WorldWideScience

Sample records for bioactive alternative daily

  1. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    Energy Technology Data Exchange (ETDEWEB)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily

  2. Bioprospecting for bioactives from seaweeds: potential, obstacles and alternatives

    Directory of Open Access Journals (Sweden)

    Renato C. Pereira

    2012-06-01

    Full Text Available Seaweeds are potential sources of high biotechnological interest due to production of a great diversity of compounds exhibiting a broad spectrum of biological activities. On the other hand, there is an urgent need for management options for a sustainable approach to the use of marine organisms as a source of bioactive compounds. This review discusses the bioprospection for bioactive seaweed compounds as pharmaceuticals and antifouling agents, encompassing their potential and possible obstacles and alternatives. In spite of their potential, research on pharmaceuticals and antifouling agents from seaweeds includes mainly the search for molecules that exhibit these biological activities, but lacks of consideration of fundamental and limiting aspects such as the development of alternatives to sustainable supply. However, for the complete development of pharmaceuticals and antifouling compounds in Brazil, marine bioprospection should be more comprehensive, associating the search for molecules with an analysis of their supply. In this way, it is possible to promote sustainable development and conservation of biodiversity, as well as to assert the economic development of Brazil.

  3. Bioprospecting for bioactives from seaweeds: potential, obstacles and alternatives

    Directory of Open Access Journals (Sweden)

    Renato C. Pereira

    2012-08-01

    Full Text Available Seaweeds are potential sources of high biotechnological interest due to production of a great diversity of compounds exhibiting a broad spectrum of biological activities. On the other hand, there is an urgent need for management options for a sustainable approach to the use of marine organisms as a source of bioactive compounds. This review discusses the bioprospection for bioactive seaweed compounds as pharmaceuticals and antifouling agents, encompassing their potential and possible obstacles and alternatives. In spite of their potential, research on pharmaceuticals and antifouling agents from seaweeds includes mainly the search for molecules that exhibit these biological activities, but lacks of consideration of fundamental and limiting aspects such as the development of alternatives to sustainable supply. However, for the complete development of pharmaceuticals and antifouling compounds in Brazil, marine bioprospection should be more comprehensive, associating the search for molecules with an analysis of their supply. In this way, it is possible to promote sustainable development and conservation of biodiversity, as well as to assert the economic development of Brazil.

  4. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value

    Directory of Open Access Journals (Sweden)

    Anastasia-Varvara Ferlemi

    2016-06-01

    Full Text Available Berry fruits are recognized, worldwide, as “superfoods” due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenting that berry leaves may be considered an alternative source of bioactives. The main bioactive compounds in berry leaves are similar as in berry fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. The leaves are one of the richest sources of chlorogenic acid. In various studies, these secondary metabolites have demonstrated antioxidant, anti-inflammatory, cardioprotective, and neuroprotective properties. This review focuses on the phytochemical composition of the leaves of the commonest berry species, i.e., blackcurrant, blackberry, raspberry, bilberry, blueberry, cranberry, and lingonberry leaves, and presents their traditional medicinal uses and their biological activities in vitro and in vivo.

  5. Liquid clay emulsion--alternate daily cover and erosion

    Energy Technology Data Exchange (ETDEWEB)

    Martell, L. [L/M Chemical Service, Ancona, IL (United States)

    1995-12-31

    Formula 480 Biodegradable Clay Based Product, developed in 1985, is a non-toxic liquid bentonite clay product that comes in concentrate form for dilution with water and/or leachate. The concentrate allows this product y to be used for erosion and dust control, grass seeding, as well as a daily or intermediate cover for landfills. It inhibits the activities of birds and vectors, while controlling dust, erosion, odor, and blowing debris. By varying the dilution of Formula 480, the product can be set up from porous and flexible, to durable and waterproof. Having a clay base, high cation exchange capacity offers nutrient stabilization for grass seeding. When using leachate for product dilution, it will percolate, waterproof, and be recycled back into the surface as a solid. The product is economical at $.03 to $.08/sq.ft., depending on thickness of application, smoothness of surface or compaction ratio. Application is done with a self-contained sprayer developed specifically for Formula 480. It can be sprayed with a high volume handgun or an economical and efficient spray boom. This product is cleared for use in over 15 states and is currently being used on hazardous and non-hazardous fills throughout the U.S. and Germany. Ease of application, economy, and effectiveness warrants people to look at this product for many uses.

  6. Alternative medicine and anesthesia: Implications and considerations in daily practice.

    Science.gov (United States)

    Bajwa, Sukhminder Jit Singh; Panda, Aparajita

    2012-10-01

    Nowadays, herbal medicines are widely used by most of the people, including the pre-surgical population. These medicines may pose numerous challenges during perioperative care. The objective of the current literature review is to dwell upon the impact of the use of herbal medicines during the perioperative period, and to review the strategies for managing their perioperative use. The data was generated from various articles of different journals, text books, web source, including, Entrez Pubmed, Medscape, WebMD, and so on. Selected only those herbal medicines for which information on, safety, usage, and precautions during the perioperative period was available. Thereafter, the information about safety, pharmacokinetics, and pharmacodynamics from selected literature was gathered and analyzed. The whole review focused on the fact that these commonly used alternative medicines could sometimes pose as a concern during the perioperative period, in various ways. These complications could be due to their direct action, pharmacodynamic effect, or pharmacokinetic effect. In view of the serious impacts of herbal medicine usage in perioperative care, the anesthesiologist should take a detailed history, especially stressing on the use of herbal medicine during the preoperative anesthetic assessment. The anesthesiologist should also be aware of the potential perioperative effects of those drugs. Accordingly, steps should to be taken to prevent, recognize, and treat the complications that may arise due to their use or discontinuation.

  7. Physical, bioactive and sensory quality parameters of reduced sugar chocolates formulated with natural sweeteners as sucrose alternatives.

    Science.gov (United States)

    Belščak-Cvitanović, Ana; Komes, Draženka; Dujmović, Marko; Karlović, Sven; Biškić, Matija; Brnčić, Mladen; Ježek, Damir

    2015-01-15

    In this study, sugar alcohols, dietary fibers, syrups and natural sweeteners were used as sucrose alternatives in the production of reduced sugar chocolates (50% of cocoa parts) with enhanced bioactive profile. Formulated chocolates were evaluated for their physical (particle size distribution, texture) and sensory properties, sugar composition, polyphenolic compounds content and antioxidant capacity. All produced reduced sugar chocolates ensured >20% lower calorific value than conventional chocolate (prepared with sucrose). Formulated chocolates containing stevia leaves and peppermint exhibited the best sensory properties (especially with regard to mouthfeel, sweetness and herbal aroma), as well as the highest polyphenolic content and antioxidant capacity. Particle size and hardness of chocolates increased in comparison to conventional chocolate, in particular when the combination of fructose and isomalt or lactitol was used. The bioactive profile of produced chocolates was enriched with phenolic acids, flavone (luteolin and apigenin) and flavonol (quercetin) derivatives, which were not identified in control chocolate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Treatment for chronic daily headache by using auxiliary and alternative methods

    Directory of Open Access Journals (Sweden)

    V. A. Golovacheva

    2015-01-01

    Full Text Available Chronic daily headache (CDH is one of the top 10 causes of adult disability and one of the 5 most common causes of female disability. To treat patients with CDH is one of the most difficult tasks in neurological practice. Difficulties in managing patients with CHD are associated with the high prevalence of comorbid mental disorders, analgesic abuse, pain syndromes at another site, and misconceptions of a patient about his/her disease. A combination of drug and non-drug therapies is the mainstay of the current approach to treating patients with CDH. Standard, alternative, and auxiliary therapies are identified. The paper describes different types of current auxiliary and alternative therapy used in the world’s leading headache centers and clinics. It describes experience with cerebrolysin used as auxiliary and alternative pharmacotherapies for CDH.

  9. Recommended alternative daily intake of fruits and vegetables for Indonesian elderly

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2014-08-01

    Full Text Available AbstrakLatar belakang:Organisasi Kesehatan se Dunia (WHO merekomendasin konsumsi sayur dan buah paling sedikit 400 gr atau 5 (lima porsi sayur dan buah sehari. Penelitian ini untuk menentukan alternatif jumlah dan jenis anjuran konsumsi sayur dan buah untuk usia 65 tahun atau lebih untuk kecukupan zat gizi vitamin A, vitamin C, potassium, asam folat, dan serat. Metode:Penelitian menggunakan data konsumsi sayur dan buah dari data Riset Kesehatan Dasar (Riskesdas tahun 2010. Analisis data menggunakan program analisis linier untuk memperoleh lima alternatif jumlah dan jenis sayur dan buah untuk usia lebih dari 65 tahun.Hasil:Subjek yang dapat dianalisis sebanyak 7087 orang. Lima jenis buah yang paling banyak dikonsumsi adalah pisang, jeruk, pepaya, apel dan semangka. Lima jenis sayur yang paling banyak dikonsumsi adalah sayur bayam, sayur kangkung, sayur daun singkong, sayur asam, dan sayur sop. Berdasarkan hasil analisis progam linier dan ngka Kecukupan Gizi tahun 2004 untuk vitamin A, vitamin C, asam folat, serat, dan potasium bagi usia lebih dari 65 tahun, maka jumlah anjuran konsumsi sayur dan buah adalah 300 gram sayuran dan 200-400 gram buah.Kesimpulan: Anjuran alternatif konsumsi sayur dan buah untuk usia lebih dari 65 tahun adalah 300 gram (3 mangkok sayuran dan 200-400 gram (2-4 potong buah. (Health Science Indones 2014;1:30-4Kata kunci:anjuran konsumsi harian, sayur, buah, usia lajut AbstractBackground: The WHO recommends the daily consumption of fruits and vegetables of at least 400 grams or 5 servings. This study was conducted to assess consumption of fruits and vegetables in 65 year-old and above Indonesians, and the adequacy of daily requirements of vitamin A, vitamin C, potassium, folic acid, and fiber. Methods: The study used data from 2010 National Health Survey Indonesia. Using linier programming, 5 alternatives of combination of fruits and vegetables were presented for 65 year-old and above.Result: The number of subjects that

  10. On the influence of the alternation of two different cooling systems on dairy cow daily activities

    Directory of Open Access Journals (Sweden)

    Simona M.C. Porto

    2017-02-01

    Full Text Available Among the causes that influence cow welfare, heat stress induced by microclimatic conditions is one of the most relevant and many studies have investigated the efficacy of different cooling systems on animal health status. Nevertheless, the direct influence of the cooling systems on possible modifications of dairy cow behaviour has been addressed in a few studies and the related results were affected by the presence of a paddock, which gave a refuge from hot temperature. Since an alteration of the daily time budget spent by dairy cows in their usual activities can be associated with changes in their health status, this study investigated the effects of the alternation of two different cooling systems on lying, standing, and feeding behaviour of a group of dairy cows bred in a free-stall dairy house where animals had no access to a paddock. The barn was equipped with a fogging system associated with forced ventilation installed in the resting area and a sprinkler system associated with forced ventilation installed in the feeding area. The two systems were activated alternately. The results demonstrated that the management of the two cooling systems affected the analysed behaviours. Though the activation of the cooling system installed in the resting area encouraged the decubitus of animals in the stalls, the activation of that one of the feeding alley could not be able to influence the standing behaviour and had only a moderate positive influence on the feeding activity.

  11. An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Luis Cisneros-Zevallos

    2012-09-01

    Full Text Available Plants subjected to abiotic stresses synthesize secondary metabolites with potential application in the functional foods, dietary supplements, pharmaceutical, cosmetics and agrochemical markets. This approach can be extended to horticultural crops. This review describes previous reports regarding the effect of different postharvest abiotic stresses on the accumulation of phenolic compounds. Likewise, the physiological basis for the biosynthesis of phenolic compounds as an abiotic stress response is described. The information presented herein would be useful for growers and the fresh produce market which are interested in finding alternative uses for their crops, especially for those not meeting quality standards and thus are considered as waste.

  12. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine

    Directory of Open Access Journals (Sweden)

    Zhong-Rong Zhang

    2015-01-01

    Full Text Available This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl-2H-1-benzopyran-2-one, a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP and cyclic adenosine monophosphate (cGMP level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine.

  13. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants

    International Nuclear Information System (INIS)

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-01-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO 2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. - Highlights: • Alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin was investigated on Ti6Al4V. • The surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests at pH 7 and pH 5. • The analysis showed an increased adsorption of amino acids (DMEM) and proteins (DMEM + FCS). • BSA was shown to prevent dissolution of the β-phase, limiting metal ion release and increase of corrosion resistance. • Ratios calculated by means of ToF-SIMS show that the protein will have different orientations during adsorption.

  14. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Höhn, Sarah, E-mail: sarah.hoehn@fau.de [Institute for Surface Science and Corrosion, Dept. of Mat. Science, University of Erlangen-Nürnberg, 91058 Erlangen, Germany. (Germany); Braem, Annabel, E-mail: annabel.braem@kuleuven.be [KU Leuven Department of Materials Engineering, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven (Belgium); Neirinck, Bram, E-mail: bram.neirinck@3DSystems.com [KU Leuven Department of Materials Engineering, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven (Belgium); Virtanen, Sannakaisa, E-mail: virtanen@ww.uni-erlangen.de [Institute for Surface Science and Corrosion, Dept. of Mat. Science, University of Erlangen-Nürnberg, 91058 Erlangen, Germany. (Germany)

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO{sub 2} passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. - Highlights: • Alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin was investigated on Ti6Al4V. • The surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests at pH 7 and pH 5. • The analysis showed an increased adsorption of amino acids (DMEM) and proteins (DMEM + FCS). • BSA was shown to prevent dissolution of the β-phase, limiting metal ion release and increase of corrosion resistance. • Ratios calculated by means of ToF-SIMS show that the protein will have different orientations during adsorption.

  15. Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method

    International Nuclear Information System (INIS)

    Wang Luning; Luo Jingli

    2011-01-01

    Hydroxyapatite (HA) coating has been widely applied on metallic biomedical implants to enhance their biocompatibility. It has been reported that HA coating can be formed on annealed zirconium with anodic zirconium oxide nanotubular arrays after immersion in simulated biological fluid (SBF) for about 14 days. In the present study, we apply an alternative immersion method (AIM) to form presynthesized HA on ZrO 2 nanotubes. The AIM-treated specimen was then moved to the SBF to evaluate the capability for the formation of HA on it. The HA coating formed after only 2 days immersion and thickened after 5 days in the SBF. The HA coating is the carbonated HA with a ratio of Ca to P of about 1.4, similar to the physiological HA containing other minor elements such as Mg and Na. The results demonstrate that the AIM treatment is indeed suitable for the zirconium oxide nanotubes and highly accelerates the formation of HA coating in comparison with the existing methods, i.e. the annealing of the as-formed zirconium oxide nanotubular arrays.

  16. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants.

    Science.gov (United States)

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO 2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Studies on chemical constituents and bioactivity of Rosa micrantha: an alternative antioxidants source for food, pharmaceutical, or cosmetic applications.

    Science.gov (United States)

    Guimarães, Rafaela; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2010-05-26

    Rose species have long been used for food and medicinal purposes. Rosa micrantha is one of the rose species that grow feral in the northeastern Portuguese region so-called Nordeste Transmontano. For the first time, chemical composition and bioactivity of their petals, fertilized flowers, unripe, ripening, and overripe hips were evaluated in order to valorize them as sources of important phytochemicals. Chemical characterization included determination of proteins, fats, ash, and carbohydrates, particularly sugars, by HPLC-RI, fatty acids by GC-FID, tocopherols by HPLC-fluorescence, and phenolics, flavonoids, carotenoids, and ascorbic acid by spectrophotometric techniques. Bioactivity was evaluated through screening of antioxidant properties: radical scavenging effects, reducing power, and inhibition of lipid peroxidation. Ripening and overripe hips showed high nutritional value including proteins, carbohydrates, omega-3 and omega-6 fatty acids, energy, sugars, particularly the reducing sugars fructose and glucose, and ascorbic acid (>693 mg/100 g). Fertilized flowers and petals revealed the highest antioxidant activity (EC(50) > 152 microg/mL) and phenolics, flavonoids, and tocopherols contents (>35 mg/100 g). Furthermore, petals, ripening, and overripe hips are important sources of carotenoid pigments (>64 mg/100 g). Because of the diversity and abundance of antioxidants found in this species, some food, cosmetic, and pharmaceutical applications could be explored.

  18. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  19. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part 1: African Wave Circulation

    Science.gov (United States)

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2014-01-01

    The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.

  20. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity.

    Science.gov (United States)

    Catenacci, Victoria A; Pan, Zhaoxing; Ostendorf, Danielle; Brannon, Sarah; Gozansky, Wendolyn S; Mattson, Mark P; Martin, Bronwen; MacLean, Paul S; Melanson, Edward L; Troy Donahoo, William

    2016-09-01

    To evaluate the safety and tolerability of alternate-day fasting (ADF) and to compare changes in weight, body composition, lipids, and insulin sensitivity index (Si) with those produced by a standard weight loss diet, moderate daily caloric restriction (CR). Adults with obesity (BMI ≥30 kg/m(2) , age 18-55) were randomized to either zero-calorie ADF (n = 14) or CR (-400 kcal/day, n = 12) for 8 weeks. Outcomes were measured at the end of the 8-week intervention and after 24 weeks of unsupervised follow-up. No adverse effects were attributed to ADF, and 93% completed the 8-week ADF protocol. At 8 weeks, ADF achieved a 376 kcal/day greater energy deficit; however, there were no significant between-group differences in change in weight (mean ± SE; ADF -8.2 ± 0.9 kg, CR -7.1 ± 1.0 kg), body composition, lipids, or Si. After 24 weeks of unsupervised follow-up, there were no significant differences in weight regain; however, changes from baseline in % fat mass and lean mass were more favorable in ADF. ADF is a safe and tolerable approach to weight loss. ADF produced similar changes in weight, body composition, lipids, and Si at 8 weeks and did not appear to increase risk for weight regain 24 weeks after completing the intervention. © 2016 The Obesity Society.

  1. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity

    Science.gov (United States)

    Catenacci, Victoria A.; Pan, Zhaoxing; Ostendorf, Danielle; Brannon, Sarah; Gozansky, Wendolyn S.; Mattson, Mark P.; Martin, Bronwen; MacLean, Paul S.; Melanson, Edward L.; Donahoo, William Troy

    2016-01-01

    Objective To evaluate the safety and tolerability of alternate-day fasting (ADF) and to compare changes in weight, body composition, lipids, and insulin sensitivity index (Si) to those produced by a standard weight loss diet, moderate daily caloric restriction (CR). Methods Adults with obesity (BMI ≥30 kg/m2, age 18-55) were randomized to either zero-calorie ADF (n=14) or CR (-400 kcal/day, n=12) for 8 weeks. Outcomes were measured at the end of the 8-week intervention and after 24 weeks of unsupervised follow-up. Results No adverse effects were attributed to ADF and 93% completed the 8-week ADF protocol. At 8 weeks, ADF achieved a 376 kcal/day greater energy deficit, however there were no significant between-group differences in change in weight (mean±SE; ADF -8.2±0.9 kg, CR -7.1±1.0 kg), body composition, lipids, or Si. After 24 weeks of unsupervised follow-up, there were no significant differences in weight regain, however changes from baseline in % fat mass and lean mass were more favorable in ADF. Conclusions ADF is a safe and tolerable approach to weight loss. ADF produced similar changes in weight, body composition, lipids and Si at 8 weeks and did not appear to increase risk for weight regain 24 weeks after completing the intervention. PMID:27569118

  2. Comparing response options for the International Outcome Inventory for Hearing Aids (IOI-HA) and for Alternative Interventions (IOI-AI) daily-use items.

    Science.gov (United States)

    Laplante-Lévesque, Ariane; Hickson, Louise; Worrall, Linda

    2012-10-01

    This study investigated how clients quantify use of hearing rehabilitation. Comparisons focused on the daily-use item of the International Outcome Inventory for Hearing Aids (IOI-HA), and for Alternative Interventions (IOI-AI). Adults with hearing impairment completed the original versions of the IOI-HA and the IOI-AI daily-use item which has five numerical response options (e.g. 1-4 hours/day) and a modified version with five word response options (e.g. 'Sometimes'). Respondents completed both IOI versions immediately after intervention completion and three months later. In total, 64 people who had obtained hearing aids completed both IOI-HA versions and 27 people who had participated in communication programs completed both IOI-AI versions. Participants reported higher scores on the modified (word) daily-use item than on the original (number) daily-use item. Participants who completed the IOI-AI did so significantly more than participants who completed the IOI-HA. This was true both after intervention completion and three months later. This study showed that comparisons between IOI-HA and IOI-AI daily-use item scores should be made with caution. Word daily-use response options are recommended for the IOI-AI (i.e. Never; Rarely; Sometimes; Often; and Almost always).

  3. Seaweed Bioactivity

    DEFF Research Database (Denmark)

    Zaharudin, Nazikussabah Binti

    . In conclusion, two brown seaweeds, Laminaria digitata and Undaria pinnatifida, inhibited α-amylase and α-glucosidase activities due to their content of several bioactive components with a potential use for future functional foods. Their effects on the postprandial insulin response and the in vitro findings...

  4. Augmentative and alternative communication in daily clinical practice: strategies and tools for management of severe communication disorders.

    Science.gov (United States)

    Frankoff, Denise J; Hatfield, Brooke

    2011-01-01

    Research indicates that augmentative and alternative communication (AAC) approaches can be used effectively by patients and their caregivers to improve communication skills. This article highlights strategies and tools for re-establishing communication competence by considering the complexity and diversity of communication interactions in an effort to maximize natural speech and language skills via a range of technologies that are implemented across the continuum of care rather than as a last resort.

  5. Twelve-hour brain lithium concentration in lithium maintenance treatment of manic-depressive disorder: daily versus alternate-day dosing schedule

    DEFF Research Database (Denmark)

    Jensen, H.V.; Plenge, P; Stensgaard, A

    1996-01-01

    The 12-h brain lithium concentration was measured by lithium-7 magnetic resonance spectroscopy in ten manic-depressive patients receiving daily or alternate-day lithium carbonate treatment. The median dose of lithium carbonate was 800 mg in the daily treatment group and 1200 mg in the alternate......-day group. Median 12-h serum lithium concentration in the two groups was 0.86 mmol l-1 and 0.55 mmol l-1, respectively, while the corresponding concentration in brain was 0.67 mmol l-1 and 0.52 mmol l-1, respectively. The 12-h brain lithium concentration was independent of lithium dosing schedule (multiple...... linear regression), but correlated significantly with the 12-h serum lithium concentration (P = 0.003; B = 0.53, 95% c.l. 0.24-0.82; beta = 0.83). Thus at identical 12-h serum lithium concentrations the 12-h brain lithium concentration is similar with both treatment regimes. As the risk of manic...

  6. An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject

    Science.gov (United States)

    Ahlberg, Johan; Lendaro, Eva; Hermansson, Liselotte; Håkansson, Bo; Ortiz-Catalan, Max

    2018-01-01

    The functionality of upper limb prostheses can be improved by intuitive control strategies that use bioelectric signals measured at the stump level. One such strategy is the decoding of motor volition via myoelectric pattern recognition (MPR), which has shown promising results in controlled environments and more recently in clinical practice. Moreover, not much has been reported about daily life implementation and real-time accuracy of these decoding algorithms. This paper introduces an alternative approach in which MPR allows intuitive control of four different grips and open/close in a multifunctional prosthetic hand. We conducted a clinical proof-of-concept in activities of daily life by constructing a self-contained, MPR-controlled, transradial prosthetic system provided with a novel user interface meant to log errors during real-time operation. The system was used for five days by a unilateral dysmelia subject whose hand had never developed, and who nevertheless learned to generate patterns of myoelectric activity, reported as intuitive, for multi-functional prosthetic control. The subject was instructed to manually log errors when they occurred via the user interface mounted on the prosthesis. This allowed the collection of information about prosthesis usage and real-time classification accuracy. The assessment of capacity for myoelectric control test was used to compare the proposed approach to the conventional prosthetic control approach, direct control. Regarding the MPR approach, the subject reported a more intuitive control when selecting the different grips, but also a higher uncertainty during proportional continuous movements. This paper represents an alternative to the conventional use of MPR, and this alternative may be particularly suitable for a certain type of amputee patients. Moreover, it represents a further validation of MPR with dysmelia cases. PMID:29637030

  7. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  8. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    Science.gov (United States)

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  9. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.

    Science.gov (United States)

    Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E

    2015-01-01

    Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.

  11. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  12. Bioactive technologies for hemocompatibility.

    Science.gov (United States)

    Tanzi, Maria Cristina

    2005-07-01

    The contact of any biomaterial with blood gives rise to multiple pathophysiologic defensive mechanisms such as activation of the coagulation cascade, platelet adhesion and activation of the complement system and leukocytes. The reduction of these events is of crucial importance for the successful clinical performance of a cardiovascular device. This can be achieved by improving the hemocompatibility of the device materials or by pharmacologic inhibition of the key enzymes responsible for the activation of the cascade reactions, or a combination of both. Different strategies have been developed during the last 20 years, and this article attempts to review the most significant, by dividing them into three main categories: bioinert or biopassive, biomimetic and bioactive strategies. With regard to bioactive strategies, particular attention is given to heparin immobilization and recent related technologies. References from both scientific literature and commercial sites are provided. Future development and studies are suggested.

  13. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  14. Bioactive Lipids in Dairy Fat

    DEFF Research Database (Denmark)

    Hellgren, Lars; Nordby, Pernille

    2017-01-01

    Milk fat is the most important energy source for the newborn infant beside its important role as energy source, milk fat also contain a range of bioactive lipids, that potentially can modulate the immune response and metabolic regulation in the child. In this chapter we review the literature on b...... on bioactive dairy fatty acids: conjugated linoleic acid, branched chained and odd chained fatty acids, as well as bioactive complex lipids such as sphingomyelin and gangliosides....

  15. Broad spectrum bioactive sunscreens.

    Science.gov (United States)

    Velasco, Maria Valéria Robles; Sarruf, Fernanda Daud; Salgado-Santos, Idalina Maria Nunes; Haroutiounian-Filho, Carlos Alberto; Kaneko, Telma Mary; Baby, André Rolim

    2008-11-03

    The development of sunscreens containing reduced concentration of chemical UV filters, even though, possessing broad spectrum effectiveness with the use of natural raw materials that improve and infer UV absorption is of great interest. Due to the structural similarities between polyphenolic compounds and organic UV filters, they might exert photoprotection activity. The objective of the present research work was to develop bioactive sunscreen delivery systems containing rutin, Passiflora incarnata L. and Plantago lanceolata extracts associated or not with organic and inorganic UV filters. UV transmission of the sunscreen delivery system films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection efficacy was evaluated according to the following parameters: estimated sun protection factor (SPF); Boot's Star Rating category; UVA/UVB ratio; and critical wavelength (lambda(c)). Sunscreen delivery systems obtained SPF values ranging from 0.972+/-0.004 to 28.064+/-2.429 and bioactive compounds interacted with the UV filters positive and negatively. This behavior may be attributed to: the composition of the delivery system; the presence of inorganic UV filter and quantitative composition of the organic UV filters; and the phytochemical composition of the P. incarnata L. and P. lanceolata extracts. Among all associations of bioactive compounds and UV filters, we found that the broad spectrum sunscreen was accomplished when 1.68% (w/w) P. incarnata L. dry extract was in the presence of 7.0% (w/w) ethylhexyl methoxycinnamate, 2.0% (w/w) benzophenone-3 and 2.0% (w/w) TiO(2). It was demonstrated that this association generated estimated SPF of 20.072+/-0.906 and it has improved the protective defense against UVA radiation accompanying augmentation of the UVA/UVB ratio from 0.49 to 0.52 and lambda(c) from 364 to 368.6nm.

  16. Dose fractionated gamma knife radiosurgery for large arteriovenous malformations on daily or alternate day schedule outside the linear quadratic model: Proof of concept and early results. A substitute to volume fractionation.

    Science.gov (United States)

    Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep

    2017-01-01

    To evaluate the feasibility, safety and efficacy of dose fractionated gamma knife radiosurgery (DFGKRS) on a daily schedule beyond the linear quadratic (LQ) model, for large volume arteriovenous malformations (AVMs). Between 2012-16, 14 patients of large AVMs (median volume 26.5 cc) unsuitable for surgery or embolization were treated in 2-3 of DFGKRS sessions. The Leksell G frame was kept in situ during the whole procedure. 86% (n = 12) patients had radiologic evidence of bleed, and 43% (n = 6) had presented with a history of seizures. 57% (n = 8) patients received a daily treatment for 3 days and 43% (n = 6) were on an alternate day (2 fractions) regimen. The marginal dose was split into 2 or 3 fractions of the ideal prescription dose of a single fraction of 23-25 Gy. The median follow up period was 35.6 months (8-57 months). In the three-fraction scheme, the marginal dose ranged from 8.9-11.5 Gy, while in the two-fraction scheme, the marginal dose ranged from 11.3-15 Gy at 50% per fraction. Headache (43%, n = 6) was the most common early postoperative complication, which was controlled with short course steroids. Follow up evaluation of at least three years was achieved in seven patients, who have shown complete nidus obliteration in 43% patients while the obliteration has been in the range of 50-99% in rest of the patients. Overall, there was a 67.8% reduction in the AVM volume at 3 years. Nidus obliteration at 3 years showed a significant rank order correlation with the cumulative prescription dose (p 0.95, P value 0.01), with attainment of near-total (more than 95%) obliteration rates beyond 29 Gy of the cumulative prescription dose. No patient receiving a cumulative prescription dose of less than 31 Gy had any severe adverse reaction. In co-variate adjusted ordinal regression, only the cumulative prescription dose had a significant correlation with common terminology criteria for adverse events (CTCAE) severity (P value 0.04), independent of age, AVM volume

  17. Bioactive compounds: historical perspectives, opportunities, and challenges.

    Science.gov (United States)

    Patil, Bhimanagouda S; Jayaprakasha, G K; Chidambara Murthy, K N; Vikram, Amit

    2009-09-23

    Mom's conventional wisdom of eating fruits and vegetables to lead a healthy life has evolved with scientific, fact-finding research during the past four decades due to advances in science of "Foods for Health". Epidemiological and prospective studies have demonstrated the vital role of fruits, vegetables, and nuts in reducing the risk of cancer and cardiovascular diseases. In recent years, several meta-analyses strongly suggested that by adding one serving of fruits and vegetables to daily diet, the risk of cardiovascular diseases will be decreased up to 7%. The multidisciplinary and partnership efforts of agriculture and medical scientists across the globe stimulated interest in establishing certain interdisciplinary centers and institutes focusing on "Foods for Health". While the consumption of various healthy foods continues, several questions about toxicity, bioavailability, and food-drug interactions of bioactive compounds are yet to be fully understood on the basis of scientific evidence. Recent research on elucidation of the molecular mechanisms to understand the "proof of the concept" will provide the perfect answer when consumers are ready for a "consumer-to-farm" rather than the current "farm-to-consumer" approach. The multidisciplinary research and educational efforts will address the role of healthy foods to improve eye, brain, and heart health while reducing the risk of cancer. Through this connection, this review is an attempt to provide insight and historical perspectives on some of the bioactive compounds from the day of discovery to their current status. The bioactive compounds discussed in this review are flavonoids, carotenoids, curcumin, ascorbic acid, and citrus limonoids.

  18. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-01-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  19. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-08-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  20. Angiogenesis stimulated by novel nanoscale bioactive glasses

    International Nuclear Information System (INIS)

    Mao, Cong; Chen, Xiaofeng; Miao, Guohou; Lin, Cai

    2015-01-01

    The ability of biomaterials to induce rapid vascular formation is critical in tissue regeneration. Combining recombinant angiogenic growth factors with bioengineered constructs have proven to be difficult due to several issues, including the instability of recombinant proteins, the need for sustained delivery and the dosage of factors. New formulations of bioactive glass, 58S nanosized bioactive glass (58S-NBG), have been reported to enhance wound healing in animal models better than the first generation of 45S5 Bioglass. Therefore, we investigated the effects of extracts of 58S-NBG and 80S-NBG on cultures of human umbilical vein endothelial cells (HUVECs). Cell viability was assessed by MTS assay. In vitro angiogenesis was measured using an ECM gel tube formation assay, and levels of mRNAs for five angiogenic related genes were measured by qRT-PCR. Extracts of 58S-NBG and 80S-NBG stimulated the proliferation of HUVECs, accelerated cell migration, up-regulated expression of the vascular endothelial growth factor, basic fibroblast growth factor, their receptors, and endothelial nitric oxide synthase, resulting in enhanced tube formation in vitro. The enhanced angiogenic response correlated with increased levels of Ca and Si in the extracts of 58S-NBG and 80S-NBG. The ability of 58S-NBG and 80S-NBG to stimulate angiogenesis in vitro provides alternative approaches for stimulating neovascularization of tissue-engineered constructs. (paper)

  1. Bioactive Peptides in Animal Food Products

    Directory of Open Access Journals (Sweden)

    Marzia Albenzio

    2017-05-01

    Full Text Available Proteins of animal origin represent physiologically active components in the human diet; they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes endogenous to raw food materials, and enzymes from microorganisms added during food processing. Milk proteins have different polymorphisms for each dairy species that influence the amount and the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation of the protein. Milk from other species alternative to cow has been exploited for their role in children with cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status. Different mechanisms concur for bioactive peptides generation from meat and meat products, and their functionality and application as functional ingredients have proven effects on consumer health. Animal food proteins are currently the main source of a range of biologically-active peptides which have gained special interest because they may also influence numerous physiological responses in the organism. The addition of probiotics to animal food products represent a strategy for the increase of molecules with health and functional properties.

  2. Bioactive composite for keratoprosthesis skirt.

    Science.gov (United States)

    Laattala, Kaisa; Huhtinen, Reeta; Puska, Mervi; Arstila, Hanna; Hupa, Leena; Kellomäki, Minna; Vallittu, Pekka K

    2011-11-01

    In this study, the fabrication and properties of a synthetic keratoprosthesis skirt for use in osteo-odonto-keratoprosthesis (OOKP) surgery are discussed. In the search for a new material concept, bioactive glass and polymethyl methacrylate (PMMA)-based composites were prepared. Three different bioactive glasses (i.e. 45S5, S53P4 and 1-98) and one slowly resorbing glass, FL107, with two different forms (i.e. particles and porous glass structures) were employed in the fabrication of specimens. In in vitro studies, the dissolution behaviour in simulated aqueous humour, compressive properties, and pore formation of the composites were investigated. According to the results, FL107 dissolved very slowly (2.4% of the initial glass content in three weeks); thus, the pore formation of the FL107 composite was also observed to be restricted. The dissolution rates of the bioactive glass-PMMA composites were greater (12%-17%). These faster dissolving bioactive glass particles caused some porosity on the outermost surfaces of the composite. The slight surface porosity was also confirmed by a decrease in compressive properties. During six weeks' in vitro dissolution, the compressive strength of the test specimens containing particles decreased by 22% compared to values in dry conditions (90-107 MPa). These results indicate that the bioactive composites could be stable synthetic candidates for a keratoprosthesis skirt in the treatment of severely damaged or diseased cornea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  4. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, H.T.; Huang, L.F.; Lu, P.S.; Chang, H.F.; Chang, I.L.

    2010-01-01

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO 2 -CaO-P 2 O 5 mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  5. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    . In particular, 3-15% of very low birth weight preterm infants suffer from the most servere form of intestinal inflammation, known as necrotizing enterocolitis (NEC). This disease is incurable with a high mortality rate of 15-30%. Mother’s breast milk consists of different bioactive constituents...... of infant formula. Thereafter, bioactive milk components which were preserved in gently-processed infant formula were selected for further investigation of their immunomodulatory activity in cell and preterm pig models. We hope this project will contribute to the research on the development of new...

  6. Bioactive glasses potential biomaterials for future therapy

    CERN Document Server

    Kaur, Gurbinder

    2017-01-01

    This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.

  7. Bio-actives and Drug

    Indian Academy of Sciences (India)

    Bio-actives. have an effect on or elicit a response from living tissue. Refer to a substance that can be acted upon by a living organism or by an extract from a living organism. are constituents in foods or dietary supplements, other than those needed to meet basic nutritional needs, that are responsible for changes in health ...

  8. Managing Daily Life

    Science.gov (United States)

    ... Duchenne / Managing Daily Life Print Email Managing Daily Life Environmental accessibility As the person with Duchenne starts ... such as wider doorways and ramps, can make life easier once the person with Duchenne cannot climb ...

  9. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  10. Bioactive peptides released from in vitro digestion of human milk with or without pasteurization.

    Science.gov (United States)

    Wada, Yasuaki; Lönnerdal, Bo

    2015-04-01

    Pasteurized donor human milk (HM) serves as the best alternative for breast-feeding when availability of mother's milk is limited. Pasteurization is also applied to mother's own milk for very low birth weight infants, who are vulnerable to microbial infection. Whether pasteurization affects protein digestibility and therefore modulates the profile of bioactive peptides released from HM proteins by gastrointestinal digestion, has not been examined to date. HM with and without pasteurization (62.5 °C for 30 min) were subjected to in vitro gastrointestinal digestion, followed by peptidomic analysis to compare the formation of bioactive peptides. Some of the bioactive peptides, such as caseinophosphopeptide homologues, a possible opioid peptide (or propeptide), and an antibacterial peptide, were present in undigested HM and showed resistance to in vitro digestion, suggesting that these peptides are likely to exert their bioactivities in the gastrointestinal lumen, or be stably transported to target organs. In vitro digestion of HM released a large variety of bioactive peptides such as angiotensin I-converting enzyme-inhibitory, antioxidative, and immunomodulatory peptides. Bioactive peptides were released largely in the same manner with and without pasteurization. Provision of pasteurized HM may be as beneficial as breast-feeding in terms of milk protein-derived bioactive peptides.

  11. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  12. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  13. Quinazoline derivatives: synthesis and bioactivities

    OpenAIRE

    Wang, Dan; Gao, Feng

    2013-01-01

    Owing to the significant biological activities, quinazoline derivatives have drawn more and more attention in the synthesis and bioactivities research. This review summarizes the recent advances in the synthesis and biological activities investigations of quinazoline derivatives. According to the main method the authors adopted in their research design, those synthetic methods were divided into five main classifications, including Aza-reaction, Microwave-assisted reaction, Metal-mediated reac...

  14. Azadirachta indica Mediated Bioactive Lyocell Yarn: Chemical and Colour Characterization

    Directory of Open Access Journals (Sweden)

    B. H. Patel

    2014-01-01

    Full Text Available The study deals with preparing aesthetic textiles using methanolic extract of Azadirachta indica leaves. The extract with metallic and natural mordents was utilized to create various shades on lyocell yarn using exhaust technique of dyeing. Aesthetic values of dyed yarns were analyzed in terms of colourimetric parameters, that is, CIE L*  a*  b* and colour fastness. The attachment of Azadirachta indica compounds has been confirmed by using infrared spectroscopy (IR analysis. The dyed samples exhibit moderate to good fastness properties. The study showed that lyocell yarn treated at 15% (owf methanolic extract of Azadirachta indica leaves can be utilized as effective bioactive textiles. Azadirachta indica is an alternative to synthetic antimicrobial agents. This bioactive yarn can be used in fashion as well as in medicinal industry.

  15. Functionally graded bioactive coatings: From fabrication to testing

    Science.gov (United States)

    Foppiano, Silvia

    Every year about half a million Americans undergo total joint replacement surgery of some kind. This number is expected to steadily increase in the future. About 20% of these patients will need a revision surgery because of implant failure, with a significant increase in health care cost. Current implant materials for load bearing applications must be strong enough to support the loads involved in daily activities, and bioinert, to limit reactivity in the body that may cause inflammatory and other adverse reactions. Metal alloys are typically used as materials for load bearing implants and rely on mechanical interlocking to achieve fixation which can be improved by using bone cements. To improve implant osteointegration, metal implants have been coated with a bone-like mineral: hydroxyapatite (HA). The plasma spray technique is commonly used to apply the HA coating. Such implants do not require the use of bone cement. Plasma sprayed HA coated implants are FDA approved and currently on the market, but their properties are not reproducible or reliable. Thus, coating delamination can occur. Our research group developed a novel family of bioactive glasses which were enameled onto titanium alloy using a functionally graded approach. We stratified the coating with different glass compositions to fulfill different functions. We coupled a first glass layer, with a good CTE match to the alloy, with a second layer of bioactive glass obtaining a functionally graded bioactive coating (FGC). In this thesis for the first time the cytocompatibility of novel bioactive glasses, and their functionally graded coatings on Ti6Al4V, was studied with an in vitro bone model (MC3T3-E1.4 mouse preosteblast cells). The novel bioactive glasses are cytocompatible and no compositional change is required. The fabrication process is reproducible, introduces a small (average 6 vol%) amount of crystallization, which does not significantly affect bioactivity in SBF as tested. The coatings are

  16. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  17. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  18. Bioactive content, hepatoprotective and antioxidant activities of ...

    African Journals Online (AJOL)

    Bioactive content, hepatoprotective and antioxidant activities of whole plant extract of Micromeria fruticosa (L) Druce ssp Serpyllifolia F Lamiaceae against Carbon tetrachloride-induced hepatotoxicity in mice.

  19. Bioactivity evolution of the surface functionalized bioactive glasses.

    Science.gov (United States)

    Magyari, Klára; Baia, Lucian; Vulpoi, Adriana; Simon, Simion; Popescu, Octavian; Simon, Viorica

    2015-02-01

    The formation of a calcium phosphate layer on the surface of the SiO2 -CaO-P2 O5 glasses after immersion in simulated body fluid (SBF) generally demonstrates the bioactivity of these materials. Grafting of the surface by chemical bonding can minimize the structural changes in protein adsorbed on the surface. Therefore, in this study our interest was to evaluate the bioactivity and blood biocompatibility of the SiO2 -CaO-P2 O5 glasses after their surface modification by functionalization with aminopropyl-triethoxysilane and/or by fibrinogen. It is shown that the fibrinogen adsorbed on the glass surfaces induces a growing of the apatite-like layer. It is also evidenced that the protein content from SBF influences the growth of the apatite-like layer. Furthermore, the good blood compatibility of the materials after fibrinogen and bovine serum albumin adsorption is proved from the assessment of the β-sheet-β-turn ratio. © 2014 Wiley Periodicals, Inc.

  20. Lightship Daily Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations taken on board lightships along the United States coasts from 1936 - 1983. Generally 4-6 observations daily. Also includes deck logs, which give...

  1. DailyMed

    Data.gov (United States)

    U.S. Department of Health & Human Services — DailyMed provides high quality information about marketed drugs. This information includes FDA labels (package inserts). This Web site provides health information...

  2. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  3. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Science.gov (United States)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  4. Layered titanates with fibrous nanotopographic features as reservoir for bioactive ions to enhance osteogenesis

    Science.gov (United States)

    Song, Xiaoxia; Tang, Wei; Gregurec, Danijela; Yate, Luis; Moya, Sergio Enrique; Wang, Guocheng

    2018-04-01

    In this study, an osteogenic environment was constructed on Ti alloy implants by in-situ formation of nanosized fibrous titanate, Na2Ti6O13, loaded with bioactive ions, i.e. Sr, Mg and Zn, to enhance surface bioactivity. The bioactive ions were loaded by ion exchange with sodium located at inter-layer positions between the TiO6 slabs, and their release was not associated with the degradation of the structural unit of the titanate. In-vitro cell culture experiments using MC3T3-E1 cells proved that both bioactive ions and nanotopographic features are critical in promoting osteogenic differentiation of the cells. It was found that the osteogenic functions of the titanate can be modulated by the type and amount of ions incorporated. This study points out that nanosized fibrous titanate formed on the Ti alloy can be a promising reservoir for bioactive ions. The major advantage of this approach over other alternatives for bioactive ion delivery using degradable bioceramic coatings is its capacity of maintaining the structural integrity of the coating and thus avoiding structural deterioration and potential mechanical failure.

  5. Recent Evidence on Bioactive Glass Antimicrobial and Antibiofilm Activity: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Lorenzo Drago

    2018-02-01

    Full Text Available Bone defects caused by trauma or pathological events are major clinical and socioeconomic burdens. Thus, the efforts of regenerative medicine have been focused on the development of non-biodegradable materials resembling bone features. Consequently, the use of bioactive glass as a promising alternative to inert graft materials has been proposed. Bioactive glass is a synthetic silica-based material with excellent mechanical properties able to bond to the host bone tissue. Indeed, when immersed in physiological fluids, bioactive glass reacts, developing an apatite layer on the granule’s surface, playing a key role in the osteogenesis process. Moreover, the contact of bioactive glass with biological fluids results in the increase of osmotic pressure and pH due to the leaching of ions from granules’ surface, thus making the surrounding environment hostile to microbial growth. The bioactive glass antimicrobial activity is effective against a wide selection of aerobic and anaerobic bacteria, either in planktonic or sessile forms. Furthermore, bioglass is able to reduce pathogens’ biofilm production. For the aforementioned reasons, the use of bioactive glass might be a promising solution for the reconstruction of bone defects, as well as for the treatment and eradication of bone infections, characterized by bone necrosis and destruction of the bone structure.

  6. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  7. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  8. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; García Moreno, Pedro Jesús; Mendes, Ana Carina Loureiro

    2018-01-01

    or in the gastrointestinal tract. For that purpose, efficient encapsulation of the compounds may be required. Spray drying is one of the most commonly used encapsulation techniques in the food industry, but it uses high temperature, which can lead to decomposition of the bioactive compounds. Recently, alternative...

  9. Bioactive compounds of fresh and dehydrated green pepper

    Directory of Open Access Journals (Sweden)

    Ana Marinho do Nascimento

    2017-07-01

    Full Text Available Pepper Capsicum annuum L., belongs to the Solanaceae family, which contains approximately 31 species. Bioactive compounds also known as phytochemicals are chemical and biochemical components that are present in most fruits and vegetables. The objective of the present study was to verify if the bioactive compounds of the green pepper remain after being submitted to the drying process. The experiment was conducted in a completely randomized design with 2 treatments and 5 replicates. Green peppers were used from the (Economic Center of Supply Corporation of the city of Patos, Paraíba. The peppers were packed in plastic boxes and transported to the Laboratory of Chemistry, Biochemistry and Food Analysis of the Federal University of Campina Grande, Campus Pombal. Where they were selected, washed and sanitized. After that, the minimum processing was done and the drying was carried out in a circulation oven at 60 ºC. At the end of the drying, the samples were crushed and sieved. After this process, the analyzes of ascorbic acid, chlorophylls, carotenoids, anthocyanin flavonoids and phenolic compounds. It was found that there was a significant difference between treatments. The bioactive properties of green pepper were not lost after the heat treatment. Some phytochemicals as ascorbic acid, carotenoids and phenolic compounds were concentrated. Therefore the loss of water during the drying process increased the concentration of the bioactive compounds of dehydrated pepper, the product obtained with this method exhibited high levels of phytochemicals, the use of drying may be an alternative to prolong the shelf life of the vegetable.

  10. Chronic daily headaches

    Directory of Open Access Journals (Sweden)

    Fayyaz Ahmed

    2012-01-01

    Full Text Available Chronic Daily Headache is a descriptive term that includes disorders with headaches on more days than not and affects 4% of the general population. The condition has a debilitating effect on individuals and society through direct cost to healthcare and indirectly to the economy in general. To successfully manage chronic daily headache syndromes it is important to exclude secondary causes with comprehensive history and relevant investigations; identify risk factors that predict its development and recognise its sub-types to appropriately manage the condition. Chronic migraine, chronic tension-type headache, new daily persistent headache and medication overuse headache accounts for the vast majority of chronic daily headaches. The scope of this article is to review the primary headache disorders. Secondary headaches are not discussed except medication overuse headache that often accompanies primary headache disorders. The article critically reviews the literature on the current understanding of daily headache disorders focusing in particular on recent developments in the treatment of frequent headaches.

  11. Global Historical Climatology Network - Daily (GHCN-Daily), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Historical Climatology Network - Daily (GHCN-Daily) dataset integrates daily climate observations from approximately 30 different data sources. Version 3...

  12. Alternative security

    International Nuclear Information System (INIS)

    Weston, B.H.

    1990-01-01

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview

  13. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    Anti-diabetic effects of Zhuoduqing formula, a Chinese herbal decoction, ... Bioactive components of Gynura divaricata and its potential use in health, ... Whole-body vibration exercise improves functional parameters in patients ... Survey of dental students' attitude regarding oriental medicine/complementary and alternative ...

  14. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...... by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties...... of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed....

  15. Nutrients and bioactive substances in aquatic organisms

    International Nuclear Information System (INIS)

    Devadasan, K.; Mukundan, M.K.; Antony, P.D.; Viswanathan Nair, P.G.; Perigreen, P.A.; Joseph, Jose

    1994-01-01

    The International Symposium on Nutrients and Bioactive Substances in Aquatic Organisms, was held during 16-17 September 1993 by the Society of Fisheries Technologists (India) to review the progress of research in this area in India and elsewhere. The papers presented indicate that scientific productivity in this field is substantial and that some of the bioactive materials isolated from aquatic organisms have potential application in human health, nutrition and therapy. The symposium focussed attention on toxicants, nutrients and bioactive substances in aquatic organisms in general, and also on pollution of aquatic systems due to thermal effluents. Paper relevant to INIS database is indexed separately. (M.K.V.)

  16. Bioactivities and Health Benefits of Wild Fruits

    Directory of Open Access Journals (Sweden)

    Ya Li

    2016-08-01

    Full Text Available Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits.

  17. Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity

    Science.gov (United States)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2013-06-01

    Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

  18. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  19. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food.

    Science.gov (United States)

    Agyei, Dominic; Acquah, Caleb; Tan, Kei Xian; Hii, Hieng Kok; Rajendran, Subin R C K; Udenigwe, Chibuike C; Danquah, Michael K

    2018-01-01

    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d ) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.

  20. Thiocarbamates from Moringa oleifera Seeds Bioactive against Virulent and Multidrug-Resistant Vibrio Species

    Science.gov (United States)

    de Sousa, Oscarina Viana; Hofer, Ernesto; Mafezoli, Jair; Barbosa, Francisco Geraldo

    2017-01-01

    Prospect of antibacterial agents may provide an alternative therapy for diseases caused by multidrug-resistant bacteria. This study aimed to evaluate the in vitro bioactivity of Moringa oleifera seed extracts against 100 vibrios isolated from the marine shrimp Litopenaeus vannamei. Ethanol extracts at low (MOS-E) and hot (MOS-ES) temperature are shown to be bioactive against 92% and 90% of the strains, respectively. The most efficient Minimum Inhibitory Concentration (MIC) levels of MOS-E and MOS-ES against a high percentage of strains were 32 µg mL−1. Bioguided screening of bioactive compounds showed that the ethyl acetate fraction from both extracts was the only one that showed antibacterial activity. Vibriocidal substances, niazirine and niazimicine, were isolated from the aforementioned fraction through chromatographic fractionation. PMID:28770224

  1. An overview of the effects of thermal processing on bioactive glasses

    Directory of Open Access Journals (Sweden)

    Bellucci D.

    2010-01-01

    Full Text Available Bioglass® 45S5 is widely used in biomedical applications due to its ability to bond to bone and even to soft tissues. The sintering ability of Bioglass® powders is a key factor from a technological point of view, since its govern the production of advanced devices, ranging from highly porous scaffolds to functionalized coatings. Unfortunately this particular glass composition is prone to crystallize at the temperature required for sintering and this may impair the bioactivity of the original glass. For these reasons, a prerequisite to tailor the fabrication of Bioglass®-derived implants is to understand the interaction between sintering, crystallization and bioactivity. In this work the structural transformations which occur during the heat treatment of Bioglass® are reviewed and a special attention is paid to the sintering and crystallization processes. Moreover the bioactivity of the final glass-ceramics is discussed and some alternative glass formulations are reported.

  2. Synthesis and bioactive evaluations of novel benzotriazole ...

    Indian Academy of Sciences (India)

    Synthesis and bioactive evaluations of novel benzotriazole compounds as ... School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, .... −3 mol/L) was prepared by dissolving its solid in doubly distilled water.

  3. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  4. Difficulties of Alternatively Certified Teachers

    Science.gov (United States)

    Schonfeld, Irvin Sam; Feinman, Samantha J.

    2012-01-01

    This daily diary study followed, over a 2-week period, 252 beginning New York City public school teachers. Seventy percent were alternatively certified (New York City Teaching Fellows) and the rest, traditionally certified teachers. Alternatively certified teachers were more likely to experience stressors such as violent incidents and classroom…

  5. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  6. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation

    International Nuclear Information System (INIS)

    Killion, John A.; Kehoe, Sharon; Geever, Luke M.; Devine, Declan M.; Sheehan, Eoin; Boyd, Daniel; Higginbotham, Clement L.

    2013-01-01

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications. Highlights: • Young's modulus increases with the addition of bioactive glasses. • Hydrogel based composites formed an apatite layer in simulated body fluid. • Storage modulus increases with addition of bioactive glasses. • Compressive strength is dependent on molecular weight and bioactive glass loading

  7. Polymerization kinetics of experimental bioactive composites containing bioactive glass.

    Science.gov (United States)

    Par, Matej; Tarle, Zrinka; Hickel, Reinhard; Ilie, Nicoleta

    2018-06-21

    To investigate the polymerization kinetics and the degree of conversion (DC) of experimental resin composites with varying amount of bioactive glass 45S5 (BG). Experimental resin composites based on a photo-curable Bis-GMA/TEGDMA resin system were prepared. The composite series contained 0, 5, 10, 20, and 40 wt% of BG and reinforcing fillers up to the total filler amount of 70 wt%. Composite specimens were light cured with 1,219 mW/cm 2 for 20 or 40 s and their DC was monitored during 5 min at the data collection rate of 2 s -1 using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The 5-min DC values for experimental composites were in the range of 42.4-55.9% and 47.3-57.9% for curing times of 20 and 40 s, respectively. The differences in the 5-min DC between curing times of 20 s or 40 s became more pronounced in materials with higher BG amount. Within both curing times, a decreasing trend of the 5-min DC values was observed with the increasing percentage of BG fillers. The maximum polymerization rate also decreased consistently with the increasing BG amount. Unsilanized BG fillers showed a dose-dependent inhibitory effect on polymerization rate and the DC. Extending the curing time from 20 to 40 s showed a limited potential to improve the DC of composites with higher BG amount. The observed inhibitory effect of BG fillers on the polymerization of resin composites may have a negative influence on mechanical properties and biocompatibility. Copyright © 2018. Published by Elsevier Ltd.

  8. Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans

    DEFF Research Database (Denmark)

    Adhikari, Khem B; Laursen, Bente B; Gregersen, Per L

    2013-01-01

    benzoxazinoids with abundant HBOA-Glc (219 nmol × μmol−1 of creatinine). The sulfate and glucuronide conjugates of 2-hydroxy-1,4-benzoxazin-3-one (HBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) were detected in plasma and urine, indicating substantial phase II metabolism. Direct absorption of lactam......Scope Benzoxazinoids, which are natural compounds recently identified in mature whole grain cereals and bakery products, have been suggested to have a range of pharmacological properties and health-protecting effects. There are no published reports concerned with the absorption and metabolism...... of bioactive benzoxazinoids in humans. Methods and results The absorption, metabolism, and excretion of ten different dietary benzoxazinoids were examined by LC-MS/MS by analyzing plasma and urine from 20 healthy human volunteers after daily intake of 143 μmol of total benzoxazinoids from rye bread and rye...

  9. Neoadjuvant twice daily chemoradiotherapy for esophageal cancer: Treatment-related mortality and long-term outcomes

    Directory of Open Access Journals (Sweden)

    Stuart E. Samuels, MD, PhD

    2017-07-01

    Conclusion: Neoadjuvant twice-daily chemoradiation for esophageal cancer is a safe and effective alternative to daily fractionation with low treatment-related mortality and long-term outcomes similar to standard fractionation courses.

  10. The Daily Selection

    DEFF Research Database (Denmark)

    Skjold, Else

    2015-01-01

    In this PhD thesis, The Daily Selection, I will be addressing the overall question of how research on wardrobes can contribute to a more effective connection between the production and the consumption of dress objects. The thesis builds on exemplary studies of people in their wardrobes....... As such, the parts, when taken as a whole, represent an evolving process through which my overall research questions are being filtered and reflected. My scholarly approach builds on the fusing of fashion and dress research and design research, in this way closing a gap between dress practice as...

  11. Radiation in daily life

    International Nuclear Information System (INIS)

    Mora Rodriguez, P.

    1999-01-01

    The medical community benefits on a daily basis from the ionizing radiations used in the diagnosis and treatment of disease. The doses received in the medical field are only a small fraction of the total radiation received in a year. This bibliographic review has several objectives. The first one is to present the different components of natural radiation (background radiation). Secondly, it will introduce many consumer products that contain radioactive sources and expose our bodies. Third, arguments to diminish the radiation phobia will be presented and finally an easy to understand dosimetric magnitude will be introduced for the physician, the technologist and the patient. (author) [es

  12. Preclinical evaluation of strontium-containing bioactive bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhaoyang, E-mail: lizy@hku.hk [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong (China); Yuan, Ning [Department of Laboratory Medicine, Tianjin Chest Hospital, Tianjin 300051 (China); Lam, Raymond Wing Moon [Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong (China); Cui, Zhenduo; Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Lu, William Weijia, E-mail: wwlu@hku.hk [Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong (China)

    2013-12-01

    Strontium (Sr) has become more attractive for orthopaedic applications as they can simultaneously stimulate bone formation and prevent bone loss. A Sr-containing bioactive bone cement (Sr-BC) has been designed to fix osteoporotic bone fracture. Sr is a trace element, so the safety of containing Sr is concerned when Sr-BC is implanted in human body. The preclinical assessment of biocompatibility of Sr-BC was conducted according to ISO 10993 standards. MTT assay showed that this bioactive bone cement was non-toxic to mouse fibroblasts, and it met the basic requirement for the orthopaedic implant. The three independent genetic toxicity studies including Ames, chromosome aberration and bone marrow micronucleus assays demonstrated absence of genotoxic components in Sr-BC, which reassured the safety concerns of this novel bone cement. The muscle implantation results in present study were also encouraging. The acute inflammation around the cement was observed at 1 week post-implantation; however, no significant difference was observed between control and Sr-BC groups. These responses may be attributed to the presence of the foreign body, but the tissue healed after 12 weeks implantation. In summary, the above preclinical results provide additional assurance for the safety of this implant. Sr-BC can be used as a potential alternative to the traditional bone cement. - Highlights: • Strontium-containing bioactive bone cement (Sr-BC) was designed. • The biocompatibility of Sr-BC was evaluated according ISO 10993 standards. • Preclinical results provide additional assurance for the safety of Sr-BC.

  13. Preclinical evaluation of strontium-containing bioactive bone cement

    International Nuclear Information System (INIS)

    Li, Zhaoyang; Yuan, Ning; Lam, Raymond Wing Moon; Cui, Zhenduo; Yang, Xianjin; Lu, William Weijia

    2013-01-01

    Strontium (Sr) has become more attractive for orthopaedic applications as they can simultaneously stimulate bone formation and prevent bone loss. A Sr-containing bioactive bone cement (Sr-BC) has been designed to fix osteoporotic bone fracture. Sr is a trace element, so the safety of containing Sr is concerned when Sr-BC is implanted in human body. The preclinical assessment of biocompatibility of Sr-BC was conducted according to ISO 10993 standards. MTT assay showed that this bioactive bone cement was non-toxic to mouse fibroblasts, and it met the basic requirement for the orthopaedic implant. The three independent genetic toxicity studies including Ames, chromosome aberration and bone marrow micronucleus assays demonstrated absence of genotoxic components in Sr-BC, which reassured the safety concerns of this novel bone cement. The muscle implantation results in present study were also encouraging. The acute inflammation around the cement was observed at 1 week post-implantation; however, no significant difference was observed between control and Sr-BC groups. These responses may be attributed to the presence of the foreign body, but the tissue healed after 12 weeks implantation. In summary, the above preclinical results provide additional assurance for the safety of this implant. Sr-BC can be used as a potential alternative to the traditional bone cement. - Highlights: • Strontium-containing bioactive bone cement (Sr-BC) was designed. • The biocompatibility of Sr-BC was evaluated according ISO 10993 standards. • Preclinical results provide additional assurance for the safety of Sr-BC

  14. In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase

    Directory of Open Access Journals (Sweden)

    Oréfice Rodrigo L.

    2000-01-01

    Full Text Available Composites that can mimic the in vitro bioactive behavior of bioactive glasses were designed to fulfill two main features of bioactive glasses that are responsible for their high bond-to-bone rates: (1 capability of providing ions such as calcium and phosphate to the nearby environment and (2 ideal surface structure that allows fast heterogeneous precipitation of hydroxy-carbonate-apatite (HCA. The novel composites were prepared by incorporating bioactive glass particles into polymer matrices. The in vitro bioactivity test was performed by introducing samples into a buffered solution as well as into a simulated body fluid solution. FTIR was used to evaluate the kinetics of HCA (hydroxy-carbonate-apatite precipitation. The results showed that the obtained composites can supply ions, such as silicates and phosphates in rates and concentrations comparable or superior than bulk bioactive glasses. Moreover, the surface chemistry of the composites was altered to mimic the surface of bioactive glasses. It was demonstrated that the in vitro bioactivity of the composites was enhanced by chemically modifying polymer surfaces through the introduction of special alkoxysilane groups.

  15. Microencapsulation of bioactives for food applications.

    Science.gov (United States)

    Dias, Maria Inês; Ferreira, Isabel C F R; Barreiro, Maria Filomena

    2015-04-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this context, microencapsulation emerges as a potential approach to overcome these problems and, additionally, to provide controlled or targeted delivery or release. This work intends to contribute to the field of functional food development by performing a comprehensive review on the microencapsulation methods and materials, the bioactives used (extracts and isolated compounds) and the final application development. Although several studies dealing with microencapsulation of bioactives exist, they are mainly focused on the process development and the majority lack proof of concept for final applications. These factors, together with the lack of regulation, in Europe and in the United States, delay the development of new functional foods and, consequently, their market entry. In conclusion, the potential of microencapsulation to protect bioactive compounds ensuring their bioavailability is shown, but further studies are required, considering both its applicability and incentives by regulatory agencies.

  16. New daily persistent headache

    Directory of Open Access Journals (Sweden)

    Alok Tyagi

    2012-01-01

    Full Text Available New daily persistent headache (NDPH is a chronic headache developing in a person who does not have a past history of headaches. The headache begins acutely and reaches its peak within 3 days. It is important to exclude secondary causes, particularly headaches due to alterations in cerebrospinal fluid (CSF pressure and volume. A significant proportion of NDPH sufferers may have intractable headaches that are refractory to treatment. The condition is best viewed as a syndrome rather than a diagnosis. The headache can mimic chronic migraine and chronic tension-type headache, and it is also important to exclude secondary causes, particularly headaches due to alterations in CSF pressure and volume. A large proportion of NDPH sufferers have migrainous features to their headache and should be managed with treatments used for treating migraine. A small group of NDPH sufferers may have intractable headaches that are refractory to treatment.

  17. Making Daily Mobility

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Wind, Simon

    elucidate aspects of urban everyday mobility that can be utilized in policy and planning perspectives. This knowledge can aid construction of generalized qualitative scenarios that together with quantitative transport models can serve as wider knowledge foundation in decision making process.......In 2012 the average daily transportation distance for every Dane were 40 km (TU Data). Realising how much of life is spend thinking about, planning and performing mobility practices it becomes evident that it is much more than an instrumental physical phenomenon – it has great repercussions on life......, social networks, understanding of places and ultimately ourselves and others. To successfully accomplish everyday life, households have to cope with large number of different activities and mobility in relation to their children, work, social life, obligations, expectations, needs and wishes. Drawing...

  18. Physics in daily life

    CERN Document Server

    Hermans, Jo

    2012-01-01

    This book provides answers to everyday questions that any curious mind would ask, like : Why is water blue ? What makes ice so slippery ? How do we localize sound ? How do we keep our body temperature so nice and constant ? How do we survive the sauna at 90 C ? Why do large raindrops fall faster than small ones, and what exactly is their speed ? The answers are given in an accessible and playful way, and are illustrated with funny cartoons. In this book forty "Physics in Daily Life" columns, which appeared earlier in Europhysics News, are brought together in one inspiring volume. As well as being a source of enjoyment and satisfying insights for anyone with some physics background, it also serves as a very good teaching tool for science students. This booklet is a feast of erudition and humour.

  19. Microbial biotransformation of bioactive flavonoids.

    Science.gov (United States)

    Cao, Hui; Chen, Xiaoqing; Jassbi, Amir Reza; Xiao, Jianbo

    2015-01-01

    The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at

  20. Alternative Remedies

    Science.gov (United States)

    ... Home › Aging & Health A to Z › Alternative Remedies Font ... medical treatment prescribed by their healthcare provider. Using this type of alternative therapy along with traditional treatments is ...

  1. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  2. Alternating Hemiplegia

    Science.gov (United States)

    ... to the symptoms of the disorder. View Full Definition Treatment Drug therapy including verapamil may help to reduce the ... the more serious form of alternating hemiplegia × ... Definition Alternating hemiplegia is a rare neurological disorder that ...

  3. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Tripathi, Himanshu [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Hira, Sumit Kumar; Manna, Partha Pratim [Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India); Pyare, Ram; Singh, S.P. [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} system. This work demonstrates that the substitution of SrO for SiO{sub 2} has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO{sub 2}. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  5. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    International Nuclear Information System (INIS)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; Singh, S.P.

    2016-01-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 system. This work demonstrates that the substitution of SrO for SiO 2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO 2 . The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  6. Bioactivity of microencapsulated soursop seeds extract on Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Ismael Barros Gomes

    2016-05-01

    Full Text Available ABSTRACT: The aim of this study was to evaluate the bioactivity of microencapsulated extract from the soursop seeds, Annona muricata L. ( Annonaceae , on diamondback moth, Plutella xylostela L. (Lepidoptera: Plutellidae . Microencapsulation was performed in a Mini Spray Dryer model B-290 using 50mL of ethanolic and hexanic extracts plus 150mL of ethanol and 150mL of ultrapure water, mixed with aerosil (first polymer or arabic gum (second polymer. It was possible to microencapsulate the ethanolic extract of soursop seeds only by using the polymer arabic gum at 20%. The microencapsulated extract caused significant acute toxicity (LC50=258mg L-1 and chronic effects, especially reduction of larval viability and increased larval stage. We concluded that the microencapsulation of the ethanolic extract of soursop seeds can be a viable alternative for controlling diamondback moth with possible gains for the environment.

  7. Chitosan as a bioactive polymer: Processing, properties and applications.

    Science.gov (United States)

    Muxika, A; Etxabide, A; Uranga, J; Guerrero, P; de la Caba, K

    2017-12-01

    Chitin is one of the most abundant natural polysaccharides in the world and it is mainly used for the production of chitosan by a deacetylation process. Chitosan is a bioactive polymer with a wide variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. This review summarizes the most common chitosan processing methods and highlights some applications of chitosan in various industrial and biomedical fields. Finally, environmental concerns of chitosan-based films, considering the stages from raw materials extraction up to the end of life after disposal, are also discussed with the aim of finding more eco-friendly alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Update on Bioactive Prosthetic Material for the Treatment of Hernias.

    Science.gov (United States)

    Edelman, David S; Hodde, Jason P

    2011-12-01

    The use of mesh in the repair of hernias is commonplace. Synthetic mesh, like polypropylene, has been the workhorse for hernia repairs since the 1980s. Surgisis® mesh (Cook Surgical, Bloomington, IN), a biologic hernia graft material composed of purified porcine small intestinal submucosa (SIS), was first introduced to the United States in 1998 as an alternative to synthetic mesh materials. This mesh, composed of extracellular matrix collagen, fibronectin and associated glycosaminoglycans and growth factors, has been extensively investigated in animal models and used clinically in many types of surgical procedures. SIS acts as a scaffold for natural growth and strength. We reported our initial results in this publication in July 2006. Since then, there have been many more reports and numerous other bioactive prosthetic materials (BPMs) released. The object of this article is to briefly review some of the current literature on the use of BPM for inguinal hernias, sports hernias, and umbilical hernias.

  9. Structure, bioactivity, and synthesis of methylated flavonoids.

    Science.gov (United States)

    Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao

    2017-06-01

    Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.

  10. Effect of a novel bioactive glass-ceramic on dentinal tubule occlusion: an in vitro study.

    Science.gov (United States)

    Zhong, Y; Liu, J; Li, X; Yin, W; He, T; Hu, D; Liao, Y; Yao, X; Wang, Y

    2015-03-01

    This in vitro study aimed to assess the ability and efficacy of HX-BGC, a novel bioactive glass-ceramic (SiO2-P2 O5-CaO-Na2 O-SrO), to reduce dentine tubule permeability. Dentine discs from human third molars were etched and randomly allocated into five groups: Group 1--distilled water; Group 2--Sensodyne Repair toothpaste (containing NovaMin®); Group 3--HX-BGC toothpaste (containing 7.5% HX-BGC); Group 4--control toothpaste (without HX-BGC); and Group 5--HX-BGC powder. Specimens were treated daily by brushing with an electric toothbrush for 20 seconds. Between daily treatments (7 days total), specimens were immersed in artificial saliva for 24 hours. Dentine permeability was measured at baseline, after the first treatment, after the first 24-hour immersion in artificial saliva and at the end of day 7. Dentine morphology and surface deposits were observed by scanning electron microscopy after one day and 7 days of treatment, respectively. Sensodyne Repair and bioactive glass-ceramic toothpaste significantly and immediately lowered dentine permeability. The HX-BGC powder group showed the highest reduction in dentine permeability after 7 days of treatment. The novel bioactive glass-ceramic material HX-BGC is effective in reducing dentine permeability by occluding open dentine tubules, indicating that HX-BGC may be a potential treatment for dentine hypersensitivity. © 2015 Australian Dental Association.

  11. Edificio Daily Mirror

    Directory of Open Access Journals (Sweden)

    Williams, Owen

    1963-07-01

    Full Text Available The building has 18 levels. The Press occupies the 4 basement floors. The ground floor is taken up with the entrance hall, and an indoor carriage way. A snack bar and the telephone operators are situated on the second floor. The production department and the medical services are located on the third storey, whilst the fourth is occupied by the offices and library. The fifth floor is the beginning of the higher section of the building. This floor and up to including the 11th floor are devoted to office space, except for the 10th storey, which contains the office apartments of the directors and the Council Chamber. Equipment related to various services of the building is housed on the 12th storey. Finally, this tall building constitutes a fine landmark in the London skyline. The Daily Mirror building is outstanding for the appropriate nature, the completeness and the quality of its installations, which thus provide the most widely read paper in the world with outstandingly efficient offices.Este edificio consta de 18 plantas. El cuerpo de Prensa se aloja en los cuatro sótanos; los vestíbulos de entrada y una calzada interior para vehículos se hallan en la planta baja; la primera alberga un snack-bar y centralita telefónica; la segunda, el departamento de producción y centro de asistencia médica, y la tercera, las oficinas y biblioteca principales. La cuarta planta señala el comienzo del bloque alto; esta planta, junto con las quinta, sexta, séptima, octava y décima, están dedicadas a oficinas. La novena contiene las oficinas-apartamentos de los directores y salas de Consejo, y la undécima, la maquinaria para las diversas instalaciones del edificio. La elevada torre constituye un grandioso hito de referencia en esta zona de Londres. El «Daily Mirror» se distingue por el acierto, número y perfección de sus instalaciones, que proporcionan, al periódico de mayor actualidad mundial, las más adecuadas y amplias oficinas modernas.

  12. Surface coated polyurethane with improved bioactivity and cytocompatability

    CSIR Research Space (South Africa)

    Chetty, AS

    2006-02-01

    Full Text Available Polyurethane (PU) may be suitable for various implant applications; however, it lacks bioactivity. Bioactivity allows for direct tissue attachment at the bio- interface, enabling implant fixation while preventing fibrous encapsulation. To impart...

  13. Bioactive glass-based scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Will, J.; Gerhardt, L.C.; Boccaccini, A.R.

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate

  14. Accelerated bone ingrowth by local delivery of Zinc from bioactive ...

    African Journals Online (AJOL)

    2015-10-19

    Oct 19, 2015 ... Aims: This study aims to evaluate in vivo the performance therapy of zinc-doped bioactive glass (BG-Zn) and ... Keywords: zinc metallic ion; bioactive glass; osteoporosis; trabecular bone architecture; mechanical property; oxidative stress ..... Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface.

  15. Investigation of bioactivity and cell effects of nano-porous sol–gel derived bioactive glass film

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhijun, E-mail: mokuu@zju.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Ji, Huijiao [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Hu, Xiaomeng [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Teng, Yu [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Chen, Weibo [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Qiu, Jianrong, E-mail: qjr@scut.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhang, Ming, E-mail: zhangming201201@126.com [College of Life Science, Zhejiang University, Hangzhou, 310028 (China)

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol–gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  16. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    Science.gov (United States)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  17. Encapsulation for preservation of functionality and targeted delivery of bioactive food components

    NARCIS (Netherlands)

    de Vos, Paul; Faas, Marijke M.; Spasojevic, Milica; Sikkema, Jan

    There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive

  18. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  19. Microstructures, hardness and bioactivity of hydroxyapatite coatings

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-10-01

    Full Text Available Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal...

  20. Marine bioactives and potential application in sports.

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  1. Bioactive Compounds And Encapsulation Of Yanang ( Tiliacora ...

    African Journals Online (AJOL)

    Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability ...

  2. Natural bioactive compounds: antibiotics | Dezfully | Journal of ...

    African Journals Online (AJOL)

    Antibiotics are powerful therapeutic agents that are produced by diverse living organisms. Over the last several decades, natural bioactive products particularly antibiotics have continued to play a significant role in drug discovery and has expanded the process for developing drugs with high degree of therapeutic index and ...

  3. Extraction, Isolation And Characterization Of Bioactive Compounds ...

    African Journals Online (AJOL)

    Natural products from medicinal plants, either as pure compounds or as standardized extracts, provide unlimited opportunities for new drug leads because of the ... The analysis of bioactive compounds present in the plant extracts involving the applications of common phytochemical screening assays, chromatographic ...

  4. Mechanical properties of bioactive glass putty formulations

    NARCIS (Netherlands)

    van Gestel, N.A.P.; Geurts, J.A.P.; Hulsen, D.J.W.; Hofmann, S.; Ito, K.; van Rietbergen, B.; Arts, J.J.C.

    2016-01-01

    Introduction: Bioactive glass (BAG) has been studied widely and seems to be a very promising biomaterial in regeneration of large bone defects and osteomyelitis treatment, because of its bone bonding and antibacterial properties[1]-[5]. Its high stiffness could potentially also enable mechanical

  5. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much

  6. Legume bioactive compounds: influence of rhizobial inoculation

    Directory of Open Access Journals (Sweden)

    Luis R. Silva

    2017-04-01

    Full Text Available Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

  7. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites.

    Science.gov (United States)

    Aguilar-Pérez, Fernando J; Vargas-Coronado, Rossana F; Cervantes-Uc, Jose M; Cauich-Rodríguez, Juan V; Covarrubias, Cristian; Pedram-Yazdani, Merhdad

    2016-04-01

    Composites of glutamine-based segmented polyurethanes with 5 to 25 wt.% bioactive glass nanoparticles were prepared, characterized, and their mineralization potential was evaluated in simulated body fluid. Biocompatibility with dental pulp stem cells was assessed by MTS to an extended range of compositions (1 to 25 wt.% of bioactive glass nanoparticles). Physicochemical characterization showed that composites retained many of the matrix properties, i.e. those corresponding to semicrystalline elastomeric polymers as they exhibited a glass transition temperature (Tg) between -41 and -36℃ and a melting temperature (Tm) between 46 and 49℃ in agreement with X-ray reflections at 23.6° and 21.3°. However, with bioactive glass nanoparticles addition, tensile strength and strain were reduced from 22.2 to 12.2 MPa and 667.2 to 457.8%, respectively with 25 wt.% of bioactive glass nanoparticles. Although Fourier transform infrared spectroscopy did not show evidence of mineralization after conditioning of these composites in simulated body fluid, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray microanalysis showed the formation of an apatite layer on the surface which increased with higher bioactive glass concentrations and longer conditioning time. Dental pulp stem cells proliferation at day 5 was improved in bioactive glass nanoparticles composites containing lower amounts of the filler (1-2.5 wt.%) but it was compromised at day 9 in composites containing high contents of nBG (5, 15, 25 wt.%). However, Runx2 gene expression was particularly upregulated for the dental pulp stem cells cultured with composites loaded with 15 and 25 wt.% of bioactive glass nanoparticles. In conclusion, low content bioactive glass nanoparticles and segmented polyurethanes composites deserve further investigation for applications such as guided bone regeneration membranes, where osteoconductivity is desirable but not a demanding mechanical performance. © The

  8. Bioactivity characterization of 45S5 bioglass using TL, OSL and EPR: Comparison with the case of 58S sol-gel bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Polymeris, G.S., E-mail: gspolymeris@ankara.edu.tr [Ankara University, Institute of Nuclear Sciences, 06100 Beşevler, Ankara (Turkey); Giannoulatou, V. [Ankara University, Institute of Nuclear Sciences, 06100 Beşevler, Ankara (Turkey); Solid State Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kyriakidou, A. [Solid State Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Sfampa, I.K. [Nuclear Physics Laboratory, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Theodorou, G.S. [Solid State Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Şahiner, E.; Meriç, N. [Ankara University, Institute of Nuclear Sciences, 06100 Beşevler, Ankara (Turkey); Kitis, G. [Nuclear Physics Laboratory, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Solid State Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2017-01-01

    of the 58S sol-gel bioactive glass, in terms of the timescale of these five stages required for the final formation of the HCAp. The techniques of luminescence and EPR which take advantage of trapped charges are proposed as alternative cheap and prompt effective techniques towards discrimination between different bioactive responses in bioactive glasses. - Highlights: • TL, OSL and EPR have been applied as alternative techniques for bioactivity characteriztion. • The 110 °C TL peak and the peak to peak intensity of the OHC EPR signal have been effectively considered as proxies for bioactivity studies. • A time scale has been established for each chemical reaction involved in the five-step procedure required for the HCAp formation. • Besides the first initial step, the beginning of the rest chemical reaction steps takes place faster in the case of sol-gel derived 58S glass than the quenching-derived 45S5 bioglass.

  9. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrou, Xanthippi, E-mail: x.chatzistavrou@imperial.ac.uk [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kantiranis, Nikolaos, E-mail: kantira@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, Eleana, E-mail: kont@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, Konstantinos, E-mail: hrisafis@physics.auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, Labrini, E-mail: lambrini@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, Petros, E-mail: pkoidis@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, Aldo R., E-mail: a.boccaccini@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, SW7 2AZ London (United Kingdom); Paraskevopoulos, Konstantinos M., E-mail: kpar@auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-01-15

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

  10. Alternative wastewatersystems

    DEFF Research Database (Denmark)

    Dyck-Madsen, Søren; Hoffmann, Birgitte; Gabriel, Søren

    1999-01-01

    The report:-  Communicates experiences from Swedish buildings from the establishment and running of alternative wastewater systems. Communicates pictures of alternative buildings and wastewater systems in Sweden. Gives a short evaluation of the performance and the sustainability of the systems....

  11. Daily transactional and transformational leadership and daily employee engament

    NARCIS (Netherlands)

    Breevaart, K.; Bakker, A.B.; Hetland, Jorn; Demerouti, E.; Olsen, O.K.; Espevik, R.

    2014-01-01

    This diary study adds to the leadership literature by examining the daily influence of transformational leadership, contingent reward, and active management-by-exception (MBE active) on followers' daily work engagement. We compare the unique contribution of these leadership behaviours and focus on

  12. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  13. How alternative are alternative fuels?

    OpenAIRE

    Soffritti, Tiziana; Danielis, Romeo

    1998-01-01

    Could alternative fuel vehicles contribute to a substantial reduction of air pollution? Is there a market for alternative fuel vehicles? Could a market be created via a pollution tax? The article answers these questions on the basis of the available estimates.

  14. Alternative detox.

    Science.gov (United States)

    Ernst, E

    2012-01-01

    The concept that alternative therapies can eliminate toxins and toxicants from the body, i.e. 'alternative detox' (AD) is popular. Selected textbooks and articles on the subject of AD. The principles of AD make no sense from a scientific perspective and there is no clinical evidence to support them. The promotion of AD treatments provides income for some entrepreneurs but has the potential to cause harm to patients and consumers. In alternative medicine, simplistic but incorrect concepts such as AD abound. AREAS TIMELY FOR RESEARCH: All therapeutic claims should be scientifically tested before being advertised-and AD cannot be an exception.

  15. Logistiline Daily Service / Paavo Kangur

    Index Scriptorium Estoniae

    Kangur, Paavo, 1966-

    2005-01-01

    Sügisel ostis Leedu endise majandusministri Valetntinas Milaknise firma Daily Service ära kõik bürootarvetemüüja Reval Impexi aktsiad. 300 miljoni kroonise aastakäibega firma Eesti tütarettevõte prognoosib oma tänavuseks käibeks 31,2 miljonit krooni. Lisa: Daily Service'i struktuur

  16. Managing hypertension: relevant biomarkers and combating bioactive compounds

    Directory of Open Access Journals (Sweden)

    Bryan Singharaj

    2017-06-01

    Full Text Available Hypertension is one of the most common chronic diseases which affects many people who belong to a higher age range. The standard definition that is offered to the general public has a minimum age of 18 years to be diagnosed with hypertension. Many studies have been conducted in the hopes of finding consistent data that provides information on the biomarkers of hypertension and effective forms of treatment. However, there is a tendency for skewed data due to the ineffectiveness of diagnosing hypertension, due to variability in technique or even negligence. Interestingly, research has indicated that there are connections to certain biomarkers of hypertension. However,the results have been deemed inconclusive. Moreover, the results provide promising data for future studies that have an emphasis on biomarkers. The biomarkers that have been consistently brought to researchers’ attention include the following: circulating C-reactive protein (CRP, plasminogen activator inhibitor-1 (PAI-1, urinary albumin:creatinine ratio (UACR, and aldosterone:renin ratio (ARR. These four biomarkers have become the foundation of multiple hypertension studies, even though the only formal conclusion drawn from these studies is that there is a wide range of variables that have some kind of influence on hypertension. More recently, treatment options for hypertension have increasingly become an emphasis for studies, with research predicting that nutrition plays a key role in the managing of diseases. Furthermore, the role of bioactive compounds has gained traction in hypertension research, being loosely correlated to managing specific biomarkers. Ultimately, these correlations to bioactive compounds like antioxidants would demonstrate that certain functional foods have the capacity to help treat hypertension. The modality is to find an alternative option for managing or treating hypertension through natural sources of food or food products fortified with ingredients to

  17. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    Science.gov (United States)

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing

  18. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  19. Bioactive Compounds in Functional Meat Products.

    Science.gov (United States)

    Pogorzelska-Nowicka, Ewelina; Atanasov, Atanas G; Horbańczuk, Jarosław; Wierzbicka, Agnieszka

    2018-01-31

    Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional constituents were chosen: (i) fatty acids; (ii) minerals; (iii) vitamins; (iv) plant antioxidants; (v) dietary fibers; (vi) probiotics and (vii) bioactive peptides. Each of them is discussed in term of their impact on human health as well as some quality attributes of the final products.

  20. Bioactive lipids in kidney physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    Daria Sałata

    2014-01-01

    Full Text Available Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  1. Microgreens: Production, shelf life, and bioactive components.

    Science.gov (United States)

    Mir, Shabir Ahmad; Shah, Manzoor Ahmad; Mir, Mohammad Maqbool

    2017-08-13

    Microgreens are emerging specialty food products which are gaining popularity and increased attention nowadays. They are young and tender cotyledonary leafy greens that are found in a pleasing palette of colors, textures, and flavors. Microgreens are a new class of edible vegetables harvested when first leaves have fully expanded and before true leaves have emerged. They are gaining popularity as a new culinary ingredient. They are used to enhance salads or as edible garnishes to embellish a wide variety of other dishes. Common microgreens are grown mainly from mustard, cabbage, radish, buckwheat, lettuce, spinach, etc. The consumption of microgreens has nowadays increased due to higher concentrations of bioactive components such as vitamins, minerals, and antioxidants than mature greens, which are important for human health. However, they typically have a short shelf life due to rapid product deterioration. This review aimed to evaluate the postharvest quality, potential bioactive compounds, and shelf life of microgreens for proper management of this specialty produce.

  2. Nanoencapsulation of bioactive compounds for food applications

    OpenAIRE

    Sessa, Mariarenata

    2012-01-01

    2010 - 2011 The increase in dietary-intake-related illnesses, such as obesity, cardiovascular diseases, hypertension, diabetes and cancer, have made in recent years the development of health-and-wellness promoting foods a priority of the food industry. Clinical studies have demonstrated tangible health benefits that may be derived from the intake of bioactive compounds. However many difficulties are associated with their inclusion in food matrices, due to a very low solubility in water and...

  3. Bioactive Compounds in Functional Meat Products

    OpenAIRE

    Ewelina Pogorzelska-Nowicka; Atanas G. Atanasov; Jarosław Horbańczuk; Agnieszka Wierzbicka

    2018-01-01

    Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional cons...

  4. Secondary metabolites and bioactivities of Myrtus communis

    OpenAIRE

    Mahmoud I Nassar; El-Sayed A Aboutabl; Rania F Ahmed; Ezzel-Din A El-Khrisy; Khaled M Ibrahim; Amany A Sleem

    2010-01-01

    Background: Myrtus species are characterized by the presence of phenolic acids, flavonoids, tannins, volatile oils and fatty acids. They are remedies for variety of ailments. This study therefore investigated medicinal effects of Myrtus communis L. Methods: Bioactivity studies of Myrtus communis L. leaves were carried out on volatile oil, 7% methanol and aqueous extracts and the isolated compounds myricetin 3-O-β-glucopyranoside, myricetin 3-O-∝-rhamnopyranoside and gallic acid. Results: Dete...

  5. Analysis of commercial and public bioactivity databases.

    Science.gov (United States)

    Tiikkainen, Pekka; Franke, Lutz

    2012-02-27

    Activity data for small molecules are invaluable in chemoinformatics. Various bioactivity databases exist containing detailed information of target proteins and quantitative binding data for small molecules extracted from journals and patents. In the current work, we have merged several public and commercial bioactivity databases into one bioactivity metabase. The molecular presentation, target information, and activity data of the vendor databases were standardized. The main motivation of the work was to create a single relational database which allows fast and simple data retrieval by in-house scientists. Second, we wanted to know the amount of overlap between databases by commercial and public vendors to see whether the former contain data complementing the latter. Third, we quantified the degree of inconsistency between data sources by comparing data points derived from the same scientific article cited by more than one vendor. We found that each data source contains unique data which is due to different scientific articles cited by the vendors. When comparing data derived from the same article we found that inconsistencies between the vendors are common. In conclusion, using databases of different vendors is still useful since the data overlap is not complete. It should be noted that this can be partially explained by the inconsistencies and errors in the source data.

  6. Development of bioactive materials for glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-09-01

    Full Text Available Glioblastoma is the most common and deadly human brain cancers. Unique barriers hinder the drug delivering pathway due to the individual position of glioblastoma, including blood-brain barrier and blood-brain tumor barrier. Numerous bioactive materials have been exploited and applied as the transvascular delivery carriers of therapeutic drugs. They promote site-specific accumulation and long term release of the encapsulated drugs at the tumor sites and reduce side effects with systemic delivery. And the delivery systems exhibit a certain extent of anti-glioblastoma effect and extend the median survival time. However, few of them step into the clinical trials. In this review, we will investigate the recent studies of bioactive materials for glioblastoma chemotherapy, including the inorganic materials, lipids and polymers. These bioactive materials construct diverse delivery vehicles to trigger tumor sites in brain intravenously. Herein, we exploit their functionality in drug delivery and discuss the deficiency for the featured tumors, to provide guidance for establishing optimized therapeutic drug formulation for anti-glioblastoma therapy and pave the way for clinical application.

  7. A new bio-active glass ceramic

    International Nuclear Information System (INIS)

    Shamim, A.; Arif, I.; Suleman, M.; Hussain, K.; Shah, W.A.

    1995-01-01

    Since 1960 fine ceramics such as alumina have been used side by side with metallic materials for bone and joint replacement. They have high mechanical strength and are free from corrosion problem faced by metals. However they don't bond to the natural living bone and hence are called bio-inactive. This was followed by the development of bio-active glasses and glass-ceramics which bond to the natural bone but have low mechanical strength. In the present work a new bio-active glass-ceramic, based on CaO-SiO/sub 2/-P/sub 2/O/sub 3/-MgO composition, has been developed which has mechanical strength compared to that of a bio-inactive glass ceramic and also bonds strongly to the natural bone. X-ray diffraction analysis reveals wollastanite and apatite phases in the glass ceramic. A new bio-active cement has also been developed which can be used to join broken pieces of bone or by itself at a filler. (author)

  8. Nanotech: propensity in foods and bioactives.

    Science.gov (United States)

    Kuan, Chiu-Yin; Yee-Fung, Wai; Yuen, Kah-Hay; Liong, Min-Tze

    2012-01-01

    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.

  9. Adhesive Bioactive Coatings Inspired by Sea Life.

    Science.gov (United States)

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  10. Human Milk Composition: Nutrients and Bioactive Factors

    Science.gov (United States)

    Ballard, Olivia; Morrow, Ardythe L.

    2013-01-01

    Synopsis The composition of human milk is the biologic norm for infant nutrition. Human milk also contains many hundreds to thousands of distinct bioactive molecules that protect against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Some of these molecules, e.g., lactoferrin, are being investigated as novel therapeutic agents. A dynamic, bioactive fluid, human milk changes in composition from colostrum to late lactation, and varies within feeds, diurnally, and between mothers. Feeding infants with expressed human milk is increasing. Pasteurized donor milk is now commonly provided to high risk infants and most mothers in the U.S. express and freeze their milk at some point in lactation for future infant feedings. Many milk proteins are degraded by heat treatment and freeze-thaw cycles may not have the same bioactivity after undergoing these treatments. This article provides an overview of the composition of human milk, sources of its variation, and its clinical relevance. PMID:23178060

  11. Ultrasound assisted extraction of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Helena Drmić

    2010-01-01

    Full Text Available Many novel and innovative techniques are nowadays researched and explored in order to replace or improve classical, thermal processing technologies. One of newer technique is technique of minimal food processing, under what we assume ultrasound processing. Ultrasound technology can be very useful for minimal food processing because transmission of acoustic energy through product is fast and complete, which allows reduction in total processing time, and therefore lower energy consumption. Industrial processing is growing more and more waste products, and in desire of preservation of global recourses and energy efficiency, several ways of active compounds extraction techniques are now explored. The goal is to implement novel extraction techniques in food and pharmaceutical industry as well in medicine. Ultrasound assisted extraction of bioactive compounds offers increase in yield, and reduction or total avoiding of solvent usage. Increase in temperature of treatment is controlled and restricted, thereby preserving extracted bioactive compounds. In this paper, several methods of ultrasound assisted extraction of bioactive compounds from plant materials are shown. Ultrasound can improve classic mechanisms of extraction, and thereby offer novel possibilities of commercial extraction of desired compounds. Application of sonochemistry (ultrasound chemistry is providing better yield in desired compounds and reduction in treatment time.

  12. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    Science.gov (United States)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a

  13. Seaweed Bioactive Compounds against Pathogens and Microalgae: Potential Uses on Pharmacology and Harmful Algae Bloom Control.

    Science.gov (United States)

    Zerrifi, Soukaina El Amrani; El Khalloufi, Fatima; Oudra, Brahim; Vasconcelos, Vitor

    2018-02-09

    Cyanobacteria are found globally due to their adaptation to various environments. The occurrence of cyanobacterial blooms is not a new phenomenon. The bloom-forming and toxin-producing species have been a persistent nuisance all over the world over the last decades. Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect anthropogenic influences. To control cyanobacterial blooms, various strategies, including physical, chemical, and biological methods have been proposed. Nevertheless, the use of those strategies is usually not effective. The isolation of natural compounds from many aquatic and terrestrial plants and seaweeds has become an alternative approach for controlling harmful algae in aquatic systems. Seaweeds have received attention from scientists because of their bioactive compounds with antibacterial, antifungal, anti-microalgae, and antioxidant properties. The undesirable effects of cyanobacteria proliferations and potential control methods are here reviewed, focusing on the use of potent bioactive compounds, isolated from seaweeds, against microalgae and cyanobacteria growth.

  14. Discovery and characterization of novel bioactive peptides from marine secondary products

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup

    antioxidative, antihypertensive, antimicrobial, immunomodulatory, anticancer and diabetes 2 effects among others. However, majority of the research has been focusing on the peptides derived from hydrolysis with commercial industrial enzymes and the usefulness of these hydrolysates.It could be interesting...... whether digestion of fish secondary tissue with gastrointestinal proteases generates peptides, which also have these health promoting properties either in relation to gastrointestinal digestion or as an alternative to the use of industrial proteases. Furthermore, as a bioactive defense system against...... the bacterial load in the water, fish is expected to possess bio-components as small peptides. It could therefore be relevant whether these naturally occurring peptides exhibit other functional and health promoting bioactive properties.On this background the overall goal of the present PhD research...

  15. Outgoing Longwave Radiation Daily Climate Data Record (OLR Daily CDR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The product contains the 1-degree by 1-degree daily mean outgoing longwave radiation flux at the top of the atmosphere derived from HIRS radiance observations...

  16. Daily and Sub-daily Precipitation for the Former USSR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of in situ daily and hourly meteorological observations for the former USSR initially obtained within the framework of several joint...

  17. EFFECTS OF INCORPORATING NATURAL MINERALS ON PRODUCTION AND BIOACTIVITY OF BIOACTIVE GLASS CERAMICS

    Directory of Open Access Journals (Sweden)

    Franco Matias Stabile

    2016-07-01

    Full Text Available Two glass-ceramics composition were produced from natural minerals. Quartzes and feldspars were pre-selected on the basis of their purities studied by X-ray diffraction (XRD and chemical analysis. Prepared compositions of glasses precursors were two different theoretical leucite (KAlSi₂O₆ /Bioglass 45S5 (L/Bg ratios. Transformations of raw materials mixtures and glass precursors were studied by differential thermal analyses. On the basis of thermal analysis results, glass ceramics were produced and characterized by XRD. Glass-ceramics were composed of two major crystalline phases, leucite and sodium calcium silicate. Bioactivity tests were performed submerging the glass-ceramics into simulated body fluid (SBF for different periods (1, 5 and 10 days. Bioactive behavior was monitored by XRD and scanning electron microscopy (SEM. Studied samples were found to be bioactive, in which hydroxyapatite layer was developed within 5 days of contact with SBF.

  18. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.

    Science.gov (United States)

    Najeeb, Shariq; Bds, Zohaib Khurshid; Bds, Sana Zohaib; Bds, Muhammad Sohail Zafar

    2016-12-01

    Polyetheretherketone (PEEK) has been suggested as an alternative to replace titanium as a dental implant material. However, PEEK's bioactivity and osseointegration are debatable. This review has systematically analyzed studies that have compared PEEK (or PEEK-based) implants with titanium implants so that its feasibility as a possible replacement for titanium can be determined. The focused question was: "Are the bioactivity and osseointegration of PEEK implants comparable to or better than titanium implants?" Using the key words "dental implant," "implant," "polyetheretherketone," "PEEK," and "titanium" in various combinations, the following databases were searched electronically: PubMED/MEDLINE, Embase, Google Scholar, ISI Web of Knowledge, and Cochrane Database. 5 in vitro and 4 animal studies were included in the review. In 4 out of 5 in vitro studies, titanium exhibited more cellular proliferation, angiogenesis, osteoblast maturation, and osteogenesis compared to PEEK; one in vitro study observed comparable outcomes regardless of the implant material. In all animal studies, uncoated and coated titanium exhibited a more osteogenic behavior than did uncoated PEEK, while comparable bone-implant contact was observed in HA-coated PEEK and coated titanium implants. Unmodified PEEK is less osseoconductive and bioactive than titanium. Furthermore, the majority of studies had multiple sources of bias; hence, in its unmodified form, PEEK is unsuitable to be used as dental implant. Significantly more research and long-term trials must focus on improving the bioactivity of PEEK before it can be used as dental implant. More comparative animal and clinical studies are warranted to ascertain the potential of PEEK as a viable alternative to titanium.

  19. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents.

    Science.gov (United States)

    Jabeur, Inès; Pereira, Eliana; Barros, Lillian; Calhelha, Ricardo C; Soković, Marina; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2017-10-01

    The nutritional and bioactive composition of plants have aroused much interest not only among scientists, but also in people's daily lives. Apart from the health benefits, plants are a source of pigments that can be used as natural food colorants. In this work, the nutritional composition of Hibiscus sabdariffa L. was analysed, as well as its bioactive compounds and natural pigments. Glucose (sugar), malic acid (organic acid), α-tocopherol (tocopherol) and linoleic acid (fatty acid) were the major constituents in the corresponding classes. 5-(Hydroxymethyl) furfural was the most abundant non-anthocyanin compound, while delphinidin-3-O-sambubioside was the major anthocyanin both in its hydroethanolic extract and infusion. H. sabdariffa extracts showed antioxidant and antimicrobial activities, highlighting that the hydroethanol extract presents not only lipid peroxidation inhibition capacity, but also bactericidal/fungicidal inhibition ability for all the bacteria and fungi tested. Furthermore, both extracts revealed the absence of toxicity using porcine primary liver cells. The studied plant species was thus not only interesting for nutritional purposes but also for bioactive and colouring applications in food, cosmetic and pharmaceutical industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  1. Bioactivity and properties of a dental adhesive functionalized with polyhedral oligomeric silsesquioxanes (POSS) and bioactive glass.

    Science.gov (United States)

    Rizk, Marta; Hohlfeld, Lisa; Thanh, Loan Tao; Biehl, Ralf; Lühmann, Nicole; Mohn, Dirk; Wiegand, Annette

    2017-09-01

    This study aimed to analyze the effect of infiltrating a commercial adhesive with nanosized bioactive glass (BG-Bi) particles or methacryl-functionalized polyhedral oligomeric silsesquioxanes (POSS) on material properties and bioactivity. An acetone-based dental adhesive (Solobond Plus adhesive, VOCO GmbH, Cuxhaven, Germany) was infiltrated with nanosized bioactive glass particles (0.1 or 1wt%), or with monofunctional or multifunctional POSS particles (10 or 20wt%). Unfilled adhesive served as control. Dispersion and hydrodynamic radius of the nanoparticles were studied by dynamic light scattering. Set specimens were immersed for 28days in artificial saliva at 37°C, and surfaces were mapped for the formation of calcium phospate (Ca/P) precipitates (scanning electron microscopy/energy-dispersive X-ray spectroscopy). Viscosity (rheometry) and the structural characteristic of the networks were studied, such as degree of conversion (FTIR spectroscopy), sol fraction and water sorption. POSS particles showed a good dispersion of the particles for both types of particles being smaller than 3nm, while the bioactive glass particles had a strong tendency to agglomerate. All nanoparticles induced the formation of Ca/P precipitates. The viscosity of the adhesive was not or only slightly increased by POSS particle addition but strongly increased by the bioactive glass particles. The degree of conversion, water sorption and sol fraction showed a maintained or improved network structure and properties when filled with BG-Bi and multifunctional POSS, however, less polymerization was found when loading a monofunctional POSS. Multifunctional POSS may be incorporated into dental adhesives to provide a bioactive potential without changing material properties adversely. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Martina [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Corazzari, Ingrid [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Centro Interdipartimentale “G. Scansetti” per lo studio degli amianti e di altri particolati nocivi, Via Pietro Giuria 9, 10125 Torino (Italy); Prenesti, Enrico [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Bertone, Elisa [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Vernè, Enrica, E-mail: enrica.verne@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Ferraris, Sara [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy)

    2016-03-30

    Graphical abstract: - Highlights: • Surface functionalization of bioactive glass with biomolecules has been optimized. • Biomolecules are present and active on the glass surface after functionalization. • Biomolecules affect deposition kinetics and morphology of hydroxyapatite. • Free radical scavenging activity is seen for the first time on bioactive glasses. - Abstract: Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H{sub 2}O{sub 2} highlighting scavenging activity of the bioactive glass.

  3. The Correlation of Pore Size and Bioactivity of Spray-Pyrolyzed Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chou

    2017-05-01

    Full Text Available SiO2–CaO–P2O5-based mesoporous bioactive glasses (MBGs were synthesized by spray pyrolysis in this study. Three commonly used non-ionic tri-block copolymers (L121, P123, and F127 with various lengths of hydrophilic chains were applied as structural templates to achieve different pore sizes. A mesoporous structure was observed in each as-prepared specimen, and the results showed that the L121-treated MBG had the largest pore size. The results of bioactivity tests indicated that the growth of hydroxyapatite is related to the pore size of the materials.

  4. Lightship Daily Observations - NARA Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations taken on board lightships along the United States coasts from 1893 - 1943. Generally 4-6 observations daily. Also includes deck logs, which give...

  5. Allegheny County Jail Daily Census

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A daily census of the inmates at the Allegheny County Jail (ACJ). Includes gender, race, age at booking, and current age. The records for each month contain a...

  6. Cosmic alternatives?

    Science.gov (United States)

    Gregory, Ruth

    2009-04-01

    "Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.

  7. Alkali-free bioactive glasses for bone regeneration

    OpenAIRE

    Kapoor, Saurabh

    2014-01-01

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tiss...

  8. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  9. Relationships Among Nightly Sleep Quality, Daily Stress, and Daily Affect.

    Science.gov (United States)

    Blaxton, Jessica M; Bergeman, Cindy S; Whitehead, Brenda R; Braun, Marcia E; Payne, Jessic D

    2017-05-01

    We explored the prospective, microlevel relationship between nightly sleep quality (SQ) and the subsequent day's stress on positive (PA) and negative affect (NA) as well as the moderating relationships between nightly SQ, subsequent stress, and subsequent PA on NA. We investigated whether age moderated these relationships. We collected 56 days of sleep, stress, and affect data using daily diary questionnaires (N = 552). We used multilevel modeling to assess relationships at the between- and within-person levels. Daily increases in SQ and decreases in stress interacted to predict higher daily PA and lower daily NA. Better SQ in older adults enhanced the benefits of PA on the stress-NA relationship more during times of low stress, whereas better sleep in younger adults enhanced the benefits of PA more during times of high stress. Between-person effects were stronger predictors of well-being outcomes than within-person variability. The combination of good SQ and higher PA buffered the impact of stress on NA. The moderating impact of age suggests that sleep and stress play different roles across adulthood. Targeting intervention and prevention strategies to improve SQ and enhance PA could disrupt the detrimental relationship between daily stress and NA. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Bioactive Peptides from Muscle Sources: Meat and Fish

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-08-01

    Full Text Available Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE inhibitory and antioxidant peptides.

  11. StraPep: a structure database of bioactive peptides

    Science.gov (United States)

    Wang, Jian; Yin, Tailang; Xiao, Xuwen; He, Dan; Xue, Zhidong; Jiang, Xinnong; Wang, Yan

    2018-01-01

    Abstract Bioactive peptides, with a variety of biological activities and wide distribution in nature, have attracted great research interest in biological and medical fields, especially in pharmaceutical industry. The structural information of bioactive peptide is important for the development of peptide-based drugs. Many databases have been developed cataloguing bioactive peptides. However, to our knowledge, database dedicated to collect all the bioactive peptides with known structure is not available yet. Thus, we developed StraPep, a structure database of bioactive peptides. StraPep holds 3791 bioactive peptide structures, which belong to 1312 unique bioactive peptide sequences. About 905 out of 1312 (68%) bioactive peptides in StraPep contain disulfide bonds, which is significantly higher than that (21%) of PDB. Interestingly, 150 out of 616 (24%) bioactive peptides with three or more disulfide bonds form a structural motif known as cystine knot, which confers considerable structural stability on proteins and is an attractive scaffold for drug design. Detailed information of each peptide, including the experimental structure, the location of disulfide bonds, secondary structure, classification, post-translational modification and so on, has been provided. A wide range of user-friendly tools, such as browsing, sequence and structure-based searching and so on, has been incorporated into StraPep. We hope that this database will be helpful for the research community. Database URL: http://isyslab.info/StraPep PMID:29688386

  12. Fruit and cereal bioactives: sources, chemistry, and applications

    National Research Council Canada - National Science Library

    Tokusoglu, Ozlem; Hall, Clifford, III

    2011-01-01

    .... It provides detailed information on both beneficial bioactives such as phenolics, flavonoids, tocols, carotenoids, phytosterols, and avenanthramides and toxicant compounds including mycotoxins...

  13. Bioactivity of flours of seeds of leguminous crops Pisum sativum ...

    African Journals Online (AJOL)

    Bioactivity of flours of seeds of leguminous crops Pisum sativum, Phaseolus vulgaris and Glycine max used as botanical insecticides against Sitophilus oryzae Linnaeus (Coleoptera: Curculionidae) on sorghum grains.

  14. Growing Alternatives

    DEFF Research Database (Denmark)

    Bagger-Petersen, Mai Corlin

    2014-01-01

    From 2014, Anhui Province will pilot a reform of the residential land market in China, thus integrating rural Anhui in the national housing market. In contrast, artist and activist Ou Ning has proposed the Bishan time money currency, intending to establish an alternative economic circuit in Bishan...

  15. Alternative Veier

    DEFF Research Database (Denmark)

    Kruse, Tove Elisabeth; Salamonsen, Anita

    reflektioner omkring patienters brug af og erfaringer med alternativ behandling. Patientorganisationer, organisatoner for alternative behandlere og organisationer for læger og medicinstuderende har læst bogens patienthistorier og deres perspektiver lægges frem. Til slut i bogen diskuteres betydningen af de...

  16. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  17. LASER-INDUCED BIOACTIVITY IN DENTAL PORCELAIN MODIFIED BY BIOACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    ANASTASIA BEKETOVA

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of laser-liquid-solid interaction method in the bioactivity of dental porcelain modified by bioactive glass. Forty sol-gel derived specimens were immersed in Dulbecco's Modified Eagle's Medium, 31 and 9 specimens of which were treated with Er:YAG and Nd:YAG laser respectively. Untreated specimens served as controls. Incubation of specimens followed. Bioactivity was evaluated, using Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM/Energy Dispersive Spectroscopy (EDS and Transmission Electron Microscopy (TEM. FTIR detected peaks associated with hydroxyapatite on 1 Nd:YAG- and 4 Er:YAG-treated specimens. SEM analysis revealed that Er:YAG-treated specimens were covered by granular hydroxyapatite layer, while Nd:YAG treated specimen presented growth of flake-like hydroxyapatite. TEM confirmed the results. The untreated controls presented delayed bioactivity. In conclusion, Nd:YAG and Er:YAG laser treatment of the material, under certain fluencies, accelerates hydroxyapatite formation. Nd:YAG laser treatment of specific parameters causes the precipitation of flake-like hydroxyapatite in nano-scale.

  18. In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites.

    Science.gov (United States)

    Ji, Lijun; Wang, Wenjun; Jin, Duo; Zhou, Songtao; Song, Xiaoli

    2015-01-01

    Nanoparticles of bioactive glass (NBG) with a diameter of 50-90 nm were synthesized using the Stöber method. NBG/PCL composites with different NBG contents (0 wt.%, 10 wt.%, 20 wt.%, 30 wt.% and 40 wt.%) were prepared by a melt blending and thermal injection moulding technique, and characterized with XRD, FTIR, and SEM to study the effect of NBG on the mechanical properties and in vitro bioactivity of the NBG/PCL composites. In spite of the high addition up to 40 wt.%, the NBG could be dispersed homogeneously in the PCL matrix. The elastic modulus of the NBG/PCL composites was improved remarkably from 198±13 MPa to 851±43 MPa, meanwhile the tensile strength was retained in the range of 19-21.5 MPa. The hydrophilic property and degradation behavior of the NBG/PCL composites were also improved with the addition of the NBG. Moreover, the composites with high NBG content showed outstanding in vitro bioactivity after being immersed in simulated body fluid, which could be attributed to the excellent bioactivity of the synthesized NBG. Copyright © 2014. Published by Elsevier B.V.

  19. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass.

    Science.gov (United States)

    Pourhaghgouy, Masoud; Zamanian, Ali; Shahrezaee, Mostafa; Masouleh, Milad Pourbaghi

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO2.28CaO.8P2O5) prepared by sol-gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. Copyright © 2015. Published by Elsevier B.V.

  20. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S P

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1-X) SiO2--24.3 Na2O-26.9 CaO-2.6 P2O5, where X=0, 0.4, 0.8, 1.2 and 1.6mol% of BaO was chosen and melted in an electric furnace at 1400±5°C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Science.gov (United States)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  2. Marine Nucleosides: Structure, Bioactivity, Synthesis and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Ri-Ming Huang

    2014-12-01

    Full Text Available Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds.

  3. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    International Nuclear Information System (INIS)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-01-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO 2 –Na 2 O–CaO–P 2 O 5 –FeO–Fe 2 O 3 and contains magnetite (Fe 3 O 4 ) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests show hydroxyapatite precipitates

  4. Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses.

    Science.gov (United States)

    Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine

    2013-07-01

    Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion

  5. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  6. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassyouni, Gehan T.; Beherei, Hanan H. [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Kenawy, Sayed H. [Ceramics Dept., National Research Centre (NRC), Dokki, Cairo (Egypt)

    2016-06-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  7. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    International Nuclear Information System (INIS)

    El-Bassyouni, Gehan T.; Beherei, Hanan H.; Mohamed, Khaled R.; Kenawy, Sayed H.

    2016-01-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  9. Energy alternatives

    International Nuclear Information System (INIS)

    Sweet, C.

    1987-01-01

    The designated successor to fossil fuels is nuclear fission/fusion and that turns out to be problematic. Alternative Energy Systems have great potential but political forces seem to be hampering their development and introduction. The technologies are flexible in their use and scale of operation. The learning curve will not be short but neither will it be as long and as costly as nuclear power. It is time that this is recognised and some serious rethinking takes place in what presently passes for energy policies both in the industrialised countries and in the Third World. Alternative energy systems are defined and some of them which are relevant to the United Kingdom are discussed. (author)

  10. Physicochemical and bioactive properties of innovative resin-based materials containing functional halloysite-nanotubes fillers.

    Science.gov (United States)

    Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Takimi, Antonio Shigueaki; Collares, Fabrício Mezzomo; Sauro, Salvatore

    2016-09-01

    This study aimed to assess the degree of conversion, microhardness, solvent degradation, contact angle, surface free energy and bioactivity (e.g., mineral precipitation) of experimental resin-based materials containing, pure or triclosan-encapsulated, aluminosilicate-(halloysite) nanotubes. An experimental resin blend was prepared using bis-GMA/TEGDMA, 75/25wt% (control). Halloysite nanotubes (HNT) doped with or without triclosan (TCN) were first analyzed using transmission electron microscopy (TEM). HNT or HNT/TCN fillers were incorporated into the resin blend at different concentrations (5, 10, and 20wt%). Seven experimental resins were created and the degree of conversion, microhardness, solvent degradation and contact angle were assessed. Bioactive mineral precipitation induced by the experimental resins was evaluated through Raman spectroscopy and SEM-EDX. TEM showed a clear presence of TCN particles inside the tubular lumen and along the outer surfaces of the halloysite nanotubes. The degree of conversion, surface free energy, microhardness, and mineral deposition of polymers increased with higher amount of HNTs. Conversely, the higher the amount (20wt%) of TCN-loaded HNTs the lower the microhardness of the experimental resins. The incorporation of pure or TCN-loaded aluminosilicate-(halloysite) nanotubes into resin-based materials increase the bioactivity of such experimental restorative materials and promotes mineral deposition. Therefore, innovative resin-based materials containing functional halloysite-nanotube fillers may represent a valuable alternative for therapeutic minimally invasive treatments. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Bioactivity of indigenous medicinal plants against the cotton whitefly, Bemisia tabaci.

    Science.gov (United States)

    Hammad, E Abou-Fakhr; Zeaiter, A; Saliba, N; Talhouk, S

    2014-01-01

    Forty-one methanol extracts of 28 indigenous medicinal plant species were tested for their insecticidal bioactivity against cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), adults and second nymphal instars under controlled conditions. This study is within a bioprospection context, in the form of utilizing local plant species as an alternative in sustainable agriculture development. Eighteen and nine plant extracts caused a significant decrease in number of live adult and nymphal whiteflies, respectively, compared to the control. This is the first report for the potential effect on survival of insects for 22 out of 28 tested medicinal plant species. Whole plant extracts of Ranunculus myosuroudes Boiss. and Kotschy (Ranunculaceae), Achillea damascena L. (Asteraceae), and Anthemis hebronica Boiss. and Kotschy (Asteraceae) and leaf extracts of Verbascum leptostychum DC. (Scrophulariaceae) and Heliotropium rotundifolium Boiss. (Borangiaceae) caused both repellent and toxic effects against the adult and second nymphal instars, respectively. Extracts of leaves and stems of Anthemis scariosa Boiss. (Asteraceae) and Calendula palestina Pers. (Asteraceae) were found to be more bioactive against the adult and nymphal instars, respectively, than extracts of other plant parts, such as flowers. Thus, the bioactive extracts of these medicinal plants have the potential to lower whitefly populations in a comprehensive pest management program in local communities, pending cultivation of these medicinal plant species.

  12. Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages.

    Science.gov (United States)

    Dávila-Aviña, Jorge E; Villa-Rodríguez, José A; Villegas-Ochoa, Mónica A; Tortoledo-Ortiz, Orlando; Olivas, Guadalupe I; Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A

    2014-10-01

    This work evaluated the effect of carnauba and mineral oil coatings on the bioactive compounds and antioxidant capacity of tomato fruits (cv. "Grandela"). Carnauba and mineral oil coatings were applied on fresh tomatoes at two maturity stages (breaker and pink) over 28 day of storage at 10 °C was evaluated. Bioactive compound and antioxidant activity assays included total phenols, total flavonoids, ascorbic acid (ASA), lycopene, DPPH radical scavenging activity (%RSA), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity assay (ORAC). The total phenolic, flavonoid and lycopene contents were significantly lower for coated fruit than control fruits. However, ascorbic acid content was highest in fruits treated with carnauba, followed by mineral oil coating and control fruits. The ORAC values were highest in breaker tomatoes coated with carnauba wax, followed by mineral oil-coated fruits and controls. No significant differences in ORAC values were observed in pink tomatoes. % RSA and TEAC values were higher for controls than for coated fruit. Edible coatings preserve the overall quality of tomatoes during storage without affecting the nutritional quality of fruit. We found that the physiological response to the coatings is in function of the maturity stage of tomatoes. The information obtained in this study support to use of edible coating as a safe and good alternative to preserve tomato quality, and that the changes of bioactive compounds and antioxidant activity of tomato fruits, was not negatively affected. This approach can be used by producers to preserve tomato quality.

  13. Bioactivity of indigenous medicinal plants against the cotton whitefly, Bemisia tabaci

    Science.gov (United States)

    Hammad, E. Abou-Fakhr; Zeaiter, A.; Saliba, N.; Talhouk, S.

    2014-01-01

    Abstract Forty-one methanol extracts of 28 indigenous medicinal plant species were tested for their insecticidal bioactivity against cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), adults and second nymphal instars under controlled conditions. This study is within a bioprospection context, in the form of utilizing local plant species as an alternative in sustainable agriculture development. Eighteen and nine plant extracts caused a significant decrease in number of live adult and nymphal whiteflies, respectively, compared to the control. This is the first report for the potential effect on survival of insects for 22 out of 28 tested medicinal plant species. Whole plant extracts of Ranunculus myosuroudes Boiss. and Kotschy (Ranunculaceae), Achillea damascena L. (Asteraceae), and Anthemis hebronica Boiss. and Kotschy (Asteraceae) and leaf extracts of Verbascum leptostychum DC. (Scrophulariaceae) and Heliotropium rotundifolium Boiss. (Borangiaceae) caused both repellent and toxic effects against the adult and second nymphal instars, respectively. Extracts of leaves and stems of Anthemis scariosa Boiss. (Asteraceae) and Calendula palestina Pers. (Asteraceae) were found to be more bioactive against the adult and nymphal instars, respectively, than extracts of other plant parts, such as flowers. Thus, the bioactive extracts of these medicinal plants have the potential to lower whitefly populations in a comprehensive pest management program in local communities, pending cultivation of these medicinal plant species. PMID:25204756

  14. Bioactive Polymeric Materials for Tissue Repair

    Directory of Open Access Journals (Sweden)

    Diane R. Bienek

    2017-01-01

    Full Text Available Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field.

  15. Bioactive endophytes warrant intensified exploration and conservation.

    Science.gov (United States)

    Smith, Stephen A; Tank, David C; Boulanger, Lori-Ann; Bascom-Slack, Carol A; Eisenman, Kaury; Kingery, David; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Ma, Cong; Moore, Emily; Schorn, Michelle A; Vekhter, Daniel; Nunez, Percy V; Strobel, Gary A; Donoghue, Michael J; Strobel, Scott A

    2008-08-25

    A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value. We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive. The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  16. Bioactive endophytes warrant intensified exploration and conservation.

    Directory of Open Access Journals (Sweden)

    Stephen A Smith

    2008-08-01

    Full Text Available A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value.We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive.The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  17. Recent advances on bioactivities of black rice.

    Science.gov (United States)

    Dias, Aécio L de S; Pachikian, Barbara; Larondelle, Yvan; Quetin-Leclercq, Joëlle

    2017-11-01

    Black rice has been consumed for centuries in Asian countries such as China, Korea or Japan. Nowadays, extracts and derivatives are considered as beneficial functional foods because of their high content in several bioactive molecules such as anthocyanins, other phenolics and terpenoids. The purpose of this review is to summarize and discuss recent developments on black rice bioactivities. Some sterols and triterpenoids with potential anticancer properties already tested in vitro and in vivo have been isolated and identified from bran extracts of black rice. Protection against osteoporosis has been suggested for the first time for black rice extracts. Because of its antioxidant and anti-inflammatory properties, black rice also protects liver and kidney from injuries. One clinical study reported the interest of black rice in case of alcohol withdrawal. Several advances have been recently achieved on the understanding of the potential biological effects of black rice and its derivatives. They further confirm that black rice should be considered as a promising source of health-promoting functional foods targeting a large set of noninfectious diseases. However, more clinical studies are needed to support the findings highlighted in this review.

  18. Preparation of radiolabeled bioactive asbestos fibers

    Energy Technology Data Exchange (ETDEWEB)

    Tewson, T J; Francsechini, M P; Scheule, R K; Holian, A [Texas Univ., Houston, TX (USA). Health Science Center

    1991-01-01

    We have developed an efficient procedure to radiolabel asbestos fibers while retaining the bioactivity of the fibers. The fibers are labeled with {sup 68}Ge. The {sup 68}Ge decays into {sup 68}Ga, which then can be detected by its characteristic positron emission. Both chrysotile and crocidolite asbestos, a serpentine and an amphibole, respectively, were radiolabeled successfully. Mild reaction conditions and short reaction times were found under which {similar to}90% of the added {sup 68}Ge and {sup 68}Ga bound to the fibers. The radiolabel was retained even after washing the fibers extensively with physiologic buffers. The effects of the labeling on the bioactivity of the fibers were evaluated in an in vitro assay using guinea pig alveolar macrophages as a target cell. Labeled chrysotile fibers were found to retain >95% of their ability to stimulate these cells. The labeling procedure described in this study should be useful in preparing labeled fibers to investigate both in vitro and in vivo phenomena. (author).

  19. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    Science.gov (United States)

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  20. Use of Jatropha curcas hull biomass for bioactive compost production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Pandey, A.K.; Lata [Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012 (India)

    2009-01-15

    The paper deals with utilization of biomass of Jatropha hulls for production of bioactive compost. In the process of Jatropha oil extraction, a large amount of hull waste is generated. It has been found that the direct incorporation of hull into soil is considerably inefficient in providing value addition to soil due to its unfavorable physicochemical characteristics (high pH, EC and phenolic content). An alternative to this problem is the bioconversion of Jatropha hulls using effective lignocellulolytic fungal consortium, which can reduce the phytotoxicity of the degraded material. Inoculation with the fungal consortium resulted in better compost of jatropha hulls within 1 month, but it takes nearly 4 months for complete compost maturation as evident from the results of phytotoxicity test. Such compost can be applied to the acidic soil as a remedial organic manure to help maintaining sustainability of the agro-ecosystem. Likewise, high levels of cellulolytic enzymes observed during bioconversion indicate possible use of fungi for ethanol production from fermentation of hulls. (author)

  1. Chinese medicines and bioactive compounds for treatment of stroke.

    Science.gov (United States)

    Jayakumar, Thanasekaran; Elizebeth, Antoinet Ramola; Yen, Ting-lin; Sheu, Joen-rong

    2015-02-01

    Stroke is an important cause of mortality and morbidity worldwide but effective therapeutic strategy for the prevention of brain injury in patients with cerebral ischemia is lacking. Although tissue plasminogen activator has been used to treat stroke patients, this therapeutic strategy is confronted with ill side effects and is limited to patients within 3 h of a stroke. Due to the complexity of the events and the disappointing results from single agent trials, the combination of thrombolytic therapy and effective neural protection therapy may be an alternative strategy for patients with cerebral ischemia. Chinese medicine (CM) is the most widely practiced form of herbalism worldwide, as it is a sophisticated system of medical theory and practice that is specifically different from Western medicine. Most traditional therapeutic formulations consist of a combination of several drugs. The combination of multiple drugs is thought to maximize therapeutic efficacy by facilitating synergistic actions and preventing possible adverse effects while at the same time marking at multiple targets. CM has been labeled in ancient medicine systems as a treatment for various diseases associated with stroke. This review summarizes various CMs, bioactive compounds and their effects on cerebral ischemia.

  2. Bioactivity evaluation of commercial calcium phosphate-based bioceramics for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Borrós, S.; Mas, A.

    2016-11-01

    Calcium phosphate-based bioceramics constitute a great promise for bone tissue engineering as they chemically resemble to mammalian bone and teeth. Their use is a viable alternative for bone regeneration as it avoids the use of autografts and allografts, which usually involves immunogenic reactions and patient’s discomfort. This work evolves around the study of the bioactivity potential of different commercially available bone substitutes based in calcium phosphate through the characterization of their ionic exchangeability when immersed in simulated body fluid (SBF). (Author)

  3. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    Science.gov (United States)

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  4. Bioactivity and chemical ecology of some intertidal animals

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.; Shirwaikar, P.

    stream_size 7 stream_content_type text/plain stream_name Bioactive_Com_Mar_Org_1991_29.pdf.txt stream_source_info Bioactive_Com_Mar_Org_1991_29.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  5. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  6. calcium sulphate hemihydrate and bioactive glass composites for ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 2. In vitro bioactivity evaluation of α -calcium sulphate hemihydrate and bioactive glass composites for their potential use in bone regeneration. YANYAN ZHENG CHENGDONG XIONG DUJUAN ZHANG LIFANG ZHANG. Volume 41 Issue 2 April 2018 Article ID ...

  7. Indication of bioactive candidates among body volatiles of ...

    African Journals Online (AJOL)

    Gregarious adult locusts are believed to release many bioactive volatiles from their bodies for the mediation of their biological characteristics. The determination of these bioactive body volatiles can contribute to the development of new, environmentally benign methods of locust control. An important locust, Locusta ...

  8. Bioactive Peptides in Milk Products. | Tirelli | Journal of Food ...

    African Journals Online (AJOL)

    Some peptides produced in vitro or in vivo by enzymatic hydrolysis of caseins and whey protein can affect some biological functions of the body and therefore they are called bioactive peptides. In this paper the physiological significance of bioactive peptides is reviewed and the analytical methods for their purification and ...

  9. Nutrient reference values for bioactives: new approaches needed?

    DEFF Research Database (Denmark)

    Biesalski, Hans Konrad; Erdman Jr., John W.; Hathcock, John

    2013-01-01

    Nutrients can be classified as either "essential" or "non-essential," the latter are also termed bioactive substances. Whereas the absence of essential nutrients from the diet results in overt deficiency often times with moderate to severe physiological decrements, the absence of bioactive substa...

  10. The ecological dynamics and trajectories of bioactive compounds in ...

    African Journals Online (AJOL)

    Result revealed seven bioactive compounds with anthraquinone totally absent from all the species in the four locations. The seven bioactive compounds were apparently more in the leaves than other parts of the plants. Among the four locations alkaloid, triterpene, glycoside, carbohydrate, flavonoid and tannin were high in ...

  11. Normal Values of Circulating IGF-I Bioactivity in the Healthy Population: Comparison with five widely used IGF-I immunoassays

    NARCIS (Netherlands)

    M.P. Brugts (Michael); M.B. Ranke (Michael); L.J. Hofland (Leo); K. van der Wansem (Katy); K. Weber (Karin); J. Frystyk (Jan); S.W.J. Lamberts (Steven); J.A.M.J.L. Janssen (Joseph)

    2008-01-01

    textabstractBackground: IGF-I immunoassays are primarily used to estimate IGF-I bioactivity. Recently, an IGFI specific Kinase Receptor Activation Assay (KIRA) has been developed as an alternative method. However, no normative values have been established for the IGF-I KIRA. Objective: To

  12. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    Science.gov (United States)

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  13. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation.

    Science.gov (United States)

    Liu, Xiaofeng; Bai, Fang; Ouyang, Sisheng; Wang, Xicheng; Li, Honglin; Jiang, Hualiang

    2009-03-31

    reproducing the bioactive conformations against 329 structures. The speed advantage indicates Cyndi is a powerful alternative method for extensive conformational sampling and large-scale conformer database preparation.

  14. Development of a novel bioactive glass for air-abrasion to selectively remove orthodontic adhesives.

    Science.gov (United States)

    Taha, Ayam A; Hill, Robert G; Fleming, Padhraig S; Patel, Mangala P

    2018-05-01

    To develop a novel, bioactive glass for removing residual orthodontic adhesive via air-abrasion, following bracket debonding, and to evaluate its effectiveness against a proprietary bioactive glass 45S5(Sylc™)-air-abrasion, and a slow-speed tungsten carbide (TC) bur. Three glasses were prepared and their bioactivity was proved. One novel glass (QMAT3) was selected due to its appropriate hardness, lower than that of enamel/45S5(Sylc™). Sixty extracted human premolars were randomly assigned to adhesive removal using: (a) QMAT3-air-abrasion, (b) 45S5(Sylc™)-air-abrasion, and (c) TC bur, which were further subdivided (n = 10) based on the adhesive used (Transbond XT™ or Fuji Ortho LC™). Enamel roughness was assessed using scanning electron microscopy (SEM) and non-contact profilometry before bracket bonding, after removing residual adhesive following bracket debonding and after polishing. QMAT3 formed apatite faster (6 h) than 45S5(Sylc™) (24 h) in Tris solution. QMAT3-air-abrasion gave the lowest enamel roughness (Ra) after removing the adhesives. SEM images showed a pitted, roughened enamel surface in the TC bur group and to a lesser extent with 45S5(Sylc™), while a virtually smooth surface without any damage was observed in the QMAT3-air-abrasion group. The time taken for adhesive removal with QMAT3 was comparable to 45S5(Sylc™) but was twice as long with the TC bur. QMAT3-air-abrasion is a promising technique for selective removal of adhesives without inducing tangible enamel damage. A novel bioactive glass has been developed as an alternative to the use of TC burs for orthodontic adhesive removal.

  15. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation

    Directory of Open Access Journals (Sweden)

    Li Honglin

    2009-03-01

    other four multiple conformer generators in the case of reproducing the bioactive conformations against 329 structures. The speed advantage indicates Cyndi is a powerful alternative method for extensive conformational sampling and large-scale conformer database preparation.

  16. On polar daily geomagnetic variation

    Directory of Open Access Journals (Sweden)

    Paola De Michelis

    2015-11-01

    Full Text Available The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998 around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC, which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs. Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.

  17. Daily Physical Activity Survey Report

    Science.gov (United States)

    Alberta Education, 2008

    2008-01-01

    The intent of the Daily Physical Activity (DPA) Survey was to gather school-level information from teachers and principals regarding their perceptions of DPA, thus providing a greater understanding of DPA implementation in grades 1 to 9. This study aimed to help identify the many variables that influence the attainment of the DPA outcomes and…

  18. Alternative detente

    International Nuclear Information System (INIS)

    Soper, K.; Ryle, M.

    1988-01-01

    The influence of the Chernobyl accident on the disarmament and anti-nuclear movements is discussed. The accident directed attention towards the areas in common rather than the areas of disagreement. It also demonstrated the environmental impact of radioactivity, strengthening the ecological case of the anti-nuclear movement. The issues are discussed for the Western and Eastern bloc countries and the relationship between the two. Sections focus on the Eco-protest, Green politics and economics and on the politics of minority protest and the Green alternative. (U.K.)

  19. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  20. Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Nima Meyer

    2018-01-01

    Full Text Available This study investigated the electrophoretic deposition (EPD of the natural polymer zein combined with bioactive glass (BG particles. Through the deposition of various BG compositions, namely 45S5 BG and Cu-doped BG, this work sought to demonstrate the ability of the films to potentiate the formation of hydroxyapatite (HA in contact with simulated body fluid (SBF. Following incubation in SBF, the physical and chemical surface properties of the EPD films were evaluated using different characterization techniques. The formation of HA at the surface of the coatings following immersion in SBF was confirmed using Fourier transform infrared spectroscopy (FTIR. The results demonstrated HA formation in all coatings after seven days of immersion in SBF. Coating morphology and degradation of the zein films were characterized using environmental scanning electron microscopy (ESEM. The results confirmed EPD as a very convenient room temperature technique for production of ion releasing, bioactive, and antibacterial coatings for potential application in orthopedics.

  1. Augmented Reality: Daily Prayers for Preschooler Student

    Directory of Open Access Journals (Sweden)

    Hendra Pradibta

    2018-01-01

    Full Text Available Education is one of the aspects that many synthesized with technology. Yet, this is contrary to the fact that where most of the learning materials are still based on text. This research aims to develop an alternative learning media by implementing Augmented Reality Technology for Preschooler students. Augmented Reality (AR is an application that can combine the virtual object as text, pictures and animation into the real world. Development of Augmented Reality application uses Web Aurasma Based Studio, with learning materials of daily prayer for preschool student. The development of the characters and the animations were using Adobe Illustrator and Adobe After Effects. The results of the study showed that technology Augmented Reality can be used as an alternative learning media especially in the learning process in Preschool Al Furqon. This is because the content Augmented Reality in the form of animation can gives more understanding and attention for preschool student to follow the learning process

  2. The effect of variation in physical properties of porous bioactive glass on the expression and maintenance of the osteoblastic phenotype

    Science.gov (United States)

    Effah Kaufmann, Elsie Akosua Biraa

    Revision surgery to replace failed hip implants is a significant health care issue that is expected to escalate as life expectancy increases. A major goal of revision surgery is to reconstruct femoral intramedullary bone-stock loss. To address this problem of bone loss, grafting techniques are widely used. Although fresh autografts remain the optimal material for all forms of surgery seeking to restore structural integrity to the skeleton, it is evident that the supply of such tissue is limited. In recent years, calcium phosphate ceramics have been studied as alternatives to autografts and allografts. The significant limitations associated with the use of biological and synthetic grafts have led to a growing interest in the in vitro synthesis of bone tissue. The approach is to synthesize bone tissue in vitro with the patient's own cells, and use this tissue for the repair of bony defects. Various substrates including metals, polymers, calcium phosphate ceramics and bioactive glasses, have been seeded with osteogenic cells. The selection of bioactive glass in this study is based on the fact that this material has shown an intense beneficial biological effect which has not been reproduced by other biomaterials. Even though the literature provides extensive data on the effect of pore size and porosity on in vivo bone tissue ingrowth into porous materials for joint prosthesis fixation, the data from past studies cannot be applied to the use of bioactive glass as a substrate for the in vitro synthesis of bone tissue. First, unlike the in vivo studies in the literature, this research deals with the growth of bone tissue in vitro. Second, unlike the implants used in past studies, bioactive glass is a degradable and resorbable material. Thus, in order to establish optimal substrate characteristics (porosity and pore size) for bioactive glass, it was important to study these parameters in an in vitro model. We synthesized porous bioactive glass substrates (BG) with varying

  3. Bioactive Triterpenes from the Fungus Piptoporus betulinus

    Directory of Open Access Journals (Sweden)

    Zeyad Alresly

    2016-01-01

    Full Text Available Phytochemical investigation of the ethyl acetate extract of the fruiting bodies from the basidiomycete Piptoporus betulinus led to the isolation of a new bioactive lanostane triterpene identified as 3 b -acetoxy-16-hydroxy-24-oxo-5α-lanosta-8- ene-21-oic acid (1. In addition, ten known triterpenes, polyporenic acid A (5, polyporenic acid C (4, three derivatives of polyporenic acid A (8, 10, 11, betulinic acid (3, betulin (2, ergosterol peroxide (6, 9,11-dehydroergosterol peroxide (7, and fomefficinic acid (9, were also isolated from the fungus. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against a fungal strain. The new triterpene and some of the other compounds showed antimicrobial activity against Gram-positive bacteria.

  4. Bioactive substances of the Techirghiol therapeutic mud

    Directory of Open Access Journals (Sweden)

    Mihail Hoteteu

    2018-02-01

    Full Text Available The study aims to characterize Techirghiol's sapropelic mud both by determining the organic and inorganic composition of the constituent phases and by isolating some compounds of humic substances. The distribution between the solid and liquid phases of the peloid of the Ca2+, Mg2+, Fe3+cations, PO43- anion, bioactive compounds of the protein, lipid and carbohydrate classes as well as the phosphatase activity of Techirghiol sapropelic mud are analyzed. The mud is fractionated using the pH and solvent polarity variation and is spectrophotometrically characterized based on absorption in the wavelength range 340-700 nm humic acids and fulvic acids differentiated on the basis of solubility and molecular mass.

  5. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  6. Bioactivity and Functionality of Bonghwa Sweetfish

    International Nuclear Information System (INIS)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-01

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  7. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-10-09

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here.

  8. Bioactivity and Functionality of Bonghwa Sweetfish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-15

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  9. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Directory of Open Access Journals (Sweden)

    Elisa Flávia Luiz Cardoso Bailão

    2015-10-01

    Full Text Available Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi, Dipteryx alata Vog. (baru, Eugenia dysenterica DC. (cagaita, Eugenia uniflora L. (pitanga, Genipa americana L. (jenipapo, Hancornia speciosa Gomes (mangaba, Mauritia flexuosa L.f. (buriti, Myrciaria cauliflora (DC Berg (jabuticaba, Psidium guajava L. (goiaba, Psidium spp. (araçá, Solanum lycocarpum St. Hill (lobeira, Spondias mombin L. (cajá, Annona crassiflora Mart. (araticum, among others are reported here.

  10. Characterization,Mechanical, and In Vitro Bioactivity Properties of Hydroxyapatite/Bioactive Glass Composite

    Directory of Open Access Journals (Sweden)

    Israa Kahatan Sabree

    2016-12-01

    Full Text Available Bioactive ceramic materials can help bone reparation and regeneration by offering support to bone growth. Biological hydroxyapatite powder was prepared by burning animal bone followed by studying the mechanical properties of hydroxyapatite (HA/ (20wt.%, and 40wt.% of binary bioactive glass (70% SiO2- 30% CaO in order to evaluate the influence of composition on the compressive strength and hardness. HA-composite material exhibited increasing density, microhardness, and compressive strength with increasing amount of glass addition. X-ray diffraction after sintering at 1200°C showed no alter of HA to secondary phases while the hydroxyapatite/ bioactive glass composites contained a HA phase and different amounts of wollastonite phase, depending on the amount of bioglass added. In vitro tests, the samples were soaked in simulated body fluid (SBF for ten days in order to evaluate the change in compression strength, weight loss, and pH. The HA composite reinforced with 40 wt % bioglass showed highest compression strength, and lowest weight loss

  11. Energy alternatives

    International Nuclear Information System (INIS)

    1981-01-01

    English. A special committe of the Canadian House of Commons was established on 23 May 1980 to investigate the use of alternative energy sources such as 'gasohol', liquified coal, solar energy, methanol, wind and tidal power, biomass, and propane. In its final report, the committee envisions an energy system for Canada based on hydrogen and electricity, using solar and geothermal energy for low-grade heat. The committe was not able to say which method of generating electricty would dominate in the next century, although it recommends that fossil fuels should not be used. The fission process is not specifically discussed, but the outlook for fusion was investigated, and continued governmental support of fusion research is recommended. The report proposes some improvements in governmental energy organizations and programs

  12. Observability of market daily volatility

    Science.gov (United States)

    Petroni, Filippo; Serva, Maurizio

    2016-02-01

    We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t) = σ(t) ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t) = σ(t) ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

  13. Dayak and Their Daily Life

    Directory of Open Access Journals (Sweden)

    Hamid Darmadi

    2017-03-01

    Full Text Available This article titled "Dayak and Daily Life" This paper aims to reveal the Dayak and in their daily life. Dayak is a native of Borneo has its own characteristics. Dayak, divided into 405 sub-sub clans [1]. Each sub Dayak both Indonesia and Malaysia are identical. Dayak customs and culture comes from the word "Power" which means upstream, to refer to people who live in inland areas or in the interior of Borneo. In the arsenal of art and culture, Dayak has many similarities such as; saber, chopsticks, beliong, betang, cupai, renjung, empajang and others. Dayak indigenous religion is Kaharingan which is the original religion born of the cultural ancestors of the Dayaks. Most of the Dayak people still adhere to the belief of the existence of unseen objects in certain places such as rocks, large trees, planting gardens in the forest, lakes, pools, and others are believed to have "magical powers". Daily life of the Dayaks in general farming, farming. When will open farming land, farming they held ritual.

  14. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.

    Science.gov (United States)

    Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.

  15. In Vitro Bioactivity and Antimicrobial Tuning of Bioactive Glass Nanoparticles Added with Neem (Azadirachta indica) Leaf Powder

    Science.gov (United States)

    Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

  16. Thermoluminescence as a probe in bioactivity studies; the case of 58S sol-gel bioactive glass

    International Nuclear Information System (INIS)

    Polymeris, George S; Tsirliganis, Nestor C; Goudouri, Ourania Menti; Paraskevopoulos, Konstantinos M; Kontonasaki, Eleana; Kitis, George

    2011-01-01

    The formation of a carbonated hydroxyapatite (HCAp) layer on the surface of bioactive materials is the main reaction that takes place upon their immersion in physiological fluids. To date, all techniques used for the identification of this HCAp formation are rather time consuming and not well suited to detailed and rapid monitoring of changes in the bioactivity response of the material. The aim of this work is to explore the possibility of using thermoluminescence (TL) for the discrimination between different bioactive responses in the case of the 58S bioactive glass. Results provided strong indications that the 110 deg. C TL peak of quartz can be used effectively in the study of the bioactive behaviour of 58S bioactive glass, since it is unambiguously present in all samples and does not require deconvolution analysis. Furthermore, the intensity of the 110 deg. C TL peak is proven to be very sensitive to the different bioactive responses, identifying the loss of silica which takes place at the first stages of the sequence. The discontinuities of the 110 deg. C TL peak intensity plot versus immersion time at 8 and 1440 min provide experimental indications regarding the timescale for both the beginning of amorphous CaP formation as well as the end of crystalline hydroxyl-apatite formation respectively, while the spike in the sensitization of the 110 deg. C TL peak, which was observed for immersion times ranging between 20 and 40 min, could be an experimental feature indicating the beginning of the crystalline HCAp formation.

  17. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  18. Bioactive food stimulants of sympathetic activity: effect on 24-h energy expenditure and fat oxidation.

    Science.gov (United States)

    Belza, A; Jessen, A B

    2005-06-01

    Bioactive food ingredients influence energy balance by exerting weak thermogenic effects. We studied whether the thermogenic effect of a combination of capsaicin, green tea extract (catechins and caffeine), tyrosine, and calcium was maintained after 7-day treatment and whether local effects in the gastric mucosa were involved in the efficacy. The present study was designed as a 3-way crossover, randomised, placebo-controlled, double-blinded intervention. Department of Human Nutrition, RVAU, Denmark. A total of 19 overweight to obese men (BMI: 28.0+/-2.7 kg/m2) were recruited by advertising locally. The subjects took the supplements for a period of 7 days. The supplements were administrated as a simple supplement with the bioactive ingredients, a similar enterocoated version, or placebo. In all, 24-h energy expenditure (EE), substrate oxidations, spontaneous physical activity (SPA), and heart rate were measured in respiration chambers on the seventh day of each test period. After adjustment for changes in body weight and SPA, 24-h EE was increased by 160 kJ/day (95% CI: 15-305) by the simple preparation as compared to placebo, whereas the enterocoated preparation had no such effect (53 kJ/day, -92 to 198); simple vs enterocoated versions (P=0.09). The simple preparation produced a deficit in 24-h energy balance of 193 kJ/day (49-338, P=0.03). Fat and carbohydrate oxidation were equally increased by the supplements. A supplement containing bioactive food ingredients increased daily EE by approximately 200 kJ or 2%, without raising the heart rate or any observed adverse effects. The lack of effect of the enterocoated preparation suggests that a local action of capsaicin in the gastric mucosa is a prerequisite for exerting the thermogenic effect.

  19. Chronic and Daily Stressors Along With Negative Affect Interact to Predict Daily Tiredness.

    Science.gov (United States)

    Hartsell, Elizabeth N; Neupert, Shevaun D

    2017-11-01

    The present study examines the within-person relationship of daily stressors and tiredness and whether this depends on daily negative affect and individual differences in chronic stress. One hundred sixteen older adult participants were recruited via Amazon's Mechanical Turk for a 9-day daily diary study. Daily tiredness, daily stressors, and negative affect were measured each day, and chronic stress was measured at baseline. Daily stressors, daily negative affect, and chronic stress interacted to predict daily tiredness. People with high chronic stress who experienced an increase in daily negative affect were the most reactive to daily stressors in terms of experiencing an increase in daily tiredness. We also found that people with low levels of chronic stress were the most reactive to daily stressors when they experienced low levels of daily negative affect. Our results highlight the need for individualized and contextualized approaches to combating daily tiredness in older adults.

  20. Digital daily cycles of individuals

    DEFF Research Database (Denmark)

    Aledavood, Talayeh; Jørgensen, Sune Lehmann; Saramäki, Jari

    2015-01-01

    Humans, like almost all animals, are phase-locked to the diurnal cycle. Most of us sleep at night and are active through the day. Because we have evolved to function with this cycle, the circadian rhythm is deeply ingrained and even detectable at the biochemical level. However, within the broader...... day-night pattern, there are individual differences: e.g., some of us are intrinsically morning-active, while others prefer evenings. In this article, we look at digital daily cycles: circadian patterns of activity viewed through the lens of auto-recorded data of communication and online activity. We...

  1. Bioactive focus in conformational ensembles: a pluralistic approach

    Science.gov (United States)

    Habgood, Matthew

    2017-12-01

    Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment's Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre's conformation generator software.

  2. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development. © 2016 Wiley Periodicals, Inc.

  3. Fruit and cereal bioactives: sources, chemistry, and applications

    National Research Council Canada - National Science Library

    Tokusoglu, Ozlem; Hall, Clifford, III

    2011-01-01

    "Presenting up-to-date data in an easy-to-use format, this comprehensive overview of the chemistry of bioactive components of fruits and cereals addresses the role of these compounds in determining...

  4. Bioactive foods in promoting health: probiotics and prebiotics

    National Research Council Canada - National Science Library

    Watson, Ronald R; Preedy, Victor R

    2010-01-01

    "Bioactive Foods in Health Promotion: Probiotics and Prebiotics brings together experts working on the different aspects of supplementation, foods, and bacterial preparations, in health promotion and disease prevention, to provide...

  5. Bioactive materials for biomedical applications using sol-gel technology

    International Nuclear Information System (INIS)

    Gupta, Radha; Kumar, Ashok

    2008-01-01

    This review paper focuses on the sol-gel technology that has been applied in many of the potential research areas and highlights the importance of sol-gel technology for preparing bioactive materials for biomedical applications. The versatility of sol-gel chemistry enables us to manipulate the characteristics of material required for particular applications. Sol-gel derived materials have proved to be good biomaterials for coating films and for the construction of super-paramagnetic nanoparticles, bioactive glasses and fiberoptic applicators for various biomedical applications. The introduction of the sol-gel route in a conventional method of preparing implants improves the mechanical strength, biocompatibility and bioactivity of scaffolds and prevents corrosion of metallic implants. The use of organically modified silanes (ORMOSILS) yields flexible and bioactive materials for soft and hard tissue replacement. A novel approach of nitric-oxide-releasing sol-gels as antibacterial coatings for reducing the infection around orthopedic implants has also been discussed

  6. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    Unknown

    Technical Education Faculty, Mersin University, 33480 Tarsus, Turkey. MS received 18 October 2005; revised 22 March 2006. Abstract. In this study, abrasive ... process were used to produce bio-active ceramics. Fracture toughness of studied ...

  7. Current Strategies to Improve the Bioactivity of PEEK

    Science.gov (United States)

    Ma, Rui; Tang, Tingting

    2014-01-01

    The synthetic thermoplastic polymer polyetheretherketone (PEEK) is becoming a popular component of clinical orthopedic and spinal applications, but its practical use suffers from several limitations. Although PEEK is biocompatible, chemically stable, radiolucent and has an elastic modulus similar to that of normal human bone, it is biologically inert, preventing good integration with adjacent bone tissues upon implantation. Recent efforts have focused on increasing the bioactivity of PEEK to improve the bone-implant interface. Two main strategies have been used to overcome the inert character of PEEK. One approach is surface modification to activate PEEK through surface treatment alone or in combination with a surface coating. Another strategy is to prepare bioactive PEEK composites by impregnating bioactive materials into PEEK substrate. Researchers believe that modified bioactive PEEK will have a wide range of orthopedic applications. PMID:24686515

  8. Bioactive compounds in seaweed; functional food applications and legislation

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Kraan, Stefan

    2011-01-01

    Seaweed is more than the wrap that keeps rice together in sushi. Seaweed biomass is already used for a wide range of other products in food, including stabilising agents. Biorefineries with seaweed as feedstock are attracting worldwide interest and include low-volume, high value-added products...... and vice versa. Scientific research on bioactive compounds in seaweed usually takes place on just a few species and compounds. This paper reviews worldwide research on bioactive compounds, mainly of nine genera or species of seaweed, which are also available in European temperate Atlantic waters, i...... described in this review. This applies either to the choice of high value-added bioactive products to be exploited in an available species or to the choice of seaweed species when a bioactive compound is desired. Data are presented in tables with species, effect and test organism (if present) with examples...

  9. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  10. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Nadeem, Danish; Kiamehr, Mostafa; Yang, Xuebin; Su, Bo

    2013-01-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO 2 , 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  11. Modeling of Viscosity and Thermal Expansion of Bioactive Glasses

    OpenAIRE

    Farid, Saad B. H.

    2012-01-01

    The behaviors of viscosity and thermal expansion for different compositions of bioactive glasses have been studied. The effect of phosphorous pentoxide as a second glass former in addition to silica was investigated. Consequently, the nonlinear behaviors of viscosity and thermal expansion with respect to the oxide composition have been modeled. The modeling uses published data on bioactive glass compositions with viscosity and thermal expansion. -regression optimization technique has been uti...

  12. Bioactive endodontic materials for everyday use: a review.

    Science.gov (United States)

    Walsh, Ryan M; He, Jianing; Schweitzer, Jordan; Opperman, Lynne A; Woodmansey, Karl F

    2018-01-01

    Bioceramic materials are at the forefront of modern dentistry. Bioactive bioceramic endodontic materials promote pulpal and periapical tissue healing and are easy to use. Dentists can choose among many endodontic materials, depending on their needs. This article highlights the major differences among commercially available bioactive tricalcium silicate bioceramics, commonly known as mineral trioxide aggregate materials, to enable dentists to make appropriate decisions in the selection of these materials.

  13. Whey Based Bioactive Peptides Used in Animal Products

    Directory of Open Access Journals (Sweden)

    Ayse Demet Karaman

    2016-10-01

    Full Text Available Bioactive peptides come out as a result of the hydrolysis of milk proteins and contain nutritional, functional and biological activities. Nowadays, the utilization of whey proteins to provide various features in the animal products such as meat and milk products and animal production has been increasing. In this compilation, after being introduced some general information about their common characteristics, bioactive peptides will be mentioned about their particularly recent usage in animal products.

  14. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    Science.gov (United States)

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  15. Cell Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath

    Science.gov (United States)

    2017-07-01

    to subsequently guide tissue regeneration , for example, by seeded tissue progenitor cells . To achieve this objective, the first step is to develop...AWARD NUMBER: W81XWH-15-1-0104 TITLE: Cell -Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Cell -Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath 5b. GRANT NUMBER W81XWH-15-1-0104 5c. PROGRAM

  16. Numerical investigations on the osseointegration of uncemented endoprostheses based on bio-active interface theory

    Science.gov (United States)

    Lutz, André; Nackenhorst, Udo

    2012-09-01

    In order to simulate the osseointegration of bone implants, a bio-active interface theory is necessary. The thin bone-implant interface layer is described by the Drucker-Prager plasticity model. The formulation of bone mineral density depends on the local mechanical environment. For the simulation of the osseointegration of bone implants a bio-active interface theory is suggested. A thin bone-implant interface layer is described by a Drucker-Prager plasticity model. An evolution rule for the bone mineral density is formulated in dependency of the local mechanical environment. The time dependent ingrowth is modeled by a hardening rule which modifies the Drucker-Prager yield-surface cone in the principle stress state in dependency of the local bone mineral density. The osseointegration process is limited by the violation of a so called micromotion threshold. This relative motion in the implant-bone interface is computed by dynamic loads of daily motion activity. For parameter studies on detailed 3D models model reduction techniques are introduced. The applicability is demonstrated on a hip-joint prosthesis which is in clinical usage.

  17. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties

    Directory of Open Access Journals (Sweden)

    Patricia Reboredo-Rodríguez

    2017-03-01

    Full Text Available Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food—as stated by the European Food Safety Authority (EFSA—due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices. The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.

  18. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity.

    Science.gov (United States)

    Ye, Xiaotong; Leeflang, Sander; Wu, Chengtie; Chang, Jiang; Zhou, Jie; Huan, Zhiguang

    2017-10-27

    Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  19. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity

    Directory of Open Access Journals (Sweden)

    Xiaotong Ye

    2017-10-01

    Full Text Available Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM, having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  20. The benefit of daily photoprotection.

    Science.gov (United States)

    Seité, Sophie; Fourtanier, Anny M A

    2008-05-01

    It is now recognized that both ultraviolet (UV)-A and UVB wavelengths participate in the generation of photodamaged human skin during sun exposure. During usual daily activities, an appropriate protection against solar UV exposure should prevent clinical, cellular, and molecular changes potentially leading to photoaging. This study was designed to evaluate in human beings the protection afforded by a day cream containing a photostable combination of UVB and UVA filters and thus protect against the UV-induced skin alterations. In solar-simulated radiation exposed and unprotected skin sites we observed melanization. The epidermis revealed a significant increase in stratum corneum and stratum granulosum thickness. In the dermis, an enhanced expression of tenascin and a reduced expression of type I procollagen were evidenced just below the dermoepidermal junction. Although no change in elastic fibers in exposed buttock skin was seen, a slightly increased deposit of lysozyme and alpha-1 antitrypsin on elastin fibers was observed using immunofluorescence techniques. A day cream with photoprotection properties was shown to prevent all of the above-described alterations. This study was performed on a limited number of patients (n = 12) with specific characteristics (20-35 years old and skin type II and III). Two dermal alterations were evaluated by visual assessment and not by computer-assisted image analysis quantification. Our in vivo results demonstrate the benefits of daily photoprotection using a day cream containing appropriate broad-spectrum sunscreens, which prevent solar UV-induced skin damages.

  1. Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation

    International Nuclear Information System (INIS)

    Batra, Uma; Kapoor, Seema; Sharma, J. D.

    2011-01-01

    Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work--fluoridated bioglass (Cao-P 2 O 5 -Na 2 O 3 -CaF 2 ) and unfluoridated bioglass (Cao-P 2 O 5 -Na 2 O 3 ) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm, respectively. The pellets were sintered at four different temperatures i.e. 1000 deg. C, 1150 deg. C, 1250 deg. C and 1350 deg. C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with α-TCP (tricalcium phosphate) and β-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 deg. C and 1150 deg. C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 deg. C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 deg. C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 deg. C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the

  2. Bioactive Glasses: Where Are We and Where Are We Going?

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2018-03-01

    Full Text Available Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today’s achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  3. Bioactive Glasses: Where Are We and Where Are We Going?

    Science.gov (United States)

    Baino, Francesco; Hamzehlou, Sepideh; Kargozar, Saeid

    2018-03-19

    Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today's achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  4. Screening for bioactivity of Mutinus elegans extracts

    Science.gov (United States)

    Gajendiran, A.; Cyriac, RE; Abraham, J.

    2017-11-01

    Mutinus elegans is a species of fungi that is commonly called as Elegant Stinkhorn. The aim of this study was to screen the crude extracts of the fungus for phytochemical analysis, antimicrobial activity, antioxidant assay and anticancer activity. Extraction of the fungal sample in Soxhlet apparatus was done with n-hexane and methanol as the solvent. Stock solutions of the crude methanol extract were prepared and used for microbiological assay. Thin layer chromatography was performed in order to determine the number of active components in n-hexane, and methanol solvent system for the fungus Mutinus elegans. Further, antioxidant assay was performed using DPPH radical scavenging assay. The fungal sample was then tested for cytotoxicity assay against MG63 osteosarcoma cell lines. The antimicrobial assay of Mutinus elegans extract exhibited activity against five pathogens. The zone of inhibition was measured with respect to standard antibiotics. Gas chromatography and Mass spectrometry (GC/MS analysis), revealed the presence of dibromo-tetradecan-1-ol-acetate, 2-myristynoyl-glycinamide, fumaric acid, and cyclohexylmethyldecyl ester compounds were presented in methanol and n-hexane extract of Mutinus elegans. The present study concludes the presence of bioactive compound in the extract which exhibited antimicrobial and antioxidant activity in Mutinus elegans.

  5. Triterpene Composition and Bioactivities of Centella asiatica

    Directory of Open Access Journals (Sweden)

    Uma Devi Palanisamy

    2011-01-01

    Full Text Available Leaves of Centella asiatica (Centella were analysed for their triterpene composition and bioactivity such as collagen enhancement, antioxidant, anticellulite and UV protection capacity properties. Triterpenes of Centella were measured using HPLC-PAD on an Excil ODS 5 mm (C18 column for the simultaneous determination of asiatic acid, madecassic acid, asiaticoside and madecassoside. Centella was found to contain significant amounts of madecassoside (3.10 ± 4.58 mg/mL and asiaticoside (1.97 ± 2.65 mg/mL, but was low in asiatic and madecassic acid. The highest collagen synthesis was found at 50 mg/mL of Centella extracts. The antioxidant activity of Centella (84% was compared to grape seed extract (83% and Vitamin C (88%. Its lipolytic activity was observed by the release of glycerol (115.9 µmol/L at 0.02% concentration. Centella extracts exhibited similar UV protection effect to OMC at 10% concentration. In view of these results, the potential application of Centella in food and pharmaceutical industries is now widely open.

  6. Bioactivities of Traditional Medicinal Plants in Alexandria.

    Science.gov (United States)

    Elansary, Hosam O; Szopa, Agnieszka; Kubica, Paweł; Ekiert, Halina; Ali, Hayssam M; Elshikh, Mohamed S; Abdel-Salam, Eslam M; El-Esawi, Mohamed; El-Ansary, Diaa O

    2018-01-01

    In traditional folklore, medicinal herbs play a vital role in the prevention and treatment of microbial diseases. In the present study, the phenolic profiles of the medicinal plants Asparagus aethiopicus L., Citrullus colocynthis L., Senna alexandrina L., Kalanchoe delagoensis L., Gasteria pillansii L., Cymbopogon citratus , Brassica juncea , and Curcuma longa L. were determined by high-performance liquid chromatography with a diode-array detector method. The results revealed rich sources of important compounds such as robinin in the fruits and leaves of A. aethiopicus ; caffeic acid in the tubers of A. aethiopicus and quercitrin in the leaves of G. pillansii . Further, relatively high antioxidant, antibacterial, and antifungal activities were observed in C. colocynthis fruit coat, S. alexandrina pods, and A. aethiopicus leaves, respectively. The relatively higher the bioactivities of plants extracts associated with the phenols in these plants, in particular, the more abundant the phenols. Therefore, it was concluded that the fruit coat of C. colocynthis , pods of S. alexandrina , and leaves of A. aethiopicus might be excellent sources of natural products. These plant extracts also have a wide spectrum of antimicrobial activities that could be used in the pharmaceutical industries and to control diseases.

  7. Radiation technology for immobilization of bioactive materials

    International Nuclear Information System (INIS)

    1988-12-01

    Within the framework of the Agency's coordinated research programme on ''Application of Radiation Technology in Immobilization of Bioactive Materials'', the third and final research coordination meeting was held at Beijing University, Beijing, People's Republic of China, 15-18 June 1987. The present publication compiles all presentations made at the meeting. Fundamental processes for the immobilization of enzymes, antibodies, cells and drugs were developed and established using gamma radiation, electron beams and plasma discharge. Applications of various biofunctional components, immobilized by radiation techniques in different processes, were studied. A range of backbone polymers has been examined together with various monomers. Coupling procedures have been developed which are relevant to our particular requirements. Enzymes of various types and characteristics have been immobilized with considerable efficiency. The immobilized biocatalysts have been shown to possess significant activity and retention of activity on storage. There appears to be a high degree of specificity associated with the properties of the immobilised biocatalysts, their activity and the ease of their preparation. Novel additives which lower the total radiation dose in grafting have been discovered and their value in immobilization processes assessed. Potential applications include: medical (diagnostic, therapeutic), and industrial processes (fermentation, bioseparation, etc.). Refs, figs and tabs

  8. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    Science.gov (United States)

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.

  9. Bioactivities of Traditional Medicinal Plants in Alexandria

    Directory of Open Access Journals (Sweden)

    Hosam O. Elansary

    2018-01-01

    Full Text Available In traditional folklore, medicinal herbs play a vital role in the prevention and treatment of microbial diseases. In the present study, the phenolic profiles of the medicinal plants Asparagus aethiopicus L., Citrullus colocynthis L., Senna alexandrina L., Kalanchoe delagoensis L., Gasteria pillansii L., Cymbopogon citratus, Brassica juncea, and Curcuma longa L. were determined by high-performance liquid chromatography with a diode-array detector method. The results revealed rich sources of important compounds such as robinin in the fruits and leaves of A. aethiopicus; caffeic acid in the tubers of A. aethiopicus and quercitrin in the leaves of G. pillansii. Further, relatively high antioxidant, antibacterial, and antifungal activities were observed in C. colocynthis fruit coat, S. alexandrina pods, and A. aethiopicus leaves, respectively. The relatively higher the bioactivities of plants extracts associated with the phenols in these plants, in particular, the more abundant the phenols. Therefore, it was concluded that the fruit coat of C. colocynthis, pods of S. alexandrina, and leaves of A. aethiopicus might be excellent sources of natural products. These plant extracts also have a wide spectrum of antimicrobial activities that could be used in the pharmaceutical industries and to control diseases.

  10. Bioactive Polymeric Nanoparticles for Periodontal Therapy.

    Science.gov (United States)

    Osorio, Raquel; Alfonso-Rodríguez, Camilo Andrés; Medina-Castillo, Antonio L; Alaminos, Miguel; Toledano, Manuel

    2016-01-01

    to design calcium and zinc-loaded bioactive and cytocompatible nanoparticles for the treatment of periodontal disease. PolymP-nActive nanoparticles were zinc or calcium loaded. Biomimetic calcium phosphate precipitation on polymeric particles was assessed after 7 days immersion in simulated body fluid, by scanning electron microscopy attached to an energy dispersive analysis system. Amorphous mineral deposition was probed by X-ray diffraction. Cell viability analysis was performed using oral mucosa fibroblasts by: 1) quantifying the liberated deoxyribonucleic acid from dead cells, 2) detecting the amount of lactate dehydrogenase enzyme released by cells with damaged membranes, and 3) by examining the cytoplasmic esterase function and cell membranes integrity with a fluorescence-based method using the Live/Dead commercial kit. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests. Precipitation of calcium and phosphate on the nanoparticles surfaces was observed in calcium-loaded nanoparticles. Non-loaded nanoparticles were found to be non-toxic in all the assays, calcium and zinc-loaded particles presented a dose dependent but very low cytotoxic effect. The ability of calcium-loaded nanoparticles to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity may offer new strategies for periodontal disease treatment.

  11. Beneficial Oral Biofilms as Smart Bioactive Interfaces

    Directory of Open Access Journals (Sweden)

    Beatrice Gutt

    2018-01-01

    Full Text Available Periodontitis is a very common health problem caused by formation of pathogenic bacterial biofilm that triggers inflammation resulting in either reversible gingivitis or irreversible periodontal hard and soft tissue damages, leading to loss of teeth when left untreated. Commensal bacteria play an important role in oral health in many aspects. Mainly by colonizing oral tissues, they (i contribute to maturation of immune response, and (ii foreclose attachment of pathobiont and, therefore, prevent from infection. The main goal of the study was to investigate if blocking of receptors on a commensal biofilm can prevent or reduce the attachment of pathogenic strains. To do so, biofilm produced by commensal Streptococcus sanguinis was treated with whole cell lysate of pathobionts Fusobacterium nucleatum or Porphyromonas gingivalis, followed by incubation with respective strain(s. The study revealed significant reduction in pathobiont adhesion to lysate-treated commensal biofilm. Therefore, adhesion of pathobionts onto the lysate-blocked biofilm was hindered; however, not completely eliminated supporting the idea that such approach in the oral cavity would benefit the production of a well-balanced and healthy bioactive interface.

  12. Bioactivities of Traditional Medicinal Plants in Alexandria

    Science.gov (United States)

    Szopa, Agnieszka; Kubica, Paweł; Ekiert, Halina; Elshikh, Mohamed S.; Abdel-Salam, Eslam M.; El-Ansary, Diaa O.

    2018-01-01

    In traditional folklore, medicinal herbs play a vital role in the prevention and treatment of microbial diseases. In the present study, the phenolic profiles of the medicinal plants Asparagus aethiopicus L., Citrullus colocynthis L., Senna alexandrina L., Kalanchoe delagoensis L., Gasteria pillansii L., Cymbopogon citratus, Brassica juncea, and Curcuma longa L. were determined by high-performance liquid chromatography with a diode-array detector method. The results revealed rich sources of important compounds such as robinin in the fruits and leaves of A. aethiopicus; caffeic acid in the tubers of A. aethiopicus and quercitrin in the leaves of G. pillansii. Further, relatively high antioxidant, antibacterial, and antifungal activities were observed in C. colocynthis fruit coat, S. alexandrina pods, and A. aethiopicus leaves, respectively. The relatively higher the bioactivities of plants extracts associated with the phenols in these plants, in particular, the more abundant the phenols. Therefore, it was concluded that the fruit coat of C. colocynthis, pods of S. alexandrina, and leaves of A. aethiopicus might be excellent sources of natural products. These plant extracts also have a wide spectrum of antimicrobial activities that could be used in the pharmaceutical industries and to control diseases. PMID:29636772

  13. Impact of high-intensity pulsed electric fields on bioactive compounds in Mediterranean plant-based foods.

    Science.gov (United States)

    Elez-Martínez, Pedro; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2009-05-01

    Novel non-thermal processing technologies such as high-intensity pulsed electric field (HIPEF) treatments may be applied to pasteurize plant-based liquid foods as an alternative to conventional heat treatments. In recent years, there has been an increasing interest in HIPEF as a way of preserving and extending the shelf-life of liquid products without the quality damage caused by heat treatments. However, less attention has been paid to the effects of HIPEF on minor constituents of these products, namely bioactive compounds. This review is a state-of-the-art update on the effects of HIPEF treatments on health-related compounds in plants of the Mediterranean diet such as fruit juices, and Spanish gazpacho. The relevance of HIPEF-processing parameters on retaining plant-based bioactive compounds will be discussed.

  14. Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer.

    Science.gov (United States)

    Araújo, M; Viveiros, R; Philippart, A; Miola, M; Doumett, S; Baldi, G; Perez, J; Boccaccini, A R; Aguiar-Ricardo, A; Verné, E

    2017-08-01

    In this work, hybrid melanin-coated bioactive glass-ceramic multifunctional scaffolds were developed and characterized in terms of mechanical strength, in vitro bioactivity in simulated body fluid (SBF) and ability to load ibuprofen. The coated scaffolds exhibited an accelerated bioactivity in comparison with the uncoated ones, being able of developing hydroxyapatite-like crystals after 7days soaking in simulated body fluid (SBF). Besides its positive influence on the scaffolds bioactivity, the melanin coating was able to enhance their mechanical properties, increasing the initial compressive strength by a factor of >2.5. Furthermore, ibuprofen was successfully loaded on this coating, allowing a controlled drug release of the anti-inflammatory agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Intent to Quit among Daily and Non-Daily College Student Smokers

    Science.gov (United States)

    Pinsker, E. A.; Berg, C. J.; Nehl, E. J.; Prokhorov, A. V.; Buchanan, T. S.; Ahluwalia, J. S.

    2013-01-01

    Given the high prevalence of young adult smoking, we examined (i) psychosocial factors and substance use among college students representing five smoking patterns and histories [non-smokers, quitters, native non-daily smokers (i.e. never daily smokers), converted non-daily smokers (i.e. former daily smokers) and daily smokers] and (ii) smoking…

  16. Characterization of the bioactive and mechanical behavior of dental ceramic/sol-gel derived bioactive glass mixtures.

    Science.gov (United States)

    Abbasi, Zahra; Bahrololoum, Mohammad E; Bagheri, Rafat; Shariat, Mohammad H

    2016-02-01

    Dental ceramics can be modified by bioactive glasses in order to develop apatite layer on their surface. One of the benefits of such modification is to prolong the lifetime of the fixed dental prosthesis by preventing the formation of secondary caries. Dental ceramic/sol-gel derived bioactive glass mixture is one of the options for this modification. In the current study, mixtures of dental ceramic/bioactive glass with different compositions were successfully produced. To evaluate their bioactive behavior, prepared samples were immersed in a simulated body fluid at various time intervals. The prepared and soaked specimens were characterized using Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. Since bioactive glasses have deleterious effects on the mechanical properties of dental ceramics, 3-point bending tests were used to evaluate the flexural strength, flexural strain, tangent modulus of elasticity and Weibull modulus of the specimens in order to find the optimal relationship between mechanical and bioactive properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Recreating Daily life in Pompeii

    Directory of Open Access Journals (Sweden)

    Nadia Magnenat-Thalmann

    2010-05-01

    Full Text Available We propose an integrated Mixed Reality methodology for recreating ancient daily life that features realistic simulations of animated virtual human actors (clothes, body, skin, face who augment real environments and re-enact staged storytelling dramas. We aim to go further from traditional concepts of static cultural artifacts or rigid geometrical and 2D textual augmentations and allow for 3D, interactive, augmented historical character-based event representations in a mobile and wearable setup. This is the main contribution of the described work as well as the proposed extensions to AR Enabling technologies: a VR/AR character simulation kernel framework with real-time, clothed virtual humans that are dynamically superimposed on live camera input, animated and acting based on a predefined, historically correct scenario. We demonstrate such a real-time case study on the actual site of ancient Pompeii.

  18. Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida Charoensuk

    2015-12-01

    Full Text Available Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES spectroscopy. This magnetic phase was introduced by adding Fe(NO33 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks.

  19. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  20. Global Daily Climatology Network: Kazakhstan subset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of in situ daily meteorological observations for Kazakhstan within the framework of joint efforts to create Global Daily Climatology...

  1. NOAA Daily Optimum Interpolation Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (or daily OISST) is an analysis constructed by combining observations from different platforms...

  2. Microbial quality and bioactive constituents of sweet peppers from sustainable production systems.

    Science.gov (United States)

    Marín, Alicia; Gil, María I; Flores, Pilar; Hellín, Pilar; Selma, María V

    2008-12-10

    Integrated, organic, and soil-less production systems are the principal production practices that have emerged to encourage more sustainable agricultural practices and safer edible plants, reducing inputs of plaguicides, pesticides, and fertilizers. Sweet peppers grown commercially under integrated, organic, and soil-less production systems were compared to study the influence of these sustainable production systems on the microbial quality and bioactive constituents (vitamin C, individual and total carotenoids, hydroxycinnamic acids, and flavonoids). The antioxidant composition of peppers was analyzed at green and red maturity stages and at three harvest times (initial, middle, and late season). Irrigation water, manure, and soil were shown to be potential transmission sources of pathogens to the produce. Coliform counts of soil-less peppers were up to 2.9 log units lower than those of organic and integrated peppers. Soil-less green and red peppers showed maximum vitamin C contents of 52 and 80 mg 100 g(-1) fresh weight (fw), respectively, similar to those grown in the organic production system. Moreover, the highest content of total carotenoids was found in the soil-less red peppers, which reached a maximum of 148 mg 100 g(-1) fw, while slightly lower contents were found in integrated and organic red peppers. Hydroxycinnamic acids and flavonoids represented 15 and 85% of the total phenolic content, respectively. Total phenolic content, which ranged from 1.2 to 4.1 mg 100 g(-1) fw, was significantly affected by the harvest time but not by the production system assayed. Soil-less peppers showed similar or even higher concentrations of bioactive compounds (vitamin C, provitamin A, total carotenoid, hydroxycinnamic acids, and flavonoids) than peppers grown under organic and integrated practices. Therefore, in the commercial conditions studied, soil-less culture was a more suitable alternative than organic or integrated practices, because it improved the microbial

  3. House dust bioactivities predict skin prick test reactivity for children with high risk of allergy.

    Science.gov (United States)

    Kim, Haejin; Tse, Kevin; Levin, Linda; Bernstein, David; Reponen, Tiina; LeMasters, Grace; Lummus, Zana; Horner, Anthony A

    2012-06-01

    Although evidence suggests that ambient exposures to endotoxin and other immunostimulants during early life influence allergic risk, efforts to understand this host-environment relationship have been hampered by a paucity of relevant assays. These investigations determined whether parameters of house dust extract (HDE) bioactivity were predictive of allergen skin prick test (SPT) reactivity for infants at high risk of allergy participating in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). We conducted a nested case-control study, selecting 99 CCAAPS children who had positive SPT results to at least 1 aeroallergen at age 3 years and 101 subjects with negative SPT results. HDEs were prepared from dust samples collected from the subjects' homes at age 1 year. Murine splenocytes and bone marrow-derived dendritic cells were incubated with HDEs, and supernatant cytokine concentrations were determined by means of ELISA. Alternatively, bone marrow-derived dendritic cells were preincubated with HDEs, and then LPS-induced IL-6 responses were assessed. HDE endotoxin levels were determined by using the limulus amebocyte lysate assay. HDEs derived from the homes of children with positive (cases) and negative (control subjects) SPT results had similar bioactivities. However, when cases were considered in isolation, HDEs with higher levels of bioactivity were significantly associated with children who had lower numbers of positive SPT results. Analogous statistical analyses did not identify any association between HDE endotoxin levels and the aeroallergen sensitization profiles of children included in this study. HDE immunostimulatory activities predicted the aeroallergen sensitization status of CCAAPS subjects better than HDE endotoxin levels. These results provide the first published evidence that HDE bioassays have clinical relevance in predicting atopic risk. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All

  4. Biotransformation and bioactivation reactions - 2016 literature highlights.

    Science.gov (United States)

    Khojasteh, S Cyrus; Rietjens, Ivonne M C M; Dalvie, Deepak; Miller, Grover

    2017-08-01

    We are pleased to present a second annual issue highlighting a previous year's literature on biotransformation and bioactivation. Each contributor to this issue worked independently to review the articles published in 2016 and proposed three to four articles, which he or she believed would be of interest to the broader research community. In each synopsis, the contributing author summarized the procedures, analyses and conclusions as described in the original manuscripts. In the commentary sections, our authors offer feedback and highlight aspects of the work that may not be apparent from an initial reading of the article. To be fair, one should still read the original article to gain a more complete understanding of the work conducted. Most of the articles included in this review were published in Drug Metabolism and Disposition or Chemical Research in Toxicology, but attempts were made to seek articles in 25 other journals. Importantly, these articles are not intended to represent a consensus of the best papers of the year, as we did not want to make any arbitrary standards for this purpose, but rather they were chosen by each author for their notable findings and descriptions of novel metabolic pathways or biotransformations. I am pleased that Drs. Rietjens and Dalvie have again contributed to this annual review. We would like to welcome Grover P Miller as an author for this year's issue, and we thank Tom Baillie for his contributions to last year's edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. Finally, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. This article is dedicated to Professor Thomas Baillie for his exceptional contributions to the field of drug metabolism.

  5. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests.The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.Our findings suggested a new bioactive

  6. A Review of Cyanobacterial Odorous and Bioactive Metabolites: Impacts and Management Alternatives in Aquaculture

    Science.gov (United States)

    2008-05-06

    Ben-Amotz, A., 1985. Lipid and lipopoly- saccharide constituents of cyanobacterium Spirulina platensis (Cyanophyceae, Nostocales). Mar. Ecol. Prog...only been confirmed in liver and brain cells (Fischer et al., 2005; Meier- Abt et al., 2007). Once inside cells, microcystins and nodularins inhibit... assay ) or PPIA (protein phosphatase inhibition assay ) but the actual toxin responsible was not confirmed (i.e., confirmation by LC-MS, MALDI, or HPLC is

  7. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica

    Energy Technology Data Exchange (ETDEWEB)

    Özarslan, Ali Can, E-mail: alicanozarslan@gmail.com; Yücel, Sevil, E-mail: syucel@yildiz.edu.tr

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. - Highlights: • Production of 3-D bioactive glass scaffolds from different silica sources • The effect of biosilica from rice hull ash on the bioactive glass scaffold • Sr additive impact on the bioactivity and biodegradability properties of scaffolds.

  8. Traceability of Functional Bioactive Compounds in Fresh and Pasteurized Milk Obtained from Goats Fed with Orange Pulp

    Directory of Open Access Journals (Sweden)

    Maria Simona Chiş

    2015-11-01

    Full Text Available Traceability is the ability to identify and trace the history, distribution, location, and application of products, parts, and materials. A traceability system records and follows the trail as products, parts, and materials come from suppliers and are processed and ultimately distributed as end products (Prache et al, 2002. In this work, were studied the bioactive compounds (total vitamin C, ascorbic acid, total phenols, flavonoids, carotenoids, vitamin A and vitamin E and antioxidant activity of goat fresh milk and pasteurized one. The goats were fed with a standard diet (control diet and then with a diet that incorporates orange pulp. The control diet (CD corresponded with a standard ration (a ration wich provide the energetic and proteic values, daily food for milking animals. From that ration, the Department of Animal Science, from Politechnic University of Valencia replaced the different proportions of the ingredients for incorporating orange pulp diet (OPD. The results of the present study show that the citrus pulp silage mixture used can be fed to goats without any negative effects on the performance of the animals. Results of this study indicate that citrus pulp silage can replace part of the conventional ration of goats, thus lowering the cost of production. The first aim of this study was to compare the two types of goat diets: a standard diet and a diet with orange pulp, by analyzing the bioactive compounds in fresh and pasteurized milk. The results demonstrate that all the bioactive compounds are bigger in the orange pulp diet than in the control diet. The second objective of this study was to analyze the bioavailability and traceability of bioactive compounds in fresh milk. 

  9. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.-M. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, L.; Kantiranis, N. [Department of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lazaridis, N.K. [Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K.; Chatzistavrou, X. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M., E-mail: kpar@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  10. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    International Nuclear Information System (INIS)

    Goudouri, O.-M.; Kontonasaki, E.; Papadopoulou, L.; Kantiranis, N.; Lazaridis, N.K.; Chrissafis, K.; Chatzistavrou, X.; Koidis, P.; Paraskevopoulos, K.M.

    2014-01-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  11. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis

    Science.gov (United States)

    Karunaratne, D. Nedra

    2016-01-01

    This review discusses the antidiabetic activities of Scoparia dulcis as well as its antioxidant and anti-inflammatory properties in relation to the diabetes and its complications. Ethnomedical applications of the herb have been identified as treatment for jaundice, stomach problems, skin disease, fever, and kidney stones, reproductory issues, and piles. Evidence has been demonstrated through scientific studies as to the antidiabetic effects of crude extracts of S. dulcis as well as its bioactive constituents. The primary mechanisms of action of antidiabetic activity of the plant and its bioactive constituents are through α-glucosidase inhibition, curbing of PPAR-γ and increased secretion of insulin. Scoparic acid A, scoparic acid D, scutellarein, apigenin, luteolin, coixol, and glutinol are some of the compounds which have been identified as responsible for these mechanisms of action. S. dulcis has also been shown to exhibit analgesic, antimalarial, hepatoprotective, sedative, hypnotic, antiulcer, antisickling, and antimicrobial activities. Given this evidence, it may be concluded that S. dulcis could be promoted among the masses as an alternative and complementary therapy for diabetes, provided further scientific studies on the toxicological and pharmacological aspects are carried out through either in vivo or clinical means. PMID:27594892

  12. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit.

    Science.gov (United States)

    Liu, Changhong; Liu, Wei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2015-04-15

    Tomato is an important health-stimulating fruit because of the antioxidant properties of its main bioactive compounds, dominantly lycopene and phenolic compounds. Nowadays, product differentiation in the fruit market requires an accurate evaluation of these value-added compounds. An experiment was conducted to simultaneously and non-destructively measure lycopene and phenolic compounds content in intact tomatoes using multispectral imaging combined with chemometric methods. Partial least squares (PLS), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) were applied to develop quantitative models. Compared with PLS and LS-SVM, BPNN model considerably improved the performance with coefficient of determination in prediction (RP(2))=0.938 and 0.965, residual predictive deviation (RPD)=4.590 and 9.335 for lycopene and total phenolics content prediction, respectively. It is concluded that multispectral imaging is an attractive alternative to the standard methods for determination of bioactive compounds content in intact tomatoes, providing a useful platform for infield fruit sorting/grading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis

    Directory of Open Access Journals (Sweden)

    Geethi Pamunuwa

    2016-01-01

    Full Text Available This review discusses the antidiabetic activities of Scoparia dulcis as well as its antioxidant and anti-inflammatory properties in relation to the diabetes and its complications. Ethnomedical applications of the herb have been identified as treatment for jaundice, stomach problems, skin disease, fever, and kidney stones, reproductory issues, and piles. Evidence has been demonstrated through scientific studies as to the antidiabetic effects of crude extracts of S. dulcis as well as its bioactive constituents. The primary mechanisms of action of antidiabetic activity of the plant and its bioactive constituents are through α-glucosidase inhibition, curbing of PPAR-γ and increased secretion of insulin. Scoparic acid A, scoparic acid D, scutellarein, apigenin, luteolin, coixol, and glutinol are some of the compounds which have been identified as responsible for these mechanisms of action. S. dulcis has also been shown to exhibit analgesic, antimalarial, hepatoprotective, sedative, hypnotic, antiulcer, antisickling, and antimicrobial activities. Given this evidence, it may be concluded that S. dulcis could be promoted among the masses as an alternative and complementary therapy for diabetes, provided further scientific studies on the toxicological and pharmacological aspects are carried out through either in vivo or clinical means.

  14. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol into human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Max Kurlbaum

    Full Text Available Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl-γ-valerolactone (M1, that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated.

  15. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis.

    Science.gov (United States)

    Pamunuwa, Geethi; Karunaratne, D Nedra; Waisundara, Viduranga Y

    2016-01-01

    This review discusses the antidiabetic activities of Scoparia dulcis as well as its antioxidant and anti-inflammatory properties in relation to the diabetes and its complications. Ethnomedical applications of the herb have been identified as treatment for jaundice, stomach problems, skin disease, fever, and kidney stones, reproductory issues, and piles. Evidence has been demonstrated through scientific studies as to the antidiabetic effects of crude extracts of S. dulcis as well as its bioactive constituents. The primary mechanisms of action of antidiabetic activity of the plant and its bioactive constituents are through α-glucosidase inhibition, curbing of PPAR-γ and increased secretion of insulin. Scoparic acid A, scoparic acid D, scutellarein, apigenin, luteolin, coixol, and glutinol are some of the compounds which have been identified as responsible for these mechanisms of action. S. dulcis has also been shown to exhibit analgesic, antimalarial, hepatoprotective, sedative, hypnotic, antiulcer, antisickling, and antimicrobial activities. Given this evidence, it may be concluded that S. dulcis could be promoted among the masses as an alternative and complementary therapy for diabetes, provided further scientific studies on the toxicological and pharmacological aspects are carried out through either in vivo or clinical means.

  16. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Ana Maria Athayde Uchôa-thomaz

    2014-09-01

    Full Text Available This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.. The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g, protein (11.19 g/100g, iron (13.8 mg/100g, zinc (3.31 mg/100g, and reduced calorie content (182 kcal/100g. Their lipid profile showed a predominance of unsaturated fatty acids (87.06%, especially linoleic acid (n6 and oleic acid (n9. The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g, total carotenoids (1.25 mg/100 g and insoluble dietary fiber (63.55 g/100g. With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste.

  17. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Madamanchi Geethangili

    2011-01-01

    Full Text Available Antrodia camphorata is a unique mushroom of Taiwan, which has been used as a traditional medicine for protection of diverse health-related conditions. In an effort to translate this Eastern medicine into Western-accepted therapy, a great deal of work has been carried out on A. camphorata. This review discusses the biological activities of the crude extracts and the main bioactive compounds of A. camphorata. The list of bioactivities of crude extracts is huge, ranging from anti-cancer to vasorelaxation and others. Over 78 compounds consisting of terpenoids, benzenoids, lignans, benzoquinone derivatives, succinic and maleic derivatives, in addition to polysaccharides have been identified. Many of these compounds were evaluated for biological activity. Many activities of crude extracts and pure compounds of A. camphorata against some major diseases of our time, and thus, a current review is of great importance. It is concluded that A. camphorata can be considered as an efficient alternative phytotherapeutic agent or a synergizer in the treatment of cancer and other immune-related diseases. However, clinical trails of human on A. camphorata extracts are limited and those of pure compounds are absent. The next step is to produce some medicines from A. camphorata, however, the production may be hampered by problems related to mass production.

  18. [Cytocompatibility of two porous bioactive glass-ceramic in vitro].

    Science.gov (United States)

    Zhang, Yan; Jiang, Xinquan; Zhang, Xiuli; Wang, Deping; Zhen, Lei

    2013-06-01

    To compare the cytocompatibility of two kinds porous bioactive glass-ceramic made by same raw materials. Apatite/wollastonite bioactive glass-ceramic (4006) were prepared by sol-gel method, and bioactive glass (45S5) were prepared by melting method. Bone marrow stromal cells (BMSCs) were cultivated, differentiated and proliferated into osteoblasts, from a rabbit's marrow in the differentiatiofn culture medium with active function. The viability of BMSCs cultivated with extraction of these two kinds of biomaterial, which could represent the cytotoxicity effect of 4006 and 45S5 against BMSCs, was evaluated by the MTp assay. BMSCs were seeded and cocultivated with two kinds of biomaterial scaffolds respectively in vitro. The proliferation and biological properties of cells adhered to scaffolds were observed by inverted phase contrast microscope, scanning electron microscope (SEM), and environmental scanning electron microscope (ESEM), and a suitable cell amount for seeding on the scaffold was searched. There was no difference on the viability of BMSCs only cultured for one day by complete extract of 4006 and culture medium (P>0.05), but there was significant difference between them when the cells had been cultured for 3 days(Pglass-ceramic has good bioactivity and cytocompatibility. Therefore, it may have the potential to be a new cell vehicle for bone tissue engineering. And the suitable seeding cell amount of apatite/wollastonite bioactive glass-ceramic should be 2x10(7) cells.mL-1 or even more than that.

  19. Immense essence of excellence: marine microbial bioactive compounds.

    Science.gov (United States)

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-10-15

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  20. Plant proteases for bioactive peptides release: A review.

    Science.gov (United States)

    Mazorra-Manzano, M A; Ramírez-Suarez, J C; Yada, R Y

    2017-04-10

    Proteins are a potential source of health-promoting biomolecules with medical, nutraceutical, and food applications. Nowadays, bioactive peptides production, its isolation, characterization, and strategies for its delivery to target sites are a matter of intensive research. In vitro and in vivo studies regarding the bioactivity of peptides has generated strong evidence of their health benefits. Dairy proteins are considered the richest source of bioactive peptides, however proteins from animal and vegetable origin also have been shown to be important sources. Enzymatic hydrolysis has been the process most commonly used for bioactive peptide production. Most commercial enzymatic preparations frequently used are from animal (e.g., trypsin and pepsin) and microbial (e.g., Alcalase® and Neutrase®) sources. Although the use of plant proteases is still relatively limited to papain and bromelain from papaya and pineapple, respectively, the application of new plant proteases is increasing. This review presents the latest knowledge in the use and diversity of plant proteases for bioactive peptides release from food proteins including both available commercial plant proteases as well as new potential plant sources. Furthermore, the properties of peptides released by plant proteases and health benefits associated in the control of disorders such as hypertension, diabetes, obesity, and cancer are reviewed.

  1. Sodium Is Not Essential for High Bioactivity of Glasses

    Science.gov (United States)

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S.; Wilson, Rory M.; Law, Robert V.; Hill, Robert G.; Karpukhina, Natalia

    2017-01-01

    This study aims to demonstrate that excellent bioactivity of glass can be achieved without the presence of an alkali metal component in glass composition. In vitro bioactivity of two sodium-free glasses based on the quaternary system SiO2-P2O5-CaO-CaF2 with 0 and 4.5 mol% CaF2 content was investigated and compared with the sodium containing glasses with equivalent amount of CaF2. The formation of apatite after immersion in Tris buffer was followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 31P and 19F solid state MAS-NMR. The dissolution study was completed by ion release measurements in Tris buffer. The results show that sodium free bioactive glasses formed apatite at 3 hours of immersion in Tris buffer, which is as fast as the corresponding sodium containing composition. This signifies that sodium is not an essential component in bioactive glasses and it is possible to make equally degradable bioactive glasses with or without sodium. The results presented here also emphasize the central role of the glass compositions design which is based on understanding of structural role of components and/or predicting the network connectivity of glasses. PMID:29271977

  2. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  3. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    Directory of Open Access Journals (Sweden)

    Nora Khaldi

    2012-10-01

    Full Text Available ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational biology, and efficient genome mining, is appearing as the long awaited solution to this problem. By quickly mining food genomes for characteristics of certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics in mining for food bioactives.The absence of food specific bioinformatic mining tools, the slow integration of both experimental mining and bioinformatics, and the important difference between different experimental platforms are some of the reasons for the slow progress of bioinformatics in the field of functional food and more specifically in bioactive peptide discovery.In this paper I discuss some methods that could be easily translated, using a rational peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an integrated food peptide database. I also discuss how to better integrate experimental work with bioinformatics in order to improve the mining of food for bioactive peptides, therefore achieving a higher success rates.

  4. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ira Bhatnagar

    2010-10-01

    Full Text Available Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  5. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H 2 SO 4 and CaCl 2 . Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H 2 SO 4 and CaCl 2 ; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Littoral lichens as a novel source of potentially bioactive Actinobacteria.

    Science.gov (United States)

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T

    2015-10-30

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.

  7. Alternative Fuel News, Vol. 3 No. 3

    Energy Technology Data Exchange (ETDEWEB)

    Clean Cities Program at DOE

    1999-10-29

    The alternative fuel industry is heating up. It is a very exciting time to be in the energy business, especially when it comes to transportation. Celebrating of the milestone 75th Clean Cities coalition and kick off of the new Federal Alternative Fuel Vehicle (AFV) USER Program is occurring in cities across the country. Clean Energy for the 21st Century and the events that are happening during Energy Awareness Month are covered in this issue. Spotlighted are niche markets; several airports across the country are successfully incorporating alternative fuels into their daily routines.

  8. Alternative Fuel Guidelines for Alternative Transportation Systems.

    Science.gov (United States)

    2011-01-31

    The Volpe Center documented the increased use of alternative fuels on vehicles owned and operated by federal land management agencies. For each alternative fuel type, the Volpe Center documented the availability of vehicles, fueling mechanisms and pr...

  9. The Influence of Na and Ti on the In Vitro Degradation and Bioactivity in 58S Sol-Gel Bioactive Glass

    Directory of Open Access Journals (Sweden)

    Shirong Ni

    2012-01-01

    Full Text Available The aim of this study was to investigate the effect of Na and Ti on the in vitro degradation and bioactivity in the 58S bioactive glass. The degradation was evaluated through the activation energy of Si ion release from bioactive glasses and the weight loss of bioactive glasses in Tris-HCl buffer solution. The in vitro bioactivity of the bioactive glasses was investigated by analysis of apatite-formation ability in the simulated body fluid (SBF. The results showed that Na in the 58S glass accelerated the dissolution rate of the glass, whereas Ti in the 58S glass slowed down the rate of glass solubility. Bioactivity tests showed that Na in glass increased the apatite-forming ability in SBF. In contrast, Ti in glass retards the apatite formation at the initial stage of SBF soaking but does not affect the growth of apatite after long periods of soaking.

  10. Megalanthine, a bioactive sesquiterpenoid from Heliotropium megalanthum, its degradation products and their bioactivities.

    Science.gov (United States)

    Macías, Francisco A; Simonet, Ana M; D'Abrosca, Brigida; Maya, Claudia C; Reina, Matías; González-Coloma, Azucena; Cabrera, Raimundo; Giménez, Cristina; Villarroel, Luis

    2009-01-01

    The new bioactive sesquiterpenoid (3R,6E)-2,6,10-trimethyl-3-(3-p-hydroxyphenylpropanoyloxy)-dodeca-6,11-diene-2,10-diol, named megalanthine, was isolated from the resinous exudates of Heliotropium megalanthum. The degradation products of this compound were identified. Several plant-defensive properties (insecticidal, antifungal, and phytotoxic) were evaluated after obtaining positive results in a preliminary etiolated wheat coleoptile bioassay. This bioassay showed the need to have both the phenolic and sesquiterpene moieties of the natural product present to achieve a biological effect. This result was confirmed in phytotoxicity bioassays. Megalanthine was ruled out as a significant plant-plant defense agent because of its lack of stability. The positive results recorded in the antifungal and antifeedant tests suggest, however, that this chemical is relevant in several ecological interactions involving H. megalanthum.

  11. Silicon Utilizing Microbial Bioactivities in the Biosphere

    Science.gov (United States)

    Sen, M. M.; Das, S.

    2012-12-01

    potential as a source of biomass for the production of biofuels, due to their high growth rates and high cellular lipid content. Petroleum pollutant degradation can also be done by these organisms-Achanthes minutissima has degradable effects involving petroleum hydocarbons. Stephanopyxis turris a silicon utilizing organism releases a blend of chlorinated C8 hydrocarbons. This adds a fundamentally new pathway to the limited set of halogenating enzymatic activities known from nature. Many silicon utilizing organisms can produce PUFA from saturated fatty acids which ultimately produce many important bioactive chemicals like hormosirene, finaverrene, heptadienal, dietyopterene, cystophorene, decadienal. Trienoic acid, octadiene and many other important agents. Similarly terpenoid biosynthetic pathway is activated by them with formation of diterpenoids, sesterpenoids, triterpenoids and sterols.

  12. Daily mineral intakes for Japanese

    International Nuclear Information System (INIS)

    Shiraishi, Kunio

    1990-01-01

    Recently it became necessary to assess the dietary intake of both stable and radioactive elements for non-radiation workers. But data of mineral intake in the literature are not good enough for this assessment. ICRP Pub. 23 in 'Reference Man' is one of the best references in this field. ICRP Reference Man was selected as the standard for Caucasian by using values reported during early 1970s or before. Moreover it seems not to be suitable for Japanese (Mongolian). In this report, analytical methods of minerals in total diet samples for Japanese were described. Furthermore, daily intakes for Japanese (Reference Japanese Man) and ICRP Reference Man were compared. After collected by a duplicate portion study and a model diet study, diet samples were dry-ashed followed by wet-digestion with a mixture of HNO 3 and HClO 4 . Diet sample solutions thus prepared were analysed by using atomic absorption spectrometry (AAS), inductively-coupled plasma atomic-emission spectrometry (ICP-AES), and inductively-coupled plasma mass spectrometry (ICP-MS). Matrix effects of major elements (Na, K, P, Ca and Mg) in diet samples were compensated by a matrix-matching method. About 20 elements were simultaneously determined by ICP-AES and ICP-MS, more easily than by AAS. Most of dietary mineral intakes, except for Na, Mn, and Sr, for Japanese were lower than those of ICRP Reference Man. But, dietary intakes were found to be different depending on countries, even among European and American countries. New representative data for as many elements as possible are necessary now. (author)

  13. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  14. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    International Nuclear Information System (INIS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-01-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity. (letter)

  15. Marine-Derived Bioactive Peptides with Pharmacological Activities- A Review

    Directory of Open Access Journals (Sweden)

    Sana Rabiei

    2017-10-01

    Full Text Available Some nutritional factors are related to chronic disease. In response to increased concern regarding nutrition and health, the functional and nutraceuticals food markets have been developed. During food digestion, proteins are hydrolyzed and a wide range of peptides are formed. Some of these peptides have special structures which permit them to confer particular biological functions. Marine animals which involve more than half of the world biological varieties are a wide source of bioactive proteins and peptides. Marine derived peptides show various physiologic functions such as anti-oxidant, antimicrobial, anti-cancer, Angiotensin1-Converting Enzyme (ACE glucosidase and a-amylase inhibitory effects in vitro. Before application of marine bioactive peptides as nutraceuticals or functional food ingredients, their efficacy should be approved through pre-clinical animal and then clinical studies. The aim of this study was to review the studies conducted on the pharmacological effect of marine bioactive peptides in animal models and humans.

  16. Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.

    Science.gov (United States)

    El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A

    2008-07-01

    In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time.

  17. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    Directory of Open Access Journals (Sweden)

    Sona Skrovankova

    2015-10-01

    Full Text Available Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry, and Ericaceae (blueberry, cranberry, belong to the best dietary sources of bioactive compounds (BAC. They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  18. In vitro bioactivity of glass-ceramic/fibroin composites

    Directory of Open Access Journals (Sweden)

    Lachezar Radev

    2017-06-01

    Full Text Available Bioactive composite materials were prepared by mixing 20 wt.% of silk fibroin (SF and 80 wt.% of glassceramics from CaO-SiO2-P2O5-MgO system. In vitro bioactivity of the prepared composites was evaluated in 1.5 simulated body fluid (1.5 SBF in static conditions. The obtained samples before and after in vitro tests were characterized by X-ray diffraction (XRD analysis, Fourier transform infrared spectroscopy (FTIR, and X-ray photoelectron spectroscopy (XPS. The changes in 1.5 SBF solutions after soaking the samples were evaluated by inductively coupled plasma atomic emission spectroscopy (ICP-AES. MG63 osteosarcoma cells were used for the biological experiments. The obtained experimental data proved that the synthesized composites exhibit excellent in vitro bioactivity.

  19. Bioactive secondary metabolites from marine microbes for drug discovery.

    Science.gov (United States)

    Nikapitiya, Chamilani

    2012-01-01

    The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Bioactive glass 45S5 from diatom biosilica

    Directory of Open Access Journals (Sweden)

    Luqman A. Adams

    2017-12-01

    Full Text Available A major draw-back to large scale production of bioactive glasses is the high cost of the standard silica precursor, usually tetraethyl orthosilicate (TEOS. The current study describes a novel sol–gel preparation of 45S5 bioactive glass using diatom biosilica from cultured cells of the diatom, Aulacoseira granulata as substitute to TEOS. The glass formed was characterized using mechanical tester, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDX, X-ray diffraction (XRD and Fourier transform infrared (FTIR spectroscopy. Results showed that the glass possessed a compressive strength of 3.75 ± 0.18 and formed carbonated hydroxyapatite (HCA within 7 days in simulated body fluid (SBF, attributable to good surface chemistry. The performance of the glass was compared with that of those formed using TEOS. Diatom biosilica could be a potential economically friendly starting material for large scale fabrication of bioactive glasses.

  1. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Wen-Hua Ling

    2012-07-01

    Full Text Available Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC of lipophilic and hydrophilic components in wastes (peel and seed of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP, trolox equivalent antioxidant capacity (TEAC and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.

  2. Considering bioactivity in modelling continental growth and the Earth's evolution

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2013-09-01

    The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater vailability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller

  3. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Hesaraki, S., E-mail: S-hesaraki@merc.ac.ir

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~ 32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. - Highlights: • Light cure cement based on SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass and polymer-like matrix was formed. • The matrix includes poly(acrylic/maleic acid) and poly(hydroxyethyl methacrylate). • The cement is as strong as polymethylmethacrylate bone cement. • The cement exhibits apatite formation ability in simulated body fluid. • The cement is biodegradable and supports proliferation of osteoblastic cells.

  4. Bioactive compounds and antioxidant potential for polyphenol-rich cocoa extract obtained by agroindustrial residue.

    Science.gov (United States)

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Pinheiro Arruda, Mara Silvia; Carréra Silva Júnior, José Otávio; Converti, Attilio; Ribeiro Costa, Roseane Maria

    2017-11-10

    Processing of cocoa (Theobroma cacao L.) beans responsible for agricultural exports leads to large amounts of solid waste that were discarded, however, this one presents high contents of metabolites with biological activities. The major objective of this study was to valorise cocoa agroindustrial residue obtained by hydraulic pressing for extract rich in antioxidants. For it, the centesimal composition of residue was investigated, the green extraction was carried out from the residue after, the bioactive compounds, sugar contents and screaming by HPTLC were quantified for extract. The extract has a total polyphenol content of 229.64 mg/g and high antioxidant activity according to ABTS 225.0 μM/g. HTPLC analysis confirmed the presence in the extract, residue of terpenes, sesquiterpenes, flavonoids and antioxidant activity. These results, as a whole, suggest that the extract from the cocoa residue has interesting characteristics to alternative crops with potential industrial uses.

  5. Marine Polysaccharides: A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anne-Marie Fischer

    2011-09-01

    Full Text Available The therapeutic potential of natural bioactive compounds such as polysaccharides, especially glycosaminoglycans, is now well documented, and this activity combined with natural biodiversity will allow the development of a new generation of therapeutics. Advances in our understanding of the biosynthesis, structure and function of complex glycans from mammalian origin have shown the crucial role of this class of molecules to modulate disease processes and the importance of a deeper knowledge of structure-activity relationships. Marine environment offers a tremendous biodiversity and original polysaccharides have been discovered presenting a great chemical diversity that is largely species specific. The study of the biological properties of the polysaccharides from marine eukaryotes and marine prokaryotes revealed that the polysaccharides from the marine environment could provide a valid alternative to traditional polysaccharides such as glycosaminoglycans. Marine polysaccharides present a real potential for natural product drug discovery and for the delivery of new marine derived products for therapeutic applications.

  6. Analysis of bioactive glasses obtained by sol-gel processing for radioactive implants

    Directory of Open Access Journals (Sweden)

    Roberto Wanderley dos Santos

    2003-01-01

    Full Text Available This paper presents the chemical and physical characterizations of SiO2 and SiO2-CaO bioactive glasses incorporated with samarium atoms, produced by sol-gel synthesis. The objective is to provide biocompatible and biodegradable radioactive seeds as an alternative to be used in Brachytherapy for the treatment of prostate cancer. The glasses were produced and analyzed by X-ray fluorescence spectroscopy (XRF, energy dispersive X-ray spectroscopy (EDS, scanning electron microscopy (SEM, He picnometry and nitrogen adsorption analysis. A theoretical evaluation of the specific activity of the samples upon neutron activation is proposed. The XRF and EDS results demonstrate the incorporation of samarium atoms in the glass matrix. The experimental data coupled with the theoretical studies in neutron activation suggest that it is possible to obtain radioactive seeds with activities equivalent to 125I seeds used in brachytherapy prostatic.

  7. Quantum-chemical study on the bioactive conformation of epothilones.

    Science.gov (United States)

    Jiménez, Verónica A

    2010-12-27

    Herein, I report a DFT study on the bioactive conformation of epothilone A based on the analysis of 92 stable conformations of free and bound epothilone to a reduced model of tubulin receptor. The equilibrium structures and relative energies were studied using B3LYP and X3LYP functionals and the 6-31G(d) standard basis set, which was considered appropriate for the size of the systems under study. Calculated relative energies of free and bound epothilones led me to propose a new model for the bioactive conformation of epothilone A, which accounts for several structure-activity data.

  8. Food-derived bioactive peptides on inflammation and oxidative stress.

    Science.gov (United States)

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  9. Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols

    NARCIS (Netherlands)

    Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Quinones, M.; Bravo, F.I.; Arola-Arnal, A.; Muguerza, B.

    2017-01-01

    SCOPE: Studying the flavanol metabolism is essential to identify bioactive compounds, as beneficial effects of flavanols have been attributed to their metabolic products. However, host-related factors, including pathological conditions, may affect flavanol metabolism and, thus, their bioactivity.

  10. Effects of bioactive constituents in functional cocoa products on cardiovascular health in humans.

    Science.gov (United States)

    Sarriá, Beatriz; Martínez-López, Sara; Sierra-Cinos, José Luis; Garcia-Diz, Luis; Goya, Luis; Mateos, Raquel; Bravo, Laura

    2015-05-01

    Cocoa manufacturers are producing novel products increasing polyphenols, methylxanthines or dietary fibre to improve purported health benefits. We attempt to explain the contribution of cocoa bioactive compounds to cardiovascular effects observed in previous studies, placing particular emphasis on methylxanthines. We focused on a soluble cocoa product rich in dietary fibre (DFCP) and a product rich in polyphenols (PPCP). Effects of regularly consuming DFCP (providing daily 10.17 g, 43.8 mg and 168.6 mg of total-dietary-fibre, flavanols and methylxanthines, respectively) as well as PPCP (providing daily 3.74 g, 45.3 mg and 109.8 mg of total-dietary-fibre, flavanols and methylxanthines, respectively) on cardiovascular health were assessed in two controlled, cross-over studies in free-living normocholesterolemic and moderately hypercholesterolemic subjects. Both products increased HDL-cholesterol concentrations, whereas only DFCP decreased glucose and IL-1β levels in all subjects. Flavanols appeared to be responsible for the increase in HDL-cholesterol, whereas insoluble-dietary-fibre and theobromine in DFCP were associated with the hypoglycemic and anti-inflammatory effects observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies

    Science.gov (United States)

    Wu, Xiaomian; Liu, Xiaochen; Wei, Jie; Ma, Jian; Deng, Feng; Wei, Shicheng

    2012-01-01

    Background Compared with titanium (Ti) and other metal implant materials, poly(ether-ether ketone) (PEEK) shows outstanding biomechanical properties. A number of studies have also reported attractive bioactivity for nano-TiO2 (n-TiO2). Methods In this study, n-TiO2/PEEK nanocomposites were prepared, taking advantage of the unique properties of both PEEK polymer and n-TiO2. The in vitro and in vivo bioactivity of these nanocomposites was assessed against a PEEK polymer control. The effect of surface morphology or roughness on the bioactivity of the n-TiO2/PEEK nanocomposites was also studied. n-TiO2/PEEK was successfully fabricated and cut into disks for physical and chemical characterization and in vitro studies, and prepared as cylindrical implants for in vivo studies. Their presence on the surface and dispersion in the composites was observed and analyzed by scanning and transmission electron microscopy and X-ray photoelectron spectroscopy. Results Bioactivity evaluation of the nanocomposites revealed that pseudopods of osteoblasts preferred to anchor at areas where n-TiO2 was present on the surface. In a cell attachment test, smooth PEEK showed the lowest optical density value (0.56 ± 0.07) while rough n-TiO2/PEEK exhibited the highest optical density value (1.21 ± 0.34, P PEEK was approximately twice as large as that of PEEK (P PEEK, especially if it has a rough composite surface. A n-TiO2/PEEK composite with a rough surface could be a novel alternative implant material for orthopedic and dental applications. PMID:22419869

  12. Twice-daily versus once-daily applications of pimecrolimus cream 1% for the prevention of disease relapse in pediatric patients with atopic dermatitis.

    Science.gov (United States)

    Ruer-Mulard, Mireille; Aberer, Werner; Gunstone, Anthony; Kekki, Outi-Maria; López Estebaranz, Jose Luis; Vertruyen, André; Guettner, Achim; Hultsch, Thomas

    2009-01-01

    The aim of this study is to compare twice-daily and once-daily applications of pimecrolimus cream 1% for prevention of atopic dermatitis relapses in pediatric patients. This multicenter trial enrolled 300 outpatients aged 2 to 17 years, with mild-to-severe atopic dermatitis. The patients were initially treated with twice-daily topical pimecrolimus until complete clearance or for up to 6 weeks (open-label period). Those who achieved a decrease of at least 1 point in the Investigator's Global Assessment score were then randomized to double-blind treatment with pimecrolimus cream 1% either twice daily or once daily for up to 16 weeks. Study medication was discontinued during periods of disease remission (Investigator's Global Assessment = 0). The primary efficacy end point of the double-blind phase was disease relapse (worsening requiring topical corticosteroids or additional/alternative therapy and confirmed by Investigator's Global Assessment score > or = 3 and pruritus score > or = 2). Of the 300 patients enrolled in the study, 268 were randomized to treatment with pimecrolimus cream 1% either twice daily or once daily (n = 134 in each group). The relapse rate was lower in the twice-daily dose group (9.9%) than that in the once-daily dose group (14.7%), but analysis of the time to disease relapse, using a Cox proportional model to adjust for confounding variables, did not show a statistically significant difference between treatment arms (hazard ratio: 0.64; 95% CI: 0.31-1.30). Treatment of active atopic dermatitis lesions with pimecrolimus cream 1% twice daily, followed by the once-daily dosing regimen, was sufficient to prevent subsequent atopic dermatitis relapses over 16 weeks in pediatric patients.

  13. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  14. Bioactivity of Neem (Azadirachta indica) callus extract

    International Nuclear Information System (INIS)

    Ahmed, I.M.

    2008-04-01

    This study was conducted in order to explore the possibility of utilizing plant tissue culture techniques for production of secondary metabolites from callus culture of Azadirachta indica (Neem) and to investigate the bioactivity of the established callus extract in comparison with the extract from the intact leaves. The presence of secondary metabolites in the extracts was detected by Thin Layer Chromatography (TLC). Both the callus and leaf extracts eluted five fraction of compounds and it were observed that callus extract had a good resolution. various extract concentration (5.10. and 20 mg/ml) were determined for the rate and extent of inhibition kinetics against staphylococcus aureus. Escherichia coli, and candida albicans. Results showed that callus extract of A. indica wiped out all viable cells of C. albicans within 18 hours and the subsequent concentration 5 and 10 mg/ m1 retard the growth after 24 h. A higher concentration of 20 mg/ ml had the same effect on S. aureus after 6 h and the E. coli cells were completely inhibited by the extracts after 24 h. Similar kinetics were showed by leaf extract but in slight rate as compared to the callus extract. In general both extract posses antimicrobial activity with notable efficient rates. For assaying of the inhibitory effect on some phyto pathogens the effect of different concentrations of the callus and leaf extracts on the radial growth of Drechslera rostrata. Fusarium oxysporum and Alterneria alternata were in vitro assessed. Obvious inhibitory effect was observed on the mycelia radial growth of the three treated fungi. The level of inhibition increased with the increase of te extract concentration. The maximum inhibitory effect (84%) was recorded with Drechslera rostrata when inoculated in media contain 20 mg/ ml of callus while the inhibition rate of mycelia growth of the same species reaches 61% when inoculated in a medium contain the same concentration of the neem leaf extract. The subsequent

  15. Daily Water Requirements when Wearing Body Armor

    National Research Council Canada - National Science Library

    Montain, Scott

    2000-01-01

    .... This report presents the results of model simulations predicting the individual daily water requirements under a broad range of energy expenditures and weather conditions when wearing battle dress...

  16. Daily Public Assistance Grants Award Activity

    Data.gov (United States)

    Department of Homeland Security — Daily activity of Public Assistance Grant Awards, including FEMA Region, State, Disaster Declaration Number, Event description, Mission Assigned agency, Assistance...

  17. Daily Medicine Record for Your Child

    Science.gov (United States)

    ... Age: ____ 2 years old___ Weight: ___ 30 pounds ___ Daily Medicine Record Child’s name: ___________________ Today’s date: _________________ Age: ____________ Weight: ________________ (pounds) Time Problem ...

  18. Bioactive components of Gynura divaricata and its potential use in ...

    African Journals Online (AJOL)

    Bioactive components of Gynura divaricata and its potential use in health, food and medicine:a mini-review. Bing-Qing Xu, Yu-Qing Zhang. Abstract. Background: G. divaricata (L.) DC belongs to genus the Gynura Cass which is a kind of perennial herb that has good health protection efficacy and is especially used widely in ...

  19. A novel graded bioactive high adhesion implant coating

    International Nuclear Information System (INIS)

    Brohede, Ulrika; Zhao, Shuxi; Lindberg, Fredrik; Mihranyan, Albert; Forsgren, Johan; Stromme, Maria; Engqvist, Hakan

    2009-01-01

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 deg. C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 deg. C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  20. Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-fan; Akram, Muhammad; Alshemary, Ammarz [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@comsats.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2016-11-30

    Highlights: • PLA/Chitosan nanofibers were coated with functional bioglass. • Polymer/ceramic composite fibers exhibited good in-vitro bioactivity. • Nanofibers coated with Ag doped bioglass exhibited good antibacterial activity. - Abstract: In this study, we have presented the structural and in vitro characterization of electrospun polylactic acid (PLA)/Chitosan nanofibers coated with cerium, copper or silver doped bioactive glasses (CeBG/CuBG/AgBG). Bead-free, smooth surfaced nanofibers were successfully prepared by using electrospinning technique. The nanocomposite fibers were obtained using a facile dip-coating method, their antibacterial activities against E. coliE. coli (ATCC 25922 strains) were measured by the disk diffusion method after 24 h of incubation at 37 °C. CeBG and CuBG decorated PLA/Chitosan nanofibers did not develop an inhibition zone against the bacteria. On the other hand, nanofibers coated with AgBG developed an inhibition zone against the bacteria. The as-prepared nanocomposite fibers were immersed in SBF for 1, 3 and 7 days in Simulated Body Fluid (SBF) for evaluation of in vitro bioactivity. All samples induced the formation of crystallites with roughly ruffled morphology and the pores of fibers were covered with the extensive growth of crystallites. Energy Dispersive X-ray (EDX) composition analysis showed that the crystallites possessed Ca/P ratio close to 1.67, confirming the good in-vitro bioactivity of the fibers.

  1. Fatty Acid Profile and Bioactivity from Annona hypoglauca Seeds Oil ...

    African Journals Online (AJOL)

    Plants from Annona (Annonaceae) genus are present in tropical regions, where they have economic and medicinal potential. Information on the fatty acids profile and bioactivity from seed oil of Annona species are incipient. The objective of this work was to investigate Annona hypoglauca seeds oil in terms of its yield, ...

  2. Bioactivity-guided mapping and navigation of chemical space

    NARCIS (Netherlands)

    Renner, S.; Otterlo, van W.A.L.; Seoane, M.D.; Möcklinghoff, S.; Hofmann, B.; Wetzel, S.; Schuffenhauer, A.; Ertl, P.; Oprea, T.I.; Steinhilber, D.; Brunsveld, L.; Rauh, D.; Waldmann, H.

    2009-01-01

    The structure- and chemistry-based hierarchical organization of library scaffolds in tree-like arrangements provides a valid, intuitive means to map and navigate chemical space. We demonstrate that scaffold trees built using bioactivity as the key selection criterion for structural simplification

  3. Screening and identification of potential bioactive constituents in a ...

    African Journals Online (AJOL)

    ... of lung cancer, liver cancer and digestive cancer. Materials and Methods: In this study, the potential bioactive constituents of SCP were isolated and identified by chromatographic and spectroscopic methods. The immunomodulatory and DPPH radical scavenging activities of the constituents were also evaluated in vitro.

  4. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    Science.gov (United States)

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194

  5. Antagonistic bioactivity of an endophytic bacterium isolated from ...

    African Journals Online (AJOL)

    Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. R He, G Wang, X Liu, C Zhang, F Lin. Abstract. Endophytic bacteria are one of the most potential biological control agents in plant disease protection. The aim of this work was to evaluate the antimicrobial activities of a strain of ...

  6. Effects of bioactive principles from stem bark extract of Quassia ...

    African Journals Online (AJOL)

    Chigo Okwuosa

    Effects of bioactive principles from stem bark extract of Quassia amara, Quassin and 2-methoxycanthine-6-one, on haematological parameters in albino rats. Raji Yinusa. Department of Physiology, College of Medicine, University of Ibadan. Nigeria. Summary:The effect of Quassia amara extract and two isolated compounds ...

  7. Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin

    DEFF Research Database (Denmark)

    Thuan, Nguyen Huy; Malla, Sailesh; Trung, Nguyen Thanh

    2017-01-01

    Flavonoids are plant-based polyphenolic biomolecules with a wide range of biological activities. Glycosylated flavonoids have drawn special attention in the industries as it improves solubility, stability, and bioactivity. Herein, we report the production of astilbin (ATN) from taxifolin (TFN) in...

  8. Accelerated bone ingrowth by local delivery of Zinc from bioactive ...

    African Journals Online (AJOL)

    Background: Synthetic bone graft substitutes such as bioactive glass (BG) material are developed in order to achieve successful bone regeneration. Zn plays an important role in the proper bone growth, development, and maintenance of healthy bones. Aims: This study aims to evaluate in vivo the performance therapy of ...

  9. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration

    NARCIS (Netherlands)

    Mota, J.; Yu, N.; Caridade, S.G.; Luz, G.M.; Gomes, M.E.R.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F.

    2012-01-01

    Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided

  10. Greener and Expeditious Synthesis of Bioactive Heterocycles using Microwave Irradiation

    Science.gov (United States)

    The utilization of green chemistry techniques is dramatically reducing chemical waste and reaction times as has recently been proven in several organic syntheses and chemical transformations. To illustrate these advantages in the synthesis of bio-active heterocycles, we have stud...

  11. Effect of substrate on the growth, nutritional and bioactive ...

    African Journals Online (AJOL)

    rosemary

    2016-07-06

    Jul 6, 2016 ... growth, determining nutritional and bioactive components of two oyster mushroom, Pleurotus ostreatus and. Pleurotus ... and the method of cultivation are of major importance ..... rendered alkaline with a few drops of ammonia solution. 5 ..... production and non-enzymatic antioxidant activity of Pleurotus.

  12. Bioactive Diterpenes and Sesquiterpenes from the Rhizomes of Wild ...

    African Journals Online (AJOL)

    Wild ginger (Siphonochilus aethiopicus (Schweinf) B.L Burtt) is used in traditional medicines in the West and South of Africa. In the present study, the crude hexane extract of wild ginger was evaluated for in vitro bioactivity. The components isolated from the plant for the first time are: epi-curzerenone, furanodienone ...

  13. Bioactive proanthocyanidins from the root bark of Cassia abbreviata ...

    African Journals Online (AJOL)

    Cassia abbreviata is an important medicinal plant used in the treatment of various infectious diseases. The ethnomedical efficacy of extracts of this plant species is attributed to its phytochemical constituents most of which are phenolics and anthraquinones. The aim of this study was to isolate and elucidate bioactive phenolic ...

  14. Application of magnetron sputtering for producing bioactive ceramic ...

    Indian Academy of Sciences (India)

    Wintec

    time is to coat the metal surface with a bioactive material that can promote rapid ... metal implant and the surrounding tissue because of their close similarity to the ... good control of coating composition, a good adhesion of the coating to the ...

  15. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives

    Directory of Open Access Journals (Sweden)

    Laura Salvia-Trujillo

    2016-01-01

    Full Text Available The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article.

  16. BIOPEP database and other programs for processing bioactive peptide sequences.

    Science.gov (United States)

    Minkiewicz, Piotr; Dziuba, Jerzy; Iwaniak, Anna; Dziuba, Marta; Darewicz, Małgorzata

    2008-01-01

    This review presents the potential for application of computational tools in peptide science based on a sample BIOPEP database and program as well as other programs and databases available via the World Wide Web. The BIOPEP application contains a database of biologically active peptide sequences and a program enabling construction of profiles of the potential biological activity of protein fragments, calculation of quantitative descriptors as measures of the value of proteins as potential precursors of bioactive peptides, and prediction of bonds susceptible to hydrolysis by endopeptidases in a protein chain. Other bioactive and allergenic peptide sequence databases are also presented. Programs enabling the construction of binary and multiple alignments between peptide sequences, the construction of sequence motifs attributed to a given type of bioactivity, searching for potential precursors of bioactive peptides, and the prediction of sites susceptible to proteolytic cleavage in protein chains are available via the Internet as are other approaches concerning secondary structure prediction and calculation of physicochemical features based on amino acid sequence. Programs for prediction of allergenic and toxic properties have also been developed. This review explores the possibilities of cooperation between various programs.

  17. In vitro bioactivity and cytocompatibility of tricalcium silicate

    Indian Academy of Sciences (India)

    tricalcium silicate powder showed that it could induce bone- like apatite formation after ... ated by soaking them in SBF, cell adhesion and MTT assay, respectively. 2. .... tibility, which might be used as one of the bioactive coating materials and ...

  18. Therapeutic potential of dairy bioactive peptides: A contemporary perspective.

    Science.gov (United States)

    Sultan, Saira; Huma, Nuzhat; Butt, Masood Sadiq; Aleem, Muhammad; Abbas, Munawar

    2018-01-02

    Dairy products are associated with numerous health benefits. These are a good source of nutrients such as carbohydrates, protein (bioactive peptides), lipids, minerals, and vitamins, which are essential for growth, development, and maintenance of the human body. Accordingly, dairy bioactive peptides are one of the targeted compounds present in different dairy products. Dairy bioactive compounds can be classified as antihypertensive, anti-oxidative, immmunomodulant, anti-mutagenic, antimicrobial, opoid, anti-thrombotic, anti-obesity, and mineral-binding agents, depending upon biological functions. These bioactive peptides can easily be produced by enzymatic hydrolysis, and during fermentation and gastrointestinal digestion. For this reason, fermented dairy products, such as yogurt, cheese, and sour milk, are gaining popularity worldwide, and are considered excellent source of dairy peptides. Furthermore, fermented and non-fermented dairy products are associated with lower risks of hypertension, coagulopathy, stroke, and cancer insurgences. The current review article is an attempt to disseminate general information about dairy peptides and their health claims to scientists, allied stakeholders, and, certainly, readers.

  19. Bioactivity of mangrove humic materials on Rizophora mangle and ...

    African Journals Online (AJOL)

    Bioactivity of mangrove humic materials on Rizophora mangle and Laguncularia racemosa seedlings, Brazil. Leonardo Barros Dobbss, André Luiz Paier Barroso, Alessandro Coutinho Ramos, Karla Stéphanie Nunes Torrico, Fabíola Schunk de Souza Arçari, Daniel Basílio Zandonadi ...

  20. Marine actinobacteria: an important source of bioactive natural products.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Human breast tissue disposition and bioactivity of limonene in women with early stage breast cancer

    Science.gov (United States)

    Miller, Jessica A.; Lang, Julie E.; Ley, Michele; Nagle, Ray; Hsu, Chiu-Hsieh; Thompson, Patricia A; Cordova, Catherine; Waer, Amy; Chow, H.-H. Sherry

    2013-01-01

    Limonene is a bioactive food component found in citrus peel oil that has demonstrated chemopreventive and chemotherapeutic activities in preclinical studies. We conducted an open label pilot clinical study to determine the human breast tissue disposition of limonene and its associated bioactivity. We recruited forty-three women with newly diagnosed operable breast cancer electing to undergo surgical excision to take 2 grams of limonene daily for 2 – 6 weeks before surgery. Blood and breast tissue were collected to determine drug/metabolite concentrations and limonene-induced changes in systemic and tissue biomarkers of breast cancer risk or carcinogenesis. Limonene was found to preferentially concentrate in the breast tissue, reaching high tissue concentration (mean=41.3 μg/g tissue) while the major active circulating metabolite, perillic acid, did not concentrate in the breast tissue. Limonene intervention resulted in a 22% reduction in cyclin D1 expression (P=0.002) in tumor tissue but minimal changes in tissue Ki67 and cleaved caspase 3 expression. No significant changes in serum leptin, adiponectin, TGF-β1, IGFBP-3 and IL-6 levels were observed following limonene intervention. There was a small but statistically significant post-intervention increase in IGF-1 levels. We conclude that limonene distributed extensively to human breast tissue and reduced breast tumor cyclin D1 expression that may lead to cell cycle arrest and reduced cell proliferation. Further placebo-controlled clinical trials and translational research are warranted to establish limonene’s role for breast cancer prevention or treatment. PMID:23554130

  2. Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer.

    Science.gov (United States)

    Miller, Jessica A; Lang, Julie E; Ley, Michele; Nagle, Ray; Hsu, Chiu-Hsieh; Thompson, Patricia A; Cordova, Catherine; Waer, Amy; Chow, H-H Sherry

    2013-06-01

    Limonene is a bioactive food component found in citrus peel oil that has shown chemopreventive and chemotherapeutic activities in preclinical studies. We conducted an open-label pilot clinical study to determine the human breast tissue disposition of limonene and its associated bioactivity. We recruited 43 women with newly diagnosed operable breast cancer electing to undergo surgical excision to take 2 grams of limonene daily for two to six weeks before surgery. Blood and breast tissue were collected to determine drug/metabolite concentrations and limonene-induced changes in systemic and tissue biomarkers of breast cancer risk or carcinogenesis. Limonene was found to preferentially concentrate in the breast tissue, reaching high tissue concentration (mean = 41.3 μg/g tissue), whereas the major active circulating metabolite, perillic acid, did not concentrate in the breast tissue. Limonene intervention resulted in a 22% reduction in cyclin D1 expression (P = 0.002) in tumor tissue but minimal changes in tissue Ki67 and cleaved caspase-3 expression. No significant changes in serum leptin, adiponectin, TGF-β1, insulin-like growth factor binding protein-3 (IGFBP-3), and interleukin-6 (IL-6) levels were observed following limonene intervention. There was a small but statistically significant postintervention increase in insulin-like growth factor I (IGF-I) levels. We conclude that limonene distributed extensively to human breast tissue and reduced breast tumor cyclin D1 expression that may lead to cell-cycle arrest and reduced cell proliferation. Furthermore, placebo-controlled clinical trials and translational research are warranted to establish limonene's role for breast cancer prevention or treatment.

  3. Daily House Price Indices: Construction, Modeling, and Longer-Run Predictions

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Patton, Andrew J.; Wang, Wenjing

    We construct daily house price indices for ten major U.S. metropolitan areas. Our calculations are based on a comprehensive database of several million residential property transactions and a standard repeat-sales method that closely mimics the methodology of the popular monthly Case-Shiller house...... price indices. Our new daily house price indices exhibit dynamic features similar to those of other daily asset prices, with mild autocorrelation and strong conditional heteroskedasticity of the corresponding daily returns. A relatively simple multivariate time series model for the daily house price...... index returns, explicitly allowing for commonalities across cities and GARCH effects, produces forecasts of monthly house price changes that are superior to various alternative forecast procedures based on lower frequency data....

  4. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation products — bioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  5. 1 CFR 5.6 - Daily publication.

    Science.gov (United States)

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day...

  6. Stochastic modelling of daily rainfall sequences

    NARCIS (Netherlands)

    Buishand, T.A.

    1977-01-01

    Rainfall series of different climatic regions were analysed with the aim of generating daily rainfall sequences. A survey of the data is given in I, 1. When analysing daily rainfall sequences one must be aware of the following points:
    a. Seasonality. Because of seasonal variation

  7. Daily Stressors in Primary Education Students

    Science.gov (United States)

    Fernández-Baena, F. Javier; Trianes, María V.; Escobar, Milagros; Blanca, María J.; Muñoz, Ángela M.

    2015-01-01

    Daily stress can have a bearing on children's emotional and academic development. This study aimed to assess daily stressors and to determine their prevalence among primary education students, taking into account their gender, academic year, social adaptation, and the school location. A sample of 7,354 Spanish schoolchildren aged between 6 and 13…

  8. Utilization of alternative fuels in diesel engines

    Science.gov (United States)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  9. Alternate superior Julia sets

    International Nuclear Information System (INIS)

    Yadav, Anju; Rani, Mamta

    2015-01-01

    Alternate Julia sets have been studied in Picard iterative procedures. The purpose of this paper is to study the quadratic and cubic maps using superior iterates to obtain Julia sets with different alternate structures. Analytically, graphically and computationally it has been shown that alternate superior Julia sets can be connected, disconnected and totally disconnected, and also fattier than the corresponding alternate Julia sets. A few examples have been studied by applying different type of alternate structures

  10. In vitro study of polycaprolactone/bioactive glass composite coatings on corrosion and bioactivity of pure Mg

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuyun; Michalczyk, Carolin [Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Singer, Ferdinand [Institute of Surface Science and Corrosion, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Virtanen, Sannakaisa, E-mail: virtanen@ww.uni-erlangen.de [Institute of Surface Science and Corrosion, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Boccaccini, Aldo R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2015-11-15

    Highlights: • Bioactive glass nanoparticles (nBG) enhance bioactivity of PCL coatings on Mg. • Barrier properties of PCL can be altered by nBG addition. • Degradation of PCL increased by addition of nBG. - Abstract: The influence of the addition of nano-scaled bioactive glass (nBG) powder into polycaprolactone (PCL) coatings on the biodegradation and bioactivity of pure Mg was investigated in the present work. Scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Fourier transform infrared spectroscopy (FTIR) and electrochemical methods were employed to characterize the morphology, chemical composition and anticorrosion properties of the coatings. The results indicate that nBG addition in PCL increases the degradation of PCL in physiological solution; depending on the amount of nBG in the composite coating, the barrier properties of PCL therefore can be modified. At the same time, the addition of nBG facilitates the formation of hydroxyapatite during 7 days immersion in simulated body fluid (SBF).

  11. Potential benefit of dolutegravir once daily: efficacy and safety

    Directory of Open Access Journals (Sweden)

    Fantauzzi A

    2013-02-01

    Full Text Available Alessandra Fantauzzi,1 Ombretta Turriziani,2 Ivano Mezzaroma11Department of Clinical Medicine, 2Department of Molecular Medicine, Sapienza, University of Rome, Rome, ItalyAbstract: The viral integrase enzyme has recently emerged as a primary alternative target to block HIV-1 replication, and integrase inhibitors are considered a pivotal new class of antiretroviral drugs. Dolutegravir is an investigational next-generation integrase inhibitor showing some novel and intriguing characteristics, ie, it has a favorable pharmacokinetic profile with a prolonged intracellular half-life, rendering feasible once-daily dosing without the need for ritonavir boosting and without regard to meals. Moreover, dolutegravir is primarily metabolized via uridine diphosphate glucuronosyltranferase 1A1, with a minor component of the cytochrome P450 3A4 isoform, thereby limiting drug–drug interactions. Furthermore, its metabolic profile enables coadministration with most of the other available antiretroviral agents without dose adjustment. Recent findings also demonstrate that dolutegravir has significant activity against HIV-1 isolates with resistance mutations associated with raltegravir and/or elvitegravir. The attributes of once-daily administration and the potential to treat integrase inhibitor-resistant viruses make dolutegravir an interesting and promising investigational drug. In this review, the main concerns about the efficacy and safety of dolutegravir as well as its resistance profile are explored by analysis of currently available data from preclinical and clinical studies.Keywords: antiretroviral drugs, HIV-1 integrase, integrase inhibitors, dolutegravir, once daily

  12. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.

    Science.gov (United States)

    Mamo, Gashaw

    Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these

  13. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses.

    Science.gov (United States)

    Ribeiro, L F; Ribani, R H; Francisco, T M G; Soares, A A; Pontarolo, R; Haminiuk, C W I

    2015-12-15

    The aim of this study was to characterize grape pomace (GP) from winemaking byproducts of different grape samples (Cabernet Sauvignon-CS; Merlot-ME; Mix composed of 65% Bordeaux, 25% Isabel and 10% BRS Violet-MI and Terci-TE) with a view to exploiting its potential as a source of bioactive compounds and an alternative to the reuse of waste. Bioactive compounds such as individual phenolic compounds and polyunsaturated fatty acids (PUFA) were identified and quantified by spectrophotometric, chromatographic and spectral analyses. The sample of MI had the highest concentrations for total phenolic compounds and total flavonoids, while TE had the highest content for total monomeric anthocyanins. For all samples it was possible to identify 13 different anthocyanins by high performance liquid chromatography (HPLC) and mass spectrometry (MS). Moreover, the GP samples showed phenolic acids; flavan-3-ols such as catechin; flavonols such as quercetin, rutin and kaempferol; and stilbenes such as trans-resveratrol. Therefore, grape pomace can be considered a source for the recovery of phenolic compounds having antioxidant activity as well as a rich source of PUFA. Thus it can be used as an ingredient in the development of new food products, since it is suitable for human consumption, and a viable alternative both to adding nutritional value to food and to reduce environmental contamination. Copyright © 2015. Published by Elsevier B.V.

  14. Daily Aspirin Therapy: Understand the Benefits and Risks

    Science.gov (United States)

    Daily aspirin therapy: Understand the benefits and risks Daily aspirin therapy can be a lifesaving option, but it's not ... everyone. Get the facts before considering a daily aspirin. By Mayo Clinic Staff Daily aspirin therapy may ...

  15. Alkali-free bioactive glasses for bone regeneration =

    Science.gov (United States)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass

  16. The Stability of Bioactive Compounds in Spaceflight Foods

    Science.gov (United States)

    Cooper, M. R.; Douglas, G. L.

    2017-01-01

    The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature

  17. The Use of Plant Bioactive Compounds to Mitigate Enteric Methane in Ruminants and its Application in Indonesia

    Directory of Open Access Journals (Sweden)

    Elizabeth Wina

    2012-03-01

    Full Text Available Worldwide, increasing greenhouse gas (GHG emissions have become a major concern as they are now considered to be the cause of global warming. Several strategies have been planned and taken by different countries including Indonesia to mitigate this situation. Agriculture is considered to be one of major contributors to GHG, especially methane coming from ruminant digestive processes. More than 85% of the methane produced by ruminants comes from enteric fermentation. Several options have been proposed to lower this enteric methane production. This paper describes a review on diet manipulation using feed additives, especially plant bioactive compounds, to mitigate the GHG emission from ruminant livestock. Plant bioactive compounds have been found with various chemical structures. Some of them such as saponin, tannin, essential oils, organosulphur compounds, have been reported to have ability to reduce enteric methane production. Indonesia has many plant resources that have potential as methane reducing agents. Sapindus rarak fruit especially its methanol extract contain saponins which reduce the activity of methanogens in the rumen in vitro, hence reduce methane production (11%. Feeding S. rarak to sheep increased daily weight gain but not that of local cattle. Shrub legumes such as Calliandra calothyrsus and Leucaena leucocephala contain tannins which can reduce methanogenesis (3 – 21% methane reduction. Besides tannin, these shrub legumes are a good source of protein. Feeding shrub legumes can be beneficial as a protein source and a methane reducer. Other sources of methane reducing agents have been tested in other countries and some can be applied for Indonesian situation. The strategy to reduce methane by plant bioactive compounds should be developed to be simple and relatively cheap so it will benefit the local farmers. Extraction of these compounds may be expensive, therefore, costs should be considered carefully when proposing to use the

  18. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple.

    Directory of Open Access Journals (Sweden)

    Egle Machado de Almeida Siqueira

    Full Text Available The bioactive compounds content and the antioxidant activity (AA of twelve fruits native to the Cerrado were compared with the Red Delicious apple by means of the antiradical efficiency (using the 2,2-diphenyl-1-picrylhydrazil assay/DPPH, ferric reducing antioxidant power (FRAP and the β-carotene/linoleic system. The antiradical efficiency (AE and the kinetic parameters (Efficient concentration/EC50 and time needed to reach the steady state to EC50 concentration/TEC50 of the DPPH curve were also evaluated for comparison with the Trolox equivalent (TE values. A strong, significant and positive correlation was observed between the TE and AE values, whereas a weak and negative correlation was observed between TE and EC50, suggesting that the values of AE and TE are more useful for the determination of antiradical activity in fruits than the widely used EC50. The total phenolic content found in the fruits corresponded positively to their antioxidant activity. The high content of bioactive compounds (flavanols, anthocyanins or vitamin C relative to the apple values found in araticum, cagaita, cajuzinho, jurubeba, lobeira, magaba and tucum corresponded to the high antioxidant activity of these fruits. Flavanols and anthocyanins may be the main bioactive components in these Cerrado fruits. The daily consumption of at least seven of the twelve Cerrado fruits studied, particularly, araticum, cagaita, lobeira and tucum, may confer protection against oxidative stress, and thus, they may prevent chronic diseases and premature aging. The findings of this study should stimulate demand, consumption and cultivation of Cerrado fruits and result in sustainable development of the region where this biome dominates.

  19. Intent to quit among daily and non-daily college student smokers

    OpenAIRE

    Pinsker, E. A.; Berg, C. J.; Nehl, E. J.; Prokhorov, A. V.; Buchanan, T. S.; Ahluwalia, J. S.

    2012-01-01

    Given the high prevalence of young adult smoking, we examined (i) psychosocial factors and substance use among college students representing five smoking patterns and histories [non-smokers, quitters, native non-daily smokers (i.e. never daily smokers), converted non-daily smokers (i.e. former daily smokers) and daily smokers] and (ii) smoking category as it relates to readiness to quit among current smokers. Of the 4438 students at six Southeast colleges who completed an online survey, 69.7%...

  20. Osteoconductive properties of two different bioactive glass forms (powder and fiber) combined with collagen

    Science.gov (United States)

    Magri, Angela Maria Paiva; Fernandes, Kelly Rossetti; Ueno, Fabio Roberto; Kido, Hueliton Wilian; da Silva, Antonio Carlos; Braga, Francisco José Correa; Granito, Renata Neves; Gabbai-Armelin, Paulo Roberto; Rennó, Ana Claudia Muniz

    2017-11-01

    Bioactive Glasses (BG) is a group of synthetic silica-based materials with the unique ability to bond to living bone and can be used in bone repair. Although the osteogenic potential of BG, this material may have not present sufficient osteoconductive and osteoinductive properties to allow bone regeneration, especially in compromised situations. In order to overcome this limitation, it was proposed the combination the BG in two forms (powder and fiber) combined with collagen type I (COL-1). The aim of this study was to evaluate the BG/COL-based materials in terms of morphological characteristics, physicochemical features and mineralization. Additionally, the second objective was to investigate and compare the osteoconductive properties of two different bioactive glass forms (powder and fiber) enriched or not with collagen using a tibial bone defect model in rats. For this, four different formulations (BG powder - BGp, BG powder enriched with collagen - BGp/Col, BG fibers - BGf and BGp fibers enriched with collagen - BGf/Col) were developed. The physicochemical and morphological modifications were analyzed by SEM, FTIR, calcium assay and pH measurement. For in vivo evaluations, histopathology, morphometrical and immunohistochemistry were performed in a tibial defect in rats. The FTIR analysis indicated that BGp and BGf maintained the characteristic peaks for this class of material. Furthermore, the calcium assay showed an increased Ca uptake in the BG fibers. The pH measurements revealed that BGp (with or without collagen) presented higher pH values compared to BGf. In addition, the histological analysis demonstrated no inflammation for all groups at the site of the injury, besides a faster material degradation and higher bone ingrowth for groups with collagen. The immunohistochemistry analysis demonstrated Runx-2 and Rank-L expression for all the groups. Those findings support that BGp with collagen can be a promising alternative for treating fracture of difficult

  1. Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy.

    Science.gov (United States)

    Kashyap, Dharambir; Sharma, Ajay; Sak, Katrin; Tuli, Hardeep Singh; Buttar, Harpal Singh; Bishayee, Anupam

    2018-02-01

    A wide variety of chronic diseases, such as neurodegenerative and cardiovascular disorders, diabetes mellitus, osteoarthtitis, obesity and various cancers, are now being treated with cost effective phytomedicines. Since synthetic medicines are very expensive, concerted efforts are being made in developing and poor countries to discover cost effective medicines for the treatment of non-communicable diseases (NCDs). Understanding the underlying mechanisms of bioactive medicines from natural sources would not only open incipient avenues for the scientific community and pharmaceutical industry to discover new drug molecules for the therapy of NCDs, but also help to garner knowledge for alternative therapeutic approaches for the management of chronic diseases. Fisetin is a polyphenolic molecule of flavonoids class, and belongs to the bioactive phytochemicals that have potential to block multiple signaling pathways associated with NCDs such as cell division, angiogenesis, metastasis, oxidative stress, and inflammation. The emerging evidence suggests that fisetin may be useful for the prevention and management of several types of human malignancies. Efforts are being made to enhance the bioavailability of fisetin after oral administration to prevent and/or treat cancer of the liver, breast, ovary and other organs. The intent of this review is to highlight the in vitro and in vivo activities of fisetin and to provide up-to-date information about the molecular interactions of fisetin with its cellular targets involved in cancer initiation, promotion and progression as well as to focus on strategies underway to increase the bioavailability and reduce the risk of deleterious effects, if any, associated with fisetin administration. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Percent Daily Value: What Does It Mean?

    Science.gov (United States)

    Healthy Lifestyle Nutrition and healthy eating What do the Daily Value numbers mean on food labels? Answers from ... 15, 2016 Original article: http://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/expert-answers/food-and- ...

  3. Reporter Turnover on Texas Daily Newspapers.

    Science.gov (United States)

    Moss, Marquita

    1978-01-01

    A survey of Texas daily newspapers yielded a picture of newspaper reporters as relatively young men who do not stay in one place very long, suggesting that the stereotype of the itinerant reporter may have its basis in fact. (GW)

  4. Professional ideals and daily practice in journalism

    DEFF Research Database (Denmark)

    Pihl-Thingvad, Signe

    2015-01-01

    Professional ideals are crucial in terms of guiding and committing journalists in modern media organizations. But what happens if there are discrepancies between the journalists’ professional ideals and their daily working practice? Research suggests negative consequences, such as withdrawal...

  5. Daily Tips for Good Oral Hygiene

    Science.gov (United States)

    ... this article Daily Tips for Good Oral Hygiene Bacteria can live in your mouth in the form of plaque, causing cavities and gingivitis, which can lead to periodontal (gum) disease. In order to keep your mouth ...

  6. Complementary and Alternative Medicine

    Science.gov (United States)

    ... for Educators Search English Español Complementary and Alternative Medicine KidsHealth / For Teens / Complementary and Alternative Medicine What's ... a replacement. How Is CAM Different From Conventional Medicine? Conventional medicine is based on scientific knowledge of ...

  7. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  8. Essential oils: extraction, bioactivities, and their uses for food preservation.

    Science.gov (United States)

    Tongnuanchan, Phakawat; Benjakul, Soottawat

    2014-07-01

    Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products. © 2014 Institute of Food Technologists®

  9. Enhanced Antifungal Bioactivity of Coptis Rhizome Prepared by Ultrafining Technology

    Directory of Open Access Journals (Sweden)

    Ping-Chung Kuo

    2014-01-01

    Full Text Available The aim of this study was to identify and quantify the bioactive constituents in the methanol extracts of Coptis Rhizome prepared by ultrafining technology. The indicator compound was identified by spectroscopic method and its purity was determined by HPLC. Moreover, the crude extracts and indicator compound were examined for their ability to inhibit the growth of Rhizoctonia solani Kühn AG-4 on potato dextrose agar plates. The indicator compound is a potential candidate as a new plant derived pesticide to control Rhizoctonia damping-off in vegetable seedlings. In addition, the extracts of Coptis Rhizome prepared by ultrafining technology displayed higher contents of indicator compound; they not only improve their bioactivity but also reduce the amount of the pharmaceuticals required and, thereby, decrease the environmental degradation associated with the harvesting of the raw products.

  10. Chemistry and Functionality of Bioactive Compounds Present in Persimmon

    Directory of Open Access Journals (Sweden)

    Shazia Yaqub

    2016-01-01

    Full Text Available Extensive research has related the consumption of persimmon with the reduced risk of various diseases and particularly highlighted the presence of bioactive phenolic compounds for their therapeutic properties. Major phenolic compounds present in persimmon are ferulic acid, p-coumaric acid, and gallic acid. β-Cryptoxanthin, lycopene, β-carotene, zeaxanthin, and lutein are important carotenoids having antioxidant potential. They are important to prevent oxidation of low-density lipoproteins, safeguard beta cells of the pancreas, and reduce cardiovascular diseases, cancer, diabetes mellitus, and damage caused by chronic alcohol consumption. In this paper, the chemistry and health benefits of bioactive compounds present in persimmon are reviewed to encourage impending applications and to facilitate further research activities.

  11. Interstitial fluid contains higher in vitro IGF bioactivity than serum

    DEFF Research Database (Denmark)

    Espelund, Ulrick; Søndergaard, Klaus; Bjerring, Peter

    2012-01-01

    MEASURE: Serum and SBF concentrations of bioactive IGF (determined in vitro by specific IGF-I receptor (IGF-IR) phosphorylation assay), immunoreactive IGF and IGF binding protein (IGFBP) levels, Western ligand blotting (WLB) of IGFBPs and IGFBP-3 Western immunoblotting (WiB). RESULTS: The ability of SBF...... to phosphorylate the IGF-IR in vitro was 41±27% higher than that of serum (P=0.007 by repeated measures ANOVA). By contrast, immunoreactive IGF and IGFBP-concentrations were approximately 50% lower in SBF than in serum (all P≤0.002). A marked difference in the composition of IGFBPs between serum and SBF...... was observed, including 3-fold elevated amounts of IGFBP-3 fragments in SBF (Pvitro IGF bioactivity was higher in SBF than in serum. This may...

  12. Bioactive compounds of sea cucumbers and their therapeutic effects

    Science.gov (United States)

    Shi, Shujuan; Feng, Wenjing; Hu, Song; Liang, Shixiu; An, Nina; Mao, Yongjun

    2016-05-01

    Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.

  13. Effectiveness of Bioactive Food Components in Experimental Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Emília Hijová

    2009-01-01

    Full Text Available The aim of the present study was the evaluation of possible protective effects of selected bioactive food components in experimental N,N-dimethylhydrazine (DMH-induced colon carcinogenesis. Wistar albino rats (n = 92 were fed a high fat diet or conventional laboratory diet. Two weeks after the beginning of the trial, DMH injections were given to six groups of rats at the dose of 20 mg/kg b.w. twice weekly. The activity of bacterial enzymes in faeces and serum bile acid concentrations were determined. High fat diet, DMH injections, and their combination significantly increased the activies of β-galactosidase, β-glucuronidase, and α-glucosidase (p p < 0.001, as well as the bile acid concentration compared to the group at the highest risk. The protective effects of selected bioactive food components in experimentally induced colon carcinogenesis allow for their possible use in cancer prevention or treatment.

  14. Evaluation of bioactivity in vitro of endodontic calcium aluminate cement

    International Nuclear Information System (INIS)

    Oliveira, I.R.; Andrade, T.L.; Santos, G.L.; Pandolfelli, V.C.

    2011-01-01

    Bioactivity is referred to as the capacity of a material to develop a stable bond with living tissue via the deposition of hydroxyapatite. Materials which exhibit this property can be used to repair diseased or damaged bone tissue and can be designed to remain in situ indefinitely. An indication of bioactivity can be obtained by the formation of a hydroxyapatite layer on the surface of a substrate in simulated body fluids (SBF) in vitro. Therefore, set samples of calcium aluminate endodontic cement were maintained in contact with SBF solutions (Kokubo and Rigo) and their surfaces were later evaluated by means of SEM, EDX and DRX. Measurements of pH and ionic conductivity were also carried out for SBF solutions in contact with set samples of endodontic cement. The ideal conditions of precipitation were obtained in SBF Rigo been observed a surface layer with spherical morphology characteristic of stoichiometric hydroxyapatite.(author)

  15. Bioactive Materials in Endodontics: An Evolving Component of Clinical Dentistry.

    Science.gov (United States)

    Mohapatra, Satyajit; Patro, Swadheena; Mishra, Sumita

    2016-06-01

    Achieving biocompatibility in a material requires an interdisciplinary approach that involves a sound knowledge of materials science, bioengineering, and biotechnology. The host microbial-material response is also critical. Endodontic treatment is a delicate procedure that must be planned and executed properly. Despite major advances in endodontic therapy in recent decades, clinicians are confronted with a complex root canal anatomy and a wide selection of endodontic filling materials that, in turn, may not be well tolerated by the periapical tissues and may evoke an immune reaction. This article discusses published reports of various bioactive materials that are used in endodontic therapy, including calcium hydroxide, mineral trioxide aggregate, a bioactive dentin substrate, calcium phosphate ceramics, and calcium phosphate cements.

  16. Constructing bioactive peptides with pH-dependent activities.

    Science.gov (United States)

    Tu, Zhigang; Volk, Melanie; Shah, Khushali; Clerkin, Kevin; Liang, Jun F

    2009-08-01

    Many bioactive peptides are featured by their arginine and lysine rich contents. In this study, lysine and arginine residues in lytic peptides were selectively replaced by histidines. Although resulting histidine-containing lytic peptides had decreased activity, they did show pH-dependent cytotoxicity. The activity of the constructed histidine-containing lytic peptides increased 2-8 times as the solution pH changed from 7.4 to 5.5. More importantly, these histidine-containing peptides maintain the same cell killing mechanism as their parent peptides by causing cell lysis. Both the activity and pH-sensitivity of histidine-containing peptides are tunable by adjusting histidine substitution numbers and positions. This study has presented a general strategy to create bioactive peptides with desired pH-sensitivity to meet the needs of various applications such as cancer treatments.

  17. Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Saeid Kargozar

    2017-12-01

    Full Text Available Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers, in regards to repair and regenerate injured tissues of cardiac and pulmonary systems.

  18. Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas

    DEFF Research Database (Denmark)

    Vynne, Nikolaj Grønnegaard

    -associated strains were significantly more likely to possess stable antibacterial activity and be pigmented. Pseudoalteromonas strains are known as prolific producers of bioactive secondary metabolites; hence screening the global strain collection for production of novel antibiotics was initiated. Novel quinolone...... of regulatory compounds involved in cell to cell signaling within some strains of the species P. luteoviolacea. Since such mechanisms are known to govern antibiotic production in some bacteria, this was investigated. A quorum sensing system controlling a putative novel biosynthetic pathway with high homology......The purpose of this Ph.D. project was to evaluate a global collection of marine Pseudoalteromonas bacteria as a source of novel bioactive compounds, and to investigate the distribution and production of such compounds among different species within the Pseudoalteromonas genus. The strain collection...

  19. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Zhao, J.; Guo, L.Y.; Yang, X.B.; Weng, J.

    2008-01-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  20. PMMA/Ca2+ bone cements. Hydrolytic properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Mónica L. Hernández

    2012-01-01

    Full Text Available Bone cements of poly (methyl methacrylate (PMMA have been used for about 40 years to fix artificial prosthesis to bone structure. The aim of this study was to evaluate the absorption, solubility, degradation and bioactivity of novel formulations of PMMA/Ca2+ bone cements. These properties were evaluated using a fractional experimental design. Hydrolytic parameters were determined, from which we found that 7/8 of the formulations for absorption and 6/8 for solubility fulfill the ISO 4049:2000 requirements. The final degradation values ranged between 1 and 5%, except for one of the formulations. Besides, some formulations showed bioactivity after seven days of immersion in SBF solution.

  1. [Diversity and bioactivity of culturable actinobacteria from animal feces].

    Science.gov (United States)

    Jiang, Yi; Cao, Yanru; Han, Li; Jin, Rongxian; Zheng, Dan; He, Wenxiang; Li, Youlong; Huang, Xueshi

    2012-10-04

    In order to provide new source for discovering new lead compounds of drugs and other products, the diversity and some bioactivities of culturable actinobacteria in animal feces were studied. Five animals' fecal samples were collected from Yunnan Wild Animal Park. The pure cultures of actinobacteria were isolated from these samples by using 5 different media. The 16S rRNA gene sequences of 119 selected strains were determined; the phylogenetic analysis was carried out; and antimicrobial and anti-tumor activities were determined by using agar diffusion method, tumor cell lines k562and HL60 respectively. In total 20 genera of actinobacteria from the 5 animals' feces were identified. Many strains inhibited Bacillus subtilis, Staphylococcus lentus, Mycobacterium tuberculosis, Candida albicans and Aspergillus niger. Some strains presented antitumor activities. Some known secondary metabolites and Sannastatin, a novel macrolactam polyketide glycoside with bioactivities, were isolated and identified. Fecal actinobacteria are a new potential source for discovering drug lead and other industry products.

  2. Impact of intestinal stoma of daily activities

    OpenAIRE

    Kougl, Jiří

    2016-01-01

    In the theoretical part I am devoted to the history, anatomy, types of stoma, concept of stoma, indications for an establishment of stoma, pre and postoperative care, treatment of stoma, instruments and the influence on daily activities of a client while having a stoma. In the practical part I am following my own research of the impact of stoma on daily life's activities of klients with a stoma.

  3. Out-of-home activities, daily travel, and subjective well-being

    NARCIS (Netherlands)

    Ettema, D.F.; Gärling, T.; Olsson, L.E.; Friman, M.

    2010-01-01

    It is argued that utility theory that underpins current cost-benefit analyses of daily travel needs to be complemented. An alternative theoretical framework is to this end proposed which applies subjective well-being (SWB) to travel behaviour analysis. It is posited in this theoretical framework

  4. Search for bioactive natural products from medicinal plants of Bangladesh.

    Science.gov (United States)

    Ahmed, Firoj; Sadhu, Samir Kumar; Ishibashi, Masami

    2010-10-01

    In our continuous search for bioactive natural products from natural resources, we explored medicinal plants of Bangladesh, targeting cancer-related tumor necrosis factor-related apoptosis-inducing ligand-signaling pathway, along with some other biological activities such as prostaglandin inhibitory activity, 1,1-diphenyl-2-picrylhydrazyl free-radical-scavenging activity, and cell growth inhibitory activity. Along with this, we describe a short field study on Sundarbans mangrove forests, Bangladesh, in the review.

  5. MARINE: THE ULTIMATE SOURCE OF BIOACTIVES AND DRUG METABOLITES

    OpenAIRE

    Jirge Supriya S; Chaudhari Yogesh S

    2010-01-01

    Bioactive compounds from marine flora and fauna have extensive past and present use in the treatment of many diseases and serve as compounds of interest both in their natural form and as templates for synthetic modification. Several molecules isolated from various marine organisms (microorganisms, algae, fungi, invertebrates, and vertebrates) are currently under study at an advanced stage of clinical trials, some of them have already been marketed as drugs. This article gives an overview of c...

  6. Development of implants composed of bioactive materials for bone repair

    Science.gov (United States)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  7. SELECTING PARAMETERS OF PREPARATION SOURDOUGH SPONTANEOUS FERMENTATION OF WHEAT BIOACTIVATED

    Directory of Open Access Journals (Sweden)

    E. I. Ponomareva

    2013-01-01

    Full Text Available One way to improving the quality of semi-finished and finished bakery products is the use of starter cultures. This article describes a process for preparing sourdough bioactivated spontaneous fermentation of wheat. The influence of parameters of spontaneous sourdough cooking at its organoleptic, physico-chemical and microbiological parameters was studying, rational parameters of receipt that improve the quality of foods were chosen.

  8. Electrochemistry and Spectroelectrochemistry of Bioactive Hydroxyquinolines: A Mechanistic Study

    Czech Academy of Sciences Publication Activity Database

    Sokolová, Romana; Nycz, J. E.; Ramešová, Šárka; Fiedler, Jan; Degano, I.; Szala, M.; Kolivoška, Viliam; Gál, M.

    2015-01-01

    Roč. 119, č. 20 (2015), s. 6074-6080 ISSN 1520-6106 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR M200401201 Program:M Institutional support: RVO:61388955 Keywords : electrochemistry * spectroelectrochemistry * Bioactive Hydroxyquinolines Subject RIV: CG - Electrochemistry Impact factor: 3.187, year: 2015

  9. Phytochemicals and bioactivity in wild German and Roman chamomiles infusions

    OpenAIRE

    Guimarães, Rafaela; Barros, Lillian; Calhelha, Ricardo C.; Carvalho, Ana Maria; Queiroz, Maria João R.P.; Ferreira, Isabel C.F.R.

    2013-01-01

    Natural matrices represent a rich source of biologically active compounds and are an example of molecular diversity, with recognized potential in drug discovery. In the present work, the infusions of Matricaria recutita L. (German chamomile) and Chamaemelum nobile L. (Roman chamomile) were submitted to an analysis of phenolic compounds and evaluation of bioactivity. Phenolic compounds were characterized by reversed-phase high performance liquid chromatography coupled to diode a...

  10. Bioactive lipids as radioprotectors and potentiators of radiotherapy

    International Nuclear Information System (INIS)

    Das, Undurti N.

    2016-01-01

    Selective elimination of tumor cells with little or no effects on normal cells is desirable for the treatment of cancer. Radiotherapy, a well accepted form of cancer therapy, is associated with significant side effects that need to be eliminated or dampened. Our studies revealed that radiation can produce significant changes in the metabolism of essential fatty acids that could be related to its actions and side effects. It was noted that UVB exposed skin produced PGE2, PGF2a and PGE3 that accompany the erythema in the first 24-48 h, associated with increased COX-2 expression at 24 h. Leukocyte chemoattractants 11-, 12- and 8-monohydroxy-eicosatetraenoic acid (HETE) are elevated from 4 to 72 h, in association with peak dermal neutrophil influx at 24 h, and increased dermal CD3"+ lymphocytes and 12- and 15-LOX expression from 24 to 72 h. On the other hand, anti-inflammatory metabolite 15-HETE shows later expression, peaking at 72 h. Thus, skin lesions are characterized by overlapping sequential profiles of increases in COX products followed by LOX products that may regulate subsequent events and ultimately its resolution. The enhanced expression of 15-HETE at 72 h is interesting since it forms the precursor to antiinflammatory bioactive lipids. We and others also showed that the anti-cancer action of radiation and chemotherapeutic drugs can be augmented by certain polyunsaturated fatty acids with little or no action on normal cells. Even tumor cell drug resistance could be reversed by these bioactive lipids. Our recent studies revealed that these bioactive lipids also prevent genetic damage induced by radiation and other drugs. These studies imply that employing certain bioactive lipids may be exploited as radiation protective molecules and as enhancers of the anti-cancer action of radiation in the therapy of cancer. (author)

  11. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders

    OpenAIRE

    Imran, Muhammad; Arshad, Muhammad Sajid; Butt, Masood Sadiq; Kwon, Joong-Ho; Arshad, Muhammad Umair; Sultan, Muhammad Tauseef

    2017-01-01

    The current review article is an attempt to explain the therapeutic potential of mangiferin, a bioactive compound of the mango, against lifestyle-related disorders. Mangiferin (2-?-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one) can be isolated from higher plants as well as the mango fruit and their byproducts (i.e. peel, seed, and kernel). It possesses several health endorsing properties such as antioxidant, antimicrobial, antidiabetic, antiallergic, anticancer, hypocholesterolemic, ...

  12. Neutral atom beam technique enhances bioactivity of PEEK

    International Nuclear Information System (INIS)

    Khoury, Joseph; Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C.

    2013-01-01

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants

  13. Coriander (Coriandrum sativum L.) and its bioactive constituents.

    Science.gov (United States)

    Laribi, Bochra; Kouki, Karima; M'Hamdi, Mahmoud; Bettaieb, Taoufik

    2015-06-01

    Coriander (Coriandrum sativum L.), a member of the Apiaceae family, is among most widely used medicinal plant, possessing nutritional as well as medicinal properties. Thus, the aim of this updated review is to highlight the importance of coriander as a potential source of bioactive constituents and to summarize their biological activities as well as their different applications from data obtained in recent literature, with critical analysis on the gaps and potential for future investigations. A literature review was carried out by searching on the electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies focusing on the biological and pharmacological activities of coriander seed and herb bioactive constituents. All recent English-language articles published between 2000 and 2014 were searched using the terms 'C. sativum', 'medicinal plant', 'bioactive constituents', and 'biological activities'. Subsequently, coriander seed and herb essential oils have been actively investigated for their chemical composition and biological activities including antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anxiolytic, analgesic, anti-inflammatory, anti-convulsant and anti-cancer activities, among others. Although coriander has been reported to possess a wide range of traditional medicinal uses, no report is available in its effectiveness use in reactive airway diseases such as asthma and bronchiolitis. In brief, the information presented herein will be helpful to create more interest towards this medicinal species by defining novel pharmacological and clinical applications and hence, may be useful in developing new drug formulations in the future or by employing coriander bioactive constituents in combination with conventional drugs to enhance the treatment of diseases such as Alzheimer and cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    OpenAIRE

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between ...

  15. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    International Nuclear Information System (INIS)

    Shin, Hyeong-Moo; Ernstoff, Alexi; Csiszar, Susan A.

    2015-01-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models

  16. Alternative way of life

    International Nuclear Information System (INIS)

    Fischer, C.

    1980-01-01

    The volume describes the reasons why more and more people seek alternative ways of life, the theoretical background and what alternative life means in practice as well as the sociological significance and history of the alternative movement. It also contains statements of persons who have 'got out' and advice on energy-saving. (HSCH) [de

  17. BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY FROM FIVE TYPES OF SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Maria Copaciu

    2016-10-01

    Full Text Available After germination process, the green seedlings accumulate important quantities of bioactive compounds such as: enzymes, vitamins, minerals, chlorophylls and nutrients. The current study presents a comparison between different bioactive compounds and their antioxidant capacity, after the seedling germination and growth of five seeds (arugula, lentil, wheat, beans and mustard both on soil, in a pot (natural system, and directly on cotton wool soaked, in water (artificial system. In this study the carotenoids content and the antioxidant capacity were analysed. The data of the present study showed that the highest amount of zeaxanthin and β - carotene was found in cultivars of wheat grown in natural system, while the highest antioxidant activity was found in cultivars of wheat, lentils and beans, though in this case with no statistical differences between the systems. The results show statistical differences between the values of bioactive compounds in the five types of seedlings but also in the values obtained for the same seedlings in different systems. The best cultivars for improving the nutritional quality for human consumption are wheat seedlings followed by lentil ones.

  18. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Tania Rescigno

    2017-01-01

    Full Text Available The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

  19. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  20. Stem cell homing-based tissue engineering using bioactive materials

    Science.gov (United States)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  1. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products.

    Science.gov (United States)

    Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno

    2017-01-01

    Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  2. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within

    Directory of Open Access Journals (Sweden)

    Valerio Chiurchiù

    2018-01-01

    Full Text Available Inflammation is an immune response that works as a contained fire that is pre-emptively sparked as a defensive process during infections or upon any kind of tissue insult, and that is spontaneously extinguished after elimination or termination of the damage. However, persistent and uncontrolled immune reactions act as a wildfire that promote chronic inflammation, unresolved tissue damage and, eventually, chronic diseases. A wide network of soluble mediators, among which endogenous bioactive lipids, governs all immune processes. They are secreted by basically all cells involved in inflammatory processes and constitute the crucial infrastructure that triggers, coordinates and confines inflammatory mechanisms. However, these molecules are also deeply involved in the detrimental transition from acute to chronic inflammation, be it for persistent or excessive action of pro-inflammatory lipids or for the impairment of the functions carried out by resolving ones. As a matter of fact, bioactive lipids have been linked, to date, to several chronic diseases, including rheumatoid arthritis, atherosclerosis, diabetes, cancer, inflammatory bowel disease, systemic lupus erythematosus, and multiple sclerosis. This review summarizes current knowledge on the involvement of the main classes of endogenous bioactive lipids—namely classical eicosanoids, pro-resolving lipid mediators, lysoglycerophospholipids/sphingolipids, and endocannabinoids—in the cellular and molecular mechanisms that lead to the pathogenesis of chronic disorders.

  3. Silver-containing mesoporous bioactive glass with improved antibacterial properties.

    Science.gov (United States)

    Gargiulo, Nicola; Cusano, Angela Maria; Causa, Filippo; Caputo, Domenico; Netti, Paolo Antonio

    2013-09-01

    The aim of the present work is the study of the bacteriostatic/bactericidal effect of a silver-containing mesoporous bioactive glass obtained by evaporation-induced self-assembly and successive thermal stabilization. Samples of the manufactured mesophase were characterized by means of transmission electron microscopy and N₂ adsorption/desorption at 77 K, revealing structural and textural properties similar to SBA-15 mesoporous silica. Glass samples used for bioactivity experiments were put in contact with a standardized, commercially available cell culture medium instead of lab-produced simulated body fluid, and were then characterized by means of X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. All these analyses confirmed the development of a hydroxyl carbonate apatite layer on glass particles. Moreover, the investigated mesostructure showed a very good antibacterial effect against S. aureus strain, with a strong evidence of bactericidal activity already registered at 0.5 mg/mL of glass concentration. A hypothesis about the mechanism by which Ag affects the bacterial viability, based on the intermediate formation of crystalline AgCl, was also taken into account. With respect to what already reported in the literature, these findings claim a deeper insight into the possible use of silver-containing bioactive glasses as multifunctional ceramic coatings for orthopedic devices.

  4. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    Science.gov (United States)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  5. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

    Directory of Open Access Journals (Sweden)

    Laura Cornara

    2017-06-01

    Full Text Available Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs, and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA, with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  6. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules.

    Science.gov (United States)

    Bolleddula, Jayaprakasam; DeMent, Kevin; Driscoll, James P; Worboys, Philip; Brassil, Patrick J; Bourdet, David L

    2014-08-01

    Aliphatic nitrogen heterocycles such as piperazine, piperidine, pyrrolidine, morpholine, aziridine, azetidine, and azepane are well known building blocks in drug design and important core structures in approved drug therapies. These core units have been targets for metabolic attack by P450s and other drug metabolizing enzymes such as aldehyde oxidase and monoamine oxidase (MAOs). The electron rich nitrogen and/or α-carbons are often major sites of metabolism of alicyclic amines. The most common biotransformations include N-oxidation, N-conjugation, oxidative N-dealkylation, ring oxidation, and ring opening. In some instances, the metabolic pathways generate electrophilic reactive intermediates and cause bioactivation. However, potential bioactivation related adverse events can be attenuated by structural modifications. Hence it is important to understand the biotransformation pathways to design stable drug candidates that are devoid of metabolic liabilities early in the discovery stage. The current review provides a comprehensive summary of biotransformation and bioactivation pathways of aliphatic nitrogen containing heterocycles and strategies to mitigate metabolic liabilities.

  7. Antibacterial effects and dissolution behavior of six bioactive glasses.

    Science.gov (United States)

    Zhang, Di; Leppäranta, Outi; Munukka, Eveliina; Ylänen, Heimo; Viljanen, Matti K; Eerola, Erkki; Hupa, Mikko; Hupa, Leena

    2010-05-01

    Dissolution behavior of six bioactive glasses was correlated with the antibacterial effects of the same glasses against sixteen clinically important bacterial species. Powdered glasses (<45 microm) were immersed in simulated body fluid (SBF) for 48 h. The pH in the solution inside the glass powder was measured in situ with a microelectrode. After 2, 4, 27, and 48 h, the pH and concentration of ions after removing the particles and mixing the SBF were measured with a normal glass pH electrode and ICP-OES. The bacteria were cultured in broth with the glass powder for up to 4 days, after which the viability of the bacteria was determined. The antibacterial effect of the glasses increased with increasing pH and concentration of alkali ions and thus with increased dissolution tendency of the glasses, but it also depended on the bacterium type. The changes in the concentrations of Si, Ca, Mg, P, and B ions in SBF did not show statistically significant influence on the antibacterial property. Bioactive glasses showed strong antibacterial effects for a wide selection of aerobic bacteria at a high sample concentration (100 mg/mL). The antibacterial effects increased with glass concentration and a concentration of 50 mg/mL (SA/V 185 cm(-1)) was required to generate the bactericidal effects. Understanding the dissolution mechanisms of bioactive glasses is essential when assessing their antibacterial effects. Copyright 2009 Wiley Periodicals, Inc.

  8. Microencapsulation as a tool for incorporating bioactive ingredients into food.

    Science.gov (United States)

    Kuang, S S; Oliveira, J C; Crean, A M

    2010-11-01

    Microencapsulation has been developed by the pharmaceutical industry as a means to control or modify the release of drug substances from drug delivery systems. In drug delivery systems microencapsulation is used to improve the bioavailability of drugs, control drug release kinetics, minimize drug side effects, and mask the bitter taste of drug substances. The application of microencapsulation has been extended to the food industry, typically for controlling the release of flavorings and the production of foods containing functional ingredients (e.g. probiotics and bioactive ingredients). Compared to the pharmaceutical industry, the food industry has lower profit margins and therefore the criteria in selecting a suitable microencapsulation technology are more stringent. The type of microcapsule (reservoir and matrix systems) produced and its resultant release properties are dependent on the microencapsulation technology, in addition to the physicochemical properties of the core and the shell materials. This review discusses the factors that affect the release of bioactive ingredients from microcapsules produced by different microencapsulation technologies. The key criteria in selecting a suitable microencapsulation technology are also discussed. Two of the most common physical microencapsulation technologies used in pharmaceutical processing, fluidized-bed coating, and extrusion-spheronization are explained to highlight how they might be adapted to the microencapsulation of functional bioactive ingredients in the food industry.

  9. Associations among daily stressors and salivary cortisol: findings from the National Study of Daily Experiences.

    Science.gov (United States)

    Stawski, Robert S; Cichy, Kelly E; Piazza, Jennifer R; Almeida, David M

    2013-11-01

    While much research has focused on linking stressful experiences to emotional and biological reactions in laboratory settings, there is an emerging interest in extending these examinations to field studies of daily life. The current study examined day-to-day associations among naturally occurring daily stressors and salivary cortisol in a national sample of adults from the second wave of the National Study of Daily Experiences (NSDE). A sample of 1694 adults (age=57, range=33-84; 44% male) completed telephone interviews detailing their stressors and emotions on eight consecutive evenings. Participants also provided saliva samples upon waking, 30min post-waking, before lunch and before bed, on four consecutive interview days resulting in 5995 days of interview/cortisol data. Analyses revealed three main findings. First, cortisol AUC was significantly higher on stressor days compared to stressor-free days, particularly for arguments and overloads at home, suggesting that daily stressors are associated with increased cortisol output, but that not all daily stressors have such an influence. Second, individuals reporting a greater frequency of stressor days also exhibited a steeper diurnal cortisol slope. Finally, daily stressor-cortisol associations were unaltered after adjustment for daily negative affect and physical symptoms. Our discussion focuses on the influence of naturally occurring daily stressors on daily cortisol and the role of daily diary approaches for studying healthy cortisol responses to psychosocial stressors outside of traditional laboratory settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Associations among Daily Stressors and Salivary Cortisol: Findings from the National Study of Daily Experiences

    Science.gov (United States)

    Stawski, Robert S.; Cichy, Kelly E.; Piazza, Jennifer R.; Almeida, David M.

    2013-01-01

    While much research has focused on linking stressful experiences to emotional and biological reactions in laboratory settings, there is an emerging interest in extending these examinations to field studies of daily life. The current study examined day-to-day associations among naturally-occurring daily stressors and salivary cortisol in a national sample of adults from the second wave of the National Study of Daily Experiences (NSDE). A sample of 1,694 adults (Age=57, Range=33–84; 44% male) completed telephone interviews detailing their stressors and emotions on eight consecutive evenings. Participants also provided saliva samples upon waking, 30 minutes post-waking, before lunch and before bed, on four consecutive interview days resulting in 5,995 days of interview/cortisol data. Analyses revealed three main findings. First, cortisol AUC was significantly higher on stressor days compared to stressor-free days, particularly for arguments and overloads at home, suggesting that daily stressors are associated with increased cortisol output, but that not all daily stressors have such an influence. Second, individuals reporting a greater frequency of stressor days also exhibited a steeper diurnal cortisol slope. Finally, daily stressor-cortisol associations were unaltered after adjustment for daily negative affect and physical symptoms. Our discussion focuses on the influence of naturally-occurring daily stressors on daily cortisol and the role of daily diary approaches for studying healthy cortisol responses to psychosocial stressors outside of traditional laboratory settings. PMID:23856186

  11. Depleted uranium management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  12. Depleted uranium management alternatives

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process

  13. Synthesis and characterization of TEP-EDTA-regulated bioactive hydroxyapatite

    Science.gov (United States)

    Haders, Daniel Joseph, II

    Hydroxyapatite (HA), Ca10(PO4)6(OH) 2, the stoichiometric equivalent of the ceramic phase of bone, is the preferred material for hard tissue replacement due to its bioactivity. However, bioinert metals are utilized in load-bearing orthopedic applications due to the poor mechanical properties of HA. Consequently, attention has been given to HA coatings for metallic orthopedic implants to take advantage of the bioactivity of HA and the mechanical properties of metals. Commercially, the plasma spray process (PS-HA) is the method most often used to deposit HA films on metallic implants. Since its introduction in the 1980's, however, concerns have been raised about the consequences of PS-HA's low crystallinity, lack of phase purity, lack of film-substrate chemical adhesion, passivation properties, and difficulty in coating complex geometries. Thus, there is a need to develop inexpensive reproducible next-generation HA film deposition techniques, which deposit high crystallinity, phase pure, adhesive, passivating, conformal HA films on clinical metallic substrates. The aim of this dissertation was to intelligently synthesize and characterize the material and biological properties of HA films on metallic substrates synthesized by hydrothermal crystallization, using thermodynamic phase diagrams as the starting point. In three overlapping interdisciplinary studies the potential of using ethylenediamine-tetraacetic acid/triethyl phosphate (EDTA/TEP) doubly regulated hydrothermal crystallization to deposit HA films, the TEP-regulated, time-and-temperature-dependent process by which films were deposited, and the bioactivity of crystallographically engineered films were investigated. Films were crystallized in a 0.232 molal Ca(NO3)2-0.232 molal EDTA-0.187 molal TEP-1.852 molal KOH-H2O chemical system at 200°C. Thermodynamic phase diagrams demonstrated that the chosen conditions were expected to produce Ca-P phase pure HA, which was experimentally confirmed. EDTA regulation of

  14. Meat and fermented meat products as a source of bioactive peptides.

    Science.gov (United States)

    Stadnik, Joanna; Kęska, Paulina

    2015-01-01

    Bioactive peptides are short amino acid sequences, that upon release from the parent protein may play different physiological roles, including antioxidant, antihypertensive, antimicrobial, and other bioactivities. They have been identified from a range of foods, including those of animal origin, e.g., milk and muscle sources (with pork, beef, or chicken and various species of fish and marine organism). Bioactive peptides are encrypted within the sequence of the parent protein molecule and latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. Bioactive peptides derived from food sources have the potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an overview of the muscle-derived bioactive peptides, especially those of fermented meats and the potential benefits of these bioactive compounds to human health.

  15. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  16. Alternative carbohydrate reserves used in the daily cycle of crassulacean acid metabolism

    Science.gov (United States)

    C.C. Black; J.-Q. Chen; R.L. Doong; M.N. Angelov; Shi-Jean S. Sung

    1996-01-01

    Each day a massive interlocked biochemical cycle occurs in the green tissues of crassulacean acid metabolism plants.The function of this interlocked cycle, in its simplest context, is to furnish most of the CO2 for CAM plant photosynthesis.In this unified presentation our aims are (1) to divide CAM plants into two metabolic groups, (2) to...

  17. Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ganesh, Mani; Mohankumar, Murugan

    2017-09-01

    Sida cordata (Burm.f.) is a pineal tropical plant in the family Malvaceae that is found throughout India and used to treat various diseases and ailments in many complementary and alternative medicine systems. This study identified the bioactive components present in whole-plant ethanol extracts of S . cordata using gas chromatography-mass spectrometry (GC-MS). Based on their retention times (RT) and mass-to-charge ratios (m/z), 29 bioactive compounds were identified: nonanoic acid, vitamin D 3 , 3-trifluroacetoxypentadecane, α-d-glucopyranoside, O-α-d-glucopyranosyl-(1.fwdarw.3)-α-d-fructofuranosyl,3,7,11,15-tetramethyl-2-hexadecan-1-ol, octadecanoic acid, ethyl ester, phytol, 9,12-octadecadienoic acid, methyl ester (E,E), 9,12,15-octadecadienoic acid, methyl ester (Z,Z,Z), oleic acid, 1,2-15,16-diepoxyhexadecane, 3-hexadecyloxycarbonyl-5-(2-hydroxyethyl)-4-methylimidazolium ion, methoxyacetic acid, 4-tetradecyl ester, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-iodo-2-methylundecane, dodecane, 2,6,10-trimethyl-, 2-piperidinone-N-[4-bromo-n-butyl]-, squalene, octadecane-1-(ethenyloxy)-, Z,Z-2,5-pentadecadien-1-ol, 1-hexadecanol, 2-methyl-, spiro[androst-5ene-17,1'-cyclobutan]-2'-one-3-hydroxy-, (3a,17a)-, diethylene glycol monododecyl ether, vitamin E, cholestan-3-ol, 2-methylene-, (3a,5a)-, 2H-pyran, 2-(7-heptadecynyloxy)tetrahydro-, and cis -Z-α-bisabolene epoxide. The presence of various bioactive compounds justifies the use of this plant for treating various ailments by traditional practitioners.

  18. Goal conflict and goal facilitation as predictors of daily accelerometer-assessed physical activity.

    Science.gov (United States)

    Presseau, Justin; Tait, Richard I; Johnston, Derek W; Francis, Jill J; Sniehotta, Falko F

    2013-12-01

    To test whether perceptions of conflicting and facilitating personal goals, and actual daily time spent in their pursuit, predict accelerometer-assessed physical activity (PA). A prospective multilevel design with a daily accelerometer-based assessment of PA over 1 week was used (N = 106). Participants' personal goals were elicited using personal projects analysis. Participants then rated their personal goals in terms of how they were perceived to facilitate and conflict with their regular PA. Items assessing PA-specific intention and perceived behavioral control (PBC) were also embedded within the baseline measures. For the subsequent 7 consecutive days, participants completed a daily diary based on the day reconstruction method, indicating the time spent in daily episodes involving each of their personal goals, and wore an RT3 tri-axial accelerometer. The main outcome was accelerometer-assessed daily time spent in moderate to vigorous physical activity (MVPA). Random intercept multilevel models indicated that perceived goal facilitation, but not perceived goal conflict, predicted MVPA over and above intention and PBC. Daily time pursuing conflicting goals negatively predicted MVPA when subsequently added to the model and in so doing, attenuated the association between perceived goal facilitation and MVPA. Perceived goal facilitation predicts objectively measured PA over and above intention and PBC, but daily time spent in pursuit of conflicting personal goals provides a better account of how alternative goals relate to engaging in regular PA.

  19. Effects of daily food processing on allergenicity.

    Science.gov (United States)

    Cabanillas, Beatriz; Novak, Natalija

    2017-08-11

    Daily food processing has the potential to alter the allergenicity of foods due to modification of the physico-chemical properties of proteins. The degree of such modifications depends on factors such as processing conditions, type of food considered, allergenic content, etc. The impact of daily food processing like boiling, roasting, frying or baking on food allergenicity have been extensively studied. The influence of other thermal treatments such as microwave heating or pressure cooking on allergenicity has also been analyzed. Non-thermal treatment such as peeling impacts on the allergenic content of certain foods such as fruits. In this review, we give an updated overview of the effects of daily processing treatments on the allergenicity of a wide variety of foods. The different variables that contribute to the modification of food allergenicity due to processing are also reviewed and discussed.

  20. Modulating effects of bioactive water Naftussya from layers Truskavets’ and Pomyarky on some metabolic and biophysic parameters at humans with dysfunction of neuro-endocrine-immune complex

    Directory of Open Access Journals (Sweden)

    Anatoliy I Gozhenko

    2016-12-01

    Full Text Available Background. Previously we have been carry out comparative investigation immediate effects of Bioactive Water Naftussya from layers Truskavets’, Pomyarky and Skhidnyts’a on neuro-endocrine-immune complex at men with its dysfunction. The aim of this study is the influence of the use of the course of Bioactive Water Naftussya from layers Truskavets’ and Pomyarky on some metabolic and biophysical parameters at similar patients. Materials and methods. The object of observation were 20 volunteers: ten women and ten men aged 33-76 years without clinical diagnose but with dysfunction of neuro-endocrine-immune complex and metabolism. In daily urine and venous blood we determined the content of electrolytes, nitrogenous metabolites and lipids, recorded conductivity of acupuncture points, rate of electronegative nuclei of buccal epithelium as well as parameters of gas discharge vizualisation (GDV. After examination volunteers within 7 days used bioactive water Naftussya (250 mL three times a day from Truskavets’ or Pomyarky layer, then repeated the tests listed. Results. Weekly use of Bioactive Water Naftussya increases in the normal level of plasma chloride and sodium, normalizes low level of bicarbonate and decreases within the normal levels of potassium and phosphate. Urinary excretion of sodium and chloride increases while excretion and concentration of uric acid decreases, as the urine concentration of phosphates. The index lithogenicity urine decreased from 112% to 103% norm standard. Initially reduced level of plasma triacylglycerides increases, while decreases in the normal level of cholesterol in low-density lipoprotein composition. Among the biophysical parameters detected increase in the normal conductivity acupuncture points Pg (ND at right side, which represent the nervous system, and left shift the ratio between the conductivity of acupuncture points MC (AVL, which represents the immune system. Increases electrokinetic index of

  1. Antibacterial and cytotoxic bioactivity of marine Actinobacteria from Loreto Bay National Park, Mexico

    OpenAIRE

    Cardoso-Martínez, Faviola; Becerril-Espinosa, Amayaly; Barrila-Ortíz, Celso; Torres-Beltrán, Mónica; Ocampo-Alvarez, Héctor; Iñiguez-Martínez, Ana M.; Soria-Mercado, Irma E.

    2015-01-01

    Abstract Production of bioactive compounds is intimately linked to the ecology of the producing organisms. Taking this into account, the objective of this study was to evaluate the bioactive properties of isolated Actinobacteria from sea sediments of a high biodiversity zone; under the hypothesis that the ecological characteristics of this site stimulate the presence of unique and bioactive strains that can be screened for new compounds with antibiotic and anticancer properties. The elected z...

  2. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation.

    Science.gov (United States)

    Wang, Qiong; Wang, Feng; Xu, Zhenghong; Ding, Zhongyang

    2017-06-13

    Mushrooms are widely distributed around the world and are heavily consumed because of their nutritional value and medicinal properties. Polysaccharides (PSs) are an important component of mushrooms, a major factor in their bioactive properties, and have been intensively studied during the past two decades. Monosaccharide composition/combinations are important determinants of PS bioactivities. This review summarizes: (i) monosaccharide composition/combinations in various mushroom PSs, and their relationships with PS bioactivities; (ii) possible biosynthetic pathways of mushroom PSs and effects of key enzymes on monosaccharide composition; (iii) regulation strategies in PS biosynthesis, and prospects for controllable biosynthesis of PSs with enhanced bioactivities.

  3. Salinity Inhibits Rice Seed Germination by Reducing α-Amylase Activity via Decreased Bioactive Gibberellin Content

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs, such as GA1 and GA4, and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment. These results suggest that NaCl-induced bioactive GA deficiency is caused by up-regulated expression of GA-inactivated genes, and the up-regulated expression of GA biosynthetic genes might be a consequence of negative feedback regulation of the bioactive GA deficiency. Moreover, we provide evidence that NaCl-induced bioactive GA deficiency inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression. Additionally, exogenous bioactive GA rescues NaCl-inhibited seed germination by enhancing α-amylase activity. Thus, NaCl treatment reduces bioactive GA content through promotion of bioactive GA inactivation, which in turn inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression.

  4. Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA

    Directory of Open Access Journals (Sweden)

    Nabian Nima

    2013-01-01

    Full Text Available The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%. We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer’s solution with bovine serum albumin (BSA for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, surface electron microscope (SEM and transmission electron microscope (TEM. The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.

  5. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    Science.gov (United States)

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  6. Alternative Auditing Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, Alicen J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    This presentation for the 2017 Energy Exchange in Tampa, Florida, offers information about advanced auditing technologies and techniques including alternative auditing approaches and considerations and caveats.

  7. Dihydroresveratrol Type Dihydrostilbenoids: Chemical Diversity, Chemosystematics, and Bioactivity.

    Science.gov (United States)

    Vitalini, Sara; Cicek, Serhat S; Granica, Sebastian; Zidorn, Christian

    2018-01-01

    Dihydrostilbenoids, a diverse class of natural products differing from stilbenoids by the missing double bond in the ethylene chain linking the aromatic moieties, have been reported from fungi, mosses, ferns, and flowering plants. Occurrence, structure, and bioactivity of naturally occurring dihydroresveratrol type dihydrostilbenoids are discussed in this review. A Reaxys database search for dihydroresveratrol derivatives with possible substitutions on all atoms, but excluding non-natural products and compounds featuring additional rings involving the ethyl connecting chain, was performed. Structures include simple dihydroresveratrol derivatives, compounds substituted with complex side chains composed of acyl moieties and sugars, and compounds containing polycyclic cores attached to dihydrostilbenoid units. Dihydrostilbenoids have a wide spectrum of bioactivities ranging from expectable antioxidant and anti-inflammatory activities to interesting neuroprotective and anticancer activity. The anticancer activity in particular is very pronounced for some plant-derived dihydrostilbenoids and makes them interesting lead compounds for drug development. Apart from some reports on dihydroresveratrol derivatives as phytoalexins against plant-pathogenic fungi, only very limited information is available on the ecological role of these compounds for the organisms producing them. Dihydrostilbenoids are a class of natural products possessing significant biological activities; their scattered but not ubiquitous occurrence throughout the kingdoms of plants and fungi is not easily explained. We are convinced that future studies will identify new sources of dihydrostilbenoids, and we hope that the present review will inspire such studies and will help in directing such efforts to suitable source organisms and towards promising bioactivities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Surface Modification of Porous Titanium Granules for Improving Bioactivity.

    Science.gov (United States)

    Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab

    The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.

  9. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  10. Using Daily Horoscopes To Demonstrate Expectancy Confirmation.

    Science.gov (United States)

    Munro, Geoffrey D.; Munro, James E.

    2000-01-01

    Describes a classroom demonstration that uses daily horoscopes to show the effect that expectation can have on judgment. Addresses the preparation, procedure, and results of the demonstration, and student evaluations. States that the demonstration appears to be effective for teaching students about expectancy confirmation. (CMK)

  11. Do Daily Retail Gasoline Prices adjust Asymmetrically?

    NARCIS (Netherlands)

    L.J.H. Bettendorf (Leon); S.A. van der Geest (Stéphanie); G. Kuper

    2005-01-01

    textabstractThis paper analyzes adjustments in the Dutch retail gasoline prices. We estimate an error correction model on changes in the daily retail price for gasoline (taxes excluded) for the period 1996-2004 taking care of volatility clustering by estimating an EGARCH model. It turns out the

  12. Do daily retail gasoline prices adjust asymmetrically?

    NARCIS (Netherlands)

    Bettendorf, L.; van der Geest, S. A.; Kuper, G. H.

    2009-01-01

    This paper analyses adjustments in the Dutch retail gasoline prices. We estimate an error correction model on changes in the daily retail price for gasoline (taxes excluded) for the period 1996-2004, taking care of volatility clustering by estimating an EGARCH model. It turns out that the volatility

  13. Daily precipitation statistics in regional climate models

    DEFF Research Database (Denmark)

    Frei, Christoph; Christensen, Jens Hesselbjerg; Déqué, Michel

    2003-01-01

    An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km...

  14. Global daily dynamics of the pineal transcriptome

    DEFF Research Database (Denmark)

    Bustos, Diego M; Bailey, Michael J; Sugden, David

    2011-01-01

    Transcriptome profiling of the pineal gland has revealed night/day differences in the expression of a major fraction of the genes active in this tissue, with two-thirds of these being nocturnal increases. A set of over 600 transcripts exhibit two-fold to >100-fold daily differences in abundance...

  15. Daily storage management of hydroelectric facilities

    NARCIS (Netherlands)

    Chappin, E.J.L.; Ferrero, M.; Lazzeroni, P.; Lukszo, Z.; Olivero, M.; Repetto, M.

    2012-01-01

    This work presents a management procedure for hydroelectric facilities with daily storage. The water storage gives an additional degree of freedom allowing to shift in time power production when it is more convenient and to work at the maximum efficiency of hydraulic turbine. The management is

  16. Daily self-management and work engagement

    NARCIS (Netherlands)

    Breevaart, K.; Bakker, A.B.; Demerouti, E.

    2014-01-01

    The present study adopts a bottom-up approach to work engagement by examining how self-management is related to employees' work engagement on a daily basis. Specifically, we hypothesized that on days that employees use more self-management strategies, they report higher resources at work and in

  17. The daily life of urban ethnic minorities

    NARCIS (Netherlands)

    Andries van den Broek; Saskia Keuzenkamp

    2008-01-01

    Original title: Het dagelijks leven van allochtone stedelingen. The integration of ethnic minorities in Dutch society is not an easy process. The present emphasis on the problems means there is little room for attention for the daily lives of people within the various ethnic groups. This

  18. Big Ideas behind Daily 5 and CAFE

    Science.gov (United States)

    Boushey, Gail; Moser, Joan

    2012-01-01

    The Daily 5 and CAFE were born out of The Sister's research and observations of instructional mentors, their intense desire to be able to deliver highly intentional, focused instruction to small groups and individuals while the rest of the class was engaged in truly authentic reading and writing, and their understanding that a one size fits all…

  19. 27 CFR 19.829 - Daily records.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Daily records. 19.829 Section 19.829 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process...

  20. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios

    Directory of Open Access Journals (Sweden)

    Nourhan Hisham Shady

    2017-05-01

    Full Text Available Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.

  1. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  2. Bioactive type glass-ceramics within incorporated aluminium

    International Nuclear Information System (INIS)

    Volzone, C.; Stabile, F.M.; Ortiga, J.

    2012-01-01

    Bioactive glass-ceramics are used as biomaterials for the reparation of bone tissue. They are prepared, generally, by bioglass of specific composition for each particular use. The aluminium addition in the formulation at very small quantities influences on the structural properties. Two glass-ceramics obtained by P 2 O 5 -Na 2 O-CaO-SiO 2 formulation within aluminium (0.5 % in Al 2 O 3 base) added through a reactive alumina and purified feldspar were analyzed. The results showed structural differences between both glass-ceramics. (author)

  3. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe.

    Science.gov (United States)

    Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul

    2017-03-23

    eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA).

  4. Brandmodstandsbidrag for alternative isoleringsmaterialer

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place

    2001-01-01

    Resume af rapport om alternative isoleringsmaterialers brandmodstandsbidrag, udarbejdet af Dansk Brandteknisk Institut under Energistyrelsens udviklingsprogram "Miljø- og arbejdsmiljøvenlig isolering"......Resume af rapport om alternative isoleringsmaterialers brandmodstandsbidrag, udarbejdet af Dansk Brandteknisk Institut under Energistyrelsens udviklingsprogram "Miljø- og arbejdsmiljøvenlig isolering"...

  5. Anvendelse af alternative isoleringsmaterialer

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place

    2003-01-01

    Resume af By og Byg Anvisning 207 om anvendelse af alternative isoleringsmaterialer, udarbejdet af Statens Byggeforskningsinstitut under udviklingsprogrammet "Miljø- og arbejdsmiljøvenlig isolering"......Resume af By og Byg Anvisning 207 om anvendelse af alternative isoleringsmaterialer, udarbejdet af Statens Byggeforskningsinstitut under udviklingsprogrammet "Miljø- og arbejdsmiljøvenlig isolering"...

  6. Acquisition of Voicing Alternations

    NARCIS (Netherlands)

    Kerkhoff, Annemarie

    "Morpho-phonological alternations are central to phonological theory, but little is known about how they are acquired. Acquiring alternations amounts to dealing with variation in a morpheme’s shape depending on its morphological context. It is generally assumed that children start with an initial

  7. Alternative health insurance schemes

    DEFF Research Database (Denmark)

    Keiding, Hans; Hansen, Bodil O.

    2002-01-01

    In this paper, we present a simple model of health insurance with asymmetric information, where we compare two alternative ways of organizing the insurance market. Either as a competitive insurance market, where some risks remain uninsured, or as a compulsory scheme, where however, the level...... competitive insurance; this situation turns out to be at least as good as either of the alternatives...

  8. Rebelling against the (Insulin Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Jaime L. Clark

    2018-03-01

    Full Text Available Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance.

  9. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  10. In vivo bone regeneration using a novel porous bioactive composite

    Energy Technology Data Exchange (ETDEWEB)

    Xie En [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Hu Yunyu [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China)], E-mail: orth1@fmmn.edu.cn; Chen Xiaofeng [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Bai Xuedong; Li Dan [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ren Li [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Zhang Ziru [Foreign Languages School, Northwest University Xi' an (China)

    2008-11-15

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  11. Food Derived Bioactive Peptides and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Olga Martínez-Augustin

    2014-12-01

    Full Text Available A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  12. Formation of carrageenan-CaCO{sub 3} bioactive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Lucas F.B.; Maniglia, Bianca C.; Pereira, Lourivaldo S.; Tapia-Blácido, Delia R.; Ramos, Ana P., E-mail: anapr@ffclrp.usp.br

    2016-01-01

    The high biocompatibility and resorbability of polymeric membranes have encouraged their use to manufacture medical devices. Here, we report on the preparation of membranes consisting of carrageenan, a naturally occurring sulfated polysaccharide that forms helical structures in the presence of calcium ions. We incorporated CaCO{sub 3} particles into the membranes to enhance their bioactivity and mechanical properties. Infrared spectroscopy and X-ray diffraction data confirmed CaCO{sub 3} incorporation into the polymeric matrix. We tested the bioactivity of the samples by immersing them in a solution that mimics the ionic composition and pH of the human body fluid. The hybrid membranes generated hydroxyapatite, as attested by X-ray diffraction data. Scanning electron and atomic force microscopies aided investigation of membrane topography before and after CaCO{sub 3} deposition. The wettability and surface free energy, evaluated by contact angle measures, increased in the presence of CaCO{sub 3} particles. These parameters are important for membrane implantation in the body. Moreover, membrane stiffness was up to 110% higher in the presence of the inorganic particles, as revealed by Young's modulus. - Highlights: • Hybrid kappa and iota carrageenan-CaCO{sub 3} membranes were formed. • The hybrid membrane's origin hydroxyapatite after exposure to simulated body fluid • The carrageenan's specificity to bind Ca{sup 2+} ions tailors the surface properties.

  13. Fruits Bioactive Compounds Characterization from a New Food Product

    Directory of Open Access Journals (Sweden)

    Valentina Mariana RUS

    2014-12-01

    Full Text Available The aim of this study was (I to create a new product, smart bar type which can be consumed as protective food by adults and children (II to characterize the bioactive compounds from the designed food. The bioactive compounds were identified from nuts, raw seeds of almonds, dry cranberries, dry plums and flax seeds. Secoisolariciresinol (683 ppm has been identified as a major compound in flax seeds.  The vitamin C was quantified by HPLC in a concentration of 35.02 mg% in cranberries extract. The total phenolic content varied from 7.1 mg/g for walnut to 71.8 mg/g for cranberries. In addition, the antioxidative capability of phenolic compounds was monitored and evaluated using a colored free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH. Almond showed better results than walnut in the antioxidant capacity test. The results obtained in this study collect information that enables the use of nuts, raw seeds of almonds, dry cranberries, dry plums and flax seeds as raw material for the production of smart bar which may serve as a new product for food market.

  14. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. In vivo bone regeneration using a novel porous bioactive composite

    International Nuclear Information System (INIS)

    Xie En; Hu Yunyu; Chen Xiaofeng; Bai Xuedong; Li Dan; Ren Li; Zhang Ziru

    2008-01-01

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications

  16. In vitro bioactivity of a tricalcium silicate cement

    Energy Technology Data Exchange (ETDEWEB)

    Morejon-Alonso, L.; Bareiro, O.; Santos, L.A. dos, E-mail: loreley.morejon@ufrgs.b [Universidade Federal do Rio Grande do Sul (UFRG), Porto Alegre, RS (Brazil). Escola de Engenharia. Dep. de Materiais; Carrodeguas R, Garcia [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio. Dept. de Ceramica

    2009-07-01

    Tricalcium silicate is the major constituent of Portland cement and the responsible for their mechanical strength at early stages. In order to be used as and additive of conventional calcium phosphate cement (CPC), in vitro bioactivity of a calcium silicate cement (CSC) after soaking in simulated body fluid (SBF) for 14 days was study. The cement was obtained by mixing Ca{sub 3}SiO{sub 5}, obtained by sol-gel process, and a Na{sub 2}HPO{sub 4} solution. The morphological and structural changes of the material before and after soaking were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the formation of a layer of a Hydroxyapatite (HA) onto the CSC cement after soaking for 1h in SBF that became denser with the increase of soaking time. The study suggests that Ca{sub 3}SiO{sub 5} would be an effective additive to improve the bioactivity and long term strength of conventional CPC. (author)

  17. Marine actinomycetes: an ongoing source of novel bioactive metabolites.

    Science.gov (United States)

    Subramani, Ramesh; Aalbersberg, William

    2012-12-20

    Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1-2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  18. Bioactive compounds from orange epicarp to enrich fish burgers.

    Science.gov (United States)

    Spinelli, Sara; Lecce, Lucia; Likyova, Desislava; Del Nobile, Matteo Alessandro; Conte, Amalia

    2018-05-01

    The orange industry produces considerable amounts of by-products, traditionally used for animal feed or fuel production. Most of these by-products could be used as functional ingredients. To assess the potential food application of orange epicarp, different percentages of micro-encapsulated orange extract were added to fresh fish burgers. Then, an in vitro digestion was also carried out, before and after micro-encapsulation, to measure the bio-accessibility of the active compounds. A significant increase of bio-accessibility of bioactive compounds has been observed in the orange epicarp extract after micro-encapsulation by spray-drying. From the sensory point of view, the fish sample enriched with 50 g kg -1 micro-encapsulated extract was the most comparable to the control burger, even if it showed a higher phenolic, flavonoid and carotenoid bio-accessibility. Orange epicarp may be used as a food additive to enhance the health content of food products. The micro-encapsulation is a valid technique to protect the bioactive compounds and increase their bio-accessibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment.

    Science.gov (United States)

    Puccinelli, Michael T; Stan, Silvia D

    2017-07-28

    Bioactive dietary agents have been shown to regulate multiple cancer hallmark pathways. Epidemiologic studies have linked consumption of Allium vegetables, such as garlic and onions, to decreased incidence of cancer. Diallyl trisulfide (DATS), a bioactive compound derived from Allium vegetables, has been investigated as an anti-cancer and chemopreventive agent. Preclinical studies provide ample evidence that DATS regulates multiple cancer hallmark pathways including cell cycle, apoptosis, angiogenesis, invasion, and metastasis. DATS has been shown to arrest cancer cells at multiple stages of the cell cycle with the G2/M arrest being the most widely reported. Additionally, increased pro-apoptotic capacity as a result of regulating intrinsic and extrinsic apoptotic pathway components has been widely reported following DATS treatment. Invasion, migration, and angiogenesis represent emerging targets of DATS and support its anti-cancer properties. This review summarizes DATS mechanisms of action as an anti-cancer and chemopreventive agent. These studies provide rationale for future investigation into its use as a cancer chemopreventive agent.

  20. Correlations between chromatographic parameters and bioactivity predictors of potential herbicides.

    Science.gov (United States)

    Janicka, Małgorzata

    2014-08-01

    Different liquid chromatography techniques, including reversed-phase liquid chromatography on Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester columns and micellar liqud chromatography with a Purosphere RP-8e column and using buffered sodium dodecyl sulfate-acetonitrile as the mobile phase, were applied to study the lipophilic properties of 15 newly synthesized phenoxyacetic and carbamic acid derivatives, which are potential herbicides. Chromatographic lipophilicity descriptors were used to extrapolate log k parameters (log kw and log km) and log k values. Partitioning lipophilicity descriptors, i.e., log P coefficients in an n-octanol-water system, were computed from the molecular structures of the tested compounds. Bioactivity descriptors, including partition coefficients in a water-plant cuticle system and water-human serum albumin and coefficients for human skin partition and permeation were calculated in silico by ACD/ADME software using the linear solvation energy relationship of Abraham. Principal component analysis was applied to describe similarities between various chromatographic and partitioning lipophilicities. Highly significant, predictive linear relationships were found between chromatographic parameters and bioactivity descriptors. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties.

    Science.gov (United States)

    Correia, Cristina O; Leite, Álvaro J; Mano, João F

    2015-06-05

    We propose a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce CHT/BG-NPs scaffolds that combine the shape memory properties of chitosan and the biomineralization ability of BG-NPs for applications in bone regeneration. The addition of BG-NPs prepared by a sol-gel route to the CHT polymeric matrix improved the bioactivity of the nanocomposite scaffold, as seen by the precipitation of bone-like apatite layer upon immersion in simulated body fluid (SBF). Shape memory tests were carried out while the samples were immersed in varying compositions of water/ethanol mixtures. Dehydration with ethanol enables to fix a temporary shape of a deformed scaffold that recovers the initial geometry upon water uptake. The scaffolds present good shape memory properties characterized by a recovery ratio of 87.5% for CHT and 89.9% for CHT/BG-NPs and a fixity ratio of 97.2% for CHT and 98.2% for CHT/BG-NPs (for 30% compressive deformation). The applicability of such structures was demonstrated by a good geometrical accommodation of a previously compressed scaffold in a bone defect. The results indicate that the developed CHT/BG-NPs nanocomposite scaffolds have potential for being applied in bone tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive Constituents

    Science.gov (United States)

    Viladomiu, Monica; Hontecillas, Raquel; Lu, Pinyi; Bassaganya-Riera, Josep

    2013-01-01

    Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Many beneficial effects are related to the presence of ellagic acid, ellagitannins (including punicalagins), punicic acid and other fatty acids, flavonoids, anthocyanidins, anthocyanins, estrogenic flavonols, and flavones, which seem to be its most therapeutically beneficial components. However, the synergistic action of the pomegranate constituents appears to be superior when compared to individual constituents. Promising results have been obtained for the treatment of certain diseases including obesity, insulin resistance, intestinal inflammation, and cancer. Although moderate consumption of pomegranate does not result in adverse effects, future studies are needed to assess safety and potential interactions with drugs that may alter the bioavailability of bioactive constituents of pomegranate as well as drugs. The aim of this review is to summarize the health effects and mechanisms of action of pomegranate extracts in chronic inflammatory diseases. PMID:23737845

  3. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2011-08-01

    Full Text Available Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS. Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.

  4. Design and characterization of protein-quercetin bioactive nanoparticles

    Directory of Open Access Journals (Sweden)

    Leng Xiaojing

    2011-05-01

    Full Text Available Abstract Background The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA, lysozyme (Lys, or myoglobin (Mb used to load hydrophobic drugs such as quercetin (Q and other flavonoids. Results Induced by dimethyl sulfoxide (DMSO, BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated. Conclusions BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.

  5. Bioactive fractions from cantabrian anchovy (Engraulis encrarischolus viscera

    Directory of Open Access Journals (Sweden)

    Armando BURGOS-HERNÁNDEZ

    2016-01-01

    Full Text Available Abstract The potential of cantabrian anchovy (Engraulis encrarischolus viscera as a source of bioactive compounds is of interest for both, pharmaceutical and food industries. Cantabrian anchovy guts and heads were freeze-dried, extracted with methanol and subjected to fractionation by solvent partitioning using hexane, ethyl acetate, and butanol. Fractions were tested for antimutagenic, antioxidant, antifungal, and antibacterial activity using the Ames test; DPPH, ABTS, and FRAP assays; the radial grown inhibition assay; and the microbroth dilution method, respectively. Five fractions were obtained from the anchovy gut methanolic extract, in addition to the hexane- (HF, ethyl acetate- (EAF, and butanol-soluble (BF fractions, an aqueous-soluble fraction (ALF and precipitated crystals (ACF in this were also obtained. HF and EAF resulted to be antimutagenic, HF and ALF showed antifungal activity, BF and ACF showed the highest antioxidant potential, and HF and BF were antibacterial against several strains. Anchovy gut, which to the present study had not been reported for any bioactivity, has antimutagenic, antifungal, antioxidant, and antibacterial compounds, which need to be isolated for full characterization and study.

  6. Influence of cooking methods on bioactive compounds in beetroot

    Directory of Open Access Journals (Sweden)

    Juliana Arruda Ramos

    2017-06-01

    Full Text Available Beetroot is rich in bioactive compounds that may provide health benefits. However, vegetable tissues are physically and chemically damaged by cooking, causing major changes to compounds in cell membranes. The current study aimed to evaluate the influence of several cooking methods on bioactive compounds in beetroot. Four heat treatments were carried out: steam cooking, pressure cooking, baking in an oven, and boiling in water. Beets were matched in uniformity of size, color, and absence of defects. They were washed thoroughly in running water to remove dirt. Next, one of the four cooking methods was applied. After cooking, beets were peeled by hand. Analysis was carried out on both uncooked and cooked beets to evaluate antioxidant activity, content of phenolic compounds, pigments, flavonoids, and betalains. The experiment was completely randomized design (CRD and carried out in triplicate. Data were subjected to analysis of variance (F test, p < 0.05 and mean values compared by Tukey test at 5% probability. There was no change in antioxidant activity or total phenolic and anthocyanin content by any of the cooking methods compared to that in raw beetroots. However, pressure-cooking resulted in lower carotenoid levels compared to that in raw beet. Furthermore, flavonoid and betalain content decreased by all the cooking methods.

  7. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  8. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity.

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  9. Mangrove rare actinobacteria: Taxonomy, natural compound and discovery of bioactivity

    Directory of Open Access Journals (Sweden)

    Adzzie-Shazleen eAzman

    2015-08-01

    Full Text Available Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  10. Mung bean proteins and peptides: nutritional, functional and bioactive properties

    Directory of Open Access Journals (Sweden)

    Zhu Yi-Shen

    2018-02-01

    Full Text Available To date, no extensive literature review exists regarding potential uses of mung bean proteins and peptides. As mung bean has long been widely used as a food source, early studies evaluated mung bean nutritional value against the Food and Agriculture Organization of the United Nations (FAO/the World Health Organization (WHO amino acids dietary recommendations. The comparison demonstrated mung bean to be a good protein source, except for deficiencies in sulphur-containing amino acids, methionine and cysteine. Methionine and cysteine residues have been introduced into the 8S globulin through protein engineering technology. Subsequently, purified mung bean proteins and peptides have facilitated the study of their structural and functional properties. Two main types of extraction methods have been reported for isolation of proteins and peptides from mung bean flours, permitting sequencing of major proteins present in mung bean, including albumins and globulins (notably 8S globulin. However, the sequence for albumin deposited in the UniProt database differs from other sequences reported in the literature. Meanwhile, a limited number of reports have revealed other useful bioactivities for proteins and hydrolysed peptides, including angiotensin-converting enzyme inhibitory activity, anti-fungal activity and trypsin inhibitory activity. Consequently, several mung bean hydrolysed peptides have served as effective food additives to prevent proteolysis during storage. Ultimately, further research will reveal other nutritional, functional and bioactive properties of mung bean for uses in diverse applications.

  11. Bacterial bioeffectors modify bioactive profile and increase isoflavone content in soybean sprouts (Glycine max var Osumi).

    Science.gov (United States)

    Algar, Elena; Ramos-Solano, Beatriz; García-Villaraco, Ana; Sierra, M Dolores Saco; Gómez, M Soledad Martín; Gutiérrez-Mañero, F Javier

    2013-09-01

    The effect of two bacterial strains to enhance bioactive contents (total phenolic compounds, total flavonoid compounds and isoflavones) and antioxidant activity on 3-day-old soybean sprouts were investigated. To identify bacterial determinants responsible for these effects, viable and UV-treated strains were delivered to wounded seeds at different concentration. Multivariate analysis performed with all the evaluated parameters indicated the different effectiveness of Stenotrophomonas maltophilia N5.18 and Pseudomonas fluorescens N21.4 based on different structural and metabolic determinants for each. N21.4 increased total phenolics and isoflavones from the genistein family, while N5.18 triggered biosynthesis of daidzein and genistein families coupled to a decrease in total phenolics, suggesting different molecular targets in the phenilpropanoid pathway. Only extracts from N5.18 treated seeds showed an improved antioxidant activity according to the β-carotene bleaching prevention method. In summary, bioeffectors from both bacterial strains are effective tools to improve soybean sprouts quality; structural elicitors from N5.18 also enhanced antioxidant activity, being the best alternative for further development of a biotechnological procedure.

  12. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability.

    Science.gov (United States)

    Ketnawa, Sunantha; Benjakul, Soottawat; Martínez-Alvarez, Oscar; Rawdkuen, Saroat

    2017-01-15

    The peptidase from the viscera of farmed giant catfish was used for producing gelatin hydrolysates (HG) and compared with those produced from commercial bovine trypsin (HB). The degree of hydrolysis (DH) observed suggests that proteolytic cleavage rapidly occurred within the first 120min of incubation, and there was higher DH in HG than in HB. HG demonstrated the highest ACE-inhibitory activity, DPPH, ABTS radical scavenging activity, and FRAP. HB showed the highest FRAP activity. The DPPH radical scavenging activity of HG was quite stable over the pH range of 1-11, but it increased slightly when the heating duration time reached 240min at 100°C. The ACE-inhibitory activity of HG showed the highest stability at a pH of 7, and it remained very stable at 100°C for over 15-240min. The visceral peptidase from farmed giant catfish could be an alternative protease for generating protein hydrolysates with desirable bioactivities. The resulting hydrolysates showed good stability, making them potential functional ingredients for food formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Augmenting the bioactivity of polyetheretherketone using a novel accelerated neutral atom beam technique.

    Science.gov (United States)

    Ajami, S; Coathup, M J; Khoury, J; Blunn, G W

    2017-08-01

    Polyetheretherketone (PEEK) is an alternative to metallic implants in orthopedic applications; however, PEEK is bioinert and does not osteointegrate. In this study, an accelerated neutral atom beam technique (ANAB) was employed to improve the bioactivity of PEEK. The aim was to investigate the growth of human mesenchymal stem cells (hMSCs), human osteoblasts (hOB), and skin fibroblasts (BR3G) on PEEK and ANAB PEEK. The surface roughness and contact angle of PEEK and ANAB PEEK was measured. Cell metabolic activity, proliferation and alkaline phosphatase (ALP) was measured and cell attachment was determined by quantifying adhesion plaques with cells. ANAB treatment increased the surface hydrophilicity [91.74 ± 4.80° (PEEK) vs. 74.82 ± 2.70° (ANAB PEEK), p PEEK compared to PEEK (p PEEK surfaces. MSCs seeded on ANAB PEEK in the presence of osteogenic media, expressed increased levels of ALP compared to untreated PEEK (p PEEK. ANAB treatment may improve the osteointegration of PEEK implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1438-1446, 2017. © 2016 Wiley Periodicals, Inc.

  14. Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?

    Directory of Open Access Journals (Sweden)

    Kirsten Benkendorff

    2015-08-01

    Full Text Available Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds. Traditionally known for the production of the ancient dye Tyrian purple, these molluscs also form the basis of some rare traditional medicines that have been used for thousands of years. Whilst these traditional and alternative medicines have not been chemically analysed or tested for efficacy in controlled clinical trials, a significant amount of independent research has documented the biological activity of extracts and compounds from these snails. In particular, Muricidae produce a suite of brominated indoles with anti-inflammatory, anti-cancer and steroidogenic activity, as well as choline esters with muscle-relaxing and pain relieving properties. These compounds could explain some of the traditional uses in wound healing, stomach pain and menstrual problems. However, the principle source of bioactive compounds is from the hypobranchial gland, whilst the shell and operculum are the main source used in most traditional remedies. Thus further research is required to understand this discrepancy and to optimise a quality controlled natural medicine from Muricidae.

  15. The Environmental Fluctuations of some Bioactive Nutraceutical Compounds in Zilla spinosa Inhabiting Arid Habitats

    Directory of Open Access Journals (Sweden)

    Hemmat Ibrahim KHATTAB

    2017-12-01

    Full Text Available Zilla spinosa is one of the dominated woody perennial shrubs widespread in the Egyptian Red sea coastal desert, belonging to family Brassicacea. Z. spinosa is used as a folk medicine and for heating by local people. Z. spinosa inhabits arid habitats exposed to adverse climatic changes which influence the production of the bioactive natural products. The natural secondary products have significant importance for plant acclimatization to the arid habitats beside their significant practical application in medicinal, nutritive and industrial purposes. The accumulation levels of some natural products including phenols, tannins, glucosinolates, flavonoids, saponins, proanthocyanidins and cardiac glycosides were measured in Z. spinosa inhabiting different locations of Wadi Hagul during spring and summer seasons. The results of the current study showed that Z. spinosa grown in the adverse environment has adapted to cope with extreme temperature, water deficit and geoclimate changes especially in summer, by enhancing the accumulation of some antioxidant compounds including phenols, tannins, glucosinolates, flavonoids, saponins, cardiac glycosides, concomitant with increments in the total antioxidant capacity and PAL activity. Consequently, Z. spinosa shrubs inhabiting the arid environment is a promising new source of saponins, glucosinolates, cardiac glycosides, phenols and flavonoids which could participate in drug development and exploration of alternative strategies to increase productivity of wild plants.

  16. In Vitro Bioactivity and Setting Times of White Portland Cement Combined with Different Radio Pacifying Agents

    Directory of Open Access Journals (Sweden)

    Coleman Nichola Jayne

    2017-01-01

    Full Text Available Commercial formulations based on 80:20 mixtures of Portland cement and bismuth oxide (a radiopacifying agent are used in dentistry as root-filling materials. This study compares the impact of two alternative radiopacifiers, barium sulphate and zirconium oxide, with that of bismuth oxide, on the setting times and bioactivity of white Portland cement. The findings indicate that bismuth oxide prolongs both the initial and final setting times of the cement, and that barium sulphate and zirconium oxide have no effect on this parameter. Hydroxyapatite (HA formed on the surfaces of all test samples within 7 days of exposure to simulated body fluid, indicating that they possess the potential to stimulate new hard tissue formation. Fourier transform infrared spectroscopy, the traditional technique for the identification of HA, was not appropriate for the analysis of these cement systems owing to the overlap of signals from each of the radiopacifiers with the characteristic P-O bending modes of HA in the 570 – 610 cm−1 region. In this respect, the P-O band at 965 cm−1 of HA in the Raman spectrum was found to be a suitable means of detection since it is discrete with respect to all signals arising from the radiopacifying agents and cement phases.

  17. Polyglutamate directed coupling of bioactive peptides for the delivery of osteoinductive signals on allograft bone

    Science.gov (United States)

    Culpepper, Bonnie K.; Bonvallet, Paul P.; Reddy, Michael S.; Ponnazhagan, Selvarangan; Bellis, Susan L.

    2012-01-01

    Allograft bone is commonly used as an alternative to autograft, however allograft lacks many osteoinductive factors present in autologous bone due to processing. In this study, we investigated a method to reconstitute allograft with osteoregenerative factors. Specifically, an osteoinductive peptide from collagen I, DGEA, was engineered to express a heptaglutamate (E7) domain, which binds the hydroxyapatite within bone mineral. Addition of E7 to DGEA resulted in 9× greater peptide loading on allograft, and significantly greater retention after a 5-day interval with extensive washing. When factoring together greater initial loading and retention, the E7 domain directed a 45-fold enhancement of peptide density on the allograft surface. Peptide-coated allograft was also implanted subcutaneously into rats and it was found that E7DGEA was retained in vivo for at least 3 months. Interestingly, E7DGEA peptides injected intravenously accumulated within bone tissue, implicating a potential role for E7 domains in drug delivery to bone. Finally, we determined that, as with DGEA, the E7 modification enhanced coupling of a bioactive BMP2-derived peptide on allograft. These results suggest that E7 domains are useful for coupling many types of bone-regenerative molecules to the surface of allograft to reintroduce osteoinductive signals and potentially advance allograft treatments. PMID:23182349

  18. Electrophoretic Deposition as a New Bioactive Glass Coating Process for Orthodontic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Kyotaro Kawaguchi

    2017-11-01

    Full Text Available This study investigated the surface modification of orthodontic stainless steel using electrophoretic deposition (EPD of bioactive glass (BG. The BG coatings were characterized by spectrophotometry, scanning electron microscopy with energy dispersive X-ray spectrometry, and X-ray diffraction. The frictional properties were investigated using a progressive load scratch test. The remineralization ability of the etched dental enamel was studied according to the time-dependent mechanical properties of the enamel using a nano-indentation test. The EPD process using alternating current produced higher values in both reflectance and lightness. Additionally, the BG coating was thinner than that prepared using direct current, and was completely amorphous. All of the BG coatings displayed good interfacial adhesion, and Si and O were the major components. Most BG-coated specimens produced slightly higher frictional forces compared with non-coated specimens. The hardness and elastic modulus of etched enamel specimens immersed with most BG-coated specimens recovered significantly with increasing immersion time compared with the non-coated specimen, and significant acid-neutralization was observed for the BG-coated specimens. The surface modification technique using EPD and BG coating on orthodontic stainless steel may assist the development of new non-cytotoxic orthodontic metallic appliances having satisfactory appearance and remineralization ability.

  19. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    Science.gov (United States)

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  20. Peptidome characterization and bioactivity analysis of donkey milk.

    Science.gov (United States)

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2015-04-24

    Donkey milk is an interesting commercial product for its nutritional values, which make it the most suitable mammalian milk for human consumption, and for the bioactivity associated with it and derivative products. To further mine the characterization of donkey milk, an extensive peptidomic study was performed. Two peptide purification strategies were compared to remove native proteins and lipids and enrich the peptide fraction. In one case the whole protein content was precipitated by organic solvent using cold acetone. In the other one the precipitation of the most abundant milk proteins, caseins, was performed under acidic conditions by acetic acid at pH4.6, instead. The procedures were compared and proved to be partially complementary. Considered together they provided 1330 peptide identifications for donkey milk, mainly coming from the most abundant proteins in milk. The bioactivity of the isolated peptides was also investigated, both by angiotensin-converting-enzyme inhibitory and antioxidant activity assays and by bioinformatics, proving that the isolated peptides did have the tested biological activities. The rationale behind this study is that peptides in food matrices often play an important biological role and, despite the extensive study of the protein composition of different samples, they remain poorly characterized. In fact, in a typical shotgun proteomics study endogenous peptides are not properly characterized. In proteomics workflows one limiting point is the isolation process: if it is specific for the purification of proteins, it often comprises a precipitation step which aims at isolating pure protein pellets and remove unwonted interferent compounds. In this way endogenous peptides, which are not effectively precipitated as well as proteins, are removed too and not analyzed at the end of the process. Moreover, endogenous peptides do often originate from precursor proteins, but in phenomena which are independent of the shotgun digestion