WorldWideScience

Sample records for bioaccumulation

  1. OPTIMIZATION OF Ni BIOACCUMULATION BY SYNECHCOCCUS

    Institute of Scientific and Technical Information of China (English)

    Haoran Li; Zhuwei Du; Jianglong Liang; Huiqing Bai; Yali Feng

    2006-01-01

    Influencing factors on bioaccumulation of Ni by Synechcoccus were studied in this paper. The equilibration time of Ni bioaccumulation was about 80 min in aqueous solution. Bioaccumulation quantity reached maximum when mass ratio of Ni to dry weight concentration of Synechcoccus was 16-18%. Bioaccumulation quantity increased with increasing pH. The optimum pH was 9-10 and higher pH led to precipitation of Ni(OH)2. Bioaccumulation quantity was also influenced by temperature and light intensity reaching their optima at 35℃ and 3 000 Ix respectively. Bioaccumulation of nonliving algae was larger than that of living algae.

  2. Review of existing terrestrial bioaccumulation models and terrestrial bioaccumulation modeling needs for organic chemicals

    Science.gov (United States)

    Protocols for terrestrial bioaccumulation assessments are far less-developed than for aquatic systems. This manuscript reviews modeling approaches that can be used to assess the terrestrial bioaccumulation potential of commercial organic chemicals. Models exist for plant, inver...

  3. Mercury bioaccumulation in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Cinnirella S.

    2013-04-01

    Full Text Available This study details mercury pollution within the food chain of the Mediterranean by analysing the most comprehensive mercury dataset available for biota and water measurements. In this study we computed a bioaccumulation factor (BAF for datasets in the existing mercury-related scientific literature, in on-going programs, and in past measurement campaigns. Preliminary results indicate a major lack of information, making the outcome of any assessment very uncertain. Importantly, not all marine eco-regions are (or have ever been covered by measurement campaigns. Most lacking is information associated with the South-Eastern part of the Mediterranean, and in several eco-regions it is still impossible to reconstruct a trophic net, as the required species were not accounted for when mercury measurements were taken. The datasets also have additional temporal sampling problems, as species were often not sampled systematically (but only sporadically during any given sampling period. Moreover, datasets composed of mercury concentrations in water also suffer from similar geographic limitations, as they are concentrated in the North-Western Mediterranean. Despite these concerns, we found a very clear bioaccumulation trend in 1999, the only year where comprehensive information on both methylmercury concentrations in water and biota was available.

  4. Iron bioaccumulation in mycelium of Pleurotus ostreatus.

    Science.gov (United States)

    Almeida, Sandra M; Umeo, Suzana H; Marcante, Rafael C; Yokota, Meire E; Valle, Juliana S; Dragunski, Douglas C; Colauto, Nelson B; Linde, Giani A

    2015-03-01

    Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatus mycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L (-1) and glucose at 28.45 g L (-1) . The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L (-1) or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg (-1) produced with iron addition of 300 mg L (-1) . The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L (-1) of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron.

  5. Iron bioaccumulation in mycelium of Pleurotus ostreatus

    Directory of Open Access Journals (Sweden)

    Sandra M. Almeida

    2015-03-01

    Full Text Available Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatusmycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L−1 and glucose at 28.45 g L−1. The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L−1 or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg−1 produced with iron addition of 300 mg L−1. The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L−1 of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron.

  6. Metals Bioaccumulation Mechanism in Neem Bark.

    Science.gov (United States)

    Krishnani, Kishore K; Boddu, Veera M; Moon, Deok Hyun; Ghadge, S V; Sarkar, Biplab; Brahmane, M P; Choudhary, K; Kathiravan, V; Meng, Xiaoguang

    2015-09-01

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as Hg(2+) Neem bark can be used as bioindicators, bioaccumulators and biomonitors while determining environmental pressures. Metal bioaccumulative properties and structural investigation of plant bark has potential in providing quantitative information on the metal contamination in the surrounding environment.

  7. Use of the bioaccumulation factor to screen chemicals for bioaccumulation potential.

    Science.gov (United States)

    Costanza, Jed; Lynch, David G; Boethling, Robert S; Arnot, Jon A

    2012-10-01

    The fish bioconcentration factor (BCF), as calculated from controlled laboratory tests, is commonly used in chemical management programs to screen chemicals for bioaccumulation potential. The bioaccumulation factor (BAF), as calculated from field-caught fish, is more ecologically relevant because it accounts for dietary, respiratory, and dermal exposures. The BCFBAF™ program in the U.S. Environmental Protection Agency's Estimation Programs Interface Suite (EPI Suite™ Ver 4.10) screening-level tool includes the Arnot-Gobas quantitative structure-activity relationship model to estimate BAFs for organic chemicals in fish. Bioaccumulation factors can be greater than BCFs, suggesting that using the BAF rather than the BCF for screening bioaccumulation potential could have regulatory and resource implications for chemical assessment programs. To evaluate these potential implications, BCFBAF was used to calculate BAFs and BCFs for 6,034 U.S. high- and medium-production volume chemicals. The results indicate no change in the bioaccumulation rating for 86% of these chemicals, with 3% receiving lower and 11% receiving higher bioaccumulation ratings when using the BAF rather than the BCF. All chemicals that received higher bioaccumulation ratings had log K(OW ) values greater than 4.02, in which a chemical's BAF was more representative of field-based bioaccumulation than its BCF. Similar results were obtained for 374 new chemicals. Screening based on BAFs provides ecologically relevant results without a substantial increase in resources needed for assessments or the number of chemicals screened as being of concern for bioaccumulation potential.

  8. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates

    NARCIS (Netherlands)

    Sidney, L.A.; Diepens, N.J.; Guo, X.; Koelmans, A.A.

    2016-01-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We us

  9. Bioaccumulation of Arsenic by Fungi

    Directory of Open Access Journals (Sweden)

    Ademola O. Adeyemi

    2009-01-01

    Full Text Available Problem statement: Arsenic is a known toxic element and its presence and toxicity in nature is a worldwide environmental problem. The use of microorganisms in bioremediation is a potential method to reduce as concentration in contaminated areas. Approach: In order to explore the possible bioremediation of this element, three filamentous fungi-Aspergillus niger, Serpula himantioides and Trametes versicolor were investigated for their potential abilities to accumulate (and possibly solubilize arsenic from an agar environment consisting of non buffered mineral salts media amended with 0.2, 0.4, 0.6 and 0.8% (w/v arsenopyrite (FeAsS. Growth rates, dry weights, arsenic accumulation and oxalate production by the fungi as well as the pH of the growth media were all assessed during this study. Results: There was no visible solubilization of FeAsS particles underneath any of the growing fungal colonies or elsewhere in the respective agar plates. No specific patterns of growth changes were observed from the growth ratios of the fungi on agar amended with different amounts of FeAsS although growth of all fungi was stimulated by the incorporation of varying amounts of FeAsS into the agar with the exception of A. niger on 0.4% (w/v amended agar and T. versicolor on 0.8% (w/v amended agar. The amounts of dry weights obtained for all three fungi also did not follow any specific patterns with different amounts of FeAsS and the quantities obtained were in the order A. niger > S. himantioides > T. versicolor. All fungi accumulated as in their biomasses with all amounts of FeAsS although to varying levels and T. versicolor was the most effective with all amounts of FeAsS while A. niger was the least effective. Conclusion: The accumulation of arsenic in the biomasses of the test fungi as shown in this study may suggested a role for fungi through their bioaccumulating capabilities as agents in the possible bioremediation of arsenic contaminated environments.

  10. Metals bioaccumulation mechanism in neem bark

    Science.gov (United States)

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as H...

  11. Bioaccumulation of decamethylpentacyclosiloxane (D5): A review.

    Science.gov (United States)

    Gobas, Frank A P C; Powell, David E; Woodburn, Kent B; Springer, Tim; Huggett, Duane B

    2015-12-01

    Decamethylpentacyclosiloxane (D5) is a widely used, high-production volume personal care product with an octanol-water partition coefficient (log K(OW)) of 8.09. Because of D5's high K(OW) and widespread use, it is subject to bioaccumulation assessments in many countries. The present study provides a compilation and an in-depth, independent review of bioaccumulation studies involving D5. The findings indicate that D5 exhibits depuration rates in fish and mammals that exceed those of extremely hydrophobic, nonbiotransformable substances; that D5 is subject to biotransformation in mammals and fish; that observed bioconcentration factors in fish range between 1040 L/kg and 4920 L/kg wet weight in laboratory studies using non-radiolabeled D5 and between 5900 L/kg and 13 700 L/kg wet weight in an experiment using C(14) radiolabeled D5; and that D5 was not observed to biomagnify in most laboratory experiments and field studies. Review of the available studies shows a high degree of internal consistency among findings from different studies and supports a broad comprehensive approach in bioaccumulation assessments that includes information from studies with a variety of designs and incorporates multiple bioaccumulation measures in addition to the K(OW) and bioconcentration factor.

  12. Review of existing terrestrial bioaccumulation models and terrestrial bioaccumulation modeling needs for organic chemicals.

    Science.gov (United States)

    Gobas, Frank A P C; Burkhard, Lawrence P; Doucette, William J; Sappington, Keith G; Verbruggen, Eric M J; Hope, Bruce K; Bonnell, Mark A; Arnot, Jon A; Tarazona, Jose V

    2016-01-01

    Protocols for terrestrial bioaccumulation assessments are far less-developed than for aquatic systems. This article reviews modeling approaches that can be used to assess the terrestrial bioaccumulation potential of commercial organic chemicals. Models exist for plant, invertebrate, mammal, and avian species and for entire terrestrial food webs, including some that consider spatial factors. Limitations and gaps in terrestrial bioaccumulation modeling include the lack of QSARs for biotransformation and dietary assimilation efficiencies for terrestrial species; the lack of models and QSARs for important terrestrial species such as insects, amphibians and reptiles; the lack of standardized testing protocols for plants with limited development of plant models; and the limited chemical domain of existing bioaccumulation models and QSARs (e.g., primarily applicable to nonionic organic chemicals). There is an urgent need for high-quality field data sets for validating models and assessing their performance. There is a need to improve coordination among laboratory, field, and modeling efforts on bioaccumulative substances in order to improve the state of the science for challenging substances.

  13. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

    2014-03-01

    Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future.

  14. An investigation into ciguatoxin bioaccumulation in sharks.

    Science.gov (United States)

    Meyer, Lauren; Capper, Angela; Carter, Steve; Simpfendorfer, Colin

    2016-09-01

    Ciguatoxins (CTXs) produced by benthic Gambierdiscus dinoflagellates, readily biotransform and bioaccumulate in food chains ultimately bioconcentrating in high-order, carnivorous marine species. Certain shark species, often feeding at, or near the top of the food-chain have the ability to bioaccumulate a suite of toxins, from both anthropogenic and algal sources. As such, these apex predators are likely sinks for CTXs. This assumption, in conjunction with anecdotal knowledge of poisoning incidents, several non-specific feeding trials whereby various terrestrial animals were fed suspect fish flesh, and a single incident in Madagascar in 1994, have resulted in the widespread acceptance that sharks may accumulate CTXs. This prompted a study to investigate original claims within the literature, as well as investigate CTX bioaccumulation in the muscle and liver of 22 individual sharks from nine species, across four locations along the east coast of Australia. Utilizing an updated ciguatoxin extraction method with HPLC-MS/MS, we were unable to detect P-CTX-1, P-CTX-2 or P-CTX-3, the three primary CTX congeners, in muscle or liver samples. We propose four theories to address this finding: (1) to date, methods have been optimized for teleost species and may not be appropriate for elasmobranchs, or the CTXs may be below the limit of detection; (2) CTX may be biotransformed into elasmobranch-specific congeners as a result of unique metabolic properties; (3) 22 individuals may be an inadequate sample size given the rare occurrence of high-order ciguatoxic organisms and potential for CTX depuration; and (4) the ephemeral nature and inconsistent toxin profiles of Gambierdiscus blooms may have undermined our classifications of certain areas as CTX hotspots. These results, in combination with the lack of clarity within the literature, suggest that ciguatoxin bioaccumulation in sharks remains elusive, and warrants further investigation to determine the dynamics of toxin production

  15. BIOACCUMULATION OF HEAVY METALS IN FORAGE GRASSES

    Directory of Open Access Journals (Sweden)

    Adam Łukowski

    2017-02-01

    Full Text Available The aim of this study was estimation of bioaccumulation of heavy metals (Pb, Ni, Cu, Zn, Cd in forage grasses from the area of Podlasie Province based on the bioaccumulation factor. In the soil samples the pH, organic carbon content and CEC were determined. Determination of heavy metals contents in plant and soil material was carried out by flame atomic absorption spectrometry. Soils were characterized mainly by acidic reaction, high cation exchange capacity and organic carbon content. The content of heavy metals in studied forage grasses did not exceed the polish regulations related to plant usage for feeding purposes, except the lead content in seven samples. Coefficients of variation for particular heavy metals content in studied forage grasses were as follows: Pb - 37%, Ni - 63%, Cu - 30%, Zn - 34%, Cd - 48%. The highest bioaccumulation factor was found for nickel and grass from the village Remieńkiń (11.54, while the lowest for cadmium and grass from the village Jemieliste (0.04.

  16. Bioaccumulation of Polybrominated Diphenyl Ethers by Tubifex Tubifex.

    Science.gov (United States)

    Kolar, Boris; Arnuš, Lovro; Križanec, Boštjan; Peijnenburg, Willie; Kos Durjava, Mojca

    2016-01-01

    The selective uptake of polybrominated diphenyl ethers (PBDEs) by oligochaetes makes it possible to assess the bioaccumulation of individual congeners in commercial mixtures. Twenty-one congeners from three BDE commercial mixtures (TBDE-71, TBDE-79 and TBDE-83R) and as individual congeners (BDE-77, BDE-126, BDE-198 and BDE-204) were tested on Tubifex tubifex in accordance with the OECD TG 315 "Bioaccumulation in Sediment-Dwelling Benthic Oligochaetes". All the congeners that were spiked in the sediment were detected at the end of the uptake phase and at the end of the experiment. The bioaccumulation factor (BAF), the kinetic bioaccumulation factor (BAFK) and the biotasediment accumulation factor (BSAF) were calculated, and indicate a high bioaccumulation potential for tri- to hexa-BDEs and a lower bioaccumulation potential for hepta- to deca-BDEs. The penta-homologues BDE-99 and BDE-100 showed the highest BSAFs of 4.84 and 5.85 (BAFs of 7.34 and 9.01), while the nona- and deca-BDEs exhibit bioaccumulation in up to one-order-lower concentrations. The change in the bioaccumulation potential between the group of trito hexa-BDEs and hepta- to deca-BDEs correlated with the generally accepted molecular-mass threshold for the molecular transition through biological membranes (700 g/mol).

  17. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    Directory of Open Access Journals (Sweden)

    Betina Kozlowsky-Suzuki

    2011-12-01

    Full Text Available Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis, chronic effects (e.g., reduction in growth and fecundity, biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases, and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.

  18. A protocell design for bioaccumulation applications

    CERN Document Server

    von Hegner, Ian

    2015-01-01

    This article provides a specific example of recombinant cell and protocell technology, moving from what is presently known to suggesting how novel application of existing methodologies could be utilized to design a complex synthetic system in form of a self-sufficient light empowered protocell. A practical application of protocells using a primary example of desalination in water treatment is given, followed by a more general approach to bioaccumulation and bio-diagnostics, outlining the possibilities associated with applications of protocells. The key hypothesis is that the inside-negative electrochemical membrane potential generated by chloride pump activity via halorhodopsin could also be utilized to drive the accumulation of cations into a protocell. Thus, the functional expression of halorhodopsin could energize proton-coupled uptake of substances or metals through a selective cotransport channel for a number of applications in biotechnology, molecular medicine, and water biotechnology.

  19. Bioaccumulation dynamics of polychlorinated biphenyls (PCBs) and organochlorine pesticides

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bioaccumulation dynamics of polychlorinated biphenyls (PCBs) and organochlorine pesticides was examined in young-of-the-year bluefish from seven sub-estuaries of New...

  20. BIOACCUMULATION OF HEAVY METALS BY BACILLUS MEGATERIUM FROM PHOSPHOGYPSUM WASTE

    Directory of Open Access Journals (Sweden)

    IOANA ADRIANA STEFANESCU

    2015-05-01

    Full Text Available The aim of present study was to characterize the bioaccumulation capacity of heavy metals by Bacillus megaterium from phosphogypsum waste. The Bacillus megaterium strain (BM30 was isolated from soil near the phosphogypsum (PG dump. For the bioaccumulation quantification produced by BM30 strain were used three experimental treatments respectively with 2, 6 and 10 gL-1 PG. Cellular biomass samples were collected punctually at ages corresponding to the three stages of the development cycle of the microorganism: exponential phase, stationary phase and decline phase and the heavy metals concentrations were measured by atomic absorption spectroscopy. The bioaccumulation yields in cell biomass, relative to the total amount of analyte introduced in the reaction medium were between 20 - 80 %, the lowest value was recorded by Cu and highest by Mn. The study results indicated that the isolated strain near the dump PG, BM30, bioaccumulate heavy metals monitored in cell biomass in the order Cu > Fe > Zn = Mn.

  1. Bioaccumulation of trace elements by Avicennia marina

    Institute of Scientific and Technical Information of China (English)

    Kandasamy Kathiresan; Kandasamy Saravanakumar; Pandiyan Mullai

    2014-01-01

    Objective: To analyze the concentrations of 12 micro-nutrients (Al, B, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) in different plant parts of Avicennia marina and its rhizosphere soil of the south east coast of India. Methods: The samples were acid digested, then analyzed by using inductively coupled plasma system (ICP-Optical Emission Spectrophotometer). Results: Levels of metals were found in the decreasing order: Cd>Co>Ni>Pb>B>Cr>Zn>Mg>Mn>Cu>Fe>Al. The soil held more levels of metals than plant parts, but within the permissible limits of concentration. Bark and root accumulated higher levels of trace elements in a magnitude of 10-80 folds than other plant parts. The overall bioaccumulation factor in the sampling sites of Vellar, Pichavaram and Cuddalore was 2.88, 1.42 0.47 respectively. Essential elements accumulate high in mature mangroves forest while non-essential elements accumulate high in the industrially polluted mangroves. Conclusions:The ratio between essential and non-essential elements was found higher in young mangrove forest than that in mature mangrove forest and polluted mangrove areas. Thus, the ratio of accumulation can be used as an index of the growth and pollution status of mangroves.

  2. Bioaccumulation of trace elements by Avicennia marina

    Directory of Open Access Journals (Sweden)

    Kandasamy Kathiresan

    2014-11-01

    Full Text Available Objective: To analyze the concentrations of 12 micro-nutrients (Al, B, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn in different plant parts of Avicennia marina and its rhizosphere soil of the south east coast of India. Methods: The samples were acid digested, then analyzed by using inductively coupled plasma system (ICP-Optical Emission Spectrophotometer. Results: Levels of metals were found in the decreasing order: Cd>Co>Ni>Pb>B >Cr>Zn>Mg>Mn>Cu>Fe>Al. The soil held more levels of metals than plant parts, but within the permissible limits of concentration. Bark and root accumulated higher levels of trace elements in a magnitude of 10-80 folds than other plant parts. The overall bioaccumulation factor in the sampling sites of Vellar, Pichavaram and Cuddalore was 2.88, 1.42 0.47 respectively. Essential elements accumulate high in mature mangroves forest while non-essential elements accumulate high in the industrially polluted mangroves. Conclusions: The ratio between essential and non-essential elements was found higher in young mangrove forest than that in mature mangrove forest and polluted mangrove areas. Thus, the ratio of accumulation can be used as an index of the growth and pollution status of mangroves.

  3. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    Science.gov (United States)

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests.

  4. Uranium bioaccumulation in a freshwater ecosystem: Impact of feeding ecology

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Lisa D., E-mail: lisakraemer@trentu.ca [Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8 (Canada); Evans, Douglas [Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8 (Canada)

    2012-11-15

    Uranium bioaccumulation in a lake that had been historically affected by a U mine and (2) to use a combined approach of gut content examination and stable nitrogen and carbon isotope analysis to determine if U bioaccumulation in fish was linked to foodweb ecology. We collected three species of fish: smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus), in addition to several invertebrate species including freshwater bivalves (family: Sphaeriidae), dragonfly nymphs (order: Odonata), snails (class: Gastropoda) and zooplankton (family: Daphniidae). Results showed significant U bioaccumulation in the lake impacted by historical mining activities. Uranium accumulation was 2-3 orders of magnitude higher in invertebrates than in the fish species. Within fish, U was measured in operculum (bone), liver and muscle tissue and accumulation followed the order: operculum > liver > muscle. There was a negative relationship between stable nitrogen ratios ({sup 15}N/{sup 14}N) and U bioaccumulation, suggesting U biodilution in the foodweb. Uranium bioaccumulation in all three tissues (bone, liver, muscle) varied among fish species in a consistent manner and followed the order: bluegill > yellow perch > smallmouth bass. Collectively, gut content and stable isotope analysis suggests that invertebrate-consuming fish species (i.e. bluegill) have the highest U levels, while fish species that were mainly piscivores (i.e. smallmouth bass) have the lowest U levels. Our study highlights the importance of understanding the feeding ecology of fish when trying to predict U accumulation.

  5. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  6. Bioaccumulation of dissociating substances; Bioakkumulation dissoziierender Stoffe

    Energy Technology Data Exchange (ETDEWEB)

    Butte, W.; Plegge, V.; Schettgen, C.; Willenborg, R.; Zauke, G.P. [Oldenburg Univ. (Germany). Fachbereich Chemie; Kuhlmann, H. [Oldenburg Univ. (Germany). Fachbereich Chemie]|[Bundesforschungsanstalt fuer Fischerei, Ahrensburg (Germany). Inst. fuer Fischereioekologie

    2000-02-01

    Bioconcentration factors (BCF) are important parameters to assess the environmental fate of chemicals. In this report we describe the determination of BCF for Triclosan, a trichlorophenoxy phenol, for some dissociating herbicides like Dichlorprop, MCPA, Mecoprop, Triclopyr and Picloram as well as for selected pyrethroids like Cyfluthrin, Cypermethrin, Deltamethrin and Permethrin. It was shown that BCF and rate constants for the uptake of Triclosan are decreasing with an increasing pH of the test water. The BCF for the herbicides evaluated are all below 10, confirming data already reported for herbicides of similar structure. Thus, for these compounds there is no tendency to bioaccumulate. Furthermore, there was no correlation between BCF and n-octanol/water partition coefficients or dissociation constants. BCF of pyrethroids were between 860 and 2200. For the analysis of pyrenthroid metabolites a gas chromatographic method using daughter-ion mass spectrometry for detection was established. The detection limit of this method was 1 {mu}g/kg, but metabolites could not be detected in fish during the bioaccumulation experiments. The high toxicity of pyrethroids for fish was approved; LC50-values were between 1 and 5 {mu}g/l. To evaluate physiological effects in fish, produced by pyrethroids, EROD activities in preparations of trout liver were measured. No increase in activity could be detected, but there was a tendency to lower values. We think this to result from the high toxicity of pyrethroids that could have impaired this enzyme system. (orig.) [German] Biokonzentrationsfaktoren (BCF) sind wichtige Parameter, mit Hilfe derer das Umweltverhalten von Chemikalien abgeschaetzt werden kann. Im Rahmen dieses Forschungsvorhabens wurden BCF-Werte fuer Triclosan, ein Trichlorphenoxyphenol, fuer einige dissoziierende Herbizide: Dichlorprop, MCPA, Mecoprop, Triclopyr und Picloram sowie fuer ausgewaehlte Pyrethroide: Cyfluthrin, Cypermethrin, Deltamethrin und Permethrin

  7. Mercury bioaccumulation in a stream network.

    Science.gov (United States)

    Tsui, Martin Tsz Ki; Finlay, Jacques C; Nater, Edward A

    2009-09-15

    Mercury (Hg) contamination is common in stream and river ecosystems, but factors mediating Hg cycling in the flowing waters are much less understood than inthe lakes and wetlands. In this study, we examined the spatial patterns of methylmercury (MeHg) concentrations in the dominant groups of aquatic insect larvae across a network of streams (drainage area ranging from 0.5 to 150 km2) in northern California during summer baseflow conditions. We found that, with the exception of water striders, all invertebrate groups showed significant (p South Fork Eel River, had the highest aqueous MeHg concentration (unfiltered: 0.13-0.17 ng L(-1)) while most of the upstream tributaries had aqueous MeHg concentrations close to or below the established detection limits (0.02 ng L(-1)). A filamentous alga abundant in South Fork Eel River (Cladophora glomerata) had an exceptionally high fraction of total-Hg as MeHg (i.e., %MeHg from 50-100%). Since other potential hotspots of in-stream Hg methylation (e.g., surface sediment and deep pools) had %MeHg lower than or similar to surface water (approximately 14%), we hypothesize that Cladophora and possibly other autotrophs may serve as hotspots of in-stream MeHg production in this bedrock-dominated stream. Recent studies in other regions concluded that wetland abundance in the watershed is the predominant factor in governing Hg concentrations of stream biota. However, our results show that in the absence of wetlands, substantial spatial variation of Hg bioaccumulation can arise in stream networks due to the influence of in-stream processes.

  8. Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment

    DEFF Research Database (Denmark)

    Schäfer, Sabine; Buchmeier, Georgia; Claus, Evelyn;

    2015-01-01

    Bioaccumulation, the accumulation of a chemical in an organism relative to its level in the ambient medium, is of major environmental concern. Thus, monitoring chemical concentrations in biota are widely and increasingly used for assessing the chemical status of aquatic ecosystems. In this paper......, various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental...... risk assessment. Assessing bioaccumulation in the field is challenging since many factors have to be considered that can affect the accumulation of a chemical in an organism. Passive sampling can complement biota monitoring since samplers with standardised partition properties can be used over a wide...

  9. Bioaccumulation of heavy metals in two wet retention ponds

    DEFF Research Database (Denmark)

    Søberg, Laila C.; Vollertsen, Jes; Blecken, Godecke-Tobias;

    2016-01-01

    Metal accumulation in stormwater ponds may contaminate the inhabiting fauna, thus jeopardizing their ecosystem servicing function. We evaluated bioaccumulation of metals in natural fauna and caged mussel indicator organisms in two wet retention ponds. Mussel cages were distributed throughout...... the ponds to detect bioaccumulation gradients and obtain a time-integrated measure of metal bioavailability. We further investigated if sediment metal concentrations correlate with those in the fauna and mussels. Metal concentrations in the fauna tended to be higher in the ponds than in a reference lake...

  10. Sediment bioaccumulation test with Lumbriculus variegatus: Effects of feeding

    Science.gov (United States)

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  11. Optimizing fish sampling for fish–mercury bioaccumulation factors

    Science.gov (United States)

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop total maximum daily load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to s...

  12. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    Science.gov (United States)

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  13. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading

    Science.gov (United States)

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  14. Improving plant bioaccumulation science through consistent reporting of experimental data.

    Science.gov (United States)

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments.

  15. Estimation methods for bioaccumulation in risk assessment of organic chemicals.

    NARCIS (Netherlands)

    Jager, D.T.; Hamers, T.

    1997-01-01

    The methodology for estimating bioaccumulation of organic chemicals is evaluated. This study is limited to three types of organisms: fish, earthworms and plants (leaf crops, root crops and grass). We propose a simple mechanistic model for estimating BCFs which performs well against measured data. To

  16. Estimation methods for bioaccumulation in risk assessment of organic chemicals

    NARCIS (Netherlands)

    Jager DT; Hamers T; ECO

    1997-01-01

    The methodology for estimating bioaccumulation of organic chemicals is evaluated. This study is limited to three types of organisms: fish, earthworms and plants (leaf crops, root crops and grass). We propose a simple mechanistic model for estimating BCFs which performs well against measured data. To

  17. Bioaccumulation factors in aquatic ecosystems. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Sara; Meili, Markus; Bergstroem, Ulla [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    2002-07-01

    The calculated concentrations of radionuclides in organisms are often obtained by means of bioaccumulation factors (BAF) that describe the internal concentration relative to an external concentration e.g. in the abiotic environments at steady-state conditions. Such factors are often used when modelling the dose to man from radio-nuclides released to the biosphere. Values of bioaccumulation factors vary widely in magnitude among elements, organisms, and environmental conditions which is not always considered. In order to relate the bioaccumulation factors for some radionuclides to environmental conditions as well as to the trophic level of the organism of concern we have compiled an extensive database with bioaccumulation factors (about 5,500 values) together with information on some environmental conditions. The data for nine radionuclides has been extracted and examined. A comparison between the bioaccumulation factors found in this study and values given in literature by IAEA and NCRP shows that the ranges presented in this study are generally somewhat higher with the exception of BAF for molybdenum in freshwater fish which is of the same order of magnitude. This is startling and calls for a thorough research. The amount of readily accessible and reliable values of BAF is limited, often because basic information such as e.g. units and part of organism examined, is not reported. This is surprising and also unfortunate for those who need such data for use in generic or specific models. A major update of recommended values appears to be necessary for many elements to account for the development of analytical methods and experiences from case studies over the past two decades.

  18. Bioaccumulation of decamethylcyclopentasiloxane in perch in Swedish lakes.

    Science.gov (United States)

    Kierkegaard, Amelie; Bignert, Anders; McLachlan, Michael S

    2013-10-01

    Decamethylcyclopentasiloxane (D5), a high production volume chemical used in personal care products, enters the environment both via air and sewage treatment plant (STP) recipients. It has been found in fish, and there is concern that it may be a bioaccumulative substance. In this work D5 was analyzed in perch from six Swedish lakes that did not receive STP effluent, and in perch and sediment from six lakes that received STP effluent. In the lakes receiving the STP effluent, the D5 concentrations in sediment varied over three orders of magnitude and were correlated with the number of persons connected to the STP normalized to the surface area of the receiving body. In the lakes not receiving effluent, the D5 levels in perch were all below the LOQ, while D5 was above the LOQ in almost all perch from lakes that received effluent. The D5 concentrations in perch and sediment from the lakes receiving STP effluent were correlated. This shows that STP effluent is a much more important source of D5 to aquatic ecosystems than atmospheric deposition, and that the risk of adverse effects of D5 on aquatic life will be greatest in small recipients receiving large amounts of STP effluent. The bioaccumulation of D5 was compared to that of PCB 180 on the basis of multimedia bioaccumulation factors (mmBAFs), which describe the fraction of the contaminant present in the whole aquatic environment (i.e. water and surface sediment) that is transferred to the fish. In four of the six lakes the mmBAF of D5 was >0.3 of the mmBAF of PCB 180. Given that PCB 180 is a known highly bioaccumulative chemical, this indicates that the bioaccumulation of D5 in perch is considerable.

  19. The Ins and Outs of Bioaccumulation: Metal Bioaccumulation Kinetics in Soil Invertebrates in Relation to Availability and Physiology

    NARCIS (Netherlands)

    Vijver, M.G.

    2005-01-01

    Bioaccumulation is the nett result of a metal influx influenced by the environment and an outflux driven by the animal. In this thesis two physiological different invertebrate species, the earthworm and isopod are studied. The focus of the research was on the route of uptake, the quantification of

  20. Bioaccumulation of Cs-137 and Co-57 by marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, H.E. [Inst. of Marine Research, Bergen (Norway); Stupakoff, I.; Fisher, N.S. [State Univ. of New York, Marine Sciences Research Center, Stone Brook, NY (United States)

    1999-11-01

    Under controlled laboratory conditions we have examined the bioaccumulation of Cs-137 and Co-57 in three prymnesiophytes, the coccolithophorid Emiliania huxleyi and the non-calcareous species Isochrysis galbana and Phaeocystis globosa, and two diatoms Skeletonema costatum and Thalassiosira pseudonana. We measured uptake in growing and non-growing cells, and determined concentration factors on both volume and dry weight basis. For Co-57 uptake in non-growing cells, volume concentration factors (VCF) at equilibrium ranged from 0.2{sup *}10{sup 3} for Emiliana huxleyi to 4{sup *}10{sup 3} for the diatom Thalassiosira pseudonana. For Cs-137 uptake in non-growing cells the VCFs were close to zero. The results suggest that, in contrast to Co, the cycling and bioaccumulation in animals of Cs in marine systems is unlikely to be affected by primary producers. (au)

  1. Mercury and Arsenic Bioaccumulation and Eutrophication in Baiyangdian Lake, China

    OpenAIRE

    Chen, C. Y.; Pickhardt, P.C.; Xu, M.Q.; Folt, C.L.

    2008-01-01

    Hg and As are widespread contaminants globally and particularly in Asia. We conducted a field study in Baiyangdian Lake, the largest lake in the North China Plain, to investigate bioaccumulation and trophic transfer of potentially toxic metals (total mercury and arsenic) in sites differing in proximity from the major point sources of nutrients and metals. Hg concentrations in fish and As concentrations in water are above critical threshold levels (US Environmental Protection Agency based) con...

  2. Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation.

    Science.gov (United States)

    Ward, Darren M; Nislow, Keith H; Folt, Carol L

    2010-05-01

    Mercury is a ubiquitous contaminant in aquatic ecosystems, posing a significant health risk to humans and wildlife that eat fish. Mercury accumulates in aquatic food webs as methylmercury (MeHg), a particularly toxic and persistent organic mercury compound. While mercury in the environment originates largely from anthropogenic activities, MeHg accumulation in freshwater aquatic food webs is not a simple function of local or regional mercury pollution inputs. Studies show that even sites with similar mercury inputs can produce fish with mercury concentrations ranging over an order of magnitude. While much of the foundational work to identify the drivers of variation in mercury accumulation has focused on freshwater lakes, mercury contamination in stream ecosystems is emerging as an important research area. Here, we review recent research on mercury accumulation in stream-dwelling organisms. Taking a hierarchical approach, we identify a suite of characteristics of individual consumers, food webs, streams, watersheds, and regions that are consistently associated with elevated MeHg concentrations in stream fish. We delineate a conceptual, mechanistic basis for explaining the ecological processes that underlie this vulnerability to MeHg. Key factors, including suppressed individual growth of consumers, low rates of primary and secondary production, hydrologic connection to methylation sites (e.g., wetlands), heavily forested catchments, and acidification are frequently associated with increased MeHg concentrations in fish across both streams and lakes. Hence, we propose that these interacting factors define a syndrome of characteristics that drive high MeHg production and bioaccumulation rates across these freshwater aquatic ecosystems. Finally, based on an understanding of the ecological drivers of MeHg accumulation, we identify situations when anthropogenic effects and management practices could significantly exacerbate or ameliorate MeHg accumulation in stream fish.

  3. BIOACCUMULATION DYNAMICS OF HEAVY METALS IN Oreochromis nilotycus: PREDICTED THROUGH A BIOACCUMULATION MODEL CONSTRUCTED BASED ON BIOTIC LIGAND MODEL (BLM)

    OpenAIRE

    Noegrohati, Sri

    2010-01-01

    In estuarine ecosystem, sediments are not only functioning as heavy metal scavenger, but also as one of potential sources for heavy metals to the ecosystem. Due the capability of aquatic organisms to accumulate heavy metals, there is possibility of heavy metals to exert their toxic effect towards the organisms and other organisms positioned in higher trophic level, such as fish, and further to human beings. To understand the different processes of heavy metal bioaccumulation in a dynamic mann...

  4. BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1

    Science.gov (United States)

    BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...

  5. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms.

    NARCIS (Netherlands)

    Muijs, B.; Jonker, M.T.O.

    2010-01-01

    Petroleum hydrocarbons (oils) are ubiquitous in the aquatic environment, and adequate risk assessment is thus essential. Bioaccumulation plays a key role in risk assessment, but the current knowledge on bioaccumulation of oils is limited. Therefore, this process was studied in detail, using the aqua

  6. Effects of sedimentary soot-like materials on bioaccumulation and sorption of polychlorinated biphenyls

    NARCIS (Netherlands)

    Jonker, M.T.O.; Hoenderboom, A.M.; Koelmans, A.A.

    2004-01-01

    Bioaccumulation of hydrophobic organic chemicals from sediments containing soot or sootlike materials has been hypothesized to be limited by strong sorption of the chemicals to the soot matrixes. To test this hypothesis, we quantified bioaccumulation of 11 polychlorinated biphenyls (PCBs) into the a

  7. Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae.

    Science.gov (United States)

    Liu, Chen; LV, Xiao Tian; Zhu, Wen Xue; QU, Hao Yang; Gao, Yong Xin; Guo, Bao Yuan; Wang, Hui Li

    2013-12-01

    The enantioselective bioaccumulation of diniconazole in Tenebrio molitor Linne larva was investigated with liquid chromatography tandem mass spectrometry based on the ChiralcelOD-3R[cellulose tri-(3,5-dimethylphenyl carbamate)] column. In this study we documented the effects of dietary supplementation with wheat bran contaminated by racemic diniconazole at two dose levels of 20 mg kg(-1) and 2 mg kg(-1) (dry weight) in Tenebrio molitor. The results showed that both doses of diniconazole were taken up by Tenebrio molitor rapidly in the first few days, the concentrations of R-enantiomer and S-enantiomer at high doses reached the highest level of 0.55 mg kg(-1) and 0.48 mg kg(-1) , respectively, on the 1(st) d, and the concentrations of them obtained a maxima of 0.129 mg kg(-1) and 0.128 mg kg(-1) at low dose, respectively, on the 3(rd) d, which means that the concentration of diniconazole was proportional to the time of achieving the highest accumulated level. It afterwards attained equilibrium after a sharp decline at both 20 mg kg(-1) and 2 mg kg(-1) of diniconazole. The determination results from the feces of Tenebrio molitor demonstrated that the extraction recovery (ER) values of the high dose group were higher than that of the low dose group and the values were all above 1; therefore, it could be inferred that enantiomerization existed in Tenebrio molitor. Additionally, the biota accumulation factor was used to evaluate the bioaccumulation of diniconazole enantiomers, showing that the bioaccumulation of diniconazole in Tenebrio molitor was enantioselective with preferential accumulation of S-enantiomer.

  8. Bioaccumulation of total mercury in the earthworm Eisenia andrei.

    Science.gov (United States)

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1).

  9. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH

    DEFF Research Database (Denmark)

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio

    2014-01-01

    in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we...... methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool. © 2014 Elsevier Ltd....

  10. Sediment and Terrestrial Toxicity and Bioaccumulation of Nano Aluminum Oxide

    Science.gov (United States)

    2011-05-01

    Aquatic systems Click to edit Master subtitle style BUILDING STRONG® Organisms Tested Tubifex tubifex Hyalella azteca Lumbriculus variegatus Corbicula...mortality at 2500 mg/kg in sediment Hyalella azteca 0 0.2 0.4 0.6 0.8 1 Control 10,000 25,000 50,000 100,000 mg/kg Al2O3 Pr op or tio n Su rv iv al...to concentration in environment at steady state Click to edit Master subtitle style BUILDING STRONG® Hyalella azteca 10-d - Bioaccumulation Al2O3

  11. Persistence, bioaccumulation, and toxicity of halogen-free flame retardants.

    Science.gov (United States)

    Waaijers, Susanne L; Kong, Deguo; Hendriks, Hester S; de Wit, Cynthia A; Cousins, Ian T; Westerink, Remco H S; Leonards, Pim E G; Kraak, Michiel H S; Admiraal, Wim; de Voogt, Pim; Parsons, John R

    2013-01-01

    Polymers are synthetic organic materials having a high carbon and hydrogen content, which make them readily combustible. Polymers have many indoor uses and their flammability makes them a fire hazard. Therefore, flame retardants (FRs) are incorporated into these materials as a safety measure. Brominated flame retardants (BFRs), which accounted for about 21% of the total world market of FRs, have several unintended negative effects on the environment and human health. Hence, there is growing interest in finding appropriate alternative halogen-free flame retardants (HFFRs). Many of these HFFRs are marketed already, although their environ- mental behavior and toxicological properties are often only known to a limited extent, and their potential impact on the environment cannot yet be properly assessed. Therefore, we undertook this review to make an inventory of the available data that exists (up to September 2011) on the physical-chemical properties, pro- duction volumes, persistence, bioaccumulation, and toxicity (PBT) of a selection of HFFRs that are potential replacements for BFRs in polymers. Large data gaps were identified for the physical-chemical and the PBT properties of the reviewed HFFRs. Because these HFFRs are currently on the market, there is an urgent need to fill these data gaps. Enhanced transparency of methodology and data are needed to reevaluate certain test results that appear contradictory, and, if this does not provide new insights, further research should be performed. TPP has been studied quite extensively and it is clearly persistent, bioaccumulative, and toxic. So far, RDP and BDP have demonstrated low to high ecotoxicity and persistence. The compounds ATH and ZB exerted high toxicity to some species and ALPI appeared to be persistent and has low to moderate reported ecotoxicity. DOPO and MPP may be persistent, but this view is based merely on one or two studies, clearly indicating a lack of information. Many degradation studies have been

  12. Cross-basin comparison of mercury bioaccumulation in Lake Huron lake trout emphasizes ecological characteristics.

    Science.gov (United States)

    Abma, Rachel A; Paterson, Gordon; McLeod, Anne; Haffner, G Doug

    2015-02-01

    Understanding factors influencing mercury (Hg) bioaccumulation in fish is important for examining both ecosystem and human health. However, little is known about how differing ecosystem and biological characteristics can drive Hg bioaccumulation in top predators. The present study compared and contrasted Hg bioaccumulation in multiple age classes of lake trout (Salvelinus namaycush) collected from each of Lake Huron's Georgian Bay, North Channel, and Main Basin regions. Mercury concentrations exhibited a basin specific pattern with Main Basin fish having the highest average concentration (0.19 ± 0.01 mg/kg), followed by Georgian Bay (0.15 ± 0.02 mg/kg), and North Channel (0.07 ± bioaccumulation. No significant difference was determined between the relationships describing Hg concentration and age between Main Basin and Georgian Bay fish (p bioaccumulation in feral fish communities.

  13. Bioaccumulation of animal adenoviruses in the pink shrimp

    Directory of Open Access Journals (Sweden)

    Roger B. Luz

    2015-09-01

    Full Text Available Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100 Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems.

  14. Comparative bioaccumulation kinetics of trace elements in Mediterranean marine sponges.

    Science.gov (United States)

    Genta-Jouve, Grégory; Cachet, Nadja; Oberhänsli, François; Noyer, Charlotte; Teyssié, Jean-Louis; Thomas, Olivier P; Lacoue-Labarthe, Thomas

    2012-09-01

    While marine organisms such as bivalves, seagrasses and macroalgae are commonly used as biomonitors for the environment pollution assessment, widely distributed sponges received little attention as potential helpful species for monitoring programmes. In this study, the trace element and radionuclide bioaccumulation and retention capacities of some marine sponges were estimated in a species-comparative study using radiotracers technique. Six Mediterranean species were exposed to background dissolved concentrations of (110m)Ag, (241)Am, (109)Cd, (60)Co, (134)Cs, (54)Mn, (75)Se and (65)Zn allowing the assessment of the uptake and depuration kinetics for selected elements. Globally, massive demosponges Agelas oroides, Chondrosia reniformis and Ircinia variabilis displayed higher concentration factor (CF) than the erectile ones (Acanthella acuta, Cymbaxinella damicornis, Cymbaxinella verrucosa) at the end of exposure, suggesting that the morphology is a key factor in the metal bioaccumulation efficiency. Considering this observation, two exceptions were noted: (1) A. acuta reached the highest CF for (110m)Ag and strongly retained the accumulated metal without significant Ag loss when placed in depuration conditions and (2) C. reniformis did not accumulate Se as much as A. oroides and I. variabilis. These results suggest that peculiar metal uptake properties in sponges could be driven by specific metabolites or contrasting biosilification processes between species, respectively. This study demonstrated that sponges could be considered as valuable candidate for biomonitoring metal contamination but also that there is a need to experimentally highlight metal-dependant characteristic among species.

  15. Bioaccumulation of hexachlorobenzene in Eisenia foetida at different aging stages

    Institute of Scientific and Technical Information of China (English)

    GAO Hongjian

    2009-01-01

    The impacts of contact time on the extractability, the availability of hexachlorobenzene (HCB) in different soils (paddy soil, red soil, and fluvo-aquic soil) and bioaccurnulation in earthworm Eisenia foetida were investigated under controlled conditions in laboratory. Results indicated that the aging rate of HCB displaying a biphasic character in different soils: a rapid aging in the first 60 d followed by a slow aging in the next 120 d incubation time. Moreover, most of extractable HCB (about 90%) decline occurred in the first 60 d after HCB was spiked into the soils. The aging rate of HCB in the paddy soil was higher than that in the fluvo-aquic soil or the red soil. The amount of HCB accumulated in the earthworms and its accumulative ability, expressed as a bioaccumulation factor (BAF), declined as the aging time increased from 1 to 180 d. Although the extractable HCB decreased with increasing residence time in soil, much of HCB could still be accumulated by earthworms (457.6-984.3 ng/g) through bioaccumulation, which poses a potential risk to soil ecological safety.

  16. Species-specific mercury bioaccumulation in a diverse fish community.

    Science.gov (United States)

    Donald, David B; Wissel, Björn; Anas, M U Mohamed

    2015-12-01

    Mercury bioaccumulation models developed for fish provide insight into the sources and transfer of Hg within ecosystems. Mercury concentrations were assessed for 16 fish species of the western reach of Lake Diefenbaker, Saskatchewan, Canada. For top predators (northern pike, Esox Lucius; walleye, Sander vitreum), Hg concentrations were positively correlated to δ(15)N, and δ(15)N to fish age, suggesting that throughout life these fish fed on organisms with increasingly higher trophic values and Hg concentrations. However, fish mass and/or age were the principal parameters related to Hg concentrations for most species. For 9 common species combined, individual variation in Hg concentration was explained in declining order of importance by fish mass, trophic position (δ(15)N), and fish age. Delta (15)N value was not the leading variable related to Hg concentration for the assemblage, probably because of the longevity of lower--trophic-level species (3 species ≥ 20 yr), substantial overlap in Hg concentration and δ(15)N values for large-bodied fish up to 3000 g, and complex relationships between Hg concentration and δ(15)N among species. These results suggest that the quantity of food (and Hg) consumed each year and converted to fish mass, the quantity of Hg bioaccumulated over years and decades, and trophic position were significant determinants of Hg concentration in Lake Diefenbaker fish.

  17. Bioaccumulation of animal adenoviruses in the pink shrimp.

    Science.gov (United States)

    Luz, Roger B; Staggemeier, Rodrigo; Fabres, Rafael B; Soliman, Mayra C; Souza, Fernanda G; Gonçalves, Raoni; Fausto, Ivone V; Rigotto, Caroline; Heinzelmann, Larissa S; Henzel, Andréia; Fleck, Juliane D; Spilki, Fernando R

    2015-01-01

    Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100) Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR) in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems.

  18. A method for partitioning cadmium bioaccumulated in small aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardena, S.N.; Rana, K.J.; Baird, D.J. [Univ. of Stirling (United Kingdom). Institute of Aquaculture

    1995-09-01

    A series of laboratory experiments was conducted to evaluate bioaccumulation and surface adsorption of aqueous cadmium (Cd) by sac-fry of the African tilapia Oreochromis niloticus. In the first experiment, the design consisted of two cadmium treatments: 15 {micro}g Cd{center_dot}L{sup {minus}1} in dilution water and a Cd-ethylenediaminetetraacetic acid (Cd-EDTA) complex at 15 {micro}m{center_dot}L{sup {minus}1}, and a water-only control. There were five replicates per treatment and 40 fish per replicate. It was found that EDTA significantly reduced the bioaccumulation of cadmium by tilapia sac-fry by 34%. Based on the results, a second experiment was conducted to evaluate four procedures: a no-rinse control; rinsing in EDTA; rinsing in distilled water; and rinsing in 5% nitric acid, for removing surface-bound Cd from exposed sac-fry. In this experiment, 30 fish in each of five replicates were exposed to 15 {micro}g Cd{center_dot}L{sup {minus}1} for 72 h, processed through the rinse procedures, and analyzed for total Cd. The EDTA rinse treatment significantly reduced (p<0.05) Cd concentrations of the exposed fish relative to those receiving no rinse. It was concluded that the EDTA rinse technique may be useful in studies evaluating the partitioning of surface-bound and accumulated cadmium in small aquatic organisms.

  19. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    Science.gov (United States)

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers.

  20. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna.

    Science.gov (United States)

    Kim, Injeong; Lee, Byung-Tae; Kim, Hyun-A; Kim, Kyoung-Woong; Kim, Sang Don; Hwang, Yu-Sik

    2016-01-01

    Citrate-coated AgNPs (c-AgNPs) have negatively charged surfaces and their surface interactions with heavy metals can affect metal toxicity in aquatic environments. This study used Daphnia magna to compare the acute toxicities and bioaccumulation of As(V), Cd, and Cu when they interact with c-AgNPs. The 24-h acute toxicities of As(V) and Cu were not affected by the addition of c-AgNPs, while bioaccumulation significantly decreased in the presence of c-AgNPs. In contrast, both the 24-h acute toxicity and bioaccumulation of Cd increased in the presence of c-AgNPs. These toxicity and bioaccumulation trends can be attributed to the interactions between the AgNP surface and the heavy metals. As(V) and c-AgNPs compete by negative charge, decreasing As(V) toxicity. Copper adheres readily to c-AgNP citrate, decreasing Cu bioavailability, and thus reducing Cu toxicity and bioaccumulation. Citrate complexes with divalent cations such as Ca and Mg reduce the competition between divalent cations and Cd on biotic ligand, increasing toxicity and bioaccumulation of Cd. This study shows that surface properties determine the effect of c-AgNPs on heavy metal toxicities and bioaccumulations; hence, further studies on the effect of nanoparticle by it surface properties are warranted.

  1. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals.

    Science.gov (United States)

    van den Brink, Nico W; Arblaster, Jennifer A; Bowman, Sarah R; Conder, Jason M; Elliott, John E; Johnson, Mark S; Muir, Derek C G; Natal-da-Luz, Tiago; Rattner, Barnett A; Sample, Bradley E; Shore, Richard F

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  2. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    Science.gov (United States)

    van den Brink, Nico W.; Arblaster, Jennifer A.; Bowman, Sarah R.; Conder, Jason M.; Elliott, John E.; Johnson, Mark S.; Muir, Derek C.G.; Natal-da-Luz, Tiago; Rattner, Barnett A.; Sample, Bradley E.; Shore, Richard F.

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  3. Bioaccumulation of toxaphene congeners in the lake superior food web

    Science.gov (United States)

    Muir, D.C.G.; Whittle, D.M.; De Vault, D. S.; Bronte, C.R.; Karlsson, H.; Backus, S.; Teixeira, C.

    2004-01-01

    The bioaccumulation and biotransformation of toxaphene was examined in the food webs of Lake Superior and Siskiwit Lake (Isle Royale) using congener specific analysis as well as stable isotope ratios of carbon and nitrogen to characterize food webs. Toxaphene concentrations (calculated using technical toxaphene) in lake trout (Salvelinus namaycush) from the western basin of Lake Superior (N = 95) averaged (±SD) 889 ± 896 ng/g wet wt and 60 ± 34 ng/g wet wt in Siskiwit Lake. Major congeners in lake trout were B8-789 (P38), B8-2226 (P44), B9-1679 (P50), and B9-1025 (P62). Toxaphene concentrations were found to vary seasonally, especially in lower food web organisms in Lake Superior and to a lesser extent in Siskiwit Lake. Toxaphene concentrations declined significantly in lake herring (Coregonus artedii), rainbow smelt (Omerus mordax), and slimy sculpin (Cottus cognatus) as well as in zooplankton (> 102 &mn;m) and Mysis (Mysis relicta) between May and October. The seasonal variation may reflect seasonal shifts in the species abundance within the zooplankton community. Trophic magnification factors (TMF) derived from regressions of toxaphene congener concentrations versus δ15N were > 1 for most octa- and nonachlorobornanes in Lake Superior except B8-1413 (P26) and B9-715. Log bioaccumulation factors (BAFs) for toxaphene congeners in lake trout (ng/g lipid/ng/L dissolved) ranged from 4.54 to 9.7 and were significantly correlated with log octanol-water partition coefficients. TMFs observed for total toxaphene and congener B9-1679 in Lake Superior were similar to those in Arctic lakes, as well as to previous studies in the Great Lakes, which suggests that the bioaccumulation behavior of toxaphene is similar in pelagic food webs of large, cold water systems. However, toxaphene concentrations were lower in lake trout from Siskiwit Lake and lakes in northwestern Ontario than in Lake Superior possibly because of shorter food chains and greater reliance on zooplankton or

  4. Mercury Bioaccumulation Potential from Wastewater Treatment Plants in Receiving Waters

    Science.gov (United States)

    Dean, J. D.; Mason, R. P.

    2008-12-01

    In early 2007, the Water Environment Research Foundation (WERF) mercury bioavailability project was initiated in response to the establishment of mercury Total Maximum Daily Load (TMDL) criteria around the country. While many TMDLs recognize that point sources typically constitute a small fraction of the mercury load to a water body, the question was raised concerning the relative bioavailablity of mercury coming from various sources. For instance, is the mercury discharged from a wastewater treatment plant more or less bioavailable than mercury contributed from other sources? This talk will focus on the results of a study investigating approaches to the estimation of bioavailability and potential bioaccumulation of mercury from wastewater treatment plants and other sources in receiving waters. From the outset, a working definition of bioavailability was developed which included not only methylmercury, the form that readily bioaccumulates in aquatic food chains, but also bioavailable inorganic mercury species that could be converted to methylmercury within a scientifically reasonable time frame. Factors that enhance or mitigate the transformation of inorganic mercury to methylmercury and its subsequent bioaccumulation were identified. Profiles were developed for various sources of mercury in watersheds, including wastewater treatment plants, with regard to methylmercury and inorganic bioavailable mercury, and the key factors that enhance or mitigate mercury bioavailability. Technologies that remove mercury from wastewater were reviewed and evaluated for their effect on bioavailability. A screening procedure was developed for making preliminary estimates of bioavailable mercury concentrations and fluxes in wastewater effluents and in fresh, estuarine and marine receiving waters. The procedure was validated using several diverse river and reservoir data sets. A "Bioavailability Tool" was developed which allows a user to estimate the bioavailability of an effluent and

  5. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    Science.gov (United States)

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  6. POP bioaccumulation in macroinvertebrates of alpine freshwater systems.

    Science.gov (United States)

    Bizzotto, E C; Villa, S; Vighi, M

    2009-12-01

    This study serves to investigate the uptake of POPs in the different trophic levels (scrapers, collectors, predators, shredders) of macroinvertebrate communities sampled from a glacial and a non-glacial stream in the Italian Alps. The presented results show that the contaminant concentrations in glacial communities are generally higher compared to those from non-glacial catchments, highlighting the importance of glaciers as temporary sinks of atmospherically transported pollutants. Moreover, the data also suggests that in mountain systems snow plays an important role in influencing macroinvertebrate contamination. The main chemical uptake process to the macroinvertebrates is considered to be bioconcentration from water, as similar contaminant profiles were observed between the different trophic levels. The role of biomagnification/bioaccumulation is thought to be absent or negligible. The enrichment of chemicals observed in the predators is likely to be related to their greater lipid content compared to that of other feeding groups.

  7. Identifying new persistent and bioaccumulative organics among chemicals in commerce.

    Science.gov (United States)

    Howard, Philip H; Muir, Derek C G

    2010-04-01

    The goal of this study was to identify commercial chemicals that might be persistent and bioaccumulative (P&B) and that were not being considered in current Great Lakes, North American, and Arctic contaminant measurement programs. We combined the Canadian Domestic Substance List (DSL), a list of 3059 substances of "unknown or variable composition complex reaction products and biological materials" (UVCBs), and the U.S. Environmental Protection Agency (U.S. EPA) Toxic Substances Control Act (TSCA) Inventory Update Rule (IUR) database for years 1986, 1990, 1994, 1998, 2002, and 2006 yielding a database of 22263 commercial chemicals. From that list, 610 chemicals were identified by estimates from U.S EPA EPISuite software and using expert judgment. This study has yielded some interesting and probable P&B chemicals that should be considered for further study. Recent studies, following up our initial reports and presentations on this work, have confirmed the presence of many of these chemicals in the environment.

  8. Bioaccumulation and trophic transfer of engineered nanoparticles in aquatic organisms

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael

    that of their bulk forms. With release of ENPs to the environment a need for evaluation of the potential risk of ENPs is necessary. Potential risks are assessed through a chemical safety assessment. Test guidelines (TGs) to evaluate the risk of compounds for the chemical safety assessment were developed for soluble...... and a physical identity. For soluble chemicals the chemical identity has been the parameter controlling ecotoxicological endpoints (e.g. toxicity and bioaccumulation). However, with ENPs consisting of a wide range of particle sizes, coatings and functionalizations influencing the performance and result of test...... of different particle sizes, coatings and functionalizations were investigated using model ENPs (Au ENPs) with two different sizes (10 and 30nm) and coatings (citrate and mercaptoundecanoic acid (MUDA)) and a standardized test setup with a standardized test organism (Daphnia magna). It was found that while...

  9. Modelling bioaccumulation of oil constituents in aquatic species.

    Science.gov (United States)

    De Hoop, Lisette; Huijbregts, Mark A J; Schipper, Aafke M; Veltman, Karin; De Laender, Frederik; Viaene, Karel P J; Klok, Chris; Hendriks, A Jan

    2013-11-15

    Crude oil poses a risk to marine ecosystems due to its toxicity and tendency to accumulate in biota. The present study evaluated the applicability of the OMEGA model for estimating oil accumulation in aquatic species by comparing model predictions of kinetic rates (absorption and elimination) and bioconcentration factors (BCF) with measured values. The model was a better predictor than the means of the measurements for absorption and elimination rate constants, but did not outperform the mean measured BCF. Model estimates and measurements differed less than one order of magnitude for 91%, 80% and 61% of the absorption and elimination rates and BCFs of all oil constituents, respectively. Of the "potentially modifying" factors: exposure duration, biotransformation, molecular mass, and water temperature, the last two tended to influence the performance of the model. Inclusion of more explanatory variables in the bioaccumulation model, like the molecular mass, is expected to improve model performance.

  10. Bioaccumulation and transformation of cadmium by Phaeodactylum tricornutum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,we report the bioaccumulation and transformation of cadmium (Cd) by Phaeodactylum tricornutum in the presence of ethylenediamine tetra acetic acid (EDTA) and cysteine (Cys). Both EDTA and Cys can alleviate the toxicity of Cd to P. tricornutum. Short term intracellular uptake and extracellular adsorption experiments using ICP-MS indicated that the amounts of Cd accumulated on the cell surface of P. tricornutum and inside the cell decreased along with the increase of EDTA concentration,which conformed to the prediction of the Free Ion Activity Model (FIAM). However,extracellular adsorption of Cd increased at first and then decreased along with the increase in the concentration of Cys,while intracellular uptake increased under Cys concentrations from the blank value to 4.45 μmol/L,and then tended to remain at the same level when the Cys concentration was greater than 4.45 μmol/L,and this deviated remarkably from the FIAM. The interactions of Cd with _Si_OH,_C_OH and NH2(CO) _OH on the cell wall were confirmed using FT-IR and XPS studies. The results obtained using HPLC of the phytochelatins (PCs) produced by P. tricornutum under CdCl2,Cd_EDTA and Cd_Cys stress suggested that the main reason for the different effects of EDTA and Cys on the bioaccumulation and transformation of Cd by P. tricornutum was that Cys is not only a complexing ligand to Cd,as is EDTA,but also it is a precursor of the intracellular synthesizing PCs participating in the cellular defense mechanism against Cd. Furthermore,the discovery of in vivo PCs and oxidized_PCs as well as Cd-PC2 in P. tricornutum using ESI-IT-MS provided the evidence for deactivation of Cd by the PCs,reducing Cd-toxicity to P. tricornutum.

  11. Enantioseletive bioaccumulation of tebuconazole in earthworm Eisenia fetida

    Institute of Scientific and Technical Information of China (English)

    Dingyi Yu; Jianzhong Li; Yanfeng Zhang; Huili Wang; Baoyuan Guo; Lin Zheng

    2012-01-01

    Methods of extraction and determination of tebuconazole enantiomers in earthworm (Eisenia fetida) were developed by capillary electrophoresis (CE) and high performance liquid chromatography (HPLC).Both CE and HPLC have excellent resolution and recovery.The linearity ranges were 2.9-102.4 mg/kg and 3.0-99.6 mg/kg for (+)-R-tebuconazole and (-)-S-tebuconazole respectively in CE,and from 0.56 to 1000 mg/kg for both enantiomers in HPLC.Enantioselective bioaccumulation in earthworms from soil was investigated under laboratory condition at concentrations of 10 and 50 mg/kg dw in soil.The uptake kinetics of (+)-R-tebuconazole fitted the firstorder kinetics well with r2 0.97 and 0.94 under 10 and 50 mg/kg dw exposure condition,respectively,while (-)-S-tebueonazole with r2 0.75 and 0.22 did not show the same.Bioaccumulation of tebuconazole in earthworm tissues was enantioselective with a preferential accumulation of (+)-R-tebuconazole.The (+)-R-tebuconazole might also have biomagnifying effect potential in earthworm food chain with biota-sediment accumulation factor (BSAF) of 1.64 kg OC/kg lip in 10 mg/kg dw exposure group and 2.61 kg OC/kg lip in 50 mg/kg dw exposure group from soil to earthworm after 36 days.Although (-)-S-tebuconazole shares the same physicochemical properties with (+)-R-tebuconazole,it did not biomagnify.BSAFs of (-)-S-tebuconazole were 0.50 kg OC/kg lip (10 mg/kg dw tebuconazole exposure) and 0.28 kg OC/kg lip (50 mg/kg dw tebuconazole exposure) after 36 days,which was possibly owing to biotransformation or metabolism in earthworm tissues.

  12. Bioaccumulation of Aluminium in Hydromacrophytes in Polish Coastal Lakes

    Directory of Open Access Journals (Sweden)

    Senze Magdalena

    2015-03-01

    Full Text Available The research on aluminium content was conducted in water and on aquatic flora of Polish lakes in the central part of the coast. The study included the lakes Sarbsko, Choczewskie, Bia.e, K.odno, D.brze and Salino investigated in the summer of 2013. The examined lakes belong mainly to the direct basin of the Baltic Sea. Samples of aquatic plants and lake waters were collected. In the water samples pH and electrolytic conductivity were measured. The aluminium content was determined both in water and aquatic plants. Submerged hydromacrophyte studies included Myriophyllum alterniflorum L., Potamogeton perfoliatus L. and Ceratophyllum demersum L. Emergent hydromacrophyte studies included Phragmites australis (Cav. Trin. ex Steud., Juncus bulbosus L., Iris pseudacorus L., Eleocharis palustris (L. Roem. % Schult., Phalaris arundinacea L., Carex riparia Curt., Mentha aquatic L., Stratiotes aloides L., Alisma plantago-aquatica L., Glyceria maxima (Hartman Holmb., Sagittaria sagittifolia L., Scirpus lacustris L. and Typha angustifolia L. The purpose of this investigation was the determination of the aluminium content in submerged and emergent hydromacrophytes and also the definition of their bioaccumulative abilities. The average concentration of aluminium in water was 2.68 fęg Al dm.3. The average content of aluminium in plants was 2.8015 mg Al kg.1. The bioaccumulation factor ranged from BCF=19.74 to BCF=16619. On the basis of the analysis of the aluminium content in water and aquatic plants results show that both water and plants were characterized by a moderate level of aluminium. The recorded concentrations indicate a mid-range value and are much lower than those which are quoted for a variety of surface waters in various parts of the world.

  13. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation,

    Science.gov (United States)

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake...

  14. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals

    DEFF Research Database (Denmark)

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-01-01

    It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three...... processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed...... a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however...

  15. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    DEFF Research Database (Denmark)

    Contardo-Jara, V.; Lorenz, Claudia; Pflugmacher, S.

    2011-01-01

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the nontarget organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonor......Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the nontarget organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations...

  16. Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish.

    Science.gov (United States)

    Muggelberg, Leslie L; Huff Hartz, Kara E; Nutile, Samuel A; Harwood, Amanda D; Heim, Jennifer R; Derby, Andrew P; Weston, Donald P; Lydy, Michael J

    2017-01-01

    The recent discovery of pyrethroid-resistant Hyalella azteca populations in California, USA suggests there has been significant exposure of aquatic organisms to these terrestrially-applied insecticides. Since resistant organisms are able to survive in relatively contaminated habitats they may experience greater pyrethroid bioaccumulation, subsequently increasing the risk of those compounds transferring to predators. These issues were evaluated in the current study following toxicity tests in water with permethrin which showed the 96-h LC50 of resistant H. azteca (1670 ng L(-1)) was 53 times higher than that of non-resistant H. azteca (31.2 ng L(-1)). Bioaccumulation was compared between resistant and non-resistant H. azteca by exposing both populations to permethrin in water and then measuring the tissue concentrations attained. Our results indicate that resistant and non-resistant H. azteca have similar potential to bioaccumulate pyrethroids at the same exposure concentration. However, significantly greater bioaccumulation occurs in resistant H. azteca at exposure concentrations non-resistant organisms cannot survive. To assess the risk of pyrethroid trophic transfer, permethrin-dosed resistant H. azteca were fed to fathead minnows (Pimephales promelas) for four days, after which bioaccumulation of permethrin and its biotransformation products in fish tissues were measured. There were detectable concentrations of permethrin in fish tissues after they consumed dosed resistant H. azteca. These results show that bioaccumulation potential is greater in organisms with pyrethroid resistance and this increases the risk of trophic transfer when consumed by a predator. The implications of this study extend to individual fitness, populations and food webs.

  17. Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico).

    Science.gov (United States)

    Berry, J P; Jaja-Chimedza, A; Dávalos-Lind, L; Lind, O

    2012-01-01

    Compared to the well-characterized health threats associated with contamination of fish and shellfish by algal toxins in marine fisheries, the toxicological relevance of the bioaccumulation of toxins from cyanobacteria (blue-green algae), as the primary toxigenic algae in freshwater systems, remains relatively unknown. Lake Catemaco (Veracruz, Mexico) is a small, tropical lake system specifically characterized by a year-round dominance of the known toxigenic cyanobacterial genus, Cylindrospermopsis, and by low, but detectable, levels of both a cyanobacterial hepatotoxin, cylindrospermopsin (CYN), and paralytic shellfish toxins (PSTs). In the present study, we evaluated, using enzyme-linked immunoassay (ELISA), levels of both toxins in several species of finfish caught and consumed locally in the region to investigate the bioaccumulation of, and possible health threats associated with, these toxins as potential foodborne contaminants. ELISA detected levels of both CYN and PSTs in fish tissues from the lake. Levels were generally low (≤ 1 ng g(-1) tissue); however, calculated bioaccumulation factors (BAFs) indicate that toxin levels exceed the rather low levels in the water column and, consequently, indicated bioaccumulation (BAF >1). A reasonable correlation was observed between measured bioaccumulation of CYN and PSTs, possibly indicating a mutual source of both toxins, and most likely cells of Cylindrospermopsis, the dominant cyanobacteria in the lake, and a known producer of both metabolites. The potential roles of trophic transport in the system, as well as possible implications for human health with regards to bioaccumulation, are discussed.

  18. Combined effects of sugarcane bagasse extract and Zinc(II) ions on the growth and bioaccumulation properties of yeast isolates.

    OpenAIRE

    Geetanjali Basak; CHARUMATHI D; NILANJANA DAS

    2011-01-01

    Bioaccumulation of zinc(II) ions by yeast isolates viz. Candida rugosa and Cryptococcus laurentii was investigated in different growth media. Both the isolates showed maximum bioaccumulation of zinc(II) in the medium prepared from sugarcane bagasse extract. The growth and zinc(II) bioaccumulation properties of yeasts in sugar cane bagasse extract were tested as a function of pH, temperature and initial metal concentrations. The combined effects of sugar extracted from bagasse and initial zinc...

  19. Comparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, Tom, E-mail: tom.cresswell@ansto.gov.au [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia); School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Smith, Ross E.W. [Hydrobiology, Lang Parade, Auchenflower 4066, QLD (Australia); Nugegoda, Dayanthi [School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Simpson, Stuart L. [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia)

    2014-07-01

    Highlights: • Exposed three species of prawns of same genus to solid- and dissolved-phase metals. • Cd bioaccumulated from dissolved phase was significantly different between species. • All three species retained >95% of bioaccumulated Cd during the depuration phase. • Bioaccumulation of As, Pb and Zn from solid phase was different between species. • Results highlight variability among species, even under controlled conditions. - Abstract: Potential sources and kinetics of metal bioaccumulation by the three Macrobrachium prawn species M. australiense, M. rosenbergii and M. latidactylus were assessed in laboratory experiments. The prawns were exposed to two scenarios: cadmium in water only; and exposure to metal-rich mine tailings in the same water. The cadmium accumulation from the dissolved exposure during 7 days, followed by depuration in cadmium-free water for 7 days, was compared with predictions from a biokinetic model that had previously been developed for M. australiense. M. australiense and M. latidactylus accumulated significant tissue cadmium during the exposure phase, albeit with different uptake rates. All three species retained >95% of the bioaccumulated cadmium during the depuration phase, indicating very slow efflux rates. Following exposure to tailings, there were significant (p < 0.05) differences in tissue arsenic, cadmium, lead and zinc concentrations among species. Cadmium and zinc concentrations were increased relative to controls for all three species but were not different between treatments (direct/indirect contact with tailings), suggesting these metals were primarily accumulated via the dissolved phase. All species bioaccumulated significantly greater arsenic and lead when in direct contact with mine tailings, demonstrating the importance of an ingestion pathway for these metals. Copper was not bioaccumulated above control concentrations for any species. The differences between the metal accumulation of the three prawns indicated

  20. Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Marshall [ORNL; Brandt, Craig C [ORNL; Fortner, Allison M [ORNL

    2012-05-01

    In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including

  1. Bioaccumulation of perfluoroalkyl substances by Daphnia magna in water with different types and concentrations of protein.

    Science.gov (United States)

    Xia, Xinghui; Rabearisoa, Andry H; Jiang, Xiaoman; Dai, Zhineng

    2013-10-01

    Perfluoroalkyl substances (PFASs) are sometimes regarded as proteinophilic compounds, however, there is no research report about the effect of environmental protein on the bioaccumulation of PFASs in waters. In the present study we investigated influences of protein on the bioaccumulation of six kinds of PFASs by Daphnia magna in water; it included perfluorooctane sulfonate, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Two types of protein including bovine albumin from animal and soy peptone from plant were compared and the effects of protein concentration were investigated. Both types of protein at high concentrations (10 and 20 mg L(-1)) suppressed the bioaccumulation of PFASs. When protein concentration increased from 0 to 20 mg L(-1), the decreasing ratios of the PFAS body burden (35.3-52.9%) in Daphnia magna induced by bovine albumin were significantly higher than those (22.0-36.6%) by soy peptone. The dialysis bag experiment results showed that the binding of PFASs to protein followed the Freundlich isotherm, suggesting it is not a linear partitioning process but an adsorption-like process. The partition coefficients of PFASs between bovine albumin and water were higher compared to soy peptone; this resulted in higher reducing rates of freely dissolved concentrations of PFASs with increasing bovine albumin concentration, leading to a stronger suppression of PFAS bioaccumulation. However, the presence of both types of protein with a low concentration (1 mg L(-1)) enhanced the bioaccumulation of PFASs. Furthermore, the water-based bioaccumulation factor based on the freely dissolved concentrations of PFASs even increased with and the depuration rate constants of PFASs from Daphnia magna decreased with protein concentration, suggesting that protein would not only reduce the bioavailable concentrations and uptake rates of PFASs but also lower the elimination rates of PFASs in

  2. Bioaccumulation and degradation of atrazine in several Chinese ryegrass genotypes.

    Science.gov (United States)

    Sui, Ying; Yang, Hong

    2013-12-01

    Soil pollution with herbicides is a global problem. Before phytoremediation technology is developed for the plant-based clean-up of polluted soils, investigation of potential plants that can be used to accumulate and degrade herbicides is a critical step. In this study, three selected genotypes of ryegrass were comprehensively analyzed with regard to the atrazine accumulation, degradation and toxicological response. Under the conditions of soil with 0.8 mg kg(-1) atrazine, the maximum value for atrazine accumulation was 2.70 mg kg(-1) in shoots and 0.58 mg kg(-1) in roots. The residue of atrazine in soil with ryegrass cultivation was much lower than that in soil without ryegrass cultivation. Also, the content of atrazine residues in the rhizosphere was significantly lower than that in the non-rhizosphere soil. Activities of several enzymes (urease, invertase, polyphenol oxidase, acid phosphatase and alkaline phosphatase) in soil were assayed. These enzymes were depressed by atrazine but activated by ryegrass cultivation, even in the presence of atrazine. Finally, comparative studies have been conducted on the ryegrass genotypes in response to atrazine. They showed different capacities of degradation and bioaccumulation of atrazine. One of the grass cultivars Changjiang II (CJ) had better growth and higher levels of chlorophyll, but displayed less oxidative injury than two others, Abode (AB) and Jiewei (JW), under atrazine exposure.

  3. POP bioaccumulation in macroinvertebrates of alpine freshwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzotto, E.C.; Villa, S. [Department of Environmental and Landscape Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Vighi, M., E-mail: marco.vighi@unimib.i [Department of Environmental and Landscape Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy)

    2009-12-15

    This study serves to investigate the uptake of POPs in the different trophic levels (scrapers, collectors, predators, shredders) of macroinvertebrate communities sampled from a glacial and a non-glacial stream in the Italian Alps. The presented results show that the contaminant concentrations in glacial communities are generally higher compared to those from non-glacial catchments, highlighting the importance of glaciers as temporary sinks of atmospherically transported pollutants. Moreover, the data also suggests that in mountain systems snow plays an important role in influencing macroinvertebrate contamination. The main chemical uptake process to the macroinvertebrates is considered to be bioconcentration from water, as similar contaminant profiles were observed between the different trophic levels. The role of biomagnification/bioaccumulation is thought to be absent or negligible. The enrichment of chemicals observed in the predators is likely to be related to their greater lipid content compared to that of other feeding groups. - Influence of POP release in glacial-fed streams, enhanced by global warming, on pristine aquatic ecosystems.

  4. Bioaccumulation and bioavailability of polybrominated diphynel ethers (PBDEs) in soil

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xianwei; Zhu Shuzhen; Chen Peng [College of Environmental Science and Engineering, Nankai University, Weijin Road 94, Tianjin 300071 (China); Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300071 (China); Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.c [College of Environmental Science and Engineering, Nankai University, Weijin Road 94, Tianjin 300071 (China); Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300071 (China); Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China)

    2010-07-15

    Earthworms were exposed to artificially contaminated soils of DE-71 and DE-79 to investigate the bioaccumulation and bioavailability of PBDEs in soil. All major congeners were bioavailable to earthworms. The uptake and elimination rate coefficients of PBDEs decreased with their logK{sub ow}s. The biota soil accumulation factors of PBDEs also declined with logK{sub ow}. These may be due to the large molecular size and the high affinity of PBDEs to soil particles. The concentrations extracted by Tenax for 6 h correlated very well with those found in earthworms, suggesting that the bioavailability of PBDEs in soil is related to the fraction of rapid desorption from soil. This also indicates that 6 h Tenax extraction is a good proxy for the bioavailability of PBDEs to earthworms in soil. The BSAFs of PBDEs in aged soil decreased 22-84% compared to freshly spiked soil, indicating that aging may diminish the bioavailability of PBDEs in soil significantly. - PBDEs are bioavailable to earthworms in soil and the uptake and elimination rate coefficients and BSAFs declined with their logK{sub ow}s.

  5. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G.; Cima, L.; Costa, P.

    1988-10-01

    The possibility of utilizing industrial, urban, and other wastes for the growth of a product which is directly edible by humans is fascinating. However, it is possible that many wastes containing toxic substances, for example, heavy metals, could reach the food chain and produce adverse effects on human health. To this end, we studied the possibility of bioaccumulation of Hg by a mushroom, Pleurotus ostreatus, grown on an artificial compost containing this element. Concentrations of 0.05, 0.1, and 0.2 mg/kg of Hg as Hg(NO/sub 3/)/sub 2/.H/sub 2/O were added to three groups of the same compost, successively inoculated with the mycelia of the mushroom. Higher concentrations strongly reduced the growth of the mycelia and therefore were not utilized. The concentrations of Hg in the substrate and in the mushroom were evaluated by AAS. The range of the accumulation factor was found to be 65-140, i.e., very marked. This finding suggests that the cultivation of P. ostreatus on substrates containing Hg from industrial and urban wastes could involve possible risks to human health.

  6. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential.

    Science.gov (United States)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Pulicharla, Rama; Brar, Satinder Kaur; Cledón, Maximiliano; Verma, Mausam; Surampalli, Rao Y

    2015-05-22

    Triclosan (TCS) is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated.

  7. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential

    Directory of Open Access Journals (Sweden)

    Gurpreet Singh Dhillon

    2015-05-01

    Full Text Available Triclosan (TCS is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated.

  8. Heavy Metal Bioaccumulation and Toxicity with Special Reference to Microalgae

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The bioaccumulation and toxicity of heavy metals were reviewed with special reference to microalgae, the key component of the food web in aquatic ecosystems. Heavy metals enter algal cells either by means of active transport or by endocytosis through chelating proteins and affect various physiological and biochemical processes of the algae. The toxicity primarily results from their binding to the sulphydryl groups in proteins or disrupting protein structure or displacing essential elements. Metals can break the oxidative balance of the algae, inducing antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX). The amount of oxidized proteins and lipids in the algal cells thus indicates the severity of the stress. Algal tolerance to heavy metal is highly dependent upon the defense response against the probable oxidative damages. Production of binding factors and proteins, exclusion of metals from cells by ion-selective transporters and excretion or compartmentalization have been suggested with regard to reducing heavy metal toxicity. However, a comprehensive description on the mechanisms underlining metal toxicity of microalgae and gaining tolerance is yet to be elaborated.

  9. Cadmium tolerance and bioaccumulation of 18 hemp accessions.

    Science.gov (United States)

    Shi, Gangrong; Liu, Caifeng; Cui, Meicheng; Ma, Yuhua; Cai, Qingsheng

    2012-09-01

    Hemp (Cannabis sativa L.) is a fast-growing and high biomass producing plant species, which has been traditionally grown as multiple-use crop and recently considered as an energy crop. In order to screen accessions that can be cultivated in cadmium (Cd)-contaminated soils for biodiesel production, the ability of Cd tolerance and bioaccumulation of 18 hemp cultivars or ecotypes were evaluated in pot experiment under 25 mg Cd kg(-1) (dry weight, DW) soil condition, in terms of plant growth, pigment contents, chlorophyll fluorescence, and Cd accumulation at 45 days after seedling emergence. Results showed that seedlings of all cultivars, except USO-31, Shenyang and Shengmu, could grow quite well under 25 mg Cd kg(-1) (DW) soil condition. Among them, Yunma 1, Yunma 2, Yunma 3, Yunma 4, Qujing, Longxi, Lu'an, Xingtai, and Shuyang showed great biomass (>0.5 g plant(-1)), high tolerance factors (68.6-92.3%), and little reduction of pigment content and chlorophyll fluorescence under 25 mg Cd kg(-1) (DW) soil stress, indicating these cultivars had a strong tolerance to Cd stress and could be cultivated in Cd-contaminated soils. Cultivars Longxi, Lu'an, Xingtai, Yunma 2, Yunma 3, Yunma 4, and Qujing exhibited higher Cd concentrations and total Cd in shoots. These cultivars, therefore, are good candidates for the implementation of the new strategy of cultivating biodiesel crops for phytoremediation of Cd-contaminated soils.

  10. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  11. Mercury bioaccumulation in wood frogs developing in seasonal pools

    Science.gov (United States)

    Loftin, Cynthia S.; Calhoun, Aram J. K.; Nelson, Sarah J.; Elskus, Adria; Simon, Kevin S.

    2012-01-01

    Seasonal woodland pools contribute significant biomass to terrestrial ecosystems through production of pool-breeding amphibians. The movement of amphibian metamorphs potentially transports toxins bioaccumulated during larval development in the natal pool into the surrounding terrestrial environment. We documented total mercury (THg) in seasonal woodland pool water, sediment, litter, and Lithobates sylvaticus LeConte (Wood Frog) in Acadia National Park, ME. THg concentrations in pool water varied over the study season, increasing during April—June and remaining high in 2 of 4 pools upon October refill. Water in pools surrounded by softwoods had lower pH, greater dissolved organic carbon, and greater THg concentrations than pools surrounded by hardwoods, with seasonal patterns in sediment THg but not litter THg. THg increased rapidly from near or below detection in 1–2 week old embryos (<0.2 ng; 0–0.49 ppb wet weight) to 17.1–54.2 ppb in tadpoles within 6 weeks; 7.2–42.0% of THg was methyl Hg in tadpoles near metamorphosis. Metamorphs emigrating from seasonal pools may transfer mercury into terrestrial food webs.

  12. Optimizing fish sampling for fish - mercury bioaccumulation factors

    Science.gov (United States)

    Scudder Eikenberry, Barbara C.; Riva-Murray, Karen; Knightes, Christopher D.; Journey, Celeste A.; Chasar, Lia C.; Brigham, Mark E.; Bradley, Paul M.

    2015-01-01

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to sampling and data-treatment methods. Data collected by fixed protocol from 11 streams in 5 states distributed across the US were used to assess the effects of Hgfish normalization/standardization methods and fish sample numbers on BAF estimates. Fish length, followed by weight, was most correlated to adult top-predator Hgfish. Site-specific BAFs based on length-normalized and standardized Hgfish estimates demonstrated up to 50% less variability than those based on non-normalized Hgfish. Permutation analysis indicated that length-normalized and standardized Hgfish estimates based on at least 8 trout or 5 bass resulted in mean Hgfish coefficients of variation less than 20%. These results are intended to support regulatory mercury monitoring and load-reduction program improvements.

  13. Bioaccumulation factor of 137Cs in some marine biotas from West Bangka Indonesia

    Science.gov (United States)

    Suseno, Heny

    2014-03-01

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  14. Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea.

    Science.gov (United States)

    Hong, Seongjin; Khim, Jong Seong; Wang, Tieyu; Naile, Jonathan E; Park, Jinsoon; Kwon, Bong-Oh; Song, Sung Joon; Ryu, Jongseong; Codling, Garry; Jones, Paul D; Lu, Yonglong; Giesy, John P

    2015-06-01

    Year-round monitoring for perfluoroalkyl acids (PFAAs) along the west coast of South Korea targeting long-term changes in water and coastal organisms has been conducted since 2008. In this study, we present the most recent 5-years of accumulated data and scrutinize the relationship between concentrations in water and biota highlighting bioaccumulation characteristics. Twelve individual PFAAs in samples of water (n=43) and biota (n=59) were quantified by use of HPLC-MS/MS after solid phase extraction. In recent years, concentrations of PFAAs in water have been generally decreasing, but profiles of relative concentrations of individual PFAAs vary among location and year. Bioaccumulation of PFAAs in various organisms including fishes, bivalves, crabs, gastropods, shrimps, starfish, and polychaetes varied among species. However, overall bioaccumulation of PFAAs was dependent on corresponding concentrations of PFAAs in water within an area. In organ-specific distributions of PFAAs, greater concentrations of PFAAs were found in intestine of fish (green eel goby). This result suggests that PFAAs are mainly accumulated via dietary exposure, while greater concentrations were found in gill and intestine of bivalve (oyster) which suggests both waterborne and dietary exposures to these organisms. Concentrations of PFAAs in biota did not decrease over time (2008-2010), indicating that continuing bioaccumulation followed by slow degradation or excretion of PFAAs accumulated in biota. Overall, spatio-temporal distributions of PFAAs in water and bioaccumulation characteristics seemed to be associated with recent restrictions of PFOS-based products and uses of PFBS-based substitutes.

  15. Bioaccumulation of isocarbophos enantiomers from laboratory-contaminated aquatic environment by tubificid worms.

    Science.gov (United States)

    Liu, Tiantian; Diao, Jinling; Di, Shanshan; Zhou, Zhiqiang

    2015-04-01

    The benthic fauna is of great importance to assess the environmental fate of contaminations in aquatic ecosystem. In this study, tubificids were exposed to both laboratory-contaminated aqueous phases and spiked sediment to study the bioaccumulation of isocarbophos (ICP). Two types of spiked sediments were used in the spiked sediment experiment. During the exposure period, an enantioselective bioaccumulation was found in spiked water treatment, with concentrations of the (-)-ICP higher than that of the (+)-ICP, but no enantioselectivity was detected in the spiked sediment treatments. However, different bioaccumulation patterns were observed in the two spiked sediment treatments. Results showed that for spiked forest field sediment (FF sediment) incubation, bioaccumulation was governed by the concentrations in soil. Whereas ICP was bioaccumulated dominantly from overlying water in spiked Chagan Lake sediment (CG sediment) test. The dissipation rates were proved different in the two sediments and ICP dissipated much faster in CG sediment than that in FF sediment. Significant difference in ICP's half-life was also observed between worm-present and worm-free treatments in FF sediment. The detections of concentrations in overlying water indicated that much more ICP diffused to aquatic phase with the present of tubificids.

  16. Bioaccumulation factor of {sup 137}Cs in some marine biotas from West Bangka Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Suseno, Heny, E-mail: henis@batan.go.id [Radioactive Waste Technology Center - The Indonesia Nuclear Energy Agency (BATAN) (Indonesia)

    2014-03-24

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  17. Effects of Zinc and Lead Toxicity on the Growth and their Bioaccumulation in Fish

    Directory of Open Access Journals (Sweden)

    M. Javed

    2012-06-01

    Full Text Available This study evaluated the impacts of chronic exposure of waterborne zinc (Zn and lead (Pb on the growth and their bioaccumulation in three fish species viz. Catla catla, Labeo rohita and Cirrhina mrigala. Three fish species responded similarly for their feed intakes while weight increments and feed conversion efficiency (FCE varied significantly due to Zn and Pb exposures. Younger fish were significantly more sensitive to metallic ion toxicity. Chronic exposure of both Zn and Pb (at 1/3rd of LC50 to the fish caused significantly lesser gain in weight, feed intakes and FCE than that of control (un-stressed fish. Amongst 9 age groups, 330-day fish exhibited significantly better growth in terms of weight gain and feed intake than the other age groups. Both Zn and Pb bioaccumulations varied significantly among fish organs while the patterns of their bioaccumulation did not vary significantly within three fish species. Fish liver and kidney accumulated significantly higher Zn and Pb during chronic exposures. However, Zn accumulation was significantly more than that of Pb in the fish body. Amongst three fish species, Labeo rohita exhibited significantly higher tendency to accumulate Zn while Catla catla amassed higher Pb in its body. The bioaccumulation of both Zn and Pb was positively dependent upon fish age and exposure concentration of metals. Zn bioaccumulation in fish body followed the order: liver>kidney>skin>gills>scale=muscle while that of Pb was: kidney>liver>gills>skin>muscle=scales.

  18. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    Science.gov (United States)

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  19. Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary.

    Science.gov (United States)

    Kierkegaard, Amelie; van Egmond, Roger; McLachlan, Michael S

    2011-07-15

    Cyclic volatile methylsiloxanes are being subjected to regulatory scrutiny as possible PBT chemicals. The investigation of bioaccumulation has yielded apparently contradictory results, with high laboratory fish bioconcentration factors on the one hand and low field trophic magnification factors on the other. In this study, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were studied along with polychlorinated biphenyls (PCBs) in sediments, ragworm, and flounder from six sites in the Humber Estuary. Bioaccumulation was evaluated using multimedia bioaccumulation factors (mmBAFs) which quantified the fraction of the contaminant present in the aquatic environment that is transferred to the biota. PCB 180, a known strongly bioaccumulative chemical, was used as a benchmark. The mean mmBAF of D5 was about twice that of PCB 180 in both polycheates and flounder, while for D4 it was 6 and 14 times higher, respectively. The mmBAF of D6 was a factor 5-10 lower than that of PCB180. The comparatively strong multimedia bioaccumulation of D4 and D5, even in the absence of biomagnification, was explained by both compounds having a >100 times stronger tendency to partition into lipid rather than into organic carbon, while PCB 180 partitions to a similar extent into both matrices.

  20. Bioaccumulation and degradation of pentachloronitrobenzene in Medicago sativa.

    Science.gov (United States)

    Li, Ying Ying; Yang, Hong

    2013-04-15

    Pentachloronitrobenzene (PCNB) is a fungicide belonging to the organochlorine family and used extensively in agriculture for crop production. Many studies have implied that PCNB has become an environmental concern due to its widespread contamination in eco-systems. However, whether PCNB is bioaccumulated, degraded and phytotoxic in plants is poorly understood. In this study, several alfalfa (Medicago sativa) cultivars were grown in soil with PCNB to investigate their absorption and catabolism, including PCNB residues in the soil and PCNB-induced toxic responses in plants. Alfalfa plants varied widely in their ability to accumulate and degrade PCNB. The degradation rate of PCNB was 66.26-77.68% after alfalfa growth in the soils for 20 d, while the rates in the control (soil without alfalfa) were only 48.42%. Moreover, concentrations of PCNB residues in the rhizosphere soil were significantly higher than those in the non-rhizosphere soils. Alfalfa exposed to 10 mg kg(-1) PCNB showed inhibited growth and oxidative damage, but the effects of PCNB on the cultivars differed significantly, indicating that the alfalfa cultivars have different tolerance to PCNB. Activities of invertase (INV), urease (URE), polyphenol oxidase (PPO), alkaline phosphatase (ALP) and acid phosphatase (ACP) were assayed in the treated soils and showed that the enzyme activities were altered after PCNB exposure. The URE, PPO, ALP and ACP activities were increased in soil following the planting of alfalfa. The objective of the study was to analyze the potential of different cultivars of alfalfa to accumulate and degrade PCNB from the contaminated soil.

  1. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  2. Bioaccumulation and maternal transfer of mercury and selenium in amphibians.

    Science.gov (United States)

    Bergeron, Christine M; Bodinof, Catherine M; Unrine, Jason M; Hopkins, William A

    2010-04-01

    Amphibian population declines have been documented worldwide and environmental contaminants are believed to contribute to some declines. Maternal transfer of bioaccumulated contaminants to offspring may be an important and overlooked mechanism of impaired reproductive success that affects amphibian populations. Mercury (Hg) is of particular concern due to its ubiquity in the environment, known toxicity to other wildlife, and complex relationships with other elements, such as selenium (Se). The objectives of the present study were to describe the relationships between total Hg (THg), methlymercury (MMHg), and Se in three amphibian species (Plethodon cinereus, Eurycea bislineata cirrigera, and Bufo americanus) along a Hg-polluted river and floodplain, and to determine if B. americanus maternally transfers Hg and Se to its eggs in a tissue residue-dependent manner. Total Hg and MMHg concentrations in all species spanned two orders of magnitude between the reference and contaminated areas, while Se concentrations were generally low in all species at both sites. Strong positive relationships between THg and MMHg in tissues of all species were observed throughout. Both Hg and Se were maternally transferred from females to eggs in B. americanus, but the percentage of the females' Hg body burden transferred to eggs was low compared with Se. In addition, Hg concentrations appeared to positively influence the amount of Se transferred from female to eggs. The present study is the first to confirm a correlation between Hg concentrations in female carcass and eggs in amphibians and among the first to describe co-transference of Se and Hg in an anamniotic vertebrate. The results suggest future work is needed to determine whether maternal transfer of Hg has transgenerational implications for amphibian progeny.

  3. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clayden, Meredith G., E-mail: meredith.clayden@gmail.com [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Arsenault, Lilianne M. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada); Kidd, Karen A. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); O' Driscoll, Nelson J. [Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Mallory, Mark L. [Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada)

    2015-03-15

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ{sup 13}C and δ{sup 15}N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ{sup 15}N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas.

  4. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms.

    Science.gov (United States)

    Širić, Ivan; Humar, Miha; Kasap, Ante; Kos, Ivica; Mioč, Boro; Pohleven, Franc

    2016-09-01

    Heavy metals cause serious problems in the environment, and they can be accumulated in organisms, especially in the higher fungi. The concentration of Ni, Cr, Pb, Cd, and Hg in 10 species of edible mushrooms in Medvednica Nature Park, Croatia was therefore determined. In addition, the similarity between the studied species was determined by cluster analysis based on concentrations of the aforementioned metals in the fruiting bodies. The contents of nickel, chromium, lead, cadmium, and mercury in the fruiting bodies of mushrooms were obtained by X-ray fluorescence spectrometry. The highest concentrations of Ni (3.62 mg kg(-1)), Cr (3.01 mg kg(-1)), and Cd (2.67 mg kg(-1)) were determined in Agaricus campestris. The highest concentration of Pb (1.67 mg kg(-1)) was determined in Macrolepiota procera, and the highest concentration of Hg (2.39 mg kg(-1)) was determined in Boletus edulis. The concentration of all heavy metals significantly differed (p mushrooms. Considering anatomical part of the fruiting body (cap-stipe), a considerably higher concentration of the analyzed elements was found in the cap for all mushroom species. According to calculated bioconcentration factors, all the examined species were found to be bioexclusors of Ni, Cr, and Pb and bioaccumulators of Cd and Hg. Cluster analysis performed on the basis of the accumulation of the studied metals revealed great phenotypic similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation.

  5. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    Science.gov (United States)

    Katagi, Toshiyuki

    2010-01-01

    The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is

  6. How Do High School Science Textbooks in Korea, Japan, and the U.S. Explain Bioaccumulation-Related Concepts?

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2013-01-01

    Although bioaccumulation-related concepts are important scientific knowledge, a study on whether high school textbooks include appropriate explanations has not been conducted. The present study investigated science and biology textbooks from Korea, Japan, and the U.S., focusing on how bioaccumulation-related concepts were defined, what types of…

  7. Integrated testing strategies (ITS) for bioaccumulation: hierarchical scheme of chemistrydriven modules and definition of applicability domains

    DEFF Research Database (Denmark)

    Nendza, M.; Scheringer, M.; Strempel, S.;

    2011-01-01

    The efficient assessment of the bioaccumulation potential of chemicals under REACH with integrated test strategies (ITS) requires multiple tools. Existing data have to be searched and information from chemical structures and physico-chemical properties need to be evaluated prior to considering...... for chemical registration. The alternative ITS modules share three major objectives to save time and money by reducing the number of experimental animals required to come to a conclusion about the bioaccumulation potential of chemicals under REACH: · Classification of non-B/B/vB-compounds · Omission of BCF......, Reduce, Replace) modules The ITS components for bioaccumulation listed in the ECHA Guidance on information requirements and chemical safety assessment [1,2] have been extended with new knowledge generated in OSIRIS and complemented with feedback from stakeholders on the actual problems in using ITS...

  8. Equilibrium Sampling to Determine the Thermodynamic Potential for Bioaccumulation of Persistent Organic Pollutants from Sediment

    DEFF Research Database (Denmark)

    Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan

    2014-01-01

    Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical...... concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring...... chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic...

  9. Relationship between the lability of sediment-bound Cd and its bioaccumulation in edible oyster.

    Science.gov (United States)

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita; Chennuri, Kartheek; Bardhan, Pratirupa

    2015-11-15

    A linkage between Cd speciation in sediments and its bioaccumulation in edible oyster (Crassostrea sp.) from a tropical estuarine system was established. Bioaccumulation of Cd in edible oyster increased with the increasing lability and dissociation rate constants of Cd-sediment complexes in the bottom sediments. Total Cd concentration in sediment was not a good indicator of Cd-bioavailability. Increasing trace metal competition in sediments increased lability and bioavailability of Cd in the tropical estuarine sediment. Low thermodynamic stability and high bioavailability of Cd in the estuarine sediment were responsible for high bioaccumulation of Cd in edible oysters (3.2-12.2mgkg(-1)) even though the total concentration of Cd in the bottom sediment was low (0.17-0.49mgkg(-1)).

  10. Bioaccumulation of heavy metals in Liza saliens from the Esmoriz-Paramos coastal lagoon, Portugal.

    Science.gov (United States)

    Fernandes, C; Fontaínhas-Fernandes, A; Peixoto, F; Salgado, M A

    2007-03-01

    Heavy metal (Cu and Zn) concentrations in liver, gills, and muscle of leaping grey mullet, Liza saliens, from the Portuguese Esmoriz-Paramos coastal lagoon were measured to evaluate their bioaccumulation as a function of sediment contamination. The highest metal concentrations were observed in the liver (254 mg Cu kg(-1)) and gills (114 mg Zn kg(-1)). Bioaccumulation factors (BAFs) were found to follow the order: Cu-liver>Cu-gills>Cu-muscle and Zn-gills>Zn-liver>Zn-muscle. The highest BAFs were observed in the organs mainly implicated in metal metabolism and a significant positive relationship was found between BAFs and fish age. These results suggest the loss of homeostatic capacity of L. saliens under chronic metal exposure leading to bioaccumulation. Furthermore, Cu-liver and Zn-gills accumulation can be good environmental indicators of metal stress in L. saliens.

  11. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  12. The pH dependent toxicity and bioaccumulation of chloroquine tested on S. viminalis (basket willow)

    DEFF Research Database (Denmark)

    Rendal, Cecilie; Trapp, Stefan; Legind, Charlotte Nielsen

    2010-01-01

    It is known that the uptake and accumulation of electrolytes is very sensitive to pH owing to the slower diffusion of charged compounds across membranes, and other factors such as the Nernst effect and the ion trap effect. However, the significance of pH to the bioaccumulation of electrolytes has...... only been investigated sparingly in practical laboratory experiments leaving limited data with which to confirm the accuracy of current modeling efforts in the area. The aim of this study was to examine the effects of pH on the the bioaccumulation and toxicity of the malaria drug chloroquine (a...

  13. Assessing element-specific patterns of bioaccumulation across New England lakes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y., E-mail: celia.chen@dartmouth.edu

    2012-04-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3-5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  14. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation

    Directory of Open Access Journals (Sweden)

    Juliano José Corbi

    2010-01-01

    Full Text Available Streams located in areas of sugar cane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. The accumulation of metals in the sediments results in environmental problems and leads to bioaccumulation of metal ions by the aquatic organisms. In the present study, bioaccumulation of the metals ions Al, Cd, Cr, Cu, Fe, Mg, Mn and Zn in aquatic insects in streams impacted by the sugar cane was evaluated. The results pointed out that the insects were contaminated by the sediment and that the collector organisms as Chironomus species accumulated higher concentration of metals than the predator organisms.

  15. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment.

    Science.gov (United States)

    Thompson, Roy; Vaughan, Martin

    2014-01-01

    Chlorinated paraffins (CPs) are high molecular weight organochlorine compounds that have been used in a variety of industrial applications for many years. Medium-chain chlorinated paraffins (MCCPs) (CAS 85535-85-9; Alkanes, C14-17 , chloro) are currently under investigation as potential persistent bioaccumulative toxic (PBT) compounds. In this article, the bioaccumulation potential of MCCPs is assessed using a tiered framework proposed after a recent Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop in 2008. The framework proposes the use of physicochemical properties and modeling assessment, bioconcentration/bioaccumulation (BCF/BAF) assessment, biomagnification (BMF) assessment, and trophic magnification factor (TMF) assessment. It is hoped that use of this framework could harmonize and improve the efficiency and effectiveness of the chemical substance evaluation screening process for PBT properties. When applied to MCCPs, the following conclusions were made: empirical physiochemical data is available negating the use of models; laboratory BCFs range from 1000 to 15 000 (growth-corrected lipid normalized values) for 2 MCCP structures; field BAFs were an order of magnitude higher than the trigger criterion for "B status possible"; although results may not meet acceptance criteria for field studies, laboratory-derived BMFs for a number of C14-17 chlorinated alkanes were less than the trigger value of 1 (based on whole-body concentrations) whereas field-derived BMFs were less than 1 (based on lipid corrected values [generally used for field data] excluding one measure for sculpin, [Cottus cognatus]-Diporeia that was based on only one detectable sample); and finally, TMFs were less than the trigger criterion value of 1, which are considered the most convincing evidence for bioaccumulative properties of a compound and the "Gold Standard" measure of bioaccumulation. This article also discusses the uncertainties surrounding the published data

  16. Bioaccumulation of heavy metals in fauna from wet detention ponds for stormwater runoff

    DEFF Research Database (Denmark)

    Stephansen, Diana; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild;

    2012-01-01

    Stormwater detention ponds remove pollutants e.g. heavy metals and nutrients from stormwater runoff. These pollutants accumulate in the pond sediment and thereby become available for bioaccumulation in fauna living in the ponds. In this study the bioaccumulation was investigated by fauna samples...... from 5 wet detention ponds for analyses of heavy metal contents. Five rural shallow lakes were included in the study to survey the natural occurrence of heavy metals in water-dwelling fauna. Heavy metal concentrations in water-dwelling fauna were generally found higher in wet detention ponds compared...

  17. Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Marshall [ORNL; Brandt, Craig C [ORNL; Fortner, Allison M [ORNL

    2012-05-01

    In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including

  18. Modeling chronic dietary cadmium bioaccumulation and toxicity from periphyton to Hyalella azteca.

    Science.gov (United States)

    Golding, Lisa A; Borgmann, Uwe; Dixon, D George

    2011-07-01

    A chronic (28-d) Cd saturation bioaccumulation model was developed to quantify the Cd contribution from a natural periphyton diet to Cd in the freshwater amphipod Hyalella azteca. Bioaccumulation was then linked to chronic toxic effects. Juvenile H. azteca were exposed to treatments of Cd in water (3.13-100 nmol/L nominal) and food (389-26,300 nmol/g ash-free dry mass). Cadmium bioaccumulation, survival, and growth were recorded. Dietary Cd was estimated to contribute 21 to 31, 59 to 94, and 40 to 55% to bioaccumulated Cd in H. azteca exposed to treatments of Cd primarily in water, food, and food + water, respectively. Survival as a function of Cd lethal body concentration (679 nmol/g; 95% confidence limits, 617-747) was the most robust endpoint. Body concentration integrated all exposure routes. Based on the lethal body concentration, dietary Cd was predicted to contribute markedly (26-90%) to Cd in H. azteca. Cadmium concentration and food nutritional quality (biomass, chlorophyll a, total lipid, fatty acids, total protein) had no effect on H. azteca nutritional quality (total lipid, fatty acids, total protein) but did influence H. azteca dry weight. This research highlighted the importance of including a dietary component when modeling chronic effects of Cd and when refining endpoints for use in ecological risk assessment and water quality guidelines.

  19. Coupling marine monitoring and risk assessment by integrating exposure, bioaccumulation and effect studies

    DEFF Research Database (Denmark)

    Strand, J.

    This Ph.D. thesis focuses on the highly toxic organotin compounds, mainly tri-n-butyltin (TBT) but also triphenyltin (TPhT), which have been widely used as antifouling agents in ship paints, and covers several aspects investigated by field studies of spatial distributions, bioaccumulation...

  20. BIOACCUMULATION AND BIOTRANSFORMATION OF CHIRAL TRIAZOLE FUNGICIDES IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    There are very little data on the bioaccumulation and biotransformation of current-use pesticides (CUPs) despite the fact that such data are critical in assessing their fate and potential toxic effects in aquatic organisms. To help address this issue, juvenile rainbow trout (Onco...

  1. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.).

    Science.gov (United States)

    Besseling, Ellen; Wegner, Anna; Foekema, Edwin M; van den Heuvel-Greve, Martine J; Koelmans, Albert A

    2013-01-02

    It has been speculated that marine microplastics may cause negative effects on benthic marine organisms and increase bioaccumulation of persistent organic pollutants (POPs). Here, we provide the first controlled study of plastic effects on benthic organisms including transfer of POPs. The effects of polystyrene (PS) microplastic on survival, activity, and bodyweight, as well as the transfer of 19 polychlorinated biphenyls (PCBs), were assessed in bioassays with Arenicola marina (L.). PS was pre-equilibrated in natively contaminated sediment. A positive relation was observed between microplastic concentration in the sediment and both uptake of plastic particles and weight loss by A. marina. Furthermore, a reduction in feeding activity was observed at a PS dose of 7.4% dry weight. A low PS dose of 0.074% increased bioaccumulation of PCBs by a factor of 1.1-3.6, an effect that was significant for ΣPCBs and several individual congeners. At higher doses, bioaccumulation decreased compared to the low dose, which however, was only significant for PCB105. PS had statistically significant effects on the organisms' fitness and bioaccumulation, but the magnitude of the effects was not high. This may be different for sites with different plastic concentrations, or plastics with a higher affinity for POPs.

  2. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21.

    Science.gov (United States)

    Sinha, Arvind; Kumar, Sumit; Khare, Sunil Kumar

    2013-01-01

    The aims of this study were to isolate metal bioaccumulating bacterial strains and to study their applications in removal of environmental problematic heavy metals like mercury. Five bacterial strains belonging to genera Enterobacter, Bacillus, and Pseudomonas were isolated from oil-spilled soil. Among these, one of the strains Enterobacter sp. EMB21 showed mercury bioaccumulation inside the cells simultaneous to its bioremediation. The bioaccumulation of remediated mercury was confirmed by transmission electron microscopy and energy dispersive X-ray. The mercury-resistant loci in the Enterobacter sp. EMB21 cells were plasmid-mediated as confirmed by transformation of mercury-sensitive Escherichia coli DH5α by Enterobacter sp. EMB21 plasmid. Effect of different culture parameters viz-a-viz inoculum size, pH, carbon, and nitrogen source revealed that alkaline pH and presence of dextrose and yeast extract favored better remediation. The results indicated the usefulness of Enterobacter sp. EMB21 for the effective remediation of mercury in bioaccumulated form. The Enterobacter sp. EMB21 seems promising for heavy metal remediation wherein the remediated metal can be trapped inside the cells. The process can further be developed for the synthesis of valuable high-end functional alloy, nanoparticles, or metal conjugates from the metal being remediated.

  3. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation.

    Science.gov (United States)

    Ma, Ning; Li, Chunsheng; Zhang, Dandan; Yu, Jinzhi; Xu, Ying

    2016-07-01

    Application of growing microorganisms for cadmium removal is limited by the sensitivity of living cells to cadmium. The effects of sodium chloride (NaCl) preincubation on the cadmium bioaccumulation and tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation significantly reduced the intracellular and cell-surface cadmium bioaccumulation of P. kudriavzevii at both 6 and 20 mg L(-1) cadmium, while no obvious effect was observed in S. cerevisiae except that the intracellular cadmium bioaccumulation at 20 mg L(-1) cadmium was reduced obviously by 20-60 g L(-1)  NaCl. For both yeasts, the improved contents of protein and proline after NaCl preincubation contributed to the cadmium tolerance. The thiol contents in P. kudriavzevii under cadmium stress were alleviated by NaCl preincubation, which might be due to the decrease of intracellular cadmium bioaccumulation. NaCl preincubation enhanced the contents of glycerol and trehalose in P. kudriavzevii under cadmium stress, while no acceleration was observed in S. cerevisiae. The results suggested that NaCl preincubation could be applied in cadmium removal by growing P. kudriavzevii to increase the cadmium tolerance of the yeast.

  4. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    Science.gov (United States)

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate.

  5. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of Mid-Atlantic wadeable streams

    Science.gov (United States)

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the BASS bioaccumulation and fish community model and data collected by the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP)....

  6. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    NARCIS (Netherlands)

    Brink, van den N.W.; Arblaster, J.A.; Bowman, S.R.; Conder, J.M.; Elliott, J.E.; Johnson, M.S.; Muir, D.C.G.; Natal-da-Luz, Tiago; Rattner, B.A.; Sample, B.E.; Shore, R.F.

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To ai

  7. Differences in copper bioaccumulation and biological responses in three Mytilus species.

    Science.gov (United States)

    Brooks, Steven J; Farmen, Eivind; Heier, Lene Sørlie; Blanco-Rayón, Esther; Izagirre, Urtzi

    2015-03-01

    Mytilus species are important organisms in marine systems being highly abundant and widely distributed along the coast of Europe and worldwide. They are typically used in biological effects studies and have a suite of biological effects endpoints that are frequently measured and evaluated for stress effects in laboratory experiments and field monitoring programmes. Differences in bioaccumulation and biological responses of the three Mytilus species following exposure to copper (Cu) were investigated. A laboratory controlled exposure study was performed with three genetically confirmed Mytilus species; M. galloprovincialis, M. edulis and M. trossulus. Chemical bioaccumulation and biomarkers were assessed in all three Mytilus species following a 4 day and a 21 day exposure to waterborne copper concentrations (0, 10, 100 and 500μg/L). Differences in copper bioaccumulation were measured after both 4 and 21 days, which suggests some physiological differences between the species. Furthermore, differences in response for some of the biological effects endpoints were also found to occur following exposure. These differences were discussed in relation to either real physiological differences between the species or merely confounding factors relating to the species natural habitat and seasonal cycles. Overall the study demonstrated that differences in chemical bioaccumulation and biomarker responses between the Mytilus spp. occur with potential consequences for mussel exposure studies and biological effects monitoring programmes. Consequently, the study highlights the importance of identifying the correct species when using Mytilus in biological effects studies.

  8. Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies

    Science.gov (United States)

    Cain, D.; Croteau, M.-N.; Luoma, S.

    2011-01-01

    Consumption of periphyton is a potentially important route of metal exposure to benthic invertebrate grazers. The present study examined the bioaccumulation kinetics of dissolved and dietary Cd and Cu in five species of mayflies (class Insecta). Artificial stream water and benthic diatoms were separately labeled with enriched stable metal isotopes to determine physiological rate constants used by a biokinetic bioaccumulation model. The model was employed to simulate the effects of metal partitioning between water and food, expressed as the bioconcentration factor (BCF), as well as ingestion rate (IR) and metal assimilation efficiency of food (AE), on the relative importance of water and food to metal bioaccumulation. For all test species, the contribution of dietary uptake of Cd and Cu increased with BCF. For a given BCF, the contribution of food to the body burden increased with kuf, the metal uptake rate constant from food that combined variation in IR and AE. To explore the relative importance of water and diet exposure routes under field conditions, we used estimated site-specific aqueous free-ion concentrations to model Cd and Cu accumulation from aqueous exposure, exclusively. The predicted concentrations accounted for less than 5% of the observed concentrations, implying that most bioaccumulated metal was acquired from food. At least for the taxa considered in this study, we conclude that consumption of metal-contaminated periphyton can result in elevated metal body burdens and potentially increase the risk of metal toxicity. ?? 2011 SETAC.

  9. Thermal inactivation of enteric viruses and bioaccumulation of enteric foodborne viruses in live oysters (Crassostrea virginica)

    Science.gov (United States)

    Human enteric viruses are one of the main causative agents of shellfish associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stability of the most predominant enteric viruses were determined in both tissue culture and in oyster tissues. A human nor...

  10. Sediment contamination and associates laboratory-measured bioaccumulation in New York/New Jersey waterways

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, L.B. [Army Corps of Engineers, New York, NY (United States); Barrows, E.S. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1995-12-31

    Sediments from 10 New York/New Jersey waterways within the Hudson-Raritan Estuary and Long Island Sound were collected to depths representative of dredging activity. Composited core sediments representing each waterway were analyzed for metals, PAHs, PCBs, and pesticides. To assess bioaccumulation, sand worms (Nereis virens) and blunt-nose clams (Macoma nasuta) were exposed for 28 days to sediment composites and to New York Bight sediment. Tissues were analyzed for the same constituents as the sediment samples. The results highlight the range and magnitude of sediment contamination in NY/NJ waterways. Concentrations of some metals in sediments, compared with NY Bight sediment, were at least 10 times higher. Total PAHs reached 30,000 {micro}g/kg (dry weight). The sum of DDT, DDD, and DDE, the dominant pesticides, exceeded 3,000{micro}g/kg (dry weight). Total PCBs approached 3,000 {micro}g/kg (dry weight). Tissues exposed to sediments from several waterways bioaccumulated organic compounds at concentrations 10 times greater than those exposed to New York Bight sediments. Metals were bioaccumulated to a lesser degree. The presence and extent of bioaccumulated contaminants, along with sediment chemistry and benthic toxicity, create a profile characterizing each waterway.

  11. Assessment of Mercury Bioaccumulation in Zebra Cichlid (Cichlasoma Nigrofasciatum Exposed to Sublethal Concentrations of Permethrin

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2014-12-01

    Full Text Available Background: Aquatic ecosystems are frequently subjected to contamination by toxic heavy metals and pesticides, yet very little is known about the influence of pesticides on bioaccumulation of heavy metals in aquatic organisms. Mercury is a toxic metal with no known biological benefit to organisms. Bioavailability of mercury in aquatic environments depends on biological and non-biological parameters including other pollutants. Therefore, the objectives of this research were to determine the effects of permethrin on bioaccumulation of mercury in zebra cichlid. Methods: Acute toxicity (LC50 of permethrin and mercury chloride was evaluated by estimating mortality in Probit Model in SPSS (version 19.0 IBM. In sub-lethal toxicity, zebra cichlid (Cichlasoma nigrofasciatum was exposed to various concentrations of permethrin (0.0, 0.40, 0.80, 1.20 and 1.60 µg.L-1 combined with 20 µg.L-1 mercury chloride for 15 days. At the end of the experiment, mercury concentrations were measured using ICP-OES-Perkin elmer (optima 7300-DV. Results: 96 h LC50 values of permethrin and mercury for C. nigrofasciatum were calculated to be 17.55 µg.L-1 and 140.38 µg.L-1, respectively. Our results clearly showed that the bioaccumulation of mercury in the specimens increased with increasing concentrations of permethrin to 1.20 and 1.60 µg.L-1. Conclusion: Increasing the concentration of permethrin had synergistic effects on the bioaccumulation of mercury in fish.

  12. Bioaccumulation of Polycyclic Aromatic Hydrocarbons and Mercury in Oysters (Crassostrea rhizophorae from Two Brazilian Estuarine Zones

    Directory of Open Access Journals (Sweden)

    Ronaldo J. Torres

    2012-01-01

    Full Text Available Nowadays, organisms are increasingly being used in biomonitoring to assess bioavailability and bioaccumulation of contaminants. This approach can use both native and transplanted organisms in order to accomplish this task. In Brazil, most of the studies related to bioaccumulation of contaminants in oysters deal with metals. The present work employs this kind of test in Brazilian coastal estuaries (Santos and Paranaguá to evaluate total mercury and polycyclic aromatic hydrocarbon contamination in sediments and oysters (native and caged Crassostrea rhizophorae. The methodologies employed were based on known USEPA methods. Results have shown a significant contamination in Santos sediments and consequent bioavailability of organisms. Paranaguá sediments presented lower contamination in sediments, but native oysters were able to accumulate total Hg. The experiments done with caged oysters did not show significant bioaccumulation of Hg and PAHs in the Paranaguá site, but proved to be an excellent tool to assess bioavailability in the Santos estuary since they were able to bioaccumulate up to 1,600% of total PAH in the samples from the inner part of this estuary when compared to control organisms. Multivariate statistical analyses employed to these results have separated the sites evaluated and the most contaminated samples from the least contaminated.

  13. ENHANCED BIOACCUMULATION OF HEAVY METAL BY BACTERIA CELLS DISPLAYING SYNTHETIC PHYTOCHELATINS. (R827227)

    Science.gov (United States)

    A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal-chelating phytochelatin analogs (Glu-Cys)nGly (EC8 (n = 8), EC11 (n = 11...

  14. Bioaccumulation of persistent organic pollutants from floodplain lake sediments: linking models to measurement

    NARCIS (Netherlands)

    Moermond, C.T.A.

    2007-01-01

    The main research questions of this research were (1) what is the extent and nature of bioavailability of sediment-bound polychlorobiphenyls (PCBs) and polyaromatic hydrocarbons (PAHs) and (2) what are the effects of lake ecosystem structure on fate and bioaccumulation of PCBs and PAHs. Fast-desorbi

  15. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina

    NARCIS (Netherlands)

    Besseling, E.; Wegner, A.; Foekema, E.M.; Heuvel_Greve, van den M.J.; Koelmans, A.A.

    2013-01-01

    It has been speculated that marine microplastics may cause negative effects on benthic marine organisms and increase bioaccumulation of persistent organic pollutants (POPs). Here, we provide the first controlled study of plastic effects on benthic organisms including transfer of POPs. The effects of

  16. Bioaccumulation of ionic titanium and titanium dioxide nanoparticles in zebrafish eleutheroembryos.

    Science.gov (United States)

    López-Serrano Oliver, Ana; Muñoz-Olivas, Riansares; Sanz Landaluze, Jon; Rainieri, Sandra; Cámara, Carmen

    2015-01-01

    The production of titanium dioxide nanoparticles (TiO(2) NPs) for commercial applications has greatly increased over the last years and consequently the potential risk for human health. There is a growing awareness of the need to understand the behavior and influence these nanoparticles exert on the environment. Bioaccumulation serves as a good integrator to assess chemical exposure in aquatic systems and is dependent on factors, such as the exposure routes, diet and the aqueous medium. We analyzed the experimental bioaccumulation capability of ionic titanium and TiO(2) NPs by zebrafish (Danio rerio) eleutheroembryos through bioconcentration factors (BCFs), after 48 or 72 h of exposure. The stability of both chemical forms in an aquatic medium was fully characterized for further bioaccumulation studies. Several stabilizing agents (humic acids, soluble starch, polyethylene glycol, Na(4)P(2)O(7) and Na(2)HPO(4)) for anatase and rutile, the two allotrophs of TiO(2) NPs, were evaluated to check the evolution of the aggregation process. Around 60% of TiO(2) NPs remained disaggregated under simulated environmental conditions with the addition of 50 mg L(-1) of humic acids. However, the presence of eleutheroembryos in the exposure medium increased TiO(2) NPs aggregation in the experimental tests. The BCFs values obtained in all cases were titanium and TiO(2) NPs as non-bioaccumulative substances, under the REACH regulations.

  17. Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought.

    Science.gov (United States)

    Du, Bowen; Haddad, Samuel P; Scott, W Casan; Chambliss, C Kevin; Brooks, Bryan W

    2015-01-01

    Increasing evidence indicates that pharmaceutical bioaccumulate in fish collected downstream from municipal wastewater effluent discharges. However, studies of pharmaceutical bioaccumulation by other aquatic organisms, including primary producers (e.g., periphyton) and grazers (e.g., snails), are lacking in wadeable streams. Here, we examined environmental occurrence and bioaccumulation of a range of pharmaceuticals and other contaminants of emerging concern in surface water, a common snail (Planorbid sp.) and periphyton from an effluent-dependent stream in central Texas, USA, during a historic drought, because such limited dilution and instream flows may represent worst-case exposure scenarios for aquatic life to pharmaceuticals. Water and tissue samples were liquid-liquid extracted and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization. Target analytes included 21 pharmaceuticals across multiple drug classes and 2 pharmacologically active metabolites. Several pharmaceuticals were detected at up to 4.7 μg kg(-1) in periphyton and up to 42 μg kg(-1) in Planorbid sp. We then identified limitations of several bioconcentration factor and bioaccumulation factor models, developed for other invertebrates, to assist interpretation of such field results. Observations from the present study suggest that waterborne exposure to pharmaceuticals may be more important than dietary exposure for snails.

  18. Stereoselectivity in bioaccumulation and excretion of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae.

    Science.gov (United States)

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Wang, Huili; Li, Jianzhong; Guo, Baoyuan

    2014-09-01

    Stereoselectivity in bioaccumulation and excretion of stereoisomers of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae through dietary exposure was investigated. Liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method that use a ChiralcelOD-3R[cellulosetris-Tris-(3, 5-dichlorophenyl-carbamate)] chromatography column was applied to carry out chiral separation of the stereoisomers. Wheat bran was spiked with racemic epoxiconazole at two dose levels of 20mg/kg and 2mg/kg (dry weight) to feed T. molitor larvae. The results showed that both the doses of epoxiconazole were taken up by Tenebrio molitor larvae rapidly at the initial stages. There was a significant trend of stereoselective bioaccumulation in the larvae with a preferential accumulation of (-)-epoxiconazole in the 20mg/kg dose. The stereoselectivity in bioaccumulation in the 2mg/kg dosage was not obvious compared to the 20mg/kg group. Results of excretion indicated an active excretion is an important pathway for the larvae to eliminate epoxiconazole which was a passive transport process with non stereoselectivity. The faster elimination might be the reason for the low accumulation of epoxiconazole, as measured by bioaccumulation factor (BAF).

  19. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    Science.gov (United States)

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems.

  20. Spatial and taxonomic variation in trace element bioaccumulation in two herbivores from a coal combustion waste contaminated stream.

    Science.gov (United States)

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; Vaun McArthur, J

    2014-03-01

    Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems.

  1. Exploring the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus using dynamic energy budget modeling

    Science.gov (United States)

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we conducted growth and bioaccumulation studies that contribute t...

  2. Speciation of bioaccumulated uranium(VI) by Euglena mutabilis cells obtained by laser fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Sina; Bernhard, Gert [Technical Univ. Dresden (Germany). Radiochemistry; Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology

    2014-07-01

    The ability of Euglena mutabilis cells - a unicellular protozoan with a flexible pellicle, which is typically found in acid mine drainage (AMD) environments - to bioaccumulate uranium under acid conditions was studied in batch sorption experiments at pH 3 and 4 using Na{sub 2}SO{sub 4} and NaClO{sub 4} as background media. It was found that axenic cultures of Euglena mutabilis Schmitz were able to bioaccumulate in 5 days 94.9 to 99.2% of uranium from a 1 x 10{sup -5} mol/L uranium solution in perchlorate medium and 95.1 to 95.9% in sodium sulfate medium, respectively. The speciation of uranium in solution and uranium bioaccumulated by Euglena mutabilis cells, were studied by laser induced fluorescence spectroscopy (LIFS). The LIFS investigations showed that the uranium speciation in the NaClO{sub 4} systems was dominated by free uranyl(VI) species and that the UO{sub 2}SO{sub 4} species was dominating in the Na{sub 2}SO{sub 4} medium. Fluorescence spectra of the bioaccumulated uranium revealed that aqueous uranium binds to carboxylic and/or (organo)phosphate groups located on the euglenid pellicle or inside the Euglena mutabilis cells. Reduced uranium immobilization rates of 0.93-1.43 mg uranium per g Euglena mutabilis biomass were observed in similar experiments, using sterile filtrated AMD waters containing, 4.4 x 10{sup -5} mol/L uranium. These lower rates were attributed to competition with other cations for available sorption sites. Additional LIFS measurements, however, showed that the speciation of the bioaccumulated uranium by the Euglena mutabilis cells was found to be identical with the uranium speciation found in the bioaccumulation experiments carried out in Na{sub 2}SO{sub 4} and NaClO{sub 4} media. The results indicate that Euglena mutabilis has the potential to immobilize aqueous uranium under acid condition and thus may be used in future as promising agent for immobilizing uranium in low pH waste water environments. (orig.)

  3. A method for improving predictive modeling by taking into account lag time: Example of selenium bioaccumulation in a flowing system

    Energy Technology Data Exchange (ETDEWEB)

    Beckon, William N., E-mail: William_Beckon@fws.gov

    2016-07-15

    Highlights: • A method for estimating response time in cause-effect relationships is demonstrated. • Predictive modeling is appreciably improved by taking into account this lag time. • Bioaccumulation lag is greater for organisms at higher trophic levels. • This methodology may be widely applicable in disparate disciplines. - Abstract: For bioaccumulative substances, efforts to predict concentrations in organisms at upper trophic levels, based on measurements of environmental exposure, have been confounded by the appreciable but hitherto unknown amount of time it may take for bioaccumulation to occur through various pathways and across several trophic transfers. The study summarized here demonstrates an objective method of estimating this lag time by testing a large array of potential lag times for selenium bioaccumulation, selecting the lag that provides the best regression between environmental exposure (concentration in ambient water) and concentration in the tissue of the target organism. Bioaccumulation lag is generally greater for organisms at higher trophic levels, reaching times of more than a year in piscivorous fish. Predictive modeling of bioaccumulation is improved appreciably by taking into account this lag. More generally, the method demonstrated here may improve the accuracy of predictive modeling in a wide variety of other cause-effect relationships in which lag time is substantial but inadequately known, in disciplines as diverse as climatology (e.g., the effect of greenhouse gases on sea levels) and economics (e.g., the effects of fiscal stimulus on employment).

  4. Contribution of aqueous and dietary uptakes to lead (Pb) bioaccumulation in Gammarus pulex: From multipathway modeling to in situ validation.

    Science.gov (United States)

    Hadji, Rym; Urien, Nastassia; Uher, Emmanuelle; Fechner, Lise C; Lebrun, Jérémie D

    2016-07-01

    Although dynamic approaches are nowadays used increasingly to describe metal bioaccumulation in aquatic organisms, the validation of such laboratory-derived modeling is rarely assessed under environmental conditions. Furthermore, information on bioaccumulation kinetics of Pb and the significance of its uptake by dietary route is scarce in freshwater species. This study aims at modeling aqueous and dietary uptakes of Pb in the litter-degrader Gammarus pulex and assessing the predictive quality of multipathway modeling from in situ bioaccumulation data. In microcosms, G. pulex were exposed to environmentally realistic concentrations of Pb (from 0.1 to 10µg/L) in the presence of Pb-contaminated poplar leaves, which were enclosed or not in a net to distinguish aqueous and dietary uptakes. Results show that water and food both constitute contamination sources for gammarids. Establishing biodynamic parameters involved in Pb aqueous and dietary uptake and elimination rates enabled to construct a multipathway model to describe Pb bioaccumulation in gammarids. This laboratory-derived model successfully predicted bioaccumulation measured in native populations of G. pulex collected in situ when local litter was used as dietary exposure source. This study demonstrates not only the suitable applicability of biodynamic parameters for predicting Pb bioaccumulation but also the necessity of taking dietary uptake into account for a better interpretation of the gammarids' contamination in natural conditions.

  5. Flue-gas-influenced heavy metal bioaccumulation by the indigenous microalgae Desmodesmus communis LUCC 002.

    Science.gov (United States)

    Palanisami, Swaminathan; Lee, Keesoo; Balakrishnan, Baskar; Nam, Paul Ki-souk

    2015-01-01

    Desmodesmus communis LUCC 002 was cultivated using flue gas originating from a coal-fired power plant as a carbon dioxide (CO2) source. The flue gas contains various heavy metals. For investigating the fate of flue-gas-introduced metals on the cultivation system, bioaccumulation was measured in the microalgal biomass and milieu. The accumulated biomass was found to contain eight heavy metals: arsenic, chromium, barium, lead, selenium, silver, cadmium, and mercury. High heavy metal accumulations were also found in the control group of algae grown without the addition of flue gas at the same location. Further testing revealed that some of the heavy metals originated from well water used in the cultivation. The flue-gas-influenced bioaccumulation pattern of different heavy metals was observed. The responses of individual heavy metals and the influence of well water microbial flora on the algal growth were investigated, this study showed that hormesis was developed by the D. communis LUCC 002.

  6. Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass

    Science.gov (United States)

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Fleck, Jacob; Alpers, Charles N.; Ackerman, Josh; Eagles-Smith, Collin; Stricker, Craig; Stephenson, Mark; Feliz, David; Gill, Gary; Bachand, Philip; Brice, Ann; Kulakow, Robin

    2010-01-01

    This 18-month field study addresses the seasonal and spatial patterns and processes controlling methylmercury (MeHg) production, bioaccumulation, and export from natural and agricultural wetlands of the Yolo Bypass Wildlife Area (YBWA). The data were collected in conjuntion with a Proposition 40 grant from the State Water Resources Control Board in support of the development of Best Management Practices (BMP's) for reducing MeHg loading from agricultural lands in the wetland-dominated Yolo Bypass to the Sacramento-San Joaquin River Delta. The four managemenr-based questions addressed in this study were: 1. Is there a different among agricultural and managfed wetland types in terms of Me Hg dynamic (production, degradation, bioaccumulation, or export)?

  7. Bioaccumulation of {sup 137}Cs and {sup 57}Co by five marine phytoplankton species

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, H.E. E-mail: hilde.elise.heldal@imr.no; Stupakoff, I.; Fisher, N.S

    2001-07-01

    Under controlled laboratory conditions, we have examined the bioaccumulation of {sup 137}Cs and {sup 57}Co in three prymnesiophytes, the coccolithophorid Emiliania huxleyi and the non-calcareous species Isochrysis galbana and Phaeocystis globosa, and two diatoms Skeletonema costatum and Thalassiosira pseudonana. We measured the uptake in growing and non-growing cells and determined concentration factors on both volume and dry weight bases. For uptake of {sup 57}Co in non-growing cells, volume concentration factors (VCF) at equilibrium ranged from 0.2x10{sup 3} for E. huxleyi to 4x10{sup 3} for T. pseudonana. For uptake of {sup 137}Cs in non-growing cells, the VCFs were low for all species and the uptake pattern seemed unsystematic. The results suggest that, in contrast to Co, the cycling and bioaccumulation of Cs in marine animals are unlikely to be affected by Cs accumulation in primary producers.

  8. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca.

    Science.gov (United States)

    Norwood, W P; Borgmann, U; Dixon, D G

    2006-10-01

    Bioaccumulation of As, Co, Cr and Mn by the benthic amphipod Hyalella azteca in Burlington City tap (Lake Ontario) water was measured in 4-week tests. Bioaccumulation increased with exposure concentration and demonstrated an excellent fit to a saturation model (r(2): 0.819, 0.838, 0.895 and 0.964 for As, Co, Cr and Mn, respectively). The proportion of total body Mn eliminated during a 24-h depuration period decreased as Mn body concentration increased, apparently due to a saturation of the elimination rate. The high maximum body concentration of 116,000 nmol g(-1) appears to result from the saturation of the Mn excretion which is slightly greater than the maximum Mn uptake rate. Elimination rates for As, Co and Cr were not dependent on body concentration. The four elements were not physiologically regulated in Hyalella. Their body concentrations should be good indicators of bioavailability and useful for environmental assessment.

  9. Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida in the Sewage Sludge Vermicomposting

    Directory of Open Access Journals (Sweden)

    MR Shahmansouri, H Pourmoghadas, AR Parvaresh, H Alidadi

    2005-01-01

    Full Text Available Vermicomposting of organic waste has an important part to play in an integrated waste management strategy. In this study, the possibility of heavy metals accumulation with two groups of Iranian and Australian earthworms in sewage sludge vermicompost was investigated. Eisenia fetida was the species of earthworms used in the vermicomposting process. The bioaccumulation of Cr, Cd, Pb, Cu, and Zn as heavy metals by Iranian and Australian earthworms was studied. The results indicated that heavy metals concentration decreased with increasing vermicomposting time. Comparison of the two groups of earthworms showed that the Iranian earthworms consumed higher quantities of micronutrients such as Cu and Zn comparing with the Australian earthworms, while the bioaccumulation of non-essential elements such as Cr, Cd, and Pb by the Australian group was higher. The significant decrease in heavy metal concentrations in the final vermicompost indicated the capability of both Iranian and Australian E.fetida species in accumulating heavy metals in their body tissues.

  10. Bioaccumulation of heavy metals by freshwater algal species of Bhavnagar, Gujarat, India.

    Science.gov (United States)

    Jaiswar, Santial; Kazi, Mudassar Anisoddin; Mehta, Shailesh

    2015-11-01

    The present study investigated copper, cadmium, lead and zinc accumulation in algal species Oedogonium, Cladophora, Oscillatoria and Spirogyra from freshwater habitats of Bhavnagar, India. Eight different locations were periodically sampled during August 2009 to March 2011. The general trend of heavy metal concentrations in all the algal species in present study (except at few stations), were found to be in the following order: Zn > Cu > Pb > Cd. Highest accumulation of Cu was recorded in Oedogonium, while Cladophora showed highest accumulation of Pb signifying a good bioaccumulator. Oscillatoria and Oedogonium were highest Zn accumulating algae which showed significant difference between the means at P Cu > Pb > Cd. The present study showed that Oedogonium, Cladophora, Oscillatoria and Spirogyra were excellent bioaccumulator and could be utilized as biomonitoring agents in water bodies receiving waste contaminated by metals.

  11. Feeding reduces waterborne Cu bioaccumulation in a marine rabbitfish Siganus oramin.

    Science.gov (United States)

    Guo, Zhiqiang; Zhang, Wei; Du, Sen; Zhou, Yanyan; Gao, Na; Zhang, Li; Green, Iain

    2016-01-01

    Waterborne metal uptake has been extensively studied and dietary metal assimilation is increasingly recognized in fish, whilst the interaction between the two uptake routes is largely overlooked. This study compared the waterborne Cu bioaccumulation ((65)Cu as tracer) in a juvenile rabbitfish at different feeding regimes (starvation (SG), feeding normal diet (NDG) or diet supplemented with extra Cu (DCG)) to test the hypothesis that feeding can influence waterborne metal uptake in marine fish. NDG and DCG diet was fed as a single meal and then all fish were exposed to waterborne (65)Cu for 48 h, during which the time course sampling was conducted to determine (65)Cu bioaccumulation, chyme flow and dietary Cu assimilation. The results revealed that SG fish accumulated the highest (65)Cu, followed by NDG (61% of SG), whilst DCG fish accumulated the lowest (65)Cu (34% of SG). These results suggested a protective effect of feeding against waterborne Cu bioaccumulation. This effect was most notable between 10 min and 16 h when there was chyme in gastrointestinal tract (GT). Dietary Cu assimilation mainly occurred before 16 h after feeding. Waterborne (65)Cu influx rate in the GT was positively correlated with (65)Cu contents of chyme in NDG, whereas it was largely negatively correlated with (65)Cu contents of chyme in DCG. The waterborne Cu uptake in the GT was mainly influenced by the chyme flow and dietary Cu assimilation. Overall, our findings suggested that feeding has an important effect on waterborne metal uptake and that both the feeding status of the fish and the relative metal exposure through water and food should be considered in prediction of the metal bioaccumulation and biomonitoring programs.

  12. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment.

    Science.gov (United States)

    Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; Tornisielo, Valdemar Luiz; Vilca, Franz Zirena; Bittencourt-Oliveira, Maria do Carmo

    2016-10-01

    Microcystin-LR (MC-LR) is one of the most toxic and common microcystins (MCs) variant found in aquatic ecosystems. Little is known about the possibility of recovering microcystins contaminated agricultural crops. The objectives of this study were to determine the bioaccumulation and depuration kinetics of MC-LR in leaf tissues of lettuce and arugula, and estimate the total daily intake (ToDI) of MC-LR via contaminated vegetables by humans. Arugula and lettuce were irrigated with contaminated water having 5 and 10μgL(-1) of MC-LR for 7days (bioaccumulation), and subsequently, with uncontaminated water for 7days (depuration). Quantification of MC-LR was performed by LC-MS/MS. The one-compartment biokinetic model was employed for MC-LR bioaccumulation and depuration data analysis. MC-LR was only accumulated in lettuce. After 7days of irrigation with uncontaminated water, over 25% of accumulated MC-LR was still retained in leaf tissues of plants treated with 10μgL(-1) MC-LR. Total daily toxin intake by adult consumers (60kg-bw) exceeded the 0.04μgMC-LRkg(-1) limit recommended by WHO. Bioaccumulation was found to be linearly proportional to the exposure concentration of the toxin, increasing over time; and estimated to become saturated after 30days of uninterrupted exposure. On the other hand, MC-LR depuration was less efficient at higher exposure concentrations. This is because biokinetic half-life calculations gave 2.9 and 3.7days for 5 and 10μgL(-1) MC-LR treatments, which means 29-37days are required to eliminate the toxin. For the first time, our results demonstrated the possibility of MC-LR decontamination of lettuce plants.

  13. Modelling the bioaccumulation of persistent organic pollutants in agricultural food chains for regulatory exposure assessment.

    Science.gov (United States)

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2017-02-01

    New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.

  14. Bioaccumulation and retention kinetics of cadmium in the freshwater decapod Macrobrachium australiense

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, Tom, E-mail: tom.cresswell@ansto.gov.au [Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232 (Australia); School of Applied Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083 (Australia); Simpson, Stuart L. [School of Applied Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083 (Australia); Smith, Ross E.W. [Hydrobiology, Lang Parade, Auchenflower, QLD 4066 (Australia); Nugegoda, Dayanthi [School of Applied Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083 (Australia); Mazumder, Debashish [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee, NSW 2232 (Australia); Twining, John [Austral Radioecology, Oyster Bay, NSW, 2225 (Australia)

    2014-03-01

    Highlights: • Sources and mechanisms of Cd bioaccumulation were examined using radiotracers. • Macrobrachium australiense readily accumulated cadmium from the dissolved phase. • Assimilation efficiencies were comparable for sediment and algae. • A biokinetic model predicted ingestion accounted for majority of bioaccumulated Cd. - Abstract: The potential sources and mechanisms of cadmium bioaccumulation by the native freshwater decapods Macrobrachium species in the waters of the highly turbid Strickland River in Papua New Guinea were examined using {sup 109}Cd-labelled water and food sources and the Australian species Macrobrachium australiense as a surrogate. Synthetic river water was spiked with environmentally relevant concentrations of cadmium and animals were exposed for 7 days with daily renewal of test solutions. Dietary assimilation of cadmium was assessed through pulse-chase experiments where prawns were fed separately {sup 109}Cd-labelled fine sediment, filamentous algae and carrion (represented by cephalothorax tissue of water-exposed prawns). M. australiense readily accumulated cadmium from the dissolved phase and the uptake rate increased linearly with increasing exposure concentration. A cadmium uptake rate constant of 0.10 ± 0.05 L/g/d was determined in synthetic river water. During depuration following exposure to dissolved cadmium, efflux rates were low (0.9 ± 5%/d) and were not dependent on exposure concentration. Assimilation efficiencies of dietary sources were comparable for sediment and algae (48–51%), but lower for carrion (28 ± 5%) and efflux rates were low (0.2–2.6%/d) demonstrating that cadmium was well retained by M. australiense. A biokinetic model of cadmium accumulation by M. australiense predicted that for exposures to environmentally relevant cadmium concentrations in the Strickland River, uptake from ingestion of fine sediment and carrion would be the predominant sources of cadmium to the organism. The model predicted

  15. The Bioaccumulation of Some Heavy Metals in the Fruiting Body of Wild Growing Mushrooms

    OpenAIRE

    Elekes, Carmen Cristina; Gabriela BUSUIOC; Gheorghe IONITA

    2010-01-01

    Due to their effective mechanism of accumulation of heavy metals from soil, the macrofungi show high concentrations of metals in their fruiting body. According with this ability, the mushrooms can be used to evaluate and control the level of environmental pollution, but also represent danger for human ingestion. We analyzed some macrofungi species from a wooded area to establish the heavy metal concentrations and ability of bioaccumulation and translocation for Zn, Cu and Sn in fruiting body....

  16. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer.

    Science.gov (United States)

    Mortimer, Monika; Petersen, Elijah J; Buchholz, Bruce A; Orias, Eduardo; Holden, Patricia A

    2016-08-16

    Consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using (14)C-labeled MWCNT ((14)C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub μg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively. Although MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.

  17. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment.

    Science.gov (United States)

    Zenker, Armin; Cicero, Maria Rita; Prestinaci, Francesca; Bottoni, Paola; Carere, Mario

    2014-01-15

    Pharmaceuticals, among the emerging contaminants, are one of the most relevant groups of substances in aquatic ecosystems due to universal use, their chemico-physical properties and known mode of action in aquatic organisms at low concentrations. After administration many drugs and their transformation products are only retained to some extent in wastewater treatment plants therefore entering the aquatic environment in considerable high amounts. The yearly consumption to treat human and animal diseases, also in livestock and aquaculture was estimated to be hundred thousands tons per year leading to high concentrations in surface water of developed countries. Mostly, pharmaceutical residues in effluents of wastewater treatment plants or in the water column of surface waters have been reported, but data about concentrations in the aquatic biota, partitioning of pharmaceuticals to biosolids, soils, and sediments and the bioaccumulation properties are often lacking. Chronic and subtle effects can be expected when aquatic organisms are long term exposed by pseudo-persistent, persistent and accumulative compounds. This review aims to summarize the current state of research about the fate of pharmaceuticals regarding bioconcentration, bioaccumulation and potential biomagnification in aquatic ecosystems. More comprehensive approaches for the evaluation of environmental (ERA) and human health risk assessment (HRA) are included and analytical methods required to detect bioaccumulation of pharmaceuticals are discussed.

  18. Evaluation of Bio-Accumulation Stress in Chicken by Arsenite: A Haematological Case Study

    Directory of Open Access Journals (Sweden)

    Luqman Rasul

    2016-12-01

    Full Text Available Broiler is consumed by human population in large quantities. Its brooding conditions are very important due to their linkage with the financial impacts involved in poultry industry. These brooding conditions are not only vital due to economic reasons but also extremely important due to health impacts on chickens and human population being terminal consumers. As (III presence in the drinking water is resulted in bio-accumulation in chicks being brooded under otherwise similar conditions except drinking water. This bio-accumulation disturbs the eco-physiological and blood parameters. Haematological studies of anti-coagulated and serum blood samples core parameters reveals that As (III contamination in drinking water is the significant source of adverse disturbance of blood parameters of red blood cell, white blood cell, hemoglobin, packed cell volume, sodium, calcium, potassium ions, albumin, urea, creatinine and cholesterol, with a highly significant p value of less than 0.01 after 14th brooding day with bio-accumulation of 25.8 µg/L of As (III in blood samples

  19. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, W.P. [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada) and Aquatic Ecosystems Protection Research Branch, National Water Research Institute, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada)]. E-mail: warren.norwood@ec.gc.ca; Borgmann, U. [Aquatic Ecosystems Protection Research Branch, National Water Research Institute, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Dixon, D.G. [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2006-10-15

    Bioaccumulation of As, Co, Cr and Mn by the benthic amphipod Hyalella azteca in Burlington City tap (Lake Ontario) water was measured in 4-week tests. Bioaccumulation increased with exposure concentration and demonstrated an excellent fit to a saturation model (r {sup 2}: 0.819, 0.838, 0.895 and 0.964 for As, Co, Cr and Mn, respectively). The proportion of total body Mn eliminated during a 24-h depuration period decreased as Mn body concentration increased, apparently due to a saturation of the elimination rate. The high maximum body concentration of 116,000 nmol g{sup -1} appears to result from the saturation of the Mn excretion which is slightly greater than the maximum Mn uptake rate. Elimination rates for As, Co and Cr were not dependent on body concentration. The four elements were not physiologically regulated in Hyalella. Their body concentrations should be good indicators of bioavailability and useful for environmental assessment. - Bioaccumulation of As, Co, Cr and Mn follow a saturation model in Hyalella azteca and can be useful for environmental assessment.

  20. Capability of pentavalent arsenic bioaccumulation and biovolatilization of three fungal strains under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Su, Shiming; Li, Lianfang; Bai, Lingyu; Zhang, Yanrong [Key Laboratory of Agro-Environment and Climate Change, Chinese Academy of Agricultural Sciences, Beijing (China); Jiang, Xiliang [Key Laboratory for Biological Control, Chinese Academy of Agricultural Sciences, Beijing (China); Zeng, Xibai

    2010-03-15

    In order to control and remediate arsenic (As) contaminated soil, sediment or water, fungi are used to investigate their potential accumulation and volatilization of As. In this study, after cultivation for 2 days, the dry weights of mycelia for Trichoderma asperellum, Fusarium oxysporum and Penicillium janthinellum all show an increased trend when the As(V) concentration ranges from 0-50, 0-50, 0-80 mg/L, respectively. When the culture system is loaded with 2500 {mu}g As(V), which represents 50 mg/L As, and cultivated for 5 days, P. janthinellum presents the highest efficiency of 87.0 {mu}g/g for As bioaccumulation, and the order of the efficiency for As bioaccumulation is P. janthinellum > T. asperellum > F. oxysporum. However, the order of the amount of volatilized As is F. oxysporum > P. janthinellum > T. asperellum, and the highest amount of volatilized As is observed for F. oxysporum at 181.0 {mu}g. Thus, the ability of As bioaccumulation and biovolatilization for T. asperellum and P. janthinellum is reported for the first time in this study. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water.

    Science.gov (United States)

    Ma, Yini; Huang, Anna; Cao, Siqi; Sun, Feifei; Wang, Lianhong; Guo, Hongyan; Ji, Rong

    2016-12-01

    Contamination of fine plastic particles (FPs), including micrometer to millimeter plastics (MPs) and nanometer plastics (NPs), in the environment has caught great concerns. FPs are strong adsorbents for hydrophobic toxic pollutants and may affect their fate and toxicity in the environment; however, such information is still rare. We studied joint toxicity of FPs with phenanthrene to Daphnia magna and effects of FPs on the environmental fate and bioaccumulation of (14)C-phenanthrene in fresh water. Within the five sizes particles we tested (from 50 nm to 10 μm), 50-nm NPs showed significant toxicity and physical damage to D. magna. The joint toxicity of 50-nm NPs and phenanthrene to D. magna showed an additive effect. During a 14-days incubation, the presence of NPs significantly enhanced bioaccumulation of phenanthrene-derived residues in daphnid body and inhibited the dissipation and transformation of phenanthrene in the medium, while 10-μm MPs did not show significant effects on the bioaccumulation, dissipation, and transformation of phenanthrene. The differences may be attributed to higher adsorption of phenanthrene on 50-nm NPs than 10-μm MPs. Our findings underlined the high potential ecological risks of FPs, and suggested that NPs should be given more concerns, in terms of their interaction with hydrophobic pollutants in the environment.

  2. Bioaccumulation of gamma emitting radionuclides in red algae from the Baltic Sea under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Tamara Zalewska

    2011-06-01

    Full Text Available The bioaccumulation ability of radionuclides 51Cr, 54Mn, 57Co, 60Co, 65Zn, 85Sr, 109Cd, 110mAg, 113Sn, 137Cs and 241Am in two red algae species from the southern Baltic Sea - Polysiphonia fucoides and Furcellaria lumbricalis - was determined under laboratory conditions. P. fucoides demonstrated better bioaccumulative properties towards most of the investigated radionuclides. As a result, P. fucoides can be recommended as a good bioindicator of radioactive environmental pollution. The bioaccumulation of radionuclides in F. lumbricalis was studied during an extended laboratory experiment. The initial extensive uptake of radioisotopes was followed by the rapid removal of cations; in general, concentrations tended to decrease with time. 137Cs displayed a different behaviour, its concentration in the algae increasing over time mainly due to its large ion radius; this is a factor that could be responsible for the stronger mechanical and chemical bonding of Cs+ and that could hamper the movement of ions in both directions.

  3. Bioaccumulation of microcystins in invasive bivalves: A case study from the boreal lagoon ecosystem

    Directory of Open Access Journals (Sweden)

    Aistė Paldavičienė

    2015-01-01

    Full Text Available In the current study we present the first report on the bioaccumulation of microcystins (MC in zebra mussel Dreissena polymorpha from the eutrophic brackish water Curonian Lagoon. The bioaccumulation capacity was related to age structure of mussels and ambient environmental conditions. We also discuss the relevant implications of these findings for biomonitoring of toxic cyanobacteria blooms in the Curonian Lagoon and potential consequences for D. polymorpha cultivation activities considered for the futures as remediation measure. Samples for the analysis were collected twice per year, in June and September, in 2006, 2007 and 2008, from two sites within the littoral zone of the lagoon. The highest microcystin concentrations were measured in mussels larger than 30 mm length and sampled in 2006 (when a severe toxic cyanobacteria bloom occurred. In the following years, a consistent reduction in bioaccumulated MC concentration was noticed. However, certain amount of microcystin was recorded in mussel tissues in 2007 and 2008, when no cyanotoxins were reported in the phytoplankton. Considering high depuration rates and presence of cyanotoxins in the bottom sediments well after the recorded toxic blooms, we assume mechanism of secondary contamination when microcystin residuals could be uptaken by mussels with resuspended sediment particles.

  4. Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling.

    Science.gov (United States)

    Mansouri, Kamel; Consonni, Viviana; Durjava, Mojca Kos; Kolar, Boris; Öberg, Tomas; Todeschini, Roberto

    2012-10-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in textiles, foams and plastics. Highly bioaccumulative with toxic effects including developmental neurotoxicity estrogen and thyroid hormones disruption, they are considered as persistent organic pollutants (POPs) and have been found in human tissues, wildlife and biota worldwide. But only some of them are banned from EU market. For the environmental fate studies of these compounds the bioconcentration factor (BCF) is one of the most important endpoints to start with. We applied quantitative structure-activity relationships techniques to overcome the limited experimental data and avoid more animal testing. The aim of this work was to assess the bioaccumulation of PBDEs by means of QSAR. First, a BCF dataset of specifically conducted experiments was modeled. Then the study was extended by predicting the bioaccumulation and biomagnification factors using some experimental values from the literature. Molecular descriptors were calculated using DRAGON 6. The most relevant ones were selected and resulting models were compared paying attention to the applicability domain.

  5. Removal and bioaccumulation of heavy metals from aqueous solutions using freshwater algae.

    Science.gov (United States)

    Shamshad, Isha; Khan, Sardar; Waqas, Muhammad; Ahmad, Nadeem; Khushnood-Ur-Rehman; Khan, Kifayatullah

    2015-01-01

    Four freshwater algae, including Cladophora glomerata, Oedogonium westii, Vaucheria debaryana and Zygnema insigne, were tested for their bioaccumulation capacity for cadmium (Cd), chromium (Cr) and lead (Pb) in a controlled environment with an average temperature of 18 °C, and light/dark duration of 12:12 h. Experiments were performed in aqueous solutions containing selected heavy metals (HM) (ranging from 0.05 to 1.5 mg L(-1)) with 0.5 g of living algae at 18 °C and pH 6.8. The results indicated that C. glomerata was observed to be the most competent species for the removal of Cr, Cd and Pb from aqueous solutions. HM removal trends were in the order of Cd>Cr>Pb while the removal efficiency of selected algae species was in the order of C. glomerata, O. westii, V. debaryana and Z. insigne. The bioaccumulation capacity of C. glomerata, V. debaryana and Z. insigne was observed for different HM. Removal of HM was higher with low levels of HM in aqueous solutions. The results indicated that C. glomerata, O. westii, V. debaryana and Z. insigne had significant (P≤0.01) diverse bioaccumulation capacity for Cr, Cd and Pb.

  6. Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.

    Science.gov (United States)

    Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing

    2016-11-01

    Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots.

  7. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    Science.gov (United States)

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  8. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, P.; Wang, J.; Li, X.; Zhu, J. E-mail: iamzhu@hotmail.com; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd{sup 3+} by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 {mu}m size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 {mu}m) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  9. The detoxification process, bioaccumulation and damage effect in juvenile white shrimp Litopenaeus vannamei exposed to chrysene.

    Science.gov (United States)

    Ren, Xianyun; Pan, Luqing; Wang, Lin

    2015-04-01

    This study aimed to evaluate the effect of chrysene (CHR) on detoxification enzymes, bioaccumulation and effect of CHR on biomolecule damage in different organs of the juvenile white shrimp Litopenaeus vannamei. In this study, juvenile white shrimp L. vannamei were exposed to CHR for 21 days at four different concentrations as 0, 0.3, 2.1 and 14.7 μg/L. Results showed that CHR bioaccumulation increased rapidly at first then reached a plateau. The activities of aryl hydrocarbon hydroxylase (AHH), 7-ethoxyresorufin O-deethylase (EROD), epoxide hydrolase (EH), glutathione-S-transferase (GST), sulfotransferase (SULT) and uridinediphosphate glucuronyltransferase (UGT) were induced and then became stable gradually. Moreover, 2.1 and 14.7 μg/L CHR treatments increased activity of superoxide dismutase (SOD) in gills and hepatopancreas, while total antioxidant capacity (T-AOC) and GSH/GSSG were suppressed after CHR exposure. Additionally, lipid peroxidation (LPO) levels, protein carbonyl (PC) contents and DNA damage were induced throughout the exposure period, and different trends were detected with time of exposure. Overall, these novel findings of CHR bioaccumulation and resulted toxicity demonstrate that CHR could affect the physical status of L. vannamei. This study will form a solid basis for a realistic extrapolation scientific data for aquaculture water monitoring and food security.

  10. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels.

    Science.gov (United States)

    Kennedy, Alan J; Johnson, David R; Seiter, Jennifer M; Lindsay, James H; Boyd, Robert E; Bednar, Anthony J; Allison, Paul G

    2012-09-04

    Metallic tungsten has civil and military applications and was considered a green alternative to lead. Recent reports of contamination in drinking water and soil have raised scrutiny and suspended some applications. This investigation employed the cabbage Brassica oleracae and snail Otala lactea as models to determine the toxicological implications of sodium tungstate and an aged tungsten powder-spiked soil containing monomeric and polymeric tungstates. Aged soil bioassays indicated cabbage growth was impaired at 436 mg of W/kg, while snail survival was not impacted up to 3793 mg of W/kg. In a dermal exposure, sodium tungstate was more toxic to the snail, with a lethal median concentration of 859 mg of W/kg. While the snail significantly bioaccumulated tungsten, predominately in the hepatopancreas, cabbage leaves bioaccumulated much higher concentrations. Synchrotron-based mapping indicated the highest levels of W were in the veins of cabbage leaves. Our results suggest snails consuming contaminated cabbage accumulated higher tungsten concentrations relative to the concentrations directly bioaccumulated from soil, indicating the importance of robust trophic transfer investigations. Finally, synchrotron mapping provided evidence of tungsten in the inner layer of the snail shell, suggesting potential use of snail shells as a biomonitoring tool for metal contamination.

  11. Bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure.

    Science.gov (United States)

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Guo, Baoyuan; Wang, Huili; Li, Jianzhong

    2013-12-01

    The bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure under laboratory conditions were investigated using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. The wheat bran fed to Tenebrio molitor larvae was spiked with racemic myclobutanil at two dose levels of 20 mg/kg and 2 mg/kg (dry weight). The results showed that there was a significant trend of enantioselective bioaccumulation in the larvae with a preferential accumulation of (-)-myclobutanil in 20 mg/kg dose exposure, but it was not obviously observed in the 2 mg/kg dose group. A kinetic model considering enantiomerization between the two enantiomers based on first-order reactions was built and the rate constants were estimated to discuss the kinetic reason for the different concentrations of individual enantiomers in the larvae. The approximations implied an inversion between the two enantiomers with a relatively higher rate of the inversion from (-)-myclobutanil to (+)-myclobutanil. Meanwhile, analysis of data of excretion samples suggested the active excretion is probably an important pathway for the insect to eliminate myclobutanil rapidly with nonenantioselectivity as a passive transport process, which was consistent with the low accumulation efficiency of myclobutanil measured by BAF (bioaccumulation factor).

  12. Coupled mother-child model for bioaccumulation of POPs in nursing infants

    Energy Technology Data Exchange (ETDEWEB)

    Trapp, Stefan [Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet 115, DK-2800 Kongens Lyngby (Denmark)], E-mail: stt@env.dtu.dk; Ma Bomholtz, Li [Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet 115, DK-2800 Kongens Lyngby (Denmark); Legind, Charlotte N. [Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet 115, DK-2800 Kongens Lyngby (Denmark); Department of Agricultural Sciences, Faculty of Life Sciences, University of Copenhagen, Hojbakkegard Alle 13, DK-2630 Taastrup (Denmark)

    2008-11-15

    Bioaccumulation of persistent organic pollutants (POPs) leads to high levels in human milk and high doses of POPs for nursing infants. This is currently not considered in chemical risk assessment. A coupled model for bioaccumulation of organic chemicals in breast-feeding mother and nursing infant was developed and tested for a series of organic compounds. The bioaccumulation factors (BAFs) in mother, breast milk and child were predicted to vary with log K{sub OW} and, for volatile compounds, with K{sub AW} and concentration in air. The concentrations of POPs in the infant body increase the first half year to about factor 3 above mother and decline thereafter to lower levels. The predicted results are close to empirical data and to an empirical regression. The new mother-child model is compact due to its easy structure and the analytical matrix solution. It could be added to existing exposure and risk assessment systems, such as EUSES. - This paper addresses a model for accumulation of organic compounds by mother and breast-fed infant, applicable for exposure assessment within larger frameworks.

  13. Methylmercury Bioaccumulation in Rice and Wetland Biota: employing integrated indices of processes that drive methylmercury risk

    Science.gov (United States)

    Eagles-Smith, C.; Ackerman, J.; Windham-Myers, L.; Fleck, J.

    2013-12-01

    Wetlands often are associated with elevated methylmercury (MeHg) production and food web bioaccumulation, making them potentially important sources of Hg to surrounding waters and to wetland-dependent fish and wildlife. However, the cycling of MeHg through wetlands can vary markedly with wetland type. Agricultural wetlands such as rice fields can exhibit particularly pronounced MeHg concentrations and bioaccumulation because their biogeochemical, hydrological, and ecological characteristics facilitate the conversion of inorganic mercury (Hg) to MeHg. Rice fields are characterized by a series of seasonal extreme wetting and drying cycles, sulfate-containing fertilizers, and high levels of labile organic carbon, all of which are key processes in the Hg cycle. Rice fields comprise approximately 20% of freshwater habitats and 11% of cultivated land area globally, providing critical wildlife habitat while offering substantial economic, human health, and ecosystem benefits. Thus, there is strong impetus to better understand the drivers of Hg cycling in rice fields and to develop useful management approaches for minimizing Hg risk associated with rice agriculture without compromising rice production. We examined the role of rice wetlands on MeHg bioaccumulation through foodwebs by employing biosentinel caged fish as integrators of MeHg cycling processes. With experimental field studies in California's Central Valley, we placed biosentinel fishes into nine rice wetlands that were subjected to three different harvest strategies, and into nine managed wetlands that encompassed three different hydrological regimes. We simultaneously measured a suite of biogeochemical processes in surface water, sediment, and pore water in order to link the response in fish Hg bioaccumulation with within-field processes that regulate MeHg cycling. Our preliminary results indicate that fish Hg concentrations were 1.6 times higher in rice wetlands than in managed wetlands. Additionally, fish Hg

  14. Evaluation of the potential bioaccumulation ability of the blood cockle (Anadara granosa L.) for assessment of environmental matrices of mudflats.

    Science.gov (United States)

    Mirsadeghi, Seiedeh Aghileh; Zakaria, Mohamad Pauzi; Yap, Chee Kong; Gobas, Frank

    2013-06-01

    The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles

  15. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    Science.gov (United States)

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.

  16. A method for improving predictive modeling by taking into account lag time: Example of selenium bioaccumulation in a flowing system.

    Science.gov (United States)

    Beckon, William N

    2016-07-01

    For bioaccumulative substances, efforts to predict concentrations in organisms at upper trophic levels, based on measurements of environmental exposure, have been confounded by the appreciable but hitherto unknown amount of time it may take for bioaccumulation to occur through various pathways and across several trophic transfers. The study summarized here demonstrates an objective method of estimating this lag time by testing a large array of potential lag times for selenium bioaccumulation, selecting the lag that provides the best regression between environmental exposure (concentration in ambient water) and concentration in the tissue of the target organism. Bioaccumulation lag is generally greater for organisms at higher trophic levels, reaching times of more than a year in piscivorous fish. Predictive modeling of bioaccumulation is improved appreciably by taking into account this lag. More generally, the method demonstrated here may improve the accuracy of predictive modeling in a wide variety of other cause-effect relationships in which lag time is substantial but inadequately known, in disciplines as diverse as climatology (e.g., the effect of greenhouse gases on sea levels) and economics (e.g., the effects of fiscal stimulus on employment).

  17. Differential influences of Cu and Zn chronic exposure on Cd and Hg bioaccumulation in an estuarine oyster.

    Science.gov (United States)

    Liu, Fengjie; Wang, Wen-Xiong

    2014-03-01

    In this study, the effects of Cu and Zn exposure, alone and in combination, on the bioaccumulation of Cd and Hg were investigated in an estuarine oyster Crassostrea hongkongensis under different salinity gradients. We showed that Zn, but not Cu, exposure significantly enhanced the Cd bioaccumulation. In contrast, both Cu and Zn exposure significantly enhanced the Hg bioaccumulation. Combined exposure and salinity did not affect the metal interactions in oysters. The increased tissue concentrations of Cd or Hg were associated with their increased storage in inducible metal-binding ligands (e.g. metallothionein-like proteins, MTLP) by Cu/Zn exposure. The differential roles of Cu and Zn exposure in Cd and Hg bioaccumulation resulted from their contrasting ligand induction and affinities. Analysis of field collected oysters indicated that Cu/Zn exposure was a significant contributor to tissue concentrations of Cd, Cu and Hg. Overall, biochemical/physiological changes of the animals chronically exposed to metal stressors played a key role in affecting tissue concentrations of other metals. One metal's ability to enhance the bioaccumulation of other metals depended upon the relative affinities of the metals for MTLP.

  18. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals: Current status and future possibilities.

    Science.gov (United States)

    Hoke, Robert; Huggett, Duane; Brasfield, Sandra; Brown, Becky; Embry, Michelle; Fairbrother, Anne; Kivi, Michelle; Paumen, Miriam Leon; Prosser, Ryan; Salvito, Dan; Scroggins, Rick

    2016-01-01

    In the last decade, interest has been renewed in approaches for the assessment of the bioaccumulation potential of chemicals, principally driven by the need to evaluate large numbers of chemicals as part of new chemical legislation, while reducing vertebrate test organism use called for in animal welfare legislation. This renewed interest has inspired research activities and advances in bioaccumulation science for neutral organic chemicals in aquatic environments. In January 2013, ILSI Health and Environmental Sciences Institute convened experts to identify the state of the science and existing shortcomings in terrestrial bioaccumulation assessment of neutral organic chemicals. Potential modifications to existing laboratory methods were identified, including areas in which new laboratory approaches or test methods could be developed to address terrestrial bioaccumulation. The utility of "non-ecotoxicity" data (e.g., mammalian laboratory data) was also discussed. The highlights of the workshop discussions are presented along with potential modifications in laboratory approaches and new test guidelines that could be used for assessing the bioaccumulation of chemicals in terrestrial organisms.

  19. Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: A multiline investigation to understand environmental risk.

    Science.gov (United States)

    Rahman, M S; Reichelt-Brushet, A J; Clark, M W; Farzana, T; Yee, L H

    2017-03-01

    Bio-accessibility and bioavailability of arsenic (As) in historically As-contaminated soils (cattle tick pesticide), and pristine soils were assessed using 3 different approaches. These approaches included human bio-accessibility using an extraction test replicating gastric conditions (in vitro physiologically-based extraction test); an operationally defined bioaccessibility extraction test - 1.0M HCl extraction; and a live organism bioaccumulation test using earthworms. A sequential extraction procedure revealed the soil As-pool that controls bio-accessibility and bioaccumulation of As. Findings show that As is strongly bound to historically contaminated soil with a lower degree of As bio-accessibility (bio-accessibility and bioaccumulation is the greater fraction of As associated with crystalline Fe/Al oxy-hydroxide and residual phases. The high bio-accessibility and bioaccumulation of freshly sorbed As in pristine soils were from the exchangeable and specifically sorbed As fractions. Arsenic bioaccumulation in earthworms correlates strongly with both the human bio-accessible, and the operationally defined bioavailable fractions. Hence, results suggest that indirect As bioavailability measures, such as accumulation by earthworm, can be used as complementary lines of evidence to reinforce site-wide trends in the bio-accessibility using in vitro physiologically-based extractions and/or operationally defined extraction test. Such detailed knowledge is useful for successful reclamation and management of the As contaminated soils.

  20. Trophic transfer of polychlorinated biphenyls (PCB) in a boreal lake ecosystem: testing of bioaccumulation models.

    Science.gov (United States)

    Figueiredo, Kaisa; Mäenpää, Kimmo; Leppänen, Matti T; Kiljunen, Mikko; Lyytikäinen, Merja; Kukkonen, Jussi V K; Koponen, Hannu; Biasi, Christina; Martikainen, Pertti J

    2014-01-01

    Understanding the fate of persistent organic chemicals in the environment is fundamental information for the successful protection of ecosystems and humans. A common dilemma in risk assessment is that monitoring data reveals contaminant concentrations in wildlife, while the source concentrations, route of uptake and acceptable source concentrations remain unsolved. To overcome this problem, different models have been developed in order to obtain more precise risk estimates for the food webs. However, there is still an urgent need for studies combining modelled and measured data in order to verify the functionality of the models. Studies utilising field-collected data covering entire food webs are particularly scarce. This study aims to contribute to tackling this problem by determining the validity of two bioaccumulation models, BIOv1.22 and AQUAWEBv1.2, for application to a multispecies aquatic food web. A small boreal lake, Lake Kernaalanjärvi, in Finland was investigated for its food web structure and concentrations of PCBs in all trophic levels. Trophic magnification factors (TMFs) were used to measure the bioaccumulation potential of PCBs, and the site-specific environmental parameters were used to compare predicted and observed concentrations. Site-specific concentrations in sediment pore water did not affect the modelling endpoints, but accurate site-specific measurements of freely dissolved concentrations in water turned out to be crucial for obtaining realistic model-predicted concentrations in biota. Numerous parameters and snapshot values affected the model performances, bringing uncertainty into the process and results, but overall, the models worked well for a small boreal lake ecosystem. We suggest that these models can be optimised for different ecosystems and can be useful tools for estimating the bioaccumulation and environmental fate of PCBs.

  1. Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage

    Science.gov (United States)

    Dovick, Meghan A.; Kulp, Thomas R.; Arkle, Robert .; Pilliod, David

    2016-01-01

    We compared As and Sb bioaccumulation and biomagnification when these metalloids co-occurred at varying environmental concentrations in a stream and wetlands near a contaminated mine site in Idaho (USA). We measured As and Sb concentrations in water and substrate samples, and in tissues of organisms representing several trophic levels. Bioaccumulation of both As and Sb was observed in stream organisms with the following trend of bio-diminution with increasing trophic level: primary producers>tadpoles>macroinvertebrates>trout. We also note reductions in metalloid concentrations in one of two stream remediation reaches engineered within the past 17 years to ameliorate metalloid contamination in the stream. Several wetlands contained thick microbial mats and were highly populated with boreal toad tadpoles that fed on them. The mats were extremely contaminated (up to 76 564 mg kg-1 As and 675 mg kg-1 Sb) with amorphous As- and Sb-bearing minerals that we interpret as biogenic precipitates from geomicrobiological As- and Sb-cycling. Ingested mat material provided a direct source of metalloids to tadpoles, and concentrations of 3867 mg kg-1 (As) and 375 mg kg-1 (Sb) reported here represent the highest whole body As and Sb levels ever reported in living tadpoles. The bulk of tadpole metalloid burden remained in the gut despite attempts to purge the tadpoles prior to analysis. This study adds to a number of recent investigations reporting bioaccumulation, but not biomagnification, of As and Sb in food webs. Moreover, our results suggest that tadpoles, in particular, may be more resistant to metalloid contamination than previously assumed.

  2. Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage

    Science.gov (United States)

    Dovick, Meghan A.; Kulp, Thomas R.; Arkle, Robert .; Pilliod, David

    2015-01-01

    We compared As and Sb bioaccumulation and biomagnification when these metalloids co-occurred at varying environmental concentrations in a stream and wetlands near a contaminated mine site in Idaho (USA). We measured As and Sb concentrations in water and substrate samples, and in tissues of organisms representing several trophic levels. Bioaccumulation of both As and Sb was observed in stream organisms with the following trend of bio-diminution with increasing trophic level: primary producers > tadpoles > macroinvertebrates > trout. We also note reductions in metalloid concentrations in one of two stream remediation reaches engineered within the past 17 years to ameliorate metalloid contamination in the stream. Several wetlands contained thick microbial mats and were highly populated with boreal toad tadpoles that fed on them. The mats were extremely contaminated (up to 76 564 mg kg–1 As and 675 mg kg–1 Sb) with amorphous As- and Sb-bearing minerals that we interpret as biogenic precipitates from geomicrobiological As- and Sb-cycling. Ingested mat material provided a direct source of metalloids to tadpoles, and concentrations of 3867 mg kg–1 (As) and 375 mg kg–1 (Sb) reported here represent the highest whole body As and Sb levels ever reported in living tadpoles. The bulk of tadpole metalloid burden remained in the gut despite attempts to purge the tadpoles prior to analysis. This study adds to a number of recent investigations reporting bioaccumulation, but not biomagnification, of As and Sb in food webs. Moreover, our results suggest that tadpoles, in particular, may be more resistant to metalloid contamination than previously assumed.

  3. UO(2) 2+ speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate.

    Science.gov (United States)

    Vanengelen, Michael R; Field, Erin K; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M

    2010-04-01

    In the present study, experiments were performed to investigate how representative cellulosic breakdown products, when serving as growth substrates under aerobic conditions, affect hexavalent uranyl cation (UO(2) (2+)) toxicity and bioaccumulation within a Pseudomonas sp. isolate (designated isolate A). Isolate A taken from the Cold Test Pit South (CTPS) region of the Idaho National Laboratory (INL), Idaho Falls, ID, USA. The INL houses low-level uranium-contaminated cellulosic material and understanding how this material, and specifically its breakdown products, affect U-bacterial interactions is important for understanding UO(2) (2+) fate and mobility. Toxicity was modeled using a generalized Monod expression. Butyrate, dextrose, ethanol, and lactate served as growth substrates. The potential contribution of bicarbonate species present in high concentrations was also investigated and compared with toxicity and bioaccumulation patterns seen in low-bicarbonate conditions. Isolate A was significantly more sensitive to UO(2) (2+) and accumulated significantly more UO(2) (2+) in low-bicarbonate concentrations. In addition, UO(2) (2+) growth inhibition and bioaccumulation varied depending on the growth substrate. In the presence of high bicarbonate concentrations, sensitivity to UO(2) (2+) inhibition was greatly mitigated, and did not vary between the four substrates tested. The extent of UO(2) (2+) accumulation was also diminished. The observed patterns were related to UO(2) (2+) aqueous complexation, as predicted by MINTEQ (ver. 2.52) (Easton, PA, USA). In the low- bicarbonate medium, the presence of positively charged and unstable UO(2) (2+)-hydroxide complexes explained both the greater sensitivity of isolate A to UO(2) (2+), and the ability of isolate A to accumulate significant amounts of UO(2) (2+). The exclusive presence of negatively charged and stable UO(2) (2+)-carbonate complexes in the high bi-carbonate medium explained the diminished sensitivity of

  4. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    Science.gov (United States)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic

  5. Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms.

    Science.gov (United States)

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2011-01-01

    Triclocarban (TCC) toxicity and bioaccumulation data are primarily limited to direct human and animal dermal exposures, animal ingestion exposures to neat and feed-spiked TCC, and/or aquatic organism exposures. Three non-human, terrestrial organism groups anticipated to be the most highly exposed to land-applied, biosolids-borne TCC are soil microbes, earthworms, and plants. The three ecological receptors are expected to be at particular risk due to unique modes of exposure (e.g. constant, direct contact with soil; uptake of amended soil and pore water), inherently greater sensitivity to environmental contaminants (e.g. increased body burdens, permeable membranes), and susceptibility to minute changes in the soil environment. The toxicities of biosolids-borne TCC to Eisenia fetida earthworms and soil microbial communities were characterized using adaptations of the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) Guidelines 850.6200 (Earthworm Subchronic Toxicity Test) and 850.5100 (Soil Microbial Community Toxicity Test), respectively. The resultant calculated TCC LC50 value for E. fetida was 40 mg TCC kg amended fine sand(-1). Biosolids-borne TCC in an amended fine sand had no significant effect on soil microbial community respiration, ammonification, or nitrification. Bioaccumulation of biosolids-borne TCC by E. fetida and Paspulum notatum was measured to characterize potential biosolids-borne TCC movement through the food chain. Dry-weight TCC bioaccumulation factor (BAF) values in E. fetida and P. notatum ranged from 5.2-18 and 0.00041-0.007 (gsoil gtissue(-1)), respectively.

  6. Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna.

    Science.gov (United States)

    Jeong, Tae-Yong; Kim, Tae-Hun; Kim, Sang Don

    2016-09-01

    Multigenerational bioaccumulation and biotransformation activity and short-term kinetics (e.g., uptake and depuration) of propranolol in Daphnia magna were investigated at environmental concentration. The body burden and the major metabolite, desisopropyl propranolol (DIP), of propranolol were quantified using LC-MS/MS at the end of each generation after exposure for 11 generations. The accumulation of propranolol in D. magna at an environmental concentration of 0.2 μg/L was not much different between the parent (F0) and the eleventh filial (F10) generation. However, at 28 μg/L, its accumulation was 1.6 times higher-up to 18.9 μg/g-in the F10 generation relative to the F0. In contrast to propranolol, DIP intensity gradually increased from F0 to F10 at 0.2 μg/L, reflecting an increase in detoxification load and biotransformation performance; no increasing trend was observed at 28 μg/L. The bioaccumulation factor (BAF) showed higher values with a lower concentration and longer period of exposure. The average values of the BAF for 21 days of long-term exposure in successive 11 generations were 440.4 ± 119.7 and 1026.5 ± 208.6 L/kg for 28 μg/L and 0.2 μg/L, respectively. These are comparable to the BAF of 192 for the short-term 72-h exposure at 28 μg/L in the parent generation. It is also recommended that future studies for pharmaceutical ingredients be conducted on drug-drug interaction and structural characteristics on the prediction of biotransformation activity and bioaccumulation rate.

  7. Chemical composition and bioaccumulation ability of Boletus badius (Fr.) Fr. collected in western Poland.

    Science.gov (United States)

    Proskura, Natalia; Podlasińska, Joanna; Skopicz-Radkiewicz, Lidia

    2017-02-01

    The aim of the study was to determine content of 17 elements (Co, Cd, Cu, Cr, Ni, Pb, Zn, Mn, Fe, Mg, Na, Ca, K, N, C, S and P) and their bioaccumulation factors (BCF) in bay bolete (Boletus badius (Fr.) Fr.) fruiting bodies (caps and stalks) and underneath soil samples collected from forest sites in lubuskie voivodeship in Poland. Forty-eight samples of Boletus badius (Fr.) Fr. fruiting bodies and the same number of underneath soil substrate samples were collected in forest sites of Sulęcin Forest District in western Poland. Copper and zinc were absorbed most strongly from soil substrate, which is performed by bioaccumulation factors (BCFCap/Soil = 16.57 and 11.60, respectively), wherein Pb, Co, Cr, Fe and Mn were excluded from bioaccumulation (BCF < 1.0). The mean content of Cd in caps and stalks was 1.44 ± 0.88 and 2.01 ± 1.26 mg kg(-1) dry weight, respectively and in contrary to Pb (≈3.00 ± 2.66 and 2.01 ± 1.26 mg kg(-1) d. w.) this metal is strongly accumulated from subsoil (BCFCap/Soil = 11.12 and BCFStipe/Soil = 10.83). The fruiting bodies of Boletus badius were distinguished by elevated content of Cr, Zn, Pb and Cd. Few statistically significant metal-to-metal correlations were observed. The correlation between forest habitat types and metals concentrations was also analysed. An attempt of estimation of Pb and Cd safe dose for human consumption was made.

  8. Literature review on the use of bioaccumulation for heavy metal removal and recovery. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Benemann (J.R.), Pinole, CA (United States); Wilde, E.W. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1991-02-01

    Bioaccumulation of metals by microbes -- `` bioremoval`` -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R&D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  9. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States)); Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1991-02-01

    Bioaccumulation of metals by microbes -- bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  10. Mercury in Pacific bluefin tuna (Thunnus orientalis):bioaccumulation and trans-Pacific Ocean migration

    Science.gov (United States)

    Colman, John A.; Nogueira, Jacob I.; Pancorbo, Oscar C.; Batdorf, Carol A.; Block, Barbara A.

    2015-01-01

    Pacific bluefin tuna (Thunnus orientalis) have the largest home range of any tuna species and are well known for the capacity to make transoceanic migrations. We report the measurement of mercury (Hg) concentrations in wild Pacific bluefin tuna (PBFT), the first reported with known size-of-fish and capture location. The results indicate juvenile PBFT that are recently arrived in the California Current from the western Pacific Ocean have significantly higher Hg concentrations in white muscle (0.51 ug/g wet mass, wm) than PBFT of longer California Current residency (0.41 ug/g wm). These new arrivals are also higher in Hg concentration than PBFT in farm pens (0.43 ug/g wm) that were captured on arrival in the California Current and raised in pens on locally derived feed. Analysis by direct Hg analyzer and attention to Hg by tissue type and location on the fish allowed precise comparisons of mercury among wild and captive fish populations. Analysis of migration and nearshore residency, determined through extensive archival tagging, bioaccumulation models, trophic investigations, and potential coastal sources of methylmercury, indicates Hg bioaccumulation is likely greater for PBFT juvenile habitats in the western Pacific Ocean (East China Sea, Yellow Sea) than in the eastern Pacific Ocean (California Current). Differential bioaccumulation may be a trophic effect or reflect methylmercury availability, with potential sources for coastal China (large hypoxic continental shelf receiving discharge of three large rivers, and island-arc volcanism) different from those for coastal Baja California (small continental shelf, no large rivers, spreading-center volcanism).

  11. Forest floor decomposition, metal exchangeability, and metal bioaccumulation by exotic earthworms: Amynthas agrestis and Lumbricus rubellus.

    Science.gov (United States)

    Richardson, J B; Görres, J H; Friedland, A J

    2016-09-01

    Earthworms have the potential to reduce the retention of pollutant and plant essential metals in the forest floor (organic horizons) by decomposing organic matter and increasing exchangeability of metals. We conducted a laboratory experiment to investigate the effects of two exotic earthworms, Amynthas agrestis and Lumbricus rubellus, on forest floor decomposition, metal exchangeability, and metal bioaccumulation. Eighty-one pots containing homogenized forest floor material were incubated for 20, 40, or 80 days under three treatments: no earthworms, A. agrestis added, or L. rubellus added. For earthworm treatments, A. agrestis and L. rubellus were stocked at densities observed in previous field studies. Pots containing either A. agrestis or L. rubellus had lost more forest floor mass than the control plots after 40 and 80 days of incubation. Forest floor pots containing A. agrestis had significantly lower % C (16 ± 1.5 %) than control pots (21 ± 1.2 %) after 80 days. However, L. rubellus consumed more forest floor and C mass than A. agrestis, when evaluated on a per earthworm biomass basis. Exchangeable (0.1 M KCl + 0.01 M AcOH extractable) and stable (15 M HNO3+ 10 M HCl extractable) concentrations of Al, Ca, Cd, Cu, Mg, Mn, Pb, and Zn in forest floor material were measured. Stable concentrations and % exchangeable metals in forest floor material were similar among treatments. Although exchangeable metal concentrations varied significantly for most metals among treatments (except Mg and Zn), we conclude that earthworms did not increase or decrease the exchangeability of metals. However, earthworms bioaccumulated Cu, Cd, Zn, and Mg and had potentially hazardous tissue concentrations of Al and Pb. This was best illustrated by calculating bioaccumulation factors using exchangeable concentrations rather than total concentrations. Future research is needed to understand the effect of earthworms on metals in other soil types.

  12. Bioaccumulation of Cadmium by Pseudomonas Sp. Isolated From Metal Polluted Industrial Region

    Directory of Open Access Journals (Sweden)

    Rinoy Varghese

    2012-10-01

    Full Text Available In the present study, bacterial strains were isolated from soil, sediment and water samples of metal contaminated industrial area and investigated the heavy metal resistance and bioaccumulation potential of the isolates. Cadmium analysis of the samples revealed that Cd concentration varying from 2.31µg L-1 to 8.96 µg L-1 in water, 0.55µg g-1 to 25.44µg g-1 in soil and 0.45µg g-1 to 22.90µg g-1 in sediment. Cadmium resistance studies of the bacterial isolates showed that out of 164 isolates collected most of them showed  low resistance (<500µg/ml and many isolates showed high resistance of  >1500µg/ml. Ten bacterial genera were represented in soil and 11 from water, while only 5 bacterial genera were recorded from sediment samples.  Bacillus, pseudomonas and Enterobacter were found in soil, sediment and water samples. Results of cadmium removal study revealed that with increase in time, the biomass of the selected Pseudomonas sp. increased. Correspondingly, with increase in biomass, the cadmium bioaccumulation was also increased. Relatively an Increased removal of cadmium was observed in the first day of the experiment. About 40% of the cadmium in the experimental flask was reduced while only 5% reduction occurs in the control flasks till the end of the experiment (74hours. Comparatively cadmium showed higher reduction at pH 7. From the results, it could be concluded that the selected bacterial isolates possessed potential in respect of bioaccumulation activity and thus, appeared to be an appropriate nominee in bioremediation processes.DOI: http://dx.doi.org/10.5755/j01.erem.61.3.1268

  13. Linkage of bioaccumulation and biological effects to changes in pollutant loads in south San Francisco Bay

    Science.gov (United States)

    Hornberger, M.I.; Luoma, S.N.; Cain, D.J.; Parchaso, F.; Brown, C.L.; Bouse, R.M.; Wellise, C.; Thompson, J.K.

    2000-01-01

    The developed world has invested billions of dollars in waste treatment since the 1970s; however, changes in ecological or biological responses are rarely associated with reductions in metal pollutants. Here we present a novel, 23-yr time series of environmental change from a San Francisco Bay mudflat located 1 km from the discharge of a suburban domestic sewage treatment plant. Samples of surface sediment, the bioindicator Macoma balthica, and metals loading data were used to establish links between discharge, bioaccumulation, and effects. Mean annual Ag concentrations in M. balthica were 106 ??g/g in 1978 and 3.67 ??g/g in 1998. Concentrations of Cu declined from 287 ??g/g in 1980 to a minimum of 24 ??g/g in 1991. Declining Cu bioaccumulation was strongly correlated with decreasing Cu loads from the plant between 1977 and 1998. Relationships with bioaccumulation and total annual precipitation suggested that inputs from nonpoint sources were most important in controlling Zn bioavailability during the same period. Ecoepidemiological criteria were used to associate failed gamete production in M. balthica to a metals-enriched environment. Reproduction persistently failed between the mid-1970s and mid-1980s; it recovered after metal contamination declined. Other potential environmental causes such as food availability, sediment chemistry, or seasonal salinity fluctuations were not related to the timing of the change in reproductive capability. The results establish an associative link, suggesting that it is important to further investigate the chemical interference of Cu and/or Ag with invertebrate reproduction at relatively moderate levels of environmental contamination.

  14. Enhanced bioaccumulation of dietary contaminants in catfish with exposure to the waterborne surfactant linear alkylbenzene sulfonate.

    Science.gov (United States)

    Tan, Xiaobing; Yim, Sun-Young; Uppu, Prasanna; Kleinow, Kevin M

    2010-08-15

    Fish bioaccumulate a variety of contaminants and act as an exposure portal to the human consumer. Surfactants, known pharmaceutically to alter membrane permeability, change drug bioavailability and attenuate transporter function are also found in contaminant mixtures in the aquatic environment. The overall objective of this study was to determine if the surfactant C-12 linear alkylbenzene sulfonate (LAS) at environmentally relevant concentrations, alters the disposition and enhances bioaccumulation of co-exposed dietary xenobiotics in the catfish. Included for study were the carcinogen benzo(a)pyrene (BaP), pharmaceutical, ivermectin (IVM), and P-glycoprotein (P-gp) substrate rhodamine 123 (Rho-123), each exhibiting different dispositional footprints. Rho-123 transport into bile and membrane fluidity was examined in isolated perfused livers from control and LAS exposed catfish. Mass balance residue assessments were performed on catfish following in vivo exposure for 12 days to LAS in water at 0, 100 or 300 microg/L with 6 days of (3)H-IVM or (3)H-BaP gavage treatments. LAS at 1, 5 and 20 microM in the perfused liver, significantly decreased the transport of Rho-123 (1 microM) into bile by 18.6, 38.1 and 66.7%, respectively. Fluorescence anisotropy measurements demonstrated a 29.7% increase in fluidity at the (1 microM, 348 microg/L) LAS concentration. In vivo mass balance studies indicated that waterborne LAS (100 and 300 microg/L) increased the dietary dose remaining in fish by 39% and 78% for (3)H-IVM and 50 and 157% for (3)H-BaP. LAS at environmentally relevant concentrations altered the bioavailability and disposition of dietary xenobiotics in the catfish. Co-exposure with LAS increases xenobiotic bioaccumulation, potential toxicity of mixture components to the fish and the potential for residue transfer from fish to the consumer.

  15. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeda

    Full Text Available We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1 the effects of crude oil (Louisiana light sweet oil on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs in mesozooplankton communities, (2 the lethal effects of dispersant (Corexit 9500A and dispersant-treated oil on mesozooplankton, (3 the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4 the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20, dispersant (0.25 µl L(-1 and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1 to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

  16. Enantiomerization and enantioselective bioaccumulation of benalaxyl in Tenebrio molitor larvae from wheat bran.

    Science.gov (United States)

    Gao, Yongxin; Chen, Jinhui; Wang, Huili; Liu, Chen; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2013-09-25

    The enantiomerization and enatioselecive bioaccumulation of benalaxyl by dietary exposure to Tenebrio molitor larvae under laboratory conditions were studied by HPLC-MS/MS. Exposure of enantiopure R-benalaxyl and S-benalaxyl in T. molitor larvae revealed significant enantiomerization with formation of the R enantiomers from the S enantiomers, and vice versa. Enantiomerization was not observed in wheat bran during the period of 21 days. For the bioaccumulation experiment, the enantiomer fraction in T. molitor larvae was maintained approximately at 0.6, whereas the enantiomer fraction in wheat bran was maintained at 0.5; in other words, the bioaccumulation of benalaxyl was enantioselective in T. molitor larvae. Mathematical models for a process of uptake, degradation, and enantiomerization were developed, and the rates of uptake, degradation, and enantiomerization of R-benealaxyl and S-benealaxyl were estimated, respectively. The results were that the rate of uptake of R-benalaxyl (kRa = 0.052 h(-1)) was slightly lower than that of S-benalaxyl (kSa = 0.061 h(-1)) from wheat bran; the rate of degradation of R-benalaxyl (kRd = 0.285 h(-1)) was higher than that of S-benalaxyl (kSd = 0.114 h(-1)); and the rate of enantiomerization of R-benalaxyl (kRS = 0.126 h(-1)) was higher than that of S-benalaxyl (kSR = 0.116 h(-1)). It was suggested that enantioselectivtiy was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of chiral pesticides.

  17. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice.

    Science.gov (United States)

    Vermeulen, Frouke; Van den Brink, Nico W; D'Havé, Helga; Mubiana, Valentine K; Blust, Ronny; Bervoets, Lieven; De Coen, Wim

    2009-11-01

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way.

  18. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Tuikka, A.I., E-mail: anitat@student.uef.fi [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu (Finland); Leppänen, M.T., E-mail: Matti.T.Leppanen@ymparisto.fi [Finnish Environment Institute, Laboratories/Research and Innovation Laboratory, P.O. Box 35, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Akkanen, J., E-mail: jarkko.akkanen@uef.fi [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu (Finland); Sormunen, A.J., E-mail: Arto.Sormunen@mamk.fi [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu (Finland); Leonards, P.E.G., E-mail: pim.leonards@vu.nl [Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Hattum, B. van, E-mail: bert.vanhattum@deltares.nl [Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Vliet, L.A. van, E-mail: lavanvliet@hotmail.com [Ministry of Transport, Public Works and Water Management, National Institute for Coastal and Marine Management/RIKZ, P.O. Box 207, 9750 AE Haren (Netherlands); Brack, W., E-mail: werner.brack@ufz.de [Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig (Germany); Smedes, F., E-mail: smedes@recetox.muni.cz [Ministry of Transport, Public Works and Water Management, National Institute for Coastal and Marine Management/RIKZ, P.O. Box 207, 9750 AE Haren (Netherlands); and others

    2016-09-01

    There were two main objectives in this study. The first was to compare the accuracy of different prediction methods for the chemical concentrations of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the organism, based on the measured chemical concentrations existing in sediment dry matter or pore water. The predicted tissue concentrations were compared to the measured ones after 28-day laboratory test using oligochaeta worms (Lumbriculus variegatus). The second objective was to compare the bioaccumulation of PAHs and PCBs in the laboratory test with the in situ bioaccumulation of these compounds. Using the traditional organic carbon-water partitioning model, tissue concentrations were greatly overestimated, based on the concentrations in the sediment dry matter. Use of an additional correction factor for black carbon with a two-carbon model, significantly improved the bioaccumulation predictions, thus confirming that black carbon was important in binding the chemicals and reducing their accumulation. The predicted PAH tissue concentrations were, however, high compared to the observed values. The chemical concentrations were most accurately predicted from their freely dissolved pore water concentrations, determined using equilibrium passive sampling. The patterns of PCB and PAH accumulation in sediments for laboratory-exposed L. variegatus were similar to those in field-collected Lumbriculidae worms. Field-collected benthic invertebrates and L. variegatus accumulated less PAHs than PCBs with similar lipophilicity. The biota to sediment accumulation factors of PAHs tended to decrease with increasing sediment organic carbon normalized concentrations. The presented data yields bioconcentration factors (BCF) describing the chemical water-lipid partition, which were found to be higher than the octanol-water partition coefficients, but on a similar level with BCFs drawn from relevant literature. In conclusion, using the two-carbon model method

  19. Heavy Metal Bioaccumulation in an Atypical Primitive Neuroectodermal Tumor of the Abdominal Wall.

    Science.gov (United States)

    Roncati, Luca; Gatti, Antonietta Morena; Capitani, Federico; Barbolini, Giuseppe; Maiorana, Antonio; Palmieri, Beniamino

    2015-01-01

    Heavy metals are able to interfere with the function of vital cellular components. Besides in trace heavy metals, which are essential at low concentration for humans, there are heavy metals with a well-known toxic and oncogenic potential. In this study, for the first time in literature, we report the unique adulthood case of an atypical primitive neuroectodermal tumor of the abdominal wall, diagnosed by histology and immunohistochemistry, with the molecular hybridization support. The neoplasia occurred in a patient chronically exposed to a transdermal delivery of heavy metal salts (aluminum and bismuth), whose intracellular bioaccumulation has been revealed by elemental microanalysis.

  20. Evaluating bioaccumulation of suspected endocrine disruptors into periphytons and benthos in the Tama River.

    Science.gov (United States)

    Takahashi, A; Higashitani, T; Yakou, Y; Saitou, M; Tamamoto, H; Tanaka, H

    2003-01-01

    There are two major routes through which fish are exposed to endocrine disruptors (EDs); one route is through water that is a habitat; the other is through aquatic food such as algae and benthos. Few studies on the bioaccumulation of EDs in food have been conducted. Therefore, we evaluated the concentration in food of nonylphenol (NP), bisphenol A (BPA) and 17beta-estradiol (E2), which were frequently detected in river water and in final discharge of Wastewater Treatment Plants (WWTPs) in Japan. We also evaluated the estrogenicity of samples using recombinant yeast. NP concentrations ranged 0.1-0.4 microg/L in the river water, while they ranged 8-130 microg/kg-wet in the periphytons and 8-140 microg/kg-wet in the benthos. BPA concentrations ranged 0.02-0.15 microg/L in the river water, while they ranged 2-8.8 microg/kg-wet in the periphytons and 0.3-12 microg/kg-wet in the benthos. E2 concentrations ranged 0.0001-0.0076 microg/L in the water, while they ranged 0.09-2.26 microg/kg-wet in the periphytons and benthos. The estrogenicity ranged 0.0001-0.0464 microg-E2equivalent/L in the water, while it ranged 3.4-66.8 microg-E2equivalent/kg-wet in the periphytons and 7.4-5458 microg-E2equivalent/kg-wet in the benthos. Bioaccumulation factors of NP are estimated as 160-650 for the periphytons, and 63-990 for the benthos, respectively. Bioaccumulation factors of BPA are estimated as 18-650 for the periphytons, and 8-170 for the benthos, respectively. Bioaccumulation factors of E2 are estimated as 64-1,200 for the periphytons, and 100-160 for the benthos, respectively. The ratios of the periphytons and the benthos to the water in terms of the estrogenicity were larger than those in terms of the chemicals. In particularly, the ratio of the benthos to the water is about 10(6) in the maximum. The results suggest that food may be a more important route for fish exposed to EDs in water environment.

  1. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    Science.gov (United States)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  2. Bioaccumulation of arsenic and silver by the caddisfly larvae Hydropsyche siltalai and H. pellucidula

    DEFF Research Database (Denmark)

    Awrahman, Zmnako; Rainbow, Philip S; Smith, Brian D

    2015-01-01

    Biodynamic modeling was used to investigate the uptake and bioaccumulation of arsenic and silver from water and food by two Hydropsychid caddisfly larvae: Hydropsyche siltalai and Hydropsyche pellucidula. Radiotracer techniques determined the uptake rate constants of arsenic and silver from water...... solution were significantly lower than those of As and Ag assimilated from ingested food in both species. Experimentally derived ku and ke values were then used to predict As and Ag tissue concentrations in hydropsychids collected from 13 UK sites, including metal-contaminated streams in Cornwall. Arsenic...

  3. Seasonal Trends in Bioaccumulation of Heavy Metals in Fauna of Stormwater Ponds

    DEFF Research Database (Denmark)

    Stephansen, Diana; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild;

    2013-01-01

    Fauna caught in three stormwater ponds, two receiving highway run-off and one receiving runoff from a center for trucks, was analyzed for copper, iron, zinc, cadmium, chromium, and lead. The fauna was monitored from March to October with 1-month intervals to evaluate seasonal trends in bioaccumul......Fauna caught in three stormwater ponds, two receiving highway run-off and one receiving runoff from a center for trucks, was analyzed for copper, iron, zinc, cadmium, chromium, and lead. The fauna was monitored from March to October with 1-month intervals to evaluate seasonal trends...

  4. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Salari Joo, Hamid, E-mail: h.salary1365@gmail.com [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Kalbassi, Mohammad Reza, E-mail: kalbassi_m@modares.ac.ir [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Yu, Il Je, E-mail: u1670916@chol.com [Institute of Nano-product Safety Research, Hoseo University, 165 Sechul-ri, Baebang-myun, Asan 336-795 (Korea, Republic of); Lee, Ji Hyun, E-mail: toxin@dreamwiz.com [Institute of Nano-product Safety Research, Hoseo University, Asan (Korea, Republic of); Johari, Seyed Ali, E-mail: a.johari@uok.ac.ir [Aquaculture Department, Natural Resources Faculty, University of Kurdistan, Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-09-15

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λ{sub max} of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λ{sub max} quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following

  5. Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China.

    Science.gov (United States)

    Zhang, Haijun; Lu, Xianbo; Zhang, Yichi; Ma, Xindong; Wang, Shuqiu; Ni, Yuwen; Chen, Jiping

    2016-09-01

    The concentrations of 21 organochlorine pesticide (OCP) residues and 18 polychlorinated biphenyl (PCB) congeners were measured in two loach species (Misgurnus mohoity and Paramisgurnus dabryanus) and the soils of their inhabiting rice paddies from three typical rice production bases of Northeast China to explore the main factors influencing the bioaccumulation. The concentrations of ∑18PCBs and ∑21OCPs in loaches were determined to be in the ranges of 0.14-0.76 ng g(-1) wet weight (ww) and 1.19-78.53 ng g(-1) ww, respectively. Most of loaches showed the considerably high contamination levels of dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), which accounted for over 97% of the total OCPs. The much lower maximum allowable loach consumption rates (bioaccumulation potential. The comparisons of BSAF values and the results of multivariate analysis indicated that habitat-specific environmental conditions, mainly the paddy soil contamination levels and average temperature, decisively affected the bioaccumulation of organochlorine contaminants. When the influence of lipid contents was offset, M. mohoity loaches were found to have a higher potential to accumulation PCBs and OCPs than P. dabryanus loaches, while the bioaccumulation potentials did not exhibit significant differences between juvenile and adult loaches and between male and female loaches. The octanol-water partition coefficient (KOW) was the main chemical factor influencing bioaccumulation potentials. The BSAF values presented an increasing tendency with increasing log KOW values from 6.0 to approximately 7.0, followed by a decreasing tendency with a continuous increase in log KOW values. Moreover, loaches exhibited an isomeric-selective bioaccumulation for p,p'-chlorinated DDTs, α-HCH, β-HCH, δ-HCH and cis-chlordane.

  6. [Dissolution, absorption and bioaccumulation in gastrointestinal tract of mercury in HgS-containing traditional medicines Cinnabar and Zuotai].

    Science.gov (United States)

    Zheng, Zhi-yuan; Li, Cen; Zhang, Ming; Yang, Hong-xia; Geng, Lu-jing; Li, Lin-shuai; Du, Yu-zhi; Wei, Li-xin

    2015-06-01

    α-HgS is the main component of traditional Chinese medicine cinnabar, while β-HgS is the main component of Tibetan medicine Zuotai. However, there was no comparative study on the dissolution and absorption in gastrointestinal tract and bioaccumulation in organs of mercury in Cinnabar, Zuotai, α-HgS and β-HgS. In this study, the dissolution process of the four compounds in the human gastrointestinal tract was simulated to determine the mercury dissolutions and compare the mercury dissolution of different medicines and the dissolution-promoting capacity of different solutions. To explore the absorption and bioaccumulation of cinnabar and Zuotai in organisms, mice were orally administered with clinical equivalent doses cinnabar and Zuotai. Meanwhile, a group of mice was given α-HgS and β-HgS with the equivalent mercury with cinnabar, while another group was given β-HgS and HgCl2 with the equivalent mercury with Zuotai. The mercury absorption and bioaccumulation capacities of different medicines in mice and their mercury bioaccumulation in different tissues and organs were compared. The experimental results showed a high mercury dissolutions of Zuotai in artificial gastrointestinal fluid, which was followed by β-HgS, cinnabar and α-HgS. As for the mercury absorption and bioaccumulation in mice, HgCl2 was the highest, β-HgS was the next, and a-HgS was slightly higher than cinnabar. The organs with the mercury bioaccumulation from high to low were kidney, liver and brain. This study is close to clinical practices and can provide reference for the clinical safe medication as well as a study model for the safety evaluation on heavy metal-containing medicines by observing the mercury dissolution, absorption, distribution and accumulation of mercury-containing medicines cinnabar and zuotai.

  7. Heavy metal bioavailability and effects: I. Bioaccumulation caused by mining activities in the Gulf of Cádiz (SW, Spain).

    Science.gov (United States)

    Riba, I; Blasco, J; Jiménez-Tenorio, N; Delvalls, T Angel

    2005-02-01

    The bioaccumulation of six metals (Fe, Mn, Zn, Cd, Pb and Cu) was studied as part of the monitoring of the Aznalcóllar mining spill (April 1998) on the Guadalquivir estuary and in other estuaries located in the Gulf of Cádiz. Fish, clams and oysters were collected during different seasonal periods along the years 2000 and 2001 in the Guadalquivir estuary to determine the bioaccumulation of the metals originated by the mining spill. Results were compared to the bioaccumulation of the same metals in fish and clams exposed in the laboratory to sediments collected in the same areas during autumn 2001. The bioaccumulation of these metals was compared to the concentration of metals measured in tissues of same taxas collected in the areas of the ria of Huelva and the Bay of Cádiz. Results show that the bioaccumulation of Zn and Cd in the organisms sampled in the Guadalquivir estuary was associated with the enrichment of these metals in the estuary from the mining spill and decreased along the time reaching the lowest values in autumn 2001. The metal Cu show different trends that are associated with other sources of contamination than the spill and related to the transport of this metal from Huelva to Guadalquivir estuary and/or to the use of this metal as plaguicide in the rice fields located in the area. The comparison between bioaccumulation results under field and laboratory conditions obtained in the different areas of study shows that these data can be used to discriminate between acute and chronic impacts associated with mining activities.

  8. Explaining differences between bioaccumulation measurements in laboratory and field data through use of a probabilistic modeling approach

    Science.gov (United States)

    Selck, Henriette; Drouillard, Ken; Eisenreich, Karen; Koelmans, Albert A.; Palmqvist, Annemette; Ruus, Anders; Salvito, Daniel; Schultz, Irv; Stewart, Robin; Weisbrod, Annie; van den Brink, Nico W.; van den Heuvel-Greve, Martine

    2012-01-01

    In the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls for accurate error analysis. Yet, attempts to quantify and compare propagation of error in bioaccumulation metrics across species and chemicals are rare. Here, we quantitatively assessed the combined influence of physicochemical, physiological, ecological, and environmental parameters known to affect bioaccumulation for 4 species and 2 chemicals, to assess whether uncertainty in these factors can explain the observed differences among laboratory and field studies. The organisms evaluated in simulations including mayfly larvae, deposit-feeding polychaetes, yellow perch, and little owl represented a range of ecological conditions and biotransformation capacity. The chemicals, pyrene and the polychlorinated biphenyl congener PCB-153, represented medium and highly hydrophobic chemicals with different susceptibilities to biotransformation. An existing state of the art probabilistic bioaccumulation model was improved by accounting for bioavailability and absorption efficiency limitations, due to the presence of black carbon in sediment, and was used for probabilistic modeling of variability and propagation of error. Results showed that at lower trophic levels (mayfly and polychaete), variability in bioaccumulation was mainly driven by sediment exposure, sediment composition and chemical partitioning to sediment components, which was in turn dominated by the influence of black carbon. At higher trophic levels (yellow perch and the little owl), food web structure (i.e., diet composition and abundance) and chemical concentration in the diet became more important particularly for the most persistent compound, PCB-153. These results suggest that variation in bioaccumulation

  9. Bioaccumulation and depuration of anthracene in Penaeus monodon (Fibricius) through food ingestion.

    Science.gov (United States)

    Ong, Pei Thing; Yong, Jaw Chuen; Chin, Kam Yew; Hii, Yii Siang

    2011-07-01

    Understanding on the bioaccumulation and depuration of PAHs (polycyclic aromatic hydrocarbons) in Penaeus monodon is important in seafood safety because it is one of the most popular seafood consumed worldwide. In this study, we used anthracene as the precursor compound for PAHs accumulation and depuration in the shrimp. Commercial feed pellets spiked with anthracene were fed to P. monodon. At 20 mg kg(-1) anthracene, P. monodon accumulated 0.1% of the anthracene from the feed. P. monodon deputed the PAH two times faster than its accumulation. The shrimp reduced its feed consumption when anthracene content in the feed exceeded 20 mg kg(-1). At 100 mg kg(-1) anthracene, P. monodon started to have necrosis tissues on the posterior end of their thorax. The bioaccumulation factor (BAF), uptake rate constant (k(1)) and depuration rate constant (k(2)) of anthracene in P. monodon were 1.15×10(-3), 6.80×10(-4) d(-1) and 6.28×10(-1) d(-1), respectively. The depuration rate constant is about thousand times higher than the uptake rate constant and this indicated that this crustacean is efficient in depurating hydrocarbons from their tissue.

  10. Antioxidative responses and bioaccumulation in Japanese flounder larvae and juveniles under chronic mercury exposure.

    Science.gov (United States)

    Huang, Wei; Cao, Liang; Ye, Zhenjiang; Yin, Xuebo; Dou, Shuozeng

    2010-06-01

    This study investigated the sub-lethal effects of waterborne mercury on growth, bioaccumulation and antioxidative responses of larvae and juveniles of Japanese flounder (Paralichthys olivaceus). Fish were exposed to 0-10 microg Hg(2)(+)L(-1) solutions from embryonic to the juvenile stages for 80 days. Antioxidative responses to mercury exposure were studied in metamorphosing larvae (18 days post hatching, dph), settling larvae (33 dph) and juveniles (78 dph). Results showed that increasing mercury concentration led to increased mercury bioaccumulation and reduced flounder growth. Of the antioxidants investigated, superoxide dismutase (SOD) and catalase (CAT) activities at the three developmental stages were sensitive to mercury exposure and increased with increasing mercury concentration. Glutathione (GSH) content was elevated in metamorphosing larvae, but decreased in juveniles as mercury concentration increased. Glutathione-S-transferase (GST) activity did not significantly vary with mercury concentration in either larvae or juveniles. Mercury exposure did not affect malondialdehyde (MDA) content of larvae, but significantly increased MDA content of juveniles. Results suggest that flounder larvae and juveniles have the potential to manipulate the levels of antioxidants such as SOD, CAT and GSH, which protect flounder from oxidative stress induced by mercury exposure. These antioxidants could serve as biomarkers of mercury contamination in the aquatic environment.

  11. Mercury bioaccumulation in fish of commercial importance from different trophic categories in an Amazon floodplain lake

    Directory of Open Access Journals (Sweden)

    Sandra Beltran-Pedreros

    Full Text Available Thirty-two species of commercially important fish from three trophic levels and nine trophic categories were sampled at a floodplain lake of the Solimões River (Lago Grande de Manacapuru. The fish were analyzed to determine their Hg level and the bioaccumulation, bioconcentration, and biomagnification of this element. The observed increase in mean concentration of mercury (49.6 ng.g-1 for omnivores, 418.3 ng.g-1 for piscivores, and 527.8 ng.g-1 for carnivores/necrophages furnished evidence of biomagnification. Primary, secondary, and tertiary consumers presented biomagnification factors of 0.27, 0.33, and 0.47, respectively. Significant differences in the bioconcentration and concentration of total Hg occurred between the categories of the third trophic level and the other categories. Plagioscion squamosissimus (carnivorous/piscivorous and Calophysus macropterus (carnivorous/ necrophagous showed levels of total Hg above those permitted by Brazilian law (500 ng.g-1. Six other species also posed risks to human health because their Hg levels exceeded 300 ng.g-1. Fifteen species showed bioaccumulation, but only eight presented significant correlations between the concentration of Hg and the length and/or the weight of the fish.

  12. Influence of Mining Pollution on Metal Bioaccumulation and Biomarker Responses in Cave Dwelling Fish, Clarias gariepinus.

    Science.gov (United States)

    du Preez, Gerhard; Wepener, Victor

    2016-07-01

    Cave ecosystems remain largely unstudied and risk being severely degraded as a result of anthropogenic activities. The Wonderfontein Cave, situated in the extensive gold mining region of the Witwatersrand Basin, is one such system that hosts a population of Clarias gariepinus, which is exposed to the influx of polluted mine water from the Wonderfontein Spruit River. The aim of this study was to investigate the bioaccumulation of metals, as well as relevant biomarkers, in C. gariepinus specimens sampled from the Wonderfontein Cave during high (April 2013) and low (September 2013) flow surveys. Results were also compared to a surface population associated with the Wonderfontein Spruit River. There were temporal differences in metal bioaccumulation patterns and this was attributed to the lack of dilution during the low flow period. Metals associated with acid mine drainage, i.e. Co, Mn and Zn were significantly higher in the Wonderfontein Cave population and were reflected in an increase in oxidative stress biomarkers (catalase, protein carbonyls and superoxide dismutase) and the induction of metallothionein, a biomarker of metal exposure. The surface population was exposed to metals associated with geological weathering processes, i.e. Fe and Al.

  13. The Bioaccumulation of Some Heavy Metals in the Fruiting Body of Wild Growing Mushrooms

    Directory of Open Access Journals (Sweden)

    Carmen Cristina ELEKES

    2010-09-01

    Full Text Available Due to their effective mechanism of accumulation of heavy metals from soil, the macrofungi show high concentrations of metals in their fruiting body. According with this ability, the mushrooms can be used to evaluate and control the level of environmental pollution, but also represent danger for human ingestion. We analyzed some macrofungi species from a wooded area to establish the heavy metal concentrations and ability of bioaccumulation and translocation for Zn, Cu and Sn in fruiting body. The metallic content was established by the Inductively Coupled Plasma-Atomic Emission Spectrometry method (ICP-AES. The minimal detection limits of method is 0.4 mg/kg for Zn and Cu and 0.6 mg/kg for Sn. Heavy metals concentrations in the fruiting body ranged between 6.98-20.10 mg/kg for Zn (the higher value was for Tapinella atrotomentosa; 16.13-144.94 mg/kg for Cu (the higher value was for Hypholoma fasciculare; and 24.36-150.85 mg/kg for Sn (the higher value was for Paxillus involutus. The bioaccumulation factor has important values (higher than 1 only for copper in all the analyzed species (between 1.30 and 8.86 and for tin in Paxillus involutus species (1.19. The translocation factor shows that zinc and tin were accumulated in higher concentrations in cap of mushrooms and the copper had higher concentrations in stipe.

  14. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes.

    Science.gov (United States)

    Wang, Ning-Xin; Li, Yan; Deng, Xi-Hai; Miao, Ai-Jun; Ji, Rong; Yang, Liu-Yan

    2013-05-01

    In the present study, the toxicity and bioaccumulation kinetics of arsenate in two green algae Chlamydomonas reinhardtii and Scenedesmus obliquus under phosphate-enriched (+P) and limited (-P) conditions were investigated. P-limitation was found to aggravate arsenate toxicity and S. obliquus was more tolerant than C. reinhardtii. Such phosphate-condition-dependent or algal-species-specific toxicity difference was narrowed when the relative inhibition of cell growth was plotted against intracellular arsenate content instead of its extracellular concentration. The discrepance was further reduced when the intracellular ratio of arsenic to phosphorus was applied. It suggests that both arsenate bioaccumulation and intracellular phosphorus played an important role in arsenate toxicity. On the other hand, arsenate uptake was induced by P-limitation and its variation with ambient arsenate concentration could be well fitted to the Michaelis-Menten model. Arsenate transporters of S. obliquus were found to have a higher affinity but lower capacity than those of C. reinhardtii, which explains its better regulation of arsenate accumulation than the latter species in the toxicity experiment. Further, arsenate depuration was facilitated and more was transformed to arsenite in C. reinhardtii or under -P condition. Intracellular proportion of arsenite was also increased after the algae were transferred from the long-term uptake media to a relatively clean solution in the efflux experiment. Both phenomena imply that algae especially the sensitive species could make physiological adjustments to alleviate the adverse effects of arsenate. Overall, our findings will facilitate the application of algae in arsenate remediation.

  15. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals

    Science.gov (United States)

    Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.

    2015-01-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.

  16. Bioaccumulation of PCBs in the cuttlefish Sepia officinalis from seawater, sediment and food pathways

    Energy Technology Data Exchange (ETDEWEB)

    Danis, B. [Laboratoire de Biologie Marine (CP 160-15), Universite Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Brussels (Belgium)]. E-mail: bdanis@ulb.ac.be; Bustamante, P. [Laboratoire de Biologie et Environnement Marins, UPRES-EA 3168, Universite de La Rochelle, 22 Av. Michel Crepeau, F-17042 La Rochelle Cedex (France); Cotret, O. [Marine Environment Laboratory - International Atomic Energy Agency, 4 Quai Antoine Ier, Monaco, MC-98000 Monaco (Monaco); Teyssie, J.L. [Marine Environment Laboratory - International Atomic Energy Agency, 4 Quai Antoine Ier, Monaco, MC-98000 Monaco (Monaco); Fowler, S.W. [Marine Environment Laboratory - International Atomic Energy Agency, 4 Quai Antoine Ier, Monaco, MC-98000 Monaco (Monaco); Warnau, M. [Marine Environment Laboratory - International Atomic Energy Agency, 4 Quai Antoine Ier, Monaco, MC-98000 Monaco (Monaco)

    2005-03-01

    The cuttlefish Sepia officinalis was selected as a model cephalopod to study PCB bioaccumulation via seawater, sediments and food. Newly hatched, juvenile cuttlefish were exposed for 17 days to environmentally realistic concentrations of {sup 14}C-labeled 2,2',4,4',5,5'-hexachlorobiphenyl (PCB no. 153) (18 ng PCB l{sup -1} seawater; 30 ng PCB g{sup -1} dry wt sediments; Artemia salina exposed to 18 ng PCB l{sup -1} seawater). Accumulation of PCB no. 153 was followed in three body compartments: digestive gland, cuttlebone and the combined remaining tissues. Results showed that (1) uptake kinetics were source- and body compartment-dependent, (2) for each body compartment, the accumulation was far greater when S. officinalis was exposed via seawater, (3) the cuttlebone accumulated little of the contaminant regardless of the source, and (4) the PCB congener showed a similar distribution pattern among the different body compartments following exposure to contaminated seawater, sediment or food with the lowest concentrations in the cuttlebone and the highest in the remaining tissues. The use of radiotracer techniques allowed delineating PCB kinetics in small whole organisms as well as in their separate tissues. The results underscore the enhanced ability of cephalopods to concentrate organic pollutants such as PCBs, and raise the question of potential risk to their predators in contaminated areas. - Bioaccumulation of PCBs by cuttlefish is studied, via seawater, sediments and their food.

  17. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.).

    Science.gov (United States)

    Camarena-Rangel, Nancy; Rojas Velázquez, Angel Natanael; Santos-Díaz, María del Socorro

    2015-10-01

    The ability of hydroponic cultures of camellia and sugar cane adult plants to remove fluoride was investigated. Plants were grown in a 50% Steiner nutrient solution. After an adaptation period to hydroponic conditions, plants were exposed to different fluoride concentrations (0, 2.5, 5 and 10 mg L(-1)). Fluoride concentration in the culture medium and in tissues was measured. In sugar cane, fluoride was mainly located in roots, with 86% of it absorbed and 14% adsorbed. Sugar cane plants removed 1000-1200 mg fluoride kg(-1) dry weight. In camellia plants the highest fluoride concentration was found in leaf. Roots accumulated fluoride mainly through absorption, which was 2-5 times higher than adsorption. At the end of the experiment, fluoride accumulation in camellia plants was 1000-1400 mgk g(-1) dry weight. Estimated concentration factors revealed that fluoride bioaccumulation is 74-221-fold in camellia plants and 100-500-fold in sugar cane plants. Thus, the latter appear as a suitable candidate for removing fluoride from water due to their bioaccumulation capacity and vigorous growth rate; therefore, sugar cane might be used for phytoremediation.

  18. Bioaccumulation and Elimination of the Herbicide Clomazone in the Earthworms Eisenia fetida.

    Science.gov (United States)

    Cao, Jia; Li, Ping; Li, Qing X; Zheng, Pengfei; Diao, Xiaoping

    2015-11-01

    Acute toxicity, bioaccumulation, and elimination of herbicide clomazone in the earthworm Eisenia fetida were investigated in the different exposure systems. The LC50 values of clomazone on earthworms were 5.6 μg cm(-2) in the contact filter paper test (48 h), 174.9 mg kg(-1) (7 days) and 123.4 mg kg(-1) (14 days) in artificial soil test, respectively. Clomazone could rapidly bioaccumulate in earthworms and reached the highest concentration after 3 days exposure, with the maximum concentrations of 9.0, 35.3 and 142.3 mg kg(-1) at 10.0, 40.0 and 160.0 mg kg(-1) of clomazone, respectively. Clomazone uptake showed a good correlation with exposure concentration. After the 14th day, clomazone declined to minimum value. About 74%-80% of accumulated clomazone was eliminated within 1 day after exposed to clomazone-free soil. However, a trace amount of clomazone persisted for a relatively long time in earthworms.

  19. Bioaccumulation of microcystins in two freshwater gastropods from a cyanobacteria-bloom plateau lake, Lake Dianchi.

    Science.gov (United States)

    Zhang, Junqian; Wang, Zhi; Song, Zhuoyan; Xie, Zhicai; Li, Lin; Song, Lirong

    2012-05-01

    To investigate the bioaccumulation patterns of microcystins (MCs) in organs of two gastropods, samples were collected in Lake Dianchi monthly from May to October, 2008, when cyanobacteria typically bloom. The average MCs concentrations for Radix swinhoei (pulmonate) and Margarya melanioides (prosobranch) tended to be similar for the different organs: the highest values in the hepatopancreas (9.33 by 3.74 μg/g DW), followed by digestive tracts (1.66 by 3.03 μg/g DW), gonads (0.45 by 1.34 μg/g DW) and muscles (0.22 by 0.40 μg/g DW). Pulmonate had higher value than prosobranch because of the stronger bioaccumulation ability in hepatopancreas. The levels in organs of R. swinhoei were correlated with environmentally dissolved MCs, but influenced by intracellular MCs for M. melanioides. The estimated MCs concentrations in edible parts of M. melanioides were beyond the WHO's provisional tolerable daily intake (0.04 μg/kg), suggesting the risk of consumption of M. melanioides from the lake.

  20. Adaptive stress response pathways induced by environmental mixtures of bioaccumulative chemicals in dugongs.

    Science.gov (United States)

    Jin, Ling; Gaus, Caroline; Escher, Beate I

    2015-06-02

    To address the poorly understood mixture effects of chemicals in the marine mammal dugong, we coupled equilibrium-based passive sampling in blubber to a range of in vitro bioassays for screening mixtures of bioaccumulative chemicals. The modes of action included early effect indicators along important toxicity pathways, such as induction of xenobiotic metabolism, and some integrative indicators downstream of the molecular initiating event, such as adaptive stress responses. Activation of aryl hydrocarbon receptor (AhR) and Nrf2-mediated oxidative stress response were found to be the most prominent effects, while the p53-mediated DNA damage response and NF-κB-mediated response to inflammation were not significantly affected. Although polychlorinated dibenzo-p-dioxins (PCDDs) quantified in the samples accounted for the majority of AhR-mediated activity, PCDDs explained less than 5% of the total oxidative stress response, despite their known ability to activate this pathway. Altered oxidative stress response was observed with both individual chemicals and blubber extracts subject to metabolic activation by rat liver S9 fraction. Metabolic activation resulted in both enhanced and reduced toxicity, suggesting the relevance and utility of incorporating metabolic enzymes into in vitro bioassays. Our approach provides a first insight into the burden of toxicologically relevant bioaccumulative chemical mixtures in dugongs and can be applied to lipid tissue of other wildlife species.

  1. Mercury Bioaccumulation in Estuarine Fishes: Novel Insights from Sulfur Stable Isotopes.

    Science.gov (United States)

    Willacker, James J; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-02-21

    Estuaries are transitional habitats characterized by complex biogeochemical and ecological gradients that result in substantial variation in fish total mercury concentrations (THg). We leveraged these gradients and used carbon (δ(13)C), nitrogen (δ(15)N), and sulfur (δ(34)S) stable isotopes to examine the ecological and biogeochemical processes underlying THg bioaccumulation in fishes from the San Francisco Bay Estuary. We employed a tiered approach that first examined processes influencing variation in fish THg among wetlands, and subsequently examined the roles of habitat and within-wetland processes in generating larger-scale patterns in fish THg. We found that δ(34)S, an indicator of sulfate reduction and habitat specific-foraging, was correlated with fish THg at all three spatial scales. Over the observed ranges of δ(34)S, THg concentrations in fish increased by up to 860% within wetlands, 560% among wetlands, and 291% within specific impounded wetland habitats. In contrast, δ(13)C and δ(15)N were not correlated with THg among wetlands and were only important in low salinity impounded wetlands, possibly reflecting more diverse food webs in this habitat. Together, our results highlight the key roles of sulfur biogeochemistry and ecology in influencing estuarine fish THg, as well as the importance of fish ecology and habitat in modulating the relationships between biogeochemical processes and Hg bioaccumulation.

  2. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals.

    Science.gov (United States)

    Peterson, Sarah H; Ackerman, Joshua T; Costa, Daniel P

    2015-07-07

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200-1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ(13)C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.

  3. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals.

    Science.gov (United States)

    Ukpebor, Emmanuel Ehiabhi; Ukpebor, Justina Ebehirieme; Aigbokhan, Emmanuel; Goji, Idris; Onojeghuo, Alex Okiemute; Okonkwo, Anthony Chinedum

    2010-01-01

    The suitability of two common and ubiquitously distributed and exotic ornamental plant species in Nigeria-Delonix regia and Casuarina equisetifolia as biomonitors and as effective bioaccumulators of atmospheric trace metals (Cd, Pb, Zn and Cu) has been evaluated. Bark and leaf samples from these plant species were collected in June and July 2006 at five locations in Benin City. Four of the sampling sites were in areas of high traffic density and commercial activities, the fifth site is a remote site, selected to act as a control and also to provide background information for the metals. The plant samples were collected and processed using standard procedures and trace metals were determined using atomic absorption spectrometer. The bark of the plants was able to bioaccumulate the trace metals, especially Pb which originates from anthropogenic contributions in the city. The Pb range of 20.00-70.00 microg/g measured for the bark samples of D. regia, exceeded the normal plant Pb concentration of 0.2-20.0 microg/g and most Pb data available in literature. The bark of the plants was observed to accumulate more metals compared to the leave, while D. regia was found to be slightly better than C. equisetifolia in trace metal uptake efficiency. Spatial variations in the distributions of Pb and Zn were significant (p < 0.05), and the continuous use of leaded fuel in Nigeria was identified as the predominant source of Pb in the atmosphere.

  4. Comparative mathematical modelling of a green approach for bioaccumulation of cobalt from wastewater.

    Science.gov (United States)

    Mateos, L M; Villadangos, A F; Santana, L K; Pereira, F J; de la Rubia, A G; Gil, J A; Aller, A J

    2016-12-01

    Cobalt is an essential element, but its wide use in industry generates important environmental and biological problems. The present study explores theoretical and empirical models of a green process for cobalt {Co(2+)} bioaccumulation from aqueous solutions. Two Gram-positive Bacillus subtilis species, strains CECT 4522 and LMM (the latter a former laboratory isolate from wastewater samples, which was phylogenetically characterized for the present work), were selected among others as the best Co(2+) accumulation systems. Mathematical models representing kinetic and steady-state conditions for discrete and large amounts of bacterial biomass were expanded. In this way, it was possible to theoretically calculate the amount of Co(2+) retained on the outer cell wall layer and incorporated inside the cell at any time. Theoretical and empirical hyperbolic-type models were suitable to fit the experimental bioaccumulation data for discrete amounts of bacteria biomass. In addition, kinetic relationships between the amount of Co(2+) accumulated and the time before (or after) reaching steady state were established for large amounts of bacterial biomass. Other kinetic approaches were also satisfactorily tested. The two Gram-positive bacteria assayed are promising agents for developing heavy metal removal systems from industrial waste.

  5. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina, E-mail: sabrina.barillet@free.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Palluel, Olivier, E-mail: olivier.palluel@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Porcher, Jean-Marc, E-mail: jean-marc.porcher@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Devaux, Alain, E-mail: alain.devaux@entpe.f [Universite de Lyon, INRA, EFPA-SA, Environmental Science Laboratory (LSE), ENTPE, 69518 Vaulx en Velin cedex (France)

    2011-02-15

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 {mu}g/L. Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. DNA damage is induced in red blood cells after 20 d of exposure to 500 {mu}g DU/L. The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  6. Lichens and moss as bioindicators and bioaccumulators in air pollution monitoring.

    Science.gov (United States)

    Palmieri, F; Neri, R; Benco, C; Serracca, L

    1997-01-01

    In this study, we review research conducted in the La Spezia district during 1989, 1992, and 1994, using lichens and moss as indicators of air pollution. SO2 pollution was examined by means of an Index of Atmospheric Purity (IAP) based on the frequency of epiphytic lichen within a sampling grid. Metal deposits were estimated using the lichen Parmelia caperata and the moss Hypnum cupressiforme as bioaccumulators. IAP maps show progressive air quality improvement from 1989 to 1994. This trend correlates to a decrease in SO2 emissions during recent years that is attributed to the use of methane for residential heating and the closing of a coal-fired power plant. Metal contamination maps show that the most polluted area is now in the southeastern part of the gulf. The pattern of pollution coincides with the location of the chief pollution sources in the area. From 1989 to 1994, the metal concentrations in lichens decreased, but metal deposits in the southeastern area were cause for concern. High concentrations of lead in the area are related to emissions from a waste incinerator and a plant that produces lead oxide. Epidemiological investigations reveal that the area population has the highest levels of lead in their blood. The use of bioindicators and bioaccumulators permits long-term and large-scale monitoring of environmental pollutant levels in full agreement with traditional methods.

  7. Bioaccumulation of CdTe quantum dots in a freshwater alga Ochromonas danica: a kinetics study.

    Science.gov (United States)

    Wang, Ying; Miao, Ai-Jun; Luo, Jun; Wei, Zhong-Bo; Zhu, Jun-Jie; Yang, Liu-Yan

    2013-09-17

    The bioaccumulation kinetics of thioglycolic acid stabilized CdTe quantum dots (TGA-CdTe-QDs) in a freshwater alga Ochromonas danica was comprehensively investigated. Their photoluminescence (PL) was determined by flow cytometry. Its cellular intensity increased hyperbolically with exposure time suggesting real internalization of TGA-CdTe-QDs. This hypothesis was evidenced by the nanoparticle uptake experiment with heat-killed or cold-treated cells and by their localization in the vacuoles. TGA-CdTe-QD accumulation could further be well simulated by a biokinetic model used previously for conventional pollutants. Moreover, macropinocytosis was the main route for their internalization. As limited by their diffusion from the bulk medium to the cell surface, TGA-CdTe-QD uptake rate increased proportionally with their ambient concentration. Quick elimination in the PL of cellular TGA-CdTe-QDs was also observed. Such diminishment resulted mainly from their surface modification by vacuolar biomolecules, considering that these nanoparticles remained mostly undissolved and their expulsion out of the cells was slow. Despite the significant uptake of TGA-CdTe-QDs, they had no direct acute effects on O. danica. Overall, the above research shed new light on nanoparticle bioaccumulation study and would further improve our understanding about their environmental behavior, effects and fate.

  8. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    Science.gov (United States)

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  9. Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain

    DEFF Research Database (Denmark)

    Kalman, Judit; Paul, Kai B.; Khan, Farhan R.

    2015-01-01

    This study investigated the bioaccumulation dynamics of silver nanoparticles (Ag NPs) with different coatings (polyvinyl pyrrolidone, polyethylene glycol and citrate), in comparison with aqueous Ag (added as AgNO3), in a simplified freshwater food chain comprising the green alga Chlorella vulgaris...

  10. Kinetics of uranium uptake in soft water and the effect of body size, bioaccumulation and toxicity to Hyalella azteca

    Energy Technology Data Exchange (ETDEWEB)

    Alves, L.C. [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Aquatic Ecosystems Protection Research Division, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Borgmann, U. [Aquatic Ecosystems Protection Research Division, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Dixon, D.G., E-mail: dgdixon@uwaterloo.c [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2009-08-15

    The kinetics of uptake and the effect of body size on uranium (U) bioaccumulation and toxicity to Hyalella azteca exposed to water-only U concentrations in soft water were evaluated. The effect of body size on U bioaccumulation was significant with a slope of -0.35 between log body concentration and log body mass. A saturation kinetic model was satisfactory to describe the uptake rate, elimination rate and the effect of gut-clearance on size-corrected U bioaccumulation in H. azteca. The one-week lethal water concentrations causing 50% mortality for juvenile and adult H. azteca were 1100 and 4000 nmol U/L, respectively. The one-week lethal body concentration causing 50% mortality was 140 nmol U/g for juvenile H. azteca and 220 nmol U/g for adult H. azteca. One-week bioaccumulation studies that properly account for body-size and gut-clearance times can provide valuable data on U bioavailability and toxicity in the environment. - Uranium accumulation by Hyalella azteca approaches steady state after one week but is strongly dependent on body size.

  11. Kinetics of uranium uptake in soft water and the effect of body size, bioaccumulation and toxicity to Hyalella azteca.

    Science.gov (United States)

    Alves, L C; Borgmann, U; Dixon, D G

    2009-01-01

    The kinetics of uptake and the effect of body size on uranium (U) bioaccumulation and toxicity to Hyalella azteca exposed to water-only U concentrations in soft water were evaluated. The effect of body size on U bioaccumulation was significant with a slope of -0.35 between log body concentration and log body mass. A saturation kinetic model was satisfactory to describe the uptake rate, elimination rate and the effect of gut-clearance on size-corrected U bioaccumulation in H. azteca. The one-week lethal water concentrations causing 50% mortality for juvenile and adult H. azteca were 1100 and 4000 nmol U/L, respectively. The one-week lethal body concentration causing 50% mortality was 140 nmol U/g for juvenile H. azteca and 220 nmol U/g for adult H. azteca. One-week bioaccumulation studies that properly account for body-size and gut-clearance times can provide valuable data on U bioavailability and toxicity in the environment.

  12. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Directory of Open Access Journals (Sweden)

    Mingxue Liu

    2014-06-01

    Full Text Available Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions.

  13. Bioavailability of PAHs in aluminum smelter affected sediments: evaluation through assessment of pore water concentrations and in vivo bioaccumulation.

    Science.gov (United States)

    Ruus, Anders; Bøyum, Olav; Grung, Merete; Næs, Kristoffer

    2010-12-15

    Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) from coal tar pitch polluted sediments was predicted by (1) a generic approach based on organic carbon-water partitioning and Gibbs linear free energy relationship (between K(OW) and K(OC)), and (2) measurements of freely dissolved concentrations of PAHs in the sediment pore water, using passive samplers and solid phase extraction. Results from these predictions were compared with those from in vivo bioaccumulation experiments using Nereis diversicolor (Polychaeta), Hinia reticulata (Gastropoda), and Nuculoma tenuis (Bivalvia). Measured sediment/water partition coefficients were higher than predicted by the generic approach. Furthermore, predicted biota-to-sediment accumulation factors (BSAFs) derived from measured pore water concentrations were more in agreement with the bioaccumulation observed for two of the three species. Discrepancies associated with the third species (N. tenuis) were likely a result of particles remaining in the intestine (as shown by microscopic evaluation). These results indicate the importance of conducting site-specific evaluations of pore water concentrations and/or bioaccumulation studies by direct measurements to accurately provide a basis for risk assessment and remediation plans. The importance of knowledge regarding specific characteristics of model organisms is emphasized.

  14. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Frouke, E-mail: frouke.vermeulen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Brink, Nico W., E-mail: nico.vandenbrink@wur.n [Alterra, Wageningen UR, Box 47, NL6700AA Wageningen (Netherlands); D' Have, Helga [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Mubiana, Valentine K., E-mail: kayawe.mubiana@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, Ronny, E-mail: ronny.blust@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: lieven.bervoets@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); De Coen, Wim, E-mail: wim.decoen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2009-11-15

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  15. Toxicity and bioaccumulation of copper in Limnodrilus hoffmeisteri under different pH values: Impacts of perfluorooctane sulfonate.

    Science.gov (United States)

    Meng, Lingjun; Yang, Shaogui; Feng, Mingbao; Qu, Ruijuan; Li, Yong; Liu, Jiaoqin; Wang, Zunyao; Sun, Cheng

    2016-03-15

    Aquatic oligochaete Limnodrilus hoffmeisteri (L. hoffmeisteri) has been commonly used as a lethal and/or sub-lethal toxicological model organism in ecological risk assessments in contaminated water environments. In this study, experiments were conducted to investigate the potential toxic effects of copper (Cu(II)) with or without perfluorooctane sulfonate (PFOS) under different pH values (6.0, 7.0 and 8.0) on LC50, bioaccumulation, and oxidative stress biomarkers in L. hoffmeisteri after 3 and 7 days. The LC50 values of Cu(II) decreased with the increasing pH and the addition of PFOS. After each exposure, increasing bioaccumulation of Cu(II) in L. hoffmeisteri was observed in the combined exposure treatments, whereas the bioaccumulation of PFOS decreased. Moreover, the activity of superoxide dismutase, the level of glutathione, and the content of malondialdehyde were significantly altered after these exposures, possibly indicating that the bioaccumulation of Cu(II) and PFOS caused adverse effects on antioxidant defenses of L. hoffmeisteri. The integrated biomarker response index, indicates that the combined effect was proposed as synergism, which is coincided with the results of toxic unit. Moreover, this work showed that aquatic environment may become more livable when water conditions changed from acidic to near-neutral or alkaline.

  16. Capping in situ with activated carbon in Trondheim harbor (Norway) reduces bioaccumulation of PCBs and PAHs in marine sediment fauna.

    Science.gov (United States)

    Samuelsson, Göran S; Hedman, Jenny E; Elmquist Kruså, Marie; Gunnarsson, Jonas S; Cornelissen, Gerard

    2015-08-01

    Three types of thin-layer caps with activated carbon (AC) were tested in situ in experimental plots (10 × 10 m) in Trondheim harbor, Norway, using AC + clay, AC-only or AC + sand. One year after capping, intact sediment cores were collected from the amended plots for ex situ surveys of the capping efficiency in reducing the PAH and PCB aqueous concentrations and bioaccumulation by the polychaete Hediste diversicolor and the clam Abra nitida. Reduced pore water concentrations were observed in all AC treatments. The capping efficiency was in general AC + clay > AC-only > AC + sand. AC + clay reduced bioaccumulation of PAH and PCB congeners between 40% and 87% in the worms and between 67% and 97% in the clams. Sediment capped with AC-only also led to reduced bioaccumulation of PCBs, while AC + sand showed no reduction in bioaccumulation. Thus the best thin-layer capping method in this study was AC mixed with clay.

  17. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America

    Energy Technology Data Exchange (ETDEWEB)

    Chetelat, John, E-mail: john.chetelat@ec.gc.c [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Amyot, Marc; Garcia, Edenise [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada)

    2011-01-15

    We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes. - Methylmercury levels in dominant invertebrate prey for fish differ between littoral and pelagic habitats within a lake.

  18. Sterilization affects soil organic matter chemistry and bioaccumulation of spiked p,p'-DDE and anthracene by earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Jason W., E-mail: kelsey@muhlenberg.ed [Program in Environmental Science and Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104 (United States); Slizovskiy, Ilya B.; Peters, Richard D.; Melnick, Adam M. [Program in Environmental Science and Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104 (United States)

    2010-06-15

    Laboratory experiments were conducted to assess the effects of soil sterilization on the bioavailability of spiked p,p'-DDE and anthracene to the earthworms Eisenia fetida and Lumbricus terrestris. Physical and chemical changes to soil organic matter (SOM) induced by sterilization were also studied. Uptake of both compounds added after soil was autoclaved or gamma irradiated increased for E. fetida. Sterilization had no effect on bioaccumulation of p,p'-DDE by L. terrestris, and anthracene uptake increased only in gamma-irradiated soils. Analyses by FT-IR and DSC indicate sterilization alters SOM chemistry and may reduce pollutant sorption. Chemical changes to SOM were tentatively linked to changes in bioaccumulation, although the effects were compound and species specific. Artifacts produced by sterilization could lead to inaccurate risk assessments of contaminated sites if assumptions derived from studies carried out in sterilized soil are used. Ultimately, knowledge of SOM chemistry could aid predictions of bioaccumulation of organic pollutants. - Soil sterilization affects soil organic matter chemistry and pollutant bioaccumulation.

  19. Combined effects of sugarcane bagasse extract and synthetic dyes on the growth and bioaccumulation properties of Pichia fermentans MTCC 189.

    Science.gov (United States)

    Das, Devlina; Charumathi, D; Das, Nilanjana

    2010-11-15

    Bioaccumulation of synthetic dyes viz. Acid Blue 93, Direct Red 28 and Basic Violet 3 by growing cells of yeast, Pichia fermentans MTCC 189 was investigated in growth media prepared from sugarcane bagasse extract. The maximum dye bioaccumulation was determined at pH 5.0 for all the dyes tested. Two kinetic models viz. Noncompetitive and Uncompetitive models were tested in order to determine the toxic effects of dyes on the specific growth rate of P. fermentans MTCC 189. Basic Violet 3 was found to be more toxic than the other two dyes. The combined effects of sugarcane bagasse extract and initial Basic Violet 3 dye concentrations on the specific growth rate and dye bioaccumulation efficiency of P. fermentans MTCC 189 was investigated and optimized using Response Surface Methodology (RSM). A 2(2) full factorial central composite design was successfully used for analysis of results. The optimum combination predicted via RSM confirmed that P. fermentans MTCC 189 was capable of bioaccumulating Basic Violet 3 dye upto 69.8% in the medium containing 10 mg/L of dye and 24 g/L sugar extracted from sugarcane bagasse.

  20. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative poolutants using disposable solid-phase microextraction fibers

    NARCIS (Netherlands)

    Mayer, P.; Vaes, W.H.J.; Wijnker, F.; Legierse, K.C.H.M.; Kraaij, R.H.; Tolls, J.; Hermens, J.L.M.

    2000-01-01

    Polymer coated glass fibers were applied as disposable samplers to measure dissolved concentrations of persistent and bioaccumulative pollutants (PBPs) in sediment porewater. The method is called matrix solid-phase microextraction (matrix-SPME), because it utilizes the entire sediment matrix as a re

  1. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China.

    Science.gov (United States)

    Tao, Yuqiang; Xue, Bin; Lei, Guoliang; Liu, Fei; Wang, Zhen

    2017-04-01

    To date effects of climate change on bioaccumulation and biomagnification of chemical pollutants in planktonic food webs have rarely been studied. Recruitments of plankton have shifted earlier due to global warming. Global warming and precipitation patterns are projected to shift seasonally. Whether and how the shifts in plankton phenology induced by climate change will impact bioaccumulation and biomagnification of chemical pollutants, and how they will respond to climate change are largely unknown. Here, we combine data analysis of the past seven decades, high temporal resolution monitoring and model development to test this hypothesis with nine polycyclic aromatic hydrocarbons (PAHs) in the planktonic food web of a subtropical shallow eutrophic lake in China. We find biphasic correlations between both bioconcentration factors and bioaccumulation factors of the PAHs and the mean temperature, which depend on the recruitment temperatures of cyanobacteria, and copepods and cladocerans. The positive correlations between bioconcentration factors, bioaccumulation factors and the mean temperature will be observed less than approximately 13-18 days by 2050-2060 due to the shifts in plankton phenology. The PAHs and their bioaccumulation and biomagnification will respond seasonally and differently to climate change. Bioaccumulation of most of the PAHs will decrease with global warming, with higher decreasing rates appearing in winter and spring. Biomagnification of most of the PAHs from phytoplankton to zooplankton will increase with global warming, with higher increasing rates appearing in winter and spring. Our study provides novel insights into bioaccumulation and biomagnification of chemical pollutants in eutrophic waters under climate change scenarios.

  2. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    Science.gov (United States)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  3. A dynamic multimedia environmental and bioaccumulation model for brominated flame retardants in Lake Huron and Lake Erie, USA.

    Science.gov (United States)

    Lim, Dong-Hee; Lastoskie, Christian M

    2011-05-01

    Polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) may pose a worldwide pollution problem because of their persistence, long-range transport capability, and predisposition to bioaccumulate. The ubiquitous presence of PBBs and PBDEs has heightened interest in determination of their fate. We report results for a fugacity-based dynamic environmental and bioaccumulation model of the fate of hexabromobiphenyl (hexaBB) discharged into the Saginaw Bay region of Lake Huron, USA. We calculated transient fugacity profiles of hexaBB in Lake Huron and Lake Erie water and sediment during the 1970s, 1980s, and 1990s. The hexaBB concentrations in the environmental compartments were used as inputs for a dynamic bioaccumulation model of Lake Huron and Lake Erie aquatic biota. The model results indicate that the sediment compartments of Lakes Huron and Erie serve as reservoirs for the accumulation and slow transfer of hexaBB to the food web constituents of these lakes. We present bioaccumulation factors (BAFs) and compare the predicted hexaBB concentrations in lake trout from the bioaccumulation model with measurements during the period 1980 to 2000. An uncertainty analysis for this model suggests that errors associated with input parameter uncertainty can be reduced by refining estimates of the sediment degradation half-life of hexaBB. The corroborated PBB model has carryover application for modeling the fate of polybrominated diphenyl ether (PBDE) contaminants in the Great Lakes. By fitting model outputs to field measurement data using the transformed least square fit method, we report estimations of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) emission rates into the Lake Huron and Lake Erie watershed areas.

  4. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Sarah H., E-mail: sarahpeterson23@gmail.com [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Peterson, Michael G. [Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (United States); Debier, Cathy [Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve (Belgium); Covaci, Adrian [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Dirtu, Alin C. [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi (Romania); Malarvannan, Govindan [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Crocker, Daniel E. [Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928 (United States); Schwarz, Lisa K. [Institute of Marine Sciences, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Costa, Daniel P. [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States)

    2015-11-15

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in {sup 13}C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in

  5. Bioaccumulation of heavy metals by bivalves from lim fjord (North Adriatic Sea)

    Energy Technology Data Exchange (ETDEWEB)

    Martincic, D.; Nurnberg, H.W.; Stoeppler, M.; Branica, M.

    1984-08-01

    The accumulation of trace metals (Zn, Cd, Pb, and Cu) by two bivalves (Mytilus galloprovincialis and Ostrea edulis) growing at the same station and therefore under the same physicochemical conditions was studied. The oysters were more effective bioaccumulators for zinc, cadmium, lead and copper than the mussels. Oysters accumulate about 10-fold higher quantities of zinc than mussels, 16-fold higher for copper, 3-fold higher cadmium, and 2-fold higher lead concentrations. The observed differences in the copper and zinc distribution within the investigated organs can be attributed to some recently recognized blood cells in the oyster which are rich in zinc and copper. The tissue copper and zinc distribution in this animal depends on where these cells are at the time of sampling. The mussel contains no such cells. 53 references, 7 figures, 1 table.

  6. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: uptake, bioaccumulation and ecotoxicology.

    Science.gov (United States)

    Silva, Liliana J G; Pereira, André M P T; Meisel, Leonor M; Lino, Celeste M; Pena, Angelina

    2015-02-01

    Selective serotonin re-uptake inhibitors (SSRIs) antidepressants are amongst the most prescribed pharmaceutical active substances throughout the world. Their presence, already described in different environmental compartments such as wastewaters, surface, ground and drinking waters, and sediments, and their remarkable effects on non-target organisms justify the growing concern about these emerging environmental pollutants. A comprehensive review of the literature data with focus on their footprint in the aquatic biota, namely their uptake, bioaccumulation and both acute and chronic ecotoxicology is presented. Long-term multigenerational exposure studies, at environmental relevant concentrations and in mixtures of related compounds, such as oestrogenic endocrine disruptors, continue to be sparse and are imperative to better know their environmental impact.

  7. PILLARED ZEOLITES AMENDMENTS INFLUENCE FROM POLLUTED SOIL ON HEAVY METALS BIOACCUMULATION IN TOMATOES

    Directory of Open Access Journals (Sweden)

    SMARANDA MASU

    2013-12-01

    Full Text Available Due to anthropic activities, the presence of metals in polluted soils has effects on plants development and metals bioaccumulation into trophic levels. In this paper, were followed experiments regarding the tomatoes development into polluted soils with 43.4 – 58.4 mg Cd/kg d.s. and 500- 633 mg Pb/kg d.s. Nickel, zinc and copper content in soils are in the range of diffuse pollution values. Comparatively, an experiment was realized with polluted soils and amended with pillared zeolites. Pillared zeolites change metals distribution in soil fractions and their solubility. Tomato plants grew onto polluted soils, but did not present fruits. Tomatoes from polluted and amended soils presented fruits and metals in tissues (Zn  Cu  Ni. Zinc concentration was five times greater then Ni. Fruits do not accumulate cadmium and lead.

  8. BIO-ACCUMULATION AND RELEASE OF MERCURY IN VIGNA MUNGO (L. HEPPER SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Hussain. K

    2010-09-01

    Full Text Available Effect of mercury on the seedling of Vigna mungo seedlings was studied by culturing the seedlings in Hoagland medium artificially contaminated with 5 and 10mM Mercuric Chloride. Histochemical localization of the mercury in shoot and root tissues was done by staining with dithizone and quantitative analyses of mercury content accumulated in root, stem and leaf tissues were done using mercury analyser. Localization of mercury was observed as coloured masses in the cells of root and stem. Stem tissues of seedlings showed anatomical modification in the epidermal cells as trichomes. Patterns of bioaccumulation of mercury was root> stem> leaves revealing feeble translocation to the shoot system. A comparison of residual mercury content retained in the growth medium after sample harvesting and quantity accumulated in the plant body reveals that some quantity of mercury is lost presumably through the trichomes developed on the stem and/ or through stomata of the leaves.

  9. Bioaccumulation of 51Cr, 63Ni and 14C in Baltic Sea benthos.

    Science.gov (United States)

    Kumblad, L; Bradshaw, C; Gilek, M

    2005-03-01

    The Baltic Sea is a species-poor, semi-enclosed, brackish sea, whose sediments contain a wide range of contaminants, including sediment-associated metals and radionuclides. In this study, we have examined and compared bioaccumulation kinetics and assimilation efficiencies of sediment-associated (51)Cr, (63)Ni and (14)C in three key benthic invertebrates (the deposit-feeding Monoporeia affinis, the facultative deposit-feeding Macoma baltica, and the omnivorous Halicryptus spinulosus). Our results demonstrate that (i) all radionuclides were accumulated, (ii) the different radionuclides were accumulated to various extents, (iii) small changes in organic carbon concentration can influence the accumulation, and (iv) the degree of accumulation differed only slightly between species. These processes, together with sediment resuspension and bioturbation, may remobilise trace metals from the sediment to the water and to higher trophic levels, and therefore should be taken into account in exposure models and ERAs.

  10. Effect of Artemia franciscana on the removal of nickel by bioaccumulation.

    Science.gov (United States)

    Devi, S Sujatha; Sethu, M; Priya, P Gomathi

    2014-01-01

    The present study evaluates the feasibility of using Artemia franciscana in reducing the Ni concentration of synthetic wastewater by the process of bioaccumulation. Metallothionein protein plays a key role in the uptake of nickel by Artemia. Artemia (Brine shrimp) was exposed to an initial nickel concentration of 40 mg/L. Gradual decrease of nickel was observed from 40 mg/L to 5 mg/L with a removal efficiency of 87.5%. The number of organisms were varied to determine the number for the maximum removal efficiency. Metallothionein protein in Artemia was estimated by the silver saturation method. The physical parameters such as pH were maintained in an alkaline condition of 9-10, temperature was maintained at room temperature and salinity at 30-35‰. These were found to be the optimal conditions for the survival and reduction of nickel by Artemia.

  11. TCDD/TCDF levels in bioaccumulation test tissues and their corresponding sediments

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, M.E. [Battelle Memorial Inst., Columbus, OH (United States); Barrows, E.S. [Battelle/Marine Sciences Lab., Sequim, WA (United States); Rosman, L.B. [Army Corps of Engineers, New York, NY (United States)

    1995-12-31

    Sediments from eight highly urbanized, industrial areas were analyzed for 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8 tetrachlorodibenzofuran (TCDD/TCDF) contamination. The polychaete Nereis virens was exposed to the contaminated sediment for 28 days and then analyzed for TCDD/TCDF to evaluate the potential bioaccumulation of these contaminants, Levels of TCDD/TCDF accumulated in N. virens in general increased as the amount of sediment contamination increased and were significantly greater than levels in N. virens exposed to uncontaminated sediment. In addition, accumulation factors were calculated based on the levels of TCDD/TCDF in the test organisms and sediments, the organism lipid content, and the sediment total organic carbon content to predict the maximum amount of TCDD/TCDF likely to be accumulated from the sediments.

  12. Bioaccumulation of heavy metals by Phragmites australis cultivated in synthesized substrates

    Institute of Scientific and Technical Information of China (English)

    WANG He; JIA Yongfeng

    2009-01-01

    Accumulation of heavy metals from various oxides with adsorbed cadmium by wetland plant Phragmites australis was studied to evaluate the fate of heavy metals in the sediment of constructed wetlands.Hoagland solution Was used as nutrition supply,and single metal oxide with adsorbed cadmium was applied as contaminant to study the accumulation characteristics of cadmium and the substrate metals by P. australis.After 45-d treatment,the bioaccumulation degree in root followed the order:Al(OH)3>Al2O3>Fe3O4>MnO2 >FeOOH.Heavy metals absorbed by P. australis were largely immobilized by the roots with little translocation to aboveground Darts.

  13. Lead bioaccumulation and toxicity in tissues of economically fish species from river and marine water.

    Science.gov (United States)

    Askary Sary, Abolfazl; Mohammadi, Maryam

    2012-07-01

    Bioaccumulation of lead was determined in muscle and liver of Barbus xanthopterus, Liza abu, Barbus grypus, Acanthopagrus latus, Platycephalus indicus, Otolithes ruber exposed to lead contaminated river and marine in Khouzestan. Significant variations in metal values were evaluated using student's t test at p fish, liver was polluted in comparison with muscle and high level was in B. xanthopterus (2.80 mg kg(-1) wet weight) except for B. grypus in Karkhe River (1.73 mg kg(-1)wet weight). In marine fish, muscle was contaminated than liver and high level was in O. ruber (47.18 mg kg(-1)wet weight) except for O. ruber in Mahshahr seaport (17.85 mg kg(-1) wet weight).

  14. Toxicant Exposure and Bioaccumulation: A Common and Potentially Reversible Cause of Cognitive Dysfunction and Dementia

    Directory of Open Access Journals (Sweden)

    Stephen J. Genuis

    2015-01-01

    Full Text Available Juxtaposed alongside the ongoing rise in the incidence and prevalence of dementia, is the surge of recent research confirming widespread exposure and bioaccumulation of chemical toxicants. Evidence from sources such as the Centers for Disease Control reveals that most people have accrued varying degrees of assorted toxic pollutants including heavy metals, flame retardants, and pesticide residues within their bodies. It has been well established that many of these toxicants have neurodegenerative as well as neurodevelopmental impact as a result of various pathophysiologic mechanisms including neuronal mitochondrial toxicity and disruption of neurotransmitter regulation. Elimination of stockpiled toxicants from the body may diminish adverse toxicant impact on human biology and allow restoration of normal physiological function. Incorporating a review of medical literature on toxicant exposure and dementia with a case history of a lead-exposed individual diagnosed with dementia, this paper will discuss a much overlooked and potentially widespread cause of declining brain function and dementia.

  15. Bioaccumulations of heavy metals in Ipomoea aquatica grown in bottom ash recycling wastewater.

    Science.gov (United States)

    Milla, Odette Varela; Rivera, Eva B; Huang, Wu-Jang

    2014-05-01

    A plant bioassay using hydroponically grown Ipomoea aquatica (water spinach) was applied to assess the phytotoxicity of untreated and treated wastewaters from a municipal solid waste incineration bottom ash recycling facility. The 50%-diluted, untreated wastewater exhibited acute toxicity (plants died within 24 hours). Highly diluted doses (3 and 6%) of both wastewater types displayed no significant differences when compared with the control. Treating the wastewater through sequential physical filtration and chemical precipitation processes decreased not only the dissolved solids content but also the pH and salt content. In addition, significant accumulations of Sr, Cr, and Sn were observed in the hydroponically grown I. aquatica plant tissues; in particular, the bioaccumulation of Sr in the leaves and roots was unexpectedly high.

  16. Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation.

    Science.gov (United States)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Han, Yin-Lung; Chen, Bor-Yann; Chang, Jo-Shu

    2014-05-01

    Generation of geothermal energy is associated with a significant amount of geothermal fluids, which may be abundant in high-value metals, such as lithium, cesium, rubidium, and other precious and rare earth metals. The recovery of high-value metals from geothermal fluids would thus have both economic and environmental benefits. The conventional technologies applied to achieve this are mostly physicochemical, which may be energy intensive, pose the risk of secondary pollution whilst being inefficient in recovering metals from dilute solutions. Biological methods, based on biosorption or bioaccumulation, have recently emerged as alternative approaches, as they are more environmentally friendly, cost effective, and suitable for treating wastewater with dilute metal contents. This article provides a comprehensive review of the related biological technologies used to recover the high-value metals present in geothermal fluids as well as critical discussion on the key issues that are often used to evaluate the effectiveness of those methods.

  17. Assessment on Biocides Bioaccumulation in Mullet Liza klunzingeri in Kuwaiti Waters, off the Arabian Gulf

    Directory of Open Access Journals (Sweden)

    A. H. BU-Olayan

    2006-01-01

    Full Text Available Biocides, such as formaldehyde (HCHO, sodium hypochlorite (NaOCl and glutaraldehyde (C5H8O2 that are commonly used in thermal, desalination and power plants and industries were tested on the commercially important mullet fish, Liza klunzingeri to determine the environmental contamination in the stressed ecosystem of Kuwait Bay sites. Multi-factor Probit analysis toxicity tests (96 h on L. klunzingeri showed the lowest observed effective concentration (LOEC and median lethal concentration (LC50 with NaOCl (0.019 and 0.027 µg Lˉ1 followed by HCHO (0.058 and 0.157 µg Lˉ1 and C5H8O2 (0.056 and 0.072 µg Lˉ1. Site-wise analysis in the absence of feed showed high biocides toxicity in L. klunzingeri reared in seawater from Site I when compared to Sites II-III. Experiments were conducted (2-9 months by rearing fish separately in seawater collected from three Kuwait Bay sites to test the bio-accumulated toxicity levels at LOEC of biocides fed fish using Feed Conversion Ratio (FCR calculation. The lowest FCR was observed in fish fed with biocides in the sequence of NaOCl (0.40-1.1 followed by C5H8O2 (0.91-1.2 and HCHO (0.92-1.3 as well as with fish reared in seawater from Site I followed by Site II and Site III. High FCR was recorded in control (1.2-1.6 without the addition of biocides. These results exemplify the use of L. klunzingeri as an indicator species and may characterize a better quantification of biocides bioaccumulation using FCR calculation in mullet fish.

  18. Effects of hypolimnetic oxygen addition on mercury bioaccumulation in Twin Lakes, Washington, USA.

    Science.gov (United States)

    Beutel, Marc; Dent, Stephen; Reed, Brandon; Marshall, Piper; Gebremariam, Seyoum; Moore, Barry; Cross, Benjamin; Gantzer, Paul; Shallenberger, Ed

    2014-10-15

    Twin Lakes, located on the Confederated Tribes of the Colville Indian Reservation in eastern Washington, USA, include North Twin Lake (NT) and South Twin Lake (ST). The mesotrophic, dimictic lakes are important recreational fishing sites for both warm-water bass and cold-water trout. To improve summertime cold-water habitat for trout in NT, dissolved oxygen (DO) addition to the hypolimnion, using liquid oxygen as an oxygen gas source, started in 2009. This study assessed mercury (Hg) in the water column, zooplankton and fish, and related water quality parameters, in Twin Lakes from 2009 to 2012. Because methylmercury (MeHg) buildup in lake bottom water is commonly associated with hypolimnetic anoxia, hypolimnetic oxygenation was hypothesized to reduce Hg in bottom waters and biota in NT relative to ST. Oxygen addition led to significantly higher DO (mean hypolimnetic DO: 2-8 mg/L versus mean hypolimnetic MeHg: 0.05-0.2 ng/L versus 0.15-0.4 ng/L) in North Twin. In North Twin, years with higher DO (2009 and 2011) exhibited lower MeHg in bottom waters and lower total Hg in zooplankton, inferring a positive linkage between oxygen addition and lower bioaccumulation. However, when comparing between the two lakes, Hg levels were significantly higher in zooplankton (total Hg range: 100-200 versus 50-100 μg/kg dry weight) and trout (spring 2010 stocking cohort of eastern brook trout mean total Hg: 74.9 versus 49.9 μg/kg wet weight) in NT relative to ST. Lower Hg bioaccumulation in ST compared to NT may be related to bloom dilution in chlorophyll-rich bottom waters, a vertical disconnect between the location of zooplankton and MeHg in the water column, and high binding affinity between sulfide and MeHg in bottom waters.

  19. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    Energy Technology Data Exchange (ETDEWEB)

    Contardo-Jara, Valeska, E-mail: contardo@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Lorenz, Claudia, E-mail: claudia.lorenz@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Pflugmacher, Stephan, E-mail: pflugmacher@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Nuetzmann, Gunnar, E-mail: nuetzmann@igb-berlin.d [Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Kloas, Werner, E-mail: werner.kloas@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Wiegand, Claudia, E-mail: wiegand@biology.sdu.d [University of Southern Denmark, Institute of Biology, Campusvej 55, 5230 Odense M (Denmark)

    2011-01-15

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the non-target organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 {mu}g L{sup -1}) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 {mu}g L{sup -1}) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage. - Fundamental cell processes as biotransformation, elimination and prevention from oxidative stress are influenced by exposure of the contraceptive levonorgestrel in non-target organisms. - Research highlights: Bioaccumulation of levonorgestrel in mussels is higher than expected based on its lipophilicity. Exposure to levonorgestrel causes oxidative stress and enhanced elimination processes. Glutathione S-transferase (pi class) mRNA induction after one day hint on phase II biotransformation. mRNA induction of heat shock protein 70 after one week prove protein damage.

  20. Effects of nitrogen and phosphorus concentrations on the bioaccumulation of polybrominated diphenyl ethers by Prorocentrum donghaiense

    Institute of Scientific and Technical Information of China (English)

    Chao Chai; Xundong Yin; Wei Ge; Jinye Wang

    2013-01-01

    The growth,cellular total lipids,bioaccumulation amount,and bioaccumulation factors (BAFs) of 2,4,4'-tribromodiphenyl ether (BDE28),2,2',4,4'-tetrabromodiphenyl ether (BDE47),and 2,2',4,4',5-pentabromodiphenyl ether (BDE99) in a semi-continuous culture of Prorocentrum donghaiense were studied in relation to nitrate (0,128,and 512 μmol/L) and phosphate (0,8,and 32 μmol/L)concentrations.The BDE28,BDE47,and BDE99 content per cell under 0 μmol N/L were 3.77 × 10-6,3.95 × 10-6,and 4.32 ×10-6 ng/cell,respectively,which were significantly higher than those under 128 and 512 μmol N/L.A nearly 5-fold increase in polybrominated diphenyl ether (PBDE) content per algal cell was found between 0 and 8 μmol P/L and between 8 and 32 μmol P/L.With increasing N and P concentrations,the PBDE content per volume of algal culture and the accumulation percentage of available PBDEs declined slightly.The BAFs for the PBDEs based on lipids showed that the logBAFlip under 0 μmol N/L was higher than those under 128 and 512 μmol N/L.The logBAFlip under 0 μmol P/L was higher than that under 8 μmol P/L but lower than that under 32 μmol P/L.Correlation analysis indicated a significant negative correlation between nutrient concentration and cellular total lipids,as well as the PBDE content per cell.The results indicate that different N and P concentrations change the total lipids content of P.donghaiense,thereby resulting in varying PBDE accumulation.

  1. Bioaccumulation and retention of lead in the mussel Mytilus galloprovincialis following uptake from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Boisson, Florence; Cotret, Olivier; Fowler, Scott W. [International Atomic Energy Agency, Marine Environment Laboratory, 4 Quai Antoine Ier, BP 800, MC-98012 Monaco (France)

    1998-10-15

    Bioaccumulation of lead in the mussel Mytilus galloprovincialis from {sup 210}Pb-labeled bulk seawater (dissolved and particulate pathways combined) was examined over 21 days. The lead bioaccumulation factor (BAF) at equilibrium was estimated to be 211{+-}10 ml g{sup -1}. This value was two orders of magnitude lower than BAFs reported in the literature for other trace metals in this bivalve indicating that lead is not efficiently accumulated by mussels from bulk seawater. The resultant lead distribution in mussels was 49{+-}10% in soft tissues and 46{+-}16% in the shell suggesting similar uptake rates (Bq day{sup -1}) in both compartments throughout the exposure. Total elimination for lead in mussels was adequately described by a short-term compartment with a biological half-life for loss of 1.4{+-}0.3 days and a long-term compartment which released lead only very slowly (T{sub b1/2}=2.5{+-}0.7 months). No difference was noted for lead elimination rates in shell and in soft parts. When experimentally exposed to lead under conditions representative of natural environmental lead levels in water, including both that in the dissolved phase and in the food, the shell compartment was shown to contain the major fraction of the total lead accumulated by mussels. Therefore mussels may be considered as good bioindicators of lead contamination accumulated from the dissolved rather than from the particulate source. Furthermore, the relatively slow uptake and the long depuration half-life of lead will limit the ability of mussels to accurately record short-term variations in lead concentrations in the surrounding waters, a fact that should be taken into consideration in order to define the appropriate sampling frequency for mussels used in biomonitoring programs involving lead

  2. Synthesizing bioaccumulation data from the German metals in mosses surveys and relating them to ecoregions.

    Science.gov (United States)

    Schroeder, Winfried; Pesch, Roland

    2007-03-15

    The European Heavy Metals in Mosses Surveys measure and map environmental concentrations of metals at more than 7000 sites in Europe. In Germany, moss samples were taken at 592 sites in 1990, at 1026 sites in 1995, and at 1028 sites in 2000, where up to 40 metals were measured each time. This article is about how to calculate multi-metal indices from the site- and metal-specific monitoring data and how to link them with the natural regions (ecoregions) of Germany. The ecoregions were calculated with surface data on natural vegetation, elevation, soil texture and climate by means of Classification and Regression Trees (CART). The ecoregions were mapped by GIS and superimposed on a map of multi-metal bioaccumulation indices calculated by means of geostatistics and percentile statistics from the monitoring data. These indices integrate the concentrations of 8 metals measured in 1990, 1995, and 2000 or 12 metals from the 1995 and 2000 surveys, respectively, and the ecoregionalisation enables their geostatistical estimates to be grouped into 21 ecological land categories. This two-step aggregation revealed that, from 1990 to 2000, the multi-metal metal accumulation declined up to 80%, varying with the ecoregions. Based on the multi-metal accumulation index hot spots, the metal accumulation was mapped, ecoregionalised, and suggested for further ecotoxicological assessment. Thus, the approach helps to assess the metal bioaccumulation within ecoregions in a comprehensive and holistic manner over time, space, and metals. This data aggregation is of importance for the environmental reporting in Germany and within the framework of the international environmental information systems. Furthermore, ecoregions may help to plan and optimize monitoring networks. Because monitoring should measure and estimate not only the environmental concentrations of substances but also their impacts on ecoregions, the number of monitoring sites should be proportional to the areas covered by the

  3. Comparison of selenium bioaccumulation in the clams Corbicula fluminea and Potamocorbula amurensis: A bioenergetic modeling approach

    Science.gov (United States)

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.

    2006-01-01

    Selenium uptake from food (assimilation efficiency) and dissolved phase (influx rate) as well as loss kinetics (efflux rate) were compared between two bivalves, Corbicula fluminea and Potamocorbula amurensis. The effects of salinity and temperature on these kinetic parameters for both clam species also were evaluated. The Asiatic clam, C. fluminea, more efficiently assimilated Se associated with algae (66-87%) than Se associated with oxic sediments (20-37%). However, no consistent difference was found between Se assimilation efficiencies from both food types (19-60%) for P. amurensis. The temperature and salinity had a minor influence on the Se assimilation from ingested food. However, the effects of temperature and salinity were more evident in the uptake from dissolved sources. The influx rate of Se(IV) increased by threefold with the increase of temperature from 5 to 21??C for C. fluminea. The increase of salinity from 4 to 20 psu decreased the uptake rate constant (ku) of Se in P. amurensis from 0.011 to 0.005 L/g/h, whereas salinity change (0-8 psu) had a negligible effect on the Se influx rate of C. fluminea. The Se influx rate of P. amurensis decreased by half with the 3.5-fold increase in tissue dry weight. The rate constant of loss was greater for P. amurensis (0.029/d at 8 psu) than for C. fluminea (0.014/d at 0 psu and 0.01/d at 8 psu). A bioenergetic model suggests that dietary uptake is the dominant pathway for Se bioaccumulation in the two clams in San Francisco Bay and that interspecies differences in Se bioaccumulation can be explained by differences in food ingestion rates. ?? 2006 SETAC.

  4. Implications of Dynamic Loading and Changing Climate on Mercury Bioaccumulation in a Planktivorous Fish (Orthodon microlepidotus)

    Science.gov (United States)

    Carroll, R. W. H.; Flickinger, A.; Warwick, J. J.; Schumer, R.

    2015-12-01

    A bioenergetic and mercury (Hg) mass balance (BioHg) model is developed for the Sacramento blackfish (Orthodon microlepidotus), a filter feeding cyprinid found in northern California and Nevada. Attention focuses on the Lahontan Reservoir in northern Nevada, which receives a strong temporally varying load of dissolved methylmercury (DMeHg) from the Carson River. Hg loads are the result of contaminated bank erosion during high flows and diffusion from bottom sediments during low flows. Coupling of dynamic reservoir loading with periods of maximum plankton growth and maximum fish consumption rates are required to explain the largest body burdens observed in the planktivore. In contrast, the large body burdens cannot be achieved using average water column concentrations. The United States Bureau of Reclamation has produced future streamflow estimates for 2000-2099 using 112 CMIP3 climate projections and the Variable Infiltration Capacity (VIC) model. These are used to drive a fully dynamic Hg transport model to assess changes in contaminant loading to the reservoir and implications on planktivorous bioaccumulation. Model results suggest the future loads of DMeHg entering the Lahontan Reservoir will decrease most significantly in the spring and summer due to channel width increases and depth decreases in the Carson River which reduce bank erosion over the century. The modeled concentrations of DMeHg in the reservoir are expected to increase during the summer due to a decrease in reservoir volume affecting the concentrations more than the decrease in loads, and the model results show that bioaccumulation levels may increase in the upstream sections of the reservoir while maintaining contamination levels above the federal action limit for human consumption in the lower reservoir.

  5. Inter- and intraspecific variation in mercury bioaccumulation by snakes inhabiting a contaminated river floodplain.

    Science.gov (United States)

    Drewett, David V V; Willson, John D; Cristol, Daniel A; Chin, Stephanie Y; Hopkins, William A

    2013-04-01

    Although mercury (Hg) is a well-studied contaminant, knowledge about Hg accumulation in snakes is limited. The authors evaluated Hg bioaccumulation within and among four snake species (northern watersnakes, Nerodia sipedon; queen snakes, Regina septemvittata; common garter snakes, Thamnophis sirtalis; and rat snakes, Elaphe obsoleta [Pantherophis alleghaniensis]) from a contaminated site on the South River (Waynesboro, VA, USA) and two nearby reference sites. Total Hg (THg) concentrations in northern watersnake tail tissue at the contaminated site ranged from 2.25 to 13.84 mg/kg dry weight (mean: 4.85 ± 0.29), or 11 to 19 times higher than reference sites. Blood THg concentrations (0.03-7.04 mg/kg wet wt; mean: 2.24 ± 0.42) were strongly correlated with tail concentrations and were the highest yet reported in a snake species. Within watersnakes, nitrogen stable isotope values indicated ontogenetic trophic shifts that correlated with THg bioaccumulation, suggesting that diet plays a substantial role in Hg exposure. Female watersnakes had higher mean THg concentrations (5.67 ± 0.46 mg/kg) than males (4.93 ± 0.49 mg/kg), but no significant differences between sexes were observed after correcting for body size. Interspecific comparisons identified differences in THg concentrations among snake species, with more aquatic species (watersnakes and queen snakes) accumulating higher mean concentrations (5.60 ± 0.40 and 4.59 ± 0.38 mg/kg in tail tissue, respectively) than the more terrestrial species, garter snakes and rat snakes (1.28 ± 0.32 and 0.26 ± 0.09 mg/kg, respectively). The results of the present study warrant further investigation of potential adverse effects and will aid in prioritizing conservation efforts.

  6. Mercury accumulation along a contamination gradient and nondestructive indices of bioaccumulation in amphibians.

    Science.gov (United States)

    Bergeron, Christine M; Bodinof, Catherine M; Unrine, Jason M; Hopkins, William A

    2010-04-01

    Mercury (Hg) is an important environmental contaminant due to its global distribution, tendency to bioaccumulate, and toxicity in wildlife. However, Hg has received little attention in amphibians compared to other vertebrates. Amphibians vary widely in life history strategies and feeding ecologies, which could influence Hg exposure and accumulation. To determine whether species and life stage affects Hg bioaccumulation, adults from three species (Plethodon cinereus, Eurycea bislineata, and Bufo americanus) and larvae from the latter two species were collected along a contamination gradient on the South River (VA, USA). Total Hg (THg) concentrations in the contaminated site were 3.5 to 22 times higher than in the reference site. Differences were found in THg concentrations in amphibians that were consistent with their habitat requirements and feeding preferences. In general, adults (3,453 +/- 196 ng/g, dry mass) and larvae (2,479 +/- 171 ng/g) of the most river-associated species, E. bislineata, had the highest THg concentrations, followed by B. americanus tadpoles (2,132 +/- 602 ng/g), whereas adults of the more terrestrial B. americanus (598 +/- 117 ng/g) and P. cinereus (583 +/- 178 ng/g) had the lowest concentrations. In addition, nondestructive sampling techniques were developed. For the salamander species, THg concentrations in tail tissue were strongly correlated (r >or= 0.97) with the remaining carcass. A strong positive correlation (r = 0.92) also existed between blood and whole-body THg concentrations in B. americanus. These results suggest that amphibians and their terrestrial predators may be at risk of Hg exposure in this system and that nondestructive methods may be a viable sampling alternative that reduces impacts to local populations.

  7. Bioaccumulation and Depuration of Copper in the Kidney and Liver of a Freshwater Fish, Capoeta fusca

    Directory of Open Access Journals (Sweden)

    Borhan Mansouri

    2016-07-01

    Full Text Available Background: This study aims to investigate the patterns of bioaccumulation and depuration of copper in the selected kidney and liver of Capoeta fusca. Methods: The fish were collected between September and November 2010 from a qanat in Birjand. They were exposed to two types treatments with copper (0.25 and 0.75 mg/L for a period of 41 days. The fish under study were exposed to the above-mentioned sub-lethal concentrations separately for 14 and 21 days (accumulation period. At the end of this period, the remaining fish were kept in tap water (elimination period for 31 and 41 days. Results: The findings showed that the accumulation of copper in lower and higher sub-lethal concentrations was higher in kidney as the mean accumulation of copper on day 21 was 1.9±0.1 μg/g and 2.93±0.47 μg/g respectively, in 0.25 μg/g and 0.75 μg/g concentrations. On the other hand, the results also showed that the depuration level of copper in the given concentrations was higher in liver than kidney. The bioaccumulation and depuration of copper significantly increased in the kidney and liver of C. fusca (P<0.01. Conclusion: Based on the present work, it is concluded that C. fusca has a potential for the rapid accumulation and depuration of copper in freshwater. Also, the results indicate that the fish C. fusca, as representative fish species in the East of Iran, can be a useful bioindicator organism of water contamination with copper.

  8. Phylogenetic consistencies among chondrichthyan and teleost fishes in their bioaccumulation of multiple trace elements from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Jeffree, Ross A., E-mail: R.Jeffree@iaea.org [IAEA Marine Environment Laboratories, 4, Quai Antoine 1er, MC 98000 (Monaco); Oberhansli, Francois; Teyssie, Jean-Louis [IAEA Marine Environment Laboratories, 4, Quai Antoine 1er, MC 98000 (Monaco)

    2010-07-15

    Multi-tracer experiments determined the accumulation from seawater of selected radioactive trace elements (Mn-54, Co-60, Zn-65, Cs-134, Am-241, Cd-109, Ag-110m, Se-75 and Cr-51) by three teleost and three chondrichthyan fish species to test the hypothesis that these phylogenetic groups have different bioaccumulation characteristics, based on previously established contrasts between the carcharhiniform chondrichthyan Scyliorhinus canicula (dogfish) and the pleuronectiform teleost Psetta maxima (turbot). Discriminant function analysis on whole body: water concentration factors (CFs) separated dogfish and turbot in two independent experiments. Classification functions grouped the perciform teleosts, seabream (Sparus aurata) and seabass (Dicentrarchus labrax), with turbot and grouped the chondrichthyans, undulate ray (Raja undulata; Rajiformes) and spotted torpedo (Torpedo marmorata; Torpediniformes), with dogfish, thus supporting our hypothesis. Hierarchical classificatory, multi-dimensional scaling and similarity analyses based on the CFs for the nine radiotracers, also separated all three teleosts (that aggregated lower in the hierarchy) from the three chondrichthyan species. The three chondrichthyans were also more diverse amongst themselves compared to the three teleosts. Particular trace elements that were more important in separating teleosts and chondrichthyans were Cs-134 that was elevated in teleosts and Zn-65 that was elevated in chondrichthyans, these differences being due to their differential rates of uptake rather than loss. Chondrichthyans were also higher in Cr-51, Co-60, Ag-110m and Am-241, whereas teleosts were higher only in Mn-54. These contrasts in bioaccumulation patterns between teleosts and chondrichthyans are interpreted in the context of both proximate causes of underlying differences in physiology and anatomy, as well as the ultimate cause of their evolutionary divergence over more than 500 million years before present (MyBP). Our results

  9. Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the northeast United States.

    Science.gov (United States)

    Chen, Celia Y; Borsuk, Mark E; Bugge, Deenie M; Hollweg, Terill; Balcom, Prentiss H; Ward, Darren M; Williams, Jason; Mason, Robert P

    2014-01-01

    Methylmercury (MeHg) is a contaminant of global concern that bioaccumulates and bioamagnifies in marine food webs. Lower trophic level fauna are important conduits of MeHg from sediment and water to estuarine and coastal fish harvested for human consumption. However, the sources and pathways of MeHg to these coastal fisheries are poorly known particularly the potential for transfer of MeHg from the sediment to biotic compartments. Across a broad gradient of human land impacts, we analyzed MeHg concentrations in food webs at ten estuarine sites in the Northeast US (from the Hackensack Meadowlands, NJ to the Gulf of Maine). MeHg concentrations in water column particulate material, but not in sediments, were predictive of MeHg concentrations in fish (killifish and Atlantic silversides). Moreover, MeHg concentrations were higher in pelagic fauna than in benthic-feeding fauna suggesting that MeHg delivery to the water column from methylation sites from within or outside of the estuary may be an important driver of MeHg bioaccumulation in estuarine pelagic food webs. In contrast, bulk sediment MeHg concentrations were only predictive of concentrations of MeHg in the infaunal worms. Our results across a broad gradient of sites demonstrate that the pathways of MeHg to lower trophic level estuarine organisms are distinctly different between benthic deposit feeders and forage fish. Thus, even in systems with contaminated sediments, transfer of MeHg into estuarine food webs maybe driven more by the efficiency of processes that determine MeHg input and bioavailability in the water column.

  10. Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the northeast United States.

    Directory of Open Access Journals (Sweden)

    Celia Y Chen

    Full Text Available Methylmercury (MeHg is a contaminant of global concern that bioaccumulates and bioamagnifies in marine food webs. Lower trophic level fauna are important conduits of MeHg from sediment and water to estuarine and coastal fish harvested for human consumption. However, the sources and pathways of MeHg to these coastal fisheries are poorly known particularly the potential for transfer of MeHg from the sediment to biotic compartments. Across a broad gradient of human land impacts, we analyzed MeHg concentrations in food webs at ten estuarine sites in the Northeast US (from the Hackensack Meadowlands, NJ to the Gulf of Maine. MeHg concentrations in water column particulate material, but not in sediments, were predictive of MeHg concentrations in fish (killifish and Atlantic silversides. Moreover, MeHg concentrations were higher in pelagic fauna than in benthic-feeding fauna suggesting that MeHg delivery to the water column from methylation sites from within or outside of the estuary may be an important driver of MeHg bioaccumulation in estuarine pelagic food webs. In contrast, bulk sediment MeHg concentrations were only predictive of concentrations of MeHg in the infaunal worms. Our results across a broad gradient of sites demonstrate that the pathways of MeHg to lower trophic level estuarine organisms are distinctly different between benthic deposit feeders and forage fish. Thus, even in systems with contaminated sediments, transfer of MeHg into estuarine food webs maybe driven more by the efficiency of processes that determine MeHg input and bioavailability in the water column.

  11. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus.

    Science.gov (United States)

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are developing growth and bioaccumulation studies that contrib...

  12. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus-presentation

    Science.gov (United States)

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are conducting growth and bioaccumulation studies that contrib...

  13. Distribution of butyltins (TBT, DBT, MBT) in sediments of Gulf of Cadiz (Spain) and its bioaccumulation in the clam Ruditapes philippinarum

    Digital Repository Service at National Institute of Oceanography (India)

    Garg, A; Anton-Martin, R.; Garcia-Luque, E.; Riba, I.; DelValls, T.A

    , suggesting that these sediments are polluted with butyltin compounds. The clam Ruditapes philippinarum was used for studying bioaccumulation of butyltins by exposing them to contaminated sediments from the Gulf of Cadiz over a period of 28 days under...

  14. Bioaccumulation Patterns Of PCBs In A Temperate, Freshwater Food Web And Their Relationshop To The Octanol-Water Partition Coefficient (Presentation)

    Science.gov (United States)

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism tropic position (TP) at the Lake Hartwell Superfund site (South Carolina, USA). We measured PCBs (127 congeners) and stable isotopes (δ

  15. Influence of body size on Cu bioaccumulation in zebra mussels Dreissena polymorpha exposed to different sources of particle-associated Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Huan, E-mail: huanzhong1982@hotmail.com [Environmental and Resource Studies Program, Trent University, Peterborough, Ontario (Canada); Nanjing University, School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province (China); Kraemer, Lisa; Evans, Douglas [Environmental and Resource Studies Program, Trent University, Peterborough, Ontario (Canada)

    2013-10-15

    Highlights: • Mussels exposed to algal/sediment-Cu have different size-related Cu accumulation. • Size-related Cu accumulation in mussels could be more dependant on algal-Cu uptake. • Importance of algal/sediment-Cu to Cu bioaccumulation varies with mussel body size. • Cu sources (algae and sediments) should be considered in “mussel watch” programs. • Cu stable isotope offers many advantages in Cu bioaccumulation studies. -- Abstract: Size of organisms is critical in controlling metal bioavailability and bioaccumulation, while mechanisms of size-related metal bioaccumulation are not fully understood. To investigate the influences of different sources of particle-associated Cu on body size-related Cu bioavailability and bioaccumulation, zebra mussels (Dreissena polymorpha) of different sizes were exposed to stable Cu isotope ({sup 65}Cu) spiked algae (Chlorella vulgaris) or sediments in the laboratory and the Cu tissue concentration-size relationships were compared with that in unexposed mussels. Copper tissue concentrations decreased with mussel size (tissue or shell dry weight) in both unexposed and algal-exposed mussels with similar decreasing patterns, but were independent of size in sediment-exposed mussels. Furthermore, the relative contribution of Cu uptake from algae (65–91%) to Cu bioaccumulation is always higher than that from sediments (9–35%), possibly due to the higher bioavailability of algal-Cu. Therefore, the size-related ingestion of algae could be more important in influencing the size-related variations in Cu bioaccumulation. However, the relative contribution of sediment-Cu to Cu bioaccumulation increased with body size and thus sediment ingestion may also affect the size-related Cu variations in larger mussels (tissue weight >7.5 mg). This study highlights the importance of considering exposure pathways in normalization of metal concentration variation when using bivalves as biomonitors.

  16. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60

    DEFF Research Database (Denmark)

    Baun, Anders; Sørensen, Sara Nørgaard; Rasmussen, R.F.

    2008-01-01

    , pentachlorophenol (PCP), and phenanthrene) were used as model compounds, representing different physico-chemical properties and toxic modes of action. The aggregates of nano-C60 formed over 2 months of stirring in water were mixed with model compounds 5 days prior to testing. Uptake and excretion of phenanthrene...... of the presence of C60-aggregates. In bioaccumulation studies with phenanthrene in D. magna it was found that the uptake of phenanthrene was faster when C60 was present in suspension and that a 1.7 times higher steady-state concentration was reached in the animals. However, a very fast clearance took place when...... animals were transferred to clean water resulting in no accumulation of phenanthrene. This study is the first to demonstrate the influence of C60-aggregates on aquatic toxicity and bioaccumulation of other environmentally relevant contaminants. The data provided underline that not only the inherent...

  17. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.

    Science.gov (United States)

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    In this study, the toxicity, biotransformation and bioaccumulation of arsenite and arsenate in a soil microalga, Chlorella sp., were investigated using different phosphate levels. The results indicated that arsenate was highly toxic than arsenite to the alga, and the phosphate limitation in growth media greatly enhanced arsenate toxicity. The uptake of arsenate in algal cells was more than that of arsenite, and the predominant species in the growth media was arsenate after 8 days of exposure to arsenite or arsenate, indicating arsenite oxidation by this microalga. Arsenate reduction was also observed when the alga was incubated in a phosphate-limiting growth medium. Similar to the process of biotransformation, the alga accumulated more arsenic when it was exposed to arsenate and preferably more in a phosphate-limiting condition. Although phosphate significantly influences the biotransformation and bioaccumulation of arsenic, the oxidizing ability and higher accumulation capacity of this alga have great potential for its application in arsenic bioremediation.

  18. Mercury and selenium bioaccumulation in the smooth hammerhead shark, Sphyrna zygaena Linnaeus, from the Mexican Pacific Ocean.

    Science.gov (United States)

    Escobar-Sánchez, O; Galván-Magaña, F; Rosíles-Martínez, R

    2010-04-01

    We analyzed total mercury and selenium bioaccumulation in muscle tissue and cartilage fibers (fins) from smooth hammerhead shark, Sphyrna zygaena, caught off Baja California Sur, Mexico. In muscle tissue, the mercury concentration ranged from 0.005 to 1.93 microg g(-1) ww (wet weight), which falls within the safety limits for food set by international agencies (Hg > 1.0 microg g(-1) ww). Only one specimen showed a mercury value that exceeded this limit. In fins, the mercury bioaccumulation was lower (<0.05). Selenium in muscle ranged from 0.11 to 1.63 microg g(-1) ww, while in fins it ranged from 0.13 to 0.56 microg g(-1) ww.

  19. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation.

    Science.gov (United States)

    Hansda, Arti; Kumar, Vipin; Anshumali

    2016-10-01

    The threat of heavy metal pollution to environmental health is getting worldwide attention due to their persistence and non-biodegradable nature. Ineffectiveness of various physicochemical methods due to economical and technical constraints resulted in the search for a cost-effective and eco-friendly biological technique for heavy metal removal from the environment. The two effective biotic methods used are biosorption and bioaccumulation. A comparison between these two processes demonstrated that biosorption is a better heavy metal removal process than bioaccumulation. This is due to the intoxication of heavy metal by inhibiting their entry into the microbial cell. Genes and enzymes related to bioremoval process are also discussed. On comparing the removal rate, bacteria are surpassed by algae and fungi. The aim of this review is to understand the biotic processes and to compare their metal removal efficiency.

  20. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China.

    Science.gov (United States)

    Zhang, Ling; Shi, Zhen; Jiang, Zhijian; Zhang, Jingping; Wang, Fei; Huang, Xiaoping

    2015-12-30

    Heavy metal (Cu, Pb, Zn, Cr, Cd, As) concentrations, distribution and bioaccumulation were studied in marine organisms in Guangdong coastal regions. Heavy metal concentrations and distribution in organisms showed characteristics according to areas and species. Heavy metal concentrations in most organisms were higher in west than in east, tightly related to the local industry structure and the disequilibrium of metal discharge. Generally, high heavy metal concentrations were detected in molluscs and low concentrations were detected in fish. Bioaccumulation factor was used to assess the accumulation level of marine organisms to heavy metals, of which Cd, Cu and As were the most accumulated elements. Accumulation abilities to heavy metals varied among organism species, such as Distorsio reticulate accumulating Cu, Zn, Cd, As, Loligo beka Sasaki accumulating Pb, Cu, Cr, and Turritella bacillum Kiener accumulating Zn, Cd, As. By comparison, Johnius belengeri, Argyrosomus argentatus, Cynoglossus sinicus Wu had relatively low accumulation abilities.

  1. Effect of coastal eutrophication on heavy metal bioaccumulation and oral bioavailability in the razor clam, Sinonovacula constricta

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Tengxiu [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing, E-mail: lishunxing@mnnu.edu.cn [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology (China); Chen, Lihui [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Zheng, Fengying; Huang, Xu-Guang [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology (China)

    2014-10-15

    Graphical abstract: - Highlights: • Razor clams are often exposed to coastal eutrophication. • The bioaccumulation of Fe, Ni, V, and As was promoted by eutrophication. • Bionic gastrointestinal tract was used for metal oral bioavailability assessment. • Eutrophication decreased oral bioavailability of Fe and Pb but enhanced for V. • The daily maximum allowable intakes are controlled by eutrophication levels. - Abstract: As traditional seafoods, the razor clams are widely distributed from tropical to temperate areas. Coastal razor clams are often exposed to eutrophication. Heavy metal contamination is critical for seafood safety. However, how eutrophication affects bioaccumulation and oral bioavailability of heavy metals in the razor clams is unknown. After a four-month field experimental cultivation, heavy metals (Fe, Cu, Ni, V, As, and Pb) could be bioaccumulated by the razor clams (Sinonovacula constricta) through exposure to metals present in water and sediments or in the food chain, and then transferred to human via consumption of razor clams. Bionic gastrointestinal digestion and monolayer liposome extraction are used for metal oral bioavailability (OBA) assessment. The influence of eutrophication on OBA is decreased for Fe and Pb and increased for V. A significant positive linear correlation was observed between the bioaccumulation factors of Fe, Ni, V, and As in razor clams and the coastal eutrophication. These results may be due to the effect of eutrophication on metal species transformation in coastal seawater and subcellular distribution in razor clams. The maximum allowable daily intakes of razor clams are controlled by eutrophication status and the concentration of affinity-liposome As in razor clams.

  2. Metals bioaccumulation and biomarkers responses in the Neotropical freshwater clam Anodontites trapesialis: Implications for monitoring coal mining areas.

    Science.gov (United States)

    Oliveira, Luciana Fernandes de; Cabral, Millena Terezinha; Vieira, Carlos Eduardo Delfino; Antoniazzi, Matheus Henrique; Risso, Wagner Ezequiel; Martinez, Claudia Bueno Dos Reis

    2016-11-15

    As one of the most impactful industries, coal mining can promote several alterations at surrounding environment. In surface water, elevated concentrations of metals like Mn, Zn, Fe and Al are often observed. Thus, the aim of this study was to investigate the bioaccumulation and the sub-lethal effects of these metals on various organs of the Neotropical bivalve Anodontites trapesialis confined along a stream located near a coal mine, in order to assess a set of biomarkers that could be used for effectively monitoring coal mining areas. Clams were caged, for 96h, at two sites located upstream (Up1 and Up2) and two sites downstream (Dw1 and Dw2) from the mine. Metals bioaccumulation was determined in gills, mantle, digestive gland, muscle and hemolymph and the following biomarkers were measured in A. trapesialis tissues: total antioxidant capacity against peroxyl radicals, metallothionein content, lipid peroxidation (LPO), proteins carbonylation, glutathione S-transferase activity, superoxide dismutase activity and acetylcholinesterase (AChE) activity. The results showed that Al and Fe bioaccumulation in the gills and hemolymph, Al bioaccumulation in the mantle and muscle, increased LPO in the gills (Dw1 and Dw2) and mantle (Dw1), as well as reduced AChE activity in the muscle (Dw1 and Dw2) should be considered effective biomarkers for monitoring coal mining areas. A. trapesialis proved to be an efficient biological model, considering that biomarkers responses were observed in the clams after only 96h of confinement at Dw sites, accordingly this species could be a good candidate for monitoring Neotropical freshwaters.

  3. Assessment of radium-226 bioavailability and bioaccumulation downstream of decommissioned uranium operations, using the caged oligochaete (Lumbriculus variegatus).

    Science.gov (United States)

    Wiramanaden, Cheryl I E; Orr, Patricia L; Russel, Cynthia K

    2015-03-01

    The present study investigated the integrated effects of several geochemical processes that control radium-226 ((226) Ra) mobility in the aquatic environment and bioaccumulation in in situ caged benthic invertebrates. Radium-226 bioaccumulation from sediment and water was evaluated using caged oligochaetes (Lumbriculus variegatus) deployed for 10 d in 6 areas downstream of decommissioned uranium operations in Ontario and Saskatchewan, Canada. Measured (226) Ra radioactivity levels in the retrieved oligochaetes did not relate directly to water and sediment exposure levels. Other environmental factors that may influence (226) Ra bioavailability in sediment and water were investigated. The strongest mitigating influence on (226) Ra bioaccumulation factors was sediment barium concentration, with elevated barium (Ba) levels being related to use of barium chloride in effluent treatment for removing (226) Ra through barite formation. Observations from the present study also indicated that (226) Ra bioavailability was influenced by dissolved organic carbon in water, and by gypsum, carbonate minerals, and iron oxyhydroxides in sediment, suggestive of sorption processes. Environmental factors that appeared to increase (226) Ra bioaccumulation were the presence of other group (II) ions in water (likely competing for binding sites on organic carbon molecules), and the presence of K-feldspars in sediment, which likely act as a dynamic repository for (226) Ra where weak ion exchange can occur. In addition to influencing bioavailability to sediment biota, secondary minerals such as gypsum, carbonate minerals, and iron oxyhydroxides likely help mitigate (226) Ra release into overlying water after the dissolution of sedimentary barite. Environ Toxicol Chem 2015;34:507-517. © 2014 SETAC.

  4. Bioaccumulation and biomagnification of total mercury in four exploited shark species in the Baja California Peninsula, Mexico

    OpenAIRE

    Maz-Courrau, A.; López-Vera, C; Galván Magaña, Felipe; Escobar-Sánchez, O.; Rosíles-Martínez, R; Sanjuán-Muñoz, A.

    2012-01-01

    The present study determined the average Mercury bioaccumulation in the muscle tissue of four shark species (Carcharhinus falciformis, Prionace glauca, Sphyrna zygaena and Isurus oxyrinchus) captured in the Baja California Peninsula. We also evaluated biomagnification of some prey consumed by sharks. All sharks’ species had mercury levels over the limit specified by the Mexican government for human consumption. Blue shark (P. glauca) presented highest mercury values (1.96 ± 1.48 lg/g Hg d.w.)...

  5. Differential bioaccumulation and translocation patterns in three mangrove plants experimentally exposed to iron. Consequences for environmental sensing.

    Science.gov (United States)

    Arrivabene, Hiulana Pereira; Campos, Caroline Quenupe; Souza, Iara da Costa; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias; Machado, Silvia Rodrigues

    2016-08-01

    Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle were experimentally exposed to increasing levels of iron (0, 10, 20 and 100 mg L(-1) added Fe(II) in Hoagland's nutritive medium). The uptake and translocation of iron from roots to stems and leaves, Fe-secretion through salt glands (Avicennia schaueriana and Laguncularia racemosa) as well as anatomical and histochemical changes in plant tissues were evaluated. The main goal of this work was to assess the diverse capacity of these plants to detect mangroves at risk in an area affected by iron pollution (Vitoria, Espírito Santo, Brazil). Results show that plants have differential patterns with respect to bioaccumulation, translocation and secretion of iron through salt glands. L. racemosa showed the best environmental sensing capacity since the bioaccumulation of iron in both Fe-plaque and roots was higher and increased as the amount of added-iron rose. Fewer changes in translocation factors throughout increasing added-iron were observed in this species. Furthermore, the amount of iron secreted through salt glands of L. racemosa was strongly inhibited when exposed to added-iron. Among three studied species, A. schaueriana showed the highest levels of iron in stems and leaves. On the other hand, Rhizophora mangle presented low values of iron in these compartments. Even so, there was a significant drop in the translocation factor between aerial parts with respect to roots, since the bioaccumulation in plaque and roots of R. mangle increased as iron concentration rose. Moreover, rhizophores of R. mangle did not show changes in bioaccumulation throughout the studied concentrations. So far, we propose L. racemosa as the best species for monitoring iron pollution in affected mangroves areas. To our knowledge, this is the first detailed report on the response of these plants to increasing iron concentration under controlled conditions, complementing existing data on the behavior of the same plants

  6. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife

    Science.gov (United States)

    Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Josh

    2016-01-01

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing

  7. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife.

    Science.gov (United States)

    Eagles-Smith, Collin A; Wiener, James G; Eckley, Chris S; Willacker, James J; Evers, David C; Marvin-DiPasquale, Mark; Obrist, Daniel; Fleck, Jacob A; Aiken, George R; Lepak, Jesse M; Jackson, Allyson K; Webster, Jackson P; Stewart, A Robin; Davis, Jay A; Alpers, Charles N; Ackerman, Joshua T

    2016-10-15

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing

  8. Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper.

    Science.gov (United States)

    Jorge, Marianna B; Loro, Vania L; Bianchini, Adalto; Wood, Chris M; Gillis, Patricia L

    2013-01-15

    Several studies have indicated that the early life stages of freshwater mussels are among the most sensitive aquatic organisms to inorganic chemicals, including copper. However, little is known about the toxic mode of action and sub-lethal effects of copper exposure in this group of imperiled animals. In this study, the physiological effects of long-term copper exposure (survival, growth, copper bioaccumulation, whole-body ion content, oxygen consumption, filtration rate, ATPase activities, and biomarkers of oxidative stress) were evaluated in juvenile (6 month old) mussels (Lampsilis siliquoidea). The mussels' recovery capacity and their ability to withstand further acute copper challenge were also evaluated in secondary experiments following the 28 day exposure by assessing survival, copper bioaccumulation and whole-body ion content. Mussels chronically exposed to 2 and 12 μg Cu/L showed significantly higher mortality than those held under control conditions (mortality 20.9, 69.9 and 12.5%, respectively), indicating that juvenile L. siliquoidea is underprotected by the U.S. Environmental Protection Agency (USEPA) biotic ligand model (BLM)-derived chronic water quality criteria (WQC) (2.18 μg Cu/L) and the hardness-derived USEPA WQC (12.16 μg Cu/L). Soft tissue copper burden increased equally for both copper exposures, suggesting that chronic toxicity is not associated with copper bioaccumulation. Several physiological disturbances were also observed during chronic copper exposure. Most relevant was a decrease in whole-body sodium content paralleled by an inhibition of Na(+) K(+)-ATPase activity, indicating a metal-induced ionoregulatory disturbance. Filtration and oxygen consumption rates were also affected. Redox parameters (reactive oxygen production, antioxidant capacity against peroxyl radicals, glutathione-S-transferase (GST) activity, and glutathione (GSH) concentration) did not show clear responses, but membrane damage as lipid peroxidation (LPO) was

  9. Bioaccumulation of metallic trace elements and organic pollutants in marine sponges from the South Brittany Coast, France.

    Science.gov (United States)

    Gentric, Charline; Rehel, Karine; Dufour, Alain; Sauleau, Pierre

    2016-01-01

    The purpose of this study was to compare the accumulation of metallic and organic pollutants in marine sponges with the oyster Crassostrea gigas used as sentinel species. The concentrations of 12 Metallic Trace Elements (MTEs), 16 Polycyclic Aromatic Hydrocarbons (PAHs), 7 PolyChlorinated Biphenyls (PCBs), and 3 organotin derivatives were measured in 7 marine sponges collected in the Etel River (South Brittany, France). Results indicated Al, Co, Cr, Fe, Pb, and Ti particularly accumulated in marine sponges such as Hymeniacidon perlevis and Raspailia ramosa at higher levels compared to oysters. At the opposite, Cu and Zn accumulated significantly at higher concentrations in oysters. Among PAHs analyzed, benzo(a)pyrene bioaccumulated in H. perlevis at levels up to 17-fold higher than in oysters. In contrast, PCBs bioaccumulated preferentially in oysters. Significant differences exist in the abilities of marine phyla and sponge species to accumulate organic and metallic pollutants however, among the few sponge species studied, H. perlevis showed impressive bioaccumulation properties. The use of this species as bioindicator and/or bioremediator near shellfish farming areas is also discussed.

  10. Removal mechanisms and plant species selection by bioaccumulative factors in surface flow constructed wetlands (CWs): In the case of triclosan.

    Science.gov (United States)

    Zhao, Congcong; Xie, HuiJun; Xu, Jingtao; Zhang, Jian; Liang, Shuang; Hao, Jingcheng; Ngo, Huu Hao; Guo, Wenshan; Xu, Xiaoli; Wang, Qian; Wang, Jingmin

    2016-03-15

    Plants can bioaccumulate triclosan and bond with microbes and sediments in constructed wetlands (CWs) as well. However, little is known regarding the species-specific removal mechanism of CWs components and the selection of suitable wetland plant species for triclosan disposal. In this work, the use of bioaccumulation factors (BAFs) and biota to sediment accumulation factors (BSAFs) for choosing the best triclosan removal plant species was studied in laboratory-scale CWs. By the end of the experiment, over 80% of triclosan was removed and a specie-effect distribution was revealed in CWs with emergent, submerged and floating plants. By mass balance calculation, negative correlation between triclosan concentration in plants and degradation process was observed. The significant correlations between Log BSAFs values and triclosan concentration in plants or degradation contribution made it possible and reasonable in wetland plants selection. Introductions on plant species were provided considering the target removal process or regulation method. This work provided new information on plant species selection in CWs for triclosan removal or its emergency remediation by using bioaccumulative factors.

  11. Bioaccumulation of metals in sediment elutriates and their effects on growth, condition index, and metallothionein contents in oyster larvae.

    Science.gov (United States)

    Geffard, A; Geffard, O; Amiard, J C; His, E; Amiard-Triquet, C

    2007-07-01

    The bioavailability of Cd, Cu, Zn, and Pb from two metal-contaminated sediments (Bidassoa and Dunkerque) was studied using Crassostrea gigas larvae exposed to sediment elutriates. The metal contents within the sediments, the larvae and larval growth, the condition index, and the induction of metallothionein in the larvae were measured. The larval growth and condition index were only affected after exposure to the highest elutriates concentration (5 to 25%) from the most contaminated sediment (Dunkerque). Bioaccumulation of all metals was observed in larvae exposed to Dunkerque elutriatre; only Cu bioaccumulation was observed in the Bidassoa elutriate. The results from larvae exposed to both sediment elutriates show a strong correlation between bioaccumulated metal considered individually or in combination and the metallothionein level in larvae presenting no detrimental effect. On the other hand, in the case of larvae exposed to the highest Dunkerque elutriate concentration and showing the highest metal body burden, we observed a drop in the metallothionein level. These results indicate that metallothionein is a more sensitive indicator of heavy metal pollution than physiological endpoints taken into account in bioassays and could be proposed as an early biomarker of metal exposure in larvae. However, care must be taken with "fault control" due to the toxicological effect on larvae metabolism in the case of substantial contaminant exposure.

  12. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures

    Science.gov (United States)

    Croteau, Marie-Noele; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    The incidental ingestion of engineered nanoparticles (NPs) can be an important route of uptake for aquatic organisms. Yet, knowledge of dietary bioavailability and toxicity of NPs is scarce. Here we used isotopically modified copper oxide (65CuO) NPs to characterize the processes governing their bioaccumulation in a freshwater snail after waterborne and dietborne exposures. Lymnaea stagnalis efficiently accumulated 65Cu after aqueous and dietary exposures to 65CuO NPs. Cu assimilation efficiency and feeding rates averaged 83% and 0.61 g g–1 d–1 at low exposure concentrations (–1), and declined by nearly 50% above this concentration. We estimated that 80–90% of the bioaccumulated 65Cu concentration in L. stagnalis originated from the 65CuO NPs, suggesting that dissolution had a negligible influence on Cu uptake from the NPs under our experimental conditions. The physiological loss of 65Cu incorporated into tissues after exposures to 65CuO NPs was rapid over the first days of depuration and not detectable thereafter. As a result, large Cu body concentrations are expected in L. stagnalis after exposure to CuO NPs. To the degree that there is a link between bioaccumulation and toxicity, dietborne exposures to CuO NPs are likely to elicit adverse effects more readily than waterborne exposures.

  13. Bioaccumulation of perfluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm.

    Science.gov (United States)

    Fang, Shuhong; Zhang, Yifeng; Zhao, Shuyan; Qiang, Liwen; Chen, Meng; Zhu, Lingyan

    2016-12-01

    Carp (Cyprinus carpio) were exposed to perfluoroalkyl acids (PFAAs) including perfluorooctane sulfonate (PFOS) isomers in an artificially contaminated sediment/water microcosm. The uptake constant of PFAAs increased with increasing carbon chain length, whereas the elimination coefficient displayed the opposite trend, suggesting that carbon chain length plays an important role in the bioaccumulation of PFAAs. When the contribution of suspended particulate matter was taken into account, the bioaccumulation factors (BAFs) became lower (3.61-600 L/kg) compared with BAFs derived from only considering the absorption from free PFAAs in water (3.85-97000 L/kg). The results indicate that suspended particulate matter in water constitutes an important source of exposure for aquatic organisms to long-chain PFAAs. Linear (n-)PFOS was preferentially accumulated compared with branched isomers in carp. Among the branched isomers, 1m-PFOS displayed the greatest bioaccumulation, whereas m2 -PFOS had the lowest. Linear PFOS displayed greater partitioning ability from blood to other tissues over branched PFOS (br-PFOS) isomers, leading to a relatively lower n-PFOS proportion in blood. In summary, suspended particulate matter made a contribution to the accumulation of long-chain PFAAs in aquatic organisms, and n-PFOS was preferentially accumulated compared with br-PFOS isomers. Environ Toxicol Chem 2016;35:3005-3013. © 2016 SETAC.

  14. Spatial distribution of PAHs and associated laboratory-measured bioaccumulation in New York/New Jersey waterways

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, L.B. [Army Corps of Engineers, New York, NY (United States); Barrows, E.S. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1995-12-31

    Sediment core samples from New York/New Jersey waterways within the Hudson-Raritan Estuary and Long Island Sound were collected to depths representative of dredging activity. Sediment was also collected from a reference site in the New York Bight as a comparison. Composited core sediments representing each waterway were analyzed for PAHs, sediment grain size, and total organic carbon. To assess bioaccumulation, sand worms (Nereis virens) and blunt-nose clams (Macoma nasuta) were exposed for 28 days to sediment composites and to New York Bight sediment. Tissues were analyzed for the same constituents as the sediment samples, as well as for lipid content. The results highlight the range and magnitude of PAH concentrations in sediments of NY/NJ waterways. Concentrations of total PAHs ranged from undetected to 30,000 {micro}g/kg (dry weight). Tissues exposed to sediments from several waterways bioaccumulated organic compounds at concentrations as much as 10 times greater than those exposed to New York Bight sediments. The presence and extent of bioaccumulated compounds, along with benthic toxicity data, create a profile characterizing each waterway.

  15. Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test.

    Science.gov (United States)

    Udovic, M; McBride, M B

    2012-02-29

    Long-term application of lead arsenate in orchards has led to a significant accumulation of Pb and As in the topsoil. Reclamation of old orchards for agricultural purposes entails the exposure of humans to Pb and As, which can be reduced by adequate remediation actions. In this study, we assessed the remediation efficiency of compost addition, commonly used as a sustainable agricultural practice, in decreasing the human exposure Pb and As by direct ingestion. The remediation was evaluated based on Pb and As bioavailability, assessed by means of a selective non-exhaustive chemical extraction (modified Morgan extraction, MME), with a physiologically based extraction test (PBET) for the assessment of Pb and As bioavailability in ingested soils and with a novel in vivo bioaccumulation test with isopods (Porcellio scaber). All the tests showed that compost addition consistently reduced Pb, but increased As potential bioavailability. The bioaccumulation test with P. scaber was sensitive to changes in Pb and As bioavailability in test soils. However, the results indicate that the bioavailability of As could be under- or overestimated using solely chemical extraction tests. Indirect assessment of trace metal bioavailability with bioaccumulation in isopods can be used as complementary source of data to the existing in vitro chemical extraction test approach for the estimation of human exposure to trace elements in polluted and remediated soil. This is the first report on the use of As accumulation in P. scaber as a tool for the assessment of As bioavailability in contaminated orchard soil.

  16. Perfluorinated chemicals in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus variegatus

    Science.gov (United States)

    Lasier, Peter J.; Washington, John W.; Hassan, Sayed M.; Jenkins, Thomas M.

    2011-01-01

    Concentrations of perfluorinated chemicals (PFCs) were measured in surface waters and sediments from the Coosa River watershed in northwest Georgia, USA, to examine their distribution downstream of a suspected source. Samples from eight sites were analyzed using liquid chromatography-tandem mass spectrometry. Sediments were also used in 28-d exposures with the aquatic oligochaete, Lumbriculus variegatus, to assess PFC bioaccumulation. Concentrations of PFCs in surface waters and sediments increased significantly below a land-application site (LAS) of municipal/industrial wastewater and were further elevated by unknown sources downstream. Perfluorinated carboxylic acids (PFCAs) with eight or fewer carbons were the most prominent in surface waters. Those with 10 or more carbons predominated sediment and tissue samples. Perfluorooctane sulfonate (PFOS) was the major homolog in contaminated sediments and tissues. This pattern among sediment PFC concentrations was consistent among sites and reflected homolog concentrations emanating from the LAS. Concentrations of PFCs in oligochaete tissues revealed patterns similar to those observed in the respective sediments. The tendency to bioaccumulate increased with PFCA chain length and the presence of the sulfonate moiety. Biota-sediment accumulation factors indicated that short-chain PFCAs with fewer than seven carbons may be environmentally benign alternatives in aquatic ecosystems; however, sulfonates with four to seven carbons may be as likely to bioaccumulate as PFOS.

  17. Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Contardo-Jara, Valeska [Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Inland Fisheries, Biochemical Regulation, Mueggelseedamm 301, 12587 Berlin (Germany)], E-mail: contardo@igb-berlin.de; Klingelmann, Eva [Technische Universitaet Berlin/Berlin Institute of Technology, Department of Ecology, Chair of Soil Protection, Salzufer 12, 10587 Berlin (Germany)], E-mail: eva.klingelmann@TU-Berlin.de; Wiegand, Claudia [Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Inland Fisheries, Biochemical Regulation, Mueggelseedamm 301, 12587 Berlin (Germany); Humboldt University Berlin, Faculty of Biology, Unter den Linden 6, 10099 Berlin (Germany)], E-mail: cwiegand@igb-berlin.de

    2009-01-15

    The bioaccumulation potential of glyphosate and the formulation Roundup Ultra, as well as possible effects on biotransformation and antioxidant enzymes in Lumbriculus variegatus were compared by four days exposure to concentrations between 0.05 and 5 mg L{sup -1} pure glyphosate and its formulation. Bioaccumulation was determined using {sup 14}C labeled glyphosate. The bioaccumulation factor (BCF) varied between 1.4 and 5.9 for the different concentrations, and was higher than estimated from log P{sub ow}. Glyphosate and its surfactant POEA caused elevation of biotransformation enzyme soluble glutathione S-transferase at non-toxic concentrations. Membrane bound glutathione S-transferase activity was significantly elevated in Roundup Ultra exposed worms, compared to treatment with equal glyphosate concentrations, but did not significantly differ from the control. Antioxidant enzyme superoxide dismutase was significantly increased by glyphosate but in particular by Roundup Ultra exposure indicating oxidative stress. The results show that the formulation Roundup Ultra is of more ecotoxicological relevance than the glyphosate itself. - Roundup Ultra is of more ecotoxicological relevance than the active ingredient, glyphosate, to Lumbriculus variegatus regarding accumulation potential and enzymatic responses.

  18. Correlation of transcriptomic responses and metal bioaccumulation in Mytilus edulis L. reveals early indicators of stress

    Energy Technology Data Exchange (ETDEWEB)

    Poynton, Helen C., E-mail: helen.poynton@umb.edu; Robinson, William E.; Blalock, Bonnie J.; Hannigan, Robyn E.

    2014-10-15

    Highlights: • Gene expression and metal tissue concentrations were compared in Mytilus edulis. • Expression levels of several transcripts correlated with metal concentrations. • Transcripts involved in the unfolded protein response (UPR) were induced. • Integration of transcriptomics and tissue levels provides insight to toxicity. - Abstract: Marine biomonitoring programs in the U.S. and Europe have historically relied on monitoring tissue concentrations of bivalves to monitor contaminant levels and ecosystem health. By integrating ‘omic methods with these tissue residue approaches we can uncover mechanistic insight to link tissue concentrations to potential toxic effects. In an effort to identify novel biomarkers and better understand the molecular toxicology of metal bioaccumulation in bivalves, we exposed the blue mussel, Mytilus edulis L., to sub-lethal concentrations (0.54 μM) of cadmium, lead, and a Cd + Pb mixture. Metal concentrations were measured in gill tissues at 1, 2, and 4 weeks, and increased linearly over the 4 week duration. In addition, there was evidence that Pb interfered with Cd uptake in the mixture treatment. Using a 3025 sequence microarray for M. edulis, we performed transcriptomic analysis, identifying 57 differentially expressed sequences. Hierarchical clustering of these sequences successfully distinguished the different treatment groups demonstrating that the expression profiles were reproducible among the treatments. Enrichment analysis of gene ontology terms identified several biological processes that were perturbed by the treatments, including nucleoside phosphate biosynthetic processes, mRNA metabolic processes, and response to stress. To identify transcripts whose expression level correlated with metal bioaccumulation, we performed Pearson correlation analysis. Several transcripts correlated with gill metal concentrations including mt10, mt20, and contig 48, an unknown transcript containing a wsc domain. In addition

  19. Below a Historic Mercury Mine: Non-linear Patterns of Mercury Bioaccumulation in Aquatic Organisms

    Science.gov (United States)

    Haas, J.; Ichikawa, G.; Ode, P.; Salsbery, D.; Abel, J.

    2001-12-01

    Unlike most heavy metals, mercury is capable of bioaccumulating in aquatic food-chains, primarily because it is methylated by bacteria in sediment to the more toxic methylmercury form. Mercury concentrations in a number of riparian systems in California are highly elevated as a result of historic mining activities. These activities included both the mining of cinnabar in the coastal ranges to recover elemental mercury and the use of elemental mercury in the gold fields of the Sierra Nevada Mountains. The most productive mercury mining area was the New Almaden District, now a county park, located in the Guadalupe River drainage of Santa Clara County, where cinnabar was mined and retorted for over 100 years. As a consequence, riparian systems in several subwatersheds of the Guadalupe River drainage are contaminated with total mercury concentrations that exceed state hazardous waste criteria. Mercury concentrations in fish tissue frequently exceed human health guidelines. However, the potential ecological effects of these elevated mercury concentrations have not been thoroughly evaluated. One difficulty is in extrapolating sediment concentrations to fish tissue concentrations without accounting for physical and biological processes that determine bioaccumulation patterns. Many processes, such as methylation and demethylation of mercury by bacteria, assimilation efficiency in invertebrates, and metabolic rates in fish, are nonlinear, a factor that often confounds attempts to evaluate the effects of mercury contamination on aquatic food webs. Sediment, benthic macroinvertebrate, and fish tissue samples were collected in 1998 from the Guadalupe River drainage in Santa Clara County at 13 sites upstream and downstream from the historic mining district. Sediment and macroinvertebrate samples were analyzed for total mercury and methylmercury. Fish samples were analyzed for total mercury as whole bodies, composited by species and size. While linear correlations of sediment

  20. Metal/metalloid (As, Cd and Zn) bioaccumulation in the earthworm Eisenia andrei under different scenarios of climate change.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-08-01

    This study aimed at assessing the effects of global warming (increasing air temperature and decreasing soil moisture content) on the bioaccumulation kinetics of As, Cd and Zn in the earthworm Eisenia andrei in two polluted soils (mine tailing and watercourse soil). Earthworms were exposed for up to 21 d under four climate conditions: 20 °C + 50% soil water holding capacity (WHC) (standard conditions), 20 °C + 30% WHC, 25 °C + 50% WHC and 25 °C + 30% WHC. Porewater metal/metalloid availability did not change in the mine tailing soil after the incubation period under the different climate conditions tested. However, in the watercourse soil, porewater Cd concentrations decreased from ∼63 to ∼32-41 μg L(-1) after 21 d and Zn concentrations from ∼3761 to ∼1613-2170 μg L(-1), especially at 20 °C and 50% WHC. In both soils, As and Zn showed similar bioaccumulation patterns in the earthworms, without major differences among climate conditions. Earthworm concentrations peaked after 1-3 d of exposure (in μg g(-1) dry weight: As∼32.5-108, Zn∼704-1172) and then remained constant (typical pattern of essential elements even for As). For Cd the bioaccumulation pattern changed when changing the climate conditions. Under standard conditions, earthworm Cd concentrations increased to ∼12.6-18.5 μg g(-1) dry weight without reaching equilibrium (typical pattern of non-essential elements). However when increasing temperature and/or decreasing soil moisture content the bioaccumulation pattern changed towards that more typical of essential elements due to increased Cd elimination rates (from ∼0.11 to ∼0.24-1.27 d(-1) in the mine tailing soil, from ∼0.07 to ∼0.11-0.35 d(-1) in the watercourse soil) and faster achievement of a steady state. This study shows that metal/metalloid bioaccumulation pattern in earthworms may change dependent on climate conditions.

  1. Decamethylcyclopentasiloxane (D5) spiked sediment: bioaccumulation and toxicity to the benthic invertebrate Hyalella azteca.

    Science.gov (United States)

    Norwood, W P; Alaee, M; Sverko, E; Wang, D; Brown, M; Galicia, M

    2013-10-01

    Chronic toxicity and bioaccumulation of decamethylcyclopentasiloxane (D5) to Hyalella azteca was examined in a series of spiked sediment exposures. Juvenile H. azteca were exposed for 28d (chronic) to a concentration series of D5 in two natural sediments of differing organic carbon content (O.C.) and particle size composition. The chronic, LC50s were 191 and 857μgD5g(-1) dry weight for Lakes Erie (0.5% O.C.) and Restoule (11% O.C.) respectively. Inhibition of growth only occurred with the L. Restoule spiked sediment with a resultant EC25 of 821μgg(-1)dw. Lethality was a more sensitive endpoint than growth inhibition. Biota sediment accumulation factors (BSAFs, 28d) were <1 indicating that D5 did not bioconcentrate based on lipid normalized tissue concentrations and organic carbon normalized sediment concentrations. Organic carbon (OC) in the sediment appeared to be protective, however normalization to OC did not normalize the toxicity. Normalization of D5 concentrations in the sediments to sand content did normalize the toxicity and LC50 values of 3180 and 3570μg D5g(-1) sand dw were determined to be statistically the same.

  2. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  3. The potential of Lumbricus rubellus as a bioaccumulator of excess Pb and Cd in organic media

    Directory of Open Access Journals (Sweden)

    M. Arifin

    2015-07-01

    Full Text Available Lead (Pb and cadmium (Cd are sources of serious problems in the environment due to their reactivity and toxicity. Lumbricus rubellus is an earthworm reared by people is expected to reduce Pb and Cd concentrations in the environments. The aim of this study was to explore the ability of Lumbricus rubellus in reducing excess of Pb and Cd in organic media generated from urban waste. Sixteen treatments (four levels of Pb concentration and four levels of Cd concentration were arranged in a completely randomized design with three replications. Each treatment was placed in a wooden pot of 20 cm x 20 cm x 25 cm, and supplied with 40 Lumbricus rubellus for 30 days. Results of this study showed that 20 and 40% of the earthworm could survive until day 30 in organic media contaminated with Pb and Cd, respectively. Pb accumulated in the earthworm bodies ranged from 0.03 to 211.42 mg/kg, while the Cd accumulated in the earthworm body ranged from 0.57 to 22.11 mg/kg. The bioaccumulation factor for Pb was 46.98%, while that of Cd was 53.83%t. The content of Pb in vermicompost ranged from 0.04 to 19.41 mg/kg, while that of Cd ranged from 0.01 to 1.58 mg/kg.

  4. Bioaccumulation and oxidative stress parameters in silver catfish (Rhamdia quelen) exposed to different thorium concentrations.

    Science.gov (United States)

    Kochhann, Daiani; Pavanato, Maria A; Llesuy, Susana F; Correa, Lizelia M; Konzen Riffel, Ana P; Loro, Vania L; Mesko, Márcia F; Flores, Erico M M; Dressler, Valderi L; Baldisserotto, Bernardo

    2009-10-01

    The objective of this study was to evaluate the effect of chronic thorium (Th) exposure on bioaccumulation, metabolism (through biochemical parameters of the muscle) and oxidative parameters (lipidic peroxidation levels and antioxidant enzymes in the gills and in the hepatic and muscular tissues) of silver catfish (Rhamdia quelen). Silver catfish juveniles were exposed to different waterborne Th levels (in microg L(-1)): 0 (control), 25.3+/-3.2, 80.6+/-12.0, 242.4+/-35.6, and 747.2+/-59.1 for 30 d. The gills and skin were the organs that accumulated the highest Th levels. The increase in the waterborne Th concentration corresponded to a progressive increase in the Th levels in the gills and kidney. Chronic Th exposure causes alterations in the oxidative parameters of silver catfish gills, which are correlated with the Th accumulation in this organ. The levels of GST decreased in the gills of fish exposed to 747.2 microg L(-1) Th and SOD activity decreased in silver catfish exposed to 242.4 and 747.2 microg L(-1) Th. In addition, the increase in the LPO in the gills exposed to 242.4 and 747.2 microg L(-1) Th suggests that higher oxidative damage occurred in the gills. However, in the liver and muscle, these alterations occurred mainly in the lowest waterborne Th level. Metabolic intermediates in the muscle were altered by Th exposure, but no clear relationship was found.

  5. Lotus corniculatus Crop Growth of in Crude Oil Contaminated Soil. Part 2 Biomass Metals Bioaccumulation

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2016-05-01

    Full Text Available Phytoremediation involves the ability of plants to remove pollutants and is a promise on low costs and efficient processes for cleaning oil polluted soil. Studies for phytoremediation of soils polluted with petroleum products were critical and were based on monitoring strategies implemented efficiency. These strategies are based on the necessity of treating polluted soil and plant cultivation. Treatment was performed with recycled materials, sewage sludge as fertilizer and fly ash as amendment. The studies took on the characteristics of qualitative and quantitative of Lotus corniculatus crops, plants tolerant to conditions for phytoremediation strategy implemented on polluted soils by 80.5 ± 3.9 g·kg-1 D.M. The use of sewage sludge mixed with fly ash resulted in formation of a layer covering the surface with vegetable grown by 85 - 94 % in July and by 67 - 83 % in August. In Lotus corniculatus crops have not been registered bioaccumulation of toxic metals according to legislation from Romania.

  6. Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.).

    Science.gov (United States)

    Xie, Pan-pan; Deng, Juan-wei; Zhang, Hui-min; Ma, You-hua; Cao, De-ju; Ma, Ru-xiao; Liu, Ren-jing; Liu, Cheng; Liang, Yue-gan

    2015-12-01

    This study investigated the effects of various Cd concentrations on the bioaccumulation, antioxidative defense, and stress responses of rice (Oryza sativa L.). The distribution characteristics of Cd in rice were in the following order: roots>stems>grains. The bioconcentration factor values of Cd increased at concentrations lower than 3.00 mg Cd/kg and approximately decreased to a constant value at concentrations higher than 3.00 mg Cd/kg. Rice showed a higher Cd accumulation potential at low Cd concentrations than at high Cd concentrations. The Freundlich isotherm model described well the adsorption isotherms of Cd in rice roots. The biosorption mechanism of rice roots was determined to be cooperative adsorption. The malondialdehyde (MDA) content increased at a concentration range of 0.00-5.00 mg/L, indicating the enhancement of lipid peroxidation. By contrast, the MDA content slightly decreased at concentrations higher than 5.00 mg/L. Peroxidase (POD) activity exhibited active response to oxidative stress at concentrations lower than 5.00 mg/L but was inhibited at concentrations higher than 5.00 mg/L. The response to Cd stress of the N-H, O-H and C-O functional groups in rice shoots was observed via Fourier transform infrared spectroscopy.

  7. Mercury bioaccumulation in estuarine wetland fishes: evaluating habitats and risk to coastal wildlife

    Science.gov (United States)

    Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2014-01-01

    Estuaries are globally important areas for methylmercury bioaccumulation because of high methylmercury production rates and use by fish and wildlife. We measured total mercury (THg) concentrations in ten fish species from 32 wetland and open bay sites in San Francisco Bay Estuary (2005–2008). Fish THg concentrations (μg/g dry weight ± standard error) differed by up to 7.4× among estuary habitats. Concentrations were lowest in open bay (0.17 ± 0.02) and tidal wetlands (0.42 ± 0.02), and highest in managed seasonal saline wetlands (1.27 ± 0.05) and decommissioned high salinity salt ponds (1.14 ± 0.07). Mercury also differed among fishes, with Mississippi silversides (0.87 ± 0.03) having the highest and longjaw mudsuckers (0.37 ± 0.01) the lowest concentrations. Overall, 26% and 12% of fish exceeded toxicity benchmarks for fish (0.20 μg/g wet weight) and piscivorous bird (0.30 μg/g wet weight) health, respectively. Our results suggest that despite managed wetlands' limited abundance within estuaries, they may be disproportionately important habitats of Hg risk to coastal wildlife.

  8. Effect of Atrazine on Antioxidant Enzyme and Its Bioaccumulation in Kidney of Crucian Carp, Carassius auratus

    Institute of Scientific and Technical Information of China (English)

    MENG Shunlong; CHEN Jiazhang; WU Wei; HU Gengdong; QU Jianhong; YOU Yang

    2011-01-01

    Etrazine is one of the most widely used herbicides in China and the world. Acute and chronic toxicity tests werc carried out to assess the possible toxicity effect of atrazine on crucian carp (Carassius auratus). Results showed that 96 h LC,. of atrazine to Carassius auratus was 105.94 mg. L-1. The enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferases (GST) in kidney of Carassius auratus were all influenced by atraizine, and CAT was more sensitive to atrazine compared with SOD and GST. Atrazine residues in kidney of Carassius aura/us reached the stable state at day 19, and the bioaccumulation factors (BAF) of atrazine in kidney of Carassius auratus treated with 1.0 mg. L-1 and 10.0 mg. L-1 atrazine were 8.3 and 4.4, respectively. The research demonstrated that atrazine could cause oxidative stress to fish kidney, but atrazine was not easy to accumulate in Carassius auratus kidney, and the antioxidant enzymes could be used as biomarker to the early detection of pollution.

  9. Bioaccumulation of thallium in an agricultural soil as affected by solid-phase association

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin

    2016-04-01

    The work focused on the biogeochemical behavior of synthetic Tl modified phases, namely birnessite, ferrihydrite, and calcite, in a neutral soil Leptosol. The data presented here clearly demonstrate a strong relationship between the mineralogical position of Tl in the soil and its uptake by the studied plant (Sinapis alba L.). All tested Tl phases behaved as potential Tl sources in the rhizosphere, with a maximum for ferrihydrite and minimum for birnessite. Therefore, it can be concluded that Mn(III,IV) oxides, if present in the soil system, may reduce biological uptake of Tl to a substantial degree, including the case of Tl-accumulating species (i.e., Brassicaceae). It was proven that even Tl-enriched calcite present in the carbonate-rich soil is an important precursor for further contaminant mobilization, despite its relative resistance to degradation. Our data indicate that the fate of secondary Tl phases in the rhizosphere might be significantly influenced by the pH of the soil matrix, i.e., soils with lower pHs reduce their stability, making them more susceptible to further degradation by root exudates. Bulk soil mineralogy and the content and quality of SOM are thus suggested to be critical parameters controlling the bioaccumulation potential for Tl. This research was supported by the Czech Science Foundation (grant no. 14-01866S).

  10. Bioaccumulation of Lanthanum and Its Effect on Growth of Maize Seedlings in a Red Loamy Soil

    Institute of Scientific and Technical Information of China (English)

    HU Xin; WANG Xiao-Rong; WANG Chao

    2006-01-01

    Through a pot culture lanthanum nitrate was applied to maize seedlings grown in a red loamy soil to investigate the physiological and toxic effects of added La on the growth of crop seedlings and La bioaccumulation to help understand the environmental chemistry behaviors of rare earth element as fertilizers in soils. Compared to the control, La concentrations in shoots and especially in roots of maize seedlings increased with an increase of La in the soil. Also, with added concentrations of La > 0.75 g La kg-1 soil and > 0.05 g La kg-1 soil, the dry weight of shoots and roots of maize seedlings was significantly reduced (P ≤ 0.05), respectively, compared with the control. Additionally, La ≥ 0.5 g kg-1in the soil significantly inhibited (P ≤ 0.05) primary root elongation. Roots were more sensitive to La stress than shoots and thus could be used as a biomarker to La stress. Overall, in the red loamy soil studied, La had no significant beneficial effects on the growth of maize at the added La levels above 0.1 g kg-1 soil.

  11. Bioaccumulation of methylmercury in fish tissue from the Roosevelt River, Southwestern Amazon basin

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues dos Anjos

    2016-06-01

    Full Text Available Mercury is a major pollutant in the Amazon River system, and its levels in fish and human hair are usually above the limit recommended by health agencies. The objective of this study was to analyze the methylmercury (MeHg concentration in fish tissue from the Roosevelt River. The river's water velocity, depth, pH, temperature, electrical conductivity, dissolved oxygen and substrate type were measured, and fifty specimens distributed in 14 fish species were collected. A total of 64.3% of the sampled species were of the order Characiform and 71.4% of the species were carnivores. Fifty percent of the species had MeHg concentrations above threshold limit (Hg-T 0.5 mg kg-1 established for food by the World Health Organization. Cichla monoculus had the highest value of MeHg (2.45 mg kg-1. The MeHg concentration in fish varied according to dietary habits. The study also found bioaccumulation of MeHg in fish tissue in the following descending order: carnivorous > detritivorous > frugivore. Low significant correlations were found between fish weight or length and MeHg. Further studies on MeHg contamination are recommended in tissues of fish consumed in human riverine communities in the Roosevelt River Basin.

  12. Methylmercury bioaccumulation in stream food webs declines with increasing primary production

    Science.gov (United States)

    Walters, David; D.F. Raikow,; C.R. Hammerschmidt,; M.G. Mehling,; A. Kovach,; J.T. Oris,

    2015-01-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048–0.71 mg O2 L–1 d–1) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.

  13. Bioaccumulation of polybrominated diphenyl ethers by the freshwater benthic amphipod Gammarus pulex.

    Science.gov (United States)

    Tlili, Khawla; Labadie, Pierre; Bourges, Catherine; Desportes, Annie; Chevreuil, Marc

    2012-07-01

    This study reports on the relationship between polybrominated diphenyl ether (PBDE) levels in water, sediment, and the benthic macroinvertebrate Gammarus pulex, which plays a major ecological role in freshwater ecosystems. Samples were taken in a periurban watershed (near Paris, France), and PBDEs were systematically detected in sediment (≤727 ng g(-1) OC) and G. pulex (≤264 ng g(-1) lipids). PBDEs were also occasionally detected in the water column at low levels (∑ PBDEs < 1.5 ng L(-1)). The log values of bioaccumulation factors were in the range 7.8 ± 0.1-8.3 ± 0.4 L kg(-1) for tetra- and penta-BDEs, which were the only ones quantified in the dissolved phase of river water. Meanwhile, levels of individual tri- to hepta-PBDE congeners in G. pulex generally positively correlated with sediment levels, suggesting an equilibrium situation. Biota-to-sediment accumulation factors (BSAFs) of tri-hepta BDEs were congener specific and were in the range 0.5 ± 0.3-2.6 ± 1.2. For several PBDEs, BSAF values deviated from the expected range, likely because of in vivo metabolism.

  14. Bioaccumulation of U(VI) by Sulfolobus acidocaldarius under moderate acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, T.; Merroun, M.L.; Rossberg, A.; Steudtner, R.; Selenska-Pobell, S. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiochemistry

    2011-07-01

    U(VI) accumulation by the acidothermophilic archaeon Sulfolobus acidocaldarius at a moderate acidic pH of 4.5 was investigated. This pH value is relevant for some heavy metal and uranium polluted environments where populations of S. acidocaldarius were found to persist. We demonstrate that U(VI) is rapidly complexed by the archaeal cells. A combination of X-ray absorption spectroscopy and time-resolved laser-induced fluorescence spectroscopy revealed that at pH 4.5 organic phosphate and carboxylic groups are involved in the U(VI) complexation. These results are in contrast to those published for most bacteria which at this pH precipitate U(VI) mainly in inorganic uranyl phosphate phases. As demonstrated by TEM only a limited part of the added U(VI) was biomineralized extracellularly in the case of the studied archaeon. Most of the U(VI) accumulates were localized in a form of intracellular deposits which were associated with the inner side of the cytoplasma membrane. Observed differences in U(VI) bioaccumulation between the studied archaeon and bacteria can be explained by the significant differences in their cell wall structures as well as by their different physiological characteristics. (orig.)

  15. Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil

    Energy Technology Data Exchange (ETDEWEB)

    Saat, Ahmad, E-mail: ahmad183@salam.uitm.edu.my [Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Kamsani, Ain Shaqina; Kamri, Wan Nur Aina Nadzira; Talib, Nur Hasyimah Mat; Wood, Ab Khalik; Hamzah, Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia)

    2015-04-29

    Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma malabathricum (locally known as ‘pokok senduduk’) as bio-accumulator of uranium and thorium from soils of three different study areas, namely former tin mining, industrial and residential/commercial areas in Peninsular Malaysia. The study found elevated concentrations of uranium and thorium in former tin mining soils as compared to natural abundance. However in industral and residential/commercial areas the concentrations are within the range of natural abundance. In terms of transfer factor (TF), in ex-mining areas TF > 1 for uranium in the leaf, stem and roots, indicating accumulation of uranium from soil. However for thorium TF < 1, indicating the occurence of transfer from soil to root, stem and leaf, but no accumulation. For other areas only transfer of uranium and thorium were observed. The results indicated the potential of Melastoma malabathricum to be used as bio-accumulatior of uranium, especially in areas of elevated concentration.

  16. Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana.

    Science.gov (United States)

    Kabra, Akhil N; Ji, Min-Kyu; Choi, Jaewon; Kim, Jung Rae; Govindwar, Sanjay P; Jeon, Byong-Hun

    2014-11-01

    This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L(-1)), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L(-1)) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L(-1). Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14-36 % atrazine degradation at 10-100 μg L(-1). Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g(-1)) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.

  17. Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata).

    Science.gov (United States)

    Tian, Shengyan; Zhang, Yaodan; Song, Chunzheng; Zhu, Xiaoshan; Xing, Baoshan

    2014-09-01

    To evaluate the impact of titanium dioxide nanoparticles (nTiO2) on the uptake of hydrophobic organic chemicals by marine bivalves, we conducted a comparative bioaccumulation study by exposing clam, Scapharca subcrenata, to phenanthrene (Phe) in the presence and absence of nTiO2. The large surface area of nTiO2 resulted in adsorption of co-existing Phe in aqueous solution to form nTiO2-Phe complexes. Accumulation of nTiO2 was not observed in clams at exposed concentration (500 μg/L) in this study. However, enhanced uptake of Phe by clams was observed in the presence of nTiO2, with ku and BAFs values being 2 and 1.7 times higher than that of Phe alone, respectively. The enhanced uptake can be explained by ingestion of nTiO2-Phe complexes into the gut and subsequent desorption of Phe there. Therefore, nTiO2 as a carrier facilitated the uptake of Phe by marine bivalves.

  18. Bioaccumulation of cesium-137 in yellow bullhead catfish (Ameiurus natalis) inhabiting an abandoned nuclear reactor reservoir

    Energy Technology Data Exchange (ETDEWEB)

    McCreedy, C.D.; Glickman, L.T. [Purdue Univ., West Lafayette, IN (United States). Dept. of Veterinary Pathobiology; Jagoe, C.H.; Brisbin, I.L. Jr. [Univ. of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.

    1997-02-01

    Bioaccumulation of {sup 137}Cs was investigated in yellow bullhead catfish (Ameiurus natalis) inhabiting an abandoned reactor reservoir, Pond B, Savannah River Site, Barnwell Co., South Carolina. The authors collected fish by trap-netting, and determined ages from pectoral spines. Muscle and other tissues were assayed for {sup 137}Cs by NaI-scintillation. Music {sup 137}Cs was unrelated to sex or mass of fish, but was related to age. Examination of least-squares means suggested that {sup 137}Cs in muscle increased up to about age 3, but did not increase with greater age. A modified Richards model showed equilibrium {sup 137}Cs concentration in muscle was acquired in approximately 2.4 years. Growth differed between sexes and the time to asymptotic body mass was longer than the time to attain equilibrium {sup 137}Cs concentration. Males attained an asymptotic mass of 577 g in approximately 6.3 years; females attained an asymptotic mass of 438 g in approximately 5.9 years. The cumulative {sup 137}Cs burden of the population was 4.9 {times} 10{sup 6} Bq, representing <0.001% of the {sup 137}Cs inventory of the reservoir. Concentration of {sup 137}Cs varied among tissues with gill and muscle the lowest and highest. Concentration of {sup 137}Cs in ovaries declined with increasing ovary mass. Until equilibrium is attained in these fish, {sup 137}Cs concentration is directly related to increasing age rather than size.

  19. Bioaccumulation of copper, lead, and zinc in six macrophyte species grown in simulated stormwater bioretention systems.

    Science.gov (United States)

    Rycewicz-Borecki, Malgorzata; McLean, Joan E; Dupont, R Ryan

    2016-01-15

    Stormwater bioretention (BR) systems collect runoff containing heavy metals, which can concentrate in soil environments and potentially leach into groundwater. This greenhouse experiment evaluated differences among six plant species undergoing three varying hydraulic and pollutant loads in their bioaccumulation potential when subjected to continual application of low metal concentrations as a means of preventing copper, lead, and zinc accumulation in the BR soil. Results show that >92% of metal mass applied to the treatments via synthetic stormwater was removed from the exfiltrate within 27 cm of soil depth. Compacted soil conditions of unplanted controls retained significantly more Cu, Pb, and Zn than Carex praegracilis, and Carex microptera treatments. Differences in above and below ground plant tissue concentrations differed among species, resulting in significant differences in mass accumulation. In the above ground tissue, from highest to lowest, Phragmites australis accumulated 8 times more Cu than Scirpus acutus, and C. microptera accumulated 18 times more Pb, and 6 times more Zn than Scirpus validus. These results, and differences among species in mass distribution of the metals recovered at the end of the study, reveal various metal accumulation mechanisms.

  20. Bioaccumulation and trophic transfer of perfluorinated compounds in a eutrophic freshwater food web.

    Science.gov (United States)

    Xu, Jian; Guo, Chang-Sheng; Zhang, Yuan; Meng, Wei

    2014-01-01

    In this study, the bioaccumulation of perfluorinated compounds from a food web in Taihu Lake in China was investigated. The organisms included egret bird species, carnivorous fish, omnivorous fish, herbivorous fish, zooplankton, phytoplankton, zoobenthos and white shrimp. Isotope analysis by δ(13)C and δ(15)N indicated that the carnivorous fish and egret were the top predators in the studied web, occupying trophic levels intermediate between 3.66 and 4.61, while plankton was at the lowest trophic level. Perfluorinated carboxylates (PFCAs) with 9-12 carbons were significantly biomagnified, with trophic magnification factors (TMFs) ranging from 2.1 to 3.7. The TMF of perfluorooctane sulfonate (PFOS) (2.9) was generally comparable to or lower than those of the PFCAs in the same food web. All hazard ratio (HR) values reported for PFOS and perfluorooctanoate (PFOA) were less than unity, suggesting that the detected levels would not cause any immediate health effects to the people in Taihu Lake region through the consumption of shrimps and fish.

  1. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients.

    Science.gov (United States)

    Khan, Anwarzeb; Khan, Sardar; Alam, Mehboob; Khan, Muhammad Amjad; Aamir, Muhammad; Qamar, Zahir; Ur Rehman, Zahir; Perveen, Sajida

    2016-03-01

    The present study was conducted to evaluate the effects of heavy metals (cadmium (Cd), lead (Pb) and Cd-Pb mix) on bioaccumulation of different nutrients. Three plant species including potato, tomato and lettuce were grown in pots containing soil contaminated with Cd, Pb and Cd-Pb mix at four different levels. The edible portions of each plant were analysed for Cd, Pb and different macro- and micro-nutrients including protein, vitamin C, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg). Results indicated significant variations in selected elemental concentrations in all the three plants grown in different treatments. The projected daily dietary intake values of selected metals were significant (P < 0.001) for Fe, Mn, Ca and Mg but not significant for protein, vitamin C, N and P. The elemental contribution to Recommended Dietary Allowance (RDA) was significant for Mn. Similarly, Fe and Mg also showed substantial contribution to RDA, while Ca, N, P, K, protein and vitamin C showed the minimal contribution for different age groups. This study suggests that vegetables cultivated on Cd and Pb contaminated soil may significantly affect their quality, and the consumption of such vegetables may result in substantial negative effects on nutritional composition of the consumer body. Long term and continuous use of contaminated vegetables may result in malnutrition.

  2. Evaluation of the global impacts of mitigation on persistent, bioaccumulative and toxic pollutants in marine fish

    Directory of Open Access Journals (Sweden)

    Lindsay T. Bonito

    2016-01-01

    Full Text Available Although persistent, bioaccumulative and toxic pollutants (PBTs are well-studied individually, their distribution and variability on a global scale are largely unknown, particularly in marine fish. Using 2,662 measurements collected from peer-reviewed literature spanning 1969–2012, we examined variability of five classes of PBTs, considering effects of geography, habitat, and trophic level on observed concentrations. While we see large-scale spatial patterning in some PBTs (chlordanes, polychlorinated biphenyls, habitat type and trophic level did not contribute to significant patterning, with the exception of mercury. We further examined patterns of change in PBT concentration as a function of sampling year. All PBTs showed significant declines in concentration levels through time, ranging from 15–30% reduction per decade across PBT groups. Despite consistent evidence of reductions, variation in pollutant concentration remains high, indicating ongoing consumer risk of exposure to fish with pollutant levels exceeding EPA screening values. The temporal trends indicate that mitigation programs are effective, but that global levels decline slowly. In order for monitoring efforts to provide more targeted assessments of risk to PBT exposure, these data highlight an urgent need for improved replication and standardization of pollutant monitoring protocols for marine finfish.

  3. Identifying bioaccumulative halogenated organic compounds using a nontargeted analytical approach: seabirds as sentinels.

    Directory of Open Access Journals (Sweden)

    Christopher J Millow

    Full Text Available Persistent organic pollutants (POPs are typically monitored via targeted mass spectrometry, which potentially identifies only a fraction of the contaminants actually present in environmental samples. With new anthropogenic compounds continuously introduced to the environment, novel and proactive approaches that provide a comprehensive alternative to targeted methods are needed in order to more completely characterize the diversity of known and unknown compounds likely to cause adverse effects. Nontargeted mass spectrometry attempts to extensively screen for compounds, providing a feasible approach for identifying contaminants that warrant future monitoring. We employed a nontargeted analytical method using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS to characterize halogenated organic compounds (HOCs in California Black skimmer (Rynchops niger eggs. Our study identified 111 HOCs; 84 of these compounds were regularly detected via targeted approaches, while 27 were classified as typically unmonitored or unknown. Typically unmonitored compounds of note in bird eggs included tris(4-chlorophenylmethane (TCPM, tris(4-chlorophenylmethanol (TCPMOH, triclosan, permethrin, heptachloro-1'-methyl-1,2'-bipyrrole (MBP, as well as four halogenated unknown compounds that could not be identified through database searching or the literature. The presence of these compounds in Black skimmer eggs suggests they are persistent, bioaccumulative, potentially biomagnifying, and maternally transferring. Our results highlight the utility and importance of employing nontargeted analytical tools to assess true contaminant burdens in organisms, as well as to demonstrate the value in using environmental sentinels to proactively identify novel contaminants.

  4. Interactions between eutrophication and contaminants - partitioning, bioaccumulation and effects on sediment-dwelling organisms

    Energy Technology Data Exchange (ETDEWEB)

    Hylland, Ketil; Schaanning, Morten; Skei, Jens; Berge, John Arthur; Eriksen, Dag Oe.; Skoeld, Mattias; Gunnarsson, Jonas

    1997-12-31

    This report describes an experiment on the interactions between eutrophication and contaminants in marine sediments. The experiment was performed in 24 continuously flushed glass aquaria within which three sediment-dwelling species were kept in a marine sediment. A filter-feeder, blue mussel, was kept in downstream aquaria. The experiment combined three environmental factors: oxygen availability, the presence or absence of contaminants, the addition of organic matter. The objectives were: (1) to quantify differences in the partitioning of contaminants between sediment, pore water and biota as a result of the treatment, (2) to quantify effects of treatments and interactions between treatments on sediment-dwelling organisms, (3) to identify differences, if any, in the release of contaminants from the sediment as the result of treatments. All three contaminants bio accumulated to higher levels in sediments with increased levels of organic material. Feeding directly or indirectly appeared to be the major route for bioaccumulation of benzo(a)pyrene and mercury. Cadmium was also controlled by the concentration in pore water. Sediment in enriched aquaria released more contaminants than sediment with low organic content. Organic enrichment strongly affected growth in the three sediment-dwelling organisms. Growth was less affected by decreased oxygen availability. The presence of contaminants had little effect on the three sediment-dwelling species at the concentrations used in the experiment. 103 refs., 14 figs., 12 tabs.

  5. Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia.

    Science.gov (United States)

    Širić, Ivan; Kasap, Ante; Bedeković, Dalibor; Falandysz, Jerzy

    2017-03-04

    Lead (Pb), cadmium (Cd), and mercury (Hg) contents in ten species of edible mushrooms in Trakošćan, Croatia were determined. In addition, the similarity between the studied species was determined by cluster analysis. The caps and stipes of the fruiting bodies were analysed separately. The analyses were carried out by inductively coupled plasma - optical emission spectrometry (ICP-OES). The greatest mean lead concentrations of 1.91 and 1.60 mg kg (-1) were determined in caps and stipes of Macrolepiota procera. The greatest mean concentrations of cadmium (3.23 and 2.24 mg kg(-1)) were determined in caps and stipes of Agaricus campestris and of mercury (2.56 and 2.35 mg kg(-1)) in Boletus edulis. In terms of the anatomical parts of the fruiting body (cap-stipe), a considerably greater concentration of the analysed elements was found in the cap for all mushroom species. According to calculated bio-concentration factors, all the examined species were found to be bio-accumulators of Cd and Hg. On the basis of the accumulation of the studied metals, great similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation was obtained by cluster analysis.

  6. Bioaccumulation and the soil factors affecting the uptake of arsenic in earthworm, Eisenia fetida.

    Science.gov (United States)

    Lee, Byung-Tae; Lee, Sang-Woo; Kim, Ki-Rak; Kim, Kyoung-Woong

    2013-12-01

    To better understand arsenic (As) bioaccumulation, a soil invertebrate species was exposed to 17 field soils contaminated with arsenic due to mining activity. Earthworms (Eisenia fetida) were kept in the soils for 70 days under laboratory conditions, as body burden increased and failed to reach equilibrium in all soils. After 70 days of exposure, XANES spectra determined that As was biotransformed to a highly reduced form. Uptake kinetics for As was calculated using one compartment model. Stepwise multiple regression suggested that sorbed As in soils are bioaccessible, and uptake is governed by soil properties (iron oxide, sulfate, and dissolved organic carbon) that control As mobility in soils. As in soil solution are highly related to uptake rate except four soils which had relatively high chloride or phosphate. The results imply that uptake of As is through As interaction with soil characteristics as well as direct from the soil solution. Internal validation showed that empirically derived regression equations can be used for predicting As uptake as a function of soil properties within the range of soil properties in the data set.

  7. Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Comber, S.D.W. [Atkins Ltd, Chilbrook, Oasis Business Park, Eynsham, Oxford, OX29 4AH (United Kingdom)], E-mail: sean.comber@atkinsglobal.com; Rule, K.L. [Centre for Environmental Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Conrad, A.U. [Scottish Environmental Protection Agency, SEPA Corporate Office, Erskine Court Castle Business Park, Stirling FK9 4TR (United Kingdom); Hoess, S. [ECOSSA, Thierschstrasser 43, 80538 Muenchen (Germany); Webb, S.F. [Procter and Gamble, Temselaan 100, Strombeek-Bever B1853 (Belgium); Marshall, S. [Unilever Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom)

    2008-05-15

    Dimethyldioctadecylammonium chloride (DODMAC, CAS No. 107-64-2) is the principal active component of Di(hydrogenated tallow alkyl) dimethylammonium chloride (DHTDMAC, CAS No. 61789-80-8), a cationic surfactant formerly used principally in laundry fabric softeners. After discharge to water, DODMAC partitions strongly to sediment, therefore the assessment of the effects of DODMAC to benthic organisms is essential in any risk assessment. Chronic toxicity studies were conducted with Lumbriculus variegatus (Oligochaete), Tubifex tubifex (Oligochaete) and Caenorhabditis elegans (Nematode). NOECs were greater than 5738, 1515 and 1351 mg/kg dw, respectively, even for sub-lethal effects. Measurement of the route of uptake of DODMAC by L. variegatus demonstrated the relative importance of uptake via ingestion (86%) compared with direct contact with the sediment and via pore water (14%). The overall tendency of DODMAC to bioaccumulate, however, was low with measured accumulation factors of 0.22 and 0.78 for L. variegatus and T. tubifex, respectively. - The cationic surfactant, DODMAC, exhibits low bioavailability and toxicity to sediment dwelling organisms, with uptake dominated by ingestion.

  8. Aquatic and terrestrial organic matter in the diet of stream consumers: implications for mercury bioaccumulation.

    Science.gov (United States)

    Jardine, Timothy D; Kidd, Karen A; Rasmussen, Joseph B

    2012-04-01

    The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess consumer reliance on aquatic (periphyton) vs. terrestrial (riparian vegetation) organic matter, and whether Hg concentrations in fish and their prey were related to these energy sources. Taxa varied in their use of the two sources, with grazing mayflies (Heptageniidae), predatory stoneflies (Perlidae), one species of water strider (Metrobates hesperius), and the fish blacknose dace (Rhinichthys atratulus) showing strong connections to aquatic sources, while Aquarius remigis water striders and brook trout (Salvelinus fontinalis) showed a weak link to in-stream production. The aquatic food source for consumers, periphyton, had higher Hg concentrations in low-pH waters, and pH was a much better predictor of Hg in predatory invertebrates that relied mainly on this food source vs. those that used terrestrial C. These findings suggest that stream biota relying mainly on dietary inputs from the riparian zone will be partially insulated from the effects of water chemistry on Hg availability. This has implications for the development of a whole-system understanding of nutrient and material cycling in streams, the choice of taxa in contaminant monitoring studies, and in understanding the fate of Hg in stream food webs.

  9. Bioaccumulation of selenium (Se) in the Cienega de Santa Clara wetland, Sonora, Mexico.

    Science.gov (United States)

    García-Hernández, J; Glenn, E P; Artiola, J; Baumgartner, D J

    2000-07-01

    The Cienega de Santa Clara, on the east side of the Colorado River delta, is a brackish wetland supported by agricultural drainage water from the United States that provides habitat for endangered fish and bird species. Bioaccumulation of selenium has created toxicity problems for wildlife in similar wetlands in the United States. This is the first selenium survey in the Cienega de Santa Clara. Ten sites were selected to collect water (dissolved), sediments (total), plants, invertebrates, and fish. Samples were collected from October 1996 to March 1997. Selenium was detected in all samples. Concentrations in water ranged from 5 to 19 microg/L and increased along a salinity gradient. Although water levels of selenium exceeded EPA criterion for protection of wildlife, levels in sediments (0.8-1.8 mg/kg), aquatic plants (0.03-0.17 mg/kg), and fish (2.5-5.1 mg/kg whole body, dry wt) did not exceed USFWS recommended levels. It is concluded from this study that the levels of selenium in water did not affect the overall health of the fish sampled. Therefore, it is important to maintain or improve the water quality entering this wetland to continue to have normal levels of Se in the food chain components.

  10. Effects of experimental thermocline and oxycline deepening on methylmercury bioaccumulation in a Canadian shield lake.

    Science.gov (United States)

    Perron, Tania; Chételat, John; Gunn, John; Beisner, Beatrix E; Amyot, Marc

    2014-01-01

    Environmental disturbances like deforestation or climate change may influence lake thermal and oxic stratification, thereby modifying cycles of contaminants such as mercury (Hg). In a lake naturally separated into three basins, the thermocline and oxycline of an experimental basin were deepened by 4 and 3 m, respectively, to study the effect on the methylmercury (MeHg) accumulation. This treatment decreased hypolimnetic MeHg concentration by approximately 90%, zooplankton concentrations by 30 to 50%, and in some fish by 45%. A multiple linear regression indicated that oxycline depth significantly influenced hypolimnetic MeHg concentrations, with no significant effect of thermocline depth, anoxic water volume, interface area of oxic-anoxic water, and sediment area in contact with anoxic water. Fish MeHg decline varied, with a greater response by low oxygen-tolerant bullhead. Increased pelagic primary and secondary production likely caused zooplankton and fish MeHg decreases via algal and growth dilution. Environmental changes leading to oxycline deepening are therefore predicted to cause a decrease in MeHg bioaccumulation in similar Canadian Shield lakes. If associated ecosystem impacts related to the deepening treatment are deemed acceptable, then this experiment provides a potential remediation method for small lakes confronted with MeHg accumulation.

  11. Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran

    Science.gov (United States)

    Esmaeilzadeh, Marjan; Karbassi, Abdolreza; Moattar, Faramarz

    2016-07-01

    Accumulation of metals in both sediments and Phragmites australis organs was studied. Samples were collected from seven stations located in Anzali wetland, Iran. The samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that concentration of the studied metals (except As and Cd) were higher in sediments than in P. australis organs. Metal accumulation was found to be significantly ( P <0.05) higher in roots than in above-ground organs of P. australis. The bioaccumulation factor (BAF) and the transfer factor (TF) also verified the highest rate of metal accumulation in roots and their reduced mobility from roots to the above-ground organs. Pearson correlation coefficient showed significant relationships between metal concentrations in sediments and those in plant organs. It should be pointed out that sediment and plant samples exhibited higher metal concentrations in eastern and central parts than in western and southern parts of the wetland. The mean concentrations of all studied elements (except for Fe, V and Al) were higher in these sediment samples than in the Earth's crust and shale. High accumulation of metals in P. australis organs (roots and shoots) is indicative of their high bioavailability in sediments of the wetland. The correlation between metal concentrations in sediments and in P. australis indicates that plant organs are good bioindicators of metal pollution in sediments of Anzali wetland.

  12. Characteristics of selected bioaccumulative substances and their impact on fish health

    Directory of Open Access Journals (Sweden)

    Walczak Marek

    2016-12-01

    Full Text Available The aim of this article was to evaluate the influence and effects of chosen bioaccumulative substances i.e. heavy metals, pesticides, and polychlorinated biphenyls (PCBs on fish, as well as provide information on time trends and potential threat to human health. Chemical substances which pollute water may affect living organisms in two ways. First of all, large amounts of chemical substances may cause sudden death of a significant part of the population of farmed fish, without symptoms (i.e. during breakdown of factories or industrial sewage leaks. However, more frequently, chemical substances accumulate in tissues of living organisms affecting them chronically. Heavy metals, pesticides, and polychlorinated biphenyls are persistent substances with a long-lasting biodegradation process. In a water environment they usually accumulate in sediments, which makes them resistant to biodegradation processes induced by, e.g., the UV light. These substances enter the fish through direct consumption of contaminated water or by contact with skin and gills. Symptoms of intoxication with heavy metals, pesticides, and PCBs may vary and depend on the concentration and bioavailability of these substances, physicochemical parameters of water, and the fish itself.

  13. Bioaccumulation, oxidative stress and genotoxicity in fish (Channa punctatus) exposed to a thermal power plant effluent.

    Science.gov (United States)

    Javed, Mehjbeen; Ahmad, Irshad; Usmani, Nazura; Ahmad, Masood

    2016-05-01

    Metal bioaccumulation and induction of biomarkers such as lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione S transferase (GST), reduced glutathione (GSH) and DNA damage are potential indicators of stress in Channa punctatus exposed to effluents. In canal water, receiving thermal power plant discharges, Fe and Ni concentrations exceeded the recommended guidelines set by the United Nations Environment Programme Global Environment Monitoring System (UNEPGEMS). Fe was highly bioavailable and accumulated in all organs (liver, kidney, muscle and integument). The highest metal pollution index (MPI) value of 41.2 was observed in kidney and the lowest 13.5 in muscle tissue. LPO, SOD, CAT and GST levels were significantly higher in liver and kidney, whereas GSH levels declined significantly compared to fish from the reference site. Concomitant damage to DNA was observed with significantly higher mean tail length in the exposed fish gill cells (26.5µm) and in liver (20.8µm) compared to reference fish. Therefore, it can be concluded that the thermal power plant effluent had the potential to cause oxidative stress and DNA damage in C. punctatus.

  14. Bioaccumulation, maternal transfer and elimination of polybrominated diphenyl ethers in wild frogs.

    Science.gov (United States)

    Liu, Peng-Yan; Du, Guo-Dong; Zhao, Ya-Xian; Mu, Yun-Song; Zhang, Ai-Qian; Qin, Zhan-Fen; Zhang, Xiao-You; Yan, Shi-Shuai; Li, Yan; Wei, Rong-Guo; Qin, Xiao-Fei; Yang, Yong-Jian

    2011-08-01

    To investigate bioaccumulation, maternal transfer and elimination of polybrominated diphenyl ethers (PBDEs) in amphibians, we collected adult frogs (Rana limnocharis) from a rice field in an e-waste recycling site in China. We found that ∑PBDEs in the whole frogs and various tissues (brain, liver, testis and egg) ranged from 17.10 to 141.11 ng g(-1) wet weight. Various tissues exhibited a similar PBDE congener profile, which was characterized by intermediate brominated congeners (BDE-99 and BDE-153) as the largest contributors, with less lower brominated congeners (BDE-28 and BDE-47) and higher brominated congeners (BDE-209). The maternal transfer capacity of PBDEs declined with the increase in bromine numbers of PBDE congeners. We suggest that the bromine atom number (the molecular size, to some degree) might be a determining factor for the maternal transport of a PBDE congener rather than K(ow) (Octanol-Water partition coefficient), which expresses a compound's lipophilicity. ∑PBDEs concentrations in frogs decreased over time during a depuration period of 54 days when these wild frogs were brought to the lab from the e-waste recycling site. The half-life of ∑PBDEs was 35 days, with about 14 days for BDE-47, and 36 and 81 days for BDE-99 and BDE-153, respectively. The data shows that the elimination of PBDEs has no essential difference from aquatic and terrestrial species.

  15. Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthworm Eisenia fetida.

    Science.gov (United States)

    Diao, Jinling; Xu, Peng; Liu, Donghui; Lu, Yule; Zhou, Zhiqiang

    2011-09-15

    Alpha-cypermethrin, a synthetic pyrethroid, is highly effective against a wide range of chewing and sucking insects in crops, and it is a racemic mixture of two enantiomers ((+)-1R-cis-αS+(-)-1S-cis-αR). Studies about the toxicity of alpha-cypermethrin to non-target organisms are mainly focused on aquatic organisms, whereas information regarding terrestrial organisms is relatively much less. Very little report about its enantioselective toxicity is known, so the present study tested the enantiomer-specific acute toxicity to earthworm Eisenia fetida. Experiment about bioaccumulation of two enantiomers in soil was conducted, peak-shaped accumulation curves were observed for both enantiomers, and the calculated biota to soil accumulations factor (BSAF) have significant difference between the two enantiomers. It was obvious that earthworm can uptake alpha-cypermethrin enantioselectively, preferentially accumulating (-)-(1S-cis-αR)-enantiomer. Great difference in toxicity to earthworm between two enantiomers was found, and the calculated LC(50) values for (+)-(1R-cis-αS)-, (-)-(1S-cis-αR)-, and rac-alpha-cypermethrin were 49.53, 1663.87 and 165.61 ng/cm(2), respectively. The acute toxicity of alpha-cypermethrin enantiomers was enantioselective.

  16. Bioaccumulation of HCH isomers in selected macroinvertebrates from the Elbe River: sources and environmental implications.

    Science.gov (United States)

    Kolaříková, Kateřina; von Tümpling, Wolf; Bartels, Peter

    2013-05-01

    Sediments of the Elbe River have been extremely polluted by contaminants originating from previous large-scale hexachlorocyclohexane (HCH) production and the application of γ-HCH (lindane) in its catchment in the second half of the twentieth century. In order to gain knowledge on bioaccumulation processes at lower trophic levels, field investigations of HCHs in macroinvertebrates were carried out along the longitudinal profile of the Elbe and tributary. Among the sites studied, concentrations in macroinvertebrates ranged within five orders of magnitude (0.01-100 μg/kg). In general, lower values of HCH isomers were observed at all Czech sites (mostly Elbe catchment, and these concentrations are decreasing over time to a lesser extent than γ-HCH. Higher HCH concentrations in sediments in the springtime are considered to be the result of erosion and transport processes during and after spring floods, and lower concentrations at sites downstream are thought to be caused by the time lapse involved in the transportation of contaminated particles from upstream. In addition, comparison with fish (bream) data from the literature revealed no increase in tissue concentrations between invertebrates and fish.

  17. Bioaccumulation and effect of cadmium in the photosynthetic apparatus of Prosopis juliflora

    Directory of Open Access Journals (Sweden)

    Claudia Yared Michel-López

    2016-10-01

    Full Text Available In the present study Prosopis juliflora plants grown in hydroponics solution were exposed to 50,100 and 1000 μM CdCl2. The cadmium uptake, transport and toxicity on the photosynthetic activities in the plants were measured at 48 h after starting cadmium treatments. The results showed that the concentration of Cd2+ in P. juliflora tended to increase with addition of Cd2+ to hydroponics solution. However, the increase of Cd2+ in roots and leaves varied largely. In this sense, the accumulation of Cd2+ in P. juliflora roots increased significantly in proportion with the addition of this metal. In contrast a relatively low level of Cd2+ transportation index, and bioaccumulation factor were found in P. juliflora at 48 h after of treatments. On the other hand the maximum photochemical efficiency of photosystem II (Fv/Fm and the activity of photosystem II (Fv/Fo ratios in P. juliflora leaf treated with Cd2+ not showed significantly changes during the experiment. These results suggested that the photosynthetic apparatus of P. juliflora was not the primary target of the Cd2+ action. Further studies will be focused in understanding the participation of the root system in Prosopis plants with the rhizosphere activation and root adsorption to soil Cd2+ under natural conditions.

  18. [Physiological response and bioaccumulation of Panax notoginseng to cadmium under hydroponic].

    Science.gov (United States)

    Li, Zi-wei; Yang, Ye; Cui, Xiu-ming; Liao, Pei-ran; Ge, Jin; Wang, Cheng-xiao; Yang, Xiao-yan; Liu, Da-hui

    2015-08-01

    The physiological response and bioaccumulation of 2-year-old Panax notoginseng to cadmium stress was investigated under a hydroponic experiment with different cadmium concentrations (0, 2.5, 5, 10 μmol · L(-1)). Result showed that low concentration (2.5 μmol · L(-1)) of cadmium could stimulate the activities of SOD, POD, APX in P. notoginseng, while high concentration (10 μmol · L(-1)) treatment made activities of antioxidant enzyme descended obviously. But, no matter how high the concentration of cadmium was, the activities of CAT were inhibited. The Pn, Tr, Gs in P. notoginseng decreased gradually with the increase of cadmium concentration, however Ci showed a trend from rise to decline. The enrichment coefficients of different parts in P. notoginseng ranked in the order of hair root > root > rhizome > leaf > stem, and all enrichment coefficients decreased with the increase of concentration of cadmium treatments; while the cadmium content in different parts of P. notoginseng and the transport coefficients rose. To sum up, cadmium could affect antioxidant enzyme system and photosynthetic system of P. notoginseng; P. notoginseng had the ability of cadmium enrichment, so we should plant it in suitable place reduce for reducing the absorption of cadmium; and choose medicinal parts properly to lessen cadmium intake.

  19. Heavy metals toxicity and bioaccumulation patterns in the body organs of four fresh water fish species

    Directory of Open Access Journals (Sweden)

    Safina Kousar and Muhammad Javed

    2014-04-01

    Full Text Available Various environmental pollutants, including metals can cause toxicological effects on aquatic animals especially fish species. Laboratory experiments were conducted to determine acute toxicity and bioaccumulation patterns of arsenic (As, nickel (Ni and zinc (Zn in 150-day old fish species (Labeo rohita, Cirrhina mrigala, Catla catla and Ctenopharyngodon idella, separately, in glass aquaria under constant water temperature (30oC, total hardness (300 mg L-1 and pH (7.5. Catla catla showed significantly (PNi>As. Among exposed fish species, Cirrhina mrigala exhibited significantly higher ability to amass Ni (146.8±149.1 μg g-1 and Zn (243.0±190.5 μg g-1, followed by Ctenopharyngodon idella, Labeo rohita and Catla catla at 96-h LC50. Liver showed higher tendency to accumulate Ni, followed by gills and kidney with significant differences while kidney showed higher tendency to accumulate As, followed by liver. Fins and scales exhibited significantly (P<0.05 least tendency to accumulate all the three metals. Accumulation of metals in different fish species is the function of their membrane permeability, which is highly species specific. Due to this reason different fish species showed different amount of metal accumulated in their bodies. This study also reveals that the metals, being conservative in nature have higher ability of biomagnifications.

  20. Bioaccumulation of uranium and thorium from the solution containing both elements using various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Tsuruta, T. [Department of Applied Chemistry, Tohwa University, 1-1-1 Chikushigaoka, Fukuoka 815-8510 (Japan)]. E-mail: ttsuruta@tohwa-u.ac.jp

    2006-02-09

    The effects of proton, thorium and uranium on the bioaccumulation of thorium and uranium from the solution (pH 3.5) containing uranium and thorium using Streptomyces levoris cells were examined. The amount of thorium accumulated using the cells decreased by the pre-contact between the cells and the solution (pH 3.5) containing no metals, whereas that of uranium was almost unaffected by the treatment. The amount of thorium was almost unaffected by the existence of uranium. On the other hand, the amount of uranium accumulated was strongly affected by the thorium, especially thorium addition after uranium accumulation. The decrease of uranium accumulated by the addition of thorium after the accumulation of uranium was higher than that from the solution containing both elements. Therefore, the contribution of uranium-thorium exchange reaction was higher than that of competition reaction. Accordingly, proton-uranium-thorium exchange reaction was occurred in the accumulation of thorium from the solution containing thorium and uranium. The gram-positive bacteria, such as Micrococcus luteus, Arthrobacter nicotianae, Bacillus subtilis and B. megaterium, has a much higher separation factor as thorium/uranium than that of actinomycetes. These gram-positive bacterial strains can be used for the accumulation of thorium from the solution containing uranium and thorium.

  1. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region.

    Science.gov (United States)

    Zhao, Jian-Liang; Liu, You-Sheng; Liu, Wang-Rong; Jiang, Yu-Xia; Su, Hao-Chang; Zhang, Qian-Qian; Chen, Xiao-Wen; Yang, Yuan-Yuan; Chen, Jun; Liu, Shuang-Shuang; Pan, Chang-Gui; Huang, Guo-Yong; Ying, Guang-Guo

    2015-03-01

    We investigated the bioaccumulation of antibiotics in bile, plasma, liver and muscle tissues of wild fish from four rivers in the Pearl River Delta region. In total, 12 antibiotics were present in at least one type of fish tissues from nine wild fish species in the four rivers. The mean values of log bioaccumulation factors (log BAFs) for the detected antibiotics in fish bile, plasma, liver, and muscle tissues were at the range of 2.06-4.08, 1.85-3.47, 1.41-3.51, and 0.48-2.70, respectively. As the digestion tissues, fish bile, plasma, and liver showed strong bioaccumulation ability for some antibiotics, indicating a different bioaccumulation pattern from hydrophobic organic contaminants. Human health risk assessment based on potential fish consumption indicates that these antibiotics do not appear to pose an appreciable risk to human health. To the best of our knowledge, this is first report of bioaccumulation patterns of antibiotics in wild fish bile and plasma.

  2. Biochemistry, cytogenetics and bioaccumulation in silver catfish (Rhamdia quelen) exposed to different thorium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Lizelia M.; Kochhann, Daiani; Becker, Alexssandro G.; Pavanato, Maria A. [Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Llesuy, Susana F. [Departamento de Quimica Analitica y Fisicoquimica, Universidad de Buenos Aires, Buenos Aires (Argentina); Loro, Vania L.; Raabe, Alice [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Mesko, Marcia F. [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Polo em Cruz Alta, Universidade Estadual do Rio Grande do Sul, 98025-810 Cruz Alta, RS (Brazil); Flores, Erico M.M.; Dressler, Valderi L. [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Baldisserotto, Bernardo [Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)], E-mail: bernardo@smail.ufsm.br

    2008-07-30

    The objective of this study was to evaluate the effect of thorium (Th) bioaccumulation on the metabolism of silver catfish (Rhamdia quelen) through biochemical parameters of the muscle (glycogen, glucose, lactate, protein, and ammonia). In addition, lipidic peroxidation levels (TBARS), catalase (CAT) and glutathione-S-transferase (GST) in the gills and in hepatic and muscular tissues were also analyzed. Cytogenetic parameters were studied through the evaluation of nuclear abnormalities in red blood cells. Silver catfish juveniles were exposed to different waterborne Th levels (in {mu}g L{sup -1}): 0 (control), 25.3 {+-} 3.2, 69.2 {+-} 2.73, 209.5 {+-} 17.6, and 608.7 {+-} 61.1 for 15 days. The organs that accumulated the highest Th levels were the gills and skin. The increase of waterborne Th concentration corresponded to a progressive increase of Th levels in the gills, liver, skin and kidneys, with the highest accumulation in the gills and skin. Metabolic intermediates in the muscle were altered by Th exposure, but no clear relationship was found. CAT and GST activities in the hepatic and muscular tissues of this species suggest that the enzymatic activities can be stimulated at the lowest Th levels and inhibited at the higher levels (mainly in 608.7 {mu}g L{sup -1}). The results of the cytogenetic assay contribute to this hypothesis because the higher toxicity in blood samples was found in juveniles exposed to 69.2 and 209.5 {mu}g L{sup -1} Th.

  3. Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area.

    Science.gov (United States)

    Cejpková, Jaroslava; Gryndler, Milan; Hršelová, Hana; Kotrba, Pavel; Řanda, Zdeněk; Synková, Iva; Borovička, Jan

    2016-11-01

    Ectomycorrhizal (ECM) fungi contribute to the survival of host trees on metal-rich soils by reducing the transfer of toxic metals into roots. However, little is known about the ability of ECM fungi to accumulate elements in ectomycorrhizae (ECMs). Here we report Ag, As, Cd, Cl, Cu, Sb, V, and Zn contents in wild-grown Norway spruce ECMs collected in a smelter-polluted area at Lhota near Příbram, Czech Republic. The ECMs data were compared with the element concentrations determined in the corresponding non-mycorrhizal fine roots, soils, and soil extracts. Bioaccumulation factors were calculated to differentiate the element accumulation ability of ECMs inhabited by different mycobionts, which were identified by ITS rDNA sequencing. Among the target elements, the highest contents were observed for Ag, Cl, Cd, and Zn; Imleria badia ECMs showed the highest capability to accumulate these elements. ECMs of Amanita muscaria, but not of other species, accumulated V. The analysis of the proportions of I. badia and A. muscaria mycelia in ECMs by using species-specific quantitative real-time PCR revealed variable extent of the colonization of roots, with median values close to 5% (w/w). Calculated Ag, Cd, Zn and Cl concentrations in the mycelium of I. badia ECMs were 1 680, 1 510, 2 670, and 37,100 mg kg(-1) dry weight, respectively, indicating substantial element accumulation capacity of hyphae of this species in ECMs. Our data strengthen the idea of an active role of ECM fungi in soil-fungal-plant interactions in polluted environments.

  4. Chromium removal through biosorption and bioaccumulation by bacteria from tannery effluents contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Mohammad Zubair [Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh (India); Ahmad, Shamim [Microbiology Division, Institute of Ophthalmology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh (India)

    2011-03-15

    Four bacterial isolates (two resistant and two sensitive to chromium) were isolated from soil contaminated with tannery effluents at Jajmau (Kanpur), India, and were identified by 16S rDNA gene sequencing as Stenotrophomonas maltophilia, Exiguobacterium sp., Pantoea sp., and Aeromonas sp. Biosorption of chromium by dried and living biomasses was determined in the resistant and sensitive isolates. The effect of pH, initial metal concentration, and contact time on biosorption was studied. At pH 2.5 the living biomass of chromium resistant isolate Exiguobacterium sp. ZM-2 biosorbed maximum amount of Cr{sup 6+} (29.8 mg/g) whereas the dried biomass of this isolate biosorbed 20.1 mg/g at an initial concentration of 100 mg/L. In case of chromate sensitive isolates, much difference was not observed in biosorption capacities between their dried and living biomasses. The maximum biosorption of Cr{sup 3+} was observed at pH 4.5. However, biosorption was identical in resistant and sensitive isolates. The data on chromium biosorption were analyzed using Langmuir and Freundlich isotherm model. The biosorption data of Cr{sup 6+} and Cr{sup 3+} from aqueous solution were better fitted in Langmuir isotherm model compared to Freundlich isotherm model. Metal recovery through desorption was observed better with dried biomasses compared to the living biomasses for both types of chromium ions. Bioaccumulation of chromate was found higher in chromate resistant isolates compared to the chromate sensitive isolates. Transmission electron microscopy confirmed the accumulation of chromium in cytoplasm in the resistant isolates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Optimizing stream water mercury sampling for calculation of fish bioaccumulation factors

    Science.gov (United States)

    Riva-Murray, Karen; Bradley, Paul M.; Journey, Celeste A.; Brigham, Mark E.; Scudder Eikenberry, Barbara C.; Knightes, Christopher; Button, Daniel T.

    2013-01-01

    Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive to sampling and analysis artifacts for fish and water. We evaluated the influence of water sample timing, filtration, and mercury species on the modeled relation between game fish and water mercury concentrations across 11 streams and rivers in five states in order to identify optimum Hgwater sampling approaches. Each model included fish trophic position, to account for a wide range of species collected among sites, and flow-weighted Hgwater estimates. Models were evaluated for parsimony, using Akaike’s Information Criterion. Better models included filtered water methylmercury (FMeHg) or unfiltered water methylmercury (UMeHg), whereas filtered total mercury did not meet parsimony requirements. Models including mean annual FMeHg were superior to those with mean FMeHg calculated over shorter time periods throughout the year. FMeHg models including metrics of high concentrations (80th percentile and above) observed during the year performed better, in general. These higher concentrations occurred most often during the growing season at all sites. Streamflow was significantly related to the probability of achieving higher concentrations during the growing season at six sites, but the direction of influence varied among sites. These findings indicate that streamwater Hg collection can be optimized by evaluating site-specific FMeHg - UMeHg relations, intra-annual temporal variation in their concentrations, and streamflow-Hg dynamics.

  6. Mercury Bioaccumulation in the Brazilian Amazonian Tucunares (Cichla sp., Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Maria Josefina Reyna Kurtz

    2008-08-01

    Full Text Available There are emissions of mercury to the atmosphere, soil and rivers of the Brazilian Amazon stem from many sources. Once in the atmosphere, the metal is oxidized and immediately deposited. In the water, the transformation to methylmercury takes place mostly by the action of microorganisms. The formation of methylmercury increases the dispersion and bioavailability of the element in the aquatic environment. Methylmercury can be assimilated by plankton and enters the food chain. The concentration of mercury increases further up in the trophic levels of the chain and reaches the highest values in carnivorous fishes like tucunare. Therefore, mercury emissions cause the contamination of natural resources and increase risks to the health of regular fish consumers. The objective of this work was to study the bioaccumulation of mercury in tucunares (Cichla sp., top predators of the food chain. The fishes were collected at two locations representative of the Amazonian fluvial ecosystem, in the state of Pará, Brazil, in 1992 and 2001. One location is near a former informal gold mining area. The other is far from the mining area and is considered pristine. Average values of total mercury concentration and accumulation rates for four different collection groups were compared and discussed. Tucunares collected in 2001 presented higher mercury contents and accumulated mercury faster than tucunares collected in 1992 notwithstanding the decline of mining activities in this period. The aggravation of the mercury contamination with time not only in an area where informal gold mining was practiced but also far from this area is confirmed.

  7. Phytoremediation potential of charophytes: Bioaccumulation and toxicity studies of cadmium, lead and zinc

    Institute of Scientific and Technical Information of China (English)

    Najjapak Sooksawat; Metha Meetam; Maleeya Kruatrachue; Prayad Pokethitiyook; Koravisd Nathalang

    2013-01-01

    The ability for usage of common freshwater charophytes,Chara aculeolata and Nitella opaca in removal of cadmium (Cd),lead (Pb)and zinc (Zn) from wastewater was examined.C aculeolata and N.opaca were exposed to various concentrations of Cd (0.25 and 0.5 mg/L),Pb (5 and 10 mg/L) and Zn (5 and 10 mg/L) solutions under hydroponic conditions for 6 days.C.aculeolata was more tolerant of Cd and Pb than N.opaca.The relative growth rate of N.opaca was drastically reduced at high concentrations of Cd and Pb although both were tolerant of Zn.Both macroalgae showed a reduction in chloroplast,chlorophyll and carotenoid content after Cd and Pb exposure,while Zn exposure had little effects.The bioaccumulation of both Cd and Pb was higher in N.opaca (1544.3 μg/g at 0.5 mg/L Cd,21657.0 μg/g at 10 mg/L Pb) whereas higher Zn accumulation was observed in C.aculeolata (6703.5 μg/g at 10 mg/L Zn).In addition,high bioconcentration factor values (> 1000) for Cd and Pb were observed in both species.C.aculeolata showed higher percentage of Cd and Pb removal (> 95%) than N.opaca and seemed to be a better choice for Cd and Pb removal from wastewater due to its tolerance to these metals.

  8. Comparison Of Cd2+ Biosorption And Bioaccumulation By Bacteria – A Radiometric Study

    Directory of Open Access Journals (Sweden)

    Machalová Linda

    2015-12-01

    Full Text Available In this work, bioaccumulation and biosorption characteristics of Cd2+ ions by both dead and living non-growing biomass of gram-positive bacteria Kocuria palustris and Micrococcus luteus isolated from spent nuclear fuel pools were compared. The radioindicator method with radionuclide 109Cd was used to obtain precise and reliable data characterizing Cd compartmentalization in bacterial cells. The following cellular distribution of Cd in living non-growing biomass after 4 h incubation in solutions containing different concentration of Cd2+ ions (100, 250, 500, 750 and 1000 µmol/L spiked with 109CdCl2 under aeration at 30 °C were obtained: in M. luteus almost 85 % of Cd was localized on the cell surface and 15 % in cytoplasm. Similarly, in K. palustris 83 % of Cd was localized on the cell surface and 17 % in cytoplasm. The data were obtained by gamma spectrometry of extracts and solids after sequential extraction of biomass with 5 mM Ca(NO32 and 20 mM EDTA. Biosorption of Cd by non-living bacterial biomass is a rapid process strongly affected by solution pH and as was confirmed by FTIR analysis beside carboxylate ions also other functional groups such as amino and phosphate contribute to Cd binding by bacterial cell surfaces. Maximum sorption capacities Qmax (μmol/g calculated from the Langmuir isotherm were 444 ± 15 μmol/g for M. luteus and 381 ± 1 μmol/g for K. palustris.

  9. Applicability of passive sampling to bioanalytical screening of bioaccumulative chemicals in marine wildlife.

    Science.gov (United States)

    Jin, Ling; Gaus, Caroline; van Mourik, Louise; Escher, Beate I

    2013-07-16

    Quantification of bioaccumulative contaminants in biota is time and cost-intensive and the required extensive cleanup steps make it selective toward targeted chemical groups. Therefore tissue extracts prepared for chemical analysis are not amenable to assess the combined effects of unresolved complex mixtures. Passive equilibrium sampling with polydimethylsiloxane (PDMS) has the potential for unbiased sampling of mixtures, and the PDMS extracts can be directly dosed into cell-based bioassays. The passive sampling approach was tested by exposing PDMS to lipid-rich tissue (dugong blubber; 85% lipid) spiked with a known mixture of hydrophobic contaminants (five congeners of tetra- to octachloro-dibenzo-p-dioxins). The equilibrium was attained within 24 h. Lipid-PDMS partition coefficients (Klip-PDMS) ranged from 20 to 38, were independent of hydrophobicity, and within the range of those previously measured for organochlorine compounds. To test if passive sampling can be combined with bioanalysis without the need for chemical cleanup, spiked blubber-PDMS extracts were dosed into the CAFLUX bioassay, which specifically targets dioxin-like chemicals. Small quantities of lipids coextracted by the PDMS were found to affect the kinetics in the regularly applied 24-h bioassay; however, this effect was eliminated by a longer exposure period (72 h). The validated method was applied to 11 unspiked dugong blubber samples with known (native) dioxin concentrations. These results provide the first proof of concept for linking passive sampling of lipid-rich tissue with cell-based bioassays, and could be further extended to other lipid rich species and a wider range of bioanalytical end points.

  10. Effects of salinity and copper co-exposure on copper bioaccumulation in marine rabbitfish Siganus oramin.

    Science.gov (United States)

    Zhou, Yanyan; Zhang, Wei; Guo, Zhiqiang; Zhang, Li

    2017-02-01

    Marine fish living in estuaries and coastal areas commonly encounter the stress of both salinity and metal pollution. In this study, euryhaline rabbitfish Siganus oramin were exposed to 50 μg L(-1) waterborne Cu or 300 μg g(-1) dry wt dietary Cu at salinity 33‰, 25‰, 20‰, 10‰, and 5‰ for 30 days. The Cu accumulation in the liver (>20-fold increase) and intestine (>5-fold increase) significantly increased after either waterborne or dietary Cu acclimation. Moreover, Cu accumulation was further enhanced in the liver, intestine, plasma, and whole body of Cu-exposed fish at lower salinities. Similarly, the waterborne Cu uptake rate constants (kus) were stable in the control at different salinities but increased significantly (2-4 times higher) after waterborne Cu exposure. Conversely, the dietary Cu assimilation efficiencies (AEs) were significantly lower in the dietary Cu-exposed fish (3-5%) than in the control fish (8-16%) at different salinities, suggesting that dietary Cu acclimation partially alleviated the dietary Cu uptake from the high-Cu diet. The Cu efflux rate constants (kes) were comparable among all treatments as 0.060-0.071 d(-1). The changes of Cu accumulation by different salinities and Cu exposure were well estimated by the biokinetic modeling. In summary, the present study indicates that rabbitfish can regulate Cu uptake and accumulation when acclimated to different salinities, but the Cu-exposed rabbitfish failed to prevent the elevation of Cu accumulation at low salinities. It therefore suggested that the concurrence of low salinity and high Cu exposure enhances the risks of Cu bioaccumulation and toxicity in rabbitfish.

  11. Metallothionein and bioaccumulation of cadmium in juvenile bluegills exposed to aqueous and sediment-associated cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cope, W.G.

    1991-01-01

    The author evaluated metallothionein (MT), free (unbound) hepatic cadmium and whole body cadmium as indicators of cadmium exposure in juvenile bluegills Lepomis macrochirus in laboratory tests. Two types of cadmium exposure were tested; aqueous and sediment-associated. In the aqueous tests, fish were exposed to cadmium (0.0 to 32.3 [mu]g/L) in an intermittent-flow diluter. In the sediment-associated cadmium test, fish were exposed to resuspended river sidment containing 1.3 to 21.4 [mu]g Cd/g (dry weight) at a nominal total suspended solids concentration of 1,000 mg/L in revolving, circular glass exposure chambers. Total cadmium concentrations were measured in various bluegill liver fractions, whole bluegill, water, and resuspended sediment to assess the partitioning and bioaccumulation of cadmium after the tests. Mean concentrations of MT and free cadmium in bluegill livers and concentrations of cadmium in whole bluegills were positively correlated with aqueous cadmium concentration and were equally suitable as indicators of aqueous cadmium exposure. Sediment-associated cadmium was biologically available, but to a lesser extent than aqueous cadmium. Cadmium concentrations in whole bluegills exposed to resuspended river sediment were 1.5- to 3.5-fold the concentrations in bluegills in sediment-free controls. Free cadmium and MT concentrations in bluegill liver and whole-body cadmium concentrations in bluegills were positively correlated with the cadmium concentrations in filtered water, resuspended sediment, and bulk river sediment; however, whole-body cadmim concentrations were a more sensitive indicator of exposure to sediment-associated cadmium than either free cadmium or MT concentratons in liver.

  12. Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France)

    Energy Technology Data Exchange (ETDEWEB)

    Casiot, C.; Bruneel, O.; Personne, J.-C.; Leblanc, M.; Elbaz-Poulichet, F. [University of Montpellier 2, Montpellier (France)

    2004-03-29

    In the acid stream (pH 2.5-4.7) originating from the Camoules mine tailings, the acidophilic protozoan Euglena mutabilis grows with extremely high sulfate (1.9-4.9 g/l), iron (0.7-1.7 g/l) and arsenic concentrations (0.08-0.26 g/l). Strong variations in flow rate and high sulfate concentrations (up to 4.9 g/l) have been registered in early winter and might be the reason for the reduction in cell number of the protozoan from October to December 2001. No relation was established between arsenic concentration and/or speciation and abundance of the protozoan in the stream. Arsenite, which is the most toxic form, predominates in water. The oxidation of arsenite to arsenate occurred within a few days in laboratory experiments when E. mutabilis was present in Reigous Creek water and synthetic As(III)-rich culture medium. Methylated compounds (MMA, DMA) were not identified in the culture media. The protozoan bioaccumulated As in the cell (336{+-} 112 {mu}g As/g dry wt.) as inorganic arsenite (105 {+-} 52 {mu}g As/g dry wt.) and arsenate (231 {+-} 112 {mu}g As/g dry wt.). Adsorption of As at the cell surface reached 57 mg/g dry wt. in the As(V) form for E. mutabilis grown in 250 mg/l As(III) synthetic medium. Both intracellular accumulation and adsorption at the cell surface increased for increasing As(III) concentration in the medium but the concentration factor in the cell relative to soluble As decreased.

  13. Cadmium bioaccumulation in Mediterranean spider crab (Maya squinado): human consumption and health implications for exposure in Italian population.

    Science.gov (United States)

    Angeletti, Roberto; Binato, Giovanni; Guidotti, Marco; Morelli, Stefania; Pastorelli, Augusto Alberto; Sagratella, Elisabetta; Ciardullo, Silvia; Stacchini, Paolo

    2014-04-01

    Cd bioaccumulation pattern was investigated in Mediterranean spider crab (Maya squinado, Herbst, 1788) collected from the northern Adriatic Sea. Specimens were caught in the framework of a monitoring plan in order to quantify the Cd distribution into different organs and tissues of crab. For this purpose, Cd level was studied in appendages, cephalothorax, abdomen as well as gonads. Cd concentrations were found largely below the Maximum Level (ML) established at the European Union (EU) level for muscle from crab appendages (found mean 0.011 mg kg(-1)) and approximately amounted to 2% of the EU ML (0.50 mg kg(-1)). The higher Cd concentrations were found in organs and tissues included in crab body such as abdomen, chephalotorax and gonads with respect to appendages. Chephalotorax showed the highest metal concentration (mean value of 1.19 mg kg(-1)). The possible differences in Cd bioaccumulation rate among crab organs and tissues were also investigated applying a parametric linear regression. A major Cd bioaccumulation rate was revealed in chephalotorax with respect to other analyzed organs and tissues. Furthermore, the evaluation of health risk related to human consumption of the Mediterranean spider crab has been studied for median of total population, median and 95th percentile of consumers of Italy. The observed results highlighted that the consumption of organs and tissues included in crab body such as abdomen, gonads and, in particular, chephalotorax substantially increased the Cd intake reaching also alarming Estimated Weekly Intake (EWI) values especially for median and 95th percentile of Italian consumers.

  14. Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area

    Energy Technology Data Exchange (ETDEWEB)

    Lourenço, Joana, E-mail: joanalourenco@ua.pt [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pereira, Ruth [Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Gonçalves, Fernando; Mendo, Sónia [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2013-01-15

    Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause–effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas. - Highlights: ► Long term effects of chronic pollution in natural population of rodents. ► Bioaccumulation of cadmium and uranium by organisms exposed to uranium wastes. ► P53 upregulation in the liver and SNPs in the Rb gene detected in the kidney. ► Significant DNA damages detected by the comet assay. ► Concerns on the risks of human populations living nearby uranium mining areas.

  15. Heavy metals bioaccumulation in selected tissues of red swamp crayfish: An easy tool for monitoring environmental contamination levels.

    Science.gov (United States)

    Goretti, E; Pallottini, M; Ricciarini, M I; Selvaggi, R; Cappelletti, D

    2016-07-15

    In this paper we explored the heavy metal bioaccumulation (Cd, Cu, Pb and Zn) in Procambarus clarkii, a crayfish recently suggested as a potential bioindicator for metals pollution in freshwater systems. The present study is focused on crayfishes populations caught in a heavily polluted industrial and in a reference sites (Central Italy), though the results are generalized with a thorough analysis of literature metadata. In agreement with the literature, the hepatopancreas (Hep, detoxification tissues) of the red swamp crayfish showed a higher concentration of heavy metals in comparison to the abdominal muscle (AbM, not detoxification tissues) in the sites under scrutiny. Hep/AbM concentration ratio was dependent on the specific metal investigated and on its sediment contamination level. Specifically we found that Hep/AbM ratio decreases as follows: Cd (11.7)>Cu (5.5)>Pb (3.6)>Zn (1.0) and Pb (4.34)>Cd (3.66)>Zn (1.69)>Cu (0.87) for the industrial and reference sites, respectively. The analysis of our bioaccumulation data as well as of literature metadata allowed to elaborate a specific contamination index (Toxic Contamination Index, TCI), dependent only on the bioaccumulation data of hepatopancreas and abdominal muscle. In the industrial site, TCI expressed values much higher than the unit for Cd and Cu, confirming that these metals were the main contaminants; in contrast for lower levels of heavy metals, as those observed in the reference site for Cu, Zn and Pb, the index provided values below unit. TCI is proposed as a useful and easy tool to assess the toxicity level of contaminated sites by heavy metals in the environmental management.

  16. Linkage between speciation of Cd in mangrove sediment and its bioaccumulation in total soft tissue of oyster from the west coast of India.

    Science.gov (United States)

    Chakraborty, Parthasarathi; Ramteke, Darwin; Gadi, Subhadra Devi; Bardhan, Pratirupa

    2016-05-15

    This study established a mechanistic linkage between Cd speciation and bioavailability in mangrove system from the west coast of India. High bioaccumulation of Cd was found in the oyster (Crassostrea sp.) even at low Cd loading in the bottom sediment. Bioaccumulation of Cd in the oyster gradually increased with the increasing concentrations of water soluble, exchangeable and carbonate/bicarbonate forms of Cd in the sediments. Fe/Mn oxyhydroxide phase was found to control Cd bioavailability in the sediment system. Cd-associated with sedimentary organic matter was bioavailable and organic ligands in the sediments were poor chelating agents for Cd. This study suggests that bioaccumulation of Cd in oyster (Crassostrea sp.) depends not on the total Cd concentration but on the speciation of Cd in the system.

  17. KINETICS AND EQUILIBRIUM PARAMETERS OF BIOSORPTION AND BIOACCUMULATION OF LEAD IONS FROM AQUEOUS SOLUTIONS BY TRICHODERMA LONGIBRACHIATUM

    Directory of Open Access Journals (Sweden)

    Enitan S. Balogun

    2012-04-01

    Full Text Available Biosorption and bioaccumulation of Lead ions (Pb(II by Trichoderma longibrachiatum were investigated in a batch system. The effects of some important parameters such as pH, initial metal concentration, temperature and inoculum concerntration on biosorption capacity were also studied. The maximum biosorption capacity of Trichoderma longibrachiatum was at 25 ppm of lead, showed 100 % removal at pH 7 and 25 oC after fifteen days. Biosorption equilibrium was established in 150 minutes. The process fitted well into pseudo second order kinetic model and was best explained by Langmuir isotherm.

  18. Influence of copper oxide nanoparticle form and shape on toxicity and bioaccumulation in the deposit feeder, Capitella teleta

    DEFF Research Database (Denmark)

    Dai, Lina; Banta, Gary Thomas; Selck, Henriette;

    2015-01-01

    Few in vivo studies have been conducted to assess how nanoparticle (NP) characteristics such as particle form and shape affect their toxicity and bioaccumulation. In the present study, the deposit feeder, Capitella teleta, was used to investigate the influence of copper form (CuO NPs, micron...... increased to approximately 26.3% on average in all Cu treatments after the depuration period indicating a delayed effect of Cu exposure, despite more than 90% depuration of Cu during this period. A significant effect of nanoparticle shape was detected on body burden, the gross uptake rate constant...

  19. Explaining Differences Between Bioaccumulation Measurements in Laboratory and Field Data Through Use of a Probabilistic Modeling Approach

    DEFF Research Database (Denmark)

    Selck, Henriette; Drouillard, Ken; Eisenreich, Karen

    2012-01-01

    was improved by accounting for bioavailability and absorption efficiency limitations, due to the presence of black carbon in sediment, and was used for probabilistic modeling of variability and propagation of error. Results showed that at lower trophic levels (mayfly and polychaete), variability......) and chemical concentration in the diet became more important particularly for the most persistent compound, PCB-153. These results suggest that variation in bioaccumulation assessment is reduced most by improved identification of food sources as well as by accounting for the chemical bioavailability in food...... the role of sediment components (black carbon, labile organic matter, and the like) on chemical absorption efficiencies has been identified as a key next steps...

  20. Update on metal content profiles in mushrooms--toxicological implications and tentative approach to the mechanisms of bioaccumulation.

    Science.gov (United States)

    Michelot, D; Siobud, E; Doré, J C; Viel, C; Poirier, F

    1998-12-01

    Fifteen metals (macroelements, heavy metals and trace elements) have been investigated using inductively coupled plasma-atomic emission spectrometry (ICP-AES) on 92 specimens of mushrooms collected in France, in the Paris region. Their levels and distributions are given. Taking in account the respective contents and bioaccumulation abilities, the data reveal that different mechanisms are involved depending on fungi species and genera besides physicochemical influences. Moreover, they suggest that the different elements might accumulate through various ways that are successively mentioned. Metabolic, toxicological and environmental significances are discussed.

  1. Modeling {sup 137}Cs bioaccumulation in the salmon–resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident

    Energy Technology Data Exchange (ETDEWEB)

    Alava, Juan José, E-mail: jalavasa@sfu.ca; Gobas, Frank A.P.C.

    2016-02-15

    To track the long term bioaccumulation of {sup 137}Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for {sup 137}Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that {sup 137}Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of {sup 137}Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. {sup 137}Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the {sup 137}Cs activity in species of the food web, based on current measurements and forecasts of {sup 137}Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term {sup 137}Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current {sup 137}Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term {sup 137}Cs activities and may be good sentinels for monitoring {sup 137}Cs in the region. Assessment of the long term consequences of {sup 137}Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution. - Highlights: • A food web bioaccumulation model to assess the biomagnification of {sup 137}Cs is developed. • Cesium 137 exhibits bioaccumulation over time as simulated by the model. • Predicted activities in marine biota are below {sup 137}Cs-food consumption benchmarks. • Long-term monitoring of {sup 137}Cs in the ocean will improve the model predictions.

  2. Re-evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model

    Energy Technology Data Exchange (ETDEWEB)

    Borgmann, U.; Norwood, W.P.; Dixon, D.G

    2004-10-01

    Bioaccumulation by Hyalella of all metals studied so far in our laboratory was re-evaluated to determine if the data could be explained satisfactorily using saturation models. Saturation kinetics are predicted by the biotic ligand model (BLM), now widely used in modelling acute toxicity, and are a pre-requisite if the BLM is to be applied to chronic toxicity. Saturation models provided a good fit to all the data. Since these are mechanistically based, they provide additional insights into metal accumulation mechanisms not immediately apparent when using allometric models. For example, maximum Cd accumulation is dependent on the hardness of the water to which Hyalella are acclimated. The BLM may need to be modified when applied to chronic toxicity. Use of saturation models for bioaccumulation, however, also necessitates the need for using saturation models for dose-response relationships in order to produce unambiguous estimates of LC50 values based on water and body concentrations. This affects predictions of toxicity at very low metal concentrations and results in lower predicted toxicity of mixtures when many metals are present at low concentrations.

  3. Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically.

    Science.gov (United States)

    Ferrara, Giuseppe; Loffredo, Elisabetta; Senesi, Nicola

    2006-04-01

    The effects of the endocrine disruptor bisphenol A (BPA) at concentrations of 10 and 50 mg l(-1) were evaluated on the germination and morphology, micronuclei (MN) content in root tip cells and BPA bioaccumulation of hydroponic seedlings of broad bean (Vicia faba L.), tomato (Lycopersicon esculentum Mill.), durum wheat (Triticum durum Desf.) and lettuce (Lactuca sativa L.) after 6 and 21 days of growth. In general, BPA at any dose used did not inhibit germination and early growth (6 days) of seedlings of the species examined, with the exception of primary root length of tomato which decreased at the higher BPA dose. In contrast, an evident phytotoxicity was induced by BPA in all species after 21 days of growth with evident morphological anomalies and significant reductions of the lengths and fresh and dry weights of shoots and roots of seedlings. With respect to the nutrient medium without seedlings, BPA concentration decreased markedly during the growth period in the presence of broad bean and tomato seedlings, and limitedly in the presence of durum wheat and, especially, lettuce. Further, the presence of BPA measured in roots and shoots of broad bean and tomato after 21-day growth indicated that bioaccumulation of BPA had occurred. The number of MN in broad bean and durum wheat root tip cells increased markedly by treatment with BPA at both concentrations, thus suggesting a potential clastogenic activity of BPA in these species.

  4. Intestinal nematodes affect selenium bioaccumulation, oxidative stress biomarkers, and health parameters in juvenile rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Hursky, Olesya; Pietrock, Michael

    2015-02-17

    In environmental studies, parasites are often seen as a product of enhanced host susceptibility due to exposure to one or several stressors, whereas potential consequences of infections on host responses are often overlooked. Therefore, the present study focused on effects of parasitism on bioaccumulation of selenium (Se) in rainbow trout (Oncorhynchus mykiss). Joint effects of biological (parasite) and chemical (Se) stressors on biomarkers of oxidative stress (glutathione-S-transferase (GST), superoxide dismutase (SOD)), and fish health (condition factor (K), hepatosomatic index (HSI), gross energy) were also examined. Fish of the control group received uncontaminated food, while test fish, either experimentally infected with the nematode Raphidascaris acus or not, were exposed to dietary selenomethionine (Se-Met) at an environmentally relevant dose over 7 weeks. Selenium bioaccumulation by the parasite was low relative to its host, and parasitized trout showed slowed Se accumulation in the muscle as compared to uninfected fish. Furthermore, GST and SOD activities of trout exposed to both Se-Met and parasites were generally significantly lower than in fish exposed to Se-Met alone. Gross energy concentrations, but not K or HSI, were reduced in fish exposed to both Se-Met and R. acus. Together the experiment strongly calls for consideration of parasites when interpreting effects of pollutants on aquatic organisms in field investigations.

  5. Bioaccumulation and single and joint toxicities of penta-BDE and cadmium to earthworms (Eisenia fetida) exposed to spiked soils

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bioaccumulation of penta-BDE(DE-71) in earthworms(Eisenia fetida) and the induced toxicities on the growth and reproduction of earthworms were investigated.All the major congeners in DE-71 could be bioaccumulated in earthworms and the concentration found in earthworms correlated to the spiked concentration in soil.DE-71 might inhibit the growth and reproduction of cocoons and juveniles of earthworms.The toxicities were dose dependent and increased with exposure time.Exposing earthworms to combination of DE-71 and Cd resulted in enhanced mortality and reduction of cocoons or juveniles in a synergistic mode.The presence of DE-71 may affect the relocation of Cd in earthworms.When the earthworms were exposed to Cd alone,Cd up-taken by earthworms was mainly partitioned in the cytosolic fraction.While DE-71 was present,Cd in the cytosolic fraction decreased significantly.It is perhaps that DE-71 inhibits the synthesis of matallothioneins,and then reduces the detoxification ability of earthworms.This is the first report about the toxicity of PBDEs to earthworms.The result would be useful for ecological risk assessment of PBDEs in terrestrial ecosystem.

  6. Modelling trace metal (Hg and Pb) bioaccumulation in the Mediterranean mussel, Mytilus galloprovincialis , applied to environmental monitoring

    Science.gov (United States)

    Casas, Stellio; Bacher, Cédric

    2006-08-01

    Bioaccumulation of metal within an organism results from interactions between physiological factors (growth, weight loss, absorption and accumulation), chemical factors (metal concentration, speciation and bioavailability) and environmental factors (temperature and food concentration). To account for such interactions in the mussel Mytilus galloprovincialis, we combined bioaccumulation and Dynamic Energy Budget models. Field experiments were conducted to measure uptake and elimination kinetics for two metals (Hg and Pb) in three Mediterranean sites with differences in contamination levels, and to calibrate the models. Metal uptake from water and from food was considered separately. Metal elimination resulted from reproduction and/or from direct excretion. Contributions of physiological variables, such as body size and tissue composition, were quantified. By combining environmental and biological data, the model provided an efficient bio-monitoring tool which can be applied to various coastal environments. An application to the French bio-integrator network (RINBIO) was carried out through inverse analysis and enabled us to assess the real level of contamination in water on the basis of contamination measured in mussels.

  7. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution.

    Science.gov (United States)

    Polechońska, Ludmiła; Samecka-Cymerman, Aleksandra

    2016-02-01

    The aim of present study was to investigate the level of trace metals and macroelements in Hydrocharis morsus-ranae collected from regions differing in the degree and type of pollution. Concentrations of 17 macro- and microelements were determined in roots and shoots of European frogbit as well as in water and bottom sediments from 30 study sites. Plants differed in concentrations of elements and bioaccumulation capacity depending on the characteristics of dominant anthropogenic activities in the vicinity of the sampling site. Shoots of H. morsus-ranae growing in the vicinity of organic chemistry plants and automotive industry contained particularly high levels of Cd, Co, and S. Plants from area close to heat and power plant, former ferrochrome industry and new highway, were distinguished by the highest concentrations of Cr, Cu, and Pb. European frogbit from both these regions contained more Fe, Hg, Mn, Ni, and Zn than plants from agricultural and recreational areas. The concentrations of alkali metals and Co, Fe, and N in H. morsus-ranae were elevated in relation to the natural content in macrophytes irrespectively to their content in the environment. Based on the values of Bioaccumulation and Translocation Factors, European frogbit is an accumulator for Co, Cr, Cu, Fe, K, Mn, Ni, Pb, and Zn and a good candidate for phytoremediation of water polluted with Co, Cu, Hg, K, Mn, and Ni. The amount of Co and Mn removed from water and accumulated in the plant biomass during the vegetation season was considerably high.

  8. Bioaccumulation of polychlorinated biphenyls and metals from contaminated sediment by freshwater prawns, Macrobrachium rosenbergii and clams, Corbicula fluminea

    Energy Technology Data Exchange (ETDEWEB)

    Tatem, H.E.

    1986-02-01

    Freshwater prawns, Macrobrachium rosenbergii, and clams, Corbicula Fluminea, were exposed for 48 or 50 days to three concentrations of a river sediment that contained environmental contaminants such as polychlorinated biphenyls (PCBs) and metals. The PCB sediment bioaccumulation factors (BAF) for prawns ranged from 0.11 to 0.90 for 1242 and 0.20 to 2.40 for 1254, and were highest for animals exposed to 10% sediment. Exposed clams also accumulated PCBs (1242 + 1254) from the sediment. Sediment BAFs for clams were 0.54 to 12.52 and were highest for animals exposed to 10% sediment. Analyses of clams for metals showed lead (Pb) in exposed animals at higher concentrations compared with controls. Bioaccumulation of Pb differed from PCB in that the Pb concentrations did not increase over time and concentrations were higher among animals exposed to 10% sediment compared to animals exposed to 100% sediment. Sediment 11-80 contained 99 mg/kg of Pb while exposed animals, at 48 days, contained approximately 2.2 mg/kg Pb. Analysis of clams for cadmium (Cd) showed exposed animals contained less Cd than controls.

  9. Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon.

    Science.gov (United States)

    Matulik, Adam G; Kerstetter, David W; Hammerschlag, Neil; Divoll, Timothy; Hammerschmidt, Chad R; Evers, David C

    2017-01-20

    Mercury bioaccumulation is frequently observed in marine ecosystems, often with stronger effects at higher trophic levels. We compared total mercury (THg) and methylmercury (MeHg) from muscle with length, comparative isotopic niche, and diet (via δ(13)C and δ(15)N) among four sympatric coastal sharks in Florida Bay (USA): blacknose, blacktip, bull, and lemon. Mercury in blacknose and blacktip sharks increased significantly with size, whereas bull and lemon sharks had a high variance in mercury relative to size. Both δ(13)C and δ(15)N were consistent with general resource use and trophic position relationships across all species. A significant relationship was observed between δ(13)C and mercury in blacktip sharks, suggesting an ontogenetic shift isotopic niche, possibly a dietary change. Multiple regression showed that δ(13)C and δ(15)N were the strongest factors regarding mercury bioaccumulation in individuals across all species. Additional research is recommended to resolve the mechanisms that determine mercury biomagnification in individual shark species.

  10. Modified natural clinoptilolite detoxifies small mammal's organism loaded with lead I. Lead disposition and kinetic model for lead bioaccumulation.

    Science.gov (United States)

    Beltcheva, Michaela; Metcheva, Roumiana; Popov, Nikolay; Teodorova, Svetla E; Heredia-Rojas, J Antonio; Rodríguez-de la Fuente, Abraham O; Rodríguez-Flores, Laura E; Topashka-Ancheva, Margarita

    2012-06-01

    Zeolites, especially clinoptilolites, have wide application in removing heavy metals from different solutions and wastewater. The detoxification capacity of the clinoptilolite sorbent KLS-10-MA, a modified natural Bulgarian zeolite, applied as a food supplement in conditions of an ecotoxicological experiment with conventional food and lead was demonstrated for the first time. Laboratory mice, inbred imprinting control region strain, were used in a 90-day ecotoxicological experiment. Animals were divided into four experimental groups. Lead bioaccumulations in exposed and non-supplemented/supplemented with KLS-10-MA animals were compared. As additional control, healthy animals non-exposed to Pb were fed with conventional forage mixed with 12.5% KLS-10-MA. The dietary inclusion of the sorbent reduced Pb concentrations in exposed and supplemented mice by 84%, 89%, 91%, 77%, and 88% in carcass, liver, kidneys, bones, and feces, respectively. A mathematical model was proposed to outline the common trends of bone Pb bioaccumulation in exposed and non-supplemented/supplemented animals. Characteristic parameters of the kinetics of Pb concentrations were determined. Based on the model, the coefficient of absorption of Pb by gastrointestinal mucosa in the supplemented mice was found-η = 3.53% (versus η = 15% in non-supplemented ones). The present study clearly indicates that there is a realistic perspective to create a new drug based on modified natural clinoptilolites in cases of chronic heavy metal intoxication, without negatively affecting the environment.

  11. Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China.

    Science.gov (United States)

    Yin, Runsheng; Feng, Xinbin; Zhang, Junjun; Pan, Ke; Wang, Wenxiong; Li, Xiangdong

    2016-03-01

    Coastal and estuarine regions are important areas of mercury pollution. Therefore, it is important to properly characterize the sources and bioaccumulation processes of mercury in these regions. Here, we present mercury stable isotopic compositions in 18 species of wild marine fish collected from the Pearl River Estuary (PRE), south China. Our results showed variations in mass-independent fractionation (Δ(199)Hg: +0.05 ± 0.10‰ to +0.59 ± 0.30‰) with a Δ(199)Hg/Δ(201)Hg of ∼1.26, suggesting that aqueous MeHg underwent photo-degradation prior to incorporation into the food chain. For the results, we discovered small but significant differences of Δ(199)Hg values among herbivorous, demersal, and carnivorous fish, indicating that different feeding guilds of fish may have incorporated MeHg with various degrees of photo-demethylation. The consistent mercury isotope compositions between fish feeding habitat and mercury sources in the estuary provide potentially important findings on the transformation and bioaccumulation of this toxic metal in subtropical coastal environments.

  12. Bioaccumulation of copper and toxic effects on feeding, growth, fecundity and development of pond snail Lymnaea luteola L.

    Science.gov (United States)

    Das, Sangita; Khangarot, B S

    2011-01-15

    We studied the bioaccumulation and the toxic effects of Cu on survival, number of eggs and eggmasses laying, embryo development, growth, and food consumption in an Indian pond snail, Lymnaea luteola L. exposed for 7 weeks. Copper caused loss of chemoreception, locomotion and inhibited food consumption significantly during 7 weeks of exposure. Food consumption in Cu exposed snails significantly decreased and at 56 and 100 μg L(-1), snail stopped feeding activity. Mean number of eggmasses or eggs significantly decreased in Cu concentrations during the 7 week study. The percentage hatching decreased in Cu concentrations but there was more than 95% hatched in control in 10-11 days after spawning. Egg development was completely inhibited at 100 μg L(-1), while abnormal embryonic development observed at 32 and 56 μg L(-1) of Cu. The Cu concentration in tissues increased in Cu treated snails and bioaccumulation factor ranged from 2.3 to 18.7. Snail growth at 5.6 and 10 μg L(-1) was reduced by 6.2% and 16.9%, respectively. The study revealed that snail embryos and adults could be used as in vivo test models for ecotoxicological studies. Findings of present study are helpful for advancing water quality guidelines for protecting aquatic biota.

  13. Bioaccumulation Experiments in Mussels Contaminated with the Food-Borne Pathogen Arcobacter butzleri: Preliminary Data for Risk Assessment

    Directory of Open Access Journals (Sweden)

    Donatella Ottaviani

    2013-01-01

    Full Text Available The aim of this study was to evaluate, at a laboratory scale, the ability of this microorganism to grow in seawater and bioaccumulate in mussels (Mytilus galloprovincialis maintained in constantly aerated tanks, containing twenty litres of artificial seawater. Three concentrations of A. butzleri LMG 10828T were tested (about 5×106 CFU/mL, 5×104 CFU/mL, and 5×102 CFU/mL. Following contamination, enumeration of A. butzleri was performed from water and mussels each day, for up to 96 h. Three contamination experiments with artificial seawater in absence of mussels were also performed in the same manner. In the experiments with mussels, A. butzleri declined in water of approximately 1 log every 24 h from the contamination. In artificial seawater without mussels the concentration of A. butzleri remained on the same logarithmic level in the first 48 h and then decreased of about 1 log every 24 hours. In mussels, the concentration was approximately 2 log lower than the exposition level after 24 h from the contamination, and then it decreased exponentially of 1 log every 24 h. Our findings suggest that in the experimental conditions tested A. butzleri is neither able to effectively grow in seawater nor bioaccumulate in mussels, at least in the free and cultivable form.

  14. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation.

    Science.gov (United States)

    Paul-Pont, Ika; Lacroix, Camille; González Fernández, Carmen; Hégaret, Hélène; Lambert, Christophe; Le Goïc, Nelly; Frère, Laura; Cassone, Anne-Laure; Sussarellu, Rossana; Fabioux, Caroline; Guyomarch, Julien; Albentosa, Marina; Huvet, Arnaud; Soudant, Philippe

    2016-09-01

    The effects of polystyrene microbeads (micro-PS; mix of 2 and 6 μm; final concentration: 32 μg L(-1)) alone or in combination with fluoranthene (30 μg L(-1)) on marine mussels Mytilus spp. were investigated after 7 days of exposure and 7 days of depuration under controlled laboratory conditions. Overall, fluoranthene was mostly associated to algae Chaetoceros muelleri (partition coefficient Log Kp = 4.8) used as a food source for mussels during the experiment. When micro-PS were added in the system, a fraction of FLU transferred from the algae to the microbeads as suggested by the higher partition coefficient of micro-PS (Log Kp = 6.6), which confirmed a high affinity of fluoranthene for polystyrene microparticles. However, this did not lead to a modification of fluoranthene bioaccumulation in exposed individuals, suggesting that micro-PS had a minor role in transferring fluoranthene to mussels tissues in comparison with waterborne and foodborne exposures. After depuration, a higher fluoranthene concentration was detected in mussels exposed to micro-PS and fluoranthene, as compared to mussels exposed to fluoranthene alone. This may be related to direct effect of micro-PS on detoxification mechanisms, as suggested by a down regulation of a P-glycoprotein involved in pollutant excretion, but other factors such as an impairment of the filtration activity or presence of remaining beads in the gut cannot be excluded. Micro-PS alone led to an increase in hemocyte mortality and triggered substantial modulation of cellular oxidative balance: increase in reactive oxygen species production in hemocytes and enhancement of anti-oxidant and glutathione-related enzymes in mussel tissues. Highest histopathological damages and levels of anti-oxidant markers were observed in mussels exposed to micro-PS together with fluoranthene. Overall these results suggest that under the experimental conditions of our study micro-PS led to direct toxic effects at tissue, cellular and

  15. Mercury bioaccumulation in dragonflies (Odonata: Anisoptera): examination of life stages and body regions.

    Science.gov (United States)

    Buckland-Nicks, Amy; Hillier, Kirk Neil; Avery, Trevor S; O'Driscoll, Nelson J

    2014-09-01

    Dragonflies (Odonata: Anisoptera) are an important component of both aquatic and terrestrial food webs and are vectors for methylmercury (MeHg) biomagnification. Variations in mercury content with life stage and body regions may affect the relative transfer of mercury to aquatic or terrestrial food webs; however, there has been little research on this subject. Also, little is known about mercury bioaccumulation in different body regions of dragonflies. To address these knowledge gaps, dragonfly naiads, adults, and exuviae were collected at 2 lakes in Kejimkujik National Park, Nova Scotia, Canada, and mercury concentrations in different life stages and body regions were quantified. Mean whole body concentrations of MeHg were substantial in naiads (232 ± 112 ng g(-1) dry wt, n = 66), emerging adults (236 ± 50 ng g(-1) dry wt, n = 10), and mature adults (231 ± 74 ng g(-1) dry wt, n = 20). Mean MeHg concentrations in exuviae (5.6 ± 4.3 ng g(-1), n = 32) were 40-fold lower than in naiads and adults. Emerging adults had 2-fold to 2.5-fold higher Hg(II) concentrations than naiads, mature adults, and exuviae. In body regions of both naiads and adults, some abdomens contained significantly higher concentrations of Hg(II) than heads or thoraces, and this trend was consistent across families. Across families, Aeshnidae had significantly higher concentrations of MeHg and total Hg than Gomphidae and Libellulidae, but not higher than Cordulidae. The Hg(II) concentrations were lower in Aeshnidae and Libellulidae than in Gomphidae and Cordulidae. Shedding of exuviae presents a possible mechanism for mercury detoxification, but mercury concentrations and burdens in exuviae are low in comparison with naiads and adults. Dragonfly adults retain a high potential for transferring substantial amounts of MeHg to their predators.

  16. Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain

    Directory of Open Access Journals (Sweden)

    Nica Dragos V

    2012-06-01

    Full Text Available Abstract Background Copper (Cu, zinc (Zn, cadmium (Cd, and lead (Pb can pose serious threats to environmental health because they tend to bioaccumulate in terrestrial ecosystems. We investigated under field conditions the transfer of these heavy metals in a soil-plant-snail food chain in Banat area, Romania. The main goal of this paper was to assess the Roman snail (Helix pomatia usefulness in environmental monitoring as bioindicator of heavy metal accumulation. Eight sampling sites, selected by different history of heavy metal (HM exposure, were chosen to be sampled for soil, nettle leaves, and newly matured snails. This study also aimed to identify the putative effects of HM accumulation in the environment on phenotypic variability in selected shell features, which included shell height (SH, relative shell height (RSH, and whorl number (WN. Results Significantly higher amounts of HMs were accumulated in snail hepatopancreas and not in foot. Cu, Zn, and Cd have biomagnified in the snail body, particularly in the hepatopancreas. In contrast, Pb decreased when going up into the food chain. Zn, Cd, and Pb correlated highly with each other at all levels of the investigated food chain. Zn and Pb exhibited an effective soil–plant transfer, whereas in the snail body only foot Cu concentration was correlated with that in soil. There were significant differences among sampling sites for WN, SH, and RSH when compared with reference snails. WN was strongly correlated with Cd and Pb concentrations in nettle leaves but not with Cu and Zn. SH was independent of HM concentrations in soil, snail hepatopancreas, and foot. However, SH correlated negatively with nettle leaves concentrations for each HM except Cu. In contrast, RSH correlated significantly only with Pb concentration in hepatopancreas. Conclusions The snail hepatopancreas accumulates high amounts of HMs, and therefore, this organ can function as a reliable biomarker for tracking HM bioavailability

  17. Validation of a chronic dietary cadmium bioaccumulation and toxicity model for Hyalella azteca exposed to field-contaminated periphyton and lake water.

    Science.gov (United States)

    Golding, Lisa A; Borgmann, Uwe; Dixon, D George

    2011-11-01

    A model previously developed in the laboratory to predict chronic bioaccumulation and toxicity of cadmium to Hyalella azteca from a diet of periphyton was validated by comparing predictions with measurements of Cd in two exposure scenarios: laboratory-cultured H. azteca exposed for 28 d to field-contaminated water and periphyton, and Cd measured in field-collected H. azteca. In both exposure scenarios, model predictions of bioaccumulation were shown to be robust; however, effects on Cd bioaccumulation from complexation with dissolved organic carbon (DOC) and inhibition of Cd bioaccumulation by Ca²⁺ must be incorporated into the model to permit its wider application. The model predicted that 80 to 84% of Cd in H. azteca came from periphyton when H. azteca were chronically exposed to dissolved Cd in lake water at 2.63 to 3.01 nmol/L and periphyton at 1,880 to 2,630 nmol/g ash-free dry mass. Dietary Cd contributed markedly to the model-predicted decrease in 28-d survival to 74% at environmental Cd concentrations in food and water. In reality, survival decreased to 10%. The lower than predicted survival likely was due to the higher nutritional quality of periphyton used to develop the model in the laboratory compared with the field-collected periphyton. Overall, this research demonstrated that Cd in a periphyton diet at environmental concentrations can contribute to chronic toxicity in H. azteca.

  18. Bioaccumulation and oxidative stress responses measured in the estuarine ragworm (Nereis diversicolor) exposed to dissolved, nano-and bulk-sized silver

    DEFF Research Database (Denmark)

    Cozzari, Margherita; Elia, Antonia Concetta; Pacini, Nicole;

    2015-01-01

    The impact of Ag NPs on sediment-dwelling organisms has received relatively little attention, particularly in linking bioaccumulation to oxidative injury. The polychaete Nereis diversicolor was exposed to sediments spiked with dissolved Ag (added as AgNO3), Ag NPs (63 ± 27 nm) and larger bulk Ag ...

  19. Biotransfer, bioaccumulation and effects of herbivore dietary Co, Cu, Ni, and Zn on growth and development of the insect predator Podisus maculiventris (Say)

    Science.gov (United States)

    Increased metal availability in the environment can detrimentally impact the growth and development of organisms at all trophic levels of a food web, in part because metals can be biotransferred or bioaccumulated between trophic levels. We evaluated the survival, growth, and development of a general...

  20. Influence of lead-doped hydroponic medium on the adsorption/bioaccumulation processes of lead and phosphorus in roots and leaves of the aquatic macrophyte Eicchornia crassipes.

    Science.gov (United States)

    Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; de Oliveira, Ana Paula; Trigueros, Daniela Estelita Goes

    2013-11-30

    In this study, lead bioaccumulation by the living free-floating aquatic macrophyte Eicchornia crassipes in different hydroponic conditions with variations in phosphorus and lead concentrations was investigated. A set of growth experiments in hydroponic media doped with lead and phosphorus within a wide concentration range was performed for 32 days in a greenhouse. All experiments were carried out with periodic replacement of all nutrients and lead. The concentration of lead and nutrients in biomass was determined by synchrotron radiation-excited total reflection X-ray fluorescence. By increasing the lead concentration in the medium, a reduction in biomass growth was observed, but a higher phosphorus retention in roots and leaves was shown at lower lead concentrations. In addition, an increase in the amount of bioaccumulated lead and phosphorus in roots was observed for higher lead and phosphorus concentrations in the medium, reaching saturation values of 4 mg Pb g(-1) and 7 mg P g(-1), respectively. Four non-structural kinetic models were tested, to represent the bioaccumulation of lead and phosphorus in roots. Pseudo-second order and irreversible kinetic models described the lead bioaccumulation data well, however, an irreversible kinetic model better fitted phosphorus uptake in roots.

  1. First evidence of "paralytic shellfish toxins" and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in "tegogolo" snails (Pomacea patula catemacensis).

    Science.gov (United States)

    Berry, John P; Lind, Owen

    2010-05-01

    Exposure to cyanobacterial toxins in freshwater systems, including both direct (e.g., drinking water) and indirect (e.g., bioaccumulation in food webs) routes, is emerging as a potentially significant threat to human health. We investigated cyanobacterial toxins, specifically cylindrospermopsin (CYN), the microcystins (MCYST) and the "paralytic shellfish toxins" (PST), in Lago Catemaco (Veracruz, Mexico). Lago Catemaco is a tropical lake dominated by Cylindrospermopsis, specifically identified as Cylindrospermopsis catemaco and Cylindrospermopsis philippinensis, and characterized by an abundant, endemic species of snail (Pomacea patula catemacensis), known as "tegogolos," that is both consumed locally and commercially important. Samples of water, including dissolved and particulate fractions, as well as extracts of tegogolos, were screened using highly specific and sensitive ELISA. ELISA identified CYN and PST at low concentrations in only one sample of seston; however, both toxins were detected at appreciable quantities in tegogolos. Calculated bioaccumulation factors (BAF) support bioaccumulation of both toxins in tegogolos. The presence of CYN in the phytoplankton was further confirmed by HPLC-UV and LC-MS, following concentration and extraction of algal cells, but the toxin could not be confirmed by these methods in tegogolos. These data represent the first published evidence for CYN and the PST in Lago Catemaco and, indeed, for any freshwater system in Mexico. Identification of the apparent bioaccumulation of these toxins in tegogolos may suggest the need to further our understanding of the transfer of cyanobacterial toxins in freshwater food webs as it relates to human health.

  2. Bioaccumulation, subcellular distribution and toxicity of sediment-associated copper in the ragworm Nereis diversicolor: The relative importance of aqueous copper, copper oxide nanoparticles and microparticles

    DEFF Research Database (Denmark)

    Thit, Amalie; Banta, Gary Thomas; Selck, Henriette

    2015-01-01

    mean burrowing time increased during exposure to CuAq and CuONP from 0.12 h (controls) to 19.3 and 12.2 h, respectively. All Cu treatments bioaccumulated, especially CuAq (up to 4 times more than the other treatments). Cu was roughly equally distributed among the five subcellular fractions in controls...

  3. Modeling (137)Cs bioaccumulation in the salmon-resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident.

    Science.gov (United States)

    Alava, Juan José; Gobas, Frank A P C

    2016-02-15

    To track the long term bioaccumulation of (137)Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for (137)Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that (137)Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of (137)Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. (137)Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the (137)Cs activity in species of the food web, based on current measurements and forecasts of (137)Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term (137)Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current (137)Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term (137)Cs activities and may be good sentinels for monitoring (137)Cs in the region. Assessment of the long term consequences of (137)Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution.

  4. Bioaccumulation and toxicity of selenium during a life-cycle exposure with desert pupfish (Cyprinodon macularius)

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Papoulias, Diana M.; Ivey, Chris D.; Kunz, James L.; Annis, Mandy; Ingersoll, Christopher G.

    2012-01-01

    Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish.A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested.The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching

  5. Trends of metal bioaccumulation from 1990 to 2005 in Germany; Bioakkumulation von Metallen und Stickstoff zwischen 1990 und 2005 in Niedersachsen

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, Karsten [Landwirtschaftskammer Niedersachsen, Oldenburg (Germany); Holy, Marcel; Pesch, Roland; Schroeder, Winfried [Hochschule Vechta (Germany). Lehrstuhl fuer Landschaftsoekologie

    2009-10-15

    Since 1990 the UN ECE Heavy Metals in Mosses Surveys provide data inventories of the atmospheric heavy metal bioaccumulation across Europe. In the survey 2005 the nitrogen accumulation was measured for the first time in most of the participating countries. In Germany, the surveys were conducted in close cooperation of the relevant authorities of both the Federal Republic and the sixteen states. Therefore, statistical evaluations of the moss survey data with regard to the whole German territory and single federal states are of interest. This article concentrates on Lower Saxony, dealing with the mapping of the spatiotemporal trends of metal accumulation from 1990 to 2005, the spatial patterns of nitrogen accumulation in 2005, and the spatial variability of bioaccumulation due to characteristics of the sampling sites and their surroundings. The bioaccumulation of up to 40 trace elements and nitrogen in mosses was determined according to a Europe-wide harmonised methodology. The according experimental protocol regulates the selection of sampling sites and moss species, the chemical analysis and quality control and the classification of the measured values for mapping spatial patterns. In Lower Saxony all sampling sites were described with regard to topographical and ecological characteristics and several criteria to be fulfilled according to the guideline. Together with the measurements this metadata was combined with other information regarding land use in the surroundings of the sampling sites in the WebGIS MossMet. The spatial structure of the metal bioaccumulation was analysed and modelled by variogram analyses and then mapped by applying different Kriging techniques. Furthermore, multi metal indices (MMI) were derived for both the sampling sites and raster maps with help of percentile statistics: The MMI1990-2005 was calculated for As, Cd, Cr, Cu, Fe, Ni, Pb, Ti, V and Zn. The statistical association of the metal and nitrogen bioaccumulation, site specific

  6. Bioaccumulation of Cr(III ions by Blue Green-alga Spirulina sp. Part II. Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Katarzyna Chojnacka

    2007-01-01

    Full Text Available In the present paper bioaccumulation of Cr(III ions by blue-green algae Spirulina sp. is discussed. We found that the process consisted of two stages: passive in which Cr(III ions are bound to the surface of cells, identical with biosorption and active, metabolism-dependent, in which Cr(III ions are transported into the cellular interior. The passive stage occurs in both living and non-living cells and the active only in living biomass. Two distinctive mathematical models of the process were proposed. The first was physical model basing on the identified mechanism of the process. In the second model, artificial neural networks were proposed.

  7. Toxic effects and bioaccumulation of nano-, micron- and aqueous-Ag in the estuarine polychaete, Nereis (Hediste) diversicolor

    DEFF Research Database (Denmark)

    cong, Yi

    concern about the fate and potential risks of nanosilver for the aquatic environment after its eventual release via wastewater discharges. In this thesis, dispersion and stability tests of commercially available nano (media (deionized water vs....... filtered natural seawater) were firstly performed with the purpose to investigate the behavior of Ag particles in aqueous environments. A sediment exposure pathway was selected for the following toxicity experiments (I and II) as both Ag particles tended to precipitate in the water phase over time. Due....... diversicolor were investigated. Mortality, burrowing behavior, bioaccumulation, lysosomal membrane stability (neutral red assay) and DNA damage were used as endpoints as a result of 10 d of exposure, with the purpose to decipher if toxic effects were different between the two nano-Ag particle sizes...

  8. Bioaccumulation of heavy metals in two matrices of the Bonny/New Calabar River Estuary in Niger Delta, Nigeria

    Science.gov (United States)

    Onojake, M. C.; Sikoki, F. D.; Babatunde, B. B.; Akpiri, R. U.; Akpuloma, D.; Omokheyeke, O.

    2015-06-01

    The concentrations of Ca, Mg, K, Zn, Pb, Cd, Co, Cr, Cu, Fe, Ni and Na were determined in the sediment and biota of the Bonny/New Calabar River Estuary in Niger Delta, Nigeria using atomic absorption spectrophotometer A-100. The concentration of the respective metals varied between 2011 and 2012. The range of mean values are presented in mg/kg along with variations at a statistically significant level ( PBioaccumulation factor (BF) indicated a more potent source of metals from sediment than biota, accumulating Zn, Fe and Ni in magnitudes 10, 6 and 5 times more, respectively. The study shows elevated levels of heavy metals in sediment and bioaccumulation in biota. Regular monitoring and comparison of results with World Health Organization maximum permissible limits should be carried out, in order not to allow the metal concentration to reach alarming levels.

  9. Bioaccumulation of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and hexachlorobenzene by three Arctic benthic species from Kongsfjorden (Svalbard, Norway).

    Science.gov (United States)

    Szczybelski, Ariadna S; van den Heuvel-Greve, Martine J; Kampen, Tineke; Wang, Chenwen; van den Brink, Nico W; Koelmans, Albert A

    2016-11-15

    The predicted expansion of oil and gas (O&G) activities in the Arctic urges for a better understanding of impacts of these activities in this region. Here we investigated the influence of location, feeding strategy and animal size on the bioaccumulation of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and Hexachlorobenzene (HCB) by three Arctic benthic species in Kongsfjorden (Svalbard, Norway). No toxicity was expected based on biota PAH critical body residues. Biota PCB levels were mainly below limit of detection, whereas samples were moderately polluted by HCB. PAH concentrations in biota and Biota Sediment Accumulation Factors (BSAFs) were generally higher in Blomstrandhalvøya than in Ny-Ålesund, which was explained by a higher abundance of black carbon in Ny-Ålesund harbour. BSAFs differed significantly among species and stations. We conclude that contaminant body residues are a less variable and more straightforward monitoring parameter than sediment concentrations or BSAFs in Arctic benthos.

  10. Comparative bioaccumulation of trace elements between Nautilus pompilius and Nautilus macromphalus (Cephalopoda: Nautiloidea) from Vanuatu and New Caledonia.

    Science.gov (United States)

    Pernice, Mathieu; Boucher, Julien; Boucher-Rodoni, Renata; Joannot, Pascale; Bustamante, Paco

    2009-02-01

    The concentrations of 16 trace elements were investigated and compared for the first time in the digestive and excreting tissues of two Nautilus species (Cephalopoda: Nautiloidea) from two geologically contrasted areas: (1) N. macromphalus from New Caledonia, a region characterized by its richness in nickel ores and its lack of tectonic activities and (2) N. pompilius from the Vanuatu archipelago showing high volcanic and tectonic activities. In both Nautilus species, results clearly highlighted that the digestive gland played a key role in the bioaccumulation and storage of Ag, Cd, Ce, Co, Cu, Fe, La, Nd, V, and Zn whereas As, Cr, Mn, Ni, Pb, and Se were accumulated in a greater extent in the excreting tissues (i.e. pericardial and renal appendages). Despite contrasting environments, no significant difference (pVanuatu waters by specific environmental processes, such as volcanism or upwelling.

  11. Patterns of trace element bioaccumulation in jellyfish Rhizostoma pulmo (Cnidaria, Scyphozoa) in a Mediterranean coastal lagoon from SE Spain.

    Science.gov (United States)

    Muñoz-Vera, Ana; Peñas Castejón, Jose Matías; García, Gregorio

    2016-09-15

    The effects of an abandoned mining area, exploited for centuries in the mining district of Cartagena-La Union, result in a continuous supply of heavy metals into the Mar Menor coastal lagoon after rain episodes. As a consequence, concentration of trace elements in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, this study assessed the ability of Rhizostoma pulmo to bioaccumulate trace elements. A total of 57 individuals were sampled at eight different sampling stations during the summer of 2012. Although the concentrations of different analyzed elements (Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sn, and Pb) were moderate, bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content, because of their potential environmental and health implications.

  12. Bioaccumulation and biomagnification of total mercury in four exploited shark species in the Baja California Peninsula, Mexico.

    Science.gov (United States)

    Maz-Courrau, A; López-Vera, C; Galván-Magaña, F; Escobar-Sánchez, O; Rosíles-Martínez, R; Sanjuán-Muñoz, A

    2012-02-01

    The present study determined the average mercury bioaccumulation in the muscle tissue of four shark species (Carcharhinus falciformis, Prionace glauca, Sphyrna zygaena and Isurus oxyrinchus) captured in the Baja California Peninsula. We also evaluated biomagnification of some prey consumed by sharks. All sharks' species had mercury levels over the limit specified by the Mexican government for human consumption. Blue shark (P. glauca) presented highest mercury values (1.96 ± 1.48 μg/g Hg d.w.) and it was the unique specie that showed a negative correlation with mercury content (Rs = -0.035, p = 0.91). Scomber japonicus was the prey with high content of mercury (0.57 ± 0.02 μg/g).

  13. Mercury in birds of San Francisco Bay-Delta, California: trophic pathways, bioaccumulation, and ecotoxicological risk to avian reproduction

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Heinz, Gary; De La Cruz, Susan E. W.; Takekawa, John Y.; Miles, A. Keith; Adelsbach, Terrence L.; Herzog, Mark P.; Bluso-Demers, Jill D.; Demers, Scott A.; Herring, Garth; Hoffman, David J.; Hartman, Christopher A.; Willacker, James J.; Suchanek, Thomas H.; Schwarzbach, Steven E.; Maurer, Thomas C.

    2014-01-01

    San Francisco Bay Estuary in northern California has a legacy of mercury contamination, which could reduce the health and reproductive success of waterbirds in the estuary. The goal of this study was to use an integrated field and laboratory approach to evaluate the risks of mercury exposure to birds in the estuary. We examined mercury bioaccumulation, and other contaminants of concern, in five waterbird species that depend heavily on San Francisco Bay Estuary for foraging and breeding habitat: American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), Caspian terns (Hydroprogne caspia), and surf scoters (Melanitta perspicillata). These species have different foraging habitats and diets that represent three distinct foraging guilds within the estuary’s food web. In this report, we provide an integrated synthesis of the primary findings from this study and results are synthesized from 54 peer-reviewed publications generated to date with other unpublished results.

  14. Evaluation of the bioaccumulation of heavy metals in white shrimp (Litopenaeus vannamei) along the Persian Gulf coast.

    Science.gov (United States)

    Dadar, Maryam; Peyghan, Rahim; Memari, Hamid Rajabi

    2014-09-01

    The concentrations of heavy metals in Persian Gulf are low, but petrochemical and refinery activities have caused an increase in heavy metal wastes, especially in coastal regions. The present study was done to determine the bioaccumulation of heavy metals in the muscle of white shrimp (Litopenaeus vannamei) using flame atomic absorption spectrophotometry. The experiment was conducted in four important coastal regions of the Persian Gulf: Bushehr, Deylam, Mahshahr, and Abadan. Amounts of seven heavy metals such as Copper (Cu), Iron (Fe), Lead (Pb), Zinc (Zn), Nickel (Ni), Cadmium (Cd), and Cobalt (Co), were measured as µg/g heavy metal in dry weight in the muscle of white shrimp from the afore-mentioned regions during 2011. This study revealed information that the primary risk for human health and the marine life chain was lead in the muscles of white shrimp in Mahshahr, where intense petrochemical and refinery activities are conducted. Concentrations of other heavy metals were lower than world standards.

  15. Non-destructive techniques for biomonitoring of spatial, temporal, and demographic patterns of mercury bioaccumulation and maternal transfer in turtles.

    Science.gov (United States)

    Hopkins, Brittney C; Hepner, Mark J; Hopkins, William A

    2013-06-01

    Mercury (Hg) is a globally ubiquitous pollutant that has received much attention due to its toxicity to humans and wildlife. The development of non-destructive sampling techniques is a critical step for sustainable monitoring of Hg accumulation. We evaluated the efficacy of non-destructive sampling techniques and assessed spatial, temporal, and demographic factors that influence Hg bioaccumulation in turtles. We collected muscle, blood, nail, and eggs from snapping turtles (Chelydra serpentina) inhabiting an Hg contaminated river. As predicted, all Hg tissue concentrations strongly and positively correlated with each other. Additionally, we validated our mathematical models against two additional Hg contaminated locations and found that tissue relationships developed from the validation sites did not significantly differ from those generated from the original sampling site. The models provided herein will be useful for a wide array of systems where biomonitoring of Hg in turtles needs to be accomplished in a conservation-minded fashion.

  16. Bioaccumulation of the synthetic hormone 17alpha-ethinylestradiol in the benthic invertebrates Chironomus tentans and Hyalella azteca.

    Science.gov (United States)

    Dussault, Eve B; Balakrishnan, Vimal K; Borgmann, Uwe; Solomon, Keith R; Sibley, Paul K

    2009-09-01

    The present study investigated the bioaccumulation of the synthetic hormone 17alpha-ethinylestradiol (EE2) in the benthic invertebrates Chironomus tentans and Hyalella azteca, in water-only and spiked sediment assays. Water and sediment residue analysis was performed by LC/MS-MS, while biota extracts were analyzed using both LC/MS-MS and a recombinant yeast estrogen receptor assay. At the lowest exposure concentration, C. tentans accumulated less EE2 than H. azteca in the water-only assays (p=0.0004), but due to different slopes, this difference subsided with increasing concentrations; at the exposure concentration of 1mg/L, C. tentans had a greater body burden than H. azteca (p=0.02). In spiked sediments, C. tentans had the greatest EE2 accumulation (1.2+/-0.14 vs. 0.5+/-0.05 microg/gdw, n=4). Measurements in H. azteca indicated a negligible contribution from the sediments to the uptake of EE2 in this species. These differences were likely due to differences in the behavior and life history of the two species (epibenthic vs. endobenthic). Water-only bioaccumulation factors (BAFs) calculated at the lowest exposure concentration were significantly smaller in C. tentans than in H. azteca (31 vs. 142, respectively; pazteca (0.8 vs. 0.3; p<0.0001). Extracts of the exposed animals caused a response in a recombinant yeast estrogen receptor assay, thus confirming the estrogenic activity of the samples, presumably from EE2 and its estrogenic metabolites. The results of the present study suggest that consumption of invertebrate food items could provide an additional source of exposure to estrogenic substances in vertebrate predators.

  17. Bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina ( Arthrospira) platensis

    Science.gov (United States)

    Arunakumara, K. K. I. U.; Zhang, Xuecheng; Song, Xiaojin

    2008-11-01

    A laboratory experiment was conducted to assess the bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. The specimen cultured in Zarrouk liquid medium was treated with various initial metal concentrations (0, 5, 10, 30, 50 and 100 μg mL-1). The growth of S. platensis was adversely affected by Pb2+ at high concentrations (30, 50 and 100 μg mL-1). However, at low concentrations (5 μg mL-1), Pb2+ could stimulate its growth slightly. The pigment contents (chlorophyll α and β carotene) were decreased in a dose-dependent manner. The highest reductions (67% and 53% respectively in chlorophyll α and β carotene) were observed in 100 μg mL-1 treatment group. The LC50 (96 h) of Pb2+ was measured as 75.34 μg mL-1. Apart from a few cases of filament breakages at elevated concentrations (50 and 100 μg mL-1), morphological abnormalities are not specific. Metal bioaccumulation increased with Pb2+ concentrations, but decreased with exposure time. The maximum accumulated amount was 188 mg g-1 dry weight. The bioconcentration factor (BCF) reached to a peak at day 2, followed by a gradual reduction for all the exposure concentrations. S. platensis is able to tolerate considerably high Pb2+ concentrations. Consequently it can be used as a potential species to remove heavy metal from contaminated waters.

  18. Biogeochemical analysis of ancient Pacific Cod bone suggests Hg bioaccumulation was linked to paleo sea level rise and climate change

    Directory of Open Access Journals (Sweden)

    Maribeth S. Murray

    2015-02-01

    Full Text Available Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and distribution. Within a brief geological time, large areas of land were inundated by sea-level rise and today global sea level is 120 m above its minimum stand during the last glacial maximum. This was the era of modern sea shelf formation; climate change caused coastal plain flooding and created broad continental shelves with innumerable consequences to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea nearly doubled in size and stretches of coastline to the south were flooded, with regional variability in the timing and extent of submergence. Here we suggest how past climate change and coastal flooding are linked to mercury bioaccumulation that could have had profound impacts on past human populations and that, under conditions of continued climate warming, may have future impacts. Biogeochemical analysis of total mercury (tHg and 13C/15N ratios in the bone collagen of archaeologically recovered Pacific Cod (Gadus macrocephalus bone shows high levels of tHg during early/mid-Holocene. This pattern cannot be linked to anthropogenic activity or to food web trophic changes, but may result from natural phenomena such as increases in productivity, carbon supply and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding could have led to increased methylation of Hg in newly submerged terrestrial land and vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant consequences for the health of fish and their consumers, including people. This is the first study of tHg levels in a marine species from the Gulf of Alaska to provide a time series spanning nearly the entire Holocene and we propose that past coastal flooding resulting from climate change had the potential to input significant quantities of Hg into marine food webs and subsequently to human consumers.

  19. Bioaccumulation of Pb2+ and Its Effects on Growth, Morphology and Pigment Contents of Spirulina (Arthrospira)platensis

    Institute of Scientific and Technical Information of China (English)

    K. K. I. U. Arunakumara; ZHANG Xuecheng; SONG Xiaojin

    2008-01-01

    A laboratory experiment was conducted to assess the bioaccumulation of Pb2+ and its effects on growth,morphology andpigment contents of Spirulina (Arthrospira) platensis.The specimen cultured in Zarrouk liquid medium was treated with variousinitial metal concentrations (0,5,10,30,50 and 100 μgmL-1).The growth of S.platensis was adversely affected by Pb2+ at high con-centrations (30,50 and 100 μg mL-1).However,at low concentrations (5 μg mL-1),Pb2+ could stimulate its growth slightly.The pig-ment contents (chlorophyll α and β carotene) were decreased in a dose-dependent manner.The highest reductions (67% and 53%respectively in chlorophyll α and β carotene) were observed in 100 μg mL-1 treatment group.The LC50 (96 h) of Pb2+ was measured as75.34μg mL-1.Apart from a few cases of filament breakages at elevated concentrations (50 and 100μg mL-1),morphological abnor-malities are not specific.Metal bioaccumulation increased with Pb2+ concentrations,but decreased with exposure time.The maxi-mum accumulated amount was 188 mgg-1 dry weight.The bioconcentration factor (BCF) reached to a peak at day 2,followed by agradual reduction for all the exposure concentrations.S.platensis is able to tolerate considerably high Pb2+ concentrations.Conse-quently it can be used as a potential species to remove heavy metal from contaminated waters.

  20. Relating fish health and reproductive metrics to contaminant bioaccumulation at the Tennessee Valley Authority Kingston coal ash spill site.

    Science.gov (United States)

    Pracheil, Brenda M; Marshall Adams, S; Bevelhimer, Mark S; Fortner, Allison M; Greeley, Mark S; Murphy, Cheryl A; Mathews, Teresa J; Peterson, Mark J

    2016-08-01

    A 4.1 million m(3) coal ash release into the Emory and Clinch rivers in December 2008 at the Tennessee Valley Authority's Kingston Fossil Plant in east Tennessee, USA, prompted a long-term, large-scale biological monitoring effort to determine if there are chronic effects of this spill on resident biota. Because of the magnitude of the ash spill and the potential for exposure to coal ash-associated contaminants [e.g., selenium (Se), arsenic (As), and mercury (Hg)] which are bioaccumulative and may present human and ecological risks, an integrative, bioindicator approach was used. Three species of fish were monitored-bluegill (Lepomis macrochirus), redear sunfish (L. microlophus), and largemouth bass (Micropterus salmoides)-at ash-affected and reference sites annually for 5 years following the spill. On the same individual fish, contaminant burdens were measured in various tissues, blood chemistry parameters as metrics of fish health, and various condition and reproduction indices. A multivariate statistical approach was then used to evaluate relationships between contaminant bioaccumulation and fish metrics to assess the chronic, sub-lethal effects of exposure to the complex mixture of coal ash-associated contaminants at and around the ash spill site. This study suggests that while fish tissue concentrations of some ash-associated contaminants are elevated at the spill site, there was no consistent evidence of compromised fish health linked with the spill. Further, although relationships between elevated fillet burdens of ash-associated contaminants and some fish metrics were found, these relationships were not indicative of exposure to coal ash or spill sites. The present study adds to the weight of evidence from prior studies suggesting that fish populations have not incurred significant biological effects from spilled ash at this site: findings that are relevant to the current national discussions on the safe disposal of coal ash waste.

  1. Development of an empirical nonlinear model for mercury bioaccumulation in the South and South Fork Shenandoah rivers of Virginia.

    Science.gov (United States)

    Brent, Robert N; Kain, Donald G

    2011-11-01

    Mercury is a globally distributed pollutant that biomagnifies in aquatic food webs. In the United States, 3781 water bodies fail to meet criteria for safe fish consumption due to mercury bioaccumulation. In the risk assessment and management of these impairments (through the total maximum daily load program), an important step is evaluating the relationship between aqueous mercury and mercury in fish tissue. Often, this relationship is simplified to a bioaccumulation factor (BAF): the ratio of fish tissue mercury to aqueous mercury. This article evaluates the relationship between aqueous mercury and fish tissue mercury across a contamination gradient in the South and South Fork Shenandoah rivers of Virginia. The relationship was found to be nonlinear, with BAFs decreasing as the level of contamination increased. This means that protective water column mercury concentration targets established from site-specific BAFs will be overestimated in contaminated areas and will not be sufficiently protective. To avoid this over-prediction in the South and South Fork Shenandoah rivers, an empirical nonlinear Michaelis-Menten model was used to establish a protective water-quality target. Among other models and variables, the Michaelis-Menten model, relating total mercury in the water column to methylmercury in fish tissue, achieved the best empirical fit (r(2) = 0.9562). The resulting water-quality targets using this model were 3.8 and 3.2 ng/l for the South and South Fork Shenandoah rivers, respectively. These values are 2.1-2.5 times lower than the water-quality target developed using a site-specific BAF. These findings demonstrate the need to consider nonlinear BAF relationships in mercury-contaminated areas.

  2. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs.

  3. Equilibrium sampling of polychlorinated biphenyls in River Elbe sediments--Linking bioaccumulation in fish to sediment contamination.

    Science.gov (United States)

    Schäfer, Sabine; Antoni, Catherine; Möhlenkamp, Christel; Claus, Evelyn; Reifferscheid, Georg; Heininger, Peter; Mayer, Philipp

    2015-11-01

    Equilibrium sampling can be applied to measure freely dissolved concentrations (cfree) of hydrophobic organic chemicals (HOCs) that are considered effective concentrations for diffusive uptake and partitioning. It can also yield concentrations in lipids at thermodynamic equilibrium with the sediment (clip⇌sed) by multiplying concentrations in the equilibrium sampling polymer with lipid to polymer partition coefficients. We have applied silicone coated glass jars for equilibrium sampling of seven 'indicator' polychlorinated biphenyls (PCBs) in sediment samples from ten locations along the River Elbe to measure cfree of PCBs and their clip⇌sed. For three sites, we then related clip⇌sed to lipid-normalized PCB concentrations (cbio,lip) that were determined independently by the German Environmental Specimen Bank in common bream, a fish species living in close contact with the sediment: (1) In all cases, cbio,lip were below clip⇌sed, (2) there was proportionality between the two parameters with high R(2) values (0.92-1.00) and (3) the slopes of the linear regressions were very similar between the three stations (0.297; 0.327; 0.390). These results confirm the close link between PCB bioaccumulation and the thermodynamic potential of sediment-associated HOCs for partitioning into lipids. This novel approach gives clearer and more consistent results compared to conventional approaches that are based on total concentrations in sediment and biota-sediment accumulation factors. We propose to apply equilibrium sampling for determining bioavailability and bioaccumulation potential of HOCs, since this technique can provide a thermodynamic basis for the risk assessment and management of contaminated sediments.

  4. Trends of metal bioaccumulation from 1990 to 2005 in Germany. Quality assurance in the sampling, analytics, and geostatistical evaluation; Trend der Schwermetall-Bioakkumulation 1990 bis 2005. Qualitaetssicherung bei Probenahme, Analytik, geostatistischer Auswertung

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Winfried; Pesch, Roland [Hochschule Vechta (Germany). Lehrstuhl fuer Landschaftsoekologie; Matter, Yehia; Goeritz, Axel [LUFA Nord-West, Hameln (Germany). Inst. fuer Duengemittel und Saatgut; Genssler, Lutz [Landesamt fuer Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen (Germany); Dieffenbach-Fries, Helga [Umweltbundesamt (UBA), Langen (Germany). Fachgebiet II 5.4

    2009-12-15

    Since 1990, the UN ECE Heavy Metals in Mosses Surveys provide data inventories of the atmospheric heavy metal bioaccumulation across national boundaries in Europe. The results prove how air pollution control in Germany and in all of Europe affected the bioaccumulation of metals in those ecosystems that are not directly influenced by nearby emission sources. This article focuses on the assessment of spatio temporal patterns of the metal bioaccumulation in Germany since 1990. Furthermore, the spatial variance of the metal bioaccumulation is analysed with regard to sampling site-specific and regional land characteristics. Special focus hereby relies on the correlation of the metal concentration in mosses and in depositions. Hence, the moss surveys contribute to paragraph 12 of the German Federal Nature Conservation Act as well as to the 'Convention on Long-range Transboundary Air Pollution' (CLRTAP). (orig.)

  5. Environmental relevance of laboratory-derived kinetic models to predict trace metal bioaccumulation in gammarids: Field experimentation at a large spatial scale (France).

    Science.gov (United States)

    Urien, N; Lebrun, J D; Fechner, L C; Uher, E; François, A; Quéau, H; Coquery, M; Chaumot, A; Geffard, O

    2016-05-15

    Kinetic models have become established tools for describing trace metal bioaccumulation in aquatic organisms and offer a promising approach for linking water contamination to trace metal bioaccumulation in biota. Nevertheless, models are based on laboratory-derived kinetic parameters, and the question of their relevance to predict trace metal bioaccumulation in the field is poorly addressed. In the present study, we propose to assess the capacity of kinetic models to predict trace metal bioaccumulation in gammarids in the field at a wide spatial scale. The field validation consisted of measuring dissolved Cd, Cu, Ni and Pb concentrations in the water column at 141 sites in France, running the models with laboratory-derived kinetic parameters, and comparing model predictions and measurements of trace metal concentrations in gammarids caged for 7 days to the same sites. We observed that gammarids poorly accumulated Cu showing the limited relevance of that species to monitor Cu contamination. Therefore, Cu was not considered for model predictions. In contrast, gammarids significantly accumulated Pb, Cd, and Ni over a wide range of exposure concentrations. These results highlight the relevance of using gammarids for active biomonitoring to detect spatial trends of bioavailable Pb, Cd, and Ni contamination in freshwaters. The best agreements between model predictions and field measurements were observed for Cd with 71% of good estimations (i.e. field measurements were predicted within a factor of two), which highlighted the potential for kinetic models to link Cd contamination to bioaccumulation in the field. The poorest agreements were observed for Ni and Pb (39% and 48% of good estimations, respectively). However, models developed for Ni, Pb, and to a lesser extent for Cd, globally underestimated bioaccumulation in caged gammarids. These results showed that the link between trace metal concentration in water and in biota remains complex, and underlined the limits of

  6. Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei

    Energy Technology Data Exchange (ETDEWEB)

    Grumiaux, F.; Demuynck, S.; Schikorski, D.; Lemiere, S.; Lepretre, A. [Universite Lille Nord de France, Villeneuve Dascq (France)

    2010-03-15

    Earthworms (Eisenia andrei) were exposed, in controlled conditions, to metal-contaminated soils previously treated in situ with two types of fluidized bed combustion ashes. Effects on this species were determined by life history traits analysis. Metal immobilizing efficiency of ashes was indicated by metal bioaccumulation. Ashes-treated soils reduced worm mortality compared to the untreated soil. However, these ashes reduced both cocoon hatching success and hatchlings numbers compared to the untreated soil. In addition, sulfo-calcical ashes reduced or delayed worm maturity and lowered cocoon production compared to silico-alumineous ones. Metal immobilizing efficiency of ashes was demonstrated for Zn, Cu and to a lesser extent Pb. Only silico-alumineous ashes reduced Cd bioaccumulation, although Cd was still bioconcentrated. Thus, although ash additions to metal-contaminated soils may help in immobilizing metals, their use might result, depending on the chemical nature of ashes, to severe detrimental effects on earthworm reproduction with possible long term consequences to populations.

  7. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation.

    Science.gov (United States)

    Peter, Sonia R; Peru, Kerry M; Fahlman, Brian; McMartin, Dena W; Headley, John V

    2015-01-01

    As part of an exchange technology program between the government of Barbados and Environment Canada, methanolic and aqueous extracts from the flavonoid-rich Lamiaceae family were characterized using negative-ion electrospray mass spectrometry. The species investigated is part of the Caribbean Pharmacopoeia, and is used for a variety of health issues, including colds, flu, diabetes, and hypertension. The extracts were investigated for structural elucidation of phenolics, identification of chemical taxonomic profile, and evidence of bio-accumulator potential. The methanolic and aqueous leaf extracts of Plectranthus amboinicus yielded rosmarinic acid, ladanein, cirsimaritin, and other methoxylated flavonoids. This genus also shows a tendency to form conjugates with monosaccharides, including glucose, galactose, and rhamnose. The aqueous extract yielded four isomeric rhamnosides. The formation of conjugates by Plectranthus amboinicus is thus evidence of high bioaccumulator significance.

  8. Bioaccumulation of selenium and induced biological effects in the filter feeding bivalve Corbicula fluminea: influence of ventilatory activity, selenium speciation and route of transfer; Bioaccumulation du selenium et effets biologiques induits chez le bivalve filtreur Corbicula fluminea: prise en compte de l'activite ventilatoire, de la speciation du selenium et de la voie de contamination

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, E

    2005-10-15

    Selenium is an essential micro-nutrient for most of living organisms. However, toxic effects in several ecosystems have been reported in the literature. Toxicity comprehension is difficult due to the complexity of Se oxidation states in the environment. The aim of this thesis work was to acquire knowledge on the physiological and environmental factors involved in bioaccumulation and toxicity processes in the freshwater filter-feeding bivalve C. fluminea. The aims were: i) to define what the factors involved in Se bioaccumulation processes in the bivalve are, ii) to characterize Se bioaccumulation at different biological organisation levels, iii) to investigate Se toxic effects. First experiments, carried out for short term exposure duration (3 days), have permitted to underline the importance of Se chemical speciation in bioaccumulation processes in C. fluminea. It has been shown that the organic form, seleno-methionine, was much more bio-available than the inorganic forms, selenite and selenate. Moreover, the route of transfer was determinant in those processes. Inorganic forms have been better extracted by trophic route, whereas seleno-methionine has been better extracted by the direct route. In our experimental conditions, ventilation of the bivalve has not been a limiting factor for Se bioaccumulation by the direct route, whereas it has been for bioaccumulation by the trophic route. Ventilation has been largely modified by the presence of dissolved selenite and seleno-methionine. We have shown that the kinetics of seleno-methionine bioaccumulation are much more fast than those of selenite. Moreover, when introduced as SeMet, internalized Se appeared to be relatively remanent in soft tissues of C. fluminea in comparison with Se internalized when introduced as selenite. Subcellular and molecular distributions of these forms were very different. Finally, it has been shown that seleno-methionine and selenite could generate weak alterations of the anti

  9. Bio-accumulation of Trace Elements in Spirulina%螺旋藻对微量元素的富集作用

    Institute of Scientific and Technical Information of China (English)

    王龙; 刘慧; 张少斌

    2015-01-01

    综述了几种微量元素的生理功能以及螺旋藻对微量元素的富集作用,并对其应用进行了展望。%The physiological functions of trace elements and bio-accumulation of trace elements in Spirulina were reviewed, as well as its application was proposed.

  10. Assessing availability, phytotoxicity and bioaccumulation of lead to ryegrass and millet based on 0.1 mol/L Ca(NO3)2 extraction

    Institute of Scientific and Technical Information of China (English)

    SI Ji-tao; TIAN Bao-guo; WANG Hong-tao; Nicholas Basta; Jackie Schroder; Mark Casillas

    2006-01-01

    This study was conducted to assess availability, phytotoxicity and bioaccumulation of lead (Pb) to ryegrass (Lolium perenne L.) and millet (Echinochloa crusgalli) based on the 0.1 mol/L Ca(NO3)2 extraction. Effect of soil properties on availability, phytotoxicity and bioaccumulation of Pb to the two plants was also evaluated. Five soils with pH values varying from 3.8 to 7.3, organic carbon (OC) contents from 0.7% to 2.4%, and clay contents from 11.6% to 35.6% were selected. Soils were spiked with Pb to achieve a range of concentrations: 250, 500, 1000, 3000 and 5000 mg/kg. Pb availability in the spiked soils was estimated by extracting soil with 0.1 mol/L Ca(NO3)2. The results indicate that plants yield decreased with decreasing soil pH and increased with increasing soil clay and OC content. Negative relationship between available Pb and the relative dry matter growth (RDMG) of the two plants were significantly related. Available Pb used to assess EC20 (20% effective concentration) and EC50 (50% effective concentration) of millet was 119 and 300 mg/kg, respectively. Available Pb used to assess EC20 and EC50 of ryegrass was 63 and 157 mg/kg, respectively.Bioaccumulation, expressed as bioconcentration factors of Pb, was inversely related to soil pH, soil OC and clay content. Strong relationships were found between available lead and uptake by the two plants (r2 was 0.92 and 0.95 respectively). In general, 0.1 mol/L Ca(NO3)2 available Pb may be used to assess the availability, phytotoxicity and bioaccumulation of lead to the two plants tested.

  11. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.

    Science.gov (United States)

    Desrosiers, Mélanie; Gagnon, Christian; Masson, Stéphane; Martel, Louis; Babut, Marc P

    2008-01-15

    The availability and bioaccumulation of metals and metalloids, and the geochemical interactions among them, are essential to developing an ecological risk assessment (ERA) framework and determining threshold concentrations for these elements. The purpose of this study was to explore the relationships among total recoverable and reactive metals and metalloid in sediment and their bioaccumulation by chironomids. In the fall of 2004 and 2005, 58 stations located in the three fluvial lakes of the St. Lawrence River and its largest harbour area in Montreal, Canada, were sampled. Nine total recoverable and reactive metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and one metalloid (As) were measured in whole sediment using two extraction methods: HCl/HNO(3) and HCl 1N, respectively. The bioaccumulation of six metals (Cd, Cr, Cu, Ni, Pb and Zn) and As by chironomids was evaluated in a subset of 22 stations. Strong collinearities were observed between some total recoverable or reactive metal concentrations in sediment; two principal clusters, including collinear metals, were obtained. The first one included metals of mainly geological origin (Al, Cr, Fe, Mn, Ni), while the second one included As, Cd, Cu, Pb and Zn, which likely derive mainly from point sources of anthropogenic contamination. Each element also showed strong collinearity between their total recoverable and reactive forms (0.65Pb in sediment. Arsenic was an exception, with accumulation by chironomids being highly related to reactive sediment concentrations. Finally, we observed variable influences of explanatory factors (e.g. sediment grain size, Al, Fe, Mn, S, TOC), depending on which metal or metalloid was being predicted in chironomids. In this context, it is difficult to choose a universal predictive method to explain the bioaccumulation of specific metals, and more research is still needed into normalization procedures that consider a combination of explanatory factors.

  12. Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China

    Energy Technology Data Exchange (ETDEWEB)

    He, Ming-Jing [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Luo, Xiao-Jun, E-mail: luoxiaoj@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Man-Ying; Sun, Yu-Xin [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, She-Jun; Mai, Bi-Xian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2012-03-01

    Polybrominated diphenyl ethers (PBDEs) and decabromodiphenyl ethane (DBDPE) were determined in water, sediment, and three fish species from the Dongjiang River, a highly polluted river by brominated flame retardants in South China due to the intensive industry activities. The stable isotope analysis was used to compare differences between the feeding ecology of the fish species. The bioaccumulations of PBDEs and DBDPE were evaluated by calculation of bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs). Two potential debromination products of DBDPE were detected in sediment. The occurrence of these two compounds probably ascribed to the thermal degradation during instrumental analysis but degradation in the environment cannot be ruled out. Three fish species showed two quite different PBDE congener profiles. Two carp species were dominated by BDE47 while plecostomus were dominated by both BDE47 and BDE99. The contributions of higher brominated congeners were higher in plecostomus than in two carp species. This different PBDE congener profile can be attributed to the difference in metabolism and feeding habits among fish species. The calculated BAFs for PBDE congeners follow a bioaccumulation model. The BSAFs for all PBDE congeners except for BDE47 and BDE100 were less than unit, implying that bioavailability of PBDEs in sediments is low. Contrary to expectation, the BAFs value of DBDPE was one order of magnitude higher than that of BDE209 in fish, which can partly attributed to the absence of debromination of DBDPE in fish. The calculated BAFs for DBDPE indicated that this compound can significantly accumulate in fish. - Highlights: Black-Right-Pointing-Pointer Deca-BDE had gradually substituted by DBDPE in study area. Black-Right-Pointing-Pointer Two debrominated products of DBDPE were the result of thermal degradation in instrumental analysis. Black-Right-Pointing-Pointer Metabolism and diet were causes for the different PBDE congener

  13. Mercury bioaccumulation in fishes from subalpine lakes of the Wallowa-Whitman National Forest, northeastern Oregon and western Idaho

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2013-01-01

    Mercury (Hg) is a globally distributed pollutant that poses considerable risks to human and wildlife health. Over the past 150 years since the advent of the industrial revolution, approximately 80 percent of global emissions have come from anthropogenic sources, largely fossil fuel combustion. As a result, atmospheric deposition of Hg has increased by up to 4-fold above pre-industrial times. Because of their isolation, remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited Hg through freshwater food webs, as well as for evaluating the relative importance of Hg loading versus landscape influences on Hg bioaccumulation. The increase in Hg deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in Hg emissions may propagate to changes in Hg bioaccumulation and ecological risk. In this study, we evaluated Hg concentrations in fishes of high-elevation, sub-alpine lakes in the Wallowa-Whitman National Forest in northeastern Oregon and western Idaho. Our goals were to (1) assess the magnitude of Hg contamination in small-catchment lakes to evaluate the risk of atmospheric Hg to human and wildlife health, (2) quantify the spatial variability in fish Hg concentrations, and (3) determine the ecological, limnological, and landscape factors that are best correlated with fish total mercury (THg) concentrations in these systems. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. Importantly, our top statistical model explained 87 percent of the variability in fish THg concentrations among lakes with four key landscape and limnological variables— catchment conifer density (basal area of conifers within a lake’s catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. The basal area of conifers

  14. An effects addition model based on bioaccumulation of metals from exposure to mixtures of metals can predict chronic mortality in the aquatic invertebrate Hyalella azteca.

    Science.gov (United States)

    Norwood, Warren P; Borgmann, Uwe; Dixon, D George

    2013-07-01

    Chronic toxicity tests of mixtures of 9 metals and 1 metalloid (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, and Zn) at equitoxic concentrations over an increasing concentration range were conducted with the epibenthic, freshwater amphipod Hyalella azteca. The authors conducted 28-d, water-only tests. The bioaccumulation trends changed for 8 of the elements in exposures to mixtures of the metals compared with individual metal exposures. The bioaccumulation of Co and Tl were affected the most. These changes may be due to interactions between all the metals as well as interactions with waterborne ligands. A metal effects addition model (MEAM) is proposed as a more accurate method to assess the impact of mixtures of metals and to predict chronic mortality. The MEAM uses background-corrected body concentration to predict toxicity. This is important because the chemical characteristics of different waters can greatly alter the bioavailability and bioaccumulation of metals, and interactions among metals for binding at the site of action within the organism can affect body concentration. The MEAM accurately predicted toxicity in exposures to mixtures of metals, and predicted results were within a factor of 1.1 of the observed data, using 24-h depurated body concentrations. The traditional concentration addition model overestimated toxicity by a factor of 2.7.

  15. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China.

    Science.gov (United States)

    Zhang, Yun; Luo, Xiao-Jun; Mo, Ling; Wu, Jiang-Ping; Mai, Bi-Xian; Peng, Yong-Hong

    2015-10-01

    The bioaccumulation and translocation of polyhalogenated compounds (PHCs) in rice planted in the paddy soils of an electronic waste (e-waste) recycling site were investigated, along with the effect of contaminated soils on rice growth. The PHCs included polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and dechlorane plus (DPs). The morphological development and all measured physiological parameters of rice plants except for peroxidase were significantly inhibited by e-waste contaminated soils. Specifically, soil-root bioaccumulation factors (RCFs) increased with increasing logarithm of octanol-water partition coefficient (logKow) for PCBs, but decreased for PBDEs. During translocation from root to stem, translocation factors (TFs) and logKow were positively correlated. However, the accumulation mechanism in the leaf was concentration-dependent. In the high concentration exposure group, translocation play more important role in determination PHCs burden in leaf than atmospheric uptake, with logTF (from stem to leaf) being positively correlated with logKow. In contrast, in the low exposure and control groups, logTF (from stem to leaf) was negatively correlated with logKow. In addition, Syn-DP was selectively accumulated in plant tissues. In conclusion, this study demonstrates that e-waste contaminated soils affect rice growth, revealed the rule of the bioaccumulation and translocation of PHCs in rice plants.

  16. Bioaccumulation of lead, mercury, and cadmium in the greater white-toothed shrew, Crocidura russula, from the Ebro Delta (NE Spain); Sex- and age-dependent variation

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Chardi, Alejandro [Departament de Biologia Animal (Vertebrats), Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain)]. E-mail: a.sanchez.chardi@ub.edu; Lopez-Fuster, Maria Jose [Departament de Biologia Animal (Vertebrats), Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Nadal, Jacint [Departament de Biologia Animal (Vertebrats), Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain)

    2007-01-15

    We quantified bioaccumulation of lead, mercury, and cadmium in bones from 105 greater white-toothed shrews (Crocidura russula) collected at the Ebro Delta, a polluted area, and the Medas Islands, a control site. Lead and mercury levels varied with site, age, and sex, although statistical significances depended on each factor. Globally, shrews from the polluted area exhibited significantly higher concentrations of Pb and Hg. Increment of Pb with age was particularly remarkable in wetland animals and was interpreted in relation to human activities, namely hunting. Unlike males, females from the Ebro Delta maintained low Hg levels, which were associated with gestation and lactation. Cadmium levels did not differ between sites, sexes, or ages. This study provides the first data on heavy metals in mammals from this wetland and suggests that C. russula is a good bioindicator of metal pollution. We concluded that sex and age may represent an important source of variation in the bioaccumulation of these metals in wild populations. - Bioaccumulation patterns of Pb and Hg reveal sex and age-related differences in the large bones of the greater white-toothed shrew from a polluted Mediterranean wetland.

  17. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna

    Science.gov (United States)

    Buckman, Kate L.; Marvin-DiPasquale, Mark C.; Taylor, Vivien F.; Chalmers, Ann T.; Broadley, Hannah J.; Agee, Jennifer L.; Jackson, Brian P.; Chen, Celia Y.

    2015-01-01

    In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g–1 dry wt) and total mercury (THg; 10–30× increase, mean ± SD: 2045 ± 2669 ng g–1 dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g–1 dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g–1 dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L–1) and dissolved (0.76 ng L–1) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2–9 ng g–1 d–1 dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g–1 d–1 dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration.

  18. Bioaccumulation of arsenic and silver by the caddisfly larvae Hydropsyche siltalai and H. pellucidula: A biodynamic modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Awrahman, Zmnako A., E-mail: zmnako.awrahman@uj.edu.pl [Institute of Environmental Science, Jagiellonian University, Krakow 30-348 (Poland); Rainbow, Philip S.; Smith, Brian D. [Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Khan, Farhan R. [Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Department of Environmental, Social and Spatial Change (ENSPAC), Roskilde University, Universitetsvej 1, PO Box 260, Roskilde DK-4000 (Denmark); Bury, Nicolas R. [Nutritional Sciences Division, King’s College London, Franklin–Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Fialkowski, Wojciech [Institute of Environmental Science, Jagiellonian University, Krakow 30-348 (Poland)

    2015-04-15

    Highlights: • Biodynamic models were used to predict steady state As and Ag concentrations. • Uptake and efflux rate constants for As and Ag were measured in caddisfly species. • Dietborne As was the predominant exposure route in two caddisfly species. • Diet was the only exposure route of bioaccumulated Ag in the investigated caddisflies. - Abstract: Biodynamic modeling was used to investigate the uptake and bioaccumulation of arsenic and silver from water and food by two Hydropsychid caddisfly larvae: Hydropsyche siltalai and Hydropsyche pellucidula. Radiotracer techniques determined the uptake rate constants of arsenic and silver from water, and assimilation efficiencies from food, and their subsequent loss rate constants after accumulation from either route. The uptake rate constants (±SE) of As and Ag from solution were 0.021 ± 0.005 and 0.350 ± 0.049 L g{sup −1} day{sup −1}, respectively, for H. siltalai, and 0.435 ± 0.054 and 0.277 ± 0.021 L g{sup −1} day{sup −1}, respectively, for H. pellucidula in moderately hard synthetic water at 10 °C. The assimilation efficiencies (±SE) of As and Ag from radiolabeled ingested food were 46.0 ± 7.7% and 75.7 ± 3.6%, respectively, for H. siltalai, and 61.0 ± 4.2% and 52.6 ± 8.6%, respectively, for H. pellucidula. Ag, but not As, AEs were significantly different between species. The AE of Ag differed from the AE of As in H. siltalai, but not in H. pellucidula. Mean efflux rate constants after accumulation of metals from solution or food ranged from 0.039 to 0.190 day{sup −1}. The efflux rate constants of As and Ag accumulated from solution were significantly lower than those of As and Ag assimilated from ingested food in both species. Experimentally derived k{sub u} and k{sub e} values were then used to predict As and Ag tissue concentrations in hydropsychids collected from 13 UK sites, including metal-contaminated streams in Cornwall. Arsenic and silver concentrations in environmental water

  19. Critical body residues, Michaelis-Menten analysis of bioaccumulation, lethality and behaviour as endpoints of waterborne Ni toxicity in two teleosts.

    Science.gov (United States)

    Leonard, Erin M; Marentette, Julie R; Balshine, Sigal; Wood, Chris M

    2014-03-01

    Traditionally, water quality guidelines/criteria are based on lethality tests where results are expressed as a function of waterborne concentrations (e.g. LC50). However, there is growing interest in the use of uptake and binding relationships, such as biotic ligand models (BLM), and in bioaccumulation parameters, such as critical body residue values (e.g. CBR50), to predict metal toxicity in aquatic organisms. Nevertheless, all these approaches only protect species against physiological death (e.g. mortality, failed recruitment), and do not consider ecological death which can occur at much lower concentrations when the animal cannot perform normal behaviours essential for survival. Therefore, we investigated acute (96 h) Ni toxicity in two freshwater fish species, the round goby (Neogobius melanostomus) and rainbow trout (Oncorhynchus mykiss) and compared LC, BLM, and CBR parameters for various organs, as well as behavioural responses (spontaneous activity). In general, round goby were more sensitive. Ni bioaccumulation displayed Michaelis-Menten kinetics in most tissues, and round goby gills had lower Kd (higher binding affinity) but similar Bmax (binding site density) values relative to rainbow trout gills. Round goby also accumulated more Ni than did trout in most tissues at a given exposure concentration. Organ-specific 96 h acute CBR values tended to be higher in round goby but 96 h acute CBR50 and CBR10 values in the gills were very similar in the two species. In contrast, LC50 and LC10 values were significantly higher in rainbow trout. With respect to BLM parameters, gill log KNiBL values for bioaccumulation were higher by 0.4-0.8 log units than the log KNiBL values for toxicity in both species, and both values were higher in goby (more sensitive). Round goby were also more sensitive with respect to the behavioural response, exhibiting a significant decline of 63-75 % in movements per minute at Ni concentrations at and above only 8 % of the LC50 value

  20. 不同农作物的重金属生物富集现状研究%Research of bioaccumulation of heave metals in different field crops

    Institute of Scientific and Technical Information of China (English)

    卜勇军; 张合喜; 杨中智; 王守英; 李海斌; 张瑞芳; 刘晓婷; 田玉慧

    2012-01-01

    Objective To investigate the concentration,bioaccumulation of heave metals in different crops. Methods Nine heave metals (Pb,Cr,Cd,Hg,As, Cu,Zn,Mn and Ni) in crops and soils were determinated by furnace atomic absorption , and evaluating the bioaccumulation of crops. Results The concentrations of nine heave metals in different crops followed the order;cereal > leaf vegetables > non-leaf vegetables. The different corps had different bioaccumulation abilities on the same heave metal. The rate of bioaccumulation Pb, As, Hg, Cr, Zn, Mn, Ni: cereal > leaf vegetables > non-leaf vegetables; Cd: leaf vegetables > cereal > non-leaf vegetables; Cu: cereal > non-leaf vegetables > leaf vegetables. Conclusion The rate of bioaccumulation was different in different crop.%目的 调查不同农作物的重金属含量、生物富集现状.方法 以定点采样方法选取河南省新乡地区的农田土壤及其农作物,应用原子吸收光谱法检测重金属铅(Pb)、砷(As)、汞(Hg)、铬(Cr)、镉(Cd)、铜(Cu)、锌(Zn)、锰(Mn)、镍(Ni)的含量,探讨其生物富集作用.结果 农作物重金属含量是粮谷类>叶菜类>非叶菜类,不同类农作物对同一种重金属元素的吸收率各不相同,Pb、As、Hg、Cr、Zn、Mn、Ni:粮谷类>叶菜类>非叶菜类;Cd:叶菜类>粮谷类>非叶菜类;Cu:粮谷类>非叶菜类>叶菜类.结论 不同农作物对重金属的生物富集不同.

  1. Chronic toxicity of arsenic, cobalt, chromium and manganese to Hyalella azteca in relation to exposure and bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, W.P. [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada) and Aquatic Ecosystems Protection Research Division, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada)]. E-mail: warren.norwood@ec.gc.ca; Borgmann, U. [Aquatic Ecosystems Protection Research Division, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Dixon, D.G. [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2007-05-15

    Chronic toxicity of As, Co, Cr and Mn to Hyalella azteca can be described using a saturation-based mortality model relative to total-body or water metal concentration. LBC25s (total-body metal concentrations resulting in 25% mortality in 4 weeks) were 125, 103, 152 and 57,900 nmol g{sup -1} dry weight for As, Co, Cr and Mn respectively. LC50s (metal concentrations in water resulting in 25% mortality in 4 weeks) were 5600, 183, 731, and 197,000 nmol L{sup -1}, respectively. A hormesis growth response to As exposure was observed. Growth was a more variable endpoint than mortality for all four toxicants; however, confidence limits based on growth and mortality all overlapped, except Cr which had no effect on growth. Mn toxicity was greater in glass test containers compared to plastic. Bioaccumulation of As, Co, Cr, and Mn was strongly correlated with, and is useful for predicting, chronic mortality. - Chronic toxicity of As, Co, Cr and Mn to Hyalella azteca can be described using a saturation-based mortality model in relationship to total-body or water metal concentration.

  2. Bioaccumulation of metals by Hyalella azteca exposed to contaminated sediments from the upper Clark Fork River, Montana

    Science.gov (United States)

    Ingersoll, Christopher G.; Brumbaugh, William G.; Dwyer, F. James; Kemble, Nile E.

    1994-01-01

    Macroinvertebrates contaminated with metals in the Clark Fork River of Montana have been demonstrated to be a potentially toxic component in the diet of trout Because sediment was the suspected source of metals to these invertebrates, bioaccumulation of As, Cd, Cu, Pb, and Zn from sediment was evaluated by exposing the amphipod Hyalella azteca for 28 d in the laboratory to samples of sediment collected from depositional areas of the Clark Fork River Benthic invertebrates collected from riffles adjacent to the depositional areas were also analyzed for metals The pattern of metal accumulation between laboratory-exposed and field-collected animals was similar, however, the concentrations of metals in laboratory exposed amphipods were often 50 to 75% less than were the concentrations of metals in the field collected invertebrates These findings indicate that sediment is a significant source of metals to invertebrates in the Clark Fork River Additional studies should be conducted to determine threshold concentrations for effects of dietary metals on fish Long-term monitoring of the river should include sampling benthic invertebrates for metal accumulation.

  3. Cadmium bioaccumulation in European flat oysters (Ostrea edulis from Middle Adriatic Sea (San Benedetto del Tronto district, Italy

    Directory of Open Access Journals (Sweden)

    Cesare Ciccarelli

    2014-05-01

    Full Text Available Bivalve molluscs represent an important source of cadmium exposure in humans, in particular oysters, because of their high filter feeding capability and high concentration of metal-binding metallothionein in tissues. In this study the authors investigated the difference in cadmium bioaccumulation in European flat oysters harvested from production areas in the district of San Benedetto del Tronto (Ascoli Piceno province, Italy, as a function of their origin (farming or natural beds and the time of gathering. The beds lie 3 nm off-shore at a depth of 20-40 m and are collected by dredging. In the farms, baskets are suspended in the water column 2.5-3 nm offshore at a depth of 4 m. The authors analysed the results of cadmium monitoring plan carried out in oyster natural beds for a total of 15 samples collected from 2004 to 2012 and in two oyster farms for a total of 11 samples from 2009 to 2012. Although the few data did not allow to find a significant statistical association, they suggested two findings: i cadmium concentration in oysters from natural beds seemed to be lower than in farmed oysters; and ii in farmed oysters cadmium concentration even exceeded allowed maximum level for human consumption, in particular in autumn. The vertical stratification in the water column of phytoplankton and a cadmium dilution at oyster gonadal maturation might cause changes in oyster cadmium accumulation.

  4. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  5. Bioaccumulation of methyl parathion and its toxicology in several species of the freshwater community in Ignacio Ramirez dam in Mexico.

    Science.gov (United States)

    De La Vega Salazar, M Y; Tabche, L M; García, C M

    1997-10-01

    Environmental contamination by pesticides, including the presence of chemical residues in aquatic wildlife, is a widespread ecological problem. Methyl parathion (MP), a widely used organophosphorate insecticide, is a potent neurotoxic in both vertebrates and invertebrates. The effect of a subchronic exposure to MP in aquatic organisms was evaluated in a natural ecosystem measuring acetyl cholinesterase (AChE) and gamma glutamil transpeptidase (GGT) activity. Two samples were conducted. Physicochemical characterization was done at each sampling time and organisms were collected. MP and metabolite 4-nitrophenol (4-NP) concentrations were measured in water sediment and organisms. The major differences in physical features between season were an increase of turbidity and salinity and depletion of dissolved oxygen in the rainy season. MP and 4-NP are bioconcentrated in organisms in response to environmental stress. MP concentration was measured in different size/age and reproductive stages separately. A significant concentration in reproductive tissues (plants)/unborn progeny (animals) was always found, and this can affect egg viability. The metabolite 4-NP is bioaccumulated and is toxic because it causes an increase of AChE activity. GGT activity was higher than that in controls. The increase in enzymatic activity provides a detoxification mechanism from chronic sublethal exposure, when hepatic glutation depletion occurs, and may be an indicator of liver damage.

  6. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site.

    Science.gov (United States)

    Eid, Ebrahem M; Shaltout, Kamal H

    2016-11-01

    In the present study, nine native plant species were collected to determine their potential to clean up nine heavy metals from soil of a sewage sludge dump site. Almost all nine plant species grown at sewage sludge dump site showed multifold higher concentrations of heavy metals as compared to plants grown at the reference site. All the investigated species were characterized by a bioaccumulation factor (BF) > 1.0 for some heavy metals. BF was generally higher for Cd, followed by Pb, Co, Cr, Cu, Ni, Mn, Zn, and Fe. The translocation factor (TF) varied among plant species, and among heavy metals. For most studied heavy metals, TFs were <1.0. The present study proved that the concentrations of all heavy metals (except Cd, Co, and Pb) in most studied species were positively correlated with those in soil. Such correlations indicate that these species reflect the cumulative effects of environmental pollution from soil, and thereby suggesting their potential use in the biomonitoring of most heavy metals examined. In conclusion, all tissues of nine plant species could act as bioindicators, biomonitors, and remediates of most examined heavy metals. Moreover, Bassia indica, Solanum nigrum, and Pluchea dioscoridis are considered hyperaccumulators of Fe; Amaranthus viridis and Bassia indica are considered hyperaccumulators of Pb; and Portulaca oleracea is considered hyperaccumulator of Mn.

  7. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Directory of Open Access Journals (Sweden)

    Sookyoung Jeon

    2017-01-01

    Full Text Available Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group. All samples were analyzed by high pressure liquid chromatography (HPLC. Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions.

  8. BIOACCUMULATION OF COPPER, ZINC, MANGAN, IRON AND MAGNESIUM IN SOME ECONOMICALLY IMPORTANT FISH FROM THE WESTERN SHORES OF ANTALYA

    Directory of Open Access Journals (Sweden)

    Kazim UYSAL

    2011-02-01

    Full Text Available Bioaccumulation of copper, zinc, manganese, iron and magnesium which generaly result from agricultural activities was determined in muscle, skin and gills of some economically important sea fish(Diplodus sargus, Siganus rivulatus, Lithognathus mormyrus, Liza aurata, Chelon labrasus from the western shores of Antalya, intensive agricultural regions. The minimum and maximum levels of investigated elements (mg kg-1 wet weight in tissues of the fish varied from 0.54 to1.69 for copper; from 4.14 to 407.23 for zinc from 0.15 to 9.17 for mangan; from 3.45 to104.49 for iron; and from 204.33 to 784.30 for magnesium. While the lowest levels of elements were determined in the muscle, the highest levels (except copper were encountered in the gills. Copper and zinc levels in muscle of the species were remarkably lower than the maximum permissible levels informed by World Health Organization (WHO, Food and Agriculture Organisation (FAO and Turkish Legislation although zinc contents in the skin of some species (D. sargus, S. rivulatus, L. mormyrus and L. aurata were higher than that levels.

  9. Bioaccumulation of the pharmaceutical 17{alpha}-ethinylestradiol in shorthead redhorse suckers (Moxostoma macrolepidotum) from the St. Clair River, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ansari, Ahmed M.; Saleem, Ammar; Kimpe, Linda E. [University of Ottawa, Department of Biology, Chemical and Environmental Toxicology, Ottawa, Ontario K1N 6N5 (Canada); Sherry, Jim P.; McMaster, Mark E. [Environment Canada, Water Science and Technology Directorate, Canada Centre for Inland Waters, Burlington, Ontario (Canada); Trudeau, Vance L. [University of Ottawa, Department of Biology, Chemical and Environmental Toxicology, Ottawa, Ontario K1N 6N5 (Canada); Blais, Jules M., E-mail: jules.blais@uottawa.c [University of Ottawa, Department of Biology, Chemical and Environmental Toxicology, Ottawa, Ontario K1N 6N5 (Canada)

    2010-08-15

    17{alpha}-ethynylestradiol (EE2), a synthetic estrogen prescribed as a contraceptive, was measured in Shorthead Redhorse Suckers (ShRHSs) (Moxostoma macrolepidotum) collected near a wastewater treatment plant (WWTP) in the St. Clair River (Ontario, Canada). We detected EE2 in 50% of the fish samples caught near the WWTP (Stag Island), which averaged 1.6 {+-} 0.6 ng/g (wet weight) in males and 1.43 {+-} 0.96 ng/g in females. No EE2 was detected in the samples from the reference site (Port Lambton) which was 26 km further downstream of the Stag Island site. Only males from Stag Island had VTG induction, suggesting the Corunna WWTP effluent as a likely source of environmental estrogen. EE2 concentrations were correlated with total body lipid content (R{sup 2} = 0.512, p < 0.01, n = 10). Lipid normalized EE2 concentrations were correlated with {delta}{sup 15}N (R{sup 2} = 0.436, p < 0.05, n = 10), suggesting higher EE2 exposures in carnivores. Our data support the hypothesis of EE2 bioaccumulation in wild fish. - Ethinylestradiol accumulation in wild fish.

  10. BIOACCUMULATION OF HEAVY METALS IN FRESHWATER SNAILS BELLAMYA BENGALENSIS, AND LYMNEA ACCUMINATA FROM MALANGAON WETLAND OF DHULE DISTRICT (MAHARASHTRA INDIA

    Directory of Open Access Journals (Sweden)

    WAYKAR BHALCHANDRA

    2013-01-01

    Full Text Available The levels of heavy metals zinc, copper, cadmium and lead were determined in surface water, soil sediments andwhole soft body tissues of native freshwater snail species, Bellamya bengalensis, and Lymnea accuminata fromMalangaon dam. The result showed that in surface water the cadmium (0.0259mg/L and lead (0.0730 mg/Lconcentration exceed higher limit of WHO drinking water standard (WHO, 1993. It was observed that,concentration of four metals zinc (1565.6μg/g, copper (1371.3μg/g, cadmium (90.16μg/g and lead (125.3μg/gwere higher in soil sediments as compare to surface water. The bioaccumulation levels of zinc, copper, cadmium,and lead in Bellamya bengalensis were 3498.6, 4655.3, 83.5 and 1541.3μg/g respectively and for Lymneaaccuminata were 1798.8, 690.1, 107.63 and 603.3.5μg/g respectively. The metal concentrations in whole softbody tissues of snail’s species were higher than the surface water and soil sediments. The metal concentration,BWAF and BSAF values suggested that the Bellamya bengalensis have greater capacity for zinc, copper and leadaccumulation than Lymnea accuminata, while Lymnea accuminata has greater capacity for cadmium accumulationthan Bellamya bengalensis

  11. Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag

    Science.gov (United States)

    le Croteau, Marie-Noe; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2011-01-01

    We compared silver (Ag) bioavailability and toxicity to a freshwater gastropod after exposure to ionic silver (Ag+) and to Ag nanoparticles (Ag NPs) capped with citrate or with humic acid. Silver form, exposure route, and capping agent influence Ag bioaccumulation dynamics in Lymnaea stagnalis. Snails efficiently accumulated Ag from all forms after either aqueous or dietary exposure. For both exposure routes, uptake rates were faster for Ag+ than for Ag NPs. Snails efficiently assimilated Ag from Ag NPs mixed with diatoms (assimilation efficiency (AE) ranged from 49 to 58%) and from diatoms pre-exposed to Ag+ (AE of 73%). In the diet, Ag NPs damaged digestion. Snails ate less and inefficiently processed the ingested food, which adversely impacted their growth. Loss rates of Ag were faster after waterborne exposure to Ag NPs than after exposure to dissolved Ag+. Once Ag was taken up from diet, whether from Ag+ or Ag NPs, Ag was lost extremely slowly. Large Ag body concentrations are thus expected in L. stagnalis after dietborne exposures, especially to citrate-capped Ag NPs. Ingestion of Ag associated with particulate materials appears as the most important vector of uptake. Nanosilver exposure from food might trigger important environmental risks.

  12. Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores.

    Science.gov (United States)

    Magalhães, Maria C; Costa, Valentina; Menezes, Gui M; Pinho, Mário R; Santos, Ricardo S; Monteiro, Luís R

    2007-10-01

    We relate fish biological and ecological characteristics to total and organic mercury concentrations to determine whether accumulation is influenced by trophic level, Hg concentration in the diet, and vertical distribution. Levels of total mercury and methylmercury were determined in the muscle tissue of eight species of fish: Pagellus acarne, Trachurus picturatus, Phycis phycis, P. blennoides, Polyprion americanus, Conger conger, Lepidopus caudatus and Mora moro, caught in the Azores. All such fishes are commercially valuable and were selected to include species from a wide range of vertical distributions from epipelagic (300 m) environments. Methylmercury was the major form accumulated in all species, comprising an average of 88.1% of total mercury. Concentrations of mercury (total and methylmercury) increased with age, length and weight. Based on data from other studies, mercury concentrations in fish diet were estimated. Mercury levels in food ranged from 0.08 to 0.32 ppm, dry weight. Hg concentrations in the food and in muscle tissue from different species were positively correlated. Total Hg levels in the muscles were approximately nine times those estimated in food. Total mercury concentrations in muscle were positively correlated with both trophic level and median depth. Such enhanced mercury bioaccumulation in relation to depth appears to be determined primarily by concentrations in food and ultimately by water chemistry, which controls mercury speciation and uptake at the base of the food chain.

  13. Bioaccumulation of metals and metalloids in medicinal plant Ipomoea pes-caprae from areas impacted by tsunami.

    Science.gov (United States)

    Kozak, Lidia; Kokociński, Mikołaj; Niedzielski, Przemysław; Lorenc, Stanisław

    2015-02-01

    Tsunami events may have an enormous impact on the functioning of aquatic and terrestrial ecosystems by altering various relationships with biotic components. Concentrations of acid-leachable fractions of heavy metals and metalloids in soils and plant samples from areas affected by the December 2004 tsunami in Thailand were determined. Ipomoea pes-caprae, a common plant species growing along the seashore of this region, and frequently used in folk medicine, was selected to assess the presence of selected elements. Elevated amounts of Cd, Pb, Zn, and As in soil samples, and Pb, Zn, As, Se, Cr, and Ni in plant samples were determined from the tsunami-impacted regions for comparison with reference locations. The flowers of Ipomoea pes-caprae contained the highest amounts of these metals, followed by its leaves, and stems. In addition, its bioaccumulation factor (BAF) supports this capability of high metal uptake by Ipomoea pes-caprae from the areas affected by the tsunami in comparison with a reference site. This uptake was followed by the translocation of these elements to the various plant components. The presence of these toxic metals in Ipomoea pes-caprae growing in contaminated soils should be a concern of those who use this plant for medicinal purposes. Further studies on the content of heavy metals and metalloids in this plant in relation to human health concerns are recommended.

  14. The level and bioaccumulation of Cd, Cu, Cr and Zn in benthopelagic species from the Bering Sea

    Institute of Scientific and Technical Information of China (English)

    SHI Ronggui; LIN Jing; YE Yi; MA Yifan; CAI Minggang

    2015-01-01

    The Bering Sea is an area of high biological productivity, with large populations of sea-birds, demersal and pelagic fishes, so it seemed desirable to assess the bioaccumulation of trace metals in the marine organisms from this area. However, few data on trace metal concentrations are available for the benthopelagic organisms from the Bering Sea till now. Ten specimens of benthos (including 120 biological samples) were collected in the western Bering Sea in August 2008 during the 3rd Chinese National Arctic Research Expeditions, and the concentration of Cd, Cu, Cr and Zn determined using atomic absorption spectrometry. Zn, Cr and Cd concentrations in muscle tissues of the crab species were much higher than those from fish and cephalopod species, and the highest concentration of Cu was observed in the muscle tissues ofCylichna nucleoli. The results showed a similar hierarchy for Zn, Cr, Cd and Cu concentrations among different tissues as follows: hepatopancreas>muscle tissue>gonad. Bioconcentration factors indicated that benthic organisms had high accumulation abilities for Zn and Cu.

  15. Bioaccumulation of 14C-17alpha-ethinylestradiol by the aquatic oligochaete Lumbriculus variegatus in spiked artificial sediment.

    Science.gov (United States)

    Liebig, Markus; Egeler, Philipp; Oehlmann, Jörg; Knacker, Thomas

    2005-04-01

    A bioaccumulation study was performed with the endobenthic freshwater oligochaete Lumbriculus variegatus MULLER exposed to the radiolabelled synthetic steroid 17alpha-ethinylestradiol (14C-EE2) in a spiked artificial sediment. Concentration of total radioactivity increased constantly and almost linearly during 35 days of exposure. The accumulation factor normalised to worm lipid content and sediment TOC (AFlipid/OC) was 75 at the end of the uptake period, but a steady state was not reached. Uptake kinetics were calculated fitting the measured AFs to a kinetic rate equation for constant uptake from sediment using iterative non-linear regression analysis. After 10 days of elimination in contaminant-free sediment 50% of the accumulated total radioactivity was excreted by the worms. Extracts from L. variegatus sampled at the end of the uptake phase were analysed by thin layer chromatography (TLC). The results showed that 6% of the total radioactivity incorporated by the worms was 14C-EE2. After treatment of extracts with beta-glucuronidase the amount of 14C-EE2 increased to 84%. These results suggest that L. variegatus has the potency to accumulate high amounts of conjugated EE2. Hence, a transfer of EE2 to benthivores and subsequent secondary poisoning of predators might be possible.

  16. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Udovic, Metka [Centre for Soil and Environmental Science, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Sl-1000 Ljubljana (Slovenia); Drobne, Damjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.s [Centre for Soil and Environmental Science, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Sl-1000 Ljubljana (Slovenia)

    2009-10-15

    Leaching using EDTA applied to a Pb, Zn and Cd polluted soil significantly reduced soil metal concentrations and the pool of metals in labile soil fractions. Metal mobility (Toxicity Characteristic Leaching Procedure), phytoavailability (diethylenetriaminepentaacetic acid extraction) and human oral-bioavailability (Physiologically Based Extraction Test) were reduced by 85-92%, 68-91% and 88-95%, respectively. The metal accumulation capacity of the terrestrial isopod Porcellio scaber (Crustacea) was used as in vivo assay of metal bioavailability, before and after soil remediation. After feeding on metal contaminated soil for two weeks, P. scaber accumulated Pb, Zn and Cd in a concentration dependent manner. The amounts of accumulated metals were, however, higher than expected on the basis of extraction (in vitro) tests. The combined results of chemical extractions and the in vivo test with P. scaber provide a more relevant picture of the availability stripping of metals after soil remediation. - Bioaccumulation tests with Porcellio scaber isopods are proposed as a supplement to chemical extraction in assessing metal bioavailability before and after soil remediation.

  17. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Science.gov (United States)

    Jeon, Sookyoung; Neuringer, Martha; Johnson, Emily E.; Kuchan, Matthew J.; Pereira, Suzette L.; Johnson, Elizabeth J.; Erdman, John W.

    2017-01-01

    Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group). All samples were analyzed by high pressure liquid chromatography (HPLC). Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions. PMID:28075370

  18. Evaluation of Invertebrate Bioaccumulation of Fly Ash Contaminants in the Emory, Clinch, and Tennessee Rivers, 2009 - 2010

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John G [ORNL

    2012-05-01

    This report provides a summary of results from studies on invertebrate bioaccumulation of potential contaminants associated with a major fly ash spill into the Emory River following the failure of a dike at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant (KIF) in Kingston, Tennessee, in late December 2008. Data included in this report cover samples collected in calendar years 2009 and 2010. Samples collected from most sites in 2009 were processed by two different laboratories using different approved U.S. Environmental Protection Agency (EPA) analytical methods: ALS Laboratory Group in Ft. Collins, CO, processed sampling using EPA method 6010 (but method 6020 for uranium and SW7470 for mercury), and PACE Analytical in Minneapolis, MN, used EPA method 6020. A preliminary evaluation of results from both laboratories indicated that some differences exited in measured concentrations of several elements, either because of specific differences of the two methods or inter-laboratory differences. While concentration differences between the laboratories were noted for many elements, spatial trends depicted from the results of both methods appeared to be similar. However, because samples collected in the future will be analyzed by Method 6020, only the results from PACE were included in this report to reduce data variation potentially associated with inter-laboratory and analytical method differences.

  19. Effect of pollution by particulate iron on the morphoanatomy, histochemistry, and bioaccumulation of three mangrove plant species in Brazil.

    Science.gov (United States)

    Arrivabene, Hiulana Pereira; Souza, Iara da Costa; Có, Walter Luiz Oliveira; Conti, Melina Moreira; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias

    2015-05-01

    In Brazil, some mangrove areas are subjected to air pollution by particulate iron from mining activities. However, the effect of this pollutant on mangrove plants is not well known. This study aimed to comparatively analyze the morphoanatomy, histochemistry, and iron accumulation in leaves of Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle. Samples were collected from five mangrove sites of Espírito Santo state, each of which is exposed to different levels of particulate iron pollution. The amount of particulate material settled on the leaf surface was greater in A. schaueriana and L. racemosa, which contain salt glands. High iron concentrations were found in leaves of this species, collected from mangrove areas with high particulate iron pollution, which suggests the foliar absorption of this element. None of the samples from any of the sites showed morphological or structural damage on the leaves. Scanning electron microscopy (SEM) coupled to X-ray diffraction rendered a good method for evaluating iron on leaves surfaces. A histochemical test using Prussian blue showed to be an appropriate method to detect iron in plant tissue, however, proved to be an unsuitable method for the assessment of the iron bioaccumulation in leaves of A. schaueriana and R. mangle. So far, this study demonstrates the need of evaluating the pathway used by plants exposed to contaminated particulate matter to uptake atmospheric pollutants.

  20. Distribution of Bio-accumulated Cd and Cr in two Vigna species and the Associated Histological Variations

    Directory of Open Access Journals (Sweden)

    Ratheesh Chandra, P.

    2010-04-01

    Full Text Available In nutrient culture experiments, bioaccumulation and anatomical effects of cadmium (CdCl2 - 20μM and chromium (K2Cr2O7 - 600 μM on the structure of root and stem was studied by histochemical and analytical methods in Vigna radiata and Vigna unguiculata. Each metal exerted specific influences on the anatomy of various tissues in root and stem. Histochemical localisation of cadmium and chromium was observed in the stained sections of root and stem. Atomic Absorption Spectrophotometric study revealed maximum accumulation of cadmium and chromium in the root tissue as compared to shoot with significant variation among the species. Abundant occurrences of densely stained deposits of chromium were seen in the root stelar region of V. unguiculata and to a lesser extend in V. radiata. Cadmium accumulation in V. radiata was comparatively more than that of V. unguiculata. The findings also revealed that the accumulation pattern of cadmium and chromium varies between species and hence is species specific.

  1. Estimation of the bioaccumulation potential of a nonchlorinated bisphenol and an ionogenic xanthene dye to Eisenia andrei in field-collected soils, in conjunction with predictive in silico profiling.

    Science.gov (United States)

    Princz, Juliska; Bonnell, Mark; Ritchie, Ellyn; Velicogna, Jessica; Robidoux, Pierre-Yves; Scroggins, Rick

    2014-02-01

    In silico-based model predictions, originating from structural and mechanistic (e.g., transport, bioavailability, reactivity, and binding potential) profiling, were compared against laboratory-derived data to estimate the bioaccumulation potential in earthworms of 2 organic substances (1 neutral, 1 ionogenic) known to primarily partition to soil. Two compounds representative of specific classes of chemicals were evaluated: a nonchlorinated bisphenol containing an -OH group (4,4′-methylenebis[2,6-di-tert-butylphenol] [Binox]), and an ionogenic xanthene dye (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt [Phloxine B]). Soil bioaccumulation studies were conducted using Eisenia andrei and 2 field-collected soils (a clay loam and a sandy soil). In general, the in silico structural and mechanistic profiling was consistent with the observed soil bioaccumulation tests. Binox did not bioaccumulate to a significant extent in E. andrei in either soil type; however, Phloxine B not only accumulated within tissue, but was not depurated from the earthworms during the course of the elimination phase. Structural and mechanistic profiling demonstrated the binding and reactivity potential of Phloxine B; this would not be accounted for using traditional bioaccumulation metrics, which are founded on passive-based diffusion mechanisms. This illustrates the importance of profiling for reactive ionogenic substances; even limited bioavailability combined with reactivity can result in exposures to a hazardous substance not predictable by traditional in silico modeling methods.

  2. Wetland management and rice farming strategies to decrease methylmercury bioaccumulation and loads from the Cosumnes River Preserve, California

    Science.gov (United States)

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Fleck, Jacob; Windham-Myers, Lisamarie; McQuillen, Harry; Heim, Wes

    2014-01-01

    We evaluated mercury (Hg) concentrations in caged fish (deployed for 30 days) and water from agricultural wetland (rice fields), managed wetland, slough, and river habitats in the Cosumnes River Preserve, California. We also implemented experimental hydrological regimes on managed wetlands and post-harvest rice straw management techniques on rice fields in order to evaluate potential Best Management Practices to decrease methylmercury bioaccumulation within wetlands and loads to the Sacramento-San Joaquin River Delta. Total Hg concentrations in caged fish were twice as high in rice fields as in managed wetland, slough, or riverine habitats, including seasonal managed wetlands subjected to identical hydrological regimes. Caged fish Hg concentrations also differed among managed wetland treatments and post-harvest rice straw treatments. Specifically, Hg concentrations in caged fish decreased from inlets to outlets in seasonal managed wetlands with either a single (fall-only) or dual (fall and spring) drawdown and flood-up events, whereas Hg concentrations increased slightly from inlets to outlets in permanent managed wetlands. In rice fields, experimental post-harvest straw management did not decrease Hg concentrations in caged fish. In fact, in fields in which rice straw was chopped and either disked into the soil or baled and removed from the fields, fish Hg concentrations increased from inlets to outlets and were higher than Hg concentrations in fish from rice fields subjected to the more standard post-harvest practice of simply chopping rice straw prior to fall flood-up. Finally, aqueous methylmercury (MeHg) concentrations and export were highly variable, and seasonal trends in particular were often opposite to those of caged fish. Aqueous MeHg concentrations and loads were substantially higher in winter than in summer, whereas caged fish Hg concentrations were relatively low in winter and substantially higher in summer. Together, our results highlight the

  3. Bioaccumulation and trophic transfer of mercury and selenium in african sub-tropical fluvial reservoirs food webs (Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Ousséni Ouédraogo

    Full Text Available The bioaccumulation and biomagnification of mercury (Hg and selenium (Se were investigated in sub-tropical freshwater food webs from Burkina Faso, West Africa, a region where very few ecosystem studies on contaminants have been performed. During the 2010 rainy season, samples of water, sediment, fish, zooplankton, and mollusks were collected from three water reservoirs and analysed for total Hg (THg, methylmercury (MeHg, and total Se (TSe. Ratios of δ13C and δ15N were measured to determine food web structures and patterns of contaminant accumulation and transfer to fish. Food chain lengths (FCLs were calculated using mean δ15N of all primary consumer taxa collected as the site-specific baseline. We report relatively low concentrations of THg and TSe in most fish. We also found in all studied reservoirs short food chain lengths, ranging from 3.3 to 3.7, with most fish relying on a mixture of pelagic and littoral sources for their diet. Mercury was biomagnified in fish food webs with an enrichment factor ranging from 2.9 to 6.5 for THg and from 2.9 to 6.6 for MeHg. However, there was no evidence of selenium biomagnification in these food webs. An inverse relationship was observed between adjusted δ15N and log-transformed Se:Hg ratios, indicating that Se has a lesser protective effect in top predators, which are also the most contaminated animals with respect to MeHg. Trophic position, carbon source, and fish total length were the factors best explaining Hg concentration in fish. In a broader comparison of our study sites with literature data for other African lakes, the THg biomagnification rate was positively correlated with FCL. We conclude that these reservoir systems from tropical Western Africa have low Hg biomagnification associated with short food chains. This finding may partly explain low concentrations of Hg commonly reported in fish from this area.

  4. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Zhou, Qiong, E-mail: hainan@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Yuan, Gailing; He, Xugang [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2015-09-15

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ{sup 13}C and δ{sup 15}N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment.

  5. Toxicity evaluation of copper oxide bulk and nanoparticles in Nile tilapia, Oreochromis niloticus, using hematological, bioaccumulation and histological biomarkers.

    Science.gov (United States)

    Abdel-Khalek, Amr A; Badran, Shereen R; Marie, Mohamed-Assem S

    2016-08-01

    The increased industrial applications of nanoparticles (NPs) augment the possibility of their deposition into aquatic ecosystems and threatening the aquatic life. So, this study aimed to provide a comparable toxicological effects of nano-CuO and bulk CuO on a common freshwater fish, Oreochromis niloticus. Fish were exposed to two selected doses (1/10 and 1/20 of the LC50/96 h) of both nano-/bulk CuO for 30 days. Based on the studied hematological parameters (RBCs count, hemoglobin content and hematocrit%), the two selected concentrations of CuO in their nano- and bulk sizes were found to induce significant decrease in all studied parameters. But, nano-CuO-treated fish showed the maximum decrease in all recorded parameters among the all studied groups especially at the low concentration of 1/20 LC50/96 h. Hematological status was also confirmed using the calculated blood indices (MCV, MHC and MCHC). In case of bulk CuO-treated groups, the significant decrease in the studied hematological parameters was not followed by any change in MCV and MCH (normocytic anemia), while fish that exposed to NPs showed a significant increase in all calculated blood parameters reflecting erythrocytes swelling which is related to the intracellular osmotic disorders (macrocytic anemia). Regarding metal bioaccumulation factor, the results showed that CuO NPs had more efficiency to internalize fish tissues (liver, kidneys, gills, skin and muscle). The accumulation pattern of Cu metal was ensured by histopathological investigation of liver, kidneys and gills. The histopathological analysis revealed various alterations that varied between adaptation responses and permanent tissue damage.

  6. Bioaccumulation of nutrient elements from fly ash-amended soil in Jatropha curcas L.: a biofuel crop.

    Science.gov (United States)

    Chaudhary, Doongar R; Ghosh, Arup

    2013-08-01

    Fly ash (FA) from coal-burning industries may be a potential inorganic soil amendment; the insight of its nutrient release and supply to soil may enhance their agricultural use. The study was conducted to assess the ability of fly ash (a coal fired thermal plant waste) to reduce soil fertility depletion and to study bioaccumulation of mineral nutrients in Jatropha curcas grown on soils amended with fly ash. Fly ash was amended to field soil at six rates (0, 5, 10, 20, 40, and 70 % w/w) on which J. curcas was grown. After 8 months of growth, the height of jatropha plants was significantly increased at 5 and 10 % FA-amended soil, whereas, biomass significantly increased at 5, 10, and 20 % FA-amended soil compared to control soil (0 % FA). Leaf nutrients uptake, followed by stems and roots uptake were highly affected by fly ash amendment to soil. Most of nutrients accumulation were increased up to 20 % fly ash and decreased thereafter. The results of available nutrient analysis of soil revealed that availability of nitrogen, potassium, sulfur, copper, iron, mangnese, and zinc declined significantly at higher levels of fly ash amendments, whereas, availability of phosphorus increased at these levels. However, pH, organic carbon, and available boron were not influenced significantly by fly ash amendment to soil. Microbial biomass C, N, and ratio of microbial-C to organic C were significantly reduced at 20 % fly ash and higher amounts. This study revealed that J. curcas plants could gainfully utilize the nutrients available in fly ash by subsequently amending soil.

  7. Partitioning and bioaccumulation of PCBs and PBDEs in marine plankton from the Strait of Georgia, British Columbia, Canada

    Science.gov (United States)

    Frouin, Heloise; Dangerfield, Neil; Macdonald, Robie W.; Galbraith, M.; Crewe, Norman; Shaw, Patrick; Mackas, David; Ross, Peter S.

    2013-08-01

    The Strait of Georgia is a large, deep, fjord-like estuary on the southern coast of British Columbia which is subject to local and atmospheric inputs of persistent environmental contaminants. We measured 204 polychlorinated biphenyls (PCBs) and 61 polybrominated diphenyl ethers (PBDEs) seasonally in water (two depths; dissolved and particle-bound) and plankton (vertical tow) samples collected at two stations. Principal components analysis clearly distinguished the dissolved and particulate water fractions and plankton samples, with the latter two compartments associated more with heavier congeners. Bioaccumulation factors (log BAFs) for PCBs and PBDEs in plankton were best described by parabolic relationships against octanol-water partitioning coefficients (log Kow), peaking at a log Kow of 5-7, underscoring the important role of physico-chemical properties in driving the uptake of these persistent contaminants by plankton from water. The estimated total quantity of PCBs (annual average of 0.61 ± SEM 0.12 kg) and PBDEs (annual average of 0.64 ± 0.19 kg) in Strait of Georgia plankton biomass were remarkably similar, highlighting the emergence of currently-used PBDEs as a priority concern. The estimated total of 52.1 ± 8.41 kg of PCBs in water (dissolved + particle-bound) was higher than the estimated 26.8 ± 5.20 kg of PBDEs (dissolved + particle-bound), reflecting the dichotomous use histories for these two contaminant classes. Results provide insight into the biological availability of PCBs and PBDEs to the Strait of Georgia food web, and describe an important initial partitioning process by which the region's endangered killer whales have become highly contaminated.

  8. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.

    Science.gov (United States)

    Klink, Agnieszka

    2017-02-01

    The aims of the present investigation were to reveal various trace metal accumulation abilities of two common helophytes Typha latifolia and Phragmites australis and to investigate their potential use in the phytoremediation of environmental metal pollution. The concentrations of Fe, Mn, Zn, Cu, Cd, Pb and Ni were determined in roots, rhizomes, stems and leaves of both species studied as well as in corresponding water and bottom sediments from 19 sites selected within seven lakes in western Poland (Leszczyńskie Lakeland). The principal component and classification analysis showed that P. australis leaves were correlated with the highest Mn, Fe and Cd concentrations, but T. latifolia leaves with the highest Pb, Zn and Cu concentrations. However, roots of the P. australis were correlated with the highest Mn, Fe and Cu concentrations, while T. latifolia roots had the highest Pb, Zn and Cd concentrations. Despite the differences in trace metal accumulation ability between the species studied, Fe, Cu, Zn, Pb and Ni concentrations in the P. australis and T. latifolia exhibited the following accumulation scheme: roots > rhizomes > leaves > stems, while Mn decreased in the following order: root > leaf > rhizome > stem. The high values of bioaccumulation factors and low values of translocation factors for Zn, Mn, Pb and Cu indicated the potential application of T. latifolia and P. australis in the phytostabilisation of contaminated aquatic ecosystems. Due to high biomass of aboveground organs of both species, the amount of trace metals stored in these organs during the vegetation period was considerably high, despite of the small trace metals transport.

  9. The impact of organochlorines and metals on wild fish living in a tropical hydroelectric reservoir: bioaccumulation and histopathological biomarkers.

    Science.gov (United States)

    Paulino, Marcelo Gustavo; Benze, Tayrine Paschoaletti; Sadauskas-Henrique, Helen; Sakuragui, Marise Margareth; Fernandes, João Batista; Fernandes, Marisa Narciso

    2014-11-01

    This study evaluates the contaminants in water and their bioaccumulation in the gills and liver of two ecologically distinct fish species, Astyanax fasciatus and Pimelodus maculatus, living in the reservoir of the Furnas hydroelectric power station located in Minas Gerais in the southeastern Brazil. The histological alterations in these organs are also examined. Water and fish were collected in June and December from five sites (site 1: FU10, site 2: FU20, site 3: FU30, site 4: FU40 and site 5: FU50) in the reservoir, and agrochemicals and metals selected based on their use in the field crops surrounding the reservoir were analyzed in the water and in the fish gills and livers. The concentrations of the organochlorines aldrin/dieldrin, endosulfan and heptachlor/heptachlor epoxide as well as the metals copper, chromium, iron and zinc in the gills and livers of both fish species were higher in June than in December; the liver accumulated higher concentrations of contaminants than the gills. The organochlorine metolachlor was detected only in the liver. The histological pattern of changes was similar in both species with regard to contaminant accumulation in the gills and liver. Fish from FU10, the least contaminated site, exhibited normal gill structure and moderate to heavy liver damage. Fish collected at FU20 to FU50, which were contaminated with organochlorines and metals, showed slight to moderate gill damage in June and irreparable liver damage in the livers in June and December. The histological changes in the gills and liver were suitable to distinguishing contaminated field sites and are therefore useful biomarkers for environmental contamination representing a biological end-point of exposure.

  10. Tolerance and bioaccumulation of U(VI) by Bacillus mojavensis and its solid phase preconcentration by Bacillus mojavensis immobilized multiwalled carbon nanotube.

    Science.gov (United States)

    Özdemir, Sadin; Oduncu, M Kadir; Kilinc, Ersin; Soylak, Mustafa

    2017-02-01

    In this study, uranium(VI) tolerance and bioaccumulation were investigated by using thermo -tolerant Bacillus mojavensis. The level of U(VI) was measured by UV-VIS spectrophotometry. The minimum inhibition concentration (MIC) value of U(VI) was experimented. Bacterial growth was not affected in the presence of 1.0 and 2.5 mg/L U(VI) at 36 h and the growth was partially affected in the presence of 5 mg/L U(VI) at 24 h. What was obtained from this study is that there was diversity in the various periods of the growth phases of metal bioaccumulation capacity, which was shown by B. mojavensis. The maximum bioaccumulation capacities were found to be 12.8, 22.7, and 48.2 mg/g dried bacteria, at 24th hours at concentration of 1.0, 2.5 and 5 mg/L U(VI), respectively. In addition to these, U(VI) has been preconcentrated on B. mojavensis immobilized MWCNT. Several factors such as pH, flow rate of solution, amount of biosorbent and support materials, eluent type, concentration and volume, the matrix interference effect on retention have been studied, and extraction conditions were optimized. Preconcentration factor was achieved as 60. Under the optimized conditions, the limit of detection (LOD) and quantification (LOQ) were calculated as 0.74 and 2.47 μg/L. The biosorption capacity of immobilized B. mojavensis was calculated for U(VI) as 25.8 mg/g. The results demonstrated that the immobilized biosorbent column could be reused at least 30 cycles of biosorption and desorption with the higher than 95% recovery. FT-IR and SEM analysis were performed to understand the surface properties of B. mojavensis.

  11. Bioaccumulation of chemical warfare agents, energetic materials, and metals in deep-sea shrimp from discarded military munitions sites off Pearl Harbor

    Science.gov (United States)

    Koide, Shelby; Silva, Jeff A. K.; Dupra, Vilma; Edwards, Margo

    2016-06-01

    The bioaccumulation of munitions-related chemicals at former military deep-water disposal sites is poorly understood. This paper presents the results of human-food-item biota sampling to assess the potential for bioaccumulation of chemical warfare agents, energetic materials, arsenic, and additional munitions-related metals in deep-sea shrimp tissue samples collected during the Hawai'i Undersea Military Munitions Assessment (HUMMA) project to date. The HUMMA investigation area is located within a former munitions sea-disposal site located south of Pearl Harbor on the island of O'ahu, Hawai'i, designated site Hawaii-05 (HI-05) by the United States Department of Defense. Indigenous deep-sea shrimp (Heterocarpus ensifer) were caught adjacent to discarded military munitions (DMM) and at control sites where munitions were absent. Tissue analysis results showed that chemical warfare agents and their degradation products were not present within the edible portions of these samples at detectable concentrations, and energetic materials and their degradation products were detected in only a few samples at concentrations below the laboratory reporting limits. Likewise, arsenic, copper, and lead concentrations were below the United States Food and Drug Administration's permitted concentrations of metals in marine biota tissue (if defined), and their presence within these samples could not be attributed to the presence of DMM within the study area based on a comparative analysis of munitions-adjacent and control samples collected. Based on this current dataset, it can be concluded that DMM existing within the HUMMA study area is not contributing to the bioaccumulation of munitions-related chemicals for the biota species investigated to date.

  12. Effects of crude oil exposure on bioaccumulation of polycyclic aromatic hydrocarbons and survival of adult and larval stages of gelatinous zooplankton.

    Science.gov (United States)

    Almeda, Rodrigo; Wambaugh, Zoe; Chai, Chao; Wang, Zucheng; Liu, Zhanfei; Buskey, Edward J

    2013-01-01

    Gelatinous zooplankton play an important role in marine food webs both as major consumers of metazooplankton and as prey of apex predators (e.g., tuna, sunfish, sea turtles). However, little is known about the effects of crude oil spills on these important components of planktonic communities. We determined the effects of Louisiana light sweet crude oil exposure on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in adult stages of the scyphozoans Pelagia noctiluca and Aurelia aurita and the ctenophore Mnemiopsis leidyi, and on survival of ephyra larvae of A. aurita and cydippid larvae of M. leidyi, in the laboratory. Adult P. noctiluca showed 100% mortality at oil concentration ≥20 µL L(-1) after 16 h. In contrast, low or non-lethal effects were observed on adult stages of A. aurita and M. leidyi exposed at oil concentration ≤25 µL L(-1) after 6 days. Survival of ephyra and cydippid larva decreased with increasing crude oil concentration and exposition time. The median lethal concentration (LC50) for ephyra larvae ranged from 14.41 to 0.15 µL L(-1) after 1 and 3 days, respectively. LC50 for cydippid larvae ranged from 14.52 to 8.94 µL L(-1) after 3 and 6 days, respectively. We observed selective bioaccumulation of chrysene, phenanthrene and pyrene in A. aurita and chrysene, pyrene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[a]anthracene in M. leidyi. Overall, our results indicate that (1) A. aurita and M. leidyi adults had a high tolerance to crude oil exposure compared to other zooplankton, whereas P. noctiluca was highly sensitive to crude oil, (2) larval stages of gelatinous zooplankton were more sensitive to crude oil than adult stages, and (3) some of the most toxic PAHs of crude oil can be bioaccumulated in gelatinous zooplankton and potentially be transferred up the food web and contaminate apex predators.

  13. Effects of sediment organic matter quality on bioaccumulation, degradation, and distribution of pyrene in two macrofaunal species and their surrounding sediment

    DEFF Research Database (Denmark)

    Granberg, Maria E.; Selck, Henriette

    2007-01-01

    to the comparably high biodegradability of the contaminant thus altering its sorptive characteristics and function as inert tracer. Subduction of pyrene and metabolites occurred, and the fraction of pyrene covalently bound to SOM increased with depth, thereby removing pyrene from the bioavailable pool. Our results...... imply that bioaccumulation and trophic transfer of sediment-associated PAH should increase following fresh organic matter input, e.g. after sedimentation of phytoplankton blooms. We stress the importance of considering behavioural characteristics of infauna and the trophic situation of the system when...

  14. On the Terminological Concepts of Biomagnification,Bioaccumulation,and Bioconcentration%"生物积累"等三个术语概念的探讨

    Institute of Scientific and Technical Information of China (English)

    刘志荣

    2007-01-01

    @@ 20世纪60年代到70年代初期,环境生物学为了阐述农药、重金属等化学污染物在生物机体内的浓度高于周围环境中的浓度的现象,开始使用"生物放大"(biomagnification)、"生物积累"(bioaccumulation)、"生物浓缩"(又称"生物富集")(bioconcentration)三个相关术语.

  15. Invertebrates in stormwater wet detention ponds — Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephansen, Diana Agnete, E-mail: das@civil.aau.dk [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Nielsen, Asbjørn Haaning [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Hvitved-Jacobsen, Thorkild [Department of Environmental Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9200 Aalborg East (Denmark); Pedersen, Morten Lauge; Vollertsen, Jes [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark)

    2016-10-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. - Highlights: • Biota of stormwater ponds had higher levels of metals compared to natural lakes. • Bioaccumulation of metals did not affect the biodiversity of the water bodies. • Biota composition in stormwater ponds and natural lakes was indistinguishable. • Stormwater ponds can play a role for biodiversity similar to natural lakes.

  16. Tissue distribution of organochlorine pesticides in fish collected from the Pearl River Delta, China: Implications for fishery input source and bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Guo Ying; Meng Xiangzhou; Tang Honglei [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Wushan, Guangzhou 510640 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Zeng, Eddy Y. [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Wushan, Guangzhou 510640 (China)], E-mail: eddyzeng@gig.ac.cn

    2008-09-15

    Fish tissues from different fishery types (freshwater farmed, seawater farmed and seawater wild) were analyzed for organochlorine pesticides (OCPs), with the aim to further our understanding of bioaccumulation, and reflect the state of different fishery environments. Significantly higher {sigma}OCP levels were found in seawater farmed fish than others, and among three freshwater farmed species, the lowest levels occurred in filter-feeding fish (bighead carp). Liver contained the highest {sigma}OCP levels, while no significant differences were found among other tissues. Among DDT components, p,p'-DDT was abundant in seawater fish, while for freshwater fish, p,p'-DDE was the predominant congeners, except for northern snakehead (34% for p,p'-DDE and 30% for p,p'-DDT). The new source of DDTs to freshwater fish ponds was partly attributed to dicofol, whereas sewage discharged from the Pearl River Delta and anti-fouling paint were likely the DDTs sources to seawater farmed fish. - Occurrence of organochlorine pesticides in fish tissues was examined to assess input sources and modes of bioaccumulation in the Pearl River Delta, China.

  17. Bioaccumulation of the artificial Cs-137 and the natural radionuclides Th-234, Ra-226, and K-40 in the fruit bodies of Basidiomycetes in Greece.

    Science.gov (United States)

    Kioupi, Vasiliki; Florou, Heleny; Kapsanaki-Gotsi, Evangelia; Gonou-Zagou, Zacharoula

    2016-01-01

    The bioaccumulation of artificial Cs-137 and natural radionuclides Th-234, Ra-226, and K-40 by Basidiomycetes of several species is studied and evaluated in relation to their substratum soils. For this reason, 32 fungal samples, representing 30 species of Basidiomycetes, were collected along with their substratum soil samples, from six selected sampling areas in Greece. The fungal fruit bodies and the soil samples were properly treated and the activity concentrations of the studied radionuclides were measured by gamma spectroscopy. The measured radioactivity levels ranged as follows: Cs-137 from Ra-226 from <0.3 to 1.0 ± 0.5 Bq kg(-1) F.W., and K-40 from 56.4 ± 3.0 to 759.0 ± 28.3 Bq kg(-1) F.W. The analysis of the results supported that the bioaccumulation of the studied natural radionuclides and Cs-137 is dependent on the species and the functional group of the fungi. Fungi were found to accumulate Th-234 and not U-238. What is more, potential bioindicators for each radionuclide among the 32 species studied could be suggested for each habitat, based on their estimated concentration ratios (CRs). The calculation of the CRs' mean values for each radionuclide revealed a rank in decreasing order for all the species studied.

  18. Manganese, nickel and strontium bioaccumulation in the tissues of the African sharptooth catfish, Clarias gariepinus from the Olifants River, Kruger National Park

    Directory of Open Access Journals (Sweden)

    Annemarie Avenant-Oldewage

    2000-07-01

    Full Text Available The gills, liver, muscle and skin were collected from Clarias gariepinus, during four surveys (February, May, June and November in 1994 from two sites on the Olifants River in the Kruger National Park. With the use of atomic absorption spectrophotometry, metal concentrations of manganese, nickel and strontium bioaccumulated in these tissues were determined. This information was then used to differentiate between the concentrations found at the two locations and between the four survey periods. The con- centration of the metals were found to be highest in the gills, followed by the liver. This suggests the gills to be the primary uptake tissue for these metals following their intimate blood-water contact. The concentration of manganese and strontium, with particular reference to the gills, showed highest bioaccumulation at Mamba. Very little differences in the nickel concentrations were found at both Mamba and Balule. Water bioconcentration factors for manganese and nickel were much higher than that noted for sediment, suggesting a much lower bioavailability of these metals from the sediment. On the other hand, sediment bioconcentration factors for strontium were generally higher than that for water, which could imply higher bioavailability and concentration from the sediment.

  19. Chemical elements in pearl oysters (Paxyodon ponderosus), phytoplankton and estuarine sediments from eastern Amazon (Northern Brazil): Bioaccumulation factors and trophic transfer factors

    Science.gov (United States)

    Vilhena, Maria P. S. P.; Costa, Marcondes L.; Berrêdo, José F.; Paiva, Rosildo S.; Souza, Crisvaldo C. S.

    2016-04-01

    The current study was conducted near Barcarena County, which is a mid-sized urban center where aluminum ore processing industries (bauxite) and Vila do Conde cargo terminal are located. It aims to discuss the bioaccumulation factors as well as factors related to the trophic transfer of chemical elements in water, oyster, phytoplankton and bottom sediments from an estuary in the Brazilian Northern coast. The bioaccumulation factor (BAF), trophic transfer factor (TTF) and biota-sediment-water were used to correlate the contents of chemical elements found in organisms. The sediment, surface water, phytoplankton and pearl oysters chemical composition was analyzed by ICP-OES and ICP-MS. Pearl oysters showed K, Ca, Mg, P, Mn, Fe, Zn, Al, Ba and Pb accumulation, which concentration increase is associated with their diet (phytoplankton). Al concentrations are 14 times higher in pearl oysters (Paxyodon ponderosus), assuming that they are associated with wastewater emissions and with industrialization processes in the area. BAF and BSAF values are 1000 times higher than the metal concentrations in water and bioavailable fraction concentrations. The oyster-phytoplankton trophic transfer factor indicates that P, Ba, Ca, Na, Cd and Zn showed the largest transfers (from 5 to 19). These trophic transfers may be sufficient to cause significant ecotoxicological effects on the region biota.

  20. Species-and tissue-specific mercury bioaccumulation in five fish species from Laizhou Bay in the Bohai Sea of China

    Institute of Scientific and Technical Information of China (English)

    LIU Jinhu; CAO Liang; HUANG Wei; DOU Shuozeng

    2013-01-01

    Mercury (Hg) concentrations in the tissues (muscle,stomach,liver,gills,skin,and gonads)of five fish species (mullet Liza haematocheilus,flathead fish Platycephalus indicus,sea bass Lateolabrax japonicus,mackerel Scomberomorus niphonius and silver pomfret Pampus argenteus) collected from Laizhou Bay in the Bohai Sea of China were investigated.The results indicate that Hg bioaccumulation in the five fish was tissue-specific,with the highest levels in the muscle and liver,followed by the stomach and gonads.The lowest levels were found in the gills and skin.Fish at higher trophic levels (flathead fish and sea bass) exhibited higher Hg concentrations than consumers at lower trophic levels.Mercury bioaccumulation tended to be positively correlated with fish length in mullet,silver pomfret,mackerel,and flathead fish,but was negatively correlated with fish length in sea bass.The Hg concentrations in the muscles of all fish species in Laizhou Bay were within the permissible limits of food safety set by national and international criteria.However,the suggesting maximum consumption of sea bass is 263 g per week for human health.

  1. 日本对虾对镉冒集能力的研究%Research on cadmium bioaccumulation in Penaeus japonicus

    Institute of Scientific and Technical Information of China (English)

    刘智禹; 吴欧燕; 吴成业; 叶金聪; 江琴

    2011-01-01

    The capability of cadmium bioaceumulation in feed in edible part and non - edible part of Penaeus japonicus was studied. The results showed that cadmium mainly gathered in the non - edible part and increased with the addition of cadmium concentration, the cadmium bioaccumulation tendency in edible part and non - edible part was similar, while the maximum bioaccumulation amount of cadmium in non - edible part was more than in edible part.%研究了日本对虾摄食镉含量不同的饲料,其可食部位与不可食部位对饲料中镉的富集能力。研究结果表明,镉主要富集于日本对虾不可食部位,可食部位与不可食部位对镉的富集趋势基本一致,均随着镉浓度的上升而增大,且不可食部位对镉的最高富集量明显高于可食部位。

  2. Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters.

    Science.gov (United States)

    Regier, Nicole; Larras, Floriane; Bravo, Andrea Garcia; Ungureanu, Viorel-Gheorghe; Amouroux, David; Cosio, Claudia

    2013-01-01

    Previous studies suggest that macrophytes might participate in bioaccumulation and biomagnification of toxic mercury (Hg) in aquatic environment. Hg bioaccumulation and uptake mechanisms in macrophytes need therefore to be studied. Amongst several macrophytes collected in an Hg contaminated reservoir in Romania, Elodea nuttallii showed a high organic and inorganic Hg accumulation and was then further studied in the laboratory. Tolerance and accumulation of Hg of this plant was also high in the microcosm. Basipetal transport of inorganic Hg was predominant, whereas acropetal transport of methyl-Hg was observed with apparently negligible methylation or demethylation in planta. Hg concentrations were higher in roots>leaves>stems and in top>middle>bottom of shoots. In shoots, more than 60% Hg was found intracellularly where it is believed to be highly available to predators. Accumulation in shoots was highly reduced by cold, death and by competition with Cu(+). Hg in E. nuttallii shoots seems to mainly originate from the water column, but methyl-Hg could also be remobilized from the sediments and might drive in part its entry in the food web. At the cellular level, uptake of Hg into the cell sap of shoots seems linked to the metabolism and to copper transporters. The present work highlights an important breakthrough in our understanding of Hg accumulation and biomagnifications: the remobilization of methyl-Hg from sediments to aquatic plants and differences in uptake mechanisms of inorganic and methyl-Hg in a macrophyte.

  3. Metal bioaccumulation in the Mediterranean barbel (Barbus meridionalis) in a Mediterranean river receiving effluents from urban and industrial wastewater treatment plants.

    Science.gov (United States)

    Maceda-Veiga, Alberto; Monroy, Mario; de Sostoa, Adolfo

    2012-02-01

    Although sewage treatment plants (STPs) play a crucial role in maintaining the water quality and flow of Mediterranean rivers, particularly during drought periods, few studies have addressed their impact on aquatic fauna. Here we analyzed the role of STPs as a source of metals in the Ripoll River, a heavily urbanized and industrialized watercourse with a long history of anthropogenic disturbance. For this purpose, we measured iron, mercury, cadmium, zinc, lead, nickel and copper accumulation in the liver and muscle of the Mediterranean barbel, Barbus meridionalis and also the concentrations of these metals in the river water. Industrial and urban sewage treatment plants are source of metals in Ripoll River but the former mainly increases Zn and Ni values. Significant differences in metal bioaccumulation between reference and polluted sites were detected. Nevertheless, there was only a significant positive relationship between bioaccumulation of Cu and Hg, and their concentration in water. In addition, the lead concentration in fish was not clearly associated with the presence of STPs. On the basis of morphometric parameters, the hepato-somatic index was the only one denoting significant differences between polluted and references sites. Given that fish are key elements in food webs, recreational fishing is practice in this area and that river water is used for agricultural purposes, we recommend long-term studies to analyze the impact of metal pollution in this river.

  4. Variations in gene expression levels in four European zebra mussel, Dreissena polymorpha, populations in relation to metal bioaccumulation: A field study.

    Science.gov (United States)

    Kerambrun, E; Rioult, D; Delahaut, L; Evariste, L; Pain-Devin, S; Auffret, M; Geffard, A; David, E

    2016-12-01

    The present study was performed to validate the suitability of using gene expression in zebra mussels, Dreissena polymorpha, for biomonitoring of freshwater environment. Mussels were collected in four French rivers (Meuse, Moselle, Oise and Vilaine) in spring and autumn. Relative gene expression of 9 candidate genes involved in cellular metabolic activities (Cytochrome-c-oxidase - cox, and ATP synthase - atp), detoxification process (Metallothionein - mt and Glutathion-S-Transferase - gst), oxidative stress (Catalase - cat, Superoxyde Dismutase - sod and Glutathion peroxidase - gpx) and digestive functions (Amylase - amy and Cellulase - ghf) were measured in digestive gland. Metal bioaccumulation in tissues and morphometric parameters were also analyzed to interpret molecular responses. All our results are consistent with different physiological reactions to environmental condition between zebra mussel populations. In spring, the levels of mt, sod, gpx, cat, atp, amy and ghf relative expression were significantly higher in mussels with the lowest metal bioaccumulation (the Meuse) compared to at least one of the other sites. In autumn, this higher expression levels in Meuse River were still observed for gpx, cat, atp and amy. This study has also pointed out different sources of variability in gene expression (individual size, season, trophic resources and origin of mussels) which are inevitable in natural fluctuant environment. This underlines the importance to take them into account in field study to propose a correct interpretation of biomarker responses.

  5. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system.

    Science.gov (United States)

    Türker, Onur Can; Yakar, Anıl; Gür, Nurcan

    2017-02-15

    The present study assesses ability of Lemna gibba L. using a batch reactor approach to bioaccumulation boron (B) from irrigation waters which were collected from a stream in largest borax reserve all over the world. The important note that bioaccumulation of B from irrigation water was first analyzed for first time in a risk assessment study using a Lemna species exposed to various B concentrations. Boron toxicity was evaluated through plant growth and biomass production during phytoremediation process. The result from the present experiment indicated that L. gibba was capable of removing 19-63% B from irrigation water depending upon contaminated level or initial concentration. We also found that B was removed from aqueous solution following pseudo second order kinetic model and Langmuir isotherm model better fitted equilibrium obtained for B phytoremediation. Maximum B accumulation in L. gibba was determined as 2088mgkg(-1) at average inflow B concentration 17.39mgL(-1) at the end of the experiment. Conversely, maximum bioconcentration factor obtained at lowest inflow B concentrations were 232 for L. gibba. The present study suggested that L. gibba was very useful B accumulator, and thus L. gibba-based techniques could be a reasonable phytoremediation option to remove B directly from water sources contaminated with B.

  6. Cadmium bioaccumulation in three benthic fish species, Salaria basilisca,Zosterisessor ophiocephalus and Solea vulgaris collected from the Guff of Gabes in Tunisia

    Institute of Scientific and Technical Information of China (English)

    BARHOUMI Sana; MESSAOUDI Imed; DELI Tmim; SAID Khaled; KERKENI Abdelhamid

    2009-01-01

    To select a marine teleost fish which can be used as a bioindicator of cadmium (Cd) pollution in the Gulf of Gabes in Tunisia, Cd concentrations in liver and gill were compared in three benthic fish species including Salaria basilisca, Zosterisessor ophiocephalus and Solea vulgaris. Fish samples were collected from three selected sites in the Gulf of Gabes, with different degrees of Cd contamination: the industrialized coast of Sfax (S1), the coast of Douar Chart (S2) and the coast of Luza ($3). The results shows that Cd concentrations in both sediment and water collected from S1 were significantly higher (pS2>S3. The hig