of this ethanol washing process and this add up to the success of the study. Hence the present study exhibits a promising route for high surface area bioactive glass for increasing biomimicity.

  13. In vitro study of nano-sized zinc doped bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Alshemary, Ammar Z.; Akram, Muhammad [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM skudai, Johor Darul Ta' zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor DarulTa' zim (Malaysia)

    2013-01-15

    Surface reactivity in physiological fluid has been linked to bioactivity of a material. Past research has shown that bioactive glass containing zinc has the potential in bone regeneration field due to its enhanced bioactivity. However, results from literature are always contradictory. Therefore, in this study, surface reactivity of bioactive glass containing zinc was evaluated through the study of morphology and composition of apatite layer formed after immersion in simulated body fluid (SBF). Nano-sized bioactive glass with 5 and 10 mol% zinc were synthesized through quick alkali sol-gel method. The synthesized Zn-bioglass was characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FTIR). Samples after SBF immersion were characterized using scanning electron microscope (SEM) and EDX. Morphological study through SEM showed the formation of spherical apatite particles with Ca/P ratio closer to 1.67 on the surface of 5 mol% Zn-bioglass. Whereas, the 10 mol% Zn-bioglass samples induced the formation of flake-like structure of calcite in addition to the spherical apatite particles with much higher Ca/P ratio. Our results suggest that the higher Zn content increases the bioactivity through the formation of bone-bonding calcite as well as the spherical apatite particles. -- Highlights: Black-Right-Pointing-Pointer Nano-sized bioactive glasses were synthesized through quick alkali sol-gel method. Black-Right-Pointing-Pointer 5 and 10 mol% Zn-bioglass induced the formation of spherical particles in SBF test. Black-Right-Pointing-Pointer 10 mol% Zn-bioglass also induced the formation of flake-like structure. Black-Right-Pointing-Pointer The flake-like structure is calcium carbonate; spherical particles are apatite. Black-Right-Pointing-Pointer High Zn contents negatively influence the chemical composition of the apatite layer.

  14. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold

    Science.gov (United States)

    Cao, Bin; Zhou, Dali; Xue, Ming; Li, Guangda; Yang, Weizhong; Long, Qin; Ji, Li

    2008-11-01

    Chitosan (CS) was used to modify the surface of apatite-wollastonite bioactive glass ceramic (AW GC) scaffold to prepare AW/CS composite scaffold. The in vitro bioactivity of the AW/CS composite scaffold was investigated by simulated body fluid (SBF) soaking experiment. Cell growth on the surface of the material was evaluated by co-culturing osteogenic marrow stromal cells (MSCs) of rabbits with the scaffold. The results showed that the compressive strength of AW GC scaffold was improved dramatically after being modified by CS, whereas the mineralization rate was delayed. MSCs can attach well on the surface of the composite scaffold.

  15. In vivo evaluation of titanium implants coated with bioactive glass by pulsed laser deposition.

    Science.gov (United States)

    Borrajo, Jacinto P; Serra, Julia; González, Pío; León, Betty; Muñoz, Fernando M; López, M

    2007-12-01

    During the past years, different techniques, like chemical treatment, plasma spraying, sputtering, enamelling or sol-gel; and materials, like metals, hydroxylapatite, calcium phosphates, among others, have been applied in different combinations to improve the performance of prostheses. Among the techniques, Pulsed Laser Deposition (PLD) is very promising to produce coatings of bioactive glass on any metal alloy used as implant. In this work the biocompatibility of PLD coatings deposited on titanium substrates was examined by implantation in vivo. Different coating compositions were checked to find the most bioactive that was then applied on titanium and implanted into paravertebral muscle of rabbit.

  16. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2013-01-01

    Full Text Available Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the "smart" materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA. Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications.

  17. Milk proteins as precursors of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Marta Dziuba

    2009-03-01

    Full Text Available Milk proteins, a source of bioactive peptides, are the subject of numerous research studies aiming to, among others, evaluate their properties as precursors of biologically active peptides. Physiologically active peptides released from their precursors may interact with selected receptors and affect the overall condition and health of humans. By relying on the BIOPEP database of proteins and bioactive peptides, developed by the Department of Food Biochemistry at the University of Warmia and Mazury in Olsztyn (www.uwm.edu.pl/biochemia, the profiles of potential activity of milk proteins were determined and the function of those proteins as bioactive peptide precursors was evaluated based on a quantitative criterion, i.e. the occurrence frequency of bioactive fragments (A. The study revealed that milk proteins are mainly a source of peptides with the following types of activity: antihypertensive (Amax = 0.225, immunomodulating (0.024, smooth muscle contracting (0.011, antioxidative (0.029, dipeptidyl peptidase IV inhibitors (0.148, opioid (0.073, opioid antagonistic (0.053, bonding and transporting metals and metal ions (0.024, antibacterial and antiviral (0.024, and antithrombotic (0.029. The enzymes capable of releasing bioactive peptides from precursor proteins were determined for every type of activity. The results of the experiment indicate that milk proteins such as lactoferrin, α-lactalbumin, β-casein and κ-casein hydrolysed by trypsin can be a relatively abundant source of biologically active peptides.

  18. Highly bioactive nano-hydroxyapatite/partially stabilized zirconia ceramics

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-liang; GE Shi-rong; ZHANG De-kun

    2004-01-01

    Nanocrystalline hydroxyapatite (HA) powders have been synthesized by precipitation using Ca(NO3)2.4H2O and (NH4)2 HPO4 at room temperature and atmospheric pressure. Nanocomposites of HA and partially stabilized zirconia (HA/PSZ) were sintered at atmospheric pressure and 1300℃ for 2h in air. The preparation techniques, structure and mechanical properties of these materials were characterized. The addition of nanosized PSZ reinforcing phase to HA may lead to an improvement of the macro and micro mechanical properties and not affect its biocompatibility and bioactivity. The bending strength, fracture toughness and nano-hardness were near to or greater than those for human cortical bone and human tooth (dentine and enamel). The composite was incubated in a fresh human plasma which confirmed the bioactivity of nanosized HA/PSZ materials. The bonding reaction between HA/PSZ ceramic and the plasma proteins was found, and hematopoietic cell phosphatase (HCP) layers formed on surface of each composite incubated in human plasma for two weeks.The diameter of a single HCP globule was less than 100 nm. Furthermore, the precipitating mechanism investigation was carried out through a comparative experiment in this paper.

  19. Synthesis and In Vitro Activity Assessment of Novel Silicon Oxycarbide-Based Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Isabel Gonzalo-Juan

    2016-11-01

    Full Text Available Novel bioactive glasses based on a Ca- and Mg-modified silicon oxycarbide (SiCaMgOC were prepared from a polymeric single-source precursor, and their in vitro activity towards hydroxyapatite mineralization was investigated upon incubating the samples in simulated body fluid (SBF at 37 °C. The as-prepared materials exhibit an outstanding resistance against devitrification processes and maintain their amorphous nature even after exposure to 1300 °C. The X-ray diffraction (XRD analysis of the SiCaMgOC samples after the SBF test showed characteristic reflections of apatite after only three days, indicating a promising bioactivity. The release kinetics of the Ca2+ and Mg2+ and the adsorption of H+ after immersion of SiCaMgOC in simulated body fluid for different soaking times were analyzed via optical emission spectroscopy. The results show that the mechanism of formation of apatite on the surface of the SiCaMgOC powders is similar to that observed for standard (silicate bioactive glasses. A preliminary cytotoxicity investigation of the SiOC-based bioactive glasses was performed in the presence of mouse embryonic fibroblasts (MEF as well as human embryonic kidney cells (HEK-293. Due to their excellent high-temperature crystallization resistance in addition to bioactivity, the Ca- and Mg-modified SiOC glasses presented here might have high potential in applications related to bone repair and regeneration.

  20. Effect of different germination conditions on antioxidative properties and bioactive compounds of germinated brown rice.

    Science.gov (United States)

    Lin, You-Tung; Pao, Cheng-Cheng; Wu, Shwu-Tzy; Chang, Chi-Yue

    2015-01-01

    This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR) and germinated brown rice (GBR). We used two rice cultivars (Oryza sativa L.), Taiwan Japonica 9 (TJ-9) and Taichung Indica 10 (TCI-10), as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C), long soaking time (72 h), darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR). We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity) and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol). Higher temperature (36°C) is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives.

  1. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth.

    Science.gov (United States)

    Dobbss, Leonardo Barros; Pasqualoto Canellas, Luciano; Lopes Olivares, Fábio; Oliveira Aguiar, Natália; Peres, Lázaro Eustáquio Pereira; Azevedo, Mariana; Spaccini, Riccardo; Piccolo, Alessandro; Façanha, Arnoldo R

    2010-03-24

    Chemical reactions (hydrolysis, oxidation, reduction, methylation, alkyl compounds detachment) were applied to modify the structure of humic substances (HS) isolated from vermicompost. Structural and conformational changes of these humic derivatives were assessed by elemental analyses, size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance ((13)C CPMAS-NMR), and diffusion ordered spectroscopy (DOSY-NMR), whereas their bioactivity was evaluated by changes in root architecture and proton pump activation of tomato and maize. All humic derivatives exhibited a large bioactivity compared to original HS, both KMnO(4)-oxidized and methylated materials being the most effective. Whereas no general relationship was found between bioactivity and humic molecular sizes, the hydrophobicity index was significantly related with proton pump stimulation. It is suggested that the hydrophobic domain can preserve bioactive molecules such as auxins in the humic matter. In contact with root-exuded organic acids the hydrophobic weak forces could be disrupted, releasing bioactive compounds from humic aggregates. These findings were further supported by the fact that HS and all derivatives used in this study activated the auxin synthetic reporter DR5::GUS.

  2. Laser sintering of nano 13-93 glass scaffolds: Microstructure, mechanical properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Cao Y.

    2015-01-01

    Full Text Available As the only bioactive material that can bond with both hard tissues and soft tissues, bioactive glass has become much important in the field of tissue engineering. 13-93 bioactive glass scaffolds were fabricated via selective laser sintering (SLS. It was focused on the effects of laser sintering on microstructure and mechanical properties of the scaffolds. The experimental results showed that the sintered layer gradually became dense with the laser power increasing and then some defects occurred, such as macroscopic caves. The optimum compressive strength and fracture toughness were 21.43±0.87 MPa and 1.14±0.09 MPa.m1/2, respectively. In vitro bioactivity showed that there was the bone-like apatite layer on the surface of the scaffolds after soaking in simulated body fluid (SBF, which was further evaluated by Fourier transform infrared spectroscopy (FTIR. Moreover, cell culture study showed MG-63 cells adhered and spread well on the scaffolds, and proliferated with increasing time in cell culture. These indicated excellent bioactivity and biocompatibility of nano 13-93 glass scaffolds.

  3. Drying and storage effects on poly(ethylene glycol) hydrogel mechanical properties and bioactivity.

    Science.gov (United States)

    Luong, P T; Browning, M B; Bixler, R S; Cosgriff-Hernandez, E

    2014-09-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications because of their ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions on hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying), and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage.

  4. PREPARATION AND CATALYTIC ACTIVITY OF BIOACTIVE FIBERS

    Institute of Scientific and Technical Information of China (English)

    Yu-yuan Yao; Wen-xing Chen; Bao-yan Zhao; Shen-shui Lü

    2006-01-01

    Two kinds of water-soluble metallophthalocyanines, binuclear cobalt phthalocyanine (Co2Pc2) and binuclear ferric phthalocyanine (Fe2Pc2), were synthesized through phenylanhydride-urea route and characterized by elemental analysis and FT-IR spectra. Binuclear metallophthalocyanine derivatives (Mt2Pc2) were immobilized on silk fibers and modified viscose fibers to construct bioactive fibers of mimic enzyme. Mt2Pc2 was used as the active center ofbioactive fibers, viscose and silk fibers as the microenvironments. The catalytic oxidation ability of bioactive fibers on the malodors of methanthiol and hydrogen sulfide was investigated at room temperature. The experimental results indicated that the catalytic activity of such bioactive fibers was closely correlative to the types ofbioactive fibers and substrates.

  5. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  6. Bioactive-glass in Oral and Maxillofacial Surgery.

    Science.gov (United States)

    Profeta, Andrea Corrado; Huppa, Christoph

    2016-03-01

    The use of synthetic materials to repair craniofacial defects is increasing today and will increase further in the future. Because of the complexity of the anatomy in the head and neck region, reconstruction and augmentation of this area pose a challenge to the surgeon. This review discusses key facts and applications of traditional reconstruction bone substitutes, also offering comparative information. It then describes the properties and clinical applications of bioactive-glass (B-G) and its variants in oral and maxillofacial surgery, and provides clinical findings. The discussion of each compound includes a description of its composition and structure, the advantages and shortcomings of the material, and its current uses in the field of osteoplastic and reconstructive surgery. With a better understanding of the available alloplastic implants, the surgeon can make a more informed decision as to which implant would be most suitable in a particular patient.

  7. Micro PIXE-RBS for the study of Sr release at bioactive glass scaffolds/biological medium interface

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, Joséphine; Lao, Jonathan [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 80026, 63171 Aubière Cedex (France); Nedelec, Jean-Marie [Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, 63171 Aubière (France); Jallot, Edouard, E-mail: jallot@clermont.in2p3.fr [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 80026, 63171 Aubière Cedex (France)

    2013-07-01

    Strontium is a very interesting element in bone regeneration as it can promote bone formation and limit bone resorption. Bone tissue engineering has a very high potential as a method for bone healing and it requires a 3D macroporous scaffold to serve as a support for cell growth. In that purpose, strontium containing bioactive glass foams made with the sol–gel foaming process are very promising scaffolds as they combine the high bioactivity of bioactive glasses, the beneficial effects of strontium on bone growth and a structure that would allow cell adhesion, cell invasion and vascularization. This paper reports the synthesis of such a material and its in vitro bioactivity study. The release of strontium ions from the material to the biological medium occurs quickly, as shown by ICP-AES results, with the delivery of quantities of Sr ions that should be adequate for bone regeneration. Ion microbeam techniques evidence a very specific behavior of strontium: it is rapidly removed from the inner part of the material but remains in the calcium phosphate layer that is deposited on the surface of the foam pores. It reveals the particular behavior of glass foams compared to other materials suitable for implantation like glass powders of same composition and highlights the interest of ion microbeam techniques in the study of strontium-containing bioactive glass scaffolds.

  8. Encapsulation for preservation of functionality and targeted delivery of bioactive food components

    NARCIS (Netherlands)

    de Vos, Paul; Faas, Marijke M.; Spasojevic, Milica; Sikkema, Jan

    2010-01-01

    There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive

  9. Bioactive alkaloids in vertically transmitted fungal endophytes

    Science.gov (United States)

    Plants form mutualistic symbioses with a variety of microorganisms, including endophytic fungi that live inside the plant and cause no symptoms of infection. Some endophytic fungi form defensive mutualisms based on the production of bioactive metabolites that protect the plant from herbivores in exc...

  10. Marine bioactives and potential application in sports.

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  11. Glutathione conjugation as a bioactivation reaction

    NARCIS (Netherlands)

    Bladeren, P.J. van

    2000-01-01

    In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate

  12. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much i

  13. Citrus Limonoids: Analysis, Bioactivity, and Biomedical Prospects

    Science.gov (United States)

    This publication is a review of the chemistry, biochemistry and bioactivity of limonoids occurring in citrus. The review chronologically relates the evolution of research in citrus limonoids beginning with their association with bitterness development in citrus juices. The chemical and biochemical...

  14. Bioactive motifs of agouti signal protein.

    Science.gov (United States)

    Virador, V M; Santis, C; Furumura, M; Kalbacher, H; Hearing, V J

    2000-08-25

    The switch between the synthesis of eu- and pheomelanins is modulated by the interaction of two paracrine signaling molecules, alpha-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP), which interact with melanocytes via the MSH receptor (MC1R). Comparison of the primary sequence of ASP with the known MSH pharmacophore provides no suggestion about the putative bioactive domain(s) of ASP. To identify such bioactive motif(s), we synthesized 15-mer peptides that spanned the primary sequence of ASP and determined their effects on the melanogenic activities of murine melanocytes. Northern and Western blotting were used, together with chemical analysis of melanins and enzymatic assays, to identify three distinct bioactive regions of ASP that down-regulate eumelanogenesis. The decrease in eumelanin production was mediated by down-regulation of mRNA levels for tyrosinase and other melanogenic enzymes, as occurs in vivo, and these effects were comparable to those elicited by intact recombinant ASP. Shorter peptides in those motifs were synthesized and their effects on melanogenesis were further investigated. The amino acid arginine, which is present in the MSH peptide pharmacophore (HFRW), is also in the most active domain of ASP (KVARP). Our data suggest that lysines and an arginine (in motifs such as KxxxxKxxR or KxxRxxxxK) are important for the bioactivity of ASP. Identification of the specific ASP epitope that interacts with the MC1R has potential pharmacological applications in treating dysfunctions of skin pigmentation.

  15. Marine Bioactives and Potential Application in Sports

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2014-04-01

    Full Text Available An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP, such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB, macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  16. Bioactive Terpenes from Marine-Derived Fungi

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elissawy

    2015-04-01

    Full Text Available Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years’ reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  17. Bioactive terpenes from marine-derived fungi.

    Science.gov (United States)

    Elissawy, Ahmed M; El-Shazly, Mohamed; Ebada, Sherif S; Singab, AbdelNasser B; Proksch, Peter

    2015-04-03

    Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years' reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  18. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites.

    Science.gov (United States)

    Aguilar-Pérez, Fernando J; Vargas-Coronado, Rossana F; Cervantes-Uc, Jose M; Cauich-Rodríguez, Juan V; Covarrubias, Cristian; Pedram-Yazdani, Merhdad

    2016-04-01

    Composites of glutamine-based segmented polyurethanes with 5 to 25 wt.% bioactive glass nanoparticles were prepared, characterized, and their mineralization potential was evaluated in simulated body fluid. Biocompatibility with dental pulp stem cells was assessed by MTS to an extended range of compositions (1 to 25 wt.% of bioactive glass nanoparticles). Physicochemical characterization showed that composites retained many of the matrix properties, i.e. those corresponding to semicrystalline elastomeric polymers as they exhibited a glass transition temperature (Tg) between -41 and -36℃ and a melting temperature (Tm) between 46 and 49℃ in agreement with X-ray reflections at 23.6° and 21.3°. However, with bioactive glass nanoparticles addition, tensile strength and strain were reduced from 22.2 to 12.2 MPa and 667.2 to 457.8%, respectively with 25 wt.% of bioactive glass nanoparticles. Although Fourier transform infrared spectroscopy did not show evidence of mineralization after conditioning of these composites in simulated body fluid, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray microanalysis showed the formation of an apatite layer on the surface which increased with higher bioactive glass concentrations and longer conditioning time. Dental pulp stem cells proliferation at day 5 was improved in bioactive glass nanoparticles composites containing lower amounts of the filler (1-2.5 wt.%) but it was compromised at day 9 in composites containing high contents of nBG (5, 15, 25 wt.%). However, Runx2 gene expression was particularly upregulated for the dental pulp stem cells cultured with composites loaded with 15 and 25 wt.% of bioactive glass nanoparticles. In conclusion, low content bioactive glass nanoparticles and segmented polyurethanes composites deserve further investigation for applications such as guided bone regeneration membranes, where osteoconductivity is desirable but not a demanding mechanical performance.

  19. Development of NZP ceramic based {open_quotes}cast-in-place{close_quotes} diesel engine port liners

    Energy Technology Data Exchange (ETDEWEB)

    Nagaswaran, R.; Limaye, S.Y.

    1996-02-01

    BSX (Ba{sub 1+x}Zr{sub 4}P{sub 6-2x}Si{sub 2x}O{sub 24}) and CSX (Ca{sub l-x}Sr{sub x}Zr{sub 4}P{sub 6}O{sub 24}) type NZP ceramics were fabricated and characterized for: (i) thermal properties viz., thermal conductivity, thermal expansion, thermal stability and thermal shock resistance; (ii) mechanical properties viz., flexure strength and elastic modulus; and (iii) microstructures. Results of these tests and analysis indicated that the BS-25 (x=0.25 in BSX) and CS-50 (x=0.50 in CSX) ceramics had the most desirable properties for casting metal with ceramic in place. Finite element analysis (FEA) of metal casting (with ceramic in place) was conducted to analyze thermomechanical stresses generated and determine material property requirements. Actual metal casting trials were also conducted to verify the results of finite element analysis. In initial trials, the ceramic cracked because of the large thermal expansion mismatch (hoop) stresses (predicted by FEA also). A process for introduction of a compliant layer between the metal and ceramic to alleviate such destructive stresses was developed. The compliant layer was successful in preventing cracking of either the ceramic or the metal. In addition to these achievements, pressure slip casting and gel-casting processes for fabrication of NZP components; and acoustic emission and ultrasonics-based NDE techniques for detection of microcracks and internal flaws, respectively, were successfully developed.

  20. Bioactive, mechanically favorable, and biodegradable copolymer nanocomposites for orthopedic applications.

    Science.gov (United States)

    Victor, Sunita Prem; Muthu, Jayabalan

    2014-06-01

    We report the synthesis of mechanically favorable, bioactive, and biodegradable copolymer nanocomposites for potential bone applications. The nanocomposites consist of in situ polymerized biodegradable copolyester with hydroxyapatite (HA). Biodegradable copolyesters comprise carboxy terminated poly(propylene fumarate) (CT-PPF) and poly(trimethylol propane fumarate co mannitol sebacate) (TF-Co-MS). Raman spectral imaging clearly reveals a uniform homogenous distribution of HA in the copolymer matrix. The mechanical studies reveal that improved mechanical properties formed when crosslinked with methyl methacrylate (MMA) when compared to N-vinyl pyrrolidone (NVP). The SEM micrographs of the copolymer nanocomposites reveal a serrated structure reflecting higher mechanical strength, good dispersion, and good interfacial bonding of HA in the polymer matrix. In vitro degradation of the copolymer crosslinked with MMA is relatively more than that of NVP and the degradation decreases with an increase in the amount of the HA filler. The mechanically favorable and degradable MMA based nanocomposites also have favorable bioactivity, blood compatibility, cytocompatibility and cell adhesion. The present nanocomposite is a more promising material for orthopedic applications.

  1. Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina

    Science.gov (United States)

    Cares, M. G.; Vargas, Y.; Gaete, L.; Sainz, J.; Alarcón, J.

    2010-01-01

    A study of ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina (Quillay) is presented. To address the problem it was studied the effects that could influence the extraction process through a two-level Factorial Design. The effects considered in the Experimental Design were: Granulometry, Extraction time, Acoustic Power and Acoustic Impedance. The production of the quillaja extracts is done with an aqueous extraction and the process is assisted by an ultrasonic field; no other solvents are used in its production. The final product only incorporates natural ingredients and raw materials, authorized for their use in food manufacturing processes. The principal factors affecting the ultrasonic extraction process were: Granulometry and Extraction time. The enhanced of ultrasonic assisted extraction ratio was measuring the increasing yield of extracted components, the extraction ratio was increased by ultrasonic effect and a reduction in extraction time was verified. In addition the process can be carried out at temperatures lower than the traditional way. The influence of ultrasound on the quality of bioactive principles was examined by HPLC technique and no influence of ultrasound on natural components was found.

  2. Applications of biochromatography in the screening of bioactive natural products.

    Science.gov (United States)

    Chen, Cen; Yang, Feng-Qing; Zuo, Hua-Li; Song, Yue-Lin; Xia, Zhi-Ning; Xiao, Wen

    2013-09-01

    Searching for bioactive compounds from natural resources such as plant materials has become a focus for study. Several models, such as animal (biofluid, organ and tissue) and cellular (several kinds of cell lines), have traditionally been used for this purpose. As a fast, economic and effective way to identify or predict bioactive compounds in complex matrices, biochromatography has developed rapidly during the past years. Combing the properties of traditional chromatography and biomaterials, biochromatographic analysis possesses features of simultaneous screening, separation and structural identification for active compounds in a complex matrix. According to the process, biochromatography can be divided into offline and online approaches. For offline bioextraction, the biomaterials are used as the extraction phase and followed by routine chromatographic analysis. For online biochromatography, the biomaterials are directly used as the stationary phase for chromatographic analysis. This paper reviews the applications of offline bioextraction followed by chromatographic analysis and online biochromatography, including molecular, cell membrane and cell, and artificial biomembrane chromatography in the screening or predicting active compounds from natural sources.

  3. Investigation of ethosomes as surrogate carriers for bioactives

    Directory of Open Access Journals (Sweden)

    Devina Verma

    2016-01-01

    Full Text Available Background: Ethosomal vesicular system delivering a bioactive phytochemical, chrysin, was developed for transdermal delivery to increase its permeability and penetrability. Materials and Methods: Ethosomal system was optimized by keeping lecithin and ethanol concentration as independent variable while size and size distribution were taken as dependent variables. The optimized formulation was then subjected to various in vitro characterization parameters. Results: Ethosomal vesicle with an optimum size and polydispersity index of 134 ± 35 nm and 0.153, respectively, and entrapment efficiency of 80.05 ± 2.6% was considered as optimized and subjected to characterization. The scanning electron microscopy and transmission electron microscopy showed spherical entities with uniform surface whereas in vitro permeation and retention study showed the sustained mode of drug release and better skin retention as compared to hydroethanolic solution of the drug. The confocal laser scanning microscopy study reiterated high penetrability of vesicles into the skin. Histopathological and Fourier transform infrared spectroscopy analysis revealed its mechanism of penetration. Conclusion : The study thus demonstrated the ability of the ethosomal vesicles as surrogate carriers for delivery of bioactive agents through the skin for better amelioration of skin inflammation and other diseases.

  4. Bioactive silicon nitride: A new therapeutic material for osteoarthropathy

    Science.gov (United States)

    Pezzotti, Giuseppe; Marin, Elia; Adachi, Tetsuya; Rondinella, Alfredo; Boschetto, Francesco; Zhu, Wenliang; Sugano, Nobuhiko; Bock, Ryan M.; McEntire, Bryan; Bal, Sonny B.

    2017-01-01

    While the reciprocity between bioceramics and living cells is complex, it is principally governed by the implant’s surface chemistry. Consequently, a deeper understanding of the chemical interactions of bioceramics with living tissue could ultimately lead to new therapeutic strategies. However, the physical and chemical principles that govern these interactions remain unclear. The intricacies of this biological synergy are explored within this paper by examining the peculiar surface chemistry of a relatively new bioceramic, silicon nitride (Si3N4). Building upon prior research, this paper aims at obtaining new insights into the biological interactions between Si3N4 and living cells, as a consequence of the off-stoichiometric chemical nature of its surface at the nanometer scale. We show here yet unveiled details of surface chemistry and, based on these new data, formulate a model on how, ultimately, Si3N4 influences cellular signal transduction functions and differentiation mechanisms. In other words, we interpret its reciprocity with living cells in chemical terms. These new findings suggest that Si3N4 might provide unique new medicinal therapies and effective remedies for various bone or joint maladies and diseases. PMID:28327664

  5. Natural pesticides and bioactive components in foods.

    Science.gov (United States)

    Beier, R C

    1990-01-01

    In this review, some common food plants and their toxic or otherwise bioactive components and mycotoxin contaminants have been considered. Crucifers contain naturally occurring components that are goitrogenic, resulting from the combined action of allyl isothiocyanate, goitrin, and thiocyanate. Although crucifers may provide some protection from cancer when taken prior to a carcinogen, when taken after a carcinogen they act as promoters of carcinogenesis. The acid-condensed mixture of indole-3-carbinol (a component of crucifers) binds to the TCDD receptor and causes responses similar to those of TCDD. Herbs contain many biologically active components, with more than 20% of the commercially prepared human drugs coming from these plants. Onion and garlic juices can help to prevent the rise of serum cholesterol. Most herbs used in treatments may have many natural constituents that act oppositely from their intended use. Some herbs like Bishop's week seed contain carcinogens, and many contain pyrrolizidine alkaloids that can cause cirrhosis of the liver. The general phytoalexin response in plants (including potatoes, tomatoes, peppers, eggplant, celery, and sweet potatoes) induced by external stimuli can increase the concentrations of toxic chemical constituents in those plants. In potatoes, two major indigenous compounds are alpha-solanine and alpha-chaconine, which are human plasma cholinesterase inhibitors and teratogens in animals. Because of its toxicity, the potato variety Lenape was withdrawn from the market. Celery, parsley, and parsnips contain the linear furanocoumarin phytoalexins psoralen, bergapten, and xanthotoxin that can cause photosensitization and also are photomutagenic and photocarcinogenic. Celery field workers and handlers continually have photosensitization problems as a result of these indigenous celery furanocoumarins. A new celery cultivar (a result of plant breeding to produce a more pest-resistant variety) was responsible for significant

  6. STUDY ON THE CATALYTIC ABILITY OF BIOACTIVE FIBERS

    Institute of Scientific and Technical Information of China (English)

    YAO Yuyuan; CHEN Wenxing

    2006-01-01

    Two kinds of water-soluble metallophthalocyanines (Mt2Pc2), binuclear cobalt phthalocyanine (Co2Pc2) and binuclear ferric phthalocyanine (Fe2Pc2), were supported on silk fibers and modified viscose fibers to construct bioactive fibers of mimic enzyme, Mt2Pc2 used as the active center of bioactive fibers, viscose and silk fibers as the microenvironments. The catalytic oxidation ability of bioactive fibers on the malodors of methanthiol and hydrogen sulfide was investigated at room temperature. The experimental results demonstrated that the catalytic activity of such bioactive fibers was tightly correlative to the types of bioactive fibers and substrates.

  7. Bioactive Polymeric Composites for Tooth Mineral Regeneration: Physicochemical and Cellular Aspects

    Directory of Open Access Journals (Sweden)

    Joseph M. Antonucci

    2011-09-01

    Full Text Available Our studies of amorphous calcium phosphate (ACP-based dental materials are focused on the design of bioactive, non-degradable, biocompatible, polymeric composites derived from acrylic monomer systems and ACP by photochemical or chemically activated polymerization. Their intended uses include remineralizing bases/liners, orthodontic adhesives and/or endodontic sealers. The bioactivity of these materials originates from the propensity of ACP, once exposed to oral fluids, to release Ca and PO4 ions (building blocks of tooth and bone mineral in a sustained manner while spontaneously converting to thermodynamically stable apatite. As a result of ACP’s bioactivity, local Ca- and PO4-enriched environments are created with supersaturation conditions favorable for the regeneration of tooth mineral lost to decay or wear. Besides its applicative purpose, our research also seeks to expand the fundamental knowledge base of structure-composition-property relationships existing in these complex systems and identify the mechanisms that govern filler/polymer and composite/tooth interfacial phenomena. In addition to an extensive physicochemical evaluation, we also assess the leachability of the unreacted monomers and in vitro cellular responses to these types of dental materials. The systematic physicochemical and cellular assessments presented in this study typically provide model materials suitable for further animal and/or clinical testing. In addition to their potential dental clinical value, these studies suggest the future development of calcium phosphate-based biomaterials based on composite materials derived from biodegradable polymers and ACP, and designed primarily for general bone tissue regeneration.

  8. A bioactive elastin-like recombinamer reduces unspecific protein adsorption and enhances cell response on titanium surfaces.

    Science.gov (United States)

    Salvagni, Emiliano; Berguig, Geoffrey; Engel, Elisabeth; Rodriguez-Cabello, J Carlos; Coullerez, Geraldine; Textor, Marcus; Planell, Josep A; Gil, F Javier; Aparicio, Conrado

    2014-02-01

    We present the immobilization on synthetic substrates of elastin-like recombinamers (ELR) that combine a bioactive motif for cell adhesion with protein antifouling properties. Physical adsorption of the recombinamers and covalent-grafting through organosilane chemistry were investigated. The biochemically-modified surfaces were thoroughly characterized and tested for protein absorption in serum by fluorescence-labelling, XPS, Ellipsometry, and OWLS. The ELR were successfully grafted and stable, even upon mechanical stresses; being the covalent bonding favourable over physical adsorption. The coated metal surfaces exhibited excellent reduction of serum protein adsorption (9 ng/cm(2)) compared to the bare metal surface (310 ng/cm(2)). Non-specific protein adsorption may mask the introduced bioactive motifs; therefore, the bioactivated surfaces should display serum-protein antifouling properties. Finally, improved hMSCs response was assessed on the bioactivated substrates. In summary, the coatings simultaneously displayed anti-fouling and bioactive properties. These studies investigated key factors to enhance tissue material interactions fundamental for the design of bioactive devices and future biomedical applications.

  9. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  10. Preliminary study in development of glass-ceramic based on SiO{sub 2}-LiO{sub 2} system, starting of different SiO{sub 2} starting powders; Um estudo preliminar do desenvolvimento de materiais vitroceramicos do sistema SiO{sub 2}-LiO{sub 2} obtidos a partir de diferentes fontes de silica

    Energy Technology Data Exchange (ETDEWEB)

    Daguano, J.K.M.F.; Santos, F.A.; Santos, C.; Marton, L.F.M.; Conte, R.A.; Rodrigues Junior, D. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de Lorena. Dept. de Materiais; Melo, F.C.L. [Centro Tecnico Aeroespacial (AMR/CTA/IAE), Sao Jose dos Campos, SP (Brazil). Instituto de Aeronautica e Espaco. Div. de Materiais

    2009-07-01

    In this work, lithium disilicate glass-ceramics were developed starting of the rice ash- SiO{sub 2} and Li{sub 2}CO{sub 3} powders. The results were compared with glass ceramics based on the lithium disilicate obtained by commercial SiO{sub 2} powders. Glass were melted at 1580 deg C, and annealed at 850 deg C. X-Ray diffraction and scanning electron microscopy were used for characterization of the materials, and hardness and fracture toughness were evaluated using Vickers indentation method. Glasses with amorphous structure were obtained in both materials. After annealing, 'rice-ash' samples presented Li{sub 2}SiO{sub 3} and residual SiO{sub 2} as crystalline phases. On the other side, commercial SiO{sub 2}- Samples presented only Li{sub 2}Si{sub 2}O{sub 5} as crystalline phases and the better results of hardness and fracture toughness. (author)

  11. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  12. Clinical evaluation of bioactive glass in the treatment of periodontal osseous defects in humans.

    Science.gov (United States)

    Lovelace, T B; Mellonig, J T; Meffert, R M; Jones, A A; Nummikoski, P V; Cochran, D L

    1998-09-01

    The purpose of this study was to compare the use of bioactive glass to demineralized freeze-dried bone allograft (DFDBA) in the treatment of human periodontal osseous defects. Fifteen systemically healthy patients (6 males and 9 females, aged 30 to 63) with moderate to advanced adult periodontitis were selected for the study. All patients underwent initial therapy, which included scaling and root planing, oral hygiene instruction, and an occlusal adjustment when indicated, followed by re-evaluation 4 to 6 weeks later. Paired osseous defects in each subject were randomly selected to receive grafts of bioactive glass or DFDBA. Both soft and hard tissue measurements were taken the day of surgery (baseline) and at the 6-month re-entry surgery. The clinical examiner was calibrated and blinded to the surgical procedures, while the surgeon was masked to the clinical measurements. Statistical analysis was performed by using the paired Student's t test. The results indicated that probing depths were reduced by 3.07 +/- 0.80 mm with the bioactive glass and 2.60 +/- 1.40 mm with DFDBA. Sites grafted with bioactive glass resulted in 2.27 +/- 0.88 mm attachment level gain, while sites grafted with DFDBA had a 1.93 +/- 1.33 mm gain in attachment. Bioactive glass sites displayed 0.53 +/- 0.64 mm of crestal resorption and 2.73 mm bone fill. DFDBA-grafted sites experienced 0.80 +/- 0.56 mm of crestal resorption and 2.80 mm defect fill. The use of bioactive glass resulted in 61.8% bone fill and 73.33% defect resolution. DFDBA-grafted defects showed similar results, with 62.5% bone fill and 80.87% defect resolution. Both treatments provided soft and hard tissue improvements when compared to baseline (P < or = 0.0001). No statistical difference was found when comparing bioactive glass to DFDBA; however, studies with larger sample sizes may reveal true differences between the materials. This study suggests that bioactive glass is capable of producing results in the short term (6 months

  13. Are lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) ferroelectrics bioactive?

    Science.gov (United States)

    Vilarinho, Paula Maria; Barroca, Nathalie; Zlotnik, Sebastian; Félix, Pedro; Fernandes, Maria Helena

    2014-06-01

    The use of functional materials, such as ferroelectrics, as platforms for tissue growth in situ or ex situ, is new and holds great promise. But the usage of materials in any bioapplication requires information on biocompatibility and desirably on bioactive behavior when bone tissue engineering is envisaged. Both requirements are currently unknown for many ferroelectrics. Herein the bioactivity of LiNbO3 and LiTaO3 is reported. The formation of apatite-like structures on the surface of LiNbO3 and LiTaO3 powders after immersion in simulated body fluid (SBF) for different soaking periods indicates their bioactive potential. The mechanism of apatite formation is suggested. In addition, the significant release of lithium ions from the ferroelectric powders in the very first minutes of soaking in SBF is examined and ways to overcome this likely hurdle addressed.

  14. Bioactive lipids in kidney physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    Daria Sałata

    2014-01-01

    Full Text Available Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  15. Bioactive foods and ingredients for health.

    Science.gov (United States)

    Weaver, Connie M

    2014-05-01

    Bioactive compounds in foods have been gaining interest, and processes to consider them for public health recommendations are being discussed. However, the evidence base is difficult to assemble. It is difficult to demonstrate causality, and there often is not a single compound-single effect relation. Furthermore, health benefits may be due to metabolites produced by the host or gut microbiome rather than the food constituent per se. Properties that can be measured in a food may not translate to in vivo health effects. Compounds that are being pursued may increase gut microbial diversity, improve endothelial function, improve cognitive function, reduce bone loss, and so forth. A new type of bioactive component is emerging from epigenetic modifications by our diet, including microRNA transfer from our diet, which can regulate expression of human genes. Policy processes are needed to establish the level of evidence needed to determine dietary advice and policy recommendations and to set research agendas.

  16. Polyphenols from wolfberry and their bioactivities.

    Science.gov (United States)

    Zhou, Zheng-Qun; Xiao, Jia; Fan, Hong-Xia; Yu, Yang; He, Rong-Rong; Feng, Xiao-Lin; Kurihara, Hiroshi; So, Kwok-Fai; Yao, Xin-Sheng; Gao, Hao

    2017-01-01

    Nine new phenylpropanoids, one new coumarin, and 43 known polyphenols were isolated from wolfberry. Their structures were determined by spectroscopic analyses, chemical methods, and comparison of NMR data. Polyphenols, an important type of natural products, are notable constituents in wolfberry. 53 polyphenols, including 28 phenylpropanoids, four coumarins, eight lignans, five flavonoids, three isoflavonoids, two chlorogenic acid derivatives, and three other constituents, were identified from wolfberry. Lignans and isoflavonoids were firstly reported from wolfberry. 22 known polyphenols were the first isolates from the genus Lycium. This research presents a systematic study on wolfberry polyphenols, including their bioactivities. All these compounds exhibited oxygen radical absorbance capacity (ORAC), and some compounds displayed DPPH radical scavenging activity. One compound had acetylcholinesterase inhibitory activity. The discovery of new polyphenols and their bioactivities is beneficial for understanding the scientific basis of the effects of wolfberry.

  17. Bioactivity of mica/apatite glass ceramics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.

  18. Novel bioactive Co-based alloy/FA nanocomposite for dental applications

    Directory of Open Access Journals (Sweden)

    Mohammadhossein Fathi

    2012-01-01

    Full Text Available Background: Dental cobalt base alloys are biocompatible dental materials and have been widely used in dentistry. However, metals are bioinert and may not present bioactivity in human body. Bioactivity is the especial ability to interact with human body and make a bonding to soft and hard tissues. The aim of the present research was fabrication and bioactivity evaluation of novel cobalt alloy/Fluorapatite nanocomposite (CoA/FaNC with different amounts of Fluorapatite (FA nanopowder. Materials and Methods: Co-Cr-Mo alloy (ASTM F75 powder was prepared and mixed in a planetary ball mill with different amounts of FA nanopowders (10, 15, 20% wt. Prepared composite powders were cold pressed and sintered at 1100°C for 4 h. X-ray diffraction (XRD, scanning electron microscopy and transition electron microscopy techniques were used for phase analysis, crystallite size determination of FA and also for phase analysis and evaluation of particle distribution of composites. Bioactivity behavior of prepared nanocomposites was evaluated in simulated body fluid (SBF for 1 up to 28 days. Results: Results showed that nucleus of apatite were formed on the surface of the prepared CoA/FaNC during 1 up to 28 days immersion in the SBF solution. On the other hand, CoA/FaNC unlike Co-base alloy possessed bone-like apatite-formation ability. Conclusion: It was concluded that bioinert Co-Cr-Mo alloy could be successfully converted into bioactive nanocomposite by adding 10, 15, 20 wt% of FA nano particles.

  19. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations.

    Science.gov (United States)

    Hesaraki, Saeed; Safari, Mojgan; Shokrgozar, Mohammad Ali

    2009-10-01

    In this study, composites of beta-tricalcium phosphate (beta-TCP) and sol gel derived bioactive glass (10, 25, and 40 wt %) based on the SiO(2)-CaO-MgO-P(2)O(5) system were prepared and sintered at 1000-1200 degrees C. The mechanical properties were investigated by measuring bending strength, Vickers hardness and fracture toughness. Structural properties were evaluated by XRD and SEM analysis, and the biological properties were studied by soaking the samples in simulated body fluid (SBF) and in contact with osteoblastic cell for viability assay. When the samples were sintered at 1200 degrees C, the mechanical strength increased, up to 34%, by increasing the amount of bioactive glass phase. In contrast, it decreased when the samples were sintered at 1000 and 1100 degrees C. The results showed that the strength could be improved up to 56% when more firing period was used. Incorporation of the bioactive glass phase into beta-TCP increased the microhardness but did not significantly change the fracture toughness. Phase analysis revealed that beta-TCP or magnesium-substituted beta-TCP was the main crystalline phase of the composites beside some calcium silicate crystallized in the bioactive glass phase. Plenty precipitation of calcium phosphate layer onto the surfaces of the beta-TCP/bioactive glass composites soaked in SBF indicated superior bioactivity of these materials compared to pure beta-TCP without any precipitation. The ability of beta-TCP/bioactive glass composites to support the growth of human osteoblastic cells was considerably better than that of pure beta-TCP. These results may be used to indicate which compositions and processing conditions can provide appropriate materials for hard tissue regeneration.

  20. Secondary metabolites and bioactivities of Myrtus communis

    OpenAIRE

    Mahmoud I Nassar; Aboutabl, El-Sayed A.; Rania F. Ahmed; EL-Khrisy, Ezzel-Din A.; Khaled M Ibrahim; Sleem, Amany A.

    2010-01-01

    Background: Myrtus species are characterized by the presence of phenolic acids, flavonoids, tannins, volatile oils and fatty acids. They are remedies for variety of ailments. This study therefore investigated medicinal effects of Myrtus communis L. Methods: Bioactivity studies of Myrtus communis L. leaves were carried out on volatile oil, 7% methanol and aqueous extracts and the isolated compounds myricetin 3-O-β-glucopyranoside, myricetin 3-O-∝-rhamnopyranoside and gallic acid. Results: Dete...

  1. Minimum information about a bioactive entity (MIABE).

    Science.gov (United States)

    Orchard, Sandra; Al-Lazikani, Bissan; Bryant, Steve; Clark, Dominic; Calder, Elizabeth; Dix, Ian; Engkvist, Ola; Forster, Mark; Gaulton, Anna; Gilson, Michael; Glen, Robert; Grigorov, Martin; Hammond-Kosack, Kim; Harland, Lee; Hopkins, Andrew; Larminie, Christopher; Lynch, Nick; Mann, Romeena K; Murray-Rust, Peter; Lo Piparo, Elena; Southan, Christopher; Steinbeck, Christoph; Wishart, David; Hermjakob, Henning; Overington, John; Thornton, Janet

    2011-08-31

    Bioactive molecules such as drugs, pesticides and food additives are produced in large numbers by many commercial and academic groups around the world. Enormous quantities of data are generated on the biological properties and quality of these molecules. Access to such data - both on licensed and commercially available compounds, and also on those that fail during development - is crucial for understanding how improved molecules could be developed. For example, computational analysis of aggregated data on molecules that are investigated in drug discovery programmes has led to a greater understanding of the properties of successful drugs. However, the information required to perform these analyses is rarely published, and when it is made available it is often missing crucial data or is in a format that is inappropriate for efficient data-mining. Here, we propose a solution: the definition of reporting guidelines for bioactive entities - the Minimum Information About a Bioactive Entity (MIABE) - which has been developed by representatives of pharmaceutical companies, data resource providers and academic groups.

  2. Nanotech: propensity in foods and bioactives.

    Science.gov (United States)

    Kuan, Chiu-Yin; Yee-Fung, Wai; Yuen, Kah-Hay; Liong, Min-Tze

    2012-01-01

    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.

  3. Promiscuity progression of bioactive compounds over time.

    Science.gov (United States)

    Hu, Ye; Jasial, Swarit; Bajorath, Jürgen

    2015-01-01

    In the context of polypharmacology, compound promiscuity is rationalized as the ability of small molecules to specifically interact with multiple targets. To study promiscuity progression of bioactive compounds in detail, nearly 1 million compounds and more than 5.2 million activity records were analyzed. Compound sets were assembled by applying different data confidence criteria and selecting compounds with activity histories over many years. On the basis of release dates, compounds and activity records were organized on a time course, which ultimately enabled monitoring data growth and promiscuity progression over nearly 40 years, beginning in 1976. Surprisingly low degrees of promiscuity were consistently detected for all compound sets and there were only small increases in promiscuity over time. In fact, most compounds had a constant degree of promiscuity, including compounds with an activity history of 10 or 20 years. Moreover, during periods of massive data growth, beginning in 2007, promiscuity degrees also remained constant or displayed only minor increases, depending on the activity data confidence levels. Considering high-confidence data, bioactive compounds currently interact with 1.5 targets on average, regardless of their origins, and display essentially constant degrees of promiscuity over time. Taken together, our findings provide expectation values for promiscuity progression and magnitudes among bioactive compounds as activity data further grow.

  4. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    Directory of Open Access Journals (Sweden)

    Ana Teixeira

    2014-09-01

    Full Text Available The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L. are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used. Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  5. Bioactive extract from moringa oleifera inhibits the pro-inflammatory mediators in lipopolysaccharide stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Masoumeh Tangestani Fard

    2015-01-01

    Full Text Available Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E 2 , tumor necrosis factor alpha, interleukin (IL-6, and IL-1b. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders.

  6. Preparation and biocompatibility of poly (methyl methacrylate reinforced with bioactive particles

    Directory of Open Access Journals (Sweden)

    Pereira Marivalda de Magalhães

    2003-01-01

    Full Text Available Calcium phosphates and bioactive glasses have been used in many biomedical applications for more than 30 years due basically to their bioactive behavior. However, ceramics are too brittle for applications that require high levels of toughness and easy processability. In this work, a biphasic calcium phosphate (BCP and a bioactive glass composition (BG were combined with polymers to produce composites with tailorable properties and processability. The BCP particles were synthesized by a precipitation technique. The BG particles were produced by sol-gel processing. The BCP particles were treated with a silane agent to improve the compatibility between particles and the polymer matrix. Dense samples were produced by hot pressing (200 °C a mixture of 30 wt.% of particles in poly (methyl methacrylate. The samples produced were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Mechanical properties were evaluated by a three point bending test. Samples were also submitted to in vitro bioactivity test and in vivo toxicity test. Results showed that the production of the composites was successfully achieved, yielding materials with particles well dispersed within the matrices. Evaluation of the in vivo inflammatory response showed low activity levels for all composites although composites with silane treated BCP particles led to milder inflammatory responses than composites with non-treated particles.

  7. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.

    Science.gov (United States)

    Park, Hyun-Ji; Yu, Seung Jung; Yang, Kisuk; Jin, Yoonhee; Cho, Ann-Na; Kim, Jin; Lee, Bora; Yang, Hee Seok; Im, Sung Gap; Cho, Seung-Woo

    2014-12-01

    Bioactive, functional scaffolds are required to improve the regenerative potential of stem cells for tissue reconstruction and functional recovery of damaged tissues. Here, we report a paper-based bioactive scaffold platform for stem cell culture and transplantation for bone reconstruction. The paper scaffolds are surface-engineered by an initiated chemical vapor deposition process for serial coating of a water-repellent and cell-adhesive polymer film, which ensures the long-term stability in cell culture medium and induces efficient cell attachment. The prepared paper scaffolds are compatible with general stem cell culture and manipulation techniques. An optimal paper type is found to provide structural, physical, and mechanical cues to enhance the osteogenic differentiation of human adipose-derived stem cells (hADSCs). A bioactive paper scaffold significantly enhances in vivo bone regeneration of hADSCs in a critical-sized calvarial bone defect. Stacking the paper scaffolds with osteogenically differentiated hADSCs and human endothelial cells resulted in vascularized bone formation in vivo. Our study suggests that paper possesses great potential as a bioactive, functional, and cost-effective scaffold platform for stem cell-mediated bone tissue engineering. To the best of our knowledge, this is the first study reporting the feasibility of a paper material for stem cell application to repair tissue defects.

  8. Natural bioactive compounds from winery by-products as health promoters: a review.

    Science.gov (United States)

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina

    2014-09-04

    The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  9. Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration

    Science.gov (United States)

    Wang, Xiaojian; Li, Wei

    2016-06-01

    Bioactive inorganic materials are attractive for hard tissue regeneration, and they are used as delivery vehicles for pharmaceutical molecules, scaffolds and components for bio-composites. We demonstrated mesoporous bioactive glass (BG) nanospheres that exhibited the capacity to deliver pharmaceutical molecules. Mesoporous BG nanospheres with variable Ca to Si ratios were synthesized using sol-gel chemistry. By controlling the hydrolysis and condensation conditions, the diameter of the mesoporous BG nanospheres was changed from 300 nm to 1500 nm. The porous structure and surface area of the BG nanospheres were shown to be dependent on their composition. The surface area of the BG nanospheres decreased from 400 ± 2 m2 g-1 to 56 ± 0.1 m2 g-1 when the Ca/Si ratio increased from 5 to 50 at.%. When the mesoporous BG nanospheres were loaded with ibuprofen (IBU), they exhibited a sustained release profile in simulated body fluid (SBF). In the meantime, the IBU-loaded BG nanospheres degraded in SBF, and induced apatite layer formation on the surface as a result of their good bioactivity. When the BG nanospheres were used as a composite filler to poly (ɛ-caprolactone) (PCL), they were shown to be effective at improving the in vitro bioactivity of PCL microspheres.

  10. Are lithium niobate (LiNbO{sub 3}) and lithium tantalate (LiTaO{sub 3}) ferroelectrics bioactive?

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Paula Maria, E-mail: paula.vilarinho@ua.pt; Barroca, Nathalie; Zlotnik, Sebastian; Félix, Pedro; Fernandes, Maria Helena

    2014-06-01

    The use of functional materials, such as ferroelectrics, as platforms for tissue growth in situ or ex situ, is new and holds great promise. But the usage of materials in any bioapplication requires information on biocompatibility and desirably on bioactive behavior when bone tissue engineering is envisaged. Both requirements are currently unknown for many ferroelectrics. Herein the bioactivity of LiNbO{sub 3} and LiTaO{sub 3} is reported. The formation of apatite-like structures on the surface of LiNbO{sub 3} and LiTaO{sub 3} powders after immersion in simulated body fluid (SBF) for different soaking periods indicates their bioactive potential. The mechanism of apatite formation is suggested. In addition, the significant release of lithium ions from the ferroelectric powders in the very first minutes of soaking in SBF is examined and ways to overcome this likely hurdle addressed. - Highlights: • LiNbO{sub 3} and LiTaO{sub 3} are bioactive ferroelectrics. • Cauliflower apatite type structures indicative of in-vitro bioactivity of LiNbO{sub 3} and LiTaO{sub 3.} • Negative surface charges anchor Ca{sup 2+} to which PO{sub 4}{sup 3−} attracts forming apatite structure nuclei. • Use of ferroelectrics as platforms for tissue growth in situ or ex situ is new and holds great promise.

  11. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration.

    Science.gov (United States)

    Khan, Ather Farooq; Saleem, Muhammad; Afzal, Adeel; Ali, Asghar; Khan, Afsar; Khan, Abdur Rahman

    2014-02-01

    Bone graft substitutes are widely used for bone regeneration and repair in defect sites resulting from aging, disease, trauma, or accident. With invariably increasing clinical demands, there is an urgent need to produce artificial materials, which are readily available and are capable of fast and guided skeletal repair. Calcium phosphate based bioactive ceramics are extensively utilized in bone regeneration and repair applications. Silicon is often utilized as a substituent or a dopant in these bioceramics, since it significantly enhances the ultimate properties of conventional biomaterials such as surface chemical structure, mechanical strength, bioactivity, biocompatibility, etc. This article presents an overview of the silicon substituted bioceramics, which have emerged as efficient bone replacement and bone regeneration materials. Thus, the role of silicon in enhancing the biological performance and bone forming capabilities of conventional calcium phosphate based bioceramics is identified and reviewed.

  12. A study on in vitro and in vivo bioactivity of nano hydroxyapatite/polymer biocomposite

    Institute of Scientific and Technical Information of China (English)

    YANG Kong; WEI Jie; WANG ChaoYuan; LI YuBao

    2007-01-01

    When bioactive materials are implanted in vivo, a bone-like apatite layer can be found on their surfaces, which is critical to the establishment of bone-bonding between materials and living tissues. In this study, bone-like apatite formation in vitro and in vivo on surface of nano apatite/polyamide (n-HA/PA66) composite was investigated, and the interface between the implanted composite and surrounding bone tissue of rabbit were also examined. The results revealed that in both simulated body fluids (SBF) and dorsal muscles of rabbit, bone-like apatite could form on the biocomposite surface. When the samples were implanted in cortical bone, they combined directly with the natural bone without fibrous tissue in-between. The results showed that the n-HA/PA66 biocomposite had excellent bioactivity, which might be a good candidate for bone defect replacement.

  13. A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide.

    Science.gov (United States)

    Silva, Fábio E F; Batista, Karla A; Di-Medeiros, Maria C B; Silva, Cassio N S; Moreira, Bruna R; Fernandes, Kátia F

    2016-01-01

    In this study, a stimuli-responsive, biodegradable and bioactive film was produced by blending cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA). The film presented malleability and mechanical properties enabling an easy handling. Wetting the film changed the optical property from opacity to levels of transparency higher than 70% and resulted in up to 2-fold increase in its superficial area. Different swelling indexes were obtained varying the pH of solvent, which allows classifying the CGP/PVA film as pH sensitive stimuli-responsive material. The bioactivity was achieved through covalent immobilization of papain, which remained active after storage of CGP/PVA-papain film for 24h in the presence of buffer or in a dry form. These results evidenced that CGP/PVA-papain film is a very promising material for biomedical applications.

  14. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Martina [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Corazzari, Ingrid [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Centro Interdipartimentale “G. Scansetti” per lo studio degli amianti e di altri particolati nocivi, Via Pietro Giuria 9, 10125 Torino (Italy); Prenesti, Enrico [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Bertone, Elisa [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Vernè, Enrica, E-mail: enrica.verne@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Ferraris, Sara [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy)

    2016-03-30

    Graphical abstract: - Highlights: • Surface functionalization of bioactive glass with biomolecules has been optimized. • Biomolecules are present and active on the glass surface after functionalization. • Biomolecules affect deposition kinetics and morphology of hydroxyapatite. • Free radical scavenging activity is seen for the first time on bioactive glasses. - Abstract: Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H{sub 2}O{sub 2} highlighting scavenging activity of the bioactive glass.

  15. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Pourhaghgouy, Masoud, E-mail: m.pourhaghgouy@merc.ac.ir [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of); Zamanian, Ali, E-mail: a-zamanian@merc.ac.ir [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of); Shahrezaee, Mostafa, E-mail: moshahrezaee@yahoo.com [Department of Orthopedic Surgery, AJA University of Medical Sciences, Tehran (Iran, Islamic Republic of); Masouleh, Milad Pourbaghi, E-mail: miladpourbaghi@gmail.com [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of)

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO{sub 2}.28CaO.8P{sub 2}O{sub 5}) prepared by sol–gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. - Highlights: • Particle size of synthesized bioactive glass was approximately less than 20 nm. • Increase in BGNP content did not change the pore channels size. • Addition of 10 wt.% of BGNP led to absence of the pores located on chitosan walls. • Mechanical properties of chitosan scaffold significantly improved by addition of BGNPs. • Chi-BGNPs30 scaffold indicated acceptable absorption capacity and bioactivity behavior.

  16. The Investigation of Some Bioactive Compounds and Antioxidant Properties of Hawthorn (Crataegus monogyna subsp. monogyna jacq.)

    OpenAIRE

    KESER, Serhat; Celik, Sait; Turkoglu, Semra; YILMAZ, Okkes; Turkoglu, Ismail

    2014-01-01

    Aim: The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. Materials and Methods: For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic c...

  17. Crystallization of pyroxene phases and physico-chemical properties of glass-ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic glass system

    Energy Technology Data Exchange (ETDEWEB)

    Salman, S.M.; Salama, S.N.; Abo-Mosallam, H.A., E-mail: abomosallam@yahoo.com.au

    2015-01-15

    The crystallization characteristics, crystalline phase assemblages and solid solution phases developed due to thermally crystallized glasses based on the Li{sub 2}SiO{sub 3}–Li{sub 2}Si{sub 2}O{sub 5}–LiCrSi{sub 2}O{sub 6} (1028 ± 3 °C) eutectic glass system by replacing some trivalent oxides instead of Cr{sub 2}O{sub 3} were investigated. The microhardness and chemical durability of the glass-ceramics were also determined. Lithium meta and disilicate (Li{sub 2}SiO{sub 3} and Li{sub 2}Si{sub 2}O{sub 5}), lithium gallium silicate (LiGaSiO{sub 4}), and varieties of pyroxene phases, including Cr-pyroxene phase, i.e. lithium-kosmochlor (LiCrSi{sub 2}O{sub 6}), lithium aluminum silicate (LiAlSi{sub 2}O{sub 6}), lithium indium silicate (LiInSi{sub 2}O{sub 6}) and pyroxene solid solution of Li-aegerine type [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}] were the main crystalline phases formed in the crystallized glasses. There is no evidence for the formation of solid solution or liquid immiscibility gaps between LiAlSi{sub 2}O{sub 6} or LiInSi{sub 2}O{sub 6} phases and LiCrSi{sub 2}O{sub 6} phase. However, LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} components were accommodated in the pyroxene structure under favorable conditions of crystallization to form monomineralic pyroxene solid solution phase of the probably formula [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}]. The type and compatibility of the crystallized phases are discussed in relation to the compositional variation of the glasses and heat-treatment applied. The microhardness values of the crystalline materials ranged between 5282 and 6419 MPa while, the results showed that the chemical stability of the glass-ceramics was better in alkaline than in acidic media. - Highlights: • Glass ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic (1028 ± 3 °C) glass were prepared. • LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} phases form monomineralic pyroxene solid

  18. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    Science.gov (United States)

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  19. Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation

    Science.gov (United States)

    Grafahrend, Dirk; Heffels, Karl-Heinz; Beer, Meike V.; Gasteier, Peter; Möller, Martin; Boehm, Gabriele; Dalton, Paul D.; Groll, Jürgen

    2011-01-01

    Advanced biomaterials and scaffolds for tissue engineering place high demands on materials and exceed the passive biocompatibility requirements previously considered acceptable for biomedical implants. Together with degradability, the activation of specific cell-material interactions and a three-dimensional environment that mimics the extracellular matrix are core challenges and prerequisites for the organization of living cells to functional tissue. Moreover, although bioactive signalling combined with minimization of non-specific protein adsorption is an advanced modification technique for flat surfaces, it is usually not accomplished for three-dimensional fibrous scaffolds used in tissue engineering. Here, we present a one-step preparation of fully synthetic, bioactive and degradable extracellular matrix-mimetic scaffolds by electrospinning, using poly(D,L-lactide-co-glycolide) as the matrix polymer. Addition of a functional, amphiphilic macromolecule based on star-shaped poly(ethylene oxide) transforms current biomedically used degradable polyesters into hydrophilic fibres, which causes the suppression of non-specific protein adsorption on the fibres’ surface. The subsequent covalent attachment of cell-adhesion-mediating peptides to the hydrophilic fibres promotes specific bioactivation and enables adhesion of cells through exclusive recognition of the immobilized binding motifs. This approach permits synthetic materials to directly control cell behaviour, for example, resembling the binding of cells to fibronectin immobilized on collagen fibres in the extracellular matrix of connective tissue.

  20. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  1. Mannich reaction: A versatile and convenient approach to bioactive skeletons

    Indian Academy of Sciences (India)

    Selva Ganesan Subramaniapillai

    2013-05-01

    This review gives an insight into the recent applications of Mannich reaction and its variants in the construction of bioactive molecules. Emphasis is given to the Mannich reaction that provides bioactive molecules and/or modifies the property of an existing bioactive molecule. The role of Mannich reaction in the construction of antimalarial, antitumour, antimicrobial, antitubercular, antiinflammatory and anticonvulsant molecules and also the significance of aminoalkyl Mannich side chain on the biological property of molecules is discussed here.

  2. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  3. The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Leszek, E-mail: leszek.borkowski@umlub.pl [Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Sroka-Bartnicka, Anna [Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin (Poland); Drączkowski, Piotr [Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20-093 Lublin (Poland); Ptak, Agnieszka [Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Zięba, Emil [SEM Laboratory, Department of Zoology and Ecology, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin (Poland); Ślósarczyk, Anna [Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Ginalska, Grażyna [Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland)

    2016-05-01

    Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. - Highlights: • Bioactivity of two calcium phosphates (HAP and CHAP) was compared. • Two novel ceramic-polymer composite materials were developed. • We examined apatite forming ability of scaffolds in SBF solution. • We report comparable bioactive properties between both materials.

  4. Phase composition and properties of superconducting ceramics based on Bi1.7Pb0.3Sr2Ca2Cu3O y precursors fabricated by melt quenching in a solar furnace

    Science.gov (United States)

    Gulamova, D. D.; Uskenbaev, D. E.; Fantozzi, G.; Chigvinadze, J. G.; Magradze, O. V.

    2009-06-01

    Production of superconducting ceramics based on precursors with rated composition Bi1.7Pb0.3Sr2Ca2Cu3O y is studied. The precursors are synthesized in a solar furnace by melt rapid quenching. The phase composition of the samples is examined by microstructural and X-ray analyses. The temperature dependences of the resistance and magnetic susceptibility are measured. The influence of the composition and crystal structure of the substrate on texturing in the Bi-Sr-Ca-Cu-O system is studied. It is found that the type of quenching plays a significant role, while the type of substrate is of minor significance.

  5. Bioactive Ca-P scaffolds used for bone reconstruction

    Institute of Scientific and Technical Information of China (English)

    RUAN Jian-ming(阮建明); ZOU Jian-peng(邹俭鹏); Goldie Elisabeth; LIU Bing(刘兵)

    2003-01-01

    Bioactive ceramic scaffolds HA*TCP, aimed to be applied in clinic, were evaluated both in vitro and in vivo models. HA*TCP was supposed as a completely biodegradable material and designed as a scaffold to be used for bone reconstruction or regeneration. Materials processing was proposed and physical properties as well as microstructure feature were characterized. Biological postulation of the relationship between seeding density and proliferation, and viability of human osteoblasts cultured on the porous HA*TCP were quantitatively measured. Bone reconstruction was investigated both in vitro and in vivo by using these biodegradable scaffolds with pore sizes ranged in 200-400 μm in diameter. The degradable scaffold supported cellular proliferation of seeded osteoblasts on the scaffold and shown normal differentiated function in vitro. Seeding density is an important factor for cell attachment and proliferation expression and has been considerably discussed. Suitable pore size of the scaffolds is required if promotion of bone reconstruction is desired. Clinical trials show that HA*TCP scaffolds are successful applied for bone reconstruction and regeneration and can be completely degraded in human body in 12 months. This approach suggests the feasibility of using porous HA*TCP scaffold materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  6. Bioactive Peptides from Muscle Sources: Meat and Fish

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-08-01

    Full Text Available Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE inhibitory and antioxidant peptides.

  7. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development.

  8. Microencapsulation for the improved delivery of bioactive compounds into foods.

    Science.gov (United States)

    Champagne, Claude P; Fustier, Patrick

    2007-04-01

    The development of functional foods through the addition of bioactive compounds holds many technological challenges. Microencapsulation is a useful tool to improve the delivery of bioactive compounds into foods, particularly probiotics, minerals, vitamins, phytosterols, lutein, fatty acids, lycopene and antioxidants. Several microencapsulation technologies have been developed for use in the food industry and show promise for the production of functional foods. Moreover, these technologies could promote the successful delivery of bioactive ingredients to the gastrointestinal tract. Future research is likely to focus on aspects of delivery and the potential use of co-encapsulation methodologies, where two or more bioactive ingredients can be combined to have a synergistic effect.

  9. Characterization of the bioactive and mechanical behavior of dental ceramic/sol-gel derived bioactive glass mixtures.

    Science.gov (United States)

    Abbasi, Zahra; Bahrololoum, Mohammad E; Bagheri, Rafat; Shariat, Mohammad H

    2016-02-01

    Dental ceramics can be modified by bioactive glasses in order to develop apatite layer on their surface. One of the benefits of such modification is to prolong the lifetime of the fixed dental prosthesis by preventing the formation of secondary caries. Dental ceramic/sol-gel derived bioactive glass mixture is one of the options for this modification. In the current study, mixtures of dental ceramic/bioactive glass with different compositions were successfully produced. To evaluate their bioactive behavior, prepared samples were immersed in a simulated body fluid at various time intervals. The prepared and soaked specimens were characterized using Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. Since bioactive glasses have deleterious effects on the mechanical properties of dental ceramics, 3-point bending tests were used to evaluate the flexural strength, flexural strain, tangent modulus of elasticity and Weibull modulus of the specimens in order to find the optimal relationship between mechanical and bioactive properties.

  10. HPLC ANALYSIS OF BIOACTIVE COMPOUNDS IN TEN DIFFERENT WILD TYPE UNDER-UTILIZED LEGUME GRAINS

    Directory of Open Access Journals (Sweden)

    Vellingiri Vadivel and Hans Konrad Biesalski

    2010-05-01

    Full Text Available In recent years, many food industries have been initiated the formulation of nutraceutical/functional foods by incorporating the bioactive ingredients for the prevention/treatment of certain chronic diseases. In this connection, certain promising wild type under-utilized legume grains received more attention, since they are naturally a rich source of L-Dopa (precursor of dopamine and certain bioactive compounds including phenolics, tannins and phytic acid. In the present study, seed materials of certain promising wild type under-utilized food legume grains such as Abrus precatorius L., Acacia leucopholea Willd, Bauhinia varigata L., Canavalia gladiata (Jacq. DC., Cassia floribunda Cav., Entada scandens Benth., Indigofera linifolia (L.f. Retz., Mucuna monosperma DC. Ex Wight., Sesbania bispinosa (Jacq. Wight. and Tamarindus indica L., collected from Eastern and Western Ghats of South India, were investigated for certain bioactive compounds through HPLC technique. All the analysed samples were found to constitute a viable source of total free phenolics (4.23 – 8.75 g/100 g DM, tannins (1.04 – 5.41 g /100 g DM, L-Dopa (1.17 – 5.34 g/100 g DM and phytic acid (0.96 – 2.74 g/100 g DM and also the newly developed HPLC procedures were proven to be sensitive enough to detect these bioactive compounds even at tracer level. Further, such wild type legume grains could be recommended as a natural source of bioactive compounds in the dietary management of certain chronic diseases such as Parkinsonism, diabetes, obesity, cardiovascular diseases, cancer etc.

  11. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses.

    Science.gov (United States)

    Oudadesse, H; Dietrich, E; Gal, Y L; Pellen, P; Bureau, B; Mostafa, A A; Cathelineau, G

    2011-06-01

    The use of bone grafts permits the filling of a bone defect without risk of virus transmission. In this work, pure bioactive glass (46S6) and zinc-doped bioactive glass (46S6Zn10) with 0.1 wt% zinc are used to elaborate highly bioactive materials by melting and rapid quenching. Cylinders of both types of glasses were soaked in a simulated body fluid (SBF) solution with the aim of determining the effect of zinc addition as a trace element on the chemical reactivity and bioactivity of glass. Several physico-chemical characterization methods such as x-ray diffraction, Fourier transform infrared spectroscopy and nuclear magnetic resonance methods, with particular focus on the latter, were chosen to investigate the fine structural behaviour of pure and Zn-doped bioactive glasses as a function of the soaking time of immersion in SBF. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to measure the concentrations of Ca and P ions in the SBF solution after different durations of immersion. The effect of the investigated samples on the proliferation rate of human osteoblast cells was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and tested on two different sizes of pure and zinc-doped glasses in powder form, with particle sizes that ranged between 40 to 63 µm and 500 to 600 µm. The obtained results showed the delay release of ions by Zn-doped glass (46S6Zn10) and the slower CaP deposition. Cytotoxicity and cell viability were affected by the particle size of the glass. The release rate of ions was found to influence the cell viability.

  12. In vitro study of manganese-doped bioactive glasses for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Miola, Marta, E-mail: marta.miola@polito.it [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Brovarone, Chiara Vitale [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Maina, Giovanni [Department of Clinical and Biological Sciences, University of Turin, Via Zuretti 29, 10126 Turin (Italy); Rossi, Federica [Department of Public Health and Pediatric Sciences, Piazza Polonia, 94, 10126 Torino (Italy); Bergandi, Loredana; Ghigo, Dario [Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin (Italy); Saracino, Silvia; Maggiora, Marina; Canuto, Rosa Angela; Muzio, Giuliana [Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin (Italy); Vernè, Enrica [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2014-05-01

    A glass belonging to the system SiO{sub 2}–P{sub 2}O{sub 5}–CaO–MgO–Na{sub 2}O–K{sub 2}O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm{sup 2} (μg of glass powders/cm{sup 2} of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). - Highlights: • Novel bioactive glasses doped with manganese were prepared. • Mn-doped bioactive glasses were not cytotoxic towards human MG-63 osteoblasts. • The Mn introduction promotes the expression of ALP and bone morphogenetic proteins. • Mn-doped glass may be a promising material for bone regeneration procedures.

  13. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Oudadesse, H; Dietrich, E; Gal, Y L; Pellen, P; Bureau, B; Mostafa, A A; Cathelineau, G, E-mail: hassane.oudadesse@univ-rennes1.fr [SCR, UMR-CNRS 6226, Campus de Beaulieu, Universite de Rennes 1, 263 Avenue du General Leclerc, 35042 Rennes Cedex (France)

    2011-06-15

    The use of bone grafts permits the filling of a bone defect without risk of virus transmission. In this work, pure bioactive glass (46S6) and zinc-doped bioactive glass (46S6Zn10) with 0.1 wt% zinc are used to elaborate highly bioactive materials by melting and rapid quenching. Cylinders of both types of glasses were soaked in a simulated body fluid (SBF) solution with the aim of determining the effect of zinc addition as a trace element on the chemical reactivity and bioactivity of glass. Several physico-chemical characterization methods such as x-ray diffraction, Fourier transform infrared spectroscopy and nuclear magnetic resonance methods, with particular focus on the latter, were chosen to investigate the fine structural behaviour of pure and Zn-doped bioactive glasses as a function of the soaking time of immersion in SBF. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to measure the concentrations of Ca and P ions in the SBF solution after different durations of immersion. The effect of the investigated samples on the proliferation rate of human osteoblast cells was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and tested on two different sizes of pure and zinc-doped glasses in powder form, with particle sizes that ranged between 40 to 63 {mu}m and 500 to 600 {mu}m. The obtained results showed the delay release of ions by Zn-doped glass (46S6Zn10) and the slower CaP deposition. Cytotoxicity and cell viability were affected by the particle size of the glass. The release rate of ions was found to influence the cell viability.

  14. Cotton-wool-like bioactive glasses for bone regeneration.

    Science.gov (United States)

    Poologasundarampillai, G; Wang, D; Li, S; Nakamura, J; Bradley, R; Lee, P D; Stevens, M M; McPhail, D S; Kasuga, T; Jones, J R

    2014-08-01

    Inorganic sol-gel solutions were electrospun to produce the first bioactive three-dimensional (3-D) scaffolds for bone tissue regeneration with a structure like cotton-wool (or cotton candy). This flexible 3-D fibrous structure is ideal for packing into complex defects. It also has large inter-fiber spaces to promote vascularization, penetration of cells and transport of nutrients throughout the scaffold. The 3-D fibrous structure was obtained by electrospinning, where the applied electric field and the instabilities exert tremendous force on the spinning jet, which is required to be viscoelastic to prevent jet break up. Previously, polymer binding agents were used with inorganic solutions to produce electrospun composite two-dimensional fibermats, requiring calcination to remove the polymer. This study presents novel reaction and processing conditions for producing a viscoelastic inorganic sol-gel solution that results in fibers by the entanglement of the intermolecularly overlapped nanosilica species in the solution, eliminating the need for a binder. Three-dimensional cotton-wool-like structures were only produced when solutions containing calcium nitrate were used, suggesting that the charge of the Ca(2+) ions had a significant effect. The resulting bioactive silica fibers had a narrow diameter range of 0.5-2μm and were nanoporous. A hydroxycarbonate apatite layer was formed on the fibers within the first 12h of soaking in simulated body fluid. MC3T3-E1 preosteoblast cells cultured on the fibers showed no adverse cytotoxic effect and they were observed to attach to and spread in the material.

  15. Machining of a bioactive nanocomposite orthopedic fixation device.

    Science.gov (United States)

    Sparnell, Amie; Aniket; El-Ghannam, Ahmed

    2012-08-01

    Bioactive ceramics bond to bone and enhance bone formation. However, they have poor mechanical properties which restrict their machinability as well as their application as load bearing implants. The goal of this study was to machine bioactive fixation screws using a silica-calcium phosphate nanocomposite (SCPC50). The effect of compact pressure, holding time, and thermal treatment on the microstructure, machinability, and mechanical properties of SCPC50 cylinders were investigated. Samples prepared by powder metallurgy technique at compact pressure range of 100-300 MPa and treated at 900°C/1 h scored a poor machinability rating of (1/5) due to the significant formation of amorphous silicate phase at the grain boundaries. On the other hand, lowering of compact pressure and sintering temperature to 30 MPa/3 h and 700°C/2 h, respectively, minimized the formation of the amorphous phase and raised the machinability rating to (5/5). The modulus of elasticity and ultimate strength of machinable SCPC50 were 10.8 ± 2.0 GPa and 72.8 ± 22.8 MPa, respectively, which are comparable to the corresponding values for adult human cortical bone. qRT-PCR analyses showed that bone cells attached to SCPC50 significantly upregulated osteocalcin mRNA expression as compared to the cells on Ti-6Al-4V. Moreover, cells attached to SCPC50 produced mineralized bone-like tissue within 8 days. On the other hand, cells attached to Ti-6Al-4V failed to produce bone mineral under the same experimental conditions. Results of the study suggest that machinable SCPC50 has the potential to serve as an attractive new material for orthopedic fixation devices.

  16. The effect of variation in physical properties of porous bioactive glass on the expression and maintenance of the osteoblastic phenotype

    Science.gov (United States)

    Effah Kaufmann, Elsie Akosua Biraa

    Revision surgery to replace failed hip implants is a significant health care issue that is expected to escalate as life expectancy increases. A major goal of revision surgery is to reconstruct femoral intramedullary bone-stock loss. To address this problem of bone loss, grafting techniques are widely used. Although fresh autografts remain the optimal material for all forms of surgery seeking to restore structural integrity to the skeleton, it is evident that the supply of such tissue is limited. In recent years, calcium phosphate ceramics have been studied as alternatives to autografts and allografts. The significant limitations associated with the use of biological and synthetic grafts have led to a growing interest in the in vitro synthesis of bone tissue. The approach is to synthesize bone tissue in vitro with the patient's own cells, and use this tissue for the repair of bony defects. Various substrates including metals, polymers, calcium phosphate ceramics and bioactive glasses, have been seeded with osteogenic cells. The selection of bioactive glass in this study is based on the fact that this material has shown an intense beneficial biological effect which has not been reproduced by other biomaterials. Even though the literature provides extensive data on the effect of pore size and porosity on in vivo bone tissue ingrowth into porous materials for joint prosthesis fixation, the data from past studies cannot be applied to the use of bioactive glass as a substrate for the in vitro synthesis of bone tissue. First, unlike the in vivo studies in the literature, this research deals with the growth of bone tissue in vitro. Second, unlike the implants used in past studies, bioactive glass is a degradable and resorbable material. Thus, in order to establish optimal substrate characteristics (porosity and pore size) for bioactive glass, it was important to study these parameters in an in vitro model. We synthesized porous bioactive glass substrates (BG) with varying

  17. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Razavi, Mehdi [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Pothineni, Venkata Raveendra [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Rajadas, Jayakumar [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2015-05-30

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  18. In vitro bioactivity and cytocompatibility of porous scaffolds of bioactive borosilicate glasses

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; FU HaiLuo; LIU Xin; YAO AiHua; WANG DePing; HUANG WenHai; ZHAO Ying; JIANG XinQuan

    2009-01-01

    The bioactive borosilicate scaffolds (R2O-RO-B2O3-SiO2-P2O5) with four different contents of borate were fabricated by replication technique. The bioactivity,degradability and the cytotoxicity of the scaffolds were studied in this paper. The porosity of the scaffolds was found to be 73%-80%,and the pore size was in the range of 200-300 μm. The porous scaffolds immersed in 0.02 mol. L-1 K2HPO4 solution were transformed into hydroxyapatite. And it is notable that the D-AIk-2B,D-AIk-3B-scaffolds were covered by hydroxyapatite layers after 7 h-immersion,which proved their high bioactivity. In the cell adhesion test,cells could be seen growing well on the scaffolds,showing stretched morphology and obvious pseudopodia,and only the high cumulative concentration of B ions released from the D-AIk-3B-scaffold samples had an inhibition effect on cell proliferation. But the inhibition effect could be alleviated by diluting the extract solution to a certain concentration (dilution ratio:1:8). Therefore,after suitable pretreatment,the porous borosilicate bioactive glass scaffold can be e desirable candidate for bone tissue engineering.

  19. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Science.gov (United States)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  20. Human milk composition: nutrients and bioactive factors.

    Science.gov (United States)

    Ballard, Olivia; Morrow, Ardythe L

    2013-02-01

    This article provides an overview of the composition of human milk, its variation, and its clinical relevance. The composition of human milk is the biological norm for infant nutrition. Human milk also contains many hundreds to thousands of distinct bioactive molecules that protect against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Some of these molecules (eg, lactoferrin) are being investigated as novel therapeutic agents. Human milk changes in composition from colostrum to late lactation, within feeds, by gestational age, diurnally, and between mothers. Feeding infants with expressed human milk is increasing.

  1. 树脂水门汀添加生物玻璃后在人工唾液中的生物活性研究%Investigation of the bioactivity of resin cement added with bioactive glass in artificial saliva

    Institute of Scientific and Technical Information of China (English)

    汪洁; 章非敏

    2012-01-01

    Objective To investigate the bioactivity of resin cement added with bioactive glass in artificial saliva. Methods Surface silanized bioactive glass was proportionally mixed with the resin cement,and the mixture was immersed in artifical saliva for 3,7,14, and 28 d to test the bioactivity. Results The microstructure of the material was analyzed with scanning electron microscopy/energy dispersive spectroscopy( SEM/EDS) .finding that after immersed in artificial saliva for 3 d,the surfaces of the material had been deposited with mineralized apatite, which became thicker with soaking time increasing. Conclusions The resin cement added with bioactive glass in artificial saliva has strong bioactivity, and its biological properties are improved.%目的 研究加入生物活性玻璃的树脂水门汀在人工唾液中的生物活性.方法 将生物活性玻璃表面硅烷化,按比例与树脂水门汀混合均匀,放人配置好的人工唾液中分别浸泡3,7,14和28 d来检测其生物活性.结果 扫描电镜/能谱仪(SEM/EDS)对材料的微观形貌进行分析后发现,在人工唾液中浸泡3d材料的表面已经有矿化的磷灰石沉积,并且随着浸泡时间的增加而增厚.结论 将生物活性玻璃添加入树脂水门汀后在人工唾液中具有较强的生物活性,可以提高树脂水门汀的生物性能.

  2. Preparation and characterization of bioactive and degradable composites containing ordered mesoporous calcium-magnesium silicate and poly(L-lactide)

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jiajin [Key Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237 (China); Dong, Xieping, E-mail: jxzhyxh@163.com [Department of Orthopaedic Surgery, Jiangxi People' s Hospital, Nanchang 330006 (China); Ma, Xuhui [Polymer Science (Shenzhen) New Materials Co., Ltd., Shenzhen 518101 (China); Tang, Songchao, E-mail: schtang@ecust.edu.cn [Key Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237 (China); Wu, Zhaoying; Xia, Ji; Wang, Quanxiang; Wang, Yutao; Wei, Jie [Key Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237 (China)

    2014-10-30

    Highlights: • Mesoporous calcium-magnesium silicate and poly(L-lactide) composite was fabricated. • The composite has good hydrophilicity, in vitro degradation and bioactivity. • The composite could support cell attachment, proliferation and differentiation. - Abstract: Polylactide (PLA) and its copolymers have been widely used for bone tissue regeneration. In this study, a bioactive composite of ordered mesoporous calcium–magnesium silicate (m-CMS) and poly(L-lactide) (PLLA) was fabricated by melt blending method. The results indicated that the m-CMS particles were entrapped by polymer phase, and crystallinity of PLLA significantly decreased while the thermal stability of the m-CMS/PLLA composites was not obviously affected by addition of the m-CMS into PLLA. In addition, compared to PLLA, incorporation of the m-CMS into PLLA significantly improved the hydrophilicity, in vitro degradability and bioactivity (apatite-formation ability) of the m-CMS/PLLA composite, which were m-CMS content dependent. Moreover, it was found that incorporation of the m-CMS into PLLA could neutralize the acidic degradation by-products and thus compensated for the decrease of pH value. In cell culture experiments, the results showed that the composite enhanced attachment, proliferation and alkaline phosphatase activity (ALP) of MC3T3-E1 cells, which were m-CMS content dependent. The results indicated that the addition of bioactive materials to PLLA could result in a composite with improved properties of hydrophilicity, degradability, bioactivity and cytocompatibility.

  3. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kolan, Krishna C R; Leu, Ming C [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Hilmas, Gregory E [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Brown, Roger F [Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO (United States); Velez, Mariano, E-mail: kkd7b@mail.mst.edu, E-mail: mleu@mst.edu [Mo-Sci Corporation, Rolla, MO (United States)

    2011-06-15

    Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 deg. C and 695 deg. C. The sintered scaffolds had pore sizes ranging from 300 to 800 {mu}m with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

  4. Broad-spectrum bactericidal activity of Ag(2)O-doped bioactive glass.

    Science.gov (United States)

    Bellantone, Maria; Williams, Huw D; Hench, Larry L

    2002-06-01

    Bioactive glass has found extensive application as an orthopedic and dental graft material and most recently also as a tissue engineering scaffold. Here we report an initial investigation of the in vitro antibacterial properties of AgBG, a novel bioactive glass composition doped with Ag(2)O. The bacteriostatic and bactericidal properties of this new material and of two other bioactive glass compositions, 45S5 Bioglass and BG, have been studied by using Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus as test microorganisms. Concentrations of AgBG in the range of 0.05 to 0.20 mg of AgBG per ml of culture medium were found to inhibit the growth of these bacteria. Not only was AgBG bacteriostatic, but it also elicited a rapid bactericidal action. A complete bactericidal effect was elicited within the first hours of incubation at AgBG concentrations of 10 mg ml(-1). 45S5 Bioglass and BG had no effect on bacterial growth or viability. The antibacterial action of AgBG is attributed exclusively to the leaching of Ag(+) ions from the glass matrix. Analytical measurements rule out any contribution to AgBG-mediated bacterial killing by changes in pH or ionic strength or the dissolution of other ionic species from the biomaterials. Our observations of the dissolution profiles of Ag(+) from AgBG in the presence and absence of bacteria are consistent with silver accumulation by the bacteria.

  5. Quantification and bioaccessibility of california pistachio bioactives.

    Science.gov (United States)

    Liu, Yuntao; Blumberg, Jeffrey B; Chen, C-Y Oliver

    2014-02-19

    The content of carotenoids, chlorophylls, phenolics, and tocols in pistachios ( Pistacia vera L.) has not been methodically quantified. The objective of this study was to first optimize extraction protocols for lipophilic nutrients and then quantify the content of two phenolic acids, nine flavonoids, four carotenoids, two chlorophylls, and three tocols in the skin, nutmeat, and whole nut of California pistachios. The dominant bioactives in whole pistachios are lutein [42.35 μg/g fresh weight (FW)], chlorophyll a (142.24 μg/g FW), γ-tocopherol (182.20 μg/g FW), flavan-3-ols (catechins) (199.18 μg/g FW), luteolin (217.89 μg/g FW), myricetin (135.18 μg/g FW), and cyanidin-3-galactose (38.34 μg/g FW) in each nutrient class. Most phenolics are present in the skin, while the lipophilic nutrients are dominantly present in the nutmeat. Digestion with a gastrointestinal mimic showed pistachio matrices. In conclusion, 9 lipophilic and 11 hydrophilic bioactives in pistachios are systematically quantified.

  6. Bioactivation of biomorphous silicon carbide bone implants.

    Science.gov (United States)

    Will, Julia; Hoppe, Alexander; Müller, Frank A; Raya, Carmen T; Fernández, Julián M; Greil, Peter

    2010-12-01

    Wood-derived silicon carbide (SiC) offers a specific biomorphous microstructure similar to the cellular pore microstructure of bone. Compared with bioactive ceramics such as calcium phosphate, however, silicon carbide is considered not to induce spontaneous interface bonding to living bone. Bioactivation by chemical treatment of biomorphous silicon carbide was investigated in order to accelerate osseointegration and improve bone bonding ability. Biomorphous SiC was processed from sipo (Entrandrophragma utile) wood by heating in an inert atmosphere and infiltrating the resulting carbon replica with liquid silicon melt at 1450°C. After removing excess silicon by leaching in HF/HNO₃ the biomorphous preform consisted of β-SiC with a small amount (approximately 6wt.%) of unreacted carbon. The preform was again leached in HCl/HNO₃ and finally exposed to CaCl₂ solution. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared analyses proved that oxidation of the residual carbon at the surface induced formation of carboxyl [COO⁻] groups, which triggered adsorption of Ca(2+), as confirmed by XPS and inductively coupled plasma optical emission spectroscopy measurements. A local increase in Ca(2+) concentration stimulated in vitro precipitation of Ca₅(PO₄)₃OH (HAP) on the silicon carbide preform surface during exposure to simulated body fluid, which indicates a significantly increased bone bonding activity compared with SiC.

  7. Bioactive borate glass coatings for titanium alloys.

    Science.gov (United States)

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  8. Indirect composite resin materials for posterior applications.

    Science.gov (United States)

    Shellard, E; Duke, E S

    1999-12-01

    Indirect composite resin restorations were introduced a number of years ago as possible alternatives to traditional metallic or ceramic-based indirect restorations. However, the earlier formulations did not provide evidence of improvement in mechanical and physical properties over chairside-placed direct composite resin materials. Because they required more tooth structure removal than direct restorations, their use became unpopular and was abandoned by most clinicians. Over the past few years, a new class of composite resin indirect materials has surfaced in the profession. Various technologies have been suggested as reinforcement mechanisms. Fibers, matrix modifications, and an assortment of innovations have been proposed for enhancing indirect composite resin restorations. Applications are from inlay restorations all the way to multi-unit fixed prostheses. This manuscript summarizes some of the progress made in this area. When available, data is presented to provide clinicians with guidelines and indications for the use of these materials.

  9. Tough, bio-inspired hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Munch, Etienne; Launey, Maximimilan E.; Alsem, Daan H.; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2008-10-06

    The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs extremely difficult to replicate synthetically. Here we emulate Nature's toughening mechanisms through the combination of two ordinary compounds, aluminum oxide and polymethylmethacrylate, into ice-templated structures whose toughness can be over 300 times (in energy terms) that of their constituents. The final product is a bulk hybrid ceramic material whose high yield strength and fracture toughness ({approx}200 MPa and {approx}30 MPa{radical}m) provide specific properties comparable to aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio-inspired ceramic-based composites with unique strength and toughness.

  10. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    Science.gov (United States)

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds.

  11. Bioactive compounds: Safety and efficacy (Consensus Meeting - Part II)

    NARCIS (Netherlands)

    Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.R.; Schrenk, D.; Walter, P.; Weber, P.

    2009-01-01

    The efficacy and safety of bioactive compounds depend on a few known and unknown parameters. What is a physiologic dose and how can that dose be defined in cases of bioactive compounds with a poor knowledge of supply and distribution? What safety sets are needed? How can individual aspects such as p

  12. Hierarchical porous bioactive glasses/PLGA-magnetic SBA-15 for dual-drug release.

    Science.gov (United States)

    Ma, Jie; Lin, Huiming; Li, Xiaofeng; Bian, Chunhui; Xiang, Di; Han, Xiao; Wu, Xiaodan; Qu, Fengyu

    2014-06-01

    The hierarchical porous bioglass combined with magnetic SBA-15 was synthesized. The bioactive glass materials possess a hierarchical porous structure with the macroporous (50μm) and the mesoporous (3.86nm) structures derived from the plant template (cattail stem) and triblock polyethylene oxide-propylene oxide block copolymer (P123), respectively. Magnetic SBA-15 was synthesized by adopting the post assembly method using Fe(NO3)3 as iron source and ethylene glycol as reduction. After coating PLGA, PLGA-IBU-magnetic SBA-15 also possessed super-paramagnetism and the corresponding saturation magnetizations (Ms) could reach 2.6emug(-1). Metformin HCl (MH) and ibuprofen (IBU) were used as model drugs, and the drug release kinetics was studied. MH and IBU could release 60% and 85% from the sample respectively. The system shows excellent dual-drug controlled delivery performance and good bioactivity in vitro that leads to good potential application on bone regeneration.

  13. Tunable Degradation Rate and Favorable Bioactivity of Porous Calcium Sulfate Scaffolds by Introducing Nano-Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Jianhua Zhou

    2016-12-01

    Full Text Available The bone scaffolds should possess suitable physicochemical properties and osteogenic activities. In this study, porous calcium sulfate (CaSO4 scaffolds were fabricated successfully via selected laser sintering (SLS. Nano-hydroxyapatite (nHAp, a bioactive material with a low degradation rate, was introduced into CaSO4 scaffolds to overcome the overquick absorption. The results demonstrated that nHAp could not only control the degradation rate of scaffolds by adjusting their content, but also improve the pH environment by alleviating the acidification progress during the degradation of CaSO4 scaffolds. Moreover, the improved scaffolds were covered completely with the apatite spherulites in simulated body fluid (SBF, showing their favorable bioactivity. In addition, the compression strength and fracture toughness were distinctly enhanced, which could be ascribed to large specific area of nHAp and the corresponding stress transfer.

  14. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells.

    Science.gov (United States)

    Arcaute, Karina; Mann, Brenda K; Wicker, Ryan B

    2006-09-01

    Stereolithography (SL) was used to fabricate complex 3-D poly(ethylene glycol) (PEG) hydrogels. Photopolymerization experiments were performed to characterize the solutions for use in SL, where the crosslinked depth (or hydrogel thickness) was measured at different laser energies and photoinitiator (PI) concentrations for two concentrations of PEG-dimethacrylate in solution (20% and 30% (w/v)). Hydrogel thickness was a strong function of PEG concentration, PI type and concentration, and energy dosage, and these results were utilized to successfully fabricate complex hydrogel structures using SL, including structures with internal channels of various orientations and multi-material structures. Additionally, human dermal fibroblasts were encapsulated in bioactive PEG photocrosslinked in SL. Cell viability was at least 87% at 2 and 24 h following fabrication. The results presented here indicate that the use of SL and photocrosslinkable biomaterials, such as photocrosslinkable PEG, appears feasible for fabricating complex bioactive scaffolds with living cells for a variety of important tissue engineering applications.

  15. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity.

    Science.gov (United States)

    Yatongchai, Chokchai; Placek, Lana M; Curran, Declan J; Towler, Mark R; Wren, Anthony W

    2015-11-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability.

  16. Structural and in vitro adhesion analysis of a novel covalently coupled bioactive composite.

    Science.gov (United States)

    Khan, Abdul S; Hassan, Khawaja R; Bukhari, Syeda F; Wong, Ferranti S L; Rehman, Ihtesham U

    2012-01-01

    The interfacial adhesion between a restorative composite and tooth is one of the major factors that determine the ultimate performance of composite restoration. A novel polyurethane (PU) composite material was prepared by chemically binding the nano-hydroxyapatite (nHA) to the diisocyanate component in the PU backbone by utilizing solvent polymerization. The procedure involved stepwise addition of monomeric units of the PU and optimizing the reagent concentrations. The resultant materials were characterized structurally (Raman Spectroscopy) and in vitro bioactive analysis was conducted in modified-simulated body fluid for periodical time intervals. The in vitro study evaluated the push-out bond strength of existing obturating material and novel covalently linked PU/nHA composites to dentin after long-term storage in deionized water and artificial saliva. Human extracted molar roots were filled with experimental samples and analyzed at predetermined time intervals. The shear bond strength of samples was measured and surface morphologies were evaluated. Covalent bond formation was achieved between PU and nHA without intermediate coupling agent. With the increase in concentration of nHA, the composite showed more bioactivity and adhesion toward tooth structure. Bond strength of this new composite were in accordance with obutrating material, therefore, the material can be used as an obturating material because of its direct adhesion with tooth structure.

  17. Recent Advances in Separation of Bioactive Natural Products

    Institute of Scientific and Technical Information of China (English)

    任其龙; 邢华斌; 鲍宗必; 苏宝根; 杨启炜; 杨亦文; 张治国

    2013-01-01

    Bioactive natural products are a main source of new drugs, functional foods and food additives. The separation of bioactive natural products plays an important role in transformation and use of biomass. The isolation and purification of bioactive principle from a complex matrix is often inherent bottleneck for the utilization of natural products, so a series of extraction and separation techniques have been developed. This review covers recent advances in the separation of bioactive natural products with an emphasis on their solubility and diffusion coeffi-cients, recent extraction techniques and isolation techniques. This overview of recent technological advances, dis-cussion of pertinent problems and prospect of current methodologies in the separation of bioactive natural products may provide a driving force for development of novel separation techniques.

  18. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.

    Science.gov (United States)

    Najeeb, Shariq; Bds, Zohaib Khurshid; Bds, Sana Zohaib; Bds, Muhammad Sohail Zafar

    2016-12-01

    Polyetheretherketone (PEEK) has been suggested as an alternative to replace titanium as a dental implant material. However, PEEK's bioactivity and osseointegration are debatable. This review has systematically analyzed studies that have compared PEEK (or PEEK-based) implants with titanium implants so that its feasibility as a possible replacement for titanium can be determined. The focused question was: "Are the bioactivity and osseointegration of PEEK implants comparable to or better than titanium implants?" Using the key words "dental implant," "implant," "polyetheretherketone," "PEEK," and "titanium" in various combinations, the following databases were searched electronically: PubMED/MEDLINE, Embase, Google Scholar, ISI Web of Knowledge, and Cochrane Database. 5 in vitro and 4 animal studies were included in the review. In 4 out of 5 in vitro studies, titanium exhibited more cellular proliferation, angiogenesis, osteoblast maturation, and osteogenesis compared to PEEK; one in vitro study observed comparable outcomes regardless of the implant material. In all animal studies, uncoated and coated titanium exhibited a more osteogenic behavior than did uncoated PEEK, while comparable bone-implant contact was observed in HA-coated PEEK and coated titanium implants. Unmodified PEEK is less osseoconductive and bioactive than titanium. Furthermore, the majority of studies had multiple sources of bias; hence, in its unmodified form, PEEK is unsuitable to be used as dental implant. Significantly more research and long-term trials must focus on improving the bioactivity of PEEK before it can be used as dental implant. More comparative animal and clinical studies are warranted to ascertain the potential of PEEK as a viable alternative to titanium.

  19. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    Directory of Open Access Journals (Sweden)

    Mozafari M

    2013-04-01

    Full Text Available Masoud Mozafari,1,2 Erfan Salahinejad,1,3 Vahid Shabafrooz,1 Mostafa Yazdimamaghani,1 Daryoosh Vashaee,4 Lobat Tayebi1,5 1Helmerich Advanced Technology Research Center, School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK, USA; 2Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence, Amirkabir University of Technology, Tehran, Iran; 3Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran; 4Helmerich Advanced Technology Research Center, School of Electrical and Computer Engineering, Oklahoma State University, Tulsa, OK, USA; 5School of Chemical Engineering, Oklahoma State University, Tulsa, OK, USA Abstract: Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. Keywords: bioactive glass, zirconium titanate, spin-coating, microstructural properties, bone/dental applications, tissue engineering

  20. Avoiding mastoid cavity Problems: Mastoid obliteration using Bioactive glass

    Directory of Open Access Journals (Sweden)

    Said Shokry, Al`Sayed Hossieni Al`Sayed, Mohammed Fatehy Zidan,

    2012-04-01

    Full Text Available Background and objective: The aim of this study was to evaluate bioactive glass as an ideal material for the purpose of mastoid cavity elimination after mastoid surgery to avoid mastoid cavity problems.Materials and methods: In 20 patients diagnosed as cholesteatoma or chronic unsafe ear, we used different surgical techniques according to pathology and situation during surgical exploration, basically adhering to standard principles of eradicating disease in chronic unsafe ear. After performing the canal wall down (CWD or the canal wall up (CWU technique, mastoidectomy was followed by obliteration of mastoid cavity by particulate form Bioglass®. Cases were divided according to operative procedures, type of reconstruction and material used into 3 groups A- Canal wall up mastoidectomy followed by obliteration of mastoid cavity by particulate form Bioglass®. B- Canal wall down mastoidectomy followed by reconstruction of posterior meatal wall and obliteration of mastoid cavity by particulate form Bioglass®. C- Canal wall down mastoidectomy followed by reconstruction of posterior meatal wall by conchal cartilage and obliteration of mastoid cavity by Bioglass®.Results: Bioactiveglass paste is very effective for mastoid obliteration in the three groups with good integration to the surrounding tissues either connective tissue, bone, meninges or lateral dural sinus without any adverse reaction on the dura even with contact to Bioglass®. Infection was seen in 2 cases (10%, however was readily controlled by topical application of antibiotics daily for one week. In both cases no extrusion of the material occurred. Conclusion: The successful formation of bone with elimination of mastoid cavity problems proved that using Bioglass is appropriate for performing clinical mastoid obliteration.

  1. NOVEL BIOACTIVE COMPOUNDS FROM MANGROVE DERIVED ACTINOMYCETES

    Directory of Open Access Journals (Sweden)

    Kumari Amrita

    2012-09-01

    Full Text Available Mangrove is most productive and unexplored ecosystem that approximately covers one fourth of world coastline with high diversity of thriving organism. Recently the rate of isolation of novel bioactive compounds from microorganism living in mangrove forest has tremendously increased which is reflected in significant hasten for exploration of mangrove actinomycetes. Actinomycetes are group of bacteria which are extremely interesting as active producers of many primary and secondary metabolites. Many survey reports has depicted that the biologically active compounds which have been obtained so far from microbes, 45 percent are produced by actinomycetes, 38 percent by fungi and 17 percent by unicellular bacteria. Actinomycetes from mangrove environment provide diverse and are potential rich source of antibiotics, anticancer, antifungal and antiviral agent, enzyme and enzyme inhibitor. Mangrove actinomycetes are a prolific but underexploited source for the discovery of novel secondary metabolites.

  2. Fluorescent Bioactive Corrole Grafted-Chitosan Films.

    Science.gov (United States)

    Barata, Joana F B; Pinto, Ricardo J B; Vaz Serra, Vanda I R C; Silvestre, Armando J D; Trindade, Tito; Neves, Maria Graça P M S; Cavaleiro, José A S; Daina, Sara; Sadocco, Patrizia; Freire, Carmen S R

    2016-04-11

    Transparent corrole grafted-chitosan films were prepared by chemical modification of chitosan with a corrole macrocycle, namely, 5,10,15-tris(pentafluorophenyl)corrole (TPFC), followed by solvent casting. The obtained films were characterized in terms of absorption spectra (UV-vis), FLIM (fluorescence lifetime imaging microscopy), structure (FTIR, XPS), thermal stability (TGA), thermomechanical properties (DMA), and antibacterial activity. The results showed that the chemical grafting of chitosan with corrole units did not affect its film-forming ability and that the grafting yield increased with the reaction time. The obtained transparent films presented fluorescence which increases with the amount of grafted corrole units. Additionally, all films showed bacteriostatic effect against S. aureus, as well as good thermomechanical properties and thermal stability. Considering these features, promising applications may be envisaged for these corrole-chitosan films, such as biosensors, bioimaging agents, and bioactive optical devices.

  3. Bioactivity and Functionality of Bonghwa Sweetfish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-15

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  4. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Directory of Open Access Journals (Sweden)

    Elisa Flávia Luiz Cardoso Bailão

    2015-10-01

    Full Text Available Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi, Dipteryx alata Vog. (baru, Eugenia dysenterica DC. (cagaita, Eugenia uniflora L. (pitanga, Genipa americana L. (jenipapo, Hancornia speciosa Gomes (mangaba, Mauritia flexuosa L.f. (buriti, Myrciaria cauliflora (DC Berg (jabuticaba, Psidium guajava L. (goiaba, Psidium spp. (araçá, Solanum lycocarpum St. Hill (lobeira, Spondias mombin L. (cajá, Annona crassiflora Mart. (araticum, among others are reported here.

  5. Bioactive Triterpenes from the Fungus Piptoporus betulinus

    Directory of Open Access Journals (Sweden)

    Zeyad Alresly

    2016-01-01

    Full Text Available Phytochemical investigation of the ethyl acetate extract of the fruiting bodies from the basidiomycete Piptoporus betulinus led to the isolation of a new bioactive lanostane triterpene identified as 3 b -acetoxy-16-hydroxy-24-oxo-5α-lanosta-8- ene-21-oic acid (1. In addition, ten known triterpenes, polyporenic acid A (5, polyporenic acid C (4, three derivatives of polyporenic acid A (8, 10, 11, betulinic acid (3, betulin (2, ergosterol peroxide (6, 9,11-dehydroergosterol peroxide (7, and fomefficinic acid (9, were also isolated from the fungus. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against a fungal strain. The new triterpene and some of the other compounds showed antimicrobial activity against Gram-positive bacteria.

  6. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-10-09

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here.

  7. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  8. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samaneh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vali, Hojatollah [Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7 (Canada); Faghihi, Shahab, E-mail: sfaghihi@nigeb.ac.ir [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-02-14

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  9. Bioactive Metabolites from Spilanthes acmella Murr.

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2009-02-01

    Full Text Available Spilanthes acmella Murr. (Compositae has been used as a traditional medicine for toothache, rheumatism and fever. Its extracts had been shown to exhibit vasorelaxant and antioxidant activities. Herein, its antimicrobial, antioxidant and cytotoxic activities were evaluated. Agar dilution method assays against 27 strains of microorganisms were performed. Results showed that fractions from the chloroform and methanol extracts inhibited the growth of many tested organisms, e.g. Corynebacterium diphtheriae NCTC 10356 with minimum inhibitory concentration (MIC of 64-256 mg/mL and Bacillus subtilis ATCC 6633 with MIC of 128-256 mg/mL. The tested fractions all exhibited antioxidant properties in both DPPH and SOD assays. Potent radical scavenging activity was observed in the DPPH assay. No cytotoxic effects of the extracts against KB and HuCCA-1 cell lines were evident. Bioassay-guided isolation resulted in a diverse group of bioactive compounds such as phenolics [vanillic acid (2, trans-ferulic acid (5 and trans-isoferulic acid (6], coumarin (scopoletin, 4 and triterpenoids like 3-acetylaleuritolic acid (1, b-sitostenone (3, stigmasterol and stigmasteryl-3-O-b-D-glucopyranosides, in addition to a mixture of stigmasteryl-and b-sitosteryl-3-O-b-D-glucopyranosides. The compounds 1–6 represent bioactive metabolites of S. acmella Murr. that were never previously reported. Our findings demonstrate for the first time the potential benefits of this medicinal plant as a rich source of high therapeutic value compounds for medicines, cosmetics, supplements and as a health food.

  10. Bioactive Labels for Fresh Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Liana Nasui

    2013-11-01

    Full Text Available Pesticide residues and microbial load on the surface of fresh fruits and vegetables becomes a major concern due to the safety and quality of these products for consumer.In order to minimize these risk factors (pesticide residues and microbial load, were achieved labels for fruits and vegetables that are consumed with shell which disintegrates under the influence of water jet and thus reduce the amount of these contaminants. Were elaborated labels based on polymer (chitosan at a concentration of 2%, which incorporate bioactive compounds from green tea with potential decontaminant of the peel of this products. Green tea extract was obtained by infusing 1 g of dried green tea in 100 ml water at 80° C for 10 minutes. The extract was filtered and then mixed with 2 g chitosan acidified with 0.7% glacial acetic acid and dilute to the mark with distilled water. Were identified bioactive compounds from green tea, using UV-VIS and HPLC. Then were elaborated the labels. These tags were used on pepper, tomato, apple and  nectarine. Were quantified the microbial load and the pesticide residues on their surface unwashed, washed only with water and were monitored the influence of labels on these factors. Identified pesticides were mefenoxan and thiamethoxam, which were quantified by HPLC. In what it concerns the influence, were founded the absence of germs at pepper and a significant decrease at the other. In terms of  the potential of reducing pesticide, the experimental results have indicated that the label can prove its effectiveness.

  11. Bioactive Labels for Fresh Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Nasui Liana

    2013-11-01

    Full Text Available Pesticide residues and microbial load on the surface of fresh fruits and vegetables becomes a major concern due to the safety and quality of these products for consumer.In order to minimize these risk factors (pesticide residues and microbial load, were achieved labels for fruits and vegetables that are consumed with shell which disintegrates under the influence of water jet and thus reduce the amount of these contaminants. Were elaborated labels based on polymer (chitosan at a concentration of 2%, which incorporate bioactive compounds from green tea with potential decontaminant of the peel of this products. Green tea extract was obtained by infusing 1 g of dried green tea in 100 ml water at 80° C for 10 minutes. The extract was filtered and then mixed with 2 g chitosan acidified with 0.7% glacial acetic acid and dilute to the mark with distilled water. Were identified bioactive compounds from green tea, using UV-VIS and HPLC. Then were elaborated the labels. These tags were used on pepper, tomato, apple and  nectarine. Were quantified the microbial load and the pesticide residues on their surface unwashed, washed only with water and were monitored the influence of labels on these factors. Identified pesticides were mefenoxan and thiamethoxam, which were quantified by HPLC. In what it concerns the influence, were founded the absence of germs at pepper and a significant decrease at the other. In terms of  the potential of reducing pesticide, the experimental results have indicated that the label can prove its effectiveness.  

  12. Thermal conductivity: recent developments on insulating and new materials; La conductivite thermique: developpements recents sur les isolants et les materiaux nouveaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop organized by the thermo-kinetics section of the French society of thermal engineers deals with recent developments concerning insulating, dielectric and composite materials. The seven papers presented during this workshop concern the methods and results of thermal conductivity measurements performed in these materials and the possible applications of these materials in aerospace industry (carbon foams, ceramic-based composite materials), civil engineering (glazing materials, aerogels), power electronics (dielectric thin films, ceramics), and in other industries (heat resistant and thermal insulating materials). (J.S.)

  13. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application.

    Science.gov (United States)

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping

    2016-05-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials.

  14. Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition.

    Science.gov (United States)

    Liu, Xuanyong; Huang, Anping; Ding, Chuanxian; Chu, Paul K

    2006-07-01

    Zirconium oxide thin films were fabricated on silicon wafers using a filtered cathodic arc system in concert with oxygen plasma. The structure and phase composition of the zirconium oxide thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), and transmission electron microscopy (TEM). The bioactivity was assessed by investigating the formation of apatite on the film surface after soaking in simulated body fluids. Bone marrow mesenchymal stem cells (BMMSC) were used to further evaluate the cytocompatibility of the materials. The results indicate that the films are composed of stoichiometric ZrO(2) and the composition is quite uniform throughout the thickness. Bone-like apatite can be formed on the surface of the ZrO(2) thin film in our SBF immersion experiments, suggesting that the surface is bioactive. The outermost layer of the ZrO(2) thin film comprises nano-sized particles that can be identified by AFM images taken on the thin film surface and TEM micrographs obtained from the interface between the ZrO(2) thin film and apatite layer. The nanostructured surface is believed to be the key factor that apatite is induced to precipitate on the surface. Bone marrow mesenchymal stem cells are observed to grow and proliferate in good states on the film surface. Our results show that ZrO(2) thin films fabricated by cathodic arc deposition exhibit favorable bioactivity and cytocompatibility.

  15. Effects of orange winemaking variables on antioxidant activity and bioactive compounds

    Directory of Open Access Journals (Sweden)

    María del Carmen Schvab

    2015-09-01

    Full Text Available AbstractAscorbic acid, carotenoids and polyphenols stand out among the orange juice natural antioxidants. The winemaking process affects their bioavailability and bioactivity. Antioxidant activities (AA were estimated in different process conditions to asses those properties. The AA and their correlation with ascorbic acid, total phenolics and carotenoids content were calculated. The variables and levels analyzed were: pasteurized and natural must (PJ and NJ, pH 3.5 and 4.0 and fermentation temperatures at 10°C and 20°C. Statistically significant differences (α=0.05 were found among bioactive compounds concentrations. Antioxidant compounds concentration was higher in raw material than in orange wine. Juice pasteurization caused the major losses while subsequent vinification affects them to a lesser extent. Highest antioxidants retention was measured in wines from JN fermented at pH 3.5 and 10 °C (JN-3.5-10 followed by wines from JP and fermented at the same conditions (JP-3.5-10. AA determined by DPPH showed a positive and close correlation with FRAP, while ABTS showed a low correlation with former assays. Juice pasteurization process and fermentation temperature influenced bioactive compound reduction which correlates with the AA variation.

  16. Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating.

    Science.gov (United States)

    Greque de Morais, Michele; Greque de Morais, Etiele; Vaz, Bruna da Silva; Gonçalves, Carolina Ferrer; Lisboa, Cristiane; Costa, Jorge Alberto Vieira

    2016-01-01

    Microalgae have been studied in biotechnological processes due to the various biocompounds that can be obtained from their biomasses, including pigments, proteins, antioxidants, biopeptides, fatty acids and biopolymers. Microalgae biopolymers are biodegradable materials that present similar characteristics to traditional polymers, with the advantage of being rapidly degraded when discarded. In addition, nanoencapsulation is capable of increasing the availability of bioactive compounds by allowing the release of these biocompounds to occur slowly over time. The use of polymers in the nanoencapsulation of active ingredients can mask the undesired physicochemical properties of the compounds to be encapsulated, thereby enhancing consumer acceptability. This covering also acts as a barrier against several foreign substances that can react with bioactive compounds and reduce their activity. Studies of the development of poly-3-hydroxybutyrate (PHB) nanocapsules from microbial sources are little explored; this review addresses the use of nanotechnology to obtain bioactive compounds coated with biopolymer nanocapsules, both obtained from Spirulina biomasses. These microalgae are Generally Recognized as Safe (GRAS) certified, which guarantees that the biomass can be used to obtain high added value biocompounds, which can be used in human and animal supplementation.

  17. In Vitro Evaluation of Bioactivity of Chemically Deposited Hydroxyapatite on Polyether Ether Ketone

    Directory of Open Access Journals (Sweden)

    D. Almasi

    2015-01-01

    Full Text Available Polyether ether ketone (PEEK is considered the best alternative material for titanium for spinal fusion cage implants due to its low elasticity modulus and radiolucent property. The main problem of PEEK is its bioinert properties. Coating with hydroxyapatite (HA showed very good improvement in bioactivity of the PEEK implants. However the existing methods for deposition of HA have some disadvantages and damage the PEEK substrate. In our previous study a new method for deposition of HA on PEEK was presented. In this study cell proliferation of mesenchymal stem cell and apatite formation in simulated body fluid (SBF tests were conducted to probe the effect of this new method in improvement of the bioactivity of PEEK. The mesenchymal stem cell proliferation result showed better cells proliferation on the treated layer in comparison with untreated PEEK. The apatite formation results showed the growth of the HA on the treated PEEK but there was not any sight of the growth of HA on the untreated PEEK even after 2 weeks. The results showed the new method of the HA deposition improved the bioactivity of the treated PEEK in comparison with the bare PEEK.

  18. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Energy Technology Data Exchange (ETDEWEB)

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  19. Cyclodextrins as encapsulation agents for plant bioactive compounds.

    Science.gov (United States)

    Pinho, Eva; Grootveld, Martin; Soares, Graça; Henriques, Mariana

    2014-01-30

    Plants possess a wide range of molecules capable of improve healing: fibre, vitamins, phytosterols, and further sulphur-containing compounds, carotenoids, organic acid anions and polyphenolics. However, they require an adequate level of protection from the environmental conditions to prevent losing their structural integrity and bioactivity. Cyclodextrins are cyclic oligosaccharides arising from the degradation of starch, which can be a viable option as encapsulation technique. Cyclodextrins are inexpensive, friendly to humans, and also capable of improving the biological, chemical and physical properties of bioactive molecules. Therefore, the aim of this review is to highlight the use of cyclodextrins as encapsulating agents for bioactive plant molecules in the pharmaceutical field.

  20. Development and clinical trial of a novel bioactive bone cement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Strontium(Sr)and related compounds have become more attractive in the prevention and treatment of osteoporosis.Previously,we developed a novel bioactive bone cement which is mainly composed of strontium-containing hydroxyapatite(Sr-HA)filler and bisphenol A diglycidylether dimethacrylate(Bis-GMA)resin.This bone cement is superior to conventional polymethylmethacrylate (PMMA)bone cement in bioactivity,biocompatibility,and osseointegration.It also has shown sufficient mechanical strength properties for its use in percutaneous vertebroplasty(PVP)and total hip replacement(THR).In this paper,we review the in vitro,in vivo and clinical evidence for the effectiveness of this bioactive bone cement.

  1. BIOACTIVE SUBSTANCES WITH PREVENTIVE EFFECT IN CARDIOVASCULAR DISEASES.

    Science.gov (United States)

    Mulero, Juana; Abellán, José; Zafrilla, Pilar; Amores, Diego; Hernández Sánchez, Pilar

    2015-10-01

    The effect of diet on cardiovascular disease prevention has been widely studied for many years. Numerous studies have confirmed that diets rich in fruits and vegetables (Mediterranean diet) are beneficial to the cardiovascular system and various bioactive food components have preventive effect on chronic diseases such as cardiovascular disease. In this paper we review the effect of bioactive substances included in the group of flavonoids (catechins and proanthocyanidins, anthocyanins and isoflavones), stilbenes such as resveratrol, bioactive peptides, plant sterols and polyunsaturated fatty acids omega- 3 on the cardiovascular system.

  2. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.

    Science.gov (United States)

    Leenakul, Wilaiwan; Tunkasiri, Tawee; Tongsiri, Natee; Pengpat, Kamonpan; Ruangsuriya, Jetsada

    2016-04-01

    45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive.

  3. Titanium Oxide: A Bioactive Factor in Osteoblast Differentiation

    Directory of Open Access Journals (Sweden)

    P. Santiago-Medina

    2015-01-01

    Full Text Available Titanium and titanium alloys are currently accepted as the gold standard in dental applications. Their excellent biocompatibility has been attributed to the inert titanium surface through the formation of a thin native oxide which has been correlated to the excellent corrosion resistance of this material in body fluids. Whether this titanium oxide layer is essential to the outstanding biocompatibility of titanium surfaces in orthopedic biomaterial applications is still a moot point. To study this critical aspect further, human fetal osteoblasts were cultured on thermally oxidized and microarc oxidized (MAO surfaces and cell differentiation, a key indicator in bone tissue growth, was quantified by measuring the expression of alkaline phosphatase (ALP using a commercial assay kit. Cell attachment was similar on all the oxidized surfaces although ALP expression was highest on the oxidized titanium alloy surfaces. Untreated titanium alloy surfaces showed a distinctly lower degree of ALP activity. This indicates that titanium oxide clearly upregulates ALP expression in human fetal osteoblasts and may be a key bioactive factor that causes the excellent biocompatibility of titanium alloys. This result may make it imperative to incorporate titanium oxide in all hard tissue applications involving titanium and other alloys.

  4. Protein interactions with nanoporous sol-gel derived bioactive glasses.

    Science.gov (United States)

    Lin, Sen; Van den Bergh, Wouter; Baker, Simon; Jones, Julian R

    2011-10-01

    Sol-gel derived bioactive glasses are excellent candidates for bone regenerative implant materials as they bond with bone, stimulate bone growth and degrade in the body. Their interactions with proteins are critical to understanding their performance after implantation. This study focuses on the interactions between fibrinogen and sol-gel glass particles of the 70S30C (70 mol.% SiO(2), 30 mol.% CaO composition). Sol-gel silica and melt-derived Bioglass® were also used for comparison. Fibrinogen penetration into the nanoporous glasses was observed by live tracking the fluorescent-labelled fibrinogen with confocal microscopy. The effect of pore size on protein penetration was investigated. Nanoporous networks with modal pore diameters larger than 6 nm were accessible to fibrinogen. When the modal nanopore diameter was decreased to 2 nm or less, the penetration of fibrinogen was inhibited. The surface properties of the glasses, which can be modulated by media pH, glass composition and final stabilisation temperature in the sol-gel process, have effects on fibrinogen adsorption via long-range Coulombic forces before the adsorption and via short-range interactions such as hydrogen bonding after the adsorption.

  5. Preparation of Bioactive Titanium Surfaces via Fluoride and Fibronectin Retention

    Directory of Open Access Journals (Sweden)

    Carlos Nelson Elias

    2012-01-01

    Full Text Available Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength. Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed. Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN. The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells. Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%. The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm, suggested that FN incorporation is an important determinant of the in vitro cytocompatibility of the surfaces. Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.

  6. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.

    Science.gov (United States)

    Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.

  7. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Shi, Honglan [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Xiao, Hai [Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634 (United States); Ma, Yinfa, E-mail: yinfa@mst.edu [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering (CBSE), Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell–glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. - Highlights: • Bioactive glass nano-/micro-materials were effectively used for tissue wound healing. • The wound-healing effects of silicate-based 45S5, borate-based 13-93B3 and 1605 fibers were investigated. • Glass conversion rates were compared under either static or dynamic-flow modes. • Glass compositions and flow rates greatly influenced bioactivity and cell migration. • These results can

  8. Fabrication and characterization of bioactive and antibacterial composites for dental applications.

    Science.gov (United States)

    Chatzistavrou, Xanthippi; Fenno, J Christopher; Faulk, Denver; Badylak, Stephen; Kasuga, Toshihiro; Boccaccini, Aldo R; Papagerakis, Petros

    2014-08-01

    There is an increasing clinical need to design novel dental materials that combine regenerative and antibacterial properties. In this work the characterization of a recently developed sol-gel-derived bioactive glass ceramic containing silver ions (Ag-BG) is presented. The microstructural characteristics, ion release profile, zeta potential value and changes in weight loss and pH value as a function of the immersion time of Ag-BG in Tris buffer are evaluated. Ag-BG is also incorporated into natural extracellular matrix (ECM) hydrogel to further enhance its regenerative properties. Then, the micro and macro architectures of these new composites (ECM/Ag-BG) are characterized. In addition, the antibacterial properties of these new composites are tested against Escherichia coli and Enterococcus faecalis, a bacterium commonly implicated in the pathogenesis of dental pulp infections. Cell-material interaction is also monitored in a primary culture of dental pulp cells. Our study highlights the benefits of the successful incorporation of Ag in the bioactive glass, resulting in a stable antibacterial material with long-lasting bactericidal activity. Furthermore, this work presents for the first time the fabrication of new Ag-doped composite materials, with inductive pulp-cell proliferation and antibacterial properties (ECM/Ag-BG). This advanced composite made of Ag-BG incorporated into natural ECM possesses improved properties that may facilitate potential applications in tooth regeneration approaches.

  9. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    Science.gov (United States)

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  10. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  11. Design of foods with bioactive lipids for improved health.

    Science.gov (United States)

    Chen, Bingcan; McClements, David Julian; Decker, Eric Andrew

    2013-01-01

    Numerous studies have found an association between the consumption of certain bioactive lipids and improved human health, e.g., the prevention, delay, or treatment of chronic and acute diseases, such as cancer, cardiovascular disease (CVD), osteoporosis, and immune disorders. In this review, we discuss food-based sources and potential beneficial attributes of major dietary bioactive lipids: polyunsaturated fatty acids; carotenoids; phytosterols and phytostanols; and fat-soluble vitamins. We summarize the various challenges associated with incorporating these bioactive lipids into foods and beverages, such as poor water solubility, high melting point, and low chemical stability. Finally, we propose several techniques that have been used to solve the challenges and integrate dietary bioactive lipids into foods for improved health.

  12. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  13. [Bio-active substances derived from marine microorganisms].

    Science.gov (United States)

    Liu, Quanyong; Hu, Jiangchun; Xue, Delin; Ma, Chengxin; Wang, Shujin

    2002-07-01

    Marine microorganisms, which are taxonomically diverse and genetically special, have powerful potential in producing novel bio-active substances. This article summarized research progress in this respect. The results showed that marine bacteria which are main marine microorganism flora can produce rich kinds of bio-active substances and that even though marine actinomycetes and marine fungi are not as many as marine bacteria in species and quantity, they should be paid no less attention about their bio-active substances. Besides, present research are limited to those marine microorganisms which are easily cultured. One of the future research trends will be focused on bio-active substances derived from non-culturable marine microorganisms.

  14. Advancement into the Arctic region for bioactive sponge secondary metabolites.

    Science.gov (United States)

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source.

  15. Bioactive compounds in berries relevant to human health

    NARCIS (Netherlands)

    Battino, M.; Beekwilder, M.J.; Denoyes-Rothan, B.; Laimer, M.

    2009-01-01

    Berries contain powerful antioxidants, potential allergens, and other bioactive compounds. Genetic and environmental factors affect production and storage of such compounds. For this reason breeding and biotechnological approaches are currently used to control or to increase the content of specific

  16. Edible coatings as encapsulating matrices for bioactive compounds: a review.

    Science.gov (United States)

    Quirós-Sauceda, Ana Elena; Ayala-Zavala, Jesús Fernando; Olivas, Guadalupe I; González-Aguilar, Gustavo A

    2014-09-01

    Edible coatings can extend the shelf-life of many foods, controlling moisture and solute migration, gas exchange and oxidative reaction rates. Besides, edible coatings can be used as carriers of bioactive compounds to improve the quality of food products such as antioxidants, antimicrobials, flavors and probiotics. These approaches can be useful to extend shelf-life as well as provide a functional product. When edible coatings are used as a matrix holding bioactive compounds remarkable benefits arise; off odors and flavors can be masked, bioactive compounds are protected from the environment, and controlled release is allowed. In this sense, the present review will be focused on analyzing the potential use of encapsulation with edible coatings to incorporate bioactive compounds, solving the disadvantages of direct application.

  17. Marine actinobacteria: an important source of bioactive natural products.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms.

  18. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review

    OpenAIRE

    2015-01-01

    Phenolic acids are present in our diet in different foods. In particular, mushrooms are a good source of these molecules. Due to their bioactive properties, phenolic acids are extensively studied and there is evidence of their role in disease prevention. Nevertheless, in vivo, these compounds are metabolized and circulate in the organism as glucuronated, sulfated and methylated metabolites, displaying higher or lower bioactivity. To clarify the importance of the metabolism of phenolic acids, ...

  19. Aquasomes: Self-assembled systems for the delivery of bioactive molecules

    Directory of Open Access Journals (Sweden)

    Neha Narang

    2012-01-01

    Full Text Available Nanocarriers increase the therapeutic efficacy of the pharmaceutically active agents as they can regulate their release, improve their stability and prolong circulation time by protecting the drug from phagocytosis and premature degradation. These delivery vehicles have the potential to augment the pharmacodynamic and pharmacokinetic profiles of drug molecules, thereby enhancing the therapeutic efficacy of the pharmaceutical agents. Nanoparticles which are fabricated from ceramics consist of a hydroxyapatite core whose surface is noncovalently modified by oligosaccharide on which bioactive material/drug can be absorbed, are known as "aquasomes." This review involves properties, advantages, preparation methods, evaluation, and applications of aquasomes.

  20. Collagen/silicocarnotite composites, cross-linked with chondroitin sulphate: in vitro bioactivity

    OpenAIRE

    Lachezar Radev; Vladimir Hristov; Irena Michailova; Maria H. V. Fernandes; Isabel M. M. Salvado

    2011-01-01

    In this work we present the experimental results on synthesis, structure evolution and in vitro bioactivity of collagen-silicocarnotite-chondroitin sulphate composites. The obtained samples were synthesised by mixing collagen (C) and silicocarnotite (S) powder with C:S ratio of 75:25 and 25:75 wt.% in the presence of chondroitin sulphate (ChS). Collagen was diluted in 5M CH3COOH before mixing. The obtained materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT...

  1. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    Science.gov (United States)

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.

  2. Screening for bioactive compounds from algae.

    Science.gov (United States)

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  3. Triterpene Composition and Bioactivities of Centella asiatica

    Directory of Open Access Journals (Sweden)

    Uma Devi Palanisamy

    2011-01-01

    Full Text Available Leaves of Centella asiatica (Centella were analysed for their triterpene composition and bioactivity such as collagen enhancement, antioxidant, anticellulite and UV protection capacity properties. Triterpenes of Centella were measured using HPLC-PAD on an Excil ODS 5 mm (C18 column for the simultaneous determination of asiatic acid, madecassic acid, asiaticoside and madecassoside. Centella was found to contain significant amounts of madecassoside (3.10 ± 4.58 mg/mL and asiaticoside (1.97 ± 2.65 mg/mL, but was low in asiatic and madecassic acid. The highest collagen synthesis was found at 50 mg/mL of Centella extracts. The antioxidant activity of Centella (84% was compared to grape seed extract (83% and Vitamin C (88%. Its lipolytic activity was observed by the release of glycerol (115.9 µmol/L at 0.02% concentration. Centella extracts exhibited similar UV protection effect to OMC at 10% concentration. In view of these results, the potential application of Centella in food and pharmaceutical industries is now widely open.

  4. Bioactivities examination of Cinchona leaves ethanol extracts

    Science.gov (United States)

    Artanti, Nina; Udin, Linar Z.; Hanafi, M.; Jamilah, Kurniasih, Ida Rahmi; Primahana, Gian; Anita, Yulia; Sundowo, Andini; Kandace, Yoice Sri

    2017-01-01

    Cinchona species especially the barks are commonly known for commercial production of quinine as antimalarial. Although it is also reported for treatment of depurative, whooping cough, influenza and dysentery. In this paper we reported in vitro examination of other bioactivities (antidiabetes, antioxidant and in vitro cytotoxicity) of 70% ethanol extract of Cinchona ledgeriana and C. succirubra leaves as well as qunine, quinidine, and cinchonine the major alkaloids found in Cinchona species. Antidiabetes was conducted using α-glucosidase inhibitory activity assay. Antioxidant was conducted using DPPH free radical scavenging activity assay. In vitro cytotoxic activity was concucted by microscopic observation on growth of breast cancer cell line MCF-7. The results showed that at concentration of 100 µg/ml, C. ledgeriana leaves ethanol extracts showed the best activity as antidiabetes (98% inhibitory of α-glucosidase activity) and antioxidant (92% DPPH free radical scavenging activity), whereas at the same concentration C. succirubra, quinine, quinidine and cinchonine showed very low activities of antidiabetes and antioxidant. Microscopic observation of in vitro cytotoxicity showed that C. ledgeriana also has excellent cytotoxicity to breast cancer cell line MCF-7 which better than quinine, quinidine and cinchonine, whereas C. succirubra showed low cytotoxicity. These results suggest that cinchona species have many potential as the source of drugs discovery and development other than just for malaria treatment. Therefore it is important to conduct further studies and to maintain the available Cinchona plantation in Indonesia.

  5. Search for hydrophilic marine fungal metabolites: a rational approach for their production and extraction in a bioactivity screening context.

    Science.gov (United States)

    Le Ker, Carine; Petit, Karina-Ethel; Biard, Jean-François; Fleurence, Joël

    2011-01-10

    In the search for bioactive natural products, our lab screens hydrophobic extracts from marine fungal strains. While hydrophilic active substances were recently identified from marine macro-organisms, there was a lack of reported metabolites in the marine fungi area. As such, we decided to develop a general procedure for screening of hydrophobic metabolites. The aim of this study was to compare different processes of fermentation and extraction, using six representative marine fungal strains, in order to define the optimized method for production. The parameters studied were (a) which polar solvent to select, (b) which fermentation method to choose between solid and liquid cultures, (c) which raw material, the mycelium or its medium, to extract and (d) which extraction process to apply. The biochemical analysis and biological evaluations of obtained extracts led to the conclusion that the culture of marine fungi by agar surface fermentation followed by the separate extraction of the mycelium and its medium by a cryo-crushing and an enzymatic digestion with agarase, respectively, was the best procedure when screening for hydrophilic bioactive metabolites. During this development, several bioactivities were detected, confirming the potential of hydrophilic crude extracts in the search for bioactive natural products.

  6. Search for Hydrophilic Marine Fungal Metabolites: A Rational Approach for Their Production and Extraction in a Bioactivity Screening Context

    Directory of Open Access Journals (Sweden)

    Jean-François Biard

    2011-01-01

    Full Text Available In the search for bioactive natural products, our lab screens hydrophobic extracts from marine fungal strains. While hydrophilic active substances were recently identified from marine macro-organisms, there was a lack of reported metabolites in the marine fungi area. As such, we decided to develop a general procedure for screening of hydrophobic metabolites. The aim of this study was to compare different processes of fermentation and extraction, using six representative marine fungal strains, in order to define the optimized method for production. The parameters studied were (a which polar solvent to select, (b which fermentation method to choose between solid and liquid cultures, (c which raw material, the mycelium or its medium, to extract and (d which extraction process to apply. The biochemical analysis and biological evaluations of obtained extracts led to the conclusion that the culture of marine fungi by agar surface fermentation followed by the separate extraction of the mycelium and its medium by a cryo-crushing and an enzymatic digestion with agarase, respectively, was the best procedure when screening for hydrophilic bioactive metabolites. During this development, several bioactivities were detected, confirming the potential of hydrophilic crude extracts in the search for bioactive natural products.

  7. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    Science.gov (United States)

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication.

  8. Evaluation of glucose utilization capacity of bioactivity guided fractions of Hybanthus enneaspermus and Pedalium murex in isolated rat hemidiaphragm

    Institute of Scientific and Technical Information of China (English)

    Dinesh K. Patel; Sairam Krishnamurthy; S. Hemalatha

    2013-01-01

    Objective: To investigate glucose utilization capacity of bioactivity guided fractions ofHybanthus enneaspermus (H. enneaspermus) and Pedalium murex (P. murex) in isolated rat hemidiaphragm. Methods: Dried coarsely powdered plant material was extracted in ethanol using soxhlation technique, further extract was fractionated using solvents of varying polarity. Glucose utilization capacity of bioactivity guided fractions using isolated rat hemidiaphragm was performed in the present study. Results: The entire tested fraction showed increased glucose uptake capacity, and was found to be maximum in case of chloroform fraction of P. murex extract (CHPM) which was quite comparable to standard insulin (P<0.05). Conclusions: In vitro glucose uptake by hemidiaphragm study showed increased utilization of the glucose by hemidiaphragm in the presence of different fractions. From these findings we can conclude that that different fraction of both plant materials had some extra pancreatic mechanism like glucose uptake by peripheral tissues.

  9. Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Kei-ichiro [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai (Japan); Anada, Takahisa; Honda, Yoshitomo [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Shiwaku, Yukari [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai (Japan); Kawai, Tadashi; Echigo, Seishi; Takahashi, Tetsu [Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai (Japan); Suzuki, Osamu, E-mail: suzuki-o@m.tohoku.ac.jp [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan)

    2013-10-01

    The present study was designed to investigate the physicochemical and bioactive properties of a nano-submicro sized octacalcium phosphate (OCP)-dispersed gelatin (Gel) composite (nano-submicro OCP/Gel) used as a bone substitute material in various bone defects. Well-grown, synthesized OCP was mechanically ground from 100 to 300 μm-sieved granules to particles that were approximately 500 nm in size. Then, 50 wt% of the nano-submicro OCP was mixed with porcine skin-derived acid extracted gelatin. The mixture was molded and lyophilized and then subjected to dehydrothermal crosslinking. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that the structure of OCP was retained even after mechanical grinding to a nano-submicro scale level as well as inclusion in the Gel matrix. The bioactivity of nano-submicro OCP/Gel was examined by immersing the composite in simulated body fluid (SBF) for 7 days and by implanting it in rat critical-sized calvaria defects for 8 weeks. The nano-submicro OCP tended to convert to low crystalline hydroxyapatite (HA) in SBF as assessed by XRD. The nano-submicro OCP/Gel exhibited osteoconductivity in vivo, yielding new bone formation that was closely associated with the implanted composite. These results suggest that the nano-submicro OCP/Gel composite exhibits similar osteoconductivity as observed in other OCP-based materials previously reported and could be used as a bone substitute material for repairing various defects in bone.

  10. Bioactivity determination of methanol and water extracts for roots and leaves of Kenyan Psidium guajava L landraces against pathogenic bacteria

    OpenAIRE

    Liharaka Kidaha, Mercy; Alakonya, Amos Emitati; Nyende, Aggrey Benard

    2013-01-01

    Guava (Psidium guajava L) is native to South America and exists as both wild and cultivated. Guava has been used as a source of food and raw materials for pharmaceuticals. The aim of this study was to determine bioactivity of methanol and water extracts from root and leaves of Kenyan guava landraces against selected pathogenic bacteria. Study samples were collected from Western and South Coast of Kenya. One hundred grams of leaf and root ground powders were used for sequential extraction usin...

  11. Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida Charoensuk

    2015-12-01

    Full Text Available Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES spectroscopy. This magnetic phase was introduced by adding Fe(NO33 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks.

  12. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Science.gov (United States)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  13. Bioactive and thermally compatible glass coating on zirconia dental implants.

    Science.gov (United States)

    Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H

    2015-02-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants.

  14. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    Science.gov (United States)

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

  15. Bioactivity response of Ta1-xOx coatings deposited by reactive DC magnetron sputtering.

    Science.gov (United States)

    Almeida Alves, C F; Cavaleiro, A; Carvalho, S

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft-hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar+O2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates.

  16. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells

    Directory of Open Access Journals (Sweden)

    Leticia Boldrin MESTIERI

    2015-10-01

    Full Text Available Mineral Trioxide Aggregate (MTA is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus.Objective The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs.Material and Methods The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP; MTA Fillapex (MTAF and FillCanal (FC. Biocompatibility was evaluated with MTT and Neutral Red (NR assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4. Unexposed cells were the positive control (CT. Bioactivity was assessed by alkaline phosphatase (ALP enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution. All data were analyzed by ANOVA and Tukey post-test (p≤0.05%.Results MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%. Cells exposed to MTAF and FC (1:2 and 1:4 dilutions showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure.Conclusions The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.

  17. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    Science.gov (United States)

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  18. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration.

    Science.gov (United States)

    Sadiasa, Alexander; Sarkar, Swapan Kumar; Franco, Rose Ann; Min, Young Ki; Lee, Byong Taek

    2014-01-01

    In this work, we fabricated injectable bone substitutes modified with the addition of bioactive glass powders synthesized via ultrasonic energy-assisted hydrothermal method to the calcium phosphate-based bone cement to improve its biocompatibility. The injectable bone substitutes was initially composed of a powder component (tetracalcium phosphate, dicalcium phosphate dihydrate and calcium sulfate dehydrate) and a liquid component (citric acid, chitosan and hydroxyl-propyl-methyl-cellulose) upon which various concentrations of bioactive glass were added: 0%, 10%, 20% and 30%. Setting time and compressive strength of the injectable bone substitutes were evaluated and observed to improve with the increase of bioactive glass content. Surface morphologies were observed via scanning electron microscope before and after submersion of the samples to simulated body fluid and increase in apatite formation was detected using x-ray diffraction machine. In vitro biocompatibility of the injectable bone substitutes was observed to improve with the addition of bioactive glass as the proliferation/adhesion behavior of cells on the material increased. Human gene markers were successfully expressed using real time-polymerase chain reaction and the samples were found to promote cell viability and be more biocompatible as the concentration of bioactive glass increases. In vivo biocompatibility of the samples containing 0% and 30% bioactive glass were evaluated using Micro-CT and histological staining after 3 months of implantation in male rabbits' femurs. No inflammatory reaction was observed and significant bone formation was promoted by the addition of bioactive glass to the injectable bone substitute system.

  19. Natural synthesis of bioactive greigite by solid-gas reactions

    Science.gov (United States)

    Igarashi, Kensuke; Yamamura, Yasuhisa; Kuwabara, Tomohiko

    2016-10-01

    Greigite, a ferrimagnetic iron sulfide Fe(II)Fe(III)2S4, is thought to have played an essential role in chemical evolution leading to the origin of life. Greigite contains a [4Fe-4S] cluster-like structure and has been synthesized in the laboratory by liquid-state reactions. However, it is unclear how greigite can be synthesized in nature. Herein, we show that greigite is synthesized by the solid-gas reaction of Fe(III)-oxide-hydroxides and H2S. We discovered that the hyperthermophilic hydrogenotrophic methanogen Methanocaldococcus jannaschii reduced elemental sulfur, and the resulting sulfide generated greigite from hematite. The time course and pH dependence of the reaction respectively indicated the involvement of amorphous FeS and H2S as reaction intermediates. An abiotic solid-gas reaction of hematite and H2S (g) under strictly anaerobic conditions was developed. The solid-gas reaction fully converted hematite to greigite/pyrite at 40-120 °C within 12 h and was unaffected by the bulk gas phase. Similar abiotic reactions occurred, but relatively slowly, with aqueous H2S in acidulous liquids using hematite, magnetite, or amorphous FeO(OH) as starting materials, suggesting that greigite was extensively produced in the Hadean Eon as these Fe(III)-oxide-hydroxides were shown to be present or routinely produced during that era. Surprisingly, the obtained greigite induced methanogenesis and growth of hydrogenotrophic methanogens, suggesting that the external greigite crystals enhanced reactions that would otherwise require enzymes, such as [4Fe-4S] cluster-harboring membrane-bound hydrogenases. These data suggested that the greigite produced by the solid-gas and solid-dissolved gas reactions was bioactive.

  20. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  1. Plant-derived bioactive compounds produced by endophytic fungi.

    Science.gov (United States)

    Zhao, J; Shan, T; Mou, Y; Zhou, L

    2011-02-01

    Plant endophytic fungi are an important and novel resource of natural bioactive compounds with their potential applications in agriculture, medicine and food industry. In the past two decades, many valuable bioactive compounds with antimicrobial, insecticidal, cytotoxic, and anticancer activities have been successfully discovered from endophytic fungi. During the long period of co-evolution, a friendly relationship was formed between each endophyte and its host plant. Some endophytes have the ability to produce the same or similar bioactive compounds as those originated from their host plants. This review mainly deals with the research progress on endophytic fungi for producing plant-derived bioactive compounds such as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin, and diosgenin. The relations between endophytic fungi and their host plants, biological activities and action mechanisms of these compounds from endophytic fungi, some available strategies for efficiently promoting production of these bioactive compounds, as well as their potential applications in the future will also be discussed. It is beneficial for us to better understand and take advantage of plant endophytic fungi.

  2. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    Directory of Open Access Journals (Sweden)

    Nora Khaldi

    2012-10-01

    Full Text Available ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational biology, and efficient genome mining, is appearing as the long awaited solution to this problem. By quickly mining food genomes for characteristics of certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics in mining for food bioactives.The absence of food specific bioinformatic mining tools, the slow integration of both experimental mining and bioinformatics, and the important difference between different experimental platforms are some of the reasons for the slow progress of bioinformatics in the field of functional food and more specifically in bioactive peptide discovery.In this paper I discuss some methods that could be easily translated, using a rational peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an integrated food peptide database. I also discuss how to better integrate experimental work with bioinformatics in order to improve the mining of food for bioactive peptides, therefore achieving a higher success rates.

  3. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ira Bhatnagar

    2010-10-01

    Full Text Available Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  4. Littoral lichens as a novel source of potentially bioactive Actinobacteria.

    Science.gov (United States)

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T

    2015-10-30

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.

  5. Mechanisms underlying the antihypertensive effects of garlic bioactives.

    Science.gov (United States)

    Shouk, Reem; Abdou, Aya; Shetty, Kalidas; Sarkar, Dipayan; Eid, Ali H

    2014-02-01

    Cardiovascular disease remains the leading cause of death worldwide with hypertension being a major contributing factor to cardiovascular disease-associated mortality. On a population level, non-pharmacological approaches, such as alternative/complementary medicine, including phytochemicals, have the potential to ameliorate cardiovascular risk factors, including high blood pressure. Several epidemiological studies suggest an antihypertensive effect of garlic (Allium sativum) and of many its bioactive components. The aim of this review is to present an in-depth discussion regarding the molecular, biochemical and cellular rationale underlying the antihypertensive properties of garlic and its bioactive constituents with a primary focus on S-allyl cysteine and allicin. Key studies, largely from PubMed, were selected and screened to develop a comprehensive understanding of the specific role of garlic and its bioactive constituents in the management of hypertension. We also reviewed recent advances focusing on the role of garlic bioactives, S-allyl cysteine and allicin, in modulating various parameters implicated in the pathogenesis of hypertension. These parameters include oxidative stress, nitric oxide bioavailability, hydrogen sulfide production, angiotensin converting enzyme activity, expression of nuclear factor-κB and the proliferation of vascular smooth muscle cells. This review suggests that garlic and garlic derived bioactives have significant medicinal properties with the potential for ameliorating hypertension and associated morbidity; however, further clinical and epidemiological studies are required to determine completely the specific physiological and biochemical mechanisms involved in disease prevention and management.

  6. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.

    Science.gov (United States)

    Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E

    2010-11-01

    The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ∼1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium.

  7. A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics.

    Science.gov (United States)

    Najafinezhad, Aliakbar; Abdellahi, Majid; Ghayour, Hamid; Soheily, Ali; Chami, Akbar; Khandan, Amirsalar

    2017-03-01

    In the present study three akermanite (Ca2MgSi2O7), diopside (CaMgSi2O6) and baghdadite (Ca3ZrSi2O9) applicable bioceramics were synthesized via a sol-gel based method. The combination of sol-gel method and the raw materials used in this study presents a new route for the synthesis of the mentioned bioceramics. By the use of thermal analysis, the mechanisms occurred during the synthesis of these bioceramics were investigated. The differences in the structural density and their relation with the degradation rate and mechanical properties of all three ceramics were studied. In vitro bioactivity and apatite formation mechanisms of the samples soaked in the simulated body fluid were considered. The results showed that baghdadite as a Zr-containing material has a more dense structure in comparison with the other ceramics, which leads to a lower degradation rate and also lower bioactivity. There were also main differences between akermanite and diopside as Mg-containing ceramics. Diopside showed a structure with lower porosity content compared to the akermanite samples which resulted in the lower degradation rate and higher compressive strength.

  8. Bioactive steroidal saponins from Agave offoyana flowers.

    Science.gov (United States)

    Pérez, Andy J; Calle, Juan M; Simonet, Ana M; Guerra, José O; Stochmal, Anna; Macías, Francisco A

    2013-11-01

    Bioguided studies of flowers of Agave offoyana allowed the isolation of five steroidal saponins never described previously, Magueyosides A-E (1-5), along with six known steroidal saponins (6-11). The structures of compounds were determined as (25R)-spirost-5-en-2α,3β-diol-12-one 3-O-{β-d-xylopyranosyl-(1→3)-O-β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (1), (25R)-spirost-5-en-2α,3β-diol-12-one 3-O-{β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (2), (25R)-spirost-5-en-2α,3β,12β-triol 3-O-{β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (3), (25R)-5α-spirostan-2α,3β-diol-12-one 3-O-{β-d-xylopyranosyl-(1→3)-O-β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (4), and (25R)-5α-spirostan-2α,3β-diol-9(11)-en-12-one 3-O-{β-d-xylopyranosyl-(1→3)-O-β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-O-β-d-galactopyranoside} (5), by comprehensive spectroscopic analysis, including one- and two-dimensional NMR techniques, mass spectrometry and chemical methods. The bioactivities of the isolated compounds on the standard target species Lactuca sativa were evaluated. A dose-dependent phytotoxicity and low dose stimulation were observed.

  9. Silicon Utilizing Microbial Bioactivities in the Biosphere

    Science.gov (United States)

    Sen, M. M.; Das, S.

    2012-12-01

    potential as a source of biomass for the production of biofuels, due to their high growth rates and high cellular lipid content. Petroleum pollutant degradation can also be done by these organisms-Achanthes minutissima has degradable effects involving petroleum hydocarbons. Stephanopyxis turris a silicon utilizing organism releases a blend of chlorinated C8 hydrocarbons. This adds a fundamentally new pathway to the limited set of halogenating enzymatic activities known from nature. Many silicon utilizing organisms can produce PUFA from saturated fatty acids which ultimately produce many important bioactive chemicals like hormosirene, finaverrene, heptadienal, dietyopterene, cystophorene, decadienal. Trienoic acid, octadiene and many other important agents. Similarly terpenoid biosynthetic pathway is activated by them with formation of diterpenoids, sesterpenoids, triterpenoids and sterols.

  10. Microwave energy-assisted formation of bioactive CaO–MgO–SiO$_2$ ternary glass from bio-wastes

    Indian Academy of Sciences (India)

    ENOBONG R ESSIEN; VIOLETTE N ATASIE; ESTHER U UDOBANG

    2016-08-01

    Regeneration technique is extensively being sought after as a means of achieving bone repair without adverse immunological response. Silicate-based bioactive glasses containing Mg are gaining increasing attention for their biocompatibility. The current work has been focused on designing a facile and economic route using bio-wastes for synthesizing bioactive glasses in the CaO–MgO–SiO$_2$ system. Rice husk ash (RHA) obtained from burning ricehusk was used as silica source, while Ca was extracted from eggshells for preparing the glass through a modified sol–gel approach. The gel formed was irradiated in microwave before sintering at 950$^{\\circ}$C for 3 h. Thereafter, bioactivity test was conducted on the samples in simulated body fluid (SBF) at physiological conditions for a maximum of 14 days. Characterization of samples were performed before and after immersion in SBF to evaluate thecomposition, morphology and phases present in the glass using energy-dispersive X-ray analysis, scanning electron microscopy and X-ray diffraction. Apatite formation was confirmed using Fourier transform infrared spectroscopy.Results obtained showed the presence of diopside, wollastonite and pseudo-wollastonite as major bioactive phases. Hydroxyapatite formed on the material within 3 days in SBF, indicating good bioactivity.

  11. Multifunctional bioactive and improving the performance durability nanocoatings for finishing PET/CO woven fabrics by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, Dorota, E-mail: dkowalczyk@iw.lodz.pl; Brzeziński, Stefan; Kamińska, Irena

    2015-11-15

    The paper presents the results of studies on multifunctional thin-coatings of textiles, simultaneously imparting to them bioactive properties in relations to bacteria and fungi as well as an increased abrasion resistance and anti-pilling effect with the use of modified hybrid materials produced by the sol–gel method from two precursors: (3-glycidoxypropyl)trimethoxysilane (GPTMS) and aluminum isopropoxide (ALIPO). The sol obtained was modified with bioactive particles in the form of nanopowder of metallic silver and copper alloy (Ag/Cu). Al{sub 2}O{sub 3}/SiO{sub 2} sol containing nanoparticles of Ag/Cu alloy was deposited on a polyester/cotton blend woven fabric (PET/CO 67/33) by the padding method. After drying and curing process, a thin and elastic bioactive silica coating was obtained on the fabric fibers surfaces. The fabrics with deposited nanocoatings were characterized by very good bioactive properties and increased resistance to abrasion and formation of pilling. - Highlights: • Multifunctional thin coating layer was prepared on the fabric using sol–gel method. • Modification of the hybrid Al{sub 2}O{sub 3}/SiO{sub 2} sol by Ag/Cu alloy nanoparticles. • Bioactive fabric created by deposition of Al{sub 2}O{sub 3}/SiO{sub 2} sol with Ag/Cu. • 30% increase the abrasion resistance of the thin coating fabric.

  12. Functional significance of bioactive peptides derived from soybean.

    Science.gov (United States)

    Singh, Brij Pal; Vij, Shilpa; Hati, Subrota

    2014-04-01

    Biologically active peptides play an important role in metabolic regulation and modulation. Several studies have shown that during gastrointestinal digestion, food processing and microbial proteolysis of various animals and plant proteins, small peptides can be released which possess biofunctional properties. These peptides are to prove potential health-enhancing nutraceutical for food and pharmaceutical applications. The beneficial health effects of bioactive peptides may be several like antihypertensive, antioxidative, antiobesity, immunomodulatory, antidiabetic, hypocholesterolemic and anticancer. Soybeans, one of the most abundant plant sources of dietary protein, contain 36-56% of protein. Recent studies showed that soy milk, an aqueous extract of soybean, and its fermented product have great biological properties and are a good source of bioactive peptides. This review focuses on bioactive peptides derived from soybean; we illustrate their production and biofunctional attributes.

  13. Potential of fruit wastes as natural resources of bioactive compounds.

    Science.gov (United States)

    Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-01-01

    Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.

  14. Bioactive molecules: current trends in discovery, synthesis, delivery and testing

    Directory of Open Access Journals (Sweden)

    Yew Beng Kang

    2013-04-01

    Full Text Available Important bioactive molecules are moleculesthat are pharmacologically active derived from naturalsources and through chemical synthesis. Over the yearsmany of such molecules have been discovered throughbioprospective endeavours. The discovery of taxol fromthe pacific yew tree bark that has the ability in stabilisingcellular microtubules represents one of the hallmarks ofsuccess of such endeavours. In recent years, the discoveryprocess has been aided by the rapid developmentof techniques and technologies in chemistry andbiotechnology. The progress in advanced genetics andcomputational biology has also transformed the wayhypotheses are formulated as well as the strategies for drugdiscovery. Of equal importance is the use of advanceddrug delivery vehicles in enhancing the efficacy andbioavailability of bioactive molecules. The availability ofsuitable animal models for testing and validation is yetanother major determinant in increasing the prospect forclinical trials of bioactive molecules.

  15. Bioactivities of fish protein hydrolysates from defatted salmon backbones

    Directory of Open Access Journals (Sweden)

    Rasa Slizyte

    2016-09-01

    Full Text Available Bioactivities of bulk fish protein hydrolysates (FPH from defatted salmon backbones obtained with eight different commercial enzymes and their combinations were tested. All FPH showed antioxidative activity in vitro. DPPH scavenging activity increased, while iron chelating ability decreased with increasing time of hydrolysis. All FPH showed ACE inhibiting effect which depended on type of enzyme and increased with time of hydrolysis. The highest effect was found for FPH produced with Trypsin. Bromelain + Papain hydrolysates reduced the uptake of radiolabelled glucose into CaCo-2 cells, a model of human enterocytes, indicating a potential antidiabetic effect of FPH. FPH obtained by Trypsin, Bromelain + Papain and Protamex showed the highest ACE inhibitory, cellular glucose transporter (GLUT/SGLT inhibitory and in vitro antioxidative activities, respectively. Correlation was observed between the measured bioactivities, degree of hydrolysis and molecular weight profiles, supporting prolonged hydrolysis to obtain high bioactivities.

  16. Bioactive Compounds and Antioxidant Activity in Different Types of Berries.

    Science.gov (United States)

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-10-16

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  17. Bioactive natural products from Papua New Guinea marine sponges.

    Science.gov (United States)

    Noro, Jeffery C; Kalaitzis, John A; Neilan, Brett A

    2012-10-01

    The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non-ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge-symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis.

  18. PREPARATION OF BIOACTIVE NANOSTRUCTURE SCAFFOLD WITH IMPROVED COMPRESSIVE STRENGTH

    Directory of Open Access Journals (Sweden)

    R. EMADI

    2011-03-01

    Full Text Available Highly porous scaffolds with open structure are today the best candidates for bone substitution to ensure bone oxygenation and angiogenesis. In this study, we developed a new route to enhance the compressive strength of porous hydroxyapatite scaffold made of natural bone. Briefly, the spongy bone of an adult bovine was extracted, annealed, and coated by a nanostructure bioactive glass layer to be subsequently sintered at different temperatures. The apatite formation ability on the surfaces of the coated scaffolds was investigated by standard procedures. Our results showed that the scaffold and coating microstructure consisted of the grains smaller than 100 nm. These nanostructures improved the compressive strength and bioactivity of highly porous scaffold. The results showed that with increasing the sintering temperature, the compressive strength of scaffolds increased while their in vitro bioactivity decreased.

  19. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  20. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    Directory of Open Access Journals (Sweden)

    Sona Skrovankova

    2015-10-01

    Full Text Available Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry, and Ericaceae (blueberry, cranberry, belong to the best dietary sources of bioactive compounds (BAC. They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  1. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system.

    Science.gov (United States)

    Huan, Zhiguang; Chang, Jiang

    2009-05-01

    Bioactive composite bone cements were obtained by incorporation of tricalcium silicate (Ca3SiO5, C3S) into a brushite bone cement composed of beta-tricalcium phosphate [beta-Ca3(PO4)2, beta-TCP] and monocalcium phosphate monohydrate [Ca(H2PO4)2.H2O, MCPM], and the properties of the new cements were studied and compared with pure brushite cement. The results indicated that the injectability, setting time and short- and long-term mechanical strength of the material are higher than those of pure brushite cement, and the compressive strength of the TCP/MCPM/C3S composite paste increased with increasing aging time. Moreover, the TCP/MCPM/C3S specimens showed significantly improved in vitro bioactivity in simulated body fluid and similar degradability in phosphate-buffered saline as compared with brushite cement. Additionally, the reacted TCP/MCPM/C3S paste possesses the ability to stimulate osteoblast proliferation and promote osteoblastic differentiation of the bone marrow stromal cells. The results indicated that the TCP/MCPM/C3S cements may be used as a bioactive material for bone regeneration, and might have significant clinical advantage over the traditional beta-TCP/MCPM brushite cement.

  2. In vitro bioactivity and cytocompatibility of tricalcium silicate

    Indian Academy of Sciences (India)

    Xiaoming Liao; Hongyang Zhu; Guangfu Yin; Zhongbing Huang; Yadong Yao; Xianchun Chen

    2011-08-01

    The in vitro bioactivity of tricalcium silicate (Ca3SiO5) ceramics was investigated by the bone-like apatite-formation ability in simulated body fluid (SBF), and the cytocompatibility was evaluated through osteoblast adhesion and proliferation assay. The results show that the Ca3SiO5 ceramics possess bone-like apatite formation ability in SBF. In vitro cytocompatible evaluation reveals that osteoblasts adhere and spread well on the Ca3SiO5 ceramics, indicating good bioactivity and cytocompatibility.

  3. The CARLSBAD database: a confederated database of chemical bioactivities.

    Science.gov (United States)

    Mathias, Stephen L; Hines-Kay, Jarrett; Yang, Jeremy J; Zahoransky-Kohalmi, Gergely; Bologa, Cristian G; Ursu, Oleg; Oprea, Tudor I

    2013-01-01

    Many bioactivity databases offer information regarding the biological activity of small molecules on protein targets. Information in these databases is often hard to resolve with certainty because of subsetting different data in a variety of formats; use of different bioactivity metrics; use of different identifiers for chemicals and proteins; and having to access different query interfaces, respectively. Given the multitude of data sources, interfaces and standards, it is challenging to gather relevant facts and make appropriate connections and decisions regarding chemical-protein associations. The CARLSBAD database has been developed as an integrated resource, focused on high-quality subsets from several bioactivity databases, which are aggregated and presented in a uniform manner, suitable for the study of the relationships between small molecules and targets. In contrast to data collection resources, CARLSBAD provides a single normalized activity value of a given type for each unique chemical-protein target pair. Two types of scaffold perception methods have been implemented and are available for datamining: HierS (hierarchical scaffolds) and MCES (maximum common edge subgraph). The 2012 release of CARLSBAD contains 439 985 unique chemical structures, mapped onto 1,420 889 unique bioactivities, and annotated with 277 140 HierS scaffolds and 54 135 MCES chemical patterns, respectively. Of the 890 323 unique structure-target pairs curated in CARLSBAD, 13.95% are aggregated from multiple structure-target values: 94 975 are aggregated from two bioactivities, 14 544 from three, 7 930 from four and 2214 have five bioactivities, respectively. CARLSBAD captures bioactivities and tags for 1435 unique chemical structures of active pharmaceutical ingredients (i.e. 'drugs'). CARLSBAD processing resulted in a net 17.3% data reduction for chemicals, 34.3% reduction for bioactivities, 23% reduction for HierS and 25% reduction for MCES, respectively. The CARLSBAD database

  4. Bioactive compounds from Holothuria atra of Indian ocean.

    Science.gov (United States)

    Dhinakaran, Devaraj Isaac; Lipton, Aaron Premnath

    2014-01-01

    The sea cucumber (Holothuria atra) extracts have been evaluated for the presence of bioactive compounds and various biological activities. The methanol extracts showed anti proliferative activities against the Hela and MCF-7 cell lines. Similarly the inhibitory effects of Herpes simplex virus 1 and 2 cells were detected using the plaque reduction assay. The extracts of H. atra were purified using the silica gel column chromatography. The active fractions collected were observed for antimicrobial activity. The GC-MS analysis showed the availability of 59 compounds. The active bioactive compounds found in the H. atra were analyzed and their structure was identified using the (1)HNMR and (13)C NMR experiments.

  5. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds.

    Science.gov (United States)

    Gómez-Mascaraque, Laura G; Sanchez, Gloria; López-Rubio, Amparo

    2016-10-01

    The molecular weight of chitosan is one of its most determinant characteristics, which affects its processability and its performance as a biomaterial. However, information about the effect of this parameter on the formation of electrosprayed chitosan microcapsules is scarce. In this work, the impact of chitosan molecular weight on its electrosprayability was studied and correlated with its effect on the viscosity, surface tension and electrical conductivity of solutions. A Discriminant Function Analysis revealed that the morphology of the electrosprayed chitosan materials could be correctly predicted using these three parameters for almost 85% of the samples. The suitability of using electrosprayed chitosan capsules as carriers for bioactive agents was also assessed by loading them with a model active compound, (-)-epigallocatechin gallate (EGCG). This encapsulation, with an estimated efficiency of around 80% in terms of preserved antioxidant activity, showed the potential to prolong the antiviral activity of EGCG against murine norovirus via gradual bioactive release combined with its protection against degradation in simulated physiological conditions.

  6. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping, E-mail: wdpshk@tongji.edu.cn

    2016-05-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials. - Highlights: • The pH-sensitive composite alginate beads incorporating Sr-doped HA microspheres (SrHA) have been prepared. • The incorporation of the SrHA enhanced the drug loading and release properties of the alginate microspheres. • The composite microspheres showed excellent osteogenic effect by releasing osteogenic Sr ions.

  7. Effect of Ti(+4) on in vitro bioactivity and antibacterial activity of silicate glass-ceramics.

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Hussain, Tousif; Bashir, Farooq; Ikhram, Hafeez

    2016-12-01

    A novel glass-ceramic series in (48-x) SiO2-36 CaO-4 P2O5-12 Na2O-xTiO2 (where x=0, 3.5, 7, 10.5 and 14mol %) system was synthesized by crystallization of glass powders, obtained by melt quenching technique. The differential scanning calorimetric analysis (DSC) was used to study the non-isothermal crystallization kinetics of the as prepared glasses. The crystallization behaviour of glasses was analyzed under non-isothermal conditions, and qualitative phase analysis of glass-ceramics was made by X-ray diffraction. The in vitro bioactivity of synthesized glass-ceramics was studied in stimulated body fluid at 37°C under static condition for 24days. The formation of hydroxyl-carbonated apatite layer; evident of bioactivity of the material, was elucidated by XRD, FTIR, AAS, SEM and EDX analysis. The result showed that partial substitution of TiO2 with SiO2 negatively influenced bioactivity; it decreased with increase in concentration of TiO2. As Ti(+4) having stronger field strength as compared to Si(+4) so its replacement became the cause for reduction in degradation that in turn improved the chemical stability. The compressive strength was also enhanced with progress addition of TiO2 in the system. The antibacterial properties were examined against Staphylococcus Epidermidis. Strong antibacterial efficacy was observed with the addition of TiO2 in the system.

  8. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    Science.gov (United States)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  9. The effect of polymer dots on bioactivity of mouse sperm in vitro

    Science.gov (United States)

    Feng, Gang; Chen, Qiang; Zhai, Peng; Wang, Xiaomei; Lin, Guimiao; Xu, Gaixia; Chen, Danni

    2014-09-01

    Objective: In recent years, semiconducting polymer dots (Pdots)have caught considerable attention for their outstanding optical characteristics in biomedical imaging applications. Not as semiconductor quantum dots, Pdots are composed of nonmetallic material and their biological effects remain unclear. In this work, we investigated the effects of a band new polymer dots on bioactivity of mouse sperm using a computer-aided sperm analysis system(CASA) and an in vitro fertilization (IVF) model. Methods: The semiconducting polymer dots used in this study is CN-PPV Pdots, which emits in the orange wavelength range with high brightness. Epididymal mouse sperm were collected from 7-8weeks old Balb/c mouse. Firstly, CN-PPV Pdots was added into the Human Tubal Fluid (HTF) media at various concentrations (0, 1, 10, 100 nmol/L respectively ), then sperm bioactivity and vitality were evaluated every 10 minutes. Secondly, the treated sperm were co-cultured with matured oocytes in HTF media, fertilization rate and oocytes development were recorded after 24 hours co-incubation. Results: Sperm viability in the control group (0 nmol/L) and experimental group (1, 10,100 nmol/L) were 57.20+/-4.51%, 58.17+/-4.81%, 55.50+/-4.52%, 46.26%+/-3.83%, respectively. Fertilization rate in different groups showed no obvious differences, control group (0 nmol/L) and experimental group (1, 10, 100 nmol/L) were 38.75+/-1.71%, 37.01+/-4.69%, 32.75+/-1.71%, 35.24+/-2.37%, respectively. Conclusion: Our data indicated that the CN-PPV Pdots had a very high biocompatibility on sperm in both the activation and the IVF process, even in extreme high Pdots concentration,the sperm bioactivity only got slight restrained. The effect of CN-PPV Pdots seems has no or little toxicity,and the long-term embryonic development has yet to be verified.

  10. Preparation of Nanofibrous Structure of Mesoporous Bioactive Glass Microbeads for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2016-06-01

    Full Text Available A highly ordered, mesoporous (pore size 2~50 nm bioactive glass (MBG structure has a greater surface area and pore volume and excellent bone-forming bioactivity compared with traditional bioactive glasses (BGs. Hence, MBGs have been used in drug delivery and bone tissue engineering. MBGs can be developed as either a dense or porous block. Compared with a block, microbeads provide greater flexibility for filling different-shaped cavities and are suitable for culturing cells in vitro. In contrast, the fibrous structure of a scaffold has been shown to increase cell attachment and differentiation due to its ability to mimic the three-dimensional structure of natural extracellular matrices. Hence, the aim of this study is to fabricate MBG microbeads with a fibrous structure. First, a sol-gel/electrospinning technique was utilized to fabricate the MBG nanofiber (MBGNF structure. Subsequently, the MBGNF microbeads (MFBs were produced by an electrospraying technology. The results show that the diameter of the MFBs decreases when the applied voltage increases. The drug loading and release profiles and mechanisms of the MFBs were also evaluated. MFBs had a better drug entrapment efficiency, could reduce the burst release of tetracycline, and sustain the release over 10 days. Hence, the MFBs may be suitable drug carriers. In addition, the cellular attachment of MG63 osteoblast-like cells is significantly higher for MFBs than for glass microbeads after culturing for 4 h. The nanofibrous structure of MFBs could provide an appropriate environment for cellular spreading. Therefore, MFBs have great potential for use as a bone graft material in bone tissue engineering applications.

  11. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration.

    Directory of Open Access Journals (Sweden)

    Long Yu

    Full Text Available BACKGROUND: Calcium phosphate cement (CPC can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. MATERIALS AND METHODS: The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF. The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. RESULTS: CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF. In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. CONCLUSIONS: A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration.

  12. Highly bioactive polysiloxane modified bioactive glass-poly(ethylene glycol) hybrids monoliths with controlled surface structure for bone tissue regeneration

    Science.gov (United States)

    Chen, Jing; Que, Wenxiu; Xing, Yonglei; Lei, Bo

    2015-03-01

    Crack-free monoliths with controllable surface microstructure have high bioactivities and therefore potential applications in bone tissue regeneration. In this paper, crack-free polydimethylsiloxane-modified bioactive glass-poly (ethylene glycol) (PDMS-BG-PEG) hybrids monoliths were fabricated via using a modified sol-gel process. Results show that the addition of PEG plays an important part in the formation of crack-free and gelation of the monoliths, and surface microstructures of the as-prepared hybrid monoliths were significantly influenced by the concentration and molecular weight of PEG. The samples obtained from PEG 300 had porous surface result in higher bioactivity (apatite formation) in simulated body fluid (SBF), while the samples obtained from PEG 600 had the smooth surface and inhibited the formation of apatite layer in SBF. These as-prepared hybrid monoliths can be used as a good candidate of implant and scaffold for highly efficient bone tissue regeneration.

  13. Traceability of Functional Bioactive Compounds in Fresh and Pasteurized Milk Obtained from Goats Fed with Orange Pulp

    Directory of Open Access Journals (Sweden)

    Maria Simona Chiş

    2015-11-01

    Full Text Available Traceability is the ability to identify and trace the history, distribution, location, and application of products, parts, and materials. A traceability system records and follows the trail as products, parts, and materials come from suppliers and are processed and ultimately distributed as end products (Prache et al, 2002. In this work, were studied the bioactive compounds (total vitamin C, ascorbic acid, total phenols, flavonoids, carotenoids, vitamin A and vitamin E and antioxidant activity of goat fresh milk and pasteurized one. The goats were fed with a standard diet (control diet and then with a diet that incorporates orange pulp. The control diet (CD corresponded with a standard ration (a ration wich provide the energetic and proteic values, daily food for milking animals. From that ration, the Department of Animal Science, from Politechnic University of Valencia replaced the different proportions of the ingredients for incorporating orange pulp diet (OPD. The results of the present study show that the citrus pulp silage mixture used can be fed to goats without any negative effects on the performance of the animals. Results of this study indicate that citrus pulp silage can replace part of the conventional ration of goats, thus lowering the cost of production. The first aim of this study was to compare the two types of goat diets: a standard diet and a diet with orange pulp, by analyzing the bioactive compounds in fresh and pasteurized milk. The results demonstrate that all the bioactive compounds are bigger in the orange pulp diet than in the control diet. The second objective of this study was to analyze the bioavailability and traceability of bioactive compounds in fresh milk. 

  14. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL EVALUATION OF SOL–GEL DERIVED NANOMATERIAL IN THE TERNARY SYSTEM 64 % SiO2 - 31 % CaO - 5 % P2O5 AS A BIOACTIVE GLASS: IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Bizari D.

    2013-09-01

    Full Text Available In this study, we performed a new bioactive glass formulation with the molar composition 64 % SiO2 - 31 % CaO - 5 % P2O5 by the sol-gel method. Sol-gel derived bioglass material was produced in nanopowder using planetary milling machine, followed by sintering at 700°C, for applications as bioactive material in bioactive scaffolds or in orthopaedic. The obtained material was evaluated by X-ray powder diffraction (XRD, thermal gravimetric analysis (TGA, differential scanning calorimetry (DSC analyses, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM and nitrogen adsorption pore size. The biocompatibility evaluation of the formed glass was assessed through in vitro cell culture by evaluation of alkaline phosphatase activity of osteoblasts and immersion studies in simulated body fluid (SBF for different time intervals while monitoring the pH changes and the concentration of calcium, phosphorus and silicon in the SBF medium as key factors in the rapid bonding of this bioactive glass to bone tissue as a high bioactive glass. The present investigation revealed that the sol-gel derived ternary bioglass system has the ability to support the growth of human fetal osteoblastic cells (hFOB 1.19. Finally, this material proved to be non-toxic and compatible for the proposed work in segmental defects in the goat model in vivo.

  15. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration

    NARCIS (Netherlands)

    Mota, J.; Yu, N.; Caridade, S.G.; Luz, G.M.; Gomes, M.E.R.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F.

    2012-01-01

    Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided ti

  16. Synthesis and Bioactivity of Novel Trisubstituted Triazole Nucleosides.

    Science.gov (United States)

    Wen, Yi-ning; Zhang, Zhi-feng; Liu, Ning-ning; Xiang, Yu-hong; Zhang, Zhuo-yong; Andrei, Graciela; Snoeck, Robert; Schols, Dominique; Zhang, Qing-shan; Wu, Qin-pei

    2016-01-01

    A series of novel trisubstituted 1,2,3-triazole purine nucleosides were efficiently synthesized via Huisgen 1,3-dipolar cycloaddition in good yields. Bioactivity against cytomegalovirus (CMV) and varicella-zoster virus (VZV) in human embryonic lung cell cultures was evaluated and all compounds show low antiviral activity.

  17. Bioactive Natural Products From Chinese Tropical Marine Organisms

    Institute of Scientific and Technical Information of China (English)

    GUO,Yue-Wei

    2004-01-01

    @@ The oceans contain a vast biological diversity of species that have so far been utilized by mankind mainly as a source of protein. In the last few decades, however, natural products chemists have started to discover the wealth of bioactive secondary metabolites that are produced by marine invertebrates such as sponges, soft corals, molluscs and others.

  18. Greener and Expeditious Synthesis of Bioactive Heterocycles using Microwave Irradiation

    Science.gov (United States)

    The utilization of green chemistry techniques is dramatically reducing chemical waste and reaction times as has recently been proven in several organic syntheses and chemical transformations. To illustrate these advantages in the synthesis of bio-active heterocycles, we have stud...

  19. Terpenoids of Sinularia soft corals: chemistry and bioactivity

    Directory of Open Access Journals (Sweden)

    Wen-ting Chen

    2012-06-01

    Full Text Available Soft corals of the genus Sinularia are one of the most widespread soft corals. They are a rich source of bioactive substances with intriguing and unique structural features. The present paper reviews the latest progress in the chemistry and pharmacological activities of terpenoids from Sinularia soft corals and provides a perspective on future areas of research interest.

  20. Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties

    OpenAIRE

    2016-01-01

    Dental restorative cements are placed in a harsh oral environment where they are subjected to thermal shock, chemical degradation, and repeating masticatory force. The ideal restorative dental cements should have superior mechanical properties, chemical stability, aesthetic, good handling properties, biocompatibility, antibacterial properties, and preferably bioactivity. This thesis presents research on dental restorative cements with enhanced properties. The overall aim was to increase the b...

  1. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration

    NARCIS (Netherlands)

    Nandakumar, Anandkumar; Fernandes, Hugo; Boer, de Jan; Moroni, Lorenzo; Habibovic, Pamela; Blitterswijk, van Clemens A.

    2010-01-01

    Electrospun scaffolds are widely used for various biomedical applications. In this study, we prepared electrospun bioactive composite scaffolds combining hydroxyapatite, collagen (Col) and a synthetic polymer—PolyActive™—to mimic naturally occurring extracellular matrix for in situ bone regeneration

  2. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives

    Directory of Open Access Journals (Sweden)

    Laura Salvia-Trujillo

    2016-01-01

    Full Text Available The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article.

  3. Interstitial fluid contains higher in vitro IGF bioactivity than serum

    DEFF Research Database (Denmark)

    Espelund, Ulrick; Søndergaard, Klaus; Bjerring, Peter;

    2012-01-01

    blister fluid (SBF) vs. in serum, with emphasis on bioactive IGF levels. DESIGN: Eight hour study including samples collected in the fasting state (20h) and after a meal. SETTING: Clinical research facility. PARTICIPANTS: Six healthy males (age 37.0±8.8years, BMI 22.5±1.4kg/m(2)) (mean±SD). MAIN OUTCOME...

  4. Synthetic derivatives of spiromesifen and their bioactivity research

    Institute of Scientific and Technical Information of China (English)

    Jin Hao Zhao; Ming Hua Ji; Xu Hui Xu; Jing Li Cheng; Guo Nian Zhu

    2009-01-01

    Sixteen new derivatives of spiromesifen were synthesized from 3-(2,4,6-trimethylphenyl)-4-hydroxy-△~3-dihydrofuran-2-one. Their bioactivities against diarnondbackmoth (Plutella xylostella) and spider mites (Tetranychus cinnabarinus) were also evaluated. The structures of these derivatives were confirmed by ~1H NMR, MS.

  5. Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-fan; Akram, Muhammad; Alshemary, Ammarz [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@comsats.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2016-11-30

    Highlights: • PLA/Chitosan nanofibers were coated with functional bioglass. • Polymer/ceramic composite fibers exhibited good in-vitro bioactivity. • Nanofibers coated with Ag doped bioglass exhibited good antibacterial activity. - Abstract: In this study, we have presented the structural and in vitro characterization of electrospun polylactic acid (PLA)/Chitosan nanofibers coated with cerium, copper or silver doped bioactive glasses (CeBG/CuBG/AgBG). Bead-free, smooth surfaced nanofibers were successfully prepared by using electrospinning technique. The nanocomposite fibers were obtained using a facile dip-coating method, their antibacterial activities against E. coliE. coli (ATCC 25922 strains) were measured by the disk diffusion method after 24 h of incubation at 37 °C. CeBG and CuBG decorated PLA/Chitosan nanofibers did not develop an inhibition zone against the bacteria. On the other hand, nanofibers coated with AgBG developed an inhibition zone against the bacteria. The as-prepared nanocomposite fibers were immersed in SBF for 1, 3 and 7 days in Simulated Body Fluid (SBF) for evaluation of in vitro bioactivity. All samples induced the formation of crystallites with roughly ruffled morphology and the pores of fibers were covered with the extensive growth of crystallites. Energy Dispersive X-ray (EDX) composition analysis showed that the crystallites possessed Ca/P ratio close to 1.67, confirming the good in-vitro bioactivity of the fibers.

  6. A novel graded bioactive high adhesion implant coating

    Energy Technology Data Exchange (ETDEWEB)

    Brohede, Ulrika [Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Zhao, Shuxi [Division for Solid State Physics, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Lindberg, Fredrik [Division for Materials Science, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Mihranyan, Albert; Forsgren, Johan [Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Stromme, Maria, E-mail: maria.stromme@angstrom.uu.se [Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Engqvist, Hakan, E-mail: hakan.engqvist@angstrom.uu.se [Division for Materials Science, Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, Box 534, 751 21, Uppsala (Sweden)

    2009-06-15

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 deg. C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 deg. C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  7. A novel graded bioactive high adhesion implant coating

    Science.gov (United States)

    Brohede, Ulrika; Zhao, Shuxi; Lindberg, Fredrik; Mihranyan, Albert; Forsgren, Johan; Strømme, Maria; Engqvist, Håkan

    2009-06-01

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 °C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 °C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  8. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Mark Hamann

    2011-11-01

    Full Text Available Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source.

  9. Edible packaging materials.

    Science.gov (United States)

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  10. Investigation of bioactivity, biocompatibility and thermal behavior of sol-gel silica glass containing a high PEG percentage.

    Science.gov (United States)

    Catauro, M; Renella, R A; Papale, F; Vecchio Ciprioti, S

    2016-04-01

    SiO2/PEG organic-inorganic hybrid materials, which contain 60 or 70 weight percentage of PEG, were synthesized by the sol-gel technique. The materials were characterized and subjected to various tests to assess their application in the biomedical field. The evaluation of their morphology by scanning electron microscopy (SEM) confirms the homogeneity of the samples on the nanometer scale. Fourier transform infrared spectroscopy (FT-IR) indicated that the two components of the hybrids (SiO2 and PEG) are linked by hydrogen bonds. This feature makes them class I hybrids. Simultaneous thermogravimetry/differential thermal analysis (TG/DTA) was used to investigate their thermal behavior and to establish the best temperatures for their pre-treatment. The fundamental properties that a material must have to be used in the biomedical field are biocompatibility and bioactivity. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid. This indicates that the materials are able to bond to bone tissue. Moreover, the biocompatibility of SiO2/PEG hybrids was assessed by performing WST-8 cytotoxicity tests on fibroblast cell NIH 3T3 after 24h of exposure. The cytotoxicity tests highlight that the cell viability is affected by the polymer percentage. The results showed that the synthesized materials were bioactive and biocompatible. Therefore, the results obtained are encouraging for the use of the obtained hybrids in dental or orthopedic applications.

  11. A doxorubicin delivery system: Samarium/mesoporous bioactive glass/alginate composite microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying, E-mail: yingzhang@suda.edu.cn; Wang, Xiang; Su, Yanli; Chen, Dongya; Zhong, Wenxing

    2016-10-01

    Samarium (Sm) incorporated mesoporous bioactive glasses (MBG) microspheres have been prepared using the method of alginate cross-linking with Ca{sup 2+} ions. The in vitro bioactivities of Sm/MBG/alginate microspheres were studied by immersing in simulated body fluid (SBF) for various periods. The results indicated that the Sm/MBG/alginate microspheres have a faster apatite formation rate on the surface. To investigate their delivery properties further, doxorubicin (DOX) was selected as a model drug. The results showed that the Sm/MBG/alginate microspheres exhibit sustained DOX delivery, and their release mechanism is controlled by Fickian diffusion according the Higuchi model. In addition, the delivery of DOX from Sm/MBG/alginate microspheres can be dominated by changing the doping concentration of Sm and the values of pH microenvironment. These all revealed that this material is a promising candidate for the therapy of bone cancer. - Graphical abstract: The schematic illustration of controlled DOX release from the Sm/MBG alginate microspheres. Display Omitted - Highlights: • Sm/MBG/alginate microspheres were synthesized by alginate cross-linking with Ca{sup 2+}. • Sm/MBG/alginate microspheres demonstrate apatite formation ability. • Sm/MBG/alginate microspheres possess a sustained release of anti-cancer drug (DOX). • Sm/MBG/alginate microspheres have positive potential for the therapy of bone cancer.

  12. EFFECT OF SINTERING TEMPERATURE ON MICROSTRUCTURE AND IN-VITRO BEHAVIOR OF BIOACTIVE GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    Hashmi M. U.

    2013-12-01

    Full Text Available In this work, powders of the composition (CaO 46- SiO2 34- P2O5 14.5- MgO 4- CaF2 1- MgF2 0.5 (wt. % were thoroughly mixed and melted in a muffle furnace. The melt was quenched in water to form glass. Three glass-ceramics were prepared by sintering glass samples at three different temperatures 850, 900 and 950°C according to the exothermal peaks of DTA. The DTA peaks correspond to the bioactive crystalline phases hydroxyapatite (HA and wollastonite as confirmed by the XRD data. Study of diameter-shrinkage co-efficient and bulk-density of samples revealed higher densification rate for the range 900 - 950°C than that for the range 850 - 900°C.SEM and optical microscope results illustrated a tendency towards closely packed structure and increasing grain size with the increase of sintering temperature. The samples were immersed in SBF for 30 days at room temperature for in-vitro evaluation.EDS analysis, showing the presence of carbon (C along with calcium (Ca and phosphorus (P suggests the formation of hydroxycarbonate-apatite (HCA phase that indicates the bioactivity of the material which increases with the increase of sintering temperature.

  13. Development of Bioactive Patch for Maintenance of Implanted Cells at the Myocardial Infarcted Site

    Directory of Open Access Journals (Sweden)

    C. Castells-Sala

    2015-01-01

    Full Text Available Ischemia produced as a result of myocardial infarction might cause moderate or severe tissue death. Studies under development propose grafting stem cells into the affected area and we hypothesize that this mechanism could be enhanced by the application of a “bioactive implant.” The implant herein proposed consists of a thin porous elastomeric membrane, filled with self-assembling nanofibers and human subcutaneous adipose tissue derived progenitor cells. We describe the development and characterization of two elastomeric membranes: poly(ethyl acrylate (PEA and poly(caprolactone 2-(methacryloyloxyethyl ester (PCLMA. Both are a good material support to deliver cells within a soft self-assembling peptide and are elastic enough to withstand the stresses arising from the heartbeat. Both developed composites (PEA and PCLMA, combined with self-assembling peptide equally facilitate the propagation of electrical pulses and maintain their genetic profile of the seeded cells. Preliminary studies with small animal models suggest that, at short times, the bioimplant shows good adhesion with the myocardium. After three days cells loaded in the patch remain alive at the implanted site. We propose that the bioactive patch (elastomeric membranes with self-assembling peptide and cells could increase the efficacy of future cardiac cell therapy by improving cell immobilization and survival at the affected site.

  14. Synthesis and Purification of 7-Prenyloxycoumarins and Herniarin as Bioactive Natural Coumarins

    Directory of Open Access Journals (Sweden)

    Mahdi Askari, Amirhossein Sahebkar, Mehrdad Iransahi

    2009-06-01

    Full Text Available Objective(s7-prenyloxycoumarins including 7-isopentenyloxycoumarin, auraptene and umbelliprenin, and herniarinhave been widely recognized as bioactive coumarins. This paper presents the ways to synthesis thesecompounds.Materials and Methods7-prenyloxycoumarins were synthesized by reaction between 7-hydroxycoumarin (1 M and relevant prenylbromides (1.5 M in acetone at room temperature. The reaction was carried out in the presence of DBU(1, 8-diazabicyclo [5.4.0] undec-7-ene (2 M. After 24 hr, the mixture was concentrated under reducedpressure. The compounds were purified by column chromatography.ResultsThree bioactive 7-prenyloxycoumarins, namely, umbelliprenin, auraptene and 7-isopentenyloxycoumarin,together with herniarin were synthesized from 7-hydroxycoumarin under alkaline conditions (DBU and thenpurified by column chromatography. The structures of the products were characterized by NMRspectroscopic method including 1H- and 13C-NMR experiments.ConclusionThe method of synthesis for 7-prenyloxycoumarins and herniarin which is presented here has not beenreported yet. Moreover, for the first time, umbelliprenin was chemically prepared in this work.Keywords: Auraptene, Herniarin, 7- Isopentenyloxycoumarin, 7-Prenyloxycoumarins, Synthesis,Umbelliprenin

  15. Volatile Constituents, Inorganic Elements and Primary Screening of Bioactivity of Black Coral Cigarette Holders

    Directory of Open Access Journals (Sweden)

    Ganggang Shi

    2011-05-01

    Full Text Available Black corals (BC have been used for a long time in Chinese medicine, and may have some pharmaceutical functions when used as material for cigarette holders in southeast China. This study is aimed to investigate the bioactivities of volatile constituents in BC and to explore the folklore behind the use of BC cigarette holders (BCCHs. We extracted the volatile constituents of BC by supercritical fluid extraction (SFE with carbon dioxide (CO2-SFE, then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS. In total, 15 components were reliably identified in BC and found to be biologically active. These included triethyl phosphate, butylated hydroxytoluene, cedrol, n-hexadecanoic acid, squalene, and cholesterol. Meanwhile 13 inorganic elements (P, Ca, Mg, S, B, Si, Fe, Cu, Zn, Ba, etc. were determined by inductively coupled plasma spectrometer (ICPS. In the bioactivity tests, the BC extract (BCE showed a scavenging activity of 2,2-diphenyl-1-picrylhydrazyl free radicals and hydroxyl radicals by phenanthroline-Fe (II oxidation and moderate inhibition of Gram-positive microorganisms. The antioxidant and antimicrobial activities of BC, which are related to the active chemical composition, may explain the perceived benefit for cigarette smokers who use BCCHs.

  16. Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers

    Directory of Open Access Journals (Sweden)

    Laura Fiocco

    2015-05-01

    Full Text Available Wollastonite (CaSiO3 and diopside (CaMgSi2O6 silicate ceramics have been widely investigated as highly bioactive materials, suitable for bone tissue engineering applications. In the present paper, highly porous glass-ceramic foams, with both wollastonite and diopside as crystal phases, were developed from the thermal treatment of silicone polymers filled with CaO and MgO precursors, in the form of micro-sized particles. The foaming was due to water release, at low temperature, in the polymeric matrix before ceramic conversion, mainly operated by hydrated sodium phosphate, used as a secondary filler. This additive proved to be “multifunctional”, since it additionally favored the phase development, by the formation of a liquid phase upon firing, in turn promoting the ionic interdiffusion. The liquid phase was promoted also by the incorporation of powders of a glass crystallizing itself in wollastonite and diopside, with significant improvements in both structural integrity and crushing strength. The biological characterization of polymer-derived wollastonite-diopside foams, to assess the bioactivity of the samples, was performed by means of a cell culture test. The MTT assay and LDH activity tests gave positive results in terms of cell viability.

  17. Feasibility and tailoring of bioactive glass-ceramic scaffolds with gradient of porosity for bone grafting.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Baino, Francesco; Verné, Enrica

    2010-05-01

    The aim of this research study is the preparation and characterization of graded glass-ceramic scaffolds that are able to mimic the structure of the natural bone tissue, formed by cortical and cancellous bone. The material chosen for the scaffolds preparation is a glass belonging to the system SiO( 2)-P(2)O(5)-CaO-MgO-Na( 2)O-K(2)O (CEL2). The glass was synthesized by a conventional melting-quenching route, ground, and sieved to obtain powders of specific size. The scaffolds were fabricated using different methods: polyethylene burn-off, sponge replication, a glazing-like technique, and combinations of these methods. The scaffolds were characterized through morphological observations, density measurements, volumetric shrinkage, mechanical tests, and in vitro bioactivity tests. The features of the scaffolds prepared using the different methods were compared in terms of morphological structure, pores content, and mechanical strength. The proposed scaffolds effectively mimic the cancellous/cortical bone system in terms of structure, porosity, and mechanical strength, and they exhibit a highly bioactive behavior. Therefore, these graded grafts have a great potential for biomedical applications and can be successfully proposed for the substitution of load-bearing bone portions.

  18. GC-MS analysis of bioactive compounds in the methanol extract of Clerodendrum viscosum leaves

    Directory of Open Access Journals (Sweden)

    Pritipadma Panda

    2015-01-01

    Full Text Available Background: Clerodendrum viscosum is commonly found in India and Bangladesh. Previously, various parts of this plant were reported for treatment of different types of diseases and there was no report on GC-Ms analysis. Objective: To analyze and characterize the phytochemical compounds of methanol extract of Clerodendrum viscosum using GC-MS. Materials and Methods: The preliminary phytochemical screening of methanol extract was carried out according to standard procedures described in WHO guidelines. Various bioactive compounds of the extract were determined by GC-MS technique. Results: The presence of steroids, triterpenoids, alkaloids, saponins, flavonoids, tannins and carbohydrate was found on phytochemical screening of methanol extract of the leaves. The GC-MS analysis showed 16 peaks of different phytoconstituents namely acetamide,N,N-carbonylbis-, 4-Pyranone,2,3-dihydro-, alpha-D-Galactofuranoside, methyl 2,3,5,6-tetra-O-methyl-, Glycerin, Xylitol, N,N-Dimethylglycine, 4H-Pyran-4-one,2,3-dihydro-3, 5-dihydroxy-6-methyl-, Benzofuran,2,3-dihydro-, 5-Hydroxymethylfurfural, 2(1HPyrimidinone,1-methyl-, 2,4-Dihydroxy-5,6-dimethylpyrimidine, 3-Deoxy-d-mannoic lactone, 1,3-Methylene-d-arabitol, Orcinol, n-Hexadecanoic acid and Phenol,4,4′-(1-methyl ethylidene bis etc. Conclusion: The bioactive compounds present in the methanol extract of Clerodendrum viscosum suggest the application of this extract for the treatment of various diseases by the aborigine tribes.

  19. Composition dependent mechanical behaviour of S53P4 bioactive glass putty for bone defect grafting.

    Science.gov (United States)

    van Gestel, N A P; Hulsen, D J W; Geurts, J; Hofmann, S; Ito, K; Arts, J J; van Rietbergen, B

    2017-05-01

    To improve the handling properties of S53P4 bioactive glass granules for clinical applications, bioactive glass putty formulations were developed. These formulations contain both granules and a synthetic binder to form an injectable material that is easy to shape. To explore its applicability in load-bearing bone defect grafting, the relation between the putty composition and its mechanical behaviour was assessed in this study. Five putty formulations with variations in synthetic binder and granule content were mechanically tested in confined compression. The results showed that the impaction strains significantly decreased and the residual strains significantly increased with an increasing binder content. The stiffness of all tested formulations was found to be in the same range as the reported stiffness of cancellous bone. The measured creep strains were low and no significant differences between formulations were observed. The stiffness significantly increased when the samples were subjected to a second loading stage. The residual strains calculated from this second loading stage were also significantly different from the first loading stage, showing an increasing difference with an increasing binder content. Since residual strains are detrimental for graft layer stability in load-bearing defects, putty compositions with a low binder content would be most beneficial for confined, load-bearing bone defect grafting.

  20. Combining collagen and bioactive glasses for bone tissue engineering: a review.

    Science.gov (United States)

    Sarker, Bapi; Hum, Jasmin; Nazhat, Showan N; Boccaccini, Aldo R

    2015-01-28

    Collagen (COL), the most abundant protein in mammals, offers a wide range of attractive properties for biomedical applications which are the result of its biocompatibility and high affinity to water. However, due to the relative low mechanical properties of COL its applications are still limited. To tackle this disadvantage of COL, especially in the field of bone tissue engineering, COL can be combined with bioactive inorganic materials in a variety of composite systems. One of such systems is the collagen-bioactive glass (COL-BG) composite family, which is the theme of this Review. BG fillers can increase compressive strength and stiffness of COL-based structures. This article reviews the relevant literature published in the last 15 years discussing the fabrication of a variety of COL-BG composites. In vitro cell studies have demonstrated the osteogenic, odontogenic, and angiogenic potential of these composite systems, which has been confirmed by stimulating specific biochemical indicators of relevant cells. Bony integration and connective tissue vessel formation have also been studied by implantation of the composites in vivo. Areas of future research in the field of COL-BG systems, based on current challenges, and gaps in knowledge are highlighted.

  1. Microbiological features and bioactivity of a fermented manure product (preparation 500) used in biodynamic agriculture.

    Science.gov (United States)

    Giannattasio, Matteo; Vendramin, Elena; Fornasier, Flavio; Alberghini, Sara; Zanardo, Marina; Stellin, Fabio; Concheri, Giuseppe; Stevanato, Piergiorgio; Ertani, Andrea; Nardi, Serenella; Rizzi, Valeria; Piffanelli, Pietro; Spaccini, Riccardo; Mazzei, Pierluigi; Piccolo, Alessandro; Squartini, Andrea

    2013-05-01

    The fermented manure derivative known as Preparation 500 is traditionally used as a field spray in biodynamic agriculture for maintaining and increasing soil fertility. This work aimed at characterizing the product from a microbiological standpoint and at assaying its bioactive properties. The approach involved molecular taxonomical characterization of the culturable microbial community; ARISA fingerprints of the total bacteria and fungal communities; chemical elemental macronutrient analysis via a combustion analyzer; activity assays for six key enzymes; bioassays for bacterial quorum sensing and chitolipooligosaccharide production; and plant hormonelike activity. The material was found to harbor a bacterial community of 2.38 × 10(8) CFU/g dw dominated by Grampositives with minor instances of Actinobacteria and Gammaproteobacteria. ARISA showed a coherence of bacterial assemblages in different preparation lots of the same year in spite of geographic origin. Enzymatic activities showed elevated values of beta-glucosidase, alkaline phosphatase, chitinase, and esterase. The preparation had no quorum sensing-detectable signal, and no rhizobial nod gene-inducing properties, but displayed a strong auxin-like effect on plants. Enzymatic analyses indicated a bioactive potential in the fertility and nutrient cycling contexts. The IAA activity and microbial degradation products qualify for a possible activity as soil biostimulants. Quantitative details and possible modes of action are discussed.

  2. Development of highly bioactive and mechanically strong starch thermoplastic/Bioglass {sup trademark} composite biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Leonor, I.B.; Sousa, R.A.; Cunha, A.M.; Reis, R.L. [Minho Univ., Braga (Portugal). Dept. of Polymer Engineering; Zhong, Z.P.; Greenspan, D. [US Biomaterials Corp., Alachua FL (United States)

    2001-07-01

    Bioglass {sup trademark} 45S5 (BG45S5), with a granulometric distribution between 38 and 53 {mu}m, was incorporated into a biodegradable starch based polymers (starch/ethylene-vinyl alcohol blends - SEVA-C) aiming to develop composites with adequate properties for bone replacement applications. Composites with 10 and 40% (by weight) of Bioglass {sup trademark} 45S5 were compound by twin-screw extrusion (TSE) and then injection moulded. SEVA-C/ hydroxylapatite (HA) composites were also produced using the same methodology for comparative purposes. The mechanical properties of the composites were evaluated in tensile tests, and their bioactivity was assessed by analysing the respective surfaces scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS) after different immersion periods in a simulated body fluid (SBF). The biodegradability of the composites was also assessed. The results obtained indicated the SEVA-C/Bioglass {sup trademark} composites present a slightly higher stiffness and strength (a modulus of 3.8 GPa and UTS of 38.6 GPa) than SEVA-C/HA composites. The bioactivity of SEVA-C composites becomes relevant for BG45S5 amounts of only 10% wt. The composites were biodegradable being the results correlated with the correspondent materials compositions. (orig.)

  3. Chemoecological Screening Reveals High Bioactivity in Diverse Culturable Portuguese Marine Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Vitor M. Vasconcelos

    2013-04-01

    Full Text Available Marine cyanobacteria, notably those from tropical regions, are a rich source of bioactive secondary metabolites. Tropical marine cyanobacteria often grow to high densities in the environment, allowing direct isolation of many secondary metabolites from field-collected material. However, in temperate environments culturing is usually required to produce enough biomass for investigations of their chemical constituents. In this work, we cultured a selection of novel and diverse cyanobacteria isolated from the Portuguese coast, and tested their organic extracts in a series of ecologically-relevant bioassays. The majority of the extracts showed activity in at least one of the bioassays, all of which were run in very small scale. Phylogenetically related isolates exhibited different activity profiles, highlighting the value of microdiversity for bioprospection studies. Furthermore, LC-MS analyses of selected active extracts suggested the presence of previously unidentified secondary metabolites. Overall, the screening strategy employed here, in which previously untapped cyanobacterial diversity was combined with multiple bioassays, proved to be a successful strategy and allowed the selection of several strains for further investigations based on their bioactivity profiles.

  4. Chemoecological screening reveals high bioactivity in diverse culturable Portuguese marine cyanobacteria.

    Science.gov (United States)

    Leão, Pedro N; Ramos, Vitor; Gonçalves, Patrício B; Viana, Flávia; Lage, Olga M; Gerwick, William H; Vasconcelos, Vitor M

    2013-04-22

    Marine cyanobacteria, notably those from tropical regions, are a rich source of bioactive secondary metabolites. Tropical marine cyanobacteria often grow to high densities in the environment, allowing direct isolation of many secondary metabolites from field-collected material. However, in temperate environments culturing is usually required to produce enough biomass for investigations of their chemical constituents. In this work, we cultured a selection of novel and diverse cyanobacteria isolated from the Portuguese coast, and tested their organic extracts in a series of ecologically-relevant bioassays. The majority of the extracts showed activity in at least one of the bioassays, all of which were run in very small scale. Phylogenetically related isolates exhibited different activity profiles, highlighting the value of microdiversity for bioprospection studies. Furthermore, LC-MS analyses of selected active extracts suggested the presence of previously unidentified secondary metabolites. Overall, the screening strategy employed here, in which previously untapped cyanobacterial diversity was combined with multiple bioassays, proved to be a successful strategy and allowed the selection of several strains for further investigations based on their bioactivity profiles.

  5. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Daniel [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States); Higuita, Natalia [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States); Grupo de Investigacion en Ingenieria Biomedica CES-EIA (GIBEC), Carrera 43 A No. 52 Sur - 99, Sabaneta (Colombia); Garcia, Felipe [Grupo de Investigacion en Ingenieria Biomedica CES-EIA (GIBEC), Carrera 43 A No. 52 Sur - 99, Sabaneta (Colombia); Ferrell, Nicholas [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States); Hansford, Derek J. [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States)], E-mail: hansford.4@osu.edu

    2008-04-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO{sub 2} atmosphere, allowing the formation of CaCO{sub 3}. The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO{sub 2} atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH){sub 2} on C-, and CaCO{sub 3} on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications.

  6. In Situ Laser Coating of Calcium Phosphate on TC4 Surface for Enhancing Bioactivity

    Institute of Scientific and Technical Information of China (English)

    DENG Chi; WANG Yong; ZHANG Ya-ping; GAO Jia-cheng

    2007-01-01

    Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight,toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 ·2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m-2 and a scanning velocity of 10. 5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2P2O7, and other Ca-P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.

  7. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.

    Science.gov (United States)

    Asaoka, Teruo; Ohtake, Shoji; Furukawa, Katsuko S; Tamura, Akito; Ushida, Takashi

    2013-11-01

    Porous beads of bioactive ceramics such as hydroxyapatite (HAp) and tribasic calcium phosphate (TCP) are considered a promising scaffold for cultivating bone cells. To realize this, α-TCP/HAp functionally graded porous beads are fabricated with two main purposes: to maintain the function of the scaffold with sufficient strength up to the growth of new bone, and is absorbed completely after the growth. HAp is a bioactive material that has both high strength and strong tissue-adhesive properties, but is not readily absorbed by the human body. On the contrary, α-TCP is highly bioabsorbable, resulting in a scaffold that is absorbed before it is completely replaced by bone. In this study, we produced porous, bead-shaped carriers as scaffolds for osteoblast culture. To control the solubility in vivo, the fabricated beads contained α-TCP at the center and HAp at the surface. Cell adaptability of these beads for bone tissue engineering was confirmed in vitro. It was found that α-TCP/HAp bead carriers exhibit low toxicity in the initial stages of cell seeding and cell adhesion. The presence of HAp in the composite bead form effectively increased ALP activity. In conclusion, it is suggested that these newly developed α-TCP/HAp beads are a promising tool for bone tissue engineering.

  8. Volatile constituents, inorganic elements and primary screening of bioactivity of black coral cigarette holders.

    Science.gov (United States)

    Bai, Xueting; Chen, Yicun; Chen, Weizhou; Lei, Huaping; Shi, Ganggang

    2011-01-01

    Black corals (BC) have been used for a long time in Chinese medicine, and may have some pharmaceutical functions when used as material for cigarette holders in southeast China. This study is aimed to investigate the bioactivities of volatile constituents in BC and to explore the folklore behind the use of BC cigarette holders (BCCHs). We extracted the volatile constituents of BC by supercritical fluid extraction (SFE) with carbon dioxide (CO₂-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 15 components were reliably identified in BC and found to be biologically active. These included triethyl phosphate, butylated hydroxytoluene, cedrol, n-hexadecanoic acid, squalene, and cholesterol. Meanwhile 13 inorganic elements (P, Ca, Mg, S, B, Si, Fe, Cu, Zn, Ba, etc.) were determined by inductively coupled plasma spectrometer (ICPS). In the bioactivity tests, the BC extract (BCE) showed a scavenging activity of 2,2-diphenyl-1-picrylhydrazyl free radicals and hydroxyl radicals by phenanthroline-Fe (II) oxidation and moderate inhibition of Gram-positive microorganisms. The antioxidant and antimicrobial activities of BC, which are related to the active chemical composition, may explain the perceived benefit for cigarette smokers who use BCCHs.

  9. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of); Lim, Yun Kyong; Kook, Joong-Ki [Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Cho, Dong-Lyun [School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju (Korea, Republic of); Kim, Byung Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of)

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH{sub 2} of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  10. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    Science.gov (United States)

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.

  11. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation products — bioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  12. Biomimetic bonelike composites and novel bioactive glasscoatings

    Energy Technology Data Exchange (ETDEWEB)

    Tomsia, A.P.; Saiz, E.; Song, J.; Bertozzi, C.R.

    2005-06-01

    Metallic orthopaedic implants have been successfully used for decades but they have serious shortcomings related to their osseointegration and the fact that their mechanical properties do not match those of bone. This paper reviews recent advances in the fabrication of novel coatings to improve implant osseointegration and in the development of a new generation of hybrid organic-inorganic implant materials specifically designed for orthopaedic applications.

  13. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Klaus Reichmann

    2015-12-01

    Full Text Available The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  14. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection.

    Science.gov (United States)

    Posti, Jussi P; Piitulainen, Jaakko M; Hupa, Leena; Fagerlund, Susanne; Frantzén, Janek; Aitasalo, Kalle M J; Vuorinen, Ville; Serlo, Willy; Syrjänen, Stina; Vallittu, Pekka K

    2015-03-01

    This case study describes the properties of an early development stage bioactive glass containing fiber-reinforced composite calvarial implant with histology that has been in function for two years and three months. The patient is a 33-year old woman with a history of substance abuse, who sustained a severe traumatic brain injury later unsuccessfully treated with an autologous bone flap and a custom-made porous polyethylene implant. She was thereafter treated with developmental stage glass fiber-reinforced composite - bioactive glass implant. After two years and three months, the implant was removed due to an implant site infection. The implant was analyzed histologically, mechanically, and in terms of chemistry and dissolution of bioactive glass. Mechanical integrity of the load bearing fiber-reinforced composite part of the implant was not affected by the in vivo period. Bioactive glass particles demonstrated surface layers of hydroxyapatite like mineral and dissolution, and related increase of pH was considerably less after two and three months period than that for fresh bioactive glass. There was a difference in the histology of the tissues inside the implant areas near to the margin of the implant that absorbed blood during implant installation surgery, showed fibrous tissue with blood vessels, osteoblasts, collagenous fibers with osteoid formation, and tiny clusters of more mature hard tissue. In the center of the implant, where there was less absorbed blood, only fibrous tissue was observed. This finding is in line with the combined positron emission tomography - computed tomography examination with (18F)-fluoride marker, which demonstrated activity of the mineralizing bone by osteoblasts especially at the area near to the margin of the implant 10 months after implantation. Based on these promising reactions found in the bioactive glass containing fiber-reinforced composite implant that has been implanted for two years and three months, calvarial

  15. A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol-gel process.

    Science.gov (United States)

    Jun, Shin-Hee; Lee, Eun-Jung; Yook, Se-Won; Kim, Hyoun-Ee; Kim, Hae-Won; Koh, Young-Hag

    2010-01-01

    A bioactive coating consisting of a silica xerogel/chitosan hybrid was applied to Ti at room temperature as a novel surface treatment for metallic implants. A crack-free thin layer (coated on Ti with a chitosan content of >30 vol.% through a sol-gel process. The coating layer became more hydrophilic with increasing silica xerogel content, as assessed by contact angle measurement. The hybrid coatings afforded excellent bone bioactivity by inducing the rapid precipitation of apatite on their surface when immersed in a simulated body fluid (SBF). Osteoblastic cells cultured on the hybrid coatings were more viable than those on a pure chitosan coating. Furthermore, the alkaline phosphate activity of the cells was significantly higher on the hybrid coatings than on a pure chitosan coating, with the highest level being achieved on the hybrid coating containing 30% chitosan. These results indicate that silica xerogel/chitosan hybrids are potentially useful as room temperature bioactive coating materials on titanium-based medical implants.

  16. Review and the state of the art: Sol-gel and melt quenched bioactive glasses for tissue engineering.

    Science.gov (United States)

    Kaur, Gurbinder; Pickrell, Gary; Sriranganathan, Nammalwar; Kumar, Vishal; Homa, Daniel

    2016-08-01

    Biomaterial development is currently the most active research area in the field of biomedical engineering. The bioglasses possess immense potential for being the ideal biomaterials due to their high adaptiveness to the biological environment as well as tunable properties. Bioglasses like 45S5 has shown great clinical success over the past 10 years. The bioglasses like 45S5 were prepared using melt-quenching techniques but recently porous bioactive glasses have been derived through sol-gel process. The synthesis route exhibits marked effect on the specific surface area, as well as degradability of the material. This article is an attempt to provide state of the art of the sol-gel and melt quenched bioactive bioglasses for tissue regeneration. Fabrication routes for bioglasses suitable for bone tissue engineering are highlighted and the effect of these fabrication techniques on the porosity, pore-volume, mechanical properties, cytocompatibilty and especially apatite layer formation on the surface of bioglasses is analyzed in detail. Drug delivery capability of bioglasses is addressed shortly along with the bioactivity of mesoporous glasses. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1248-1275, 2016.

  17. Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Chang, Jiang; Xiao, Yin

    2013-09-01

    In this article, we, for the first time, investigated mesoporous bioactive glass scaffolds for the delivery of vascular endothelial growth factor. We have found that mesoporous bioactive glass scaffolds have significantly higher loading efficiency and more sustained release of vascular endothelial growth factor than non-mesoporous bioactive glass scaffolds. In addition, vascular endothelial growth factor delivery from mesoporous bioactive glass scaffolds has improved the viability of endothelial cells. The study has suggested that mesopore structures in mesoporous bioactive glass scaffolds play an important role in improving the loading efficiency, decreasing the burst release, and maintaining the bioactivity of vascular endothelial growth factor, indicating that mesoporous bioactive glass scaffolds are an excellent carrier of vascular endothelial growth factor for potential bone tissue engineering applications.

  18. The Effectivity of Marine Bio-activator and Surimi Liquid Waste Addition of Characteristics Liquid Organic Fertilizer from Sargassum sp.

    Directory of Open Access Journals (Sweden)

    Putri Wening Ratrinia

    2016-12-01

    Full Text Available Organic fertilizer is highly recommended for soil and plant because it can improve the productivity and repair physical, chemical, and biological of soil. Sargassum sp. and surimi liquid wastes contain organic matter and nutrient needed by plants and soils. The addition of marine bio-activator which contains bacterial isolates from litter mangrove serves to accelerate the composting time and increases the activity of microorganisms in the decomposition process. The purpose of this study was to determine optimum time and the best formulation of decomposition process organic fertilizer. Raw materials used a waste of seaweed Sargassum sp., marine bio-activator and surimi liquid waste from catfish (Clarias sp.. The research was conducted six treatments control, Sargassum sp. + marine bio-activator, surimi liquid waste , Sargassum sp. + marine bio-activator + surimi liquid waste 80%, 90%, 100%. All treatments were fermented for 9 days and analysed the C-organic, total N, C/N ratio, P2 O5 , K2 O on days 0, 3, 6 and 9. The results showed the optimum fermentation period was on the 6th day. The most optimum concentration of surimi liquid waste added was at a concentration of 90%, with characteristics of the products was C-organic 0.803 ± 0.0115 %, total N 740.063 ± 0.0862 ppm, C/N ratio 10.855 ± 0.1562, P2 O5 425.603 ± 0.2329 ppm, K2 O 2738.627 ± 0.2836 ppm.

  19. The Effectivity of Marine Bio-activator and Surimi Liquid Waste Addition of Characteristics Liquid Organic Fertilizer from Sargassum sp.

    Directory of Open Access Journals (Sweden)

    Putri Wening Ratrinia

    2017-02-01

    Full Text Available AbstractOrganic fertilizer is highly recommended for soil and plant because it can improve the productivity and repair physical, chemical, and biological of soil. Sargassum sp. and surimi liquid wastes contain organic matter and nutrient needed by plants and soils. The addition of marine bio-activator which contains bacterial isolates from litter mangrove serves to accelerate the composting time and increases the activity of microorganisms in the decomposition process. The purpose of this study was to determine optimum time and the best formulation of decomposition process organic fertilizer. Raw materials used a waste of seaweed Sargassum sp., marine bio-activator and surimi liquid waste from catfish (Clarias sp.. The research was conducted six treatments control, Sargassum sp. + marine bio-activator, surimi liquid waste , Sargassum sp. + marine bio-activator + surimi liquid waste 80%, 90%, 100%. All treatments were fermented for 9 days and analysed the C-organic, total N, C/N ratio, P2O5, K2O on days 0, 3, 6 and 9. The results showed the optimum fermentation period was on the 6th day. The most optimum concentration of surimi liquid waste added was at a concentration of 90%, with characteristics of the products was C-organic 0.803±0.0115%, total N 740.063±0.0862 ppm, C/N ratio 10.855±0.1562, P2O5 425.603±0.2329 ppm, K2O 2738.627±0.2836 ppm.

  20. The Stability of Bioactive Compounds in Spaceflight Foods

    Science.gov (United States)

    Cooper, M. R.; Douglas, G. L.

    2017-01-01

    The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature

  1. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  2. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.

    1997-06-01

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  3. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

    Directory of Open Access Journals (Sweden)

    Bill G. X. Zhang

    2014-07-01

    Full Text Available Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.

  4. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis

    Directory of Open Access Journals (Sweden)

    Rajan Choudhary

    2015-06-01

    Full Text Available The present study focused on the synthesis of calcium magnesium silicate (akermanite, Ca2MgSi2O7 using eggshell biowaste (as calcium source, magnesium nitrate and tetraethyl orthosilicate (TEOS as starting materials. Sol–gel combustion method was adopted to obtain calcium magnesium silicate. Citric acid was used as a fuel (reducing agent and nitrate ions present in the metal nitrates acts as an oxidizing agent during combustion process. The characterization of synthesized calcium magnesium silicate was carried out by powder X-ray diffraction (XRD, Fourier transform infrared (FTIR and scanning electron microscopy (SEM techniques. Calcium magnesium silicate crystallite size was observed in nano regime which can effectively mimic natural bone apatite composition. In-vitro bioactivity was investigated by immersing calcium magnesium silicate pellet in simulated body fluid (SBF for three weeks. Results show effective deposition of crystallized hydroxyapatite (HAP layer on its surface and predicting its possibilities for applications in hard tissue regeneration.

  5. Study on the surface bioactivity of novel magnetic A W glass ceramic in vitro

    Science.gov (United States)

    Li, Guangda; Zhou, Dali; Xue, Ming; Yang, Weizhong; Long, Qin; Cao, Bin; Feng, Dange

    2008-11-01

    Novel magnetic A-W glass ceramic (M GC) in the system MgO-CaO-SiO 2-P 2O 5-CaF 2-MnO-ZnO-Fe 2O 3 was synthesized by doping Mn-Zn ferrite to apatite-wollastonite glass ceramic. The phase composition was investigated by XRD. The magnetic property was measured by VSM. The in vitro bioactivity was tested by immersion in simulated body fluid. The result shows apatite, wollastonite, fluorapatite and Zn 0.75Mn 0.75Fe 1.5O 4 are the main phases of M GC. Under a magnetic field of 10,000 Oe, the saturation magnetization and coercive force of the material are 6 emu g - and 180 Oe, respectively. After soaking in SBF for 14 days, the surface of M GC is coated by a hydroxycarbonate apatite layer.

  6. Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells

    Science.gov (United States)

    Ishihara, Kazuhiko; Chen, Weixin; Liu, Yihua; Tsukamoto, Yuriko; Inoue, Yuuki

    2016-01-01

    Abstract Multifunctional polymeric nanoparticles are materials with great potential for a wide range of biomedical applications. For progression in this area of research, unfavorable interactions of these nanoparticles with proteins and cells must be avoided in biological environments, for example, through treatment of the nanoparticle surfaces. Construction of an artificial cell membrane structure based on polymers bearing the zwitterionic phosphorylcholine group can prevent biological reactions at the surface effectively. In addition, certain bioactive molecules can be immobilized on the surface of the polymer to generate enough affinity to capture target biomolecules. Furthermore, entrapment of inorganic nanoparticles inside polymeric matrices enhances the nanoparticle functionality significantly. This review summarizes the preparation and characterization of cytocompatible and multifunctional polymeric nanoparticles; it analyzes the efficiency of their fluorescence function, the nature of the artificial cell membrane structure, and their performance as in-cell devices; and finally, it evaluates both their chemical reactivity and effects in cells. PMID:27877883

  7. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys.

    Science.gov (United States)

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2014-07-01

    An antibacterial and bioactive titanium (Ti)-based material was developed for use as a bone substitute under load-bearing conditions. As previously reported, Ti metal was successively subjected to NaOH, CaCl2, heat, and water treatments to form a calcium-deficient calcium titanate layer on its surface. When placed in a simulated body fluid (SBF), this bioactive Ti formed an apatite layer on its surface and tightly bonded to bones in the body. To address concerns regarding deep infection during orthopedic surgery, Ag(+) ions were incorporated on the surface of this bioactive Ti metal to impart antibacterial properties. Ti metal was first soaked in a 5 M NaOH solution to form a 1 μm-thick sodium hydrogen titanate layer on the surface and then in a 100 mM CaCl2 solution to form a calcium hydrogen titanate layer via replacement of the Na(+) ions with Ca(2+) ions. The Ti material was subsequently heated at 600 °C for 1 h to transform the calcium hydrogen titanate into calcium titanate. This heat-treated titanium metal was then soaked in 0.01-10 mM AgNO3 solutions at 80 °C for 24 h. As a result, 0.1-0.82 at.% Ag(+) ions and a small amount of H3O(+) ions were incorporated into the surface calcium titanate layers. The resultant products formed apatite on their surface in an SBF, released 0.35-3.24 ppm Ag(+) ion into the fetal bovine serum within 24 h, and exhibited a strong antibacterial effect against Staphylococcus aureus. These results suggest that the present Ti metals should exhibit strong antibacterial properties in the living body in addition to tightly bonding to the surrounding bone through the apatite layer that forms on their surfaces in the body.

  8. Review: Mycoendophytes in medicinal plants: Diversity and bioactivities

    Directory of Open Access Journals (Sweden)

    MUDASIR DAR

    2012-07-01

    Full Text Available Rai M, Gade A, Rathod D, Dar M, Varma A. 2012. Review: Mycoendophytes in medicinal plants: Diversity and bioactivities. Nusantara Bioscience 4: 86-96. Endophytes are microorganisms that reside in internal tissues of living plants without causing any negative effect. These offer tremendous potential for the exploitation of novel and eco-friendly secondary metabolites used in medicine, the pharmaceutical industry and agriculture. The present review is focused on diversity of endophytes, current national and international bioactive secondary metabolite scenario and future prospects. Endophytic fungi as novel source of potentially useful medicinal compounds are discussed along with the need to search for new and more effective agents from endophytes to combat disease problems.

  9. Chemistry and Functionality of Bioactive Compounds Present in Persimmon

    Directory of Open Access Journals (Sweden)

    Shazia Yaqub

    2016-01-01

    Full Text Available Extensive research has related the consumption of persimmon with the reduced risk of various diseases and particularly highlighted the presence of bioactive phenolic compounds for their therapeutic properties. Major phenolic compounds present in persimmon are ferulic acid, p-coumaric acid, and gallic acid. β-Cryptoxanthin, lycopene, β-carotene, zeaxanthin, and lutein are important carotenoids having antioxidant potential. They are important to prevent oxidation of low-density lipoproteins, safeguard beta cells of the pancreas, and reduce cardiovascular diseases, cancer, diabetes mellitus, and damage caused by chronic alcohol consumption. In this paper, the chemistry and health benefits of bioactive compounds present in persimmon are reviewed to encourage impending applications and to facilitate further research activities.

  10. Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans

    DEFF Research Database (Denmark)

    Adhikari, Khem B; Laursen, Bente B; Gregersen, Per L;

    2013-01-01

    Scope Benzoxazinoids, which are natural compounds recently identified in mature whole grain cereals and bakery products, have been suggested to have a range of pharmacological properties and health-protecting effects. There are no published reports concerned with the absorption and metabolism...... of bioactive benzoxazinoids in humans. Methods and results The absorption, metabolism, and excretion of ten different dietary benzoxazinoids were examined by LC-MS/MS by analyzing plasma and urine from 20 healthy human volunteers after daily intake of 143 μmol of total benzoxazinoids from rye bread and rye...... glycosides, the reduction of hydroxamic acid glycosides, glucuronidation, and sulfation were the main mechanisms of the absorption and metabolism of benzoxazinoids. Conclusion These results indicate that following ingestion in healthy humans, a range of unmetabolized bioactive dietary benzoxazinoids...

  11. Bioactive compounds of sea cucumbers and their therapeutic effects

    Science.gov (United States)

    Shi, Shujuan; Feng, Wenjing; Hu, Song; Liang, Shixiu; An, Nina; Mao, Yongjun

    2016-05-01

    Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.

  12. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  13. Preparation of bioactive porous HA/PCL composite scaffolds

    Science.gov (United States)

    Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J.

    2008-12-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  14. Bioactives from fruit processing wastes: Green approaches to valuable chemicals.

    Science.gov (United States)

    Banerjee, Jhumur; Singh, Ramkrishna; Vijayaraghavan, R; MacFarlane, Douglas; Patti, Antonio F; Arora, Amit

    2017-06-15

    Fruit processing industries contribute more than 0.5billion tonnes of waste worldwide. The global availability of this feedstock and its untapped potential has encouraged researchers to perform detailed studies on value-addition potential of fruit processing waste (FPW). Compared to general food or other biomass derived waste, FPW are found to be selective and concentrated in nature. The peels, pomace and seed fractions of FPW could potentially be a good feedstock for recovery of bioactive compounds such as pectin, lipids, flavonoids, dietary fibres etc. A novel bio-refinery approach would aim to produce a wider range of valuable chemicals from FPW. The wastes from majority of the extraction processes may further be used as renewable sources for production of biofuels. The literature on value addition to fruit derived waste is diverse. This paper presents a review of fruit waste derived bioactives. The financial challenges encountered in existing methods are also discussed.

  15. Bioactive proteins in human milk: mechanisms of action.

    Science.gov (United States)

    Lönnerdal, Bo

    2010-02-01

    Human milk contains a multitude of bioactive proteins, with very diverse functions. Some of these proteins are involved in the synthesis and expression of milk, but the majority appears to have evolved to provide physiological activities in the breast-fed infant. These activities are exerted by a wide variety of mechanisms and have largely been unraveled by in vitro studies. To be active in the gastrointestinal tract, these proteins must be able to resist proteolytic degradation, at least for some time. We have evaluated the human milk proteins lactoferrin, haptocorrin, alpha(1)-antitrypsin, and transforming growth factor -beta in an in vitro digestion model, mimicking the conditions of the infant gastrointestinal milieu. These bioactive proteins are resistant against proteolysis and can remain intact or as larger fragments through passage of the gastrointestinal tract. In vitro digestibility assays can be helpful to assess which human milk proteins can resist proteolysis and to what extent.

  16. Azadirachta indica Mediated Bioactive Lyocell Yarn: Chemical and Colour Characterization

    Directory of Open Access Journals (Sweden)

    B. H. Patel

    2014-01-01

    Full Text Available The study deals with preparing aesthetic textiles using methanolic extract of Azadirachta indica leaves. The extract with metallic and natural mordents was utilized to create various shades on lyocell yarn using exhaust technique of dyeing. Aesthetic values of dyed yarns were analyzed in terms of colourimetric parameters, that is, CIE L*  a*  b* and colour fastness. The attachment of Azadirachta indica compounds has been confirmed by using infrared spectroscopy (IR analysis. The dyed samples exhibit moderate to good fastness properties. The study showed that lyocell yarn treated at 15% (owf methanolic extract of Azadirachta indica leaves can be utilized as effective bioactive textiles. Azadirachta indica is an alternative to synthetic antimicrobial agents. This bioactive yarn can be used in fashion as well as in medicinal industry.

  17. Enhanced Antifungal Bioactivity of Coptis Rhizome Prepared by Ultrafining Technology

    Directory of Open Access Journals (Sweden)

    Ping-Chung Kuo

    2014-01-01

    Full Text Available The aim of this study was to identify and quantify the bioactive constituents in the methanol extracts of Coptis Rhizome prepared by ultrafining technology. The indicator compound was identified by spectroscopic method and its purity was determined by HPLC. Moreover, the crude extracts and indicator compound were examined for their ability to inhibit the growth of Rhizoctonia solani Kühn AG-4 on potato dextrose agar plates. The indicator compound is a potential candidate as a new plant derived pesticide to control Rhizoctonia damping-off in vegetable seedlings. In addition, the extracts of Coptis Rhizome prepared by ultrafining technology displayed higher contents of indicator compound; they not only improve their bioactivity but also reduce the amount of the pharmaceuticals required and, thereby, decrease the environmental degradation associated with the harvesting of the raw products.

  18. Evaluation of bioactive glass and demineralized freeze dried bone allograft in the treatment of periodontal intraosseous defects: A comparative clinico-radiographic study

    Directory of Open Access Journals (Sweden)

    Kishore Kumar Katuri

    2013-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the efficacy of demineralized freeze dried bone allograft (DFDBA and bioactive glass by clinically and radiographically in periodontal intrabony defects for a period of 12 months. Materials and Methods: Ten systemically healthy patients diagnosed with chronic periodontitis, with radiographic evidence of at least a pair of contralateral vertical osseous defects were included in this study. Defect on one-side is treated with DFDBA and the other side with bioactive glass. Clinical and radiographic measurements were made at baseline 6 month and 12 month after the surgery. Results: Compared to baseline, the 12 month results indicated that both treatment modalities resulted in significant changes in all clinical parameters (gingival index, probing depth, clinical attachment level (CAL and radiographic parameters (bone fill; P < 0.001FNx01. However, sites treated with DFDBA exhibited statistically significantly more changes compared to the bioactive glass in probing depth reduction (2.5 ± 0.1 mm vs. 1.8 ± 0.1 mm CAL gain 2.4 ± 0.1 mm versus 1.7 ± 0.2 mm; ( P < 0.001FNx01. At 12 months, sites treated with bioactive glass exhibited 56.99% bone fill and 64.76% bone fill for DFDBA sites, which is statistically significant ( P < 0.05FNx01. Conclusion: After 12 months, there was a significant difference between the two materials with sites grafted with DFDBA showing better reduction in probing pocket depth, gain in CAL and a greater percentage of bone fill when compared to that of bioactive glass.

  19. Bioactive titanate layers formed on titanium and its alloys by simple chemical and heat treatments.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device.

  20. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Milovac, Dajana, E-mail: dmilovac@fkit.hr [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia); Gallego Ferrer, Gloria [Center for Biomaterials and Tissue Engineering, Polytechnic University of Valencia (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Ivankovic, Marica; Ivankovic, Hrvoje [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia)

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200 °C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88 MPa) and the elastic modulus (15.5 MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffolds with interconnected pores were prepared. • Hydrothermal transformation of cuttlefish bone and vacuum impregnation were used. • A material with improved mechanical properties was obtained. • The in vitro mineralization of calcium phosphate was observed.

  1. Enrichment of bioactive compounds in microalgae for aquaculture

    OpenAIRE

    Fernandes, Tomásia Micaela Gomez

    2015-01-01

    Microalgae are promising microorganisms for the production of food and fine chemicals. Several species of microalgae are used in aquaculture with the purpose of transfer bioactive compounds up to the aquatic food chain. The main objective of this project was to develop a stress–inducement strategy in order to enhance the biochemical productivity of Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp. for aquaculture purposes having in account their growth and organizational differen...

  2. Chemical Constituents and Bioactivities of Clinacanthus nutans Aerial Parts

    OpenAIRE

    Shu-Fen Tu; Rosa Huang Liu; Yuan-Bin Cheng; Yu-Ming Hsu; Ying-Chi Du; Mohamed El-Shazly; Yang-Chang Wu; Fang-Rong Chang

    2014-01-01

    Four new sulfur-containing compounds, named clinamides A-C (1–3), and 2-cis-entadamide A (4), were isolated together with three known compounds from the bioactive ethanol extract of the aerial parts of Clinacanthus nutans. These secondary metabolites possess sulfur atoms and acrylamide functionalities. The structures of the isolated components were established by interpretation of their spectroscopic data, especially 1D and 2D NMR.

  3. Bioactivities from Marine Algae of the Genus Gracilaria

    OpenAIRE

    José M. Barbosa-Filho; Maria de Fátima V. de Souza; Rodrigues, Luis C.; Athayde-Filho, Petrônio F.; Lira, Narlize S.; Camila De A. Montenegro; Gedson R. De M. Lima; Batista,Leônia M.; Heloina de S. Falcão; Cynthia Layse F. De Almeida

    2011-01-01

    Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested fo...

  4. Bis(indolyl)methane alkaloids: Isolation, bioactivity, and syntheses

    Digital Repository Service at National Institute of Oceanography (India)

    Praveen, P.; Parameswaran, P.S.; Majik, M.S.

    Author version: Synthesis - Stuttgart, vol.47; 2015; 1827-1837 Bisindolyl Methane Alkaloids: Isolation, Bioactivity and Syntheses P. J. Praveen,a,b P. S. Parameswaran*b, M. S. Majik*c aCSIR-National Institute of Oceanography, Bioorganic Chemistry... to their wide applications in medicinal chemistry, drug discovery and agrochemicals, the syntheses and isolation of BIMs have attracted attention of several chemists over last few years. Due to their symmetric structure, they are easy to synthesize...

  5. Chemical Constituents and Bioactivities of Clinacanthus nutans Aerial Parts

    Directory of Open Access Journals (Sweden)

    Shu-Fen Tu

    2014-12-01

    Full Text Available Four new sulfur-containing compounds, named clinamides A-C (1–3, and 2-cis-entadamide A (4, were isolated together with three known compounds from the bioactive ethanol extract of the aerial parts of Clinacanthus nutans. These secondary metabolites possess sulfur atoms and acrylamide functionalities. The structures of the isolated components were established by interpretation of their spectroscopic data, especially 1D and 2D NMR.

  6. Chemical constituents and bioactivities of Clinacanthus nutans aerial parts.

    Science.gov (United States)

    Tu, Shu-Fen; Liu, Rosa Huang; Cheng, Yuan-Bin; Hsu, Yu-Ming; Du, Ying-Chi; El-Shazly, Mohamed; Wu, Yang-Chang; Chang, Fang-Rong

    2014-12-05

    Four new sulfur-containing compounds, named clinamides A-C (1-3), and 2-cis-entadamide A (4), were isolated together with three known compounds from the bioactive ethanol extract of the aerial parts of Clinacanthus nutans. These secondary metabolites possess sulfur atoms and acrylamide functionalities. The structures of the isolated components were established by interpretation of their spectroscopic data, especially 1D and 2D NMR.

  7. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi

    OpenAIRE

    Vasundhara, M.; Anil Kumar; M. Sudhakara Reddy

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain...

  8. Case Studies of the Synthesis of Bioactive Cyclodepsipeptide Natural Products

    Directory of Open Access Journals (Sweden)

    Markus Kaiser

    2013-01-01

    Full Text Available Cyclodepsipeptide natural products often display intriguing biological activities that along with their complex molecular scaffolds, makes them interesting targets for chemical synthesis. Although cyclodepsipeptides feature highly diverse chemical structures, their synthesis is often associated with similar synthetic challenges such as the establishment of a suitable macrocyclization methodology. This review therefore compiles case studies of synthetic approaches to different bioactive cyclodepsipeptide natural products, thereby illustrating obstacles of cyclodepsipeptide synthesis as well as their overcomings.

  9. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    OpenAIRE

    Mark Hamann; Amanda Waters; James Sims; John Bowling; Michelle Kelly; Samuel Abbas

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews grou...

  10. Marine Bioactives: Pharmacological Properties and Potential Applications against Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Graziano Riccioni

    2012-04-01

    Full Text Available Inflammation is a hot topic in medical research, because it plays a key role in inflammatory diseases: rheumatoid arthritis (RA and other forms of arthritis, diabetes, heart diseases, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, even cancer and many others. Over the past few decades, it was realized that the process of inflammation is virtually the same in different disorders, and a better understanding of inflammation may lead to better treatments for numerous diseases. Inflammation is the activation of the immune system in response to infection, irritation, or injury, with an influx of white blood cells, redness, heat, swelling, pain, and dysfunction of the organs involved. Although the pathophysiological basis of these conditions is not yet fully understood, reactive oxygen species (ROS have often been implicated in their pathogenesis. In fact, in inflammatory diseases the antioxidant defense system is compromised, as evidenced by increased markers of oxidative stress, and decreased levels of protective antioxidant enzymes in patients with rheumatoid arthritis (RA. An enriched diet containing antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic substances, has been suggested to improve symptoms by reducing disease-related oxidative stress. In this respect, the marine world represents a largely untapped reserve of bioactive ingredients, and considerable potential exists for exploitation of these bioactives as functional food ingredients. Substances such as n-3 oils, carotenoids, vitamins, minerals and peptides provide a myriad of health benefits, including reduction of cardiovascular diseases, anticarcinogenic and anti-inflammatory activities. New marine bioactives are recently gaining attention, since they could be helpful in combating chronic inflammatory degenerative conditions. The aim of this review is to examine the published studies concerning the potential pharmacological

  11. Cyclodextrins as encapsulation agents for plant bioactive compounds

    OpenAIRE

    Pinho, Eva Patrícia Paiva Santos; Grootveld, Martin; Soares, Graça M. B.; Henriques, Mariana

    2014-01-01

    Abstract Plants possess a wide range of molecules capable of improve healing: fibre, vitamins, phytosterols, and further sulphur-containing compounds, carotenoids, organic acid anions and polyphenolics. However, they require an adequate level of protection from the environmental conditions to prevent losing their structural integrity and bioactivity. Cyclodextrins are cyclic oligosaccharides arising from the degradation of starch, which can be a viable option as encapsulation technique. Cy...

  12. Neutral atom beam technique enhances bioactivity of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Joseph, E-mail: jkhoury@exogenesis.us [Exogenesis Corporation, Billerica, MA 01821 (United States); Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C. [Exogenesis Corporation, Billerica, MA 01821 (United States)

    2013-07-15

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants.

  13. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration

    OpenAIRE

    Mota, Joana; Yu, Na; Caridade, S. G.; Luz, Gisela; Gomes, Manuela E.; Reis, R. L.; Jansen, John A.; Walboomers, X. Frank; Mano, J. F.

    2012-01-01

    Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided tissue and bone regeneration membrane, fabricated by solvent casting. The CHT/BG-NP nanocomposite membranes are characterized in terms of water uptake, in mechanical tests, under simulate...

  14. Coriander (Coriandrum sativum L.) and its bioactive constituents.

    Science.gov (United States)

    Laribi, Bochra; Kouki, Karima; M'Hamdi, Mahmoud; Bettaieb, Taoufik

    2015-06-01

    Coriander (Coriandrum sativum L.), a member of the Apiaceae family, is among most widely used medicinal plant, possessing nutritional as well as medicinal properties. Thus, the aim of this updated review is to highlight the importance of coriander as a potential source of bioactive constituents and to summarize their biological activities as well as their different applications from data obtained in recent literature, with critical analysis on the gaps and potential for future investigations. A literature review was carried out by searching on the electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies focusing on the biological and pharmacological activities of coriander seed and herb bioactive constituents. All recent English-language articles published between 2000 and 2014 were searched using the terms 'C. sativum', 'medicinal plant', 'bioactive constituents', and 'biological activities'. Subsequently, coriander seed and herb essential oils have been actively investigated for their chemical composition and biological activities including antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anxiolytic, analgesic, anti-inflammatory, anti-convulsant and anti-cancer activities, among others. Although coriander has been reported to possess a wide range of traditional medicinal uses, no report is available in its effectiveness use in reactive airway diseases such as asthma and bronchiolitis. In brief, the information presented herein will be helpful to create more interest towards this medicinal species by defining novel pharmacological and clinical applications and hence, may be useful in developing new drug formulations in the future or by employing coriander bioactive constituents in combination with conventional drugs to enhance the treatment of diseases such as Alzheimer and cancer.

  15. BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY FROM FIVE TYPES OF SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Maria Copaciu

    2016-10-01

    Full Text Available After germination process, the green seedlings accumulate important quantities of bioactive compounds such as: enzymes, vitamins, minerals, chlorophylls and nutrients. The current study presents a comparison between different bioactive compounds and their antioxidant capacity, after the seedling germination and growth of five seeds (arugula, lentil, wheat, beans and mustard both on soil, in a pot (natural system, and directly on cotton wool soaked, in water (artificial system. In this study the carotenoids content and the antioxidant capacity were analysed. The data of the present study showed that the highest amount of zeaxanthin and β - carotene was found in cultivars of wheat grown in natural system, while the highest antioxidant activity was found in cultivars of wheat, lentils and beans, though in this case with no statistical differences between the systems. The results show statistical differences between the values of bioactive compounds in the five types of seedlings but also in the values obtained for the same seedlings in different systems. The best cultivars for improving the nutritional quality for human consumption are wheat seedlings followed by lentil ones.

  16. Bioactive compounds and antioxidant potential fruit of Ximenia americana L.

    Science.gov (United States)

    Almeida, Maria Lucilania Bezerra; Freitas, Wallace Edelky de Souza; de Morais, Patrícia Lígia Dantas; Sarmento, José Dárcio Abrantes; Alves, Ricardo Elesbão

    2016-02-01

    The caatinga ecoregion in northeast Brazil presents a wide variety in plant species. However, the potential of these species as a source of energy, carbohydrates, vitamins, minerals and bioactive properties beneficial to health is still unknown. Among these species we can find the wild plum (Ximenia americana). Due to its various phytotherapeutic properties and absence of studies on the chemical composition of the fruit this article aimed to evaluate the bioactive compounds and antioxidant potential of the X. americana in different stages of maturation. The fruits of X. americana showed considerable amounts of bioactive compounds, as well as antioxidant activity and antioxidant enzymes. The fruits at green maturity stage showed higher content of yellow flavonoids (22.07 mg/100g), anthocyanins (1.92 mg/100 g), polyphenols (3051.62 mg/100 g), starch (4.22%), antioxidant activity (489.40 g fruit/g DPPH and 198.77 μmol Trolox/g) and activity of antioxidant enzymes; the antioxidant activity allocated to the fruit was shown to be related to the contents of extractable polyphenols, yellow flavonoids, total anthocyanins and antioxidant enzymes.

  17. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Science.gov (United States)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  18. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Tania Rescigno

    2017-01-01

    Full Text Available The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

  19. Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass

    Science.gov (United States)

    Goh, Yi-fan; Akram, Muhammad; Alshemary, Ammarz; Hussain, Rafaqat

    2016-11-01

    In this study, we have presented the structural and in vitro characterization of electrospun polylactic acid (PLA)/Chitosan nanofibers coated with cerium, copper or silver doped bioactive glasses (CeBG/CuBG/AgBG). Bead-free, smooth surfaced nanofibers were successfully prepared by using electrospinning technique. The nanocomposite fibers were obtained using a facile dip-coating method, their antibacterial activities against E. coliE. coli (ATCC 25922 strains) were measured by the disk diffusion method after 24 h of incubation at 37 °C. CeBG and CuBG decorated PLA/Chitosan nanofibers did not develop an inhibition zone against the bacteria. On the other hand, nanofibers coated with AgBG developed an inhibition zone against the bacteria. The as-prepared nanocomposite fibers were immersed in SBF for 1, 3 and 7 days in Simulated Body Fluid (SBF) for evaluation of in vitro bioactivity. All samples induced the formation of crystallites with roughly ruffled morphology and the pores of fibers were covered with the extensive growth of crystallites. Energy Dispersive X-ray (EDX) composition analysis showed that the crystallites possessed Ca/P ratio close to 1.67, confirming the good in-vitro bioactivity of the fibers.

  20. Bioactive compounds and antioxidant activity of wolfberry infusion

    Science.gov (United States)

    Sun, Yujing; Rukeya, Japaer; Tao, Wenyang; Sun, Peilong; Ye, Xingqian

    2017-01-01

    An infusion of the wolfberry (Lycium barbarum L.) is a traditional Asian herbal tea. This is the most commonly consumed form of dried wolfberry worldwide, yet little scientific information on wolfberry infusions is available. We investigated the effects of making infusions with hot water on the color, the content of bioactive compounds (polysaccharides, polyphenols, flavonoids and carotenoids) and the antioxidant ability of wolfberry infusions. The contents of bioactive compounds and the antioxidant activity of a wolfberry infusion increased with increased infusion temperature and time. Total polysaccharides content (TPOC), total polyphenols (TPC), total flavonoids (TFC) and total carotenoids contents (TCC) were important for determining the antioxidant capacity of wolfberry infusions with the contribution to antioxidant activity in the order TPC > TFC > TCC > TPOC. Hierarchical cluster analysis indicated preparation conditions of 100 °C for 1~3 h, 90 °C for 2~3 h and 80 °C for 2.5~3 h were equivalent as regards the value of TPC, TPOC, TFC, TCC, FRAP, DPPH and ABTS. The results of this study suggest the length of time of making a wolfberry infusion in actual real life practice is too short and different dietary habits associated with the intake of wolfberry infusion might provide the same bioactive nutrients. PMID:28102295

  1. Chromatographic on-line detection of bioactives in food

    Directory of Open Access Journals (Sweden)

    Remmelt Van der Werf

    2013-08-01

    Full Text Available ABSTRACTFindings were focused on the anti-oxidative activity of numerous fruits and vegetables by means of an on-line HPLC radical scavenging detection method. The reactant used was the ABTS•+ green radical cation. The system has been optimized in terms of reactor design, and chemical reactions kinetics. It has been qualified to classify molecules in order of their increasing activity to scavenge exogenous radicals. It may be used as a powerful high resolution screening tool to investigate the radical scavenging activities of natural plants. Bioassays consisting in cellular in vitro antioxidant assay using pancreatic β-cells have been used to confirm the bioactivity of the selected micronutrients. This study demonstrated that it is possible to screen at the molecular level, the bioactivity of numerous natural samples and to point out the richness of the local biodiversity in terms of natural resource of functional food ingredients usable for their potential benefits for consumer’s health, wellbeing and wellaging.Key words: HPLC radical scavenging detection method, bioactivity of natural samples

  2. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives.

    Science.gov (United States)

    Roberts, Joseph L; Moreau, Régis

    2016-08-10

    Overwhelming evidence indicates that diets rich in fruits and vegetables are protective against common chronic diseases, such as cancer, obesity and cardiovascular disease. Leafy green vegetables, in particular, are recognized as having substantial health-promoting activities that are attributed to the functional properties of their nutrients and non-essential chemical compounds. Spinach (Spinacia oleracea L.) is widely regarded as a functional food due to its diverse nutritional composition, which includes vitamins and minerals, and to its phytochemicals and bioactives that promote health beyond basic nutrition. Spinach-derived phytochemicals and bioactives are able to (i) scavenge reactive oxygen species and prevent macromolecular oxidative damage, (ii) modulate expression and activity of genes involved in metabolism, proliferation, inflammation, and antioxidant defence, and (iii) curb food intake by inducing secretion of satiety hormones. These biological activities contribute to the anti-cancer, anti-obesity, hypoglycemic, and hypolipidemic properties of spinach. Despite these valuable attributes, spinach consumption remains low in comparison to other leafy green vegetables. This review examines the functional properties of spinach in cell culture, animals and humans with a focus on the molecular mechanisms by which spinach-derived non-essential phytochemicals and bioactives, such as glycolipids and thylakoids, impart their health benefits.

  3. The development of bioactive triple helix-forming oligonucleotides.

    Science.gov (United States)

    Seidman, Michael M; Puri, Nitin; Majumdar, Alokes; Cuenoud, Bernard; Miller, Paul S; Alam, Rowshon

    2005-11-01

    We are developing triple helix-forming oligonucleotides (TFOs) as gene targeting reagents in mammalian cells. We have described psoralen-conjugated TFOs containing 2'-O-methyl (2'OMe) and 2'-O-aminoethoxy (AE) ribose substitutions. TFOs with a cluster of 3-4 AE residues, with all other sugars as 2'OMe, were bioactive in a gene knockout assay in mammalian cells. In contrast, TFOs with one or two clustered, or three dispersed, AE residues were inactive. Thermal stability analysis of the triplexes indicated that there were only incremental differences between the active and inactive TFOs. However the active and inactive TFOs could be distinguished by their association kinetics. The bioactive TFOs showed markedly greater on-rates than the inactive TFOs. It appears that the on-rate is a better predictor of TFO bioactivity than thermal stability. Our data are consistent with a model in which a cluster of 3-4 AE residues stabilizes the nucleation event that precedes formation of a complete triplex. It is likely that triplexes in cells are much less stable than triplexes in vitro probably as a result of elution by chromatin-associated translocases and helicases. Consequently the biologic assay will favor TFOs that can bind and rebind genomic targets quickly.

  4. Nocardiopsis species: a potential source of bioactive compounds.

    Science.gov (United States)

    Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V

    2016-01-01

    Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications.

  5. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    Science.gov (United States)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  6. [A novel europium doped apatite/wollastonite porous magnetic bioactive glass ceramic].

    Science.gov (United States)

    Zhang, Wangzhi; Zhou, Dali; Yang, Weizhong; Yin, Guangfu; Ou, Jun

    2007-08-01

    A new biocompatible apatite-wollastonite magnetic glass ceramic has been synthesized via sol-gel process. Characteristics of the materials were determined with differential thermal analysis (DTA), X-ray diffraction (XRD), scan electron microscopy (SEM), energy dispersive spectrum (EDS), inductively couple plasma atomic emission spectroscopy (ICP-AES), vibrating sample magnetometer (VSM) and so on. Results showed that the main crystalline phases of the material were hydroxyapatite/fluoroapatite [Ca10(PO4)6(OH, F)), beta-wollastonite[beta-CaSiO3] and calcium europium oxide silicate Ca2Eu8[(SiO4)6O2]. The magnetization of the sample contanining 2% Eu2O3 in weight reached 2.18 emu/g for an applied field of 10 000Oe. Hydroxyapatite layer could form on the surface of the sample while soaking for 14 days in simulated body fluid. Good bioactivity was demonstrated. So it is a potential bone repairing material as well as a hyperthemia treatment material for pateints with cancer.

  7. Osteogenesis Capacity of a Novel BMP/α-TCP Bioactive Composite Bone Cement

    Institute of Scientific and Technical Information of China (English)

    YANG Wei-zhong; ZHOU Da-li; YIN Shao-ya; YIN Guang-fu; GAO Li-da; ZHANG Yun

    2004-01-01

    To improve the osteogenesis ability of α-tricalcium phosphate (α-TCP) bone cement,a novel BMP/α-TCP composite bone cement was prepared.By measuring the setting time and compressive strength,the hydration characteristic of bone cement was evaluated.Animal experiments including histological observation,radiographic investigation as well as digital image analyses reveal the difference of osteogenesis ability among BMP,α-TCP bone cement and BMP/α-TCP composite bone cement.Results show that α-TCP bone cement possesses excellent hydration and setting properties as well as high mechanical property.Comparison experiments show that BMP/α-TCP composite bone cement has a stronger osteogenesis ability.The gross observation of the implant site does not exhibit any inflammation or necrosis.Histological analyses reveal that the material has good osteointegration with host bone,and new bone formation is detected within the materials,which are degrading.Strong osteogenesis ability of the composite is due to not only the excellent osteoconductive potential but also the osteoinductive potential contributed by active BMP releasing and the material degradation.Large skull defect could be well-healed by filling BMP/α-TCP composite bone cement.This novel material proves itself to be an absorbable and bioactive bone cement with an osteogenesis ability.

  8. A novel bioactive membrane by cell electrospinning.

    Science.gov (United States)

    Chen, Haiping; Liu, Yuanyuan; Hu, Qingxi

    2015-11-01

    Electrospinning permits fabrication of biodegradable matrices that can resemble the both scale and mechanical behavior of the native extracellular matrix. However, achieving high-cellular density and infiltration of cells within matrices with traditional technique remain challenging and time consuming. The cell electrospinning technique presented in this paper can mitigate the problems associated with these limitations. Cells encapsulated by the material in the cell electrospinning technique survived well and distributed homogenously within the nanofibrous membrane, and their vitality was improved to 133% after being cultured for 28 days. The electrospun nanofibrous membrane has a certain degradation property and favorable cell-membrane interaction that supports the active biocompatibility of the membrane. Its properties are helpful for supporting cell attachment and growth, maintaining phenotypic shape, and secreting an ample amount of extracellular matrix (ECM). This novel membrane may be a potential application within the field of tissue engineering. The ability of cell electrospinning to microintegrate cells into a biodegradable fibrous matrix embodies a novel tissue engineering approach that could be applied to fabricate a high cell density elastic tissue mimetic.

  9. Results of bone regenerate study after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants in experimental femoral neck fractures (experimental study

    Directory of Open Access Journals (Sweden)

    K. S. Kazanin

    2015-01-01

    Full Text Available Objective - to analyze the results of X-ray, cytomorphometric and immunohistochemistry experimental studies of bone regenerates after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants. Material and methods. The study was conducted on experimental femoral neck fractures in rabbit males. Reparative osteogenesis processes were studied in groups of bioinert titanium implant osteosynthesis and calcium phosphate-coated bioactive titanium implant osteosynthesis. The animals were clinically followed-up during the postoperative period. X-ray, cytomorphometric and immunohistochemistry studies of samples extracted from femoral bones were conducted over time on days 1, 7, 14, 30 and 60. The animal experiments were kept and treated according to recommendations of international standards, Helsinki Declaration on animal welfare and approved by the local ethics committee. All surgeries were performed under anesthesia, and all efforts were made to minimize the suffering of the animals. Results. In the animal group without femoral neck fracture osteosynthesis, femoral neck pseudoarthrosis was observed at the end of the experiment. The results of cytomorphometric and immunohistochemistry studies conducted on day 60 of the experiment confirmed that the cellular composition of the bone regenerate in the group of calcium phosphate-coated bioactive titanium implants corresponded to a more mature bone tissue than in the group of bioinert titanium implants. Conclusion. The results of the statistical analysis of cytomorphometric and immunohistochemistry data show that the use of calcium phosphate-coated bioactive titanium implants allows to achieve significantly earlier bone tissue regeneration.

  10. Evaluation of La-Doped Mesoporous Bioactive Glass as Adsorbent and Photocatalyst for Removal of Methylene Blue from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Liying Li

    2015-01-01

    Full Text Available A series of La-doped mesoporous bioactive glass (BG-La materials with excellent biosafety and hypotoxicity have been prepared and tested as adsorbent. The study was aimed to evaluate the possibility of utilizing BG-La for the adsorptive removal of methylene blue (MB from aqueous solution and test the adsorption and desorption behavior of this new material. The process parameters affecting adsorption behaviors such as pH, contact time, and initial concentration and the photocatalytic degradation of MB were systematically investigated. The result showed that BG-La had excellent removal rate (R of MB, and BG-La showed better photocatalytic effect than undoped mesoporous bioactive glass (BG. Furthermore, the MB loaded BG-La was easily desorbed with acid solution due to its electronegativity and mesoporous structure. The result indicated that these materials can be employed as candidates for removal of dye pollutant owing to their high removal rate, excellent photocatalytic effect, desorption performance, and their reusability.

  11. Bioactive Metabolites Produced by Pseudonocardia endophytica VUK-10 from Mangrove Sediments: Isolation, Chemical Structure Determination and Bioactivity.

    Science.gov (United States)

    Mangamuri, Usha Kiranmayi; Vijayalakshmi, Muvva; Poda, Sudhakar; Manavathi, Bramanandam; Bhujangarao, Ch; Venkateswarlu, Y

    2015-05-01

    Chemical investigation of the actinobacterial isolate Pseudonocardia endophytica VUK-10 has led to the segregation of two known bioactive compounds, namely 4-(2-acetamidoethyl) phenyl acetate and 4-((1, 4-dioxooctahydropyrrolo [1, 2-a] pyrazin-3-yl) methyl) phenyl acetate. The strain was isolated from a sediment sample of the Nizampatnam mangrove ecosystem, south coastal Andhra Pradesh, India. The chemical structure of the active compounds was established on the basis of spectroscopic analysis, including (1)H NMR and (13)C NMR spectroscopies, FTIR, and EIMS. The antimicrobial and cytotoxic activities of the bioactive compounds produced by the strain were tested against opportunistic and pathogenic bacteria and fungi and on MDA-MB-231, OAW, HeLa, and MCF-7 cell lines. The compounds exhibited antimicrobial activities against gram-positive and gram-negative bacteria and fungi and also showed potent cytotoxic activity against MDA-MB-231, OAW, HeLa, and MCF-7 cell lines. This is the first example for this class of bioactive compounds isolated from Pseudonocardia of mangrove origin.

  12. Synthesis and evaluation of factors affecting the in vitro bioactivity and antibacterial activity of bioactive glass ceramics

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat

    2017-01-01

    In the present study, two novel silicate glass-ceramics having chemical composition 38SiO2-41CaO-6P2O5-(15 - x)Na2O-xCaF2 (x = 0, 0.43 mol%) were synthesized. These glass derivatives were subjected to stimulated body fluid for 24 days in SBF under static condition at 37∘C in order to evaluate the bioactive properties of specimens. The antibacterial activity of glass ceramics against three pathogenic bacteria was determined using the modified Kirby Bauer method. It was found that the antibacterial activity primarily depends on the dissolution rate; faster release of ions caused rapid increase in the pH of the solution. Antibacterial properties were found to be strongly affected by changes in the pH of supernatant. The in vitro bioactivity assays showed that both glass derivatives were capable of bonding with bone and secondly effectively inhibit bacteria. However, the glass ceramic without CaF2 (B2) showed high dissolution rate, better bioactive ability and stronger antibacterial efficacy.

  13. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  14. Preparation of Bioactive Calcium Phosphate Coating on Porous C/C Substrate by a Novel Deposition Technique

    Institute of Scientific and Technical Information of China (English)

    XIONG Xinbo; ZENG Xierong; LI Xiaohua; Xie Shenghui; ZOU Chunli

    2008-01-01

    A novel heat substrate technique,high frequency inductive heat deposition(IHD),was introduced to coat porous carbon materials,C/C and carbon felt to improve their bioactivity.The morphologies,composition and microstructure of the resulting coatings were examined by scanning electron microscopy(SEM),energy dispersive spectra(EDS),X-ray diffractometer(XRD)and Fourier transform infrared spectroscopy (FTIR).The results show that,the calcium phosphate consisted of non-stoichiometric,CO3-containing and plate-like octacalcium phosphate(Ca8-xH2(PO4)6,OCP)could uniformly cover the entire porous surfaces of carbon materials.Good adhesion of the coating to carbon material substrates was observed.

  15. Investigation of the sample preparation and curing treatment effects on mechanical properties and bioactivity of silica rich metakaolin geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it; Bollino, F.; Papale, F.; Lamanna, G.

    2014-03-01

    In many biomedical applications both the biological and mechanical behaviours of implants are of relevant interest; in the orthopaedic field, for example, favourable bioactivity and biocompatibility capabilities are necessary, but at the same time the mechanical characteristics of the implants must be such as to allow one to support the body weight. In the present work, the authors have examined the application of geopolymers with composition H{sub 24}AlK{sub 7}Si{sub 31}O{sub 79} and ratio Si/Al = 31 to be used in biomedical field, considering two different preparation methods: one of the activators (KOH) has been added as pellets in the potassium silicate solution, in the other as a water solution with 8 M concentration. Moreover, a different water content was used and only some of the synthesized samples were heat treated. The chemical and microstructural characterizations of those materials have been carried out by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Subsequently, the effects of the adopted preparation on the mechanical and biological properties have been studied: compressive strength tests have demonstrated that more fragile specimens were obtained when KOH was added as a solution. The bioactivity was successfully evaluated with the soaking of the samples in a simulated body fluid (SBF) for 3 weeks. The formation of a layer of hydroxyapatite on the surface of the materials has been shown both by SEM micrographs and EDS analyses. - Highlights: • Rich metakaolin geopolymer activated with KOH/K{sub 2}SiO{sub 3} and thermal treatment • Mechanical and bioactivity test to evaluate consolidation and bone bonding ability • Order of addition of reactants and thermal treatment influence mechanical properties.

  16. Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications

    Science.gov (United States)

    Machado López, M. M.; Espitia Cabrera, M. I.; Faure, J.; Contreras García, M. E.

    2016-04-01

    Titanium and its alloys are widely used as implant materials because of their mechanical properties and non-toxic behavior. Unfortunately, they are not bioinert, which means that they can release ions and can only fix the bone by mechanical anchorage, this can lead to the encapsulation of dense fibrous tissue in the body. The bone fixation is required in clinical conditions treated by orthopedic and dental medicine. The proposal is to coat metallic implants with bioactive materials to establish good interfacial bonds between the metal substrate and bone by increasing bioactivity. Bioactive glasses, ceramics specifically 45 S5 Bioglass, have drawn attention as a serious functional biomaterial because osseointegration capacity. The EPD method of bioglass gel precursor was proposed in the present work as a new method to obtain 45S5/Ti6A14V for dental applications. The coatings, were thermally treated at 700 and 800°C and presented the 45 S5 bioglass characteristic phases showing morphology and uniformity with no defects, quantification percentages by EDS of Si, Ca, Na, P and O elements in the coating scratched powders, showed a good proportional relationship demonstrating the obtention of the 45S5 bioglass. The corrosion tests were carried out in Hank's solution. By Tafel extrapolation, Ti6Al4V alloy showed good corrosion resistance in Hank's solution media, by the formation of a passivation layer on the metal surface, however, in the system 45S5/Ti6Al4V there was an increase in the corrosion resistance; icon-, Ecorr and corrosion rate decreased, the mass loss and the rate of release of ions, were lower in this system than in the titanium alloy without coating.

  17. Effectivity of Aloe vera bioactives as feed additive for broilers reared on deep litter

    OpenAIRE

    A.P Sinurat; T Purwadaria; T Pasaribu; W Rakhmani; J Dharma; J Rosida; S Sitompul; Udjianto

    2004-01-01

    There are plenty of Indonesian plants contain usefull bioactive components. One of them is Aloe vera. Previous experiment showed that Aloe vera bioactives reduced aerob bacteria in the intestinal and improved feed efficiency in broilers reared in cages. The results however, gave some variations, may be due to variation in rearing the chickens. Two experiments were carried out to study the effectivity of Aloe vera bioactives as feed additives for broilers reared on deep litter. In the first st...

  18. High Temperature Acoustic Noise Reduction Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use combustion synthesis techniques to manufacture ceramic-based acoustic liners capable of withstanding temperatures up to 2500?C....

  19. The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P 2O 5 sol-gel glasses and glass-ceramics.

    Science.gov (United States)

    Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2013-02-01

    Bioactive glasses and glass-ceramics of the SiO(2)-CaO-P(2)O(5) system were synthesised by means of a sol-gel method using different phosphorus precursors according to their respective rates of hydrolysis-triethylphosphate (OP(OC(2)H(5))(3)), phosphoric acid (H(3)PO(4)) and a solution prepared by dissolving phosphorus oxide (P(2)O(5)) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700-1,200 °C that were used to convert the gels into glasses and glass-ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO(3)) and tricalcium phosphate (α-Ca(3)(PO(4))(2)).

  20. Cell studies of hybridized carbon nanofibers containing bioactive glass nanoparticles using bone mesenchymal stromal cells

    Science.gov (United States)

    Zhang, Xiu-Rui; Hu, Xiao-Qing; Jia, Xiao-Long; Yang, Li-Ka; Meng, Qing-Yang; Shi, Yuan-Yuan; Zhang, Zheng-Zheng; Cai, Qing; Ao, Yin-Fang; Yang, Xiao-Ping

    2016-12-01

    Bone regeneration required suitable scaffolding materials to support the proliferation and osteogenic differentiation of bone-related cells. In this study, a kind of hybridized nanofibrous scaffold material (CNF/BG) was prepared by incorporating bioactive glass (BG) nanoparticles into carbon nanofibers (CNF) via the combination of BG sol-gel and polyacrylonitrile (PAN) electrospinning, followed by carbonization. Three types (49 s, 68 s and 86 s) of BG nanoparticles were incorporated. To understand the mechanism of CNF/BG hybrids exerting osteogenic effects, bone marrow mesenchymal stromal cells (BMSCs) were cultured directly on these hybrids (contact culture) or cultured in transwell chambers in the presence of these materials (non-contact culture). The contributions of ion release and contact effect on cell proliferation and osteogenic differentiation were able to be correlated. It was found that the ionic dissolution products had limited effect on cell proliferation, while they were able to enhance osteogenic differentiation of BMSCs in comparison with pure CNF. Differently, the proliferation and osteogenic differentiation were both significantly promoted in the contact culture. In both cases, CNF/BG(68 s) showed the strongest ability in influencing cell behaviors due to its fastest release rate of soluble silicium-relating ions. The synergistic effect of CNF and BG would make CNF/BG hybrids promising substrates for bone repairing.

  1. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells.

    Science.gov (United States)

    Persson, Maria; Lorite, Gabriela S; Kokkonen, Hanna E; Cho, Sung-Woo; Lehenkari, Petri P; Skrifvars, Mikael; Tuukkanen, Juha

    2014-09-01

    The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications.

  2. One-pot synthesis of magnetic, macro/mesoporous bioactive glasses for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Dan Wang, Huiming Lin, Jingjie Jiang, Xiao Han, Wei Guo, Xiaodan Wu, Yingxue Jin and Fengyu Qu

    2013-01-01

    Full Text Available Magnetic and macro/mesoporous bioactive glasses were synthesized by a one-pot method via a handy salt leaching technique. It was identified to be an effective and simple synthetic strategy. The non-ionic triblock copolymer, poly(ethylene glycol-block-poly(propylene glycol-block-poly(ethylene glycol (P123, was used as the structure directing agent for mesoporous structure but also as the reductant to reduce the iron source into magnetic iron oxide. The prepared materials exhibited excellent super-paramagnetic property with interconnected macroporous (200–300 μm and mesoporous (3.4 nm structure. Furthermore, their outstanding drug storage/release properties and rapid (5 induction of hydroxyapatite growth ability were investigated after immersing in simulated body fluid solution at 37 °C. Notably, the biocompatibility assessment confirmed that the materials obtained presented good biocompatibility and enhanced adherence of HeLa cells. Herein, the novel materials are expected to have potential application for bone tissue engineering.

  3. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition.

    Science.gov (United States)

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C P; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-07-11

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC).

  4. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Sanja Erakovic

    2014-07-01

    Full Text Available Hydroxyapatite (HAP is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC.

  5. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.M., E-mail: menti.goudouri@ww.uni-erlangen.de [Institute for Biomaterials, Un