WorldWideScience

Sample records for bio-released gold ions

  1. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury

    DEFF Research Database (Denmark)

    Larsen, Agnete; Kolind, Kristian; Pedersen, Dan Sonne

    2008-01-01

    neural stem cell response. We conclude that bio-liberated gold ions possess pronounced anti-inflammatory and neuron-protective capacities in the brain and suggest that metallic gold has clinical potentials. Intra-cerebral application of metallic gold as a pharmaceutical source of gold ions represents......Traumatic brain injury results in loss of neurons caused as much by the resulting neuroinflammation as by the injury. Gold salts are known to be immunosuppressive, but their use are limited by nephrotoxicity. However, as we have proven that implants of pure metallic gold release gold ions which do...... not spread in the body, but are taken up by cells near the implant, we hypothesize that metallic gold could reduce local neuroinflammation in a safe way. Bio-liberation, or dissolucytosis, of gold ions from metallic gold surfaces requires the presence of disolycytes i.e. macrophages and the process...

  2. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  3. Enhanced photo-catalytic activity of gold ion and gold modified

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gold ion modified TiO2 was prepared by means of sol- gelwhereas gold deposited TiO2 was prepared by means of photo- reduction. The physical properties were influenced significantly by the presence of gold ion or gold. The enhanced photo-activity of gold modified TiO2 was quantified in terms of methylene blue degradation. The presence of gold ion in TiO2 lattices or gold on TiO2 surface enhanced their photo-activity. The optimum molar content of gold ion doping and gold deposition all was 0.5%. The first-order rates constants of gold modified TiO2 was more than that of pure TiO2, and decreased by increasing the content of gold ion and gold when their contents were more than 0.5%. Gold iondoped in TiO2 lattices was more effective to enhance the photo-activity than gold on TiO2 surface. Moreover, the relationship between physical properties, chemical properties and photo-activityhas been discussed.

  4. Gold Ion-Angiotensin Peptide Interaction by Mass Spectrometry

    Science.gov (United States)

    Lee, Jenny; Jayathilaka, Lasanthi P.; Gupta, Shalini; Huang, Jin-Sheng; Lee, Bao-Shiang

    2012-05-01

    Stimulated by the interest in developing gold compounds for treating cancer, gold ion-angiotensin peptide interactions are investigated by mass spectrometry. Under the experimental conditions used, the majority of gold ion-angiotensin peptide complexes contain gold in the oxidation states I and III. Both ESI-MS and MALDI-TOF MS detect singly/multiply charged ions for mononuclear/multinuclear gold-attached peptides, which are represented as [peptide + a Au(I) + b Au(III) + (e - a -3b) H]e+, where a,b ≥ 0 and e is charge. ESI-MS data shows singly/multiply charged ions of Au(I)-peptide and Au(III)-peptide complexes. This study reveals that MALDI-TOF MS mainly detects singly charged Au(I)-peptide complexes, presumably due to the ionization process. The electrons in the MALDI plume seem to efficiently reduce Au(III) to Au(I). MALDI also tends to enhance the higher polymeric forms of gold-peptide complexes regardless of the laser power used. Collision-induced dissociation experiments of the mononuclear and dinuclear gold-attached peptide ions for angiotensin peptides show that the gold ion (a soft acid) binding sites are in the vicinity of Cys (a soft ligand), His (a major anchor of peptide for metal ion chelation), and the basic residue Arg. Data also suggests that the abundance of gold-attached peptides increases with higher gold concentration until saturation, after which an increase in gold ion concentration leads to the aggregation and/or precipitation of gold-bound peptides.

  5. Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles

    OpenAIRE

    Shareena Dasari, TP; Zhang, Y; Yu, H.

    2015-01-01

    Gold nanoparticles (AuNPs) and gold ion complexes have been investigated for their antibacterial activities. However, the majority of the reports failed to disclose the concentration of free Au(I) or Au(III) present in solutions of AuNPs or gold ion complexes. The inconsistency of antibacterial activity of AuNPs may be due to the effect of the presence of Au(III). Here we report the antibacterial activity of Au(I) and Au(III) to four different bacteria: one nonpathogenic bacterium: E. coli an...

  6. Ion plated gold films: Properties, tribological behavior and performance

    Science.gov (United States)

    Spalvins, Talivaldis

    1987-01-01

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  7. Gold ion beams induced desorption studies for Booster Nuclotron

    Science.gov (United States)

    Kuznetsov, A. B.; Tuzikov, A. V.; Philippov, A. V.

    2016-12-01

    Heavy ions induced pressure rise is one of the machine limits. The calculation results of the gold ion beam 197Au31+ losses due to residual gas interaction in view of desorption of adsorbed particles on the Booster Nuclotron vacuum chamber surface are discussed.

  8. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  9. Ion beam analysis of gold jewelry

    Science.gov (United States)

    Demortier, Guy

    1992-02-01

    PIXE milliprobe in a nonvacuum assembly has been proven to be a very rapid and accurate method for the elemental analysis of gold jewelry artefacts. Using protons whose energy is lower than 3 MeV, it is possible to obtain, in a few minutes, the actual composition (copper, iron, gold, silver, etc.) of narrow parts of artefacts, without any sampling, even at microscopic level. Most of the studies of our group in this field concern solders on these jewelry items. Narrow regions of gold artefacts have also been studied with a PIXE microprobe. They were then irradiated in vacuum. Nuclear reaction analyses induced by 2 MeV deuterons are also performed to identify the presence of light elements and, particularly O, N and S. Traces of these elements are of primary importance to characterize the origin of the ores used in various workmanships. Interferences of X-ray lines of Au with those of traces of Cu and Zn are solved using a method of selective excitation of X-rays of these elements. Analytical results have been interpreted in order to understand the workmanship of goldsmiths from the Antiquity. Fakes and repairs (or ornaments added to original artefacts) may also be identified. The ancient recipes are improved to give new soldering procedures at low temperature.

  10. Developing Gold Nanowires by Galvanic Replication of Ion Track Templates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Scientists at the CAS Institute of Modern Physics (IMP) in Lanzhou, capital of northwest China's Gansu Province, recently made an essential advance in production and investigation of single- and polycrystalline gold nanowires by galvanic replication of ion track templates. Their work was published by the Nanotechnology (Vol. 17, 1922-1926, 2006).

  11. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    Directory of Open Access Journals (Sweden)

    Seifert Oliver

    2012-11-01

    Full Text Available Abstract Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1 were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or

  12. Effects of chloride and silver ions on gold nanorod formation

    Science.gov (United States)

    Ock Park, Jin; Cho, So-Hye; Jeong, Dae-Yong; Kong, Young-Min; Lee, Seung Yong

    2015-01-01

    The ability to tune the longitudinal localized surface plasmon resonance of gold nanorods (AuNRs) via simple modification of their aspect ratio is a large contributing factor to their widespread use across multiple fields. An understanding of the synthesis conditions that affect the aspect ratio and yield of AuNRs is therefore of utmost importance. From this perspective, we take a systematic approach in investigating the effect of the following conditions on the seed-mediated formation of AuNRs: the addition of chloride or silver ions, and the use of a hexadecyltrimethylammonium bromide (CTAB) source with different levels of effectiveness on controlling the shape of growing AuNRs.

  13. Raman scattering in silicon disordered by gold ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Lavrentiev, Vasily; Vacik, Jiri; Vosecek, Vaclav [NS Lab, Nuclear Physics Institute AS CR, Rez-130, Husinec 250 68 (Czech Republic); Vorlicek, Vladimir [Institute of Physics AS CR, Na Slovance 2, Prague 182 21 (Czech Republic)

    2010-08-15

    Si (111) covered by a 250-nm thick SiO{sub 2} surface layer has been disordered through implantation of 3.035 MeV gold ions within broad range of fluences from 1 x 10{sup 13} ions/cm{sup 2} to 1 x 10{sup 16} ions/cm{sup 2}. Raman spectroscopy (514.5 nm laser) was applied for characterization of the silicon disordering. Variation of the Raman spectra of silicon after low-fluence implantation (fluences lower than 5 x 10{sup 14} ions/cm{sup 2}) in the vicinity of the transverse optical phonon (1TO) peak reflects the coexistence of bulk Si crystals (c-Si) and Si nanocrystals (nc-Si) in the implanted layer. Implantation with higher fluences yields only the stable 470 cm{sup -1} 1TO peak, corresponding to formation of amorphous phase (a-Si), in this region of the spectra. Detailed analysis of the silicon disorder was performed through calculation of the transverse acoustical phonon (1TA) peak area. The fluence dependence of the peak area reveals qualitative correlation with the depth profile of structural defects in the modified Si layer evaluated from RBS (Rutherford backscattering) experiment and from SRIM (stopping and range of ions in matter) code simulation. This correlation suggests a decrease of the structural disorder in the modified layer region enriched by vacancies. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. The influence of cupric ions on shape of potentiodynamic curves obtained on 18 K gold

    Directory of Open Access Journals (Sweden)

    Rajčić-Vujasinović Mirjana

    2002-01-01

    Full Text Available The shape of potentiodynamic curves depends mainly on the composition of investigated alloys, but also on the electrolyte used in experiments. In this work investigation were performed for pure gold, and pure silver and copper as alloying metals, then for binary alloys Au-Ag and Au-Cu containing gold as in 18 k gold (i.e. 75 % Au and Ag-Cu with mass ratio 1:1 and, finally, for three component 18 k gold. It was established a catalytic effect of cupric ions present in electrolyte on oxidation of gold and 18 k gold alloys.

  15. Anodic dissolution of gold in alkaline solutions containing thiourea, thiosulfate and sulfite ions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Gold dissolves electrochemically in alkaline solutions containing ligands to form complex ions with gold ion. Therefore, selective leaching of noble metals is expected without dissolution of base metals such as steels, aluminum alloys in scrap treatment. Gold electrodes were investigated using linear sweep voltammetry, EQCM method and potentiostatic electrolysis in alkaline solutions containing thiourea, Na2SO3 and Na2S2O3. The solution composition, electrode potential affect gold dissolution rate and current efficiency. The gold dissolved from anode electrode forms complex ions, suspension particles as compound precipitates and deposits on cathode electrode as a metal. Anodic efficiency for gold dissolution is between 10% and 22%. This is caused by the oxidation decomposition of sulfite ions and thiourea. The stability of the alkaline solution containing these elements was also estimated by capillary electrophoresis technique.

  16. Gold Loading on Ion Exchange Resins in Non-Ammoniacal Resin-Solution Systems

    OpenAIRE

    Abrar Muslim

    2010-01-01

    The loading of gold using strong base anion exchange resin in non-ammoniac resin-solution (NARS) systems has been studied. The loading of gold onto ion exchange resins is affected by polythionate concentration, and trithionate can be used as the baseline in the system. The results also show that resin capacity on gold loading increases due to the increase in the equilibrium thiosulfate concentration in the NARS system. Gold loading performances show the need of optimization the equilibrium co...

  17. Morphology of gold and copper ion-plated coatings

    Science.gov (United States)

    Spalvins, T.

    1978-01-01

    Copper and gold films (0.2 to 2 microns thick) were ion plated onto polished 304-stainless-steel, glass, mica surfaces. These coatings were examined by SEM for defects in their morphological growth. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause for each type of defect was investigated. Nodular growth is due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation (ejection of droplets). All these defects induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. During surface rubbing, large nodules are pulled out, leaving vacancies in the coatings.

  18. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    Science.gov (United States)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1986-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  19. Colorimetric detection of manganese(II) ions using gold/dopa nanoparticles.

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho

    2014-10-15

    We report here a one-pot, greener, eco-friendly strategy for the synthesis of gold nanoparticles using L-dopa. The as-prepared dopa-functionalized gold nanoparticles (AuNPs/dopa) can detect low concentrations of manganese(II) metal ions in aqueous solution. The binding forces between dopa and Mn(2+) ions cause dopa-functionalized gold nanoparticles to come closer together, decreasing the interparticle distance and aggregating it with a change in color of colloidal solution from red to purplish-blue. Dynamic light scattering (DLS) analysis showed a decreased surface charge on the surface of gold nanoparticles when exposed to Mn(2+) ions, which caused cross-linking aggregation. Transmission electron microscopic (TEM) images also revealed the aggregation of gold nanoparticles with the addition of Mn(2+) ions. The extinction ratio of absorbance at 700-550nm (A700/A550) was linear against the concentration of [Mn(2+)] ions. Thus, the optical absorption spectra of gold colloidal solution before and after the addition of Mn(2+) ions reveal the concentration of Mn(2+) ions in solution.

  20. Femtosecond Laser-Induced Formation of Gold-Rich Nanoalloys from the Aqueous Mixture of Gold-Silver Ions

    Directory of Open Access Journals (Sweden)

    Yuliati Herbani

    2010-01-01

    Full Text Available The synthesis of gold-silver (AuAg nanoalloys of various compositions has been performed by direct irradiation of highly intense femtosecond laser pulse in the presence of polyvinylpyrrolidone (PVP. The mixture of Au and Ag ions of low concentration was simply introduced into a glass vial and subjected to femtosecond laser pulses for several minutes. The AuAg nanoalloys of 2-3 nm with reasonably narrow size distribution were formed, and the position of the surface plasmon resonance (SPR increased monotonically with an increase in the gold molar fraction in the ion solutions. The high resolution transmission electron microscope (HRTEM images exhibited the absence of core-shell structures, and the energy dispersive X-ray spectroscopy (EDX analysis confirmed that the particles were Au-rich alloys even for the samples with large fraction of Ag+ ions fed in the solution mixture. The formation mechanism of the alloy nanoparticles in the high intensity optical field was also discussed.

  1. Digging gold: keV He+ ion interaction with Au

    Directory of Open Access Journals (Sweden)

    Vasilisa Veligura

    2013-07-01

    Full Text Available Helium ion microscopy (HIM was used to investigate the interaction of a focused He+ ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to significant sample modifications. We have characterized the changes caused by a focused He+ ion beam at normal incidence to the Au{111} surface as a function of ion fluence and energy. Under the influence of the beam a periodic surface nanopattern develops. The periodicity of the pattern shows a power-law dependence on the ion fluence. Simultaneously, helium implantation occurs. Depending on the fluence and primary energy, porous nanostructures or large blisters form on the sample surface. The growth of the helium bubbles responsible for this effect is discussed.

  2. Friction and hardness of gold films deposited by ion plating and evaporation

    Science.gov (United States)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  3. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  4. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    Science.gov (United States)

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.

  5. Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles.

    Science.gov (United States)

    Darbha, Gopala Krishna; Singh, Anant Kumar; Rai, Uma Shanker; Yu, Eugene; Yu, Hongtao; Chandra Ray, Paresh

    2008-06-25

    Contamination of the environment with heavy metal ions has been an important concern throughout the world for decades. Driven by the need to detect trace amounts of mercury in environmental samples, this article demonstrates for the first time that nonlinear optical (NLO) properties of MPA-HCys-PDCA-modified gold nanoparticles can be used for rapid, easy and reliable screening of Hg(II) ions in aqueous solution, with high sensitivity (5 ppb) and selectivity over competing analytes. The hyper Rayleigh scattering (HRS) intensity increases 10 times after the addition of 20 ppm Hg(2+) ions to modified gold nanoparticle solution. The mechanism for HRS intensity change has been discussed in detail using particle size-dependent NLO properties as well as a two-state model. Our results show that the HRS assay for monitoring Hg(II) ions using MPA-HCys-PDCA-modified gold nanoparticles has excellent selectivity over alkali, alkaline earth (Li(+), Na(+), K(+), Mg(2+), Ca(2+)), and transition heavy metal ions (Pb(2+), Pb(+), Mn(2+), Fe(2+), Cu(2+), Ni(2+), Zn(2+), Cd(2+)).

  6. Gold nanoparticles with cyclic phenylazomethines: one-pot synthesis and metal ion sensing.

    Science.gov (United States)

    Shomura, Ryo; Chung, Keum Jee; Iwai, Hideo; Higuchi, Masayoshi

    2011-07-01

    New gold nanoparticles covered with cyclic phenylazomethine (CPA) were obtained by a one-pot synthesis. It is confirmed by XPS that imines of CPA in the nanoparticles (Au-CPA) are partially reduced to amines. The amine part of CPA in Au-CPA is attached to the surfaces of gold nanoparticles, and the imine part works as a redox-active site. A glassy carbon electrode modified with Au-CPA was revealed to work as an electrochemical probe for metal ion sensing.

  7. Nitrogen ion irradiation of Au(110) : formation of gold nitride

    NARCIS (Netherlands)

    Šiller, L.; Hunt, M.R.C.; Brown, J.W.; Coquel, J-M.; Rudolf, P.

    2002-01-01

    Often metal nitrides posses unique properties for applications, such as great hardness, high melting points, chemical stability, novel electrical and magnetic properties. One route to the formation of metal nitride films is through ion irradiation of metal surfaces. In this report, the results of ir

  8. A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as mass amplifier.

    Science.gov (United States)

    You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo

    2017-04-13

    Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been researched over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine-based DNA and gold nanoparticle as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a 'MAIS' (Mass Amplifier Ion Sensor), with the simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions for the environment.

  9. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions.

    Science.gov (United States)

    Weng, Ziqing; Wang, Hongbin; Vongsvivut, Jitraporn; Li, Runqing; Glushenkov, Alexey M; He, Jin; Chen, Ying; Barrow, Colin J; Yang, Wenrong

    2013-11-25

    Molecule-coated nanoparticles are hybrid materials which can be engineered with novel properties. The molecular coating of metal nanoparticles can provide chemical functionality, enabling assembly of the nanoparticles that are important for applications, such as biosensing devices. Herein, we report a new self-assembly of core-satellite gold nanoparticles linked by a simple amino acid l-Cysteine for biosensing of Cu(2+). The plasmonic properties of core-satellite nano-assemblies were investigated, a new red shifted absorbance peak from about 600 to 800 nm was found, with specific wavelength depending on ratios with assembly of large and small gold nanoparticles. The spectral features obtained using surface-enhanced Raman spectroscopy (SERS) provided strong evidence for the assembly of the Cu(2+) ions to the L-Cysteine molecules leading to the successful formation of the core-satellite Cu(l-Cysteine) complex on the gold surfaces. In addition, a linear relationship between the concentration of mediating Cu(2+) and absorbance of self-assembled gold nanoparticles (GNPs) at 680 nm was obtained. These results strongly address the potential strategy for applying the functionalized GNPs as novel biosensing tools in trace detections of certain metal ions.

  10. Controlled growth of gold nanoparticles in zeolite L via ion-exchange reactions and thermal reduction processes

    KAUST Repository

    Zeng, Shangjing

    2014-09-01

    The growth of gold nanoparticles in zeolite can be controlled using ion-exchange reactions and thermal reduction processes. We produce a number of different sizes of the gold nanoparticles with the particle size increasing with increased temperature of the final heat treatment. © 2014 Elsevier B.V.

  11. FY2014 Parameters for Gold Ions in Booster, AGS, and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-07-30

    The nominal parameters for gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are worked out using various formulas to derive mass, kinetic parameters, RF parameters, ring parameters, etc.. The ''standard setup'', ''medium-energy'', and ''low-energy'' parameters are summarized in separate sections.

  12. Analysis of cardiac tissue by gold cluster ion bombardment

    Science.gov (United States)

    Aranyosiova, M.; Chorvatova, A.; Chorvat, D.; Biro, Cs.; Velic, D.

    2006-07-01

    Specific molecules in cardiac tissue of spontaneously hypertensive rats are studied by using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The investigation determines phospholipids, cholesterol, fatty acids and their fragments in the cardiac tissue, with special focus on cardiolipin. Cardiolipin is a unique phospholipid typical for cardiomyocyte mitochondrial membrane and its decrease is involved in pathologic conditions. In the positive polarity, the fragments of phosphatydilcholine are observed in the mass region of 700-850 u. Peaks over mass 1400 u correspond to intact and cationized molecules of cardiolipin. In animal tissue, cardiolipin contains of almost exclusively 18 carbon fatty acids, mostly linoleic acid. Linoleic acid at 279 u, other fatty acids, and phosphatidylglycerol fragments, as precursors of cardiolipin synthesis, are identified in the negative polarity. These data demonstrate that SIMS technique along with Au 3+ cluster primary ion beam is a good tool for detection of higher mass biomolecules providing approximately 10 times higher yield in comparison with Au +.

  13. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongyu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Tang, Zhenghua, E-mail: zhht@scut.edu.cn [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Wang, Likai; Zhou, Weijia; Li, Ligui [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhang, Yongqing [Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Chen, Shaowei, E-mail: shaowei@ucsc.edu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2016-08-15

    Highlights: • Apparent color change upon the addition of Hg{sup 2+} or As{sup 3+} ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg{sup 2+} ions. • The Hg{sup 2+} concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg{sup 2+} or As{sup 3+} ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg{sup 2+}, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg{sup 2+} reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  14. Isochoric heating of solid gold targets with the PW-laser-driven ion beams

    Science.gov (United States)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim

    2016-10-01

    We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  15. Ultra-Peripheral Collisions with gold ions in STAR

    CERN Document Server

    ,

    2016-01-01

    In 2010, the STAR Collaboration collected 38 million low-multiplicity triggers for ultra-peripheral collision studies. We present new results involving photonuclear interactions in ultra-peripheral relativistic heavy ion collisions (UPCs), based on an analysis of 384,000 photoproduced pion pairs, from $\\rho$, $\\omega$ and direct $\\pi^+\\pi^-$ pair production.The $\\omega$ component is clearly visible through its interference with the $\\rho$ peak. The relative amplitudes of the three components have been measured, along with the phase angle between the $\\rho$ and $\\omega$ components. Using a two-year (2010 and 2011) dataset, we explore higher mass final states, and observe a $\\pi^+\\pi^-$ state with a mass of $1653 \\pm 10$ MeV and a width of $164\\pm 15$ MeV (statistical errors only). The state is at least roughly compatible with the $\\rho_3(1690)$. The $\\rho^0$ squared momentum transfer ($t$) spectrum exhibits a spectrum with both coherent and incoherent prodution. The coherent component shows two characteristic ...

  16. Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid

    Indian Academy of Sciences (India)

    Saikat Mandal; P R Selvakannan; Sumant Phadtare; Renu Pasricha; Murali Sastry

    2002-10-01

    Development of reliable protocols for the synthesis of nanoparticles of well-defined sizes and good monodispersity is an important aspect of nanotechnology. In this paper, we present details of the synthesis of gold nanoparticles of good monodispersity by the reduction of aqueous chloroaurate ions by the amino acid, aspartic acid. The colloidal gold solution thus formed is extremely stable in time, indicating electrostatic stabilization via nanoparticle surface-bound amino acid molecules. This observation has been used to modulate the size of the gold nanoparticles in solution by varying the molar ratio of chloroaurate ions to aspartic acid in the reaction medium. Characterization of the aspartic acid-reduced gold nanoparticles was carried out by UV-visible spectroscopy, thermogravimetric analysis and transmission electron microscopy. The use of amino acids in the synthesis and stabilization of gold nanoparticle in water has important implications in the development of new protocols for generation of bioconjugate materials.

  17. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    Science.gov (United States)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  18. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha [Inter University Accelerator Centre, Aruna Asaf Ali Marg, Post box-10502, New Delhi-110067 (India)

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  19. Gold wetting effects on sapphire irradiated with GeV uranium ions

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, S.M.M. [Universite Claude Bernard, Villeurbanne (France). Dept. de Phys. des Mater.; Canut, B. [Universite Claude Bernard, Villeurbanne (France). Dept. de Phys. des Mater.; Fornazero, J. [Universite Claude Bernard, Villeurbanne (France). Dept. de Phys. des Mater.; Thevenard, P. [Universite Claude Bernard, Villeurbanne (France). Dept. de Phys. des Mater.; Toulemonde, M. [Centre Interdisciplinaire de Recherche avec les Ions Lourds (CIRIL), Boulevard A. Becquerel, 14040 Caen Cedex (France)

    1997-02-01

    Single crystals of {alpha}-Al{sub 2}O{sub 3} were irradiated with {sup 238}U ions using two different energies: 3.4 MeV/u and 1.7 MeV/u. The irradiations were performed at a temperature of {approx}80 K, with fluences ranging from 1.2 x 10{sup 12} to 2.5 x 10{sup 12} ions cm{sup -2}. After irradiation, thin gold films were deposited on the sapphire surfaces by using a sputtering method. Subsequent annealing in air at a temperature of 723 and 923 K were applied to investigate the influence of the pre-damage on the adhesion of the gold layer on the sapphire surface. Rutherford backscattering analysis and scanning electron microscopy performed in both virgin and irradiated areas, show that the pre-irradiation damage inhibits the gold film of breaking up into islands after annealing. A wetting effect, which could depend on the damage morphology, is clearly observed. (orig.).

  20. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture.

    Science.gov (United States)

    Stanca, S E; Nietzsche, S; Fritzsche, W; Cranfield, C G; Biskup, C

    2010-02-05

    In this study, we describe the design of new ratiometric fluorescent nanosensors, whose architecture is based on a gold core surrounded by a poly(vinyl alcohol)-polyacetal shell. To the gold core, indicator dyes and reference dyes are attached via a cysteine linker. This nanosensor architecture is flexible with regards to the number and types of fluorophore linkages possible. The robust poly(vinyl alcohol)-polyacetal shell protects the fluorophores linked to the core from non-specific interactions with intracellular proteins. The nanosensors developed in this way are biocompatible and can be easily incorporated into mammalian cells without the use of transfection agents. Here, we show the application of these nanosensors for intracellular pH and sodium ion measurements.

  1. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture

    Energy Technology Data Exchange (ETDEWEB)

    Stanca, S E; Cranfield, C G; Biskup, C [Biomolecular Photonics Group, University Hospital Jena, Teichgraben 8, 07743 Jena (Germany); Nietzsche, S [Centre for Electron Microscopy, University Hospital Jena, Ziegel-muehlenweg 1, 07743 Jena (Germany); Fritzsche, W, E-mail: sarmiza.stanca@mti.uni-jena.de, E-mail: charles.cranfield@mti.uni-jena.de, E-mail: christoph.biskup@mti.uni-jena.de [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena (Germany)

    2010-02-05

    In this study, we describe the design of new ratiometric fluorescent nanosensors, whose architecture is based on a gold core surrounded by a poly(vinyl alcohol)-polyacetal shell. To the gold core, indicator dyes and reference dyes are attached via a cysteine linker. This nanosensor architecture is flexible with regards to the number and types of fluorophore linkages possible. The robust poly(vinyl alcohol)-polyacetal shell protects the fluorophores linked to the core from non-specific interactions with intracellular proteins. The nanosensors developed in this way are biocompatible and can be easily incorporated into mammalian cells without the use of transfection agents. Here, we show the application of these nanosensors for intracellular pH and sodium ion measurements.

  2. Colorimetric detection of Cu2+ and Pb2+ ions using calix[4]arene functionalized gold nanoparticles

    Indian Academy of Sciences (India)

    Ravi Gunupuru; Debdeep Maity; Gopala R Bhadu; Ashish Chakraborty; Divesh N Srivastava; Parimal Paul

    2014-05-01

    Calixarene functionalized gold nanoparticles (CFAuNPs) have been prepared and characterized by spectroscopic and microscopic (TEM) techniques. To use this material as potential colorimetric sensor, the binding property of this new material has been investigated with a large number of metal ions. It exhibited sharp colour change from dark brown to green and blue, detectable by naked-eye, in the presence of Cu2+ and Pb2+ ions, respectively. It has also triggered substantial change in surface plasmon resonance (SPR) band of the functionalized gold nanoparticles, which in case of Pb(II) is due to the inter particle plasmon coupling arising from the metal-induced aggregation of the nanoparticles and for Cu(II), it is because of the formation of AuCu alloy due to anti-galvanic exchange. The size and aggregation of the nanoparticles are confirmed from HRTEM images, elemental analysis and the line profiling for both the metal ions have been done by STEM-EDX analysis.

  3. Time-of-flight secondary-ion mass spectrometry on thiole self-assembly monolayers on gold; Flugzeit-Sekundaerionenmassenspektrometrie an Thiol self assembly Monolagen auf Gold

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, M.

    2006-07-01

    Aim of this thesis was to get a deeper understanding for the influence of different matrix effects on the emission of molecular secondary ions. For the estimation of the influence of the primary-ion surface interaction a series of different primary-ion species was applied, which differ by mass, kinetic energy, and composition (monoatomic or polyatomic). In the framework of the presented results different matrix effects were studied. For this systematically the influence of the substrate-thiolate, the thiolate-thiolate, and the primary-ion substrate interaction on the formation of characteristic secondary ions was quantified. For the corresponding considerations beside the thiolate secondary ions M{sup -} the gold-thiolate clusters of the type Au{sub x+1}M{sub x}{sup -} were referred to.

  4. Biosensors Based on Nano-Gold/Zeolite-Modified Ion Selective Field-Effect Transistors for Creatinine Detection

    Science.gov (United States)

    Ozansoy Kasap, Berna; Marchenko, Svitlana V.; Soldatkin, Oleksandr O.; Dzyadevych, Sergei V.; Akata Kurc, Burcu

    2017-03-01

    The combination of advantages of using zeolites and gold nanoparticles were aimed to be used for the first time to improve the characteristic properties of ion selective field-effect transistor (ISFET)-based creatinine biosensors. The biosensors with covalently cross-linked creatinine deiminase using glutaraldehyde (GA) were used as a control group, and the effect of different types of zeolites on biosensor responses was investigated in detail by using silicalite, zeolite beta (BEA), nano-sized zeolite beta (Nano BEA) and zeolite BEA including gold nanoparticle (BEA-Gold). The presence of gold nanoparticles was investigated by ICP, STEM-EDX and XPS analysis. The chosen zeolite types allowed investigating the effect of aluminium in the zeolite framework, particle size and the presence of gold nanoparticles in the zeolitic framework.

  5. Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles

    Science.gov (United States)

    Wang, Yulong; Wang, Limin; Su, Zhenhe; Xue, Juanjuan; Dong, Jinbo; Zhang, Cunzheng; Hua, Xiude; Wang, Minghua; Liu, Fengquan

    2017-01-01

    We use the multiple antibiotic resistance regulator (MarR), as a highly selective biorecognition elements in a multipath colourimetric sensing strategy for the fast detection of Cu2+ in water samples. The colourimetric assay is based on the aggregation of MarR-coated gold nanoparticles in the presence of Cu2+ ions, which induces a red-to-purple colour change of the solution. The colour variation in the gold nanoparticle aggregation process can be used for qualitative and quantitative detection of Cu2+ by the naked eye, and with UV–vis and smartphone-based approaches. The three analysis techniques used in the multipath colourimetric assay complement each other and provide greater flexibility for differing requirements and conditions, making the assay highly applicable for Cu2+ detection. Under optimal conditions, the Cu2+ concentration was quantified in less than 5 min with limits of detection for the naked eye, UV–vis and smartphone-based approaches of 1 μM, 405 nM and 61 nM, respectively. Moreover, the sensing system exhibited excellent selectivity and practical application for Cu2+ detection in real water samples. Thus, our strategy has great potential for application in on-site monitoring of Cu2+, and the unique response of MarR towards copper ions may provide a new approach to Cu2+ sensing. PMID:28155905

  6. Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles

    Science.gov (United States)

    Wang, Yulong; Wang, Limin; Su, Zhenhe; Xue, Juanjuan; Dong, Jinbo; Zhang, Cunzheng; Hua, Xiude; Wang, Minghua; Liu, Fengquan

    2017-02-01

    We use the multiple antibiotic resistance regulator (MarR), as a highly selective biorecognition elements in a multipath colourimetric sensing strategy for the fast detection of Cu2+ in water samples. The colourimetric assay is based on the aggregation of MarR-coated gold nanoparticles in the presence of Cu2+ ions, which induces a red-to-purple colour change of the solution. The colour variation in the gold nanoparticle aggregation process can be used for qualitative and quantitative detection of Cu2+ by the naked eye, and with UV–vis and smartphone-based approaches. The three analysis techniques used in the multipath colourimetric assay complement each other and provide greater flexibility for differing requirements and conditions, making the assay highly applicable for Cu2+ detection. Under optimal conditions, the Cu2+ concentration was quantified in less than 5 min with limits of detection for the naked eye, UV–vis and smartphone-based approaches of 1 μM, 405 nM and 61 nM, respectively. Moreover, the sensing system exhibited excellent selectivity and practical application for Cu2+ detection in real water samples. Thus, our strategy has great potential for application in on-site monitoring of Cu2+, and the unique response of MarR towards copper ions may provide a new approach to Cu2+ sensing.

  7. Gold Nanoparticle-based Surface-enhanced Raman Scattering Fe(III) Ion Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ly, Nguyen Hoang; Joo, Sang-Woo [Soongsil University, Seoul (Korea, Republic of); Cho, Kwang Hwi [School of Systems Biomedical Science, Seoul (Korea, Republic of)

    2015-01-15

    We performed density functional theory (DFT) calculations of 4-aminobenzo-15-crown-5 (4AB15C5) in conjugation with 4-mercaptobenzoic acid (4MCB) with the polarizable continuum model (PCM) while considering the aqueous media. After specific binding of the ferric ion onto the 4MCB.4AB15C5 compound, the Raman frequencies and intensities were estimated by DFT calculations with the PCM. It was predicted that the Raman intensities became significantly increased upon binding of the ferric ion. 4MCB.4AB15C5 could be assembled on gold nanoparticles (AuNPs) via the cleavage of the thiol bond. Colorimetric and UV.Vis absorption spectroscopy indicated that AuNPs became significantly aggregated in the presence of 1.10 mM of the ferric ion. Surface-enhanced Raman scattering (SERS) of 4MCB.4AB15C5 was used to identify the dissimilar spectral behaviors that yield a difference in intensity in the presence of the ferric ion. These changes were not observed in the other biological ions Zn{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Na{sup +}, K{sup +}, Ca{sup 2+}, Mg{sup 2+}, NH{sup 4+}, and Co{sup 2+}. This study indicated that 4AB15C5 could be used to detect ferric ions in aqueous AuNP solutions by a combined method of colorimetric, UV.Vis absorption, and Raman spectroscopy. AuNPs.[4MCB. 4AB15C5] can thus be utilized as a selective turn-on sensor to Fe3{sup +} in aqueous solutions above 1 mM.

  8. Direct patterning of gold oxide thin films by focused ion-beam irradiation

    Science.gov (United States)

    Machalett, F.; Edinger, K.; Melngailis, J.; Diegel, M.; Steenbeck, K.; Steinbeiss, E.

    For direct writing of electrically conducting connections and areas into insulating gold oxide thin films a scanning Ar+ laser beam and a 30 keV Ga+ focused ion beam (FIB) have been used. The gold oxide films are prepared by magnetron sputtering under argon/oxygen plasma. The patterning of larger areas (dimension 10-100 μm) has been carried out with the laser beam by local heating of the selected area above the decomposition temperature of AuOx (130-150 °C). For smaller dimensions (100 nm to 10 μm) the FIB irradiation could be used. With both complementary methods a reduction of the sheet resistance by 6-7 orders of magnitude has been achieved in the irradiated regions (e.g. with FIB irradiation from 1.5×107 Ω/□ to approximately 6 Ω/□). The energy-dispersive X-ray analysis (EDX) show a considerably reduced oxygen content in the irradiated areas, and scanning electron microscopy (SEM), as well as atomic force microscopy (AFM) investigations, indicate that the FIB patterning in the low-dose region (1014 Ga+/cm2) is combined with a volume reduction, which is caused by oxygen escape rather than by sputtering.

  9. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    Science.gov (United States)

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  10. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  11. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    Science.gov (United States)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  12. The Effect of Multilayer Gold Nanoparticles on the Electrochemical Response of Ammonium Ion Biosensor Based on Alanine Dehydrogenase Enzyme

    Directory of Open Access Journals (Sweden)

    Tan Ling Ling

    2011-01-01

    Full Text Available The use of multilayer of gold nanoparticles (AuNPs attached on gold electrode surface via thiol chemistry to fabricate an ammonium (NH4+ ion biosensor based on alanine dehydrogenase (AlaDH was investigated. The approach of the study was based on construction of biosensor by direct deposition of AuNPs and 1,8-octanedithiol (C8-DT onto the gold electrode surface. For the immobilisation of enzyme, 2-mercaptoethanol (2BME was first covalently attached to AlaDH via esther bonding and then followed by chemically attached the 2BME-modified AlaDH (2BME-AlaDH moiety onto the AuNPs electrode via the exposed thiol group of 2BME. The resulting biosensor response was examined by means of amperometry for the quantification of NH4+ ion. In the absence of enzyme attachment, the use of three layers of AuNPs was found to improve the electrochemistry of the gold electrode when compared with no AuNPs was coated. However, when more than three layers of AuNPs were coated, the electrode response deteriorated due to excessive deposition of C8-DT. When AlaDH was incoporated into the AuNPs modified electrode, a linear response to NH4+ ion over the concentration range of 0.1–0.5 mM with a detection limit of 0.01 mM was obtained. In the absence of AuNPs, the NH4+ ion biosensor did not exhibit any good linear response range although the current response was observed to be higher. This work demonstrated that the incorporation of AuNPs could lead to the detection of higher NH4+ ion concentration without the need of dilution for high NH4+ ion concentration samples with a rapid response time of <1 min.

  13. The X-ray photoelectron spectroscopy depth profiling and tribological characterization of ion-plated gold on various metals

    Science.gov (United States)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.

  14. Damage kinetics in MeV gold ion - Irradiated crystalline quartz

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, S.M.M. E-mail: ramos@dpm.univ-lyon1.fr; Clerc, C.; Canut, B.; Chaumont, J.; Toulemonde, M.; Bernas, H

    2000-05-02

    Damage creation in crystalline {alpha}-quartz under gold irradiation was studied at 1.0 and 5.5 MeV using the ARAMIS accelerator at CSNSM (Orsay). Although at these energies the total stopping powers are nearly equal (respectively, 4.20 and 4.46 keV nm{sup -1}), the electronic stopping power is only 1.23 keV nm{sup -1} (25% of the total) at 1 MeV while it reaches 2.75 keV nm{sup -1} (62% of the total) at 5.5 MeV. The electronic stopping power threshold for damage creation in {alpha}-quartz is about 1.8 keV/nm . The experiment thus allows us to follow the damage production kinetics due to nuclear collisions (at 1 MeV) versus electronic collisions (at 5.5 MeV). The damage was determined by channeling Rutherford backscattering (RBS-C) using the 2 MV Van de Graaff at DPM (Villeurbanne). Single ion impacts create damage when electronic stopping dominates, while several impacts are necessary to achieve complete damage when nuclear stopping dominates. Differences in damage efficiencies will be discussed.

  15. Evaluation of secondary ion yield enhancement from polymer material by using TOF-SIMS equipped with a gold cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aimoto, K. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)]. E-mail: dm053502@cc.seikei.ac.jp; Aoyagi, S. [Department of Regional Development, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504 (Japan); Kato, N. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Yamamoto, A. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2006-07-30

    We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au{sup +} and Au{sub 3} {sup +} bombardment in comparison with Ga{sup +} excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au{sup +} and Ga{sup +} as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au{sub 3} {sup +} bombardment caused intensity enhancement about 100-2600 compared with Ga{sup +} bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au{sub 3} {sup +}, compared with Au{sup +}, therefore, was estimated to be about 10-45.

  16. Preconcentration of gold ions from water samples by modified organo-nanoclay sorbent prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Mostafavi, Ali [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mirzaei, Mohammad [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2010-09-15

    In this work, the applicability of modified organo nanoclay as a new and easy prepared solid sorbent for the preconcentration of trace amounts of Au(III) ion from water samples is studied. The organo nanoclay was modified with 5-(4'-dimethylamino benzyliden)-rhodanine and used as a sorbent for separation of Au(III) ions. The sorption of gold ions was quantitative in the pH range of 2.0-6.0. Quantitative desorption occurred with 6.0 mL of 1.0 mol L{sup -1} Na{sub 2}S{sub 2}O{sub 3}. The amount of eluted Au(III) was measured using flame atomic absorption spectrometry. In the initial solution the linear dynamic range was in the range of 0.45 ng mL{sup -1} to 10.0 {mu}g mL{sup -1}, the detection limit was 0.1 ng mL{sup -1} and the preconcentration factor was 105. Also, the relative standard deviation was {+-}2.3% (n = 8 and C = 2.0 {mu}g mL{sup -1}) and the maximum capacity of the sorbent was 3.9 mg of Au(III) per gram of modified organo nanoclay. The influences of the experimental parameters including sample pH, eluent volume and eluent type, sample volume, and interference of some ions on the recoveries of the gold ion were investigated. The proposed method was applied for preconcentration and determination of gold in different samples.

  17. Ultrahigh capacity anode material for lithium ion battery based on rod gold nanoparticles decorated reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip, E-mail: necipatar@gmail.com [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Eren, Tanju [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi [Department of Metallurgical and Materials Engineering, Sinop University, Sinop (Turkey)

    2015-09-01

    In this study, we report the synthesis of rod shaped gold nanoparticles/2-aminoethanethiol functionalized reduced graphene oxide composite (rdAuNPs/AETrGO) and its application as an anode material for lithium-ion batteries. The structure of the rdAuNPs/AETrGO composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The electrochemical performance was investigated at different current rates by using a coin-type cell. It was found that the rod shaped gold nanoparticles were highly dispersed on the reduced graphene oxide sheets. Moreover, the rdAuNPs/AETrGO composite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1} and a long-term cycle stability. - Highlights: • We prepared rod shaped gold nanoparticles functionalized reduced graphene oxide. • The nanocomposite was used as an anode material for lithium-ion batteries. • The nanocomposite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1}. • The nanocomposite exhibited a long-term cycle stability.

  18. Selective Aerobic Oxidation of Benzyl Alcohol Driven by Visible Light on Gold Nanoparticles Supported on Hydrotalcite Modified by Nickel Ion

    Directory of Open Access Journals (Sweden)

    Dapeng Guo

    2016-04-01

    Full Text Available A series of hydrotalcite (HT and hydrotalcite modified by the transition metal ion Ni(II was prepared with a modified coprecipitation method before being loaded with gold nanoparticles. The gold supported on Ni3Al hydrotalcite with a Ni2+/Al3+ molar ratio of 3:1 was investigated. Different techniques such as X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and UV-vis diffuse reflection spectrum (UV-vis DRS were applied to characterize the catalysts. A single-phase catalyst with high crystallinity, a layered structure and good composition was successfully fabricated. Good conversions and superior selectivities in the oxidation of benzyl alcohol and its derivatives were obtained with visible light due to the effect of localized surface plasmon resonance (LSPR of gold nanoparticles and the synergy of the transition metal ion Ni(II. This reaction was proven to be photocatalytic by varying the intensity and wavelength of the visible light. The catalyst can be recycled three times. A corresponding photocatalytic mechanism of the oxidation reaction of benzyl alcohol was proposed.

  19. Flame Atomic Absorption Determination of Gold Ion in Aqueous Samples after Preconcentration Using 9-Acridinylamine Functionalized γ-Alumina Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi

    2013-01-01

    Full Text Available A simple and sensitive solid phase extraction utilizing 9-acridinylamine functionalized alumina nanoparticles was developed, and their potential use for preconcentration and subsequent determination of gold by flame atomic absorption spectrometry (FAAS was investigated. A number of parameters, namely, type, concentration, and volume of eluent, pH of the sample solution, flow rate of extraction, and volume of the sample, were evaluated. The effect of a variety of ions on preconcentration and recovery was also investigated. Gold ions were found to be recovered quantitatively at pH 3.0, with 0.1 mol L−1 thiourea in 2 mol L−1 H2SO4 as eluent. The limit of detection (LOD, defined as five times the standard deviation of the blank, was determined to be lower than 13.0 ppb. Under optimum conditions, the accuracy and precision (RSD% of the method were >98.0 and <1.5%, respectively. To gauge its ability in terms of application to real samples, the proposed method was successfully applied for determination of gold concentration in waste water samples and one soil standard material, and satisfactory results were obtained.

  20. Precise determination of the 1s Lamb Shift in hydrogen-like lead and gold ions using microcalorimeters

    CERN Document Server

    Kraft-Bermuth, S; Bleile, A; Echler, A; Egelhof, P; Grabitz, P; Ilieva, S; Kiselev, O; Kilbourne, C; McCammon, D; Meier, J P; Scholz, P

    2016-01-01

    Quantum electrodynamics in very strong Coulomb fields is one scope which has not yet been tested experimentally with suffcient accuracy to really determine whether the perturbative approach is valid. One sensitive test is the determination of the 1s Lamb Shift in highly-charged very heavy ions. The 1s Lamb Shift of hydrogen-like lead (Pb81+) and gold (Au78+) has been determined using the novel detector concept of silicon microcalorimeters for the detection of hard X-rays. The results of (260 +- 22) eV for lead and (208 +- 13) eV for gold are within error bars in good agreement with theoretical predictions. For hydrogen-like lead, this represents the most accurate determination of the 1s Lamb Shift to our knowledge.

  1. Measurement of fragmentation cross sections of 12C ions on a thin gold target with the FIRST apparatus

    Science.gov (United States)

    Toppi, M.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirio, R.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; de Napoli, M.; Durante, M.; Fernández-García, J. P.; Finck, Ch.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kummali, A. H.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fèvre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Piersanti, L.; Pleskac, R.; Randazzo, N.; Rescigno, R.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Salvador, S.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Tropea, S.; Vanstalle, M.; Younis, H.; Patera, V.; FIRST Collaboration

    2016-06-01

    A detailed knowledge of the light ions interaction processes with matter is of great interest in basic and applied physics. As an example, particle therapy and space radioprotection require highly accurate fragmentation cross-section measurements to develop shielding materials and estimate acute and late health risks for manned missions in space and for treatment planning in particle therapy. The Fragmentation of Ions Relevant for Space and Therapy experiment at the Helmholtz Center for Heavy Ion research (GSI) was designed and built by an international collaboration from France, Germany, Italy, and Spain for studying the collisions of a 12C ion beam with thin targets. The collaboration's main purpose is to provide the double-differential cross-section measurement of carbon-ion fragmentation at energies that are relevant for both tumor therapy and space radiation protection applications. Fragmentation cross sections of light ions impinging on a wide range of thin targets are also essential to validate the nuclear models implemented in MC simulations that, in such an energy range, fail to reproduce the data with the required accuracy. This paper presents the single differential carbon-ion fragmentation cross sections on a thin gold target, measured as a function of the fragment angle and kinetic energy in the forward angular region (θ ≲6° ), aiming to provide useful data for the benchmarking of the simulation softwares used in light ions fragmentation applications. The 12C ions used in the measurement were accelerated at the energy of 400 MeV/nucleon by the SIS (heavy ion synchrotron) GSI facility.

  2. Time-of-flight-secondary ion mass spectrometry and cyclic voltammetry studies of self-assembly of dodecanethiol on a nanoporous gold surface.

    Science.gov (United States)

    Hafez, Aly M; Huber, Andreas; Wenclawiak, Bernd W

    2013-03-19

    Preparation of a nanoporous gold surface by dealloying (etching) of a 585 gold plate (58.5% Au, 30% Ag, and 11.5% non-noble metals) was studied by applying acidic and thermal treatment of the gold plate. The gold plate surface was studied before and after the etching process using different analytical techniques like field emission scanning electron microscope (FE-SEM) with an energy dispersive X-ray spectroscopy analyzer (EDX), cyclic voltammetry (CV), and time-of-flight-secondary ion mass spectrometry (TOF-SIMS). CV analysis of the gold surface has shown that overnight etching with warm nitric acid increases the surface area 20 times higher than before etching. FE-SEM analysis has shown that a nanoporous gold surface with pore diameter ≤100 nm was obtained. SIMS depth profile analysis and EDX analysis have shown that the nanoporous gold surface was obtained as a result of removing the silver and copper from the first layers of the plate. The nanoporous gold surface was used as a substrate for self-assembly of dodecanethiol and has shown a higher extraction efficiency than the unetched gold alloy.

  3. Activation of oxygen-mediating pathway using copper ions: fine-tuning of growth kinetics in gold nanorod overgrowth.

    Science.gov (United States)

    Liu, Wenqi; Zhang, Hui; Wen, Tao; Yan, Jiao; Hou, Shuai; Shi, Xiaowei; Hu, Zhijian; Ji, Yinglu; Wu, Xiaochun

    2014-10-21

    Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2.

  4. Colorimetric Signal Amplification Assay for Mercury Ions Based on the Catalysis of Gold Amalgam.

    Science.gov (United States)

    Chen, Zhengbo; Zhang, Chenmeng; Gao, Qinggang; Wang, Guo; Tan, Lulu; Liao, Qing

    2015-11-03

    Mercury is a major threat to the environment and to human health. It is highly desirable to develop a user-friendly kit for on-site mercury detection. Such a method must be able to detect mercury below the threshold levels (10 nM) for drinking water defined by the U.S. Environmental Protection Agency. Herein, we for the first time reported catalytically active gold amalgam-based reaction between 4-nitrophenol and NaBH4 with colorimetric sensing function. We take advantage of the correlation between the catalytic properties and the surface area of gold amalgam, which is proportional to the amount of the gold nanoparticle (AuNP)-bound Hg(2+). As the concentration of Hg(2+) increases until the saturation of Hg onto the AuNPs, the catalytic performance of the gold amalgam is much stronger due to the formation of gold amalgam and the increase of the nanoparticle surface area, leading to the decrease of the reduction time of 4-nitrophenol for the color change. This sensing system exhibits excellent selectivity and ultrahigh sensitivity up to the 1.45 nM detection limit. The practical use of this system for Hg(2+) determination in tap water samples is also demonstrated successfully.

  5. Gold nano-particle formation from crystalline AuCN: Comparison of thermal, plasma- and ion-beam activated decomposition

    Science.gov (United States)

    Beck, Mihály T.; Bertóti, Imre; Mohai, Miklós; Németh, Péter; Jakab, Emma; Szabó, László; Szépvölgyi, János

    2017-02-01

    In this work, in addition to the conventional thermal process, two non-conventional ways, the plasma and ion beam activations are described for preparing gold nanoparticles from microcrystalline AuCN precursor. The phase formation at plasma and ion beam treatments was compared with that at thermal treatments and the products and transformations were characterized by thermogravimetry-mass-spectrometry (TG-MS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TG-MS measurements in Ar atmosphere revealed that AuCN decomposition starts at 400 °C and completes at ≈700 °C with evolution of gaseous (CN)2. XPS and TEM show that in heat treatment at 450 °C for 1 h in Ar, loss of nitrogen and carbon occurs and small, 5-30 nm gold particles forms. Heating at 450 °C for 10 h in sealed ampoule, much larger, 60-200 nm size and well faceted Au particles develop together with a fibrous (CN)n polymer phase, and the Au crystallites are covered by a 3-5 nm thick polymer shell. Low pressure Ar plasma treatment at 300 eV energy results in 4-20 nm size Au particles and removes most of the nitrogen and part of carbon. During Ar+ ion bombardment with 2500 eV energy, 5-30 nm size Au crystallites form already in 10 min, with preferential loss of nitrogen and with increased amount of carbon residue. The results suggest that plasma and ion beam activation, acting similarly to thermal treatment, may be used to prepare Au nanoparticles from AuCN on selected surface areas either by depositing AuCN precursors on selected regions or by focusing the applied ionized radiation. Thus they may offer alternative ways for preparing tailor-made catalysts, electronic devices and sensors for different applications.

  6. Glassy carbon electrode modified by graphene–gold nanocomposite coating for detection of trace lead ions in acetate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Pui Mun [Interdisplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Environmental Chemistry and Materials Group (ECMG), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, Zhaomeng [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Xiaoxu [Heilongjiang University of Science and Technology, Harbin 150027 (China); Chen, Zhong [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Erjia, E-mail: MEJLiu@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2015-06-01

    Reduced graphene oxide (RGO) decorated with gold nanoparticles (AuNPs) was electrodeposited on glassy carbon electrode (GCE) using cyclic voltammetric method. The results of Raman spectroscopy confirmed the simultaneous formation of AuNPs and reduction of graphene oxide through the electrodeposition process. Scanning electron microscopic measurements showed a uniform distribution of the AuNPs on the RGO sheets. The RGO-AuNP nanocomposite coated GCE (G–Au/GCE) was used to detect lead ions (Pb{sup 2+}) contained in a 0.1 M acetate buffer solution (pH 5.3) using square wave anodic stripping voltammetry (SWASV). The G–Au/GCE demonstrated higher detection sensitivity and stronger SWASV signals than the bare GCE, with the limit of detection of about 0.8 nM. - Highlights: • Graphene with gold nanoparticles was electrodeposited on glassy carbon electrode. • The prepared electrode was able to detect trace lead ions at nM concentration. • Interference study against copper confirmed the selectivity of the electrode for lead. • The prepared electrode showed a promising recovery tested in tap water samples.

  7. Detection of Copper(II) Ions Using Glycine on Hydrazine-Adsorbed Gold Nanoparticles via Raman Spectroscopy

    Science.gov (United States)

    Ly, Nguyễn Hoàng; Seo, Chulhun; Joo, Sang-Woo

    2016-01-01

    A facile, selective, and sensitive detection method for the Cu2+ ions in environmental and biological solutions has been newly developed by observing the unique CN stretching peaks at ~2108 cm−1 upon the dissociative adsorption of glycine (GLY) in hydrazine buffer on gold nanoparticles (AuNPs). The relative abundance of Cu species on AuNPs was identified from X-ray photoelectron spectroscopy analysis. UV-Vis spectra also indicated that the Au particles aggregated to result in the color change owing to the destabilization induced by the GLY-Cu2+ complex. The CN stretching band at ~2108 cm−1 could be observed to indicate the formation of the CN species from GLY on the hydrazine-covered AuNP surfaces. The other ions of Fe3+, Fe2+, Hg2+, Mg2+, Mn2+, Ni2+, Zn2+, Cr3+, Co2+, Cd2+, Pb2+, Ca2+, NH4+, Na+, and K+ at high concentrations of 50 µM did not produce such spectral changes. The detection limit based on the CN band for the determination of the Cu2+ ion could be estimated to be as low as 500 nM in distilled water and 1 µM in river water, respectively. We attempted to apply our method to estimate intracellular ion detection in cancer cells for more practical purposes. PMID:27792178

  8. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted $^{163}$Ho ions

    CERN Document Server

    Gastaldo, L; von Seggern, F; Porst, J P; Schäfer, S; Pies, C; Kempf, S; Wolf, T; Fleischmann, A; Enss, C; Herlert, A; Johnston, K

    2013-01-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of $^{163}$Ho using MMCs having the radioactive $^{163}$Ho ions implanted in the absorber. The implantation of $^{163}$Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. In addition an optimized detector design for future $^{163}$Ho experiments is presented.

  9. The XPS depth profiling and tribological characterization of ion-plated gold on various metals

    Science.gov (United States)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Friction properties were measured with a gold film; the graded interface between gold and nickel substrate; and the nickel substrate. All sliding was conducted against hard silicon carbide pins in two processes. In the adhesive process, friction arises primarily from adhesion between sliding surfaces. In the abrasion process, friction occurs as a result of the hard pin sliding against the film, indenting into it, and plowing a series of grooves. Copper and 440 C stainless steel substrates were also used. Results indicate that the friction related to both adhesion and abrasion is influenced by coating depth. The trends in friction behavior as a function of film depth are, however, just the opposite. The graded interface exhibited the highest adhesion and friction, while the graded interface resulted in the lowest abrasion and friction. The coefficient of friction due to abrasion is inversely related to the hardness. The greater the hardness of the surface, the lower is the abrasion and friction. The microhardness in the graded interface exhibited the highest hardness due to an alloy hardening effect. Almost no graded interface between the vapor-deposited gold film and the substrates was detected.

  10. Synthesis of nanocrystalline thin films of gold on the surface of GaSb by swift heavy ion

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vidya; Dubey, S. K.; Yadav, A. D.; Singh, A. [Department of Physics, University of Mumbai, Santacruz (E), Mumbai-400 098 (India)

    2013-02-05

    Thin films of gold ({approx}100 nm thick) were deposited on p-type GaSb substrates. These samples were irradiated with 100 MeV Fe{sup 7+}ions for the fluence of 1 Multiplication-Sign 10{sup 13} and 1 Multiplication-Sign 10{sup 14} ions cm{sup -2}. After irradiation, samples were characterized using AFM, UV-VIS -NIR, X-Ray Diffraction techniques. AFM studies showed the presence of clusters on the surface of GaSb. R.M.S. roughness of the sample was found to increase w.r.t ion fluence. Absorption coefficient obtained from the Ultra violet - Visible NIR (UV-VIS -NIR) spectra of the samples irradiated with various fluences compared with non irradiated GaSb. The annealing experiment showed a significant improvement in the absorption coefficient after rapid thermal annealing at temperature of 400 Degree-Sign C. X-Ray Diffraction study reveals different orientations of Au film.

  11. Combining Zn Ion Catalysis with Homogeneous Gold Catalysis: An Efficient Annulation Approach to N-Protected Indoles.

    Science.gov (United States)

    Wang, Yanzhao; Liu, Lianzhu; Zhang, Liming

    2013-02-01

    The Fischer indole synthesis is perhaps the most powerful method for indole preparation, but it often suffers from low regioselectivities with unsymmetric aliphatic ketone substrates and strong acidic conditions and is not suitable for α,β-unsaturated ketones. In this article, we disclose an efficient synthesis of N-protected indoles from N-arylhydroxamic acids/N-aryl-N-hydroxycarbamates and a variety of alkynes via a cooperative gold and zinc catalysis. The zinc catalysis is similar to the related zinc ion catalysis in metalloenzymes such as human carbonic anhydrase II and substantially enhances the O-nucleophilicity of N-acylated hydroxamines by forming the corresponding Zn chelates. The Zn chelates can attack gold-activated alkynes to form O-alkenyl-N-arylhydroxamates, which can undergo facile 3,3-sigmatropic rearrangements and subsequent cyclodehydrations to yield N-protected indole products. This new chemistry offers several important improvements over the Fischer indole synthesis: a) the reaction conditions are mildly acidic and can tolerate sensitive groups such as Boc; b) broader substrate scopes including substrates with pendant carbonyl groups (reactive in the Fischer chemistry) and alkyl chlorides (e.g., 3f); c) better regioselectivities for the formation of 2-substituted indoles under much milder conditions; d) 2-alkenylindoles can be prepared readily in good to excellent yields, but the Fischer chemistry could not; e) with internal alkynes both steric and electronic controls are available for achieving good regioselectivities, while the Fischer chemistry is in general problematic.

  12. Simple Colorimetric Detection of Amyloid β-peptide (1-40) based on Aggregation of Gold Nanoparticles in the Presence of Copper Ions.

    Science.gov (United States)

    Zhou, Yanli; Dong, Hui; Liu, Lantao; Xu, Maotian

    2015-05-13

    A simple method for specific colorimetric sensing of Alzheimer's disease related amyloid-β peptide (Aβ) is developed based on the aggregation of gold nanoparticles in the presence of copper ion. The detection of limit for Aβ(1-40) is 0.6 nM and the promising results from practical samples (human serum) indicate the great potential for the routine detection.

  13. Membrane-based assay for iodide ions based on anti-leaching of gold nanoparticles.

    Science.gov (United States)

    Shen, Yu-Wei; Hsu, Pang-Hung; Unnikrishnan, Binesh; Li, Yu-Jia; Huang, Chih-Ching

    2014-02-26

    We report a label-free colorimetric strategy for the highly selective and sensitive detection of iodide (I(-)) ions in human urine sample, seawater and edible salt. A poly(N-vinyl-2-pyrrolidone)-stabilized Au nanoparticle (34.2-nm) was prepared to detect I(-) ions using silver (Ag(+)) and cyanide (CN(-)) ions as leaching agents in a glycine-NaOH (pH 9.0) solution. For the visual detection of the I(-) ions by naked eye, and for long time stability of the probe, Au nanoparticles (NPs) decorated mixed cellulose ester membrane (MCEM) was prepared (Au NPs/MCEM). The Au NPs-based probe (CN(-)/Ag(+)-Au NPs/MCEM) operates on the principle that Ag(+) ions form a monolyar silver atoms/ions by aurophilic/argentophilic interactions on the Au NPs and it accelerates the leaching rate of Au atoms in presence of CN(-) ions. However, when I(-) is introduced into this system, it inhibits the leaching of Au atoms because of the strong interactions between Ag/Au ions and I(-) ions. Inductively coupled plasma mass spectrometry, surface-assisted laser desorption/ionization time-of-flight mass spectrometry were used to characterize the surface properties of the Au NPs in the presence of Ag(+) and I(-). Under optimal solution conditions, the CN(-)/Ag(+)-Au NPs/MCEM probe enabled the detection of I(-) by the naked eye at nanomolar concentrations with high selectivity (at least 1000-fold over other anions). In addition, this cost-effective probe allowed the determination of I(-) ions in complex samples, such as urine, seawater, and edible salt samples.

  14. The Radiation Enhancement of 15 nm Citrate-Capped Gold Nanoparticles Exposed to 70 keV/μm Carbon Ions.

    Science.gov (United States)

    Liu, Yan; Liu, Xi; Jin, Xiaodong; He, Pengbo; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-03-01

    Radiotherapy is an important modality for tumor treatment. The central goal of radiotherapy is to deliver a therapeutic dose to the tumor as much as possible whilst sparing the surrounding normal tissues. On one hand, heavy ion radiation induces maximum damage at the end of the track (called the Bragg Peak). Hadron therapy based on heavy ions is considered superior to conventional X-rays and γ-rays radiations for tumors sited in sensitive tissues, childhood cases and radioresistant cancers. On the other hand, radiation sensitizers enhanced the radiation effects in tumors by increasing the dose specifically to the tumor cells. Recently, the use of gold nanoparticles as potential tumor selective radio-sensitizers has been proposed as a breakthrough in radiotherapy with conventional radiations. The enhanced radiation effect of heavy ions in tumor by using gold nanoparticles as radio-sensitizer may provide alternative in hadron therapy. In this study, we investigated the radiosensitizing effects of carbon ions with a linear energy transfer of 70 keV/μm in the presence of 15 nm citrate-capped AuNPs. The existing of AuNPs resulted in 5.5-fold enhancement in hydroxyl radical production and 24.5% increment in relative biological effectiveness (RBE) values for carbon-ion-irradiated HeLa cells. The study indicated gold nanoparticles can be used as potential radio-sensitizer in carbon ions therapy.

  15. Formation and removal of multi-layered fluorescence patterns in gold-ion doped glass

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jongho; Jang, Kyungsik [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lim, Ki-Soo, E-mail: kslim@chungbuk.ac.kr [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youn-Shil; Lee, You-Lee; Choi, Jung-Hyun [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Sohn, Ik-Bu; Lee, Jongmin [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Myeongkyu [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2009-09-30

    We report the formation of fluorescence patterns inside gold-doped glass medium by femtosecond-laser fabrication. Strong fluorescence images appeared from the irradiated multi-layered region after low temperature annealing. We removed the images by exposing the glass to an electric furnace or a CO{sub 2} laser beam for high temperature annealing. The method was also applied to recording, reading, and erasing of fluorescence data by a femtosecond laser, a 405-nm laser diode, and a CO{sub 2} laser respectively.

  16. Block copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: Segment effect on gold ion reduction, stabilization, and particle morphology

    OpenAIRE

    Sakai, Toshio; Horiuchi, Yuya; Alexandridis, Paschalis; Okada, Tomohiko; Mishima, Shozi

    2013-01-01

    We report here on the segment effects of poly(ethylene oxide)-containing block copolymers (PEO-BCP) on the reduction activity for tetrachloride gold(III) ([AuCl4](-)), interfacial activity for gold surface, colloidal stability, and morphology of gold nanoparticles formed in aqueous solutions. In particular, the effects of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), polyethylene (PE) segments and amino group (NH2) on the rate of [AuCl4](-) reduction, adsorption of PEO-BCP onto gol...

  17. UV-Visible Spectroscopy Detection of Iron(III) Ion on Modified Gold Nanoparticles With a Hydroxamic Acid

    Science.gov (United States)

    Karami, C.; Alizadeh, A.; Taher, M. A.; Hamidi, Z.; Bahrami, B.

    2016-09-01

    The present work describes the preparation of gold nanoparticles (AuNPs) functionalized with hydroxamic acid and the use of them in UV-visible spectroscopy detection of iron(III) ions. The prepared AuNPs were thoroughly characterized by using UV-visible spectroscopy, TEM, and 1H NMR techniques. The newly synthesized hydroxamic acid-AuNPs are brown in color due to the intense surface plasmon absorption band centered at 527 nm. In the presence of Fe(III), the surface plasmon absorption band is centered at 540 nm. However, the sensitivity of hydroxamic acid-AuNPs towards other metal ions such as Mg(II), Ca(II), Ag(I), Cu(II), Mn(II), Cr(II), Ni(II), Co(II),Fe(II), Hg(II), and Pb(II) can be negligible. This highly selective sensor allows a direct quantitative assay of Fe(III) with a UVvisible spectroscopy detection limited to 45.8 nM.

  18. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  19. Determining the size-dependent structure of ligand-free gold-cluster ions.

    Science.gov (United States)

    Schooss, Detlef; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M

    2010-03-28

    Ligand-free metal clusters can be prepared over a wide size range, but only in comparatively small amounts. Determining their size-dependent properties has therefore required the development of experimental methods that allow characterization of sample sizes comprising only a few thousand mass-selected particles under well-defined collision-free conditions. In this review, we describe the application of these methods to the geometric structural determination of Au(n)(+) and Au(n)(-) with n = 3-20. Geometries were assigned by comparing experimental data, primarily from ion-mobility spectrometry and trapped ion electron diffraction, to structural models from quantum chemical calculations.

  20. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(i) ions

    Science.gov (United States)

    Yue, Yuan; Liu, Tian-Ying; Li, Hong-Wei; Liu, Zhongying; Wu, Yuqing

    2012-03-01

    A one-step microwave-assisted method is used for the synthesis of small gold nanoclusters, Au16NCs@BSA, which are used as a fluorescence enhanced sensor for detection of silver(i) ions with high selectivity and sensitivity.A one-step microwave-assisted method is used for the synthesis of small gold nanoclusters, Au16NCs@BSA, which are used as a fluorescence enhanced sensor for detection of silver(i) ions with high selectivity and sensitivity. Electronic supplementary information (ESI) available: Experimental details of the synthesis of AuNCs@BSA and fluorescent detection, and Fig. S1-S10. See DOI: 10.1039/c2nr12056a

  1. Development of an Ionization Scheme for Gold using the Selective Laser Ion Source at the On-Line Isotope Separator ISOLDE

    CERN Document Server

    Fedosseev, V; Marsh, B A; CERN. Geneva. AB Department

    2006-01-01

    At the ISOLDE on-line isotope separation facility, the resonance ionization laser ion source (RILIS) can be used to ionize reaction products as they effuse from the target. The RILIS process of laser step-wise resonance ionization of atoms in a hot metal cavity provides a highly element selective stage in the preparation of the radioactive ion beam. As a result, the ISOLDE mass separators can provide beams of a chosen isotope with greatly reduced isobaric contamination. The number of elements available at RILIS has been extended to 26, with the addition of a new three-step ionization scheme for gold. The optimal ionization scheme was determined during an extensive study of the atomic energy levels and auto-ionizing states of gold, carried out by means of in-source resonance ionization spectroscopy. Details of the ionization scheme and a summary of the spectroscopy study are presented.

  2. Investigation of argon ion sputtering on the secondary electron emission from gold samples

    Science.gov (United States)

    Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai

    2016-09-01

    Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An "equivalent work function" is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called "work function" (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.

  3. 基于电位控制的分金液亚硫酸钠深度还原试验研究%Research on Deep Reduction of Gold Ion in Liquid by Controlling of Redox Potential

    Institute of Scientific and Technical Information of China (English)

    聂华平; 王莉红; 张忠堂; 吴芳芳

    2015-01-01

    T he gold ion in liquid is reduced using sodium sulphite as reductant .T he relation betw een liquid redox potential and gold ion concentration and gold ion reduction rate based on gold ion concentration were determined .Theoretically ,it can be determined when the redox potential drops below to 585 mV ,the reduction rate of gold ion can reach 99% ,and w hen the redox potential is about 505 mV ,the reduction reaction of gold ion will end .%研究了用还原剂亚硫酸钠还原分金液中的金离子,确定了电位与金离子质量浓度及金还原率之间的关系。结果表明:电位降到585 m V以下时,金还原率可达99%;电位约为505 m V时,还原反应结束。

  4. Kinetic and mechanistic evaluation of tetrahydroborate ion electro-oxidation at polycrystalline gold

    Energy Technology Data Exchange (ETDEWEB)

    Iotov, Philip I., E-mail: iotov@uctm.ed [University of Chemical Technology and Metallurgy, Sofia 1756 (Bulgaria); Kalcheva, Sasha V. [University of Chemical Technology and Metallurgy, Sofia 1756 (Bulgaria); Bond, Alan M. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia)

    2009-12-01

    The anodic oxidation of tetrahydroborate ion is studied in NaOH at stationary and rotating polycrystalline Au disk electrodes. Linear sweep and cyclic voltammetry are applied varying the scan and rotation rate from 0.005 to 51.200 V s{sup -1} and from 52.3 to 314.1 rad s{sup -1}, correspondingly. The effects of variation of BH{sub 4}{sup -} and NaOH concentrations as well as of the potential limits of the ranges studied have been initially followed. Most of the experiments have been carried out with 10.9 mM NaBH{sub 4} in 1.04 M NaOH at 293 K in the potential range from -1.300 to 0.900 V (vs. Ag/AgCl). It is found that 6 electrons are exchanged in the overall oxidation transformation. The kinetic analysis of the processes determining the two anodic peaks recorded under static conditions at scan rates lower than 0.500 V s{sup -1} shows that 1.4 electrons are exchanged in the potential range of the first one (at ca -0.5 V), while the rate of the second one (at ca +0.3 V) is determined by a quasi-reversible 1-electron transfer reaction. A kinetic evidence for the participation of surface bound intermediates in the electro-oxidation process is provided. Two additional well outlined anodic peaks are recorded in the aforementioned potential range under specific experimental conditions. A quasi-8 electron mechanism involving four oxidation and hydrolysis steps is advanced to explain the experimental results. It accounts for the involvement of borohydride oxidation species and the Au{sup +}/Au{sup 3+} mediator couple.

  5. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles

    Science.gov (United States)

    Tseng, Chao-Wei; Chang, Hsiang-Yu; Chang, Jia-Yaw; Huang, Chih-Ching

    2012-10-01

    In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic activity to a catalase-like activity. Based on this phenomenon, we developed a new method for detecting mercury ions through their deposition on bimetallic Pt/Au NPs to switch the catalytic activity of Pt/Au NPs. Pt/Au NPs could be easily prepared through reduction of Au3+ and Pt4+ by sodium citrate in a one-pot synthesis. The peroxidase catalytic activity of the Pt/Au NPs was controlled by varying the ratios of Pt to Au. The Pt0.1/Au NPs (prepared with a [Au3+]/[Pt4+] molar ratio of 9.0/1.0) showed excellent oxidation catalysis for H2O2-mediated oxidation of Amplex® Red (AR) to resorufin. The oxidized product of AR, resorufin, fluoresces more strongly (excitation/emission wavelength maxima ca. 570/585 nm) than AR alone. The peroxidase catalytic activity of Pt0.1/Au NPs was switched to catalase-like activity in the presence of mercury ions in a 5.0 mM tris(hydroxymethyl)aminomethane (Tris)-borate solution (pH 7.0) through the deposition of Hg on the particle surfaces owing to the strong Hg-Au metallic bond. The catalytic activity of Hg-Pt0.1/Au NPs is superior (by at least 5-fold) to that of natural catalase (from bovine liver). Under optimal solution conditions [5.0 mM Tris-borate (pH 7.0), H2O2 (50 mM), and AR (10 μM)] and in the presence of the masking agents polyacrylic acid and tellurium nanowires, the Pt0.1/Au NPs allowed the selective detection of inorganic mercury (Hg2+) and methylmercury ions (MeHg+) at concentrations as low as several nanomolar. This simple, fast, and cost-effective system enabled selective determination of the spiked concentrations of Hg2+ and MeHg+ in tap, pond, and stream waters.In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic

  6. Sputtering and surface structure modification of gold thin films deposited onto silicon substrates under the impact of 20–160 keV Ar{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S., E-mail: smammeri@yahoo.fr [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S. [Université des Sciences et de la Technologie H. Boumediene (USTHB), Faculté de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H.; Dib, A. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria)

    2014-10-15

    Highlights: •Sputter yields were measured for gold thin films under keV Ar{sup +} ion bombardment. •RBS analysis was used to derive energy dependence of sputtering yield. •Surface effects under Ar{sup +} ion irradiation were studied by SEM and XRD analyses. -- Abstract: The induced sputtering and surface state modification of Au thin films bombarded by swift Ar{sup +} ions under normal incident angle have been studied over an energy range of (20–160) keV using three complementary techniques: Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The sputtering yields determined by RBS measurements using a 2 MeV {sup 4}He{sup +} ion beam were found to be consistent with previous data measured within the Ar{sup +} ion energy region E ⩽ 50 keV, which are thus extended to higher bombarding energies. Besides, the SEM and XRD measurements clearly point out that the irradiated Au film surfaces undergo drastic modifications with increasing the Ar{sup +} ion energy, giving rise to the formation of increasingly sized grains of preferred (1 1 1) crystalline orientations. The relevance of different sputtering yield models for describing experimental data is discussed with invoking the observed surface effects induced by the Ar{sup +} ion irradiation.

  7. 新型加硬离子镀金与传统离子镀金样品的性能对比%Comparison of performance between a novel ion-plated hardened gold coating and traditional ion-plated gold sample

    Institute of Scientific and Technical Information of China (English)

    宋鹏涛; 王永宁; 谢逸; 孔晶; 刘海华

    2014-01-01

    The performance differences between novel hardened ion plated gold coating and traditional ion plated one were studied by apparent color determination, elemental analysis, hardness testing, scratch-resistant properties, wear resistance, adhesion strength, and corrosion resistance test. The results showed that the novel hardened gold-plated sample has a color closer to the standard color plate, higher microhardness, better wear resistance, and higher scratch resistance as compared to the traditional gold-plated sample. The adhesion strength and corrosion resistance of the novel hardened gold-plated sample are excellent. By introducing some metal elements such as copper and iridium to surface coating, the gold content of the novel hardened gold-plated sample is lowered and the production cost is reduced.%通过外观颜色测定,成分分析,硬度检测,耐擦花性能、耐磨性能、结合力和耐人工汗腐蚀测试,研究了新型加硬离子镀金与传统离子镀金样品的性能差异。结果表明,与传统镀金样品相比,新型加硬镀金样品的颜色更接近标准色板,硬度更高,耐磨和耐擦花性能更优。此外,新型加硬镀金样品的镀层结合力及耐腐蚀性能良好。新型加硬离子镀金技术通过在表面镀层中加入铜、铱等金属元素,降低了金的含量,使成本降低。

  8. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    Science.gov (United States)

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  9. Facile and One Pot Synthesis of Gold Nanoparticles Using Tetraphenylborate and Polyvinylpyrrolidone for Selective Colorimetric Detection of Mercury Ions in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Sidhureddy Boopathi

    2012-01-01

    Full Text Available In this work, we reported for the first time, a facile and one step synthesis of gold nanoparticles from HAuCl4, employing tetraphenylborate as the reducing agent. The synthesis is not only facile but also yields “dumb-bell-shaped”particles. This shape appears to arise from a possible emulsion of the products of oxidation/decomposition of tetraphenylborate by HAuCl4, surrounding the particle. The size and shape of the AuNPs were characterized by Transmission electron microscopy (TEM and UV-visible Spectroscopy. Interestingly, the addition of polyvinylpyrrolidone (PVP during the synthesis was found to enhance the stability of the nanoparticle dispersion. The particles synthesized under these conditions assume “spherical” shape with the appearance of only transverse surface plasmon resonance band. The highlight of the observations is that the gold nanoparticles synthesized using tetraphenylborate as reducing agent and PVP as stabilizer are highly stable in alkaline medium, in contrast to the synthesis wherein borohydride is used as reducing agent. The AuNPs synthesized using tetraphenylborate and PVP show their mercury sensing behavior only in the alkaline medium. The color of the nanoparticle dispersion undergoes distinct color change from pink to blue with the addition of mercury ions. They also show dramatic selectivity to mercury ions in presence of other interfering ions, Pb2+, Zn2+ and Ca2+.

  10. The fate of silver ions in the photochemical synthesis of gold nanorods: an extended X-ray absorption fine structure analysis.

    Science.gov (United States)

    Giannici, Francesco; Placido, Tiziana; Curri, Maria Lucia; Striccoli, Marinella; Agostiano, Angela; Comparelli, Roberto

    2009-12-14

    Water-soluble gold nanorods (Au NRs) were synthesized using a silver-ion mediated photochemical route under UV irradiation. Extended X-ray Absorption Fine Structure (EXAFS) measurements on the Ag K-edge were performed on samples obtained at different Ag/Au ratios and at increasing irradiation times in order to investigate the fate of silver ions during the growth of Au NRs. EXAFS measurements allowed to probe the chemical state and the local environment of silver in the final product. Experimental data suggest that Ag atoms are placed on top of the Au particles as metallic Ag(0), while no significant contribution to the EXAFS spectra comes from AgBr or other Ag(+) based species. The reported results strongly support the deposition of Ag(0) islands on the (110) surfaces of the Au particles, thus driving the anisotropic growth via the (111) surfaces.

  11. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    Science.gov (United States)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  12. Small angle proton-proton correlations in collisions of high energy light ions with carbon and gold nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Budilov, V.A.; Filipkowski, A.; Golembiewski, A.; Ilyuschenko, V.I.; Korejwo, A.; Kozma, P.; Laritcheva, A.P.; Nikitin, V.A.; Nomokonov, P.V.; Traikova, M.; Zhidkov, N.K. (Joint Inst. for Nuclear Research, Dubna (USSR)); Kotus, A.; Nawrot, A.; Szawlowski, M.; Zielinski, I.P. (Institute for Nuclear Studies, Warsaw (Poland)); Sidor, G.; Surala, M.; Turowiecki, A.; Wilhelmi, Z.; Zlomanczuk, J. (Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej)

    1990-07-05

    Small angle correlations of protons (p>320 MeV/c) emitted in 5.1 GeV/c proton, 4 GeV/c deuteron and 8 GeV/c helium-4 collisions with carbon and gold targets were measured using plastic scintillator hodoscopes and NaI(Tl) detectors placed at 72deg and 101deg with respect to the beam. It has been found that for both targets the two-proton correlation function depends on the emission angle and that this dependence is stronger for the carbon target than for the gold one. (orig.).

  13. Radiation synthesized poly(n-vinyl-2-pyrrolidone)-stabilized-gold nanoparticles as LSPR-based optical sensor for mercury ions estimation

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Nilanjal; Kumar, Virendra, E-mail: vkrawat75@gmail.com, E-mail: vkumar@barc.gov.in; Goel, Narender Kumar; Varshney, Lalit [Bhabha Atomic Research Centre, Radiation Technology Development Division (India)

    2015-07-15

    Poly(n-vinyl-2-pyrrolidone)-stabilized-gold nanoparticles (PVP-Au-NPs) have been synthesized via a green-{sup 60}Co-Gamma radiolytic route and employed as a localized surface plasmon resonance (LSPR)-based optical sensor for estimation of trace quantities of Hg{sup 2+} ion in aqueous solutions. The in situ generated PVP-Au-NPs were characterized using UV–vis spectroscopy, transmission electron microscopy, and particle size analysis techniques. Reaction conditions were optimized to obtain uniformly dispersed PVP-Au-NPs with average particle size of 7.1 ± 1.6 nm (±s), which exhibited a narrow LSPR band at ∼527 nm. The decrease in LSPR band intensity of PVP-Au-NPs with increase in Hg{sup 2+} ion concentration was found to be linear in the Hg{sup 2+} ion concentration range of 0–100 nM. The LSPR-based PVP-Au-NPs optical sensor system was found to be selective for Hg{sup 2+} and independent of interference from other metal ions such as Ca{sup 2+,} Cu{sup 2+}, Cd{sup 2+}, and Fe{sup 2+} up to a concentration of 500 nM.

  14. Gold Rush!

    Science.gov (United States)

    Brahier, Daniel J.

    1997-01-01

    Describes a mathematical investigation of gold--how it is weighed, stored, used, and valued. For grades 3-4, children estimate the value of treasure chests filled with gold coins and explore the size and weight of gold bars. Children in grades 5-6 explore how gold is mined and used, and how the value of gold changes over time. (PVD)

  15. Fabrication of new carbon paste electrodes based on gold nano-particles self-assembled to mercapto compounds as suitable ionophores for potentiometric determination of copper ions

    Directory of Open Access Journals (Sweden)

    Rasoul Pourtaghavi Talemi

    2013-12-01

    Full Text Available In the present study, we investigate the potentiometric behavior of Cu2+ carbon paste electrodes based on two mercapto compounds 2-ethylmino-5-mercapto-1,3,4-thiadiazole (EAMT and 2-acetylamino-5-mercapto-1,3,4-thiadiazole (AAMT self-assembled on gold nano-paricle (GNP as ionophore. Then, the obtained results from the modified electrodes are compared. The self-assembled ionophores exhibit a high selectivity for copper ion (Cu2+, in which the sulfur and nitrogen atoms in their structure play a significant role as the effective coordination donor site for the copper ion. Among these electrodes, the best performance was obtained with the sensor with a EAMT/graphite powder/paraffin oil weight ratio of 4.0/68/28 with 200 µL of GNP which exhibits the working concentration range of 1.6×10−9 to 6.3×10−2 M and a nernstian slope of 28.9±0.4 mVdecade−1 of copper(II activity. The detection limit of electrode was 2.9(±0.2×10−10M and potential response was pH ; in other words, it was independent across the range of 2.8–6.3. The proposed electrode presented very good selectivity and sensitivity towards the Cu2+ ions over a wide variety of cations including alkali, alkaline earth, transition and heavy metal ions. Moreover, the proposed electrode was successfully applied as an indicator electrode in the potentiometric titration of Cu(II ions with EDTA and also the potentiometric determination of copper ions in spiked water samples.

  16. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Harminder; Pujari, Geetanjali [Radiation Biology Group, Inter University Accelerator Centre, Post Box 10502, New Delhi 110067 (India); Semwal, Manoj K. [Army Hospital (R and R), Delhi Cantonment, New Delhi 110010 (India); Sarma, Asitikantha [Radiation Biology Group, Inter University Accelerator Centre, Post Box 10502, New Delhi 110067 (India); Avasthi, Devesh Kumar, E-mail: dka@iuac.res.in [Radiation Biology Group, Inter University Accelerator Centre, Post Box 10502, New Delhi 110067 (India)

    2013-04-15

    Highlights: ► Glucose capped gold nanoparticles (Glu-AuNPs) are synthesized for internalization in HeLa cells (cervical cancer cells). ► Internalization of Glu-AuNPs in HeLa cells is confirmed by cross section TEM of cells. ► Irradiation (by C ion or γ-rays) of HeLa cells with internalized Glu-AuNPs results in enhanced radiosensitization. ► There is about 30% reduction in radiation dose for 90% cell killing of HeLa cells, when internalized by Glu-AuNPs. ► The enhanced radiosensitization due to Glu-AuNPs is of interest for researchers in nanobiotechnology and radiation biology. -- Abstract: Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  17. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria.

    Science.gov (United States)

    Ju, Xiaohui; Igarashi, Kensuke; Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sawada, Hitomi; Kuwabara, Tomohiko; Minoda, Ayumi

    2016-07-01

    The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater.

  18. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria

    OpenAIRE

    2016-01-01

    The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cel...

  19. Zircon Senstive High Resolution Ion Microprobe (SHRIMP) study of granitoid intrusions in Zhaoye Gold Belt of Shandong Province and its implication

    Institute of Scientific and Technical Information of China (English)

    苗来成; 罗镇宽; 黄佳展; 关康; N.J. McNaughton; D. I. Groves

    1997-01-01

    The zircon Sensitive High Resolution Ion Microprobe (SHRIMP) results show that granitoid intrusions in Zhaoyc Gold Belt were emplaced at two periods of Mesozoic: Linglong and Luanjiahe types of granitic intrusions were emplaced between 160 Ma and 150 Ma (late Jurassic); Guojialing type of granodioritic intrusions, 130 Ma and 126 Ma (early Cretaceous). All the three types contain at least two major generations of inherited zircons with Precambrian ( >650 Ma) and early Mesozoic ages (200-250 Ma), respectively. The former suggests that these plu-tonic rocks are of crustal origin and that Precambrian basement with component of sialic crust up to 3.4 Ga old ( Middle Archean) exists in the region. The presence of abundant inherited zircons with early Mesozoic age indicates that the Precambrian basement was affected by a major tectono-thermal event, that is the collision of the North and South China blocks, at 250 Ma to 200 Ma. SHRIMP results also indicate that the gold mineralization in the region took place

  20. Applications of vitamin B6 cofactor pyridoxal 5‧-phosphate and pyridoxal 5‧-phosphate crowned gold nanoparticles for optical sensing of metal ions

    Science.gov (United States)

    Bothra, Shilpa; Upadhyay, Yachana; Kumar, Rajender; Sahoo, Suban K.

    2017-03-01

    Vitamin B6 cofactor pyridoxal 5‧-phosphate (PLP) and PLP crowned gold nanoparticles (PLP-AuNPs) was applied for the optical chemosensing of metal ions in aqueous medium. PLP showed a visually detectable colour change from colourless to yellow and 'turn-off' fluorescence in the presence of Fe3 +. The fluorescence intensity of PLP at 433 nm was also blue-shifted and enhanced at 395 nm upon addition of Al3 +. When the PLP was functionalized over AuNPs surface, the wine red colour of PLP-AuNPs was turned to purplish-blue and the SPR band at 525 nm was red-shifted upon addition of Al3 +, Cd2 + and Pb2 + due to the complexation-induced aggregation of nanoparticles. The developed sensing systems exhibited good selectivity and specificity for the detected analytes (Fe3 +, Al3 +, Cd2 + and Pb2 +).

  1. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille;

    2013-01-01

    by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study....... In conclusion, our findings support that bio-liberation of gold from metallic gold surfaces have anti-inflammatory properties similar to classic gold compounds, warranting further studies into the pharmacological potential of this novel gold-treatment and the possible synergistic effects of hyaluronic acid....

  2. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification.

    Science.gov (United States)

    Zhu, Zhiqiang; Su, Yuanyuan; Li, Jiang; Li, Di; Zhang, Jiong; Song, Shiping; Zhao, Yun; Li, Genxi; Fan, Chunhai

    2009-09-15

    We report a highly sensitive electrochemical sensor for the detection of Hg(2+) ions in aqueous solution by using a thymine (T)-rich, mercury-specific oligonucleotide (MSO) probe and gold nanoparticles (Au NPs)-based signal amplification. The MSO probe contains seven thymine bases at both ends and a "mute" spacer in the middle, which, in the presence of Hg(2+), forms a hairpin structure via the Hg(2+)-mediated coordination of T-Hg(2+)-T base pairs. The thiolated MSO probe is immobilized on Au electrodes to capture free Hg(2+) in aqueous media, and the MSO-bound Hg(2+) can be electrochemically reduced to Hg(+), which provides a readout signal for quantitative detection of Hg(2+). This direct immobilization strategy leads to a detection limit of 1 microM. In order to improve the sensitivity, MSO probe-modified Au NPs are employed to amplify the electrochemical signals. Au NPs are comodified with the MSO probe and a linking probe that is complementary to a capture DNA probe immobilized on gold electrodes. We demonstrated that this Au NPs-based sensing strategy brings about an amplification factor of more than 3 orders of magnitude, leading to a limit of detection of 0.5 nM (100 ppt), which satisfactorily meets the sensitivity requirement of U.S. Environmental Protection Agency (EPA). This Au NPs-based Hg(2+) sensor also exhibits excellent selectivity over a spectrum of interference metal ions. Considering the high sensitivity and selectivity of this sensor, as well as the cost-effective and portable features of electrochemical techniques, we expect this Au NPs amplified electrochemical sensor will be a promising candidate for field detection of environmentally toxic mercury.

  3. Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers

    Directory of Open Access Journals (Sweden)

    Huan Pang

    2012-11-01

    Full Text Available We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP using unmodified gold nanoparticles (AuNPs as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  4. Selective determination of gold(III) ion using CuO microsheets as a solid phase adsorbent prior by ICP-OES measurement.

    Science.gov (United States)

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M; Alamry, Khalid A; Al-Youbi, Abdulrahman O

    2013-01-30

    We have prepared calcined CuO microsheets (MSs) by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM) etc. The detailed structural, compositional, and optical characterizations of the MSs were evaluated by XRD pattern, FT-IR, X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy, respectively which confirmed that the obtained MSs are well-crystalline CuO and possessed good optical properties. The CuO MSs morphology was investigated by FESEM, which confirmed that the calcined nanomaterials were sheet-shaped and grown in large-quantity. Here, the efficiency of the CuO MS was applied for a selective adsorption of gold(III) ion prior to its detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of CuO MSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Based on the adsorption isotherm study, it was confirmed that the selectivity of MSs phase was mostly towards Au(III) ion. The static adsorption capacity for Au(III) was calculated to be 57.0 mg g(-1). From Langmuir adsorption isotherm, it was confirmed that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of adsorption sites.

  5. Synthesis and Coordination Chemistry of a Phosphine-Decorated Fluorescein: "Double Turn-On" Sensing of Gold(III) Ions in Water.

    Science.gov (United States)

    Christianson, Anna M; Gabbaï, François P

    2016-06-20

    Although phosphine ligands are ubiquitous in transition metal chemistry, few reports of fluorescent phosphines exist that explore the effect of metal coordination on the photophysical properties of a phosphine-bound fluorescent group. The coordination chemistry of a derivative of fluorescein decorated with an o-phenylene-linked phosphine group has been studied with late transition metals. An Au(I) complex of the phosphine-decorated fluorescein has been structurally characterized, showing that the metal center is held closely over the plane of the fluorophore. Despite the presence of the heavy metal center, however, the phosphine-gold complex displays greatly increased fluorescence compared to the free ligand, in which photoelectron transfer from the lone-pair-bearing phosphine causes low emission. The phosphine-decorated fluorescein ligand was tested in a simple sensing system for metal ions in aqueous solution and shows a "turn-on" response to Au, Ag, and Hg, with an especially dramatic response to Au(III) species. The selectivity for Au(III) was determined to be the result of a "double turn-on" response that is both reaction- and coordination-based.

  6. Stage II recovery behavior of a series of ion-irradiated platinum (gold) alloys as studied by field-ion microscopy. [0. 10, 0. 62, and 4. 0 at. percent Au and pure Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.Y.; Seidman, D.N.

    1976-11-01

    Direct and visible evidence was obtained for long-range migration of self-interstitial atoms (SIAs) in Stage II of three different ion-irradiated platinum (gold) alloys. Field-ion microscope (FIM) specimens of Pt--0.10, 0.62 and 4.0 at. percent Au alloys were irradiated in-situ with 30-keV W/sup +/ or Pt/sup +/ ions at a tip temperature of 35 to 41 K at 2 x 10/sup -9/ torr. Direct observation of the surfaces of the FIM specimens during isochronal warming experiments to 100 K showed that a flux of SIAs crossed the surfaces of the specimens between 40 to 100 K. The spectrum for each alloy consisted of two recovery peaks (substages II/sub B/ and II/sub C/). The results are explained on the basis of an impurity-delayed diffusion mechanism employing a two-level trapping model. The application of this diffusion model to the isochronal recovery spectra yielded a dissociation enthalpy (DELTAh/sub li-Au//sup diss/) and an effective diffusion coefficient for each substage; for substage II/sub B/ DELTAh/sub li-Au//sup diss/ (II/sub B/) = 0.15 eV and for substage II/sub C/ DELTAh/sub li-Au//sup diss/ (II/sub C/) = 0.24 eV. A series of detailed control experiments was also performed to show that the imaging electric field had not caused the observed long-range migration of SIAs and that the observed effects were not the result of surface artifacts. 14 figures, 6 tables.

  7. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.

    Science.gov (United States)

    Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2016-06-22

    A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample.

  8. Gold nanodumbbell-seeded growth of silver nanobars and nanobipyramids

    Science.gov (United States)

    Deng, Jin-Pei; Chen, Chih-Wei; Hsieh, Wei-Chi; Wang, Chao-Hsien; Hsu, Cheng-Yung; Lin, Jyun-Hao

    2014-03-01

    Gold nanodumbbells (NDs) are prepared by the reduction of gold ions in the presence of gold nanorods. Gold NDs are then employed for the synthesis of gold-silver core-shell nanoparticles (Au@Ag NPs). The quasi-ellipsoidal NPs could be found at room temperature, but Au@Ag bar and triangular bipyramid (TBP) NPs were obtained at 75 °C. Our results show that the long ends of gold NDs are in the position of the bar center and closely paralleled the shorter edge of TBP. Mechanisms in the growth of silver on gold NDs are proposed for the formations of these Au@Ag NPs.

  9. Colorimetric response of dithizone product and hexadecyl trimethyl ammonium bromide modified gold nanoparticle dispersion to 10 types of heavy metal ions: understanding the involved molecules from experiment to simulation.

    Science.gov (United States)

    Leng, Yumin; Li, Yonglong; Gong, An; Shen, Zheyu; Chen, Liang; Wu, Aiguo

    2013-06-25

    A new kind of analytical reagent, hexadecyl trimethyl ammonium bromide (CTAB), and dithizone product-modified gold nanoparticle dispersion, is developed for colorimetric response to 10 types of heavy metal ions (M(n+)), including Cr(VI), Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+). The color change of the modified gold nanoparticle dispersion is instantaneous and distinct for Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+). The color change results from the multiple reasons, such as electronic transitions, cation-π interactions, formation of coordination bonds, and M(n+)-induced aggregation of gold nanoparticles (AuNPs). The different combining capacity of heavy metal ions to modifiers results in the different broadening and red-shifting of the plasmon peak of modified AuNPs. In addition, Cr(VI), Cu(2+), Co(2+), Ni(2+), and Mn(2+) cause the new UV-vis absorption peaks in the region of 360-460 nm. The interactions between the modifiers and AuNPs, and between the modifiers and M(n+), are investigated by using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results confirm that AuNPs are modified by CTAB and dithizone products through electrostatic interactions and Au-S bonds, respectively, and the M(n+)-N bonds form between M(n+) and dithizone products. Furthermore, the experimental and density functional theory calculated IR spectra prove that dithizone reacts with NaOH to produce C6H5O(-) and [SCH2N4](2-). The validation of this method is carried out by analysis of heavy metal ions in tap water.

  10. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.

    Science.gov (United States)

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas

    2015-02-01

    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  11. The as-prepared gold cluster-based fluorescent sensor for the selective detection of AsIII ions in aqueous solution

    Science.gov (United States)

    Roy, Subhasish; Palui, Goutam; Banerjee, Arindam

    2012-03-01

    Water-soluble fluorescent gold clusters (AuCs) have been successfully synthesized by a wet-chemical approach at room temperature using a dipeptide l-cysteinyl-l-cysteine. We have followed the core-etching mechanism for the synthesis of the gold clusters. Clusters show the excitation maximum at 300 nm and the emission maximum at 410 nm. These gold clusters show interesting fluorescent properties including large Stoke's shift (110 nm), with a quantum yield of 41.3%, and photochemical stability. Transmission electron microscopic analysis shows that most of these particles are HR-MS, 1H NMR, FT-IR, XRPD, I-V, TEM, etc. See DOI: 10.1039/c2nr11786j

  12. The RHIC gold rush

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, T. [Department of Physics, North Carolina State University (United States)

    2003-06-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  13. The RHIC gold rush

    CERN Document Server

    Schäfer, T

    2003-01-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  14. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  15. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Noyhouzer, Tomer [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Mandler, Daniel, E-mail: mandler@vms.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2011-01-17

    The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ng L{sup -1}) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms.

  16. Quantum Chemistry Calculations on the Interaction Between Kaolinite and Gold

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The density function and discrete variation method (DFT-DVM) is used to study the interaction between kaolinite and gold. The correlation among the structure, chemical bond and stability is discussed. Several models are selected without gold and with gold in different directions and sites. The results show that the models with gold on the edge of kaolinite basal layer are more stable than those with gold above or under the layer, the models with gold near to [AlO2(OH)4] octahedra are more stable than those with gold near to the vacancy without aluminium. The interaction between gold and the surface ions of kaolinite is strong enough to form the surface complexes.

  17. Black gold

    CERN Document Server

    Fletcher, MW

    2016-01-01

    Following the Yom Kippur war of October 1973, OPEC raises the price of oil by 70% along with a 5% reduction in oil production. Len Saunders a highly skilled and knowledgeable British engineer for Jaguar motors, is approached by the UK energy commission in the January of 1974 to create a new propulsion system; using a secret document from a German WW2 scientist, that they have come into possession of. Len Saunders sets to work on creating the holy grail of energy. Seven years later 1981, Haidar Farooq the Kuwait oil minister working at OPEC and head of a secret organisation named Black Gold bec

  18. Going for Gold

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    While the international gold price in February hit the highest point in 25 years at $541.20 per ounce for futures delivery, a new gold rush is sweeping across China. According to the World Gold Council, the London-based gold marketing organization funded by leading global gold mining firms, the purchase of gold products in China grew by 9 percent in the first nine

  19. Gold in Modern Economy

    Directory of Open Access Journals (Sweden)

    Boryshkevych Olena V.

    2014-01-01

    Full Text Available The article studies the role of gold in modern economy. It analyses dynamics and modern state of the gold market. It studies volumes of contracts in exchange and off-exchange markets. In order to reveal changes of key features of the gold market, it focuses on the study of gold demand volumes, studies volumes and geographical changes in the world gold mining, and analyses volumes of monetary gold of central banks and its share in gold and currency reserves. It analyses price fluctuations in the gold market during 1968 – 2013 and identifies main factors that determine the gold price. It identifies interconnection between the state of the gold market and financial markets of countries. The study showed that namely geopolitical and economic instability restricts the spectrum of financial assets for investing and gold is not only a safe investment object but also a profitable one.

  20. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    Science.gov (United States)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  1. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  2. Transverse momentum distribution of. pi. sup - from 14. 6A GeV/c silicon ion interactions in copper and gold

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Mutchler, G.S. (Rice Univ., Houston, TX (United States)); Chan, C.S.; Kramer, M.A. (City Coll., New York, NY (United States)); Eiseman, S.E.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C. (Brookhaven National Lab., Upton, NY (United States)); Hallman, T.J.; Madansky, L. (Johns Hopkins Univ., Baltimore, MD (United States)); Lindenbaum, S.J. (Brookhaven National Lab., Upton, NY (United States) City Coll., New York, NY (United States))

    1992-05-07

    A measurement of the transverse momentum spectra of negatively charged tracks from AGS energy silicon ion collisions is presented. The spectrum has a different shape than that of nucleon-nucleon collisions at approximately the same energy. The transverse mass spectrum is well represented by a sum of two exponentials with different slopes and may be reasonably well accounted for by a model of pion production in interacting nuclear matter that includes resonance production and decay. (orig.).

  3. 基于手性金纳米粒子圆二色光谱法识别与检测银离子%Recognition and Detection of Silver Ion by Circular Dichroism Spectrum Based on Chiral Gold Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    韦克毅; 王猛; 杜宇; 蔡波; 江云宝

    2016-01-01

    In this work,chiral gold particles with optical activity can be obtained by a facile liquid phase method.The textural proper-ties of the as-prepared samples were characterized by high resolution transmission electron microscopy,circular dichroism spectrum and absorption spectrum.The results show that the average particle size for the production is 3.6 nm and silver ion can be selectively recognized from 1 3 kinds of metal ions in 1 2 min with universal recurrence.We also established the standard curve for detecting silver ion.This study demonstrates that the linear range for this curve is 0.2-30μmol/L,the linearly dependent coefficient is 0.995(n=15),which supplies a simple new environmentally friendly method for quickly detecting and recognizing silver ion in environmental water samples with high precision.%采用液相制备方法获得具有光学活性的手性金纳米粒子,通过吸收光谱和圆二色光谱及高分辨透射电镜对手性金纳米粒子进行表征.利用圆二色光谱法建立手性金纳米粒子对 Ag+选择性识别方法,结果表明手性金纳米粒子对Ag+响应时间仅需12 min,手性金纳米粒子能够从13种常见金属离子中选择性识别 Ag+,并对多种常见金属离子具有较好的抗干扰能力,检测灵敏度高并且具有良好的重现性.所建立标准曲线线性范围为0.2~30μmol/L,线性相关系数R2=0.995(n=15),Ag+的检测限为0.2μmol/L;为环境水样中 Ag+的识别和检测提供了一种简单、精确、快速、环境友好的新方法.

  4. Synthesis, structure, properties and immobilization on a gold surface of the monoribbed-functionalized tris-dioximate cobalt(II) clathrochelates and an electrocatalytic hydrogen production from H+ ions.

    Science.gov (United States)

    Voloshin, Y Z; Belov, A S; Vologzhanina, A V; Aleksandrov, G G; Dolganov, A V; Novikov, V V; Varzatskii, O A; Bubnov, Y N

    2012-05-28

    The cycloaddition of the mono- and dichloroglyoximes to the cobalt(II) bis-α-benzyldioximate afforded the cobalt(II) mono- and dichloroclathrochelates in moderate yields (40-60%). These complexes undergo nucleophilic substitution of their reactive chlorine atoms with aliphatic amines, alcohols and thiolate anions. In the case of ethylenediamine and 1,2-ethanedithiol, only the macrobicyclic products with α,α'-N(2)- and α,α'-S(2)-alicyclic six-numbered ribbed fragments were obtained. The cobalt(II) cage complexes with terminal mercapto groups were synthesized using aliphatic dithiols. The crystal and molecular structures of the six cobalt(II) clathrochelates were obtained by X-ray diffraction. Their CoN(6)-coordination polyhedra possess a geometry intermediate between a trigonal prism and a trigonal antiprism, and the encapsulated cobalt(II) ions are shifted from their centres due to the structural Jahn-Teller effect with the Co-N distances varying significantly (by 0.10-0.26 Å). The electrochemistry of the complexes obtained was studied by cyclic voltammetry (CV). The anodic waves correspond to the quasi-reversible Co(2+/3+) oxidations, whereas the cathodic ranges contain the quasi-reversibile waves assigned to the Co(2+/+) reductions; all the cobalt(i)-containing clathrochelate anions formed are stable in the CV time scale. The electrocatalytic properties of the cobalt complexes obtained were studied in the production of hydrogen from H(+) ions: the addition of HClO(4) resulted in the formation of the same catalytic cathodic reduction Co(2+/+) waves. The controlled-potential electrolysis with gas chromatography analysis confirmed the production of H(2) in high Faraday yields. The efficiency of this electrocatalytic process was enhanced by an immobilization of the complexes with terminal mercapto groups on a surface of the working gold electrode.

  5. NA35: sulphur-gold collision

    CERN Multimedia

    1991-01-01

    In this image the real particles produced by the collision of a 6400 GeV sulphur ion with a gold target can be seen as they pass through a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. The NA35 experiment, which was in operation in the 1980s, was part of CERN's ongoing heavy ion project.

  6. Plasmonic biocompatible silver-gold alloyed nanoparticles.

    Science.gov (United States)

    Sotiriou, Georgios A; Etterlin, Gion Diego; Spyrogianni, Anastasia; Krumeich, Frank; Leroux, Jean-Christophe; Pratsinis, Sotiris E

    2014-11-14

    The addition of Au during scalable synthesis of nanosilver drastically minimizes its surface oxidation and leaching of toxic Ag(+) ions. These biocompatible and inexpensive silver-gold nanoalloyed particles exhibit superior plasmonic performance than commonly used pure Au nanoparticles, and as such these nanoalloys have great potential in theranostic applications.

  7. Controlled Aspect Ratios of Gold Nanorods in Reduction-Limited Conditions

    Directory of Open Access Journals (Sweden)

    Jong-Yeob Kim

    2011-01-01

    Full Text Available Aspect ratios of gold nanorods have been finely modified in reduction-limited conditions via two electrochemical ways: by changing the amount of a growth solution containing small gold clusters in the presence of already prepared gold nanorods as seeds or by changing electrolysis time in the presence or absence of a silver plate. While the atomic molar ratio of gold in the growth solution to gold in the seed solution is critical in the former method, the relative molar ratio of gold ions to silver ions in the electrolytic solution is important in the latter way for the control of the aspect ratios of gold nanorods. The aspect ratios of gold nanorods decrease with an increase of electrolysis time in the absence of a silver plate, but they increase with an increase of electrolysis time in the presence of a silver plate.

  8. Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale

    Directory of Open Access Journals (Sweden)

    Burcin Özdemir

    2013-12-01

    Full Text Available The basic idea of using hexagonally ordered arrays of Au nanoparticles (NP on top of a given substrate as a mask for the subsequent anisotropic etching in order to fabricate correspondingly ordered arrays of nanopillars meets two serious obstacles: The position of the NP may change during the etching process and, thus, the primary pattern of the mask deteriorates or is completely lost. Furthermore, the NP are significantly eroded during etching and, consequently, the achievable pillar height is strongly restricted. The present work presents approaches on how to get around both problems. For this purpose, arrays of Au NPs (starting diameter 12 nm are deposited on top of silica substrates by applying diblock copolymer micelle nanolithography (BCML. It is demonstrated that evaporated octadecyltrimethoxysilane (OTMS layers act as stabilizer on the NP position, which allows for an increase of their size up to 50 nm by an electroless photochemical process. In this way, ordered arrays of silica nanopillars are obtained with maximum heights of 270 nm and aspect ratios of 5:1. Alternatively, the NP position can be fixed by a short etching step with negligible mask erosion followed by cycles of growing and reactive ion etching (RIE. In that case, each cycle is started by photochemically re-growing the Au NP mask and thereby completely compensating for the erosion due to the previous cycle. As a result of this mask repair method, arrays of silica nanopillar with heights up to 680 nm and aspect ratios of 10:1 are fabricated. Based on the given recipes, the approach can be applied to a variety of materials like silicon, silicon oxide, and silicon nitride.

  9. Monomer adsorption of indocyanine green to gold nanoparticles.

    Science.gov (United States)

    Guerrini, Luca; Hartsuiker, Liesbeth; Manohar, Srirang; Otto, Cees

    2011-10-05

    NIR-dye encoded gold nanoparticles (GNP) are rapidly emerging as contrast agents in many bio-imaging/sensing applications. The coding process is usually carried out without control or a clear understanding of the metal-liquid interface properties which, in contrast, are critical in determining the type and extension of dye-metal interaction. In this paper, we investigated the effect of gold surface composition on the adsorption of indocyanine green (ICG) on GNP, simulating the surface conditions of gold nanorods on citrate-capped gold nanospheres. These substrates allowed a careful control of the metal-liquid interface composition and, thus, detailed absorption and fluorescence concentration studies of the effects of each individual chemical in the colloidal solution (i.e. bromide anions, cetyl trimethylammonium ions and Ag(+) ions) on the ICG-gold interaction. This study reveals the drastic effect that these experimental parameters can have on the ICG adsorption on GNP.

  10. Recovery of gold from spent matrices using supercritical carbon dioxide / Pieter Gideon van Zyl

    OpenAIRE

    2007-01-01

    The feasibility of recovering gold preloaded onto activated carbon by supercritical carbon dioxide (sc-CO2) was investigated in view of the actuality of a more environmentally friendly process for the retrieval of gold from real-world matrices (ion-exchange resin, cellulose, activated carbon) than the harsh elution methods currently employed. Several complexes of gold(I) and gold(III) were synthesised and characterised (AA, uv/visible), and their solubility in sc-CO2 investi...

  11. Shape-tailoring and catalytic function of anisotropic gold nanostructures

    Directory of Open Access Journals (Sweden)

    Premkumar Thathan

    2011-01-01

    Full Text Available Abstract We report a facile, one-pot, shape-selective synthesis of gold nanoparticles in high yield by the reaction of an aqueous potassium tetrachloroaurate(III solution with a commercially available detergent. We prove that a commercial detergent can act as a reducing as well as stabilizing agent for the synthesis of differently shaped gold nanoparticles in an aqueous solution at an ambient condition. It is noteworthy that the gold nanoparticles with different shapes can be prepared by simply changing the reaction conditions. It is considered that a slow reduction of the gold ions along with shape-directed effects of the components of the detergent plays a vital function in the formation of the gold nanostructures. Further, the as-prepared gold nanoparticles showed the catalytic activity for the reduction reaction of 4-nitrophenol in the presence of sodium borohydride at room temperature.

  12. Role of CO2 in the formation of gold deposits.

    Science.gov (United States)

    Phillips, G N; Evans, K A

    2004-06-24

    Much of global gold production has come from deposits with uneconomic concentrations of base metals, such as copper, lead and zinc. These 'gold-only' deposits are thought to have formed from hot, aqueous fluids rich in carbon dioxide, but only minor significance has been attached to the role of the CO2 in the process of gold transport. This is because chemical bonding between gold ions and CO2 species is not strong, and so it is unlikely that CO2 has a direct role in gold transport. An alternative indirect role for CO2 as a weak acid that buffers pH has also appeared unlikely, because previously inferred pH values for such gold-bearing fluids are variable. Here we show that such calculated pH values are unlikely to record conditions of gold transport, and propose that CO2 may play a critical role during gold transport by buffering the fluid in a pH range where elevated gold concentration can be maintained by complexation with reduced sulphur. Our conclusions, which are supported by geochemical modelling, may provide a platform for new gold exploration methods.

  13. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    Science.gov (United States)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  14. The Physico-Chemical Conditions for Mobilization of Gold in Mobin Gold Deposit, Southwest Hunan, China

    Institute of Scientific and Technical Information of China (English)

    谷俐; 杨华; 戴塔根; 刘利萍

    2002-01-01

    Experiments on water-rock interaction were carried out on wall-rock samples from the Mobin gold deposit, Southwest Hunan, China, with the aim of determining the optimum physical and chemical conditions for the mobilization of gold in solution. Results indicate that gold is most easily mobilized from the wall rock-tuffaceous slate of the Mobin Deposit. Mobi lization is optimized if fluids are neutral to slightly alkaline and contain both chlorine and sulphur ions at the concentration and composition of about [0.25M (NH4)2S + 1M NaCl]. The amount of gold leached from the tuffaceous slate increases with temperature although the effect decreases above about 200℃ .

  15. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  16. Gd(III) functionalized gold nanorods for multimodal imaging applications.

    Science.gov (United States)

    Sun, Hongmei; Yuan, Qinghai; Zhang, Baohua; Ai, Kelong; Zhang, Pengguo; Lu, Lehui

    2011-05-01

    We demonstrate a novel noncovalent method for producing Gd(III)-functionalized gold nanorods as multimodal contrast agents for MRI and CT imaging. The ligand is connected to the surface of the gold nanorods by a noncovalent bond making the Gd(III) ions directly accessible to water molecules, and resulting in a longitudinal relaxivity as high as 21.3 mM(-1) s(-1). In addition, compared with spherical gold nanoparticles, gold nanorods have more binding sites for Gd(III) ions due to their large surface-to-volume ratio. Benefiting from the advantages of the new type of carry material and the novel fabrication approach, the multimodal imaging probes exhibit a high longitudinal relaxivity r(1) on the order of 1.1 × 10(7) mM(-1) s(-1) on a per-particle basis, which is 24 times higher than that of Gd(III)-ion-functionalized spherical gold nanoparticles. Furthermore, CT imaging shows that such nanoprobes could induce an efficient contrast enhancement when the gold concentration is at least equal to 1.31 mg ml(-1). These results demonstrate that the as-prepared Gd functionalized gold nanorods could provide a new and versatile platform for the development of multimodal imaging probes.

  17. Extending silicon's infrared response through laser hyperdoping with gold

    Science.gov (United States)

    Warrender, Jeffrey; Hudspeth, Quentin; Efstathiadis, Harry; Ertekin, Elif; Mathews, Jay

    Pulsed laser melting of silicon ion-implanted with gold has recently been shown to form a highly crystalline layer with a significantly greater-than-equilibrium gold concentration. Rudimentary devices made with such a laser-doped layer exhibit device response at room temperature under illumination by infrared photons with wavelengths out to 2200 nm. The external quantum efficiency in the infrared is approximately 10-4. In this presentation, we will describe efforts to increase the quantum efficiency and avert the high cost and time of ion implantation. We study the effect of varying the gold implantation dose on the resultant gold concentration in the layer and the optoelectronic properties of the layer. Additionally, we show that an alternative approach to incorporating the gold, through deposition of a thin gold layer onto the silicon surface prior to laser melting, achieves gold concentrations comparable to those achievable by ion implantation, approximately 2 x1019 atoms per cubic centimeter. We perform optoelectronic measurements on layers fabricated in this way and compare to the results obtained when using the preparation method detailed in and

  18. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

    sooner than a manager of lower type. Third, a non-operating gold mine is valued as being of the lowest type in the pool and all else equal, high-asymmetri mines are valued lower than low-asymmetri mines. In a qualitative sense these results are robust with respect to different assumptions (re cost......  Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  19. Plant Extract (Bupleurum falcatum) as a Green Factory for Biofabrication of Gold Nanoparticles.

    Science.gov (United States)

    Lee, You Jeong; Cha, Song-Hyun; Lee, Kyoung Jin; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2015-09-01

    This work describes a biofabrication process for gold nanoparticles in which the plant extract (Bupleurum falcatum) is used as a reducing agent to convert gold ions to gold nanoparticles. Biofabricated gold nanoparticles with spherical shapes were observed with an average diameter of 10.5 ± 2.3 nm. The color of the gold nanoparticles was purple, with a surface plasmon resonance peak at 542 nm. The face-centered cubic structure of crystalline gold was confirmed by high-resolution X-ray diffraction patterns. The biofabricated gold nanoparticles demonstrated excellent catalytic activity towards the 4-nitrophenol reduction reaction. The current report suggests that plant extracts are valuable natural sources for the biofabrication of gold nanoparticles with excellent catalytic activities.

  20. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  1. The relative valuation of gold

    OpenAIRE

    Baur, Dirk G.; Beckmann, Joscha; Czudaj, Robert

    2016-01-01

    Gold is a globally traded asset and held in large quantities by investors and central banks. Since there is no established model to assess if the price of gold is overvalued or undervalued, we propose a relative valuation framework based on gold price ratios. We analyze gold prices relative to commodity prices, consumer prices, stock prices, dividend and bond yields and find that the relative value of gold varies significantly over time indicating pronounced periods of mispricing of gold rela...

  2. Assessment of modified gold surfaced titanium implants on skeletal fixation

    DEFF Research Database (Denmark)

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas;

    2013-01-01

    Noncemented implants are the primary choice for younger patients undergoing total hip replacements. However, the major concern in this group of patients regarding revision is the concern from wear particles, periimplant inflammation, and subsequently aseptic implant loosening. Macrophages have been...... shown to liberate gold ions through the process termed dissolucytosis. Furthermore, gold ions are known to act in an anti-inflammatory manner by inhibiting cellular NF-κB-DNA binding. The present study investigated whether partial coating of titanium implants could augment early osseointegration...... and increase mechanical fixation. Cylindrical porous coated Ti-6Al4V implants partially coated with metallic gold were inserted in the proximal region of the humerus in ten canines and control implants without gold were inserted in contralateral humerus. Observation time was 4 weeks. Biomechanical push out...

  3. Effects of gold coating on experimental implant fixation

    DEFF Research Database (Denmark)

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas

    2009-01-01

    -kinase activation. The present study investigated whether gilding implant Surfaces augmented early implant osseointegration and implant fixation by its modulatory effect on the local inflammatory response. Ion release was traced by autometallographic silver enhancement. Gold-coated cylindrical porous coated Ti6Al4V....... Histomorphometrical analyses showed gold-coated implants had a decrease in overall total bone-to-implant contact of 35%. Autometallographic analysis revealed few cells loaded with gold close to the gilded implant surface. The findings demonstrate that gilding of implants negatively, affects mechanical strength...... implants Were inserted press-fit in the proximal part of tibiae in nine canines and control implants without gold inserted contralateral. Observation time was 4 weeks. Biomechanical push-out tests showed that implant,,, with gold coating had decrease in mechanical strength and stiffness...

  4. Gold in the Books

    Institute of Scientific and Technical Information of China (English)

    江河

    2002-01-01

    In the present Chinese market, more and more businessmen turn to the profit-making trade. Even some counters in the bookstores are selling gold rings, necklaces, bracelets, etc. One day a school teacher asked a store assistant,“Why are you selling gold in your bookstore?”

  5. One-pot synthesis of gold nanorods via autocatalytic growth of sonochemically formed gold seeds: the effect of irradiation time on the formation of seeds and nanorods.

    Science.gov (United States)

    Okitsu, Kenji; Nunota, Yuho

    2014-11-01

    A one-pot synthesis for gold nanorods was developed using sonochemical reduction of gold ions in an aqueous solution in the presence of cetyltrimethylammonium bromide, silver nitrate, and ascorbic acid, where we focused on the autocatalytic growth of gold seeds formed by ultrasonic irradiation for short times. In growth experiments with these sonochemically formed gold seeds, sigmoidal shape growth curves were observed, and the induction period before growth began was longer for shorter irradiation times. This result indicated that the number of sonochemically formed gold seeds increased with increasing irradiation time. The average aspect ratio of the gold nanorods produced changed from 2.0 at an irradiation time of 0.5min to 3.6 at 15min. The gold nanorods produced were longer and wider when the irradiation time was shorter.

  6. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.

    Directory of Open Access Journals (Sweden)

    Andrew F Taylor

    Full Text Available We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake.

  7. Study of the Reaction Rate of Gold Nanotube Synthesis from Sacrificial Silver Nanorods through the Galvanic Replacement Method

    OpenAIRE

    Sunil Kwon; Hyunbae Dong; Sang-Yup Lee

    2010-01-01

    An investigation was carried out about the gold nanotube synthesis via a galvanic replacement reaction. The progress of the gold nanotube synthesis was investigated using electron microscopy and UV-Vis spectroscopy. In addition, the reaction rates of gold nanotube formation in the early stage of the reaction were studied. The chlorine ion concentration linearly increased with the gold precursor concentration but deviated from the stoichiometric amounts. This deviation was probably due to AgCl...

  8. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    Science.gov (United States)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  9. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Science.gov (United States)

    2010-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... be considered in any assay for quality of a gold filled, gold overlay and rolled gold plate...

  10. Titration of gold nanoparticles in phase extraction.

    Science.gov (United States)

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2015-12-07

    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity.

  11. Controllable Biosynthesis and Properties of Gold Nanoplates Using Yeast Extract

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Yasha Yi; Zhaohui Li; Xuxing Lu; Fengjiao He; Xingzhong Zhu; Yujie Ma; Rong He; Feng Gao; Weihai Ni

    2017-01-01

    Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.

  12. Biosynthesis of Gold Nanoparticles (Green-gold Using Leaf Extract of Terminalia Catappa

    Directory of Open Access Journals (Sweden)

    Balaprasad Ankamwar

    2010-01-01

    Full Text Available The synthesis of eco-friendly nanoparticles is evergreen branch of nanoscience for biomedical application. Low cost of synthesis and non toxicity are main features make it more attractive potential option for biomedical field and elsewhere. Here, we report the synthesis of gold nanoparticles in aqueous medium using Terminalia catappa (Almond leaf extract as the reducing and stabilizing agent. On treating chloroauric acid solutions with Terminalia catappa (TC leaf extract rapid reduction of chloroaurate ions is observed leading to the formation of highly stable gold nanoparticles in solution. TEM analysis of the gold nanoparticles indicated that they ranged in size from 10 to 35 nm with average size of 21.9 nm.

  13. Prelude to Gold

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    FEMALE Chinese athletes Fu Mingxia and Wang Junxia recorded outstanding performances at 1996 Atlanta Olympic Games. Fu Mingxia won gold medals in both platform and springboard diving, and in so doing became the first double medal winner in Olympic diving since 1960. Wang Junxia, the holder of several world records in women’s long distance events, struggled against the odds and captured gold in the 5,000-meter event,

  14. Joining the Gold Rush

    Institute of Scientific and Technical Information of China (English)

    LIU BO

    2006-01-01

    @@ Flush with advanced technology and large amounts of capital, overseas mining firms are carving a place in the Chinese gold industry Dozens of Western mining companies, particularly those from Canada, are making the journey into the kind of remote corners in China that other overseas investors shy away from. What are they looking for? The answer is one of the most precious substances on the planet: gold.

  15. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size.

    Science.gov (United States)

    Sonavane, Ganeshchandra; Tomoda, Keishiro; Makino, Kimiko

    2008-10-15

    Purpose of the present research work was to evaluate the biological distribution of differently size gold nanoparticles (NP) up on intravenous administration in mice. Another objective was to study effect of particle size on biological distribution of gold NP to enable their diverse applications in nanotechnology. Gold NP of different particle sizes, mainly 15, 50, 100 and 200 nm, were synthesized by modifying citrate ion concentration. Synthesized gold nanoparticles were characterized by SEM and their size distribution was studied by particle size analyzer. Gold NP was suspended in sodium alginate solution (0.5%, w/v) and administered to mice (1g/kg, intravenously) [n=3]. After 24h of administration of gold NP, blood was collected under light ether anesthesia, mice were sacrificed by cervical dislocation and various tissues/organs were removed. The tissues were then washed with saline, homogenized and lysed with aqua regia. The determination of gold in samples was carried out quantitatively by inductively coupled plasma mass spectrometry (ICP-MS). SEM study revealed spherical morphology of gold NP with narrow particle size distribution. Biodistribution study revealed gold NPs of all sizes were mainly accumulated in organs like liver, lung and spleen. The accumulation of gold NP in various tissues was found to be depending on particle size. 15 nm gold NP revealed higher amount of gold and number of particles in all the tissues including blood, liver, lung, spleen, kidney, brain, heart, stomach. Interestingly, 15 and 50 nm gold NP were able to pass blood-brain barrier as evident from gold concentration in brain. Two-hundred nanometers gold NP showed very minute presence in organs including blood, brain, stomach and pancreas. The results revealed that tissue distribution of gold nanoparticles is size-dependent with the smallest 15 nm nanoparticles showing the most widespread organ distribution.

  16. Facile synthesis of gold nanoribbons by L-cysteine at room temperature

    Institute of Scientific and Technical Information of China (English)

    HUANG Lan; ZHANG Yu; GUO ZhiRui; GU Ning

    2009-01-01

    Highly crystalline gold nanoribbons have been synthesized via a simple method by L-cysteine reduc-tion of aqueous chloroaurate ions at room temperature, without additional capping agent or surfactant. Based on transmission electron microscopy (TEM) and UV-vis absorption studies for the intermediate products, the formation of gold nanoribbons is regarded as a kind of oriented attachment growth.

  17. Hydroquinone Based Synthesis of Gold Nanorods.

    Science.gov (United States)

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-08-10

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM.

  18. Poly-thiosemicarbazide membrane for gold recovery

    KAUST Repository

    Villalobos, Luis Francisco

    2014-11-01

    A novel polymeric membrane adsorber with a high density of adsorption sites that can selectively capture Au(III) ions, is proposed as an efficient alternative to recover gold from dilute solutions. Poly-thiosemicarbazide (PTSC), a polymer that contains one chelate site per monomeric unit, was used to fabricate the membranes. This polymer can be easily processed into membranes by a phase inversion technique, resulting in an open and interconnected porous structure suitable for high flux liquid phase applications. This method overcomes the usual low capacities of membrane adsorbents by selecting a starting material that contains the adsorption sites within it, therefore avoiding the necessity to add an external agent into the membrane matrix. The resulting mechanically stable PTSC membranes can operate in a pressure driven permeation process, which eliminates the diffusion limitations commonly present in packed column adsorption processes. This process can selectively recover 97% of the gold present in a solution containing a 9-fold higher copper concentration, while operating at a flux as high as 1868 L/m2 h. The maximum gold uptake measured without sacrificing the mechanical stability of the membrane was 5.4 mmol Au/g. Furthermore the gold can be easily eluted from the membrane with a 0.1 M thiourea solution and the membrane can be reused for at least three cycles without any decrease in its performance. Finally, the ability of this membrane for recovering metals from real-life samples, like seawater and tap water, was tested with promising results.

  19. Comparative Aquatic Toxicity of Gold Nanoparticles and Ionic Gold Using a Species Sensitivity Distribution Approach

    Directory of Open Access Journals (Sweden)

    Tarryn L. Botha

    2015-01-01

    Full Text Available Gold nanoparticles (nAu are used in drug delivery systems allowing for targeted cellular distribution. The effects of increased use and release of nanoparticles into the environment are not well known. A species sensitivity distribution (SSD allows for the ecotoxicological hazard assessment of a chemical based on single species toxicity tests. Aquatic toxicity needs to be related to particle characterization in order to understand the effects. The behaviour of nAu in the medium changed as the concentration increased. The toxic potential of ionic gold and nAu was expressed as a hazardous concentration where 5% of species will be harmed (HC5. The HC5 for nAu was much higher (42.78 mg/L compared to the ionic gold (2.44 mg/L. The differences between the hazard potentials of nAu and ionic gold were attributed to the nAu not releasing any Au ions into solution during the exposures and following an aggregation theory response. Exposures to ionic gold on the other hand followed a clear dose dependent response based on the concentration of the ionic metal. Although SSDs present an indication of the relative hazard potential of nanoparticles, the true worth can only be achieved once other nanoparticle characteristics and their behavior in the environment are also considered.

  20. EXPERIMENTAL GEOCHEMISTRY STUDY ON GOLD IN WATER-ROCK REACTION UNDER THERMAL FLUID SYSTEM AT MESO-LOW TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    GU; Li; DAI; Ta-gen

    2001-01-01

    Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water-rock experiments were carried out,important achievements are acquired as following: Gold is mainly derived from the ore-bearing wall rock,i,e.,a series of epimetamorphic clastic gritstone,sandy slate,and tuffaceous slate in the Wuqiang Banxi Formation,Wuqiangxi Group.In thermal system with middle-low temperature chlorine gold may be derived form stable complex ions,so it is quite important in gold metallogenic process.Sulphur and chlorine perform as the major negative ions throughout the gold activation and migration movement.The concentration of sulphur and chlorine ions,pH value and temperature are of deciding significance for gold activation,migration and precipitation.

  1. Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of Au m Fe n +/- Clusters Generated from Gold-Iron Nanoparticles and their Giant Nanoflowers. Electrochemical and/or Plasma Assisted Synthesis

    Science.gov (United States)

    Mawale, Ravi Madhukar; Ausekar, Mayuri Vilas; Pavliňák, David; Galmiz, Oleksandr; Kubáček, Pavel; Havel, Josef

    2017-02-01

    Gold nanoparticles (NP) with average diameter 100 nm synthesized from tetrachloroauric acid solution using stainless steel as a reducing agent were found to contain iron. Applying simultaneously high frequency (HF) plasma discharge in solution during the electrochemical reduction, giant gold-iron nanoflowers with average size 1000-5000 nm were formed. Scanning electron microscopy (SEM) shows the morphology of the nanopowders produced as polygonal yet nearly spherical, whereas iron content in both products determined by energy dispersive X-ray analysis (EDX) was found to be at 2.5 at. %. Laser desorption ionization (LDI) of both nanomaterials and mass spectrometric analysis show the formation of Au m Fe n +/- ( m = 1-35; n = 1-3) clusters. Structure of few selected clusters in neutral or monocharged forms were computed by density functional theory (DFT) calculations and it was found that typical distances of an iron nucleus from adjacent gold nuclei lie in the interval 2.5 to 2.7 Å. Synthetized Au-Fe nanoparticles were found stable for at least 2 mo at room temperature (even in aqueous solution) without any stabilizing agent. Produced Au-Fe nanoparticles in combination with standard MALDI matrices enhance ionization of peptides and might find use in nanomedicine.

  2. Evaporative cooling of highly charged ions in EBIT (Electron Beam Ion Trap): An experimental realization

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-12-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs.

  3. Synthesis and Characterization of Gold Nanoparticles by Tryptophane

    Directory of Open Access Journals (Sweden)

    Azim Akbarzadeh

    2009-01-01

    Full Text Available Problem statement: Preparation and synthesis of gold nanoparticles with small size and suitable stability is very important and applicable particularly in medicine. In this study, we have prepared gold nanoparticles by chemical reduction method employing L-Tryptophane as a reducing agent for ionic gold. Approach: The gold nanoparticles are the most employed amongst the different metallic nanoparticles in the fields of nanomedicine and nanobiotechnology. Therefore, the employed method should provide suitable particle size, shape and particle distribution in order to obtain nanoparticles of high activity and efficiency indicating the importance of the technique. In this study, HAuCl4 .3H2O, L-Tryptophane and polyethyleneglycol (PEG were used to produce AuCl-4 ions. They were acted as pre-material, reducing and stabilizing agents respectively. Results: The size, distribution and formation of gold nanoparticles were confirmed by Transmission Electron Microscopy (TEM indicating the diameter of gold nanoparticles at the range of 10-25 nm and UV spectroscopy. The formed nanoparticles showed the highest absorption at 518 nm. Conclusion: The gold nanoparticles were stable in PEG1000. Since these nanoparticles have suitable size distribution they can be considered as a suitable candidate to be employed in nanomedicine and nanobiotechnology.

  4. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    Science.gov (United States)

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-08-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold-MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold-MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold-MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml.

  5. Silver and gold nanoparticles for sensor and antibacterial applications.

    Science.gov (United States)

    Bindhu, M R; Umadevi, M

    2014-07-15

    Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au(3+) and Ag(+) ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity.

  6. Hydrogen evolution at nanoporous gold/tungsten sulfide composite film and its optimization

    DEFF Research Database (Denmark)

    Xiao, Xinxin; Engelbrekt, Christian; Li, Zheshen

    2015-01-01

    Development of efficient and economical electrochemical systems for water splitting is a key part of renewable energy technology. Amorphous films of tungsten sulfide have been deposited by electrochemical reduction of tetrathiotungstate ions (WS42-) on dealloyed nanoporous gold (NPG) for electroc......Development of efficient and economical electrochemical systems for water splitting is a key part of renewable energy technology. Amorphous films of tungsten sulfide have been deposited by electrochemical reduction of tetrathiotungstate ions (WS42-) on dealloyed nanoporous gold (NPG...

  7. Study of the Reaction Rate of Gold Nanotube Synthesis from Sacrificial Silver Nanorods through the Galvanic Replacement Method

    Directory of Open Access Journals (Sweden)

    Sunil Kwon

    2010-01-01

    Full Text Available An investigation was carried out about the gold nanotube synthesis via a galvanic replacement reaction. The progress of the gold nanotube synthesis was investigated using electron microscopy and UV-Vis spectroscopy. In addition, the reaction rates of gold nanotube formation in the early stage of the reaction were studied. The chlorine ion concentration linearly increased with the gold precursor concentration but deviated from the stoichiometric amounts. This deviation was probably due to AgCl precipitates formed by the reaction of chlorine ions with dissolved silver ions. The replacement reaction was promoted with increased temperature and was nonlinearly proportional to the gold ion concentration. The outcomes of this research will enhance the current understanding of the galvanic replacement reaction.

  8. Exciting first results from deuteron-gold collisions at Brookhaven

    CERN Multimedia

    2003-01-01

    "The latest results from the Relativistic Heavy Ion Collider, the world's most powerful facility for nuclear physics research, strengthen scientists' confidence that RHIC collisions of gold ions have created unusual conditions and that they are on the right path to discover a form of matter called the quark-gluon plasma, believed to have existed in the first microseconds after the birth of the universe" (1 page).

  9. The Physico—Chemical Conditions for Mobilization of Gold in Mobin Gold Deposit,Southwest Hunan,China

    Institute of Scientific and Technical Information of China (English)

    谷俐; 杨华; 等

    2002-01-01

    Experiments on water-rock interaction were carried out on wall-rock samples fromtheMobin gold deposit,Southwest Hunan,China ,with the aim of determining the optimum physical and chemical conditions for the mobilization of gold in solution.Results indicate that gold is most easily mobilized from the wall rock-tuffaceous slate of the Mobin Deposit.Mobi-lization is optimized if fluids are neutral to slightly alkaline and contain both chlorine and sul-phur ions at the concentration and composition of about[0.25M(NH4)2+1M NaCl].The amount of gold leached from the tuffaceous slate increases with temperature although the effect decreases above about 200℃.

  10. Leaching Gold Using Oxidation Products of Elemental Sulfur in Ca(OH)2 Solution under Oxygen Pressure

    Institute of Scientific and Technical Information of China (English)

    方兆珩; 韩宝玲

    2002-01-01

    A gold leaching process by using in situ oxidation products of added elemental sulfur in Ca(OH)2 solution was investigated. A gold concentrate containing 45 g/t Au was tested and 85%~87% of gold were leached. The leached gold depends mainly on the initial molar ratio of elemental sulfur to the hydroxyl ion, the consumption of oxygen and the reaction temperature. Adding some surfactants, such as lignosulfonic calcium, at lower concentration increased the leached Au but at higher concentration decreased it. Both of thermodynamic analysis and experimental results show that thiosulfate is the major complexing agent for gold in the process.

  11. Electroless selective deposition of gold nano-array for silicon nanowires growth

    Directory of Open Access Journals (Sweden)

    Ruiz-Gomes E.

    2014-01-01

    Full Text Available Nanopatterns of gold clusters on a large surface of oriented Si(111 substrates, from the galvanic displacement of gold salt (via the spontaneous reduction of AuCl4 -, are demonstrated in this work. The Si substrate is patterned by Focused Ion Beam (FIB prior to being dipped in a gold solution. Here, we show that these patterns lead to successful control of the position and size of gold clusters. Sequential patterning reveals a powerful maskless alternative to surface preparation prior to Si nanowire growth

  12. Defining rules for the shape evolution of gold nanoparticles.

    Science.gov (United States)

    Langille, Mark R; Personick, Michelle L; Zhang, Jian; Mirkin, Chad A

    2012-09-05

    The roles of silver ions and halides (chloride, bromide, and iodide) in the seed-mediated synthesis of gold nanostructures have been investigated, and their influence on the growth of 10 classes of nanoparticles that differ in shape has been determined. We systematically studied the effects that each chemical component has on the particle shape, on the rate of particle formation, and on the chemical composition of the particle surface. We demonstrate that halides can be used to (1) adjust the reduction potential of the gold ion species in solution and (2) passivate the gold nanoparticle surface, both of which control the reaction kinetics and thus enable the selective synthesis of a series of different particle shapes. We also show that silver ions can be used as an underpotential deposition agent to access a different set of particle shapes by controlling growth of the resulting gold nanoparticles through surface passivation (more so than kinetic effects). Importantly, we show that the density of silver coverage can be controlled by the amount and type of halide present in solution. This behavior arises from the decreasing stability of the underpotentially deposited silver layer in the presence of larger halides due to the relative strengths of the Ag(+)/Ag(0)-halide and Au(+)/Au(0)-halide interactions, as well as the passivation effects of the halides on the gold particle surface. We summarize this work by proposing a set of design considerations for controlling the growth and final shape of gold nanoparticles prepared by seed-mediated syntheses through the judicious use of halides and silver ions.

  13. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for

  14. Chemistry for oncotheranostic gold nanoparticles.

    Science.gov (United States)

    Trouiller, Anne Juliette; Hebié, Seydou; El Bahhaj, Fatima; Napporn, Teko W; Bertrand, Philippe

    2015-06-24

    This review presents in a comprehensive ways the chemical methods used to functionalize gold nanoparticles with focus on anti-cancer applications. The review covers the parameters required for the synthesis gold nanoparticles with defined shapes and sizes, method for targeted delivery in tumours, and selected examples of anti-cancers compounds delivered with gold nanoparticles. A short survey of bioassays for oncology based on gold nanoparticles is also presented.

  15. ADSORPTION CAPACITY OF ACTIVATED CARBON FIBER FABRIC IN CYANIDE LEACHING LIQUOR OF GOLD ORES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Adsorption capacity of ACFF in cyanide leaching liquor of gold ores was studied withcyanide leaching liquor of gold ores, containing various kinds of ions. The adsorbed leaching liquorwas analyzed by atomic emission spectroscopy and colorimetric method. The contents of variouskinds of ions in ACFF were determined with X-ray photoctron spectroscopy. ACFF not onlyadsorbed gold but also adsorbed arsenic, nickel, zinc, calcium, sulphur, bismuth, copper, iron. silverand cyanide anion. Atomic percentage of C and those of O, N, Zr, Fe increase and decreaserespectively with the increase of the layer depth, while those of Ca, Au, Ag keep constant.

  16. Controlling the Shape and Crystallinity of Gold and Silver Nanoparticles

    Science.gov (United States)

    Personick, Michelle Louise

    The strong dependence of the optical, electronic, and catalytic properties of noble metal nanoparticles on their shape has necessitated the high-yield synthesis of gold and silver nanostructures with precisely defined morphologies. This directed synthesis requires a detailed mechanistic understanding of the chemical and physical factors which control nanoparticle shape; however, these mechanistic explanations are still incomplete. To this end, the work of this dissertation seeks to enhance the understanding of nanoparticle growth on a mechanistic level, while also developing synthetic methods for producing novel nanoparticle shapes. Chapter 1 describes the state of the art in shape-controlled noble metal nanoparticle synthesis prior to the work conducted in this dissertation. In Chapter 2, a method is reported for synthesizing {110}-faceted bipyramids and rhombic dodecahedra, in which the combination of a chloride-containing surfactant and a low concentration of silver ions leads to the stabilization of the {110} facets. Chapter 3 explores in mechanistic detail the use of silver underpotential deposition to control particle growth in the synthesis of four gold nanoparticle shapes: octahedra, rhombic dodecahedra, truncated ditetragonal prisms, and concave cubes. This mechanistic understanding is expanded in Chapter 4, where the independent and synergistic roles of silver ions and halide ions in the seed-mediated synthesis of gold nanoparticles are systematically probed, culminating in a set of design considerations for controlling the shape of gold nanoparticles. Chapter 5 investigates the role of excitation wavelength in controlling the rate of silver ion reduction in the plasmon-mediated synthesis of silver nanoparticles and describes the synthesis of silver cubes with an unusual twinning structure. Finally, Chapter 6 combines the mechanistic insights gained in Chapters 2-5 to address a standing challenge in shape-controlled gold nanoparticle synthesis: the direct

  17. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  18. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  19. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  20. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  1. Aiming for Gold

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Twenty-three years ago he claimed China’s first Olympic gold medal,with a win in the 50-meter pistol shooting competition.Now Xu Haifeng is leading the country’s modern pentathlon team in its bid for success at the Beijing Games

  2. Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption.

    Science.gov (United States)

    Fayaz, A Mohammed; Girilal, M; Venkatesan, R; Kalaichelvan, P T

    2011-11-01

    Metal nanoparticles, in general, and gold nanoparticles, in particular, are very attractive because of their size- and shape-dependent properties. Biosynthesis of anisotropic gold nanoparticles using aqueous extract of Madhuca longifolia and their potential as IR blockers has been demonstrated. The tyrosine residue was identified as the active functional group for gold ion reduction. These gold nanoparticles were characterized by of UV-Vis spectrophotometer, FTIR, TEM and HrTEM. The presence of proteins was identified by FTIR, SDS-PAGE, UV-Vis and fluorescence spectroscopy. The micrograph revealed the formation of anisotropic gold nanoaprticles. The biologically synthesized gold nanotriangles can be easily coated in the glass windows which are highly efficient in absorbing IR radiations.

  3. Relationship of polycyclic aromatic sulfur compounds and gold enrichment in the Kupferschiefer from Poland and Germany

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The contents of polycyclic aromatic sulfur compounds (PASCs) in the Kupferschiefer varied from sample to sample. Twenty PASCs were determined in the Kupferschiefer from Poland and Germany. Gold enrichment was only observed in samples with higher PASC contents. At the same time, all the samples with gold enrichment originated from areas close to the redox boundary (the front section of Rote Faule) that was formed by oxidizing brines in contact with the reducing Kupferschiefer. It is proposed that the gold-bearing solutions encountered PASCs in the Kupferschiefer. PASCs could easily displace chloride ions from aurous chloride complexes to form stable gold S-chelates. Subsequent oxidation of these gold organic compounds could destroy the organic components and lead to the formation of metallic gold.

  4. Gold leaching with elemental sulfur in alkaline solutions under oxygen pressure

    Institute of Scientific and Technical Information of China (English)

    方兆珩; 石伟

    2003-01-01

    A gold leaching process by using oxidation products of elemental sulfur in alkaline solutions was pro-posed and investigated. A gold concentrate and a residue from an arsenic refractory gold concentrate by acidic oxida-tion leaching were tested. The residue contains 16.3% elemental sulfur and no more elemental sulfur was added intests. For the concentrate elemental sulfur was added before leaching tests. The leaching ratio of gold depends main-ly on the initial equivalent ratio of elemental sulfur to hydroxyl ions, the consumption of oxygen and the reactiontemperature in the process. Analysis of the experimental results shows that thiosulfate is the majority complexingreagent for gold in the process. Over 90% gold was leached from the residue and 82%-87% from the concentrate byusing this process.

  5. SYNTHESIS AND CHARACTERIZATION OF GOLD NANOPARTICLES BY JUSTICIA GENDARUSSA BURM F. LEAF EXTRACT

    Directory of Open Access Journals (Sweden)

    Ponnuswamy Renuka Devi et al.

    2012-02-01

    Full Text Available The unusual physio and chemical properties of gold nanoparticles are found to have more advantage in the field of medicine, diagnostics and biosensors. In the present document, it is reported that Justicia gendarussa leaf extract mediated synthesis of gold nanoparticles by the reduction of gold ions. Three different phytochemical fractions were prepared from methanolic leaf extract by liquid-liquid extraction method using immiscible solvents. The total polyphenols, flavonoids and electron donating capacity (DPPH assay of each phytochemical fraction was analyzed. The 1mg/ml of diethyl ether phytochemical fraction produced more gold nanoparticles within 15 minutes when exposed to 10ml of 0.5mM chloroauric acid compared to chloroform and ethyl acetate phytochemical fractions. The structural characteristics of diethyl ether phytochemical fraction synthesized gold nanoparticles were characterized by UV-visible spectroscopy, Dynamic light scattering, Transmission electron microscopy, X-ray diffraction and Fourier transform-infrared spectroscopies. These biosynthesized gold nanoparticles showed surface plasmon resonance band at 536nm in UV-visible spectrum. The size of the gold nanoparticles ranged from 20 to 42nm and 62 to 88nm with spherical, triangle, truncated triangle and hexagonal shapes. From the Fourier transform-infrared spectra of diethyl ether phytochemical fraction and synthesized gold nanoparticles, the possible functional group involved in gold ions reduction and capping of gold nanoparticles were identified. The stability of gold nanoparticles for 5 month period and at different pH range (5-10 was analyzed by observing the changes in surface plasmon resonance of gold nanoparticles. Moreover, the diethyl ether phytochemical fraction showed no cytotoxicity up to 100μg/ml in RAW 264.7 cell line .

  6. Bioleaching of refractory gold ore (Ⅲ)--Fluid leaching Jinya refractory gold concentrate by Thiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    闵小波; 柴立元; 陈为亮; 于霞; 张传福; 邝中

    2002-01-01

    A novel fluidized-bed reactor was designed and installed for bioleaching in a semi-continuous way,by which a process for bioleaching-cyanidation of Jinya refractory gold arsenical concentrate was studied.The arsenic extraction rate reaches 82.5% after 4-day batch biooxidation of the concentrate under the optimized condition of pH 2.0,ferric ion concentration 6.5 g/L and pulp concentration 10%.And leached rate of gold in the following cyanidation is over 90%.The parameters of three series fluidized-bed reactors exhibit stability during the semi-continuous bioleaching of the concentrate.Arsenic in the concentrate can be got rid of 91% after 6-day leaching.Even after 4 days,82% of arsenic extraction rate was still obtained.The recovery rates of gold are 92% and 87.5% respectively in cyaniding the above bioleached residues.The results will provide a base for further commercial production of gold development.

  7. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.

    Science.gov (United States)

    Klekotko, Magdalena; Matczyszyn, Katarzyna; Siednienko, Jakub; Olesiak-Banska, Joanna; Pawlik, Krzysztof; Samoc, Marek

    2015-11-21

    We report here a "green" approach for the synthesis of gold nanoparticles (GNPs) in which the Mentha piperita extract was applied for the bioreduction of chloroauric acid and the stabilization of the formed nanostructures. The obtained GNPs were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). The reduction of gold ions with the plant extract leads to the production of nanoparticles with various shapes (spherical, triangular and hexagonal) and sizes (from 10 to 300 nm). The kinetics of the reaction was monitored and various conditions of the synthesis were investigated. As a result, we established protocols optimized towards the synthesis of nanospheres and nanoprisms of gold. The cytotoxic effect of the obtained gold nanoparticles was studied by performing MTT assay, which showed lower cytotoxicity of the biosynthesized GNPs compared to gold nanorods synthesized using the usual seed-mediated growth. The results suggest that the synthesis using plant extracts may be a useful method to produce gold nanostructures for various biological and medical applications.

  8. Gold recovery by galvanic stripping of an anionic organic extractant

    Directory of Open Access Journals (Sweden)

    Lacerda D.F.C.

    2001-01-01

    Full Text Available The galvanic stripping technique for metal recovery uses commercial organic extractants containing a metal to be recovered. The organic phase is placed in contact with a solid metal reducer that allows electrochemical reactions to occur. One product of these reactions is a metal layer deposited on the surface of the reducer consisting of reduced species desorbed from the organic phase. Another product is metal ions from the reducer adsorbed onto the organic phase. This work presents results for gold recovery by galvanic stripping of strong-base anionic extractants of a quaternary amine salt, ALIQUAT336®, in xylene using solid zinc as the metal reducer. The parameters studied were contact time for the organic phase containing gold and the samples of the reducing zinc metal, temperature of the system, gold concentration in the organic phase and type of stirring used in the galvanic stripping system. Experiments showed results higher than 28% of gold recovery and an adherent film of gold on the zinc surface. The Arrhenius plot for gold recovery from the organic extractant suggests a change in the rate- controlling step from mixed control to diffusion control with increasing temperature in the range of 20 to 50ºC.

  9. Electrodeposition of amorphous gold alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masaru; Senda, Kazutaka [Central Research Laboratory, Kanto Chemical Co., Inc., Saitama 340-0003 (Japan); Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Musha, Yuta [Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Sasano, Junji [Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Tokyo 169-0051 (Japan); Okinaka, Yutaka [Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Osaka, Tetsuya [Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Tokyo 169-0051 (Japan); Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)], E-mail: osakatet@waseda.jp

    2007-11-20

    The process for electroplating amorphous gold-nickel-tungsten alloy that we developed previously based on the addition of a gold salt to a known amorphous Ni-W electroplating solution was investigated further using the X-ray diffraction (XRD) method for the purpose of quickly surveying the effects of various experimental variables on the microstructure of the alloy. In this system the gold concentration in the plating bath was found to be critical; i.e., when it is either very low or very high, the deposit becomes crystalline to XRD. The deposit composition varies linearly with the mole ratio of Au to Ni in solution, and the alloy deposit is amorphous to XRD when the atomic ratio of Au/Ni in the deposit is between 0.5 and 1.5. At suitable concentrations of the metal ions, the deposit contains essentially no tungsten. By extending the work on the Au-Ni-W system, an amorphous Au-Co alloy plating process was also developed.

  10. Biosynthesis of gold nanoparticles: A green approach.

    Science.gov (United States)

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed.

  11. Solid phase extraction of gold(III) on Amberlite XAD-2000 prior to its flame atomic absorption spectrometric determination.

    Science.gov (United States)

    Elci, Latif; Sahan, Derya; Basaran, Aydan; Soylak, Mustafa

    2007-09-01

    A solid phase extraction method for the determination of gold(III) at trace levels by flame atomic absorption spectrometer (FAAS) was developed. The method was based on retention of gold as chloro complexes through the Amberlite XAD-2000. The effect of some analytical parameters including hydrochloric acid concentration, sample volume, sample and eluent flow rates, eluent volume, eluent concentration and interfering ions on the recovery of gold(III) was investigated. The retention of gold(III) from 1.5 mol l(-1) HCl solution and the recovery of gold with 0.07 mol l(-1) NH3 solution were quantitative (>or=95%). The relative standard deviation (RSD) was calculated as 3.2% (n = 10). The detection limit for gold was 2 microg l(-1). The accuracy was checked with the determination of gold spiked an artificial seawater and a pure copper samples.

  12. Gold induced apoptsis study

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    2008-01-01

    at the moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough......Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention...... the low energy radio frequencies. If the method is demonstrated to be feasible, next step is testing in cell line trials.   Confocal microscopy experiments on cells are very hard to do reliable and reproducible statistic on, due to the fact that that it’s user counting which makes the data. Automatic...

  13. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...... are increasingly being noted, there is little analysis of miners' mobility patterns and material outcomes. In this article, on the basis of a sample survey and interviews at two gold-mining sites in Tanzania, we probe when and why miners leave one site in favour of another. Our findings indicate that movement...... is often 'rushed' but rarely rash. Whereas movement to the first site may be an adventure, movement to subsequent sites is calculated with knowledge of the many risks entailed. Miners spend considerable time at each site before migrating onwards. Those with the highest site mobility tend to be more...

  14. Spiky gold nanoshells.

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L; Park, So-Jung

    2010-12-21

    We report a high-yield synthetic method for a new type of metal nanostructure, spiky gold nanoshells, which combine the morphological characteristics of hollow metal nanoshells and nanorods. Our method utilizes block copolymer assemblies and polymer beads as templates for the growth of spiky nanoshells. Various shapes of spiky metal nanoshells were prepared in addition to spherical nanoshells by using block copolymer assemblies such as rod-like micelles, vesicles, and bilayers as templates. Furthermore, spiky gold shells encapsulating magnetic nanoparticles or quantum dots were prepared based on the ability of block copolymers to self-assemble with various types of nanoparticles and molecules. The capability to encapsulate other materials in the core, the shape tunability, and the highly structured surface of spiky nanoshells should benefit a range of imaging, sensing, and medical applications of metal nanostructures.

  15. Film Ace Takes Gold

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    "Really, I never, never expected to win this," said Chinese director Jia Zhangke on hearing he had taken the top award for his movie Still Life (Sanxia Haoren) at the Venice Film Festival, on September 9. A surprise late entry, Still Life quickly emerged as the favorite and the Gold Lion was again hugged by Chinese. The well-known Chinese director Zhang Yimou won the same award back in 1999, for Not One Less-also a

  16. Microbial biosynthesis of nontoxic gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Swarup, E-mail: swaruproy@klyuniv.ac.in [Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal (India); Das, Tapan Kumar [Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal (India); Maiti, Guru Prasad [Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, West Bengal (India); Department of Anesthesiology, Texas Tech University Health science Center, 3601 4th Street, Lubbock, TX 79430 (United States); Basu, Utpal [Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, West Bengal (India)

    2016-01-15

    Graphical abstract: The manuscript deals with the fungus mediated optimized biologically synthesized GNPs using Aspergillus foetidus and characterization of biosynthesized GNPs using various physico-chemical methods. The fairly stable synthesized nanoparticles have size in the range of 10–40 nm. Cytotoxicity study of biosynthesized GNPs on Human lung cancer cell line A549 showed no significant toxicity of GNPs. - Highlights: • A novel biosynthesis process of GNPs using Aspergillus foetidus. • Biosynthesized GNPs are in the range of 10–40 nm as observed from TEM. • This process of synthesis is an optimized biosynthesis process of GNPs. • Biosynthesized GNPs are noncytotoxic against A549 cell line. - Abstract: We study the extracellular biosynthesis of gold nanoparticles (GNPs) using the fungal species Aspergillus foetidus. The formation of GNPs were initially monitored by visual observation and then characterized with the help of various characterization techniques. X-ray diffraction (XRD) results revealed distinctive formation of face centered cubic crystalline GNPs. From field emission scanning electron microscopy (FESEM) the morphology of the nanoparticles were found to be roughly spherical and within the size range of 30–50 nm. The spherical and polydispersed GNPs in the range of 10–40 nm were observed by transmission electron microscopy (TEM) analysis. It was established that alkaline pH, 1 mM gold salt concentration and 75 °C temperature were the respective optimum parameter for biosynthesis of GNPs. Cell cytotoxicity of GNP was compared with that of normal gold salt solution on A549 cell. The A549 cell growth in presence of GNPs was found to be comparatively less toxic than the gold ion.

  17. Annealing Effects on the Surface Plasmon of MgO Implanted with Gold

    Science.gov (United States)

    Ueda, A.; Mu, R.; Tung, Y. -S.; Henderson, D. O.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.; Wang, P. W.

    1997-01-01

    Gold ion implantation was carried out with the energy of 1.1 MeV into (100) oriented MgO single crystal. Implanted doses are 1, 3, 6, 10 x 10(exp 16) ions/sq cm. The gold irradiation results in the formation of gold ion implanted layer with a thickness of 0.2 microns and defect formation. In order to form gold colloids from the as-implanted samples, we annealed the gold implanted MgO samples in three kinds of atmospheres: (1)Ar only, (2)H2 and Ar, and (3)O2 and Ar. The annealing over 1200 C enhanced the gold colloid formation which shows surface plasmon resonance band of gold. The surface plasmon bands of samples annealed in three kinds of atmospheres were found to be at 535 nm (Ar only), 524 nm(H2+Ar), and 560 nm (02+Ar), The band positions of surface plasmon can be reversibly changed by an additional annealing.

  18. Atomistic simulation of laser ablation of gold : Effect of pressure relaxation

    NARCIS (Netherlands)

    Norman, G. E.; Starikov, S. V.; Stegailov, V. V.

    2012-01-01

    The process of ablation of a gold target by femto- and picosecond laser radiation pulses has been studied by numerical simulations using an atomistic model with allowance for the electron subsystem and the dependence of the ion-ion interaction potential on the electron temperature. Using this potent

  19. Quantitation of metal content in the silver-assisted growth of gold nanorods.

    Science.gov (United States)

    Orendorff, Christopher J; Murphy, Catherine J

    2006-03-09

    The seed-mediated approach to making gold nanorods in aqueous surfactant solutions has become tremendously popular in recent years. Unlike the use of strong chemical reductants to make spherical gold nanoparticles, the growth of gold nanorods requires weak reducing conditions, leading to an unknown degree of gold reduction. The metal content of gold nanorods, made in high yield in the presence of silver ion, is determined by inductively coupled plasma atomic emission spectroscopy. Through the use of the known gold concentration in nanorods, molar extinction coefficients are calculated for nanorods of varying aspect ratios from 2.0 to 4.5. The extinction coefficients at the longitudinal plasmon band peak maxima for these nanorods vary from 2.5x10(9) to 5.5x10(9) M-1 cm-1, respectively, on a per-particle basis. Many of the gold ions present in the growth solution remain unreacted; insights into the growth mechanism of gold nanorods are discussed.

  20. Gold and the Stock Market: 3 Essays on Gold Investments

    OpenAIRE

    Taurasi, Donatella

    2013-01-01

    This thesis gives an overview of the history of gold per se, of gold as an investment good and offers some institutional details about gold and other precious metal markets. The goal of this study is to investigate the role of gold as a store of value and hedge against negative market movements in turbulent times. I investigate gold’s ability to act as a safe haven during periods of financial stress by employing instrumental variable techniques that allow for time varying conditional covarian...

  1. Gold-gold junction electrodes:the disconnection method.

    Science.gov (United States)

    Dale, Sara E C; Vuorema, Anne; Ashmore, Ellen M Y; Kasprzyk-Horden, Barbara; Sillanpää, Mika; Denuault, Guy; Marken, Frank

    2012-02-01

    The formation of gold-gold junction electrodes for application in electroanalysis is described here based on electro-deposition from a non-cyanide gold plating bath. Converging growth of two hemispherical gold deposits on two adjacent platinum microelectrodes (both 100 µm diameter in glass, ca. 45 µm gap) followed by careful etching in aqueous chloride solution was employed. During growth both gold hemispheres "connect" and during etching "disconnection" is evident in a drop in current. Gold-gold junctions with sub-micron gaps are formed and applied for the electroanalytical detection of sub-micromolar concentrations of hydroquinone in 0.1 M phosphate buffer pH 7 (E(rev) = 0.04 V vs. SCE) and sub-micromolar concentration of dopamine in 0.1 M phosphate buffer pH 7 (E(rev) = 0.14 V vs. SCE). The potential future uses in analysis and limitations of gold-gold junction electrodes are discussed.

  2. Oxygen clamps in gold nanowires

    OpenAIRE

    Novaes, Frederico D.; da Silva, Antonio J. R.; da Silva, E. Z.; Fazzio, A.

    2005-01-01

    We investigate how the insertion of an oxygen atom in an atomically thin gold nanowire can affect its rupture. We find, using ab initio total energy density functional theory calculations, that O atoms when inserted in gold nanowires form not only stable but also very strong bonds, in such a way that they can extract atoms from a stable tip, serving in this way as a clamp that could be used to pull a string of gold atoms.

  3. Green Synthesis of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghorbani

    2015-03-01

    Full Text Available There is an increased interest in understanding the toxicity and rational design of gold nanoparticles for biomedical applications in recent years. In this study gold nanoparticles were synthesized using dextrose as a reducing agent. The gold nanoparticles displayed characteristic Surface Plasmon Resonance peak at around 550 nm having a mean particle size of 75±30 nm. In order to identify and analyze nanoparticles, UV–Vis spectroscopy, Scanning electron microscopy (SEM, and dynamic light scattering (DLS were used.

  4. The extractive metallurgy of gold

    Science.gov (United States)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  5. Notes on dumping gold beam in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.J.; Ahrens, L.; Thieberger, P.

    2010-08-01

    Localized losses of gold beam in the AGS during RHIC Run 8 produced vacuum leaks which required the replacement of several vacuum chambers. A review of what happened and why was given by Leif Ahrens at the Run 8 Retreat. The following notes trace the subsequent development of clean dumping of gold beam on the beam dump in the J10 straight. The novel idea of stripping Au77+ ions in order to put them directly into the upstream face of the dump was introduced by Leif Ahrens and developed by all three of us. George Mahler made the actual stripping device and Dave Gassner developed its control. Leif Ahrens successfully commissioned the device with gold beam during Run 10. The reader may find it helpful to first view the figures herein and then refer to the text for details.

  6. In situ growth of gold colloids within alginate films

    Energy Technology Data Exchange (ETDEWEB)

    Jaouen, Vincent; Lantiat, David; Steunou, Nathalie; Coradin, Thibaud [UPMC Univ Paris 06, CNRS, Laboratoire de Chimie de la Matiere Condensee de Paris (LCMCP), College de France, 11 place Marcellin Berthelot, F-75005 Paris (France); Brayner, Roberta, E-mail: thibaud.coradin@upmc.fr [Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), Universite Paris Diderot, UMR-CNRS 7086, F-75205 Paris (France)

    2010-05-07

    Gold-alginate bionanocomposite films were prepared by impregnation of alginate films with HAuCl{sub 4} followed by reduction with glucose. The mannuronate over guluronate ratio (M/G) of the polymer as well as the initial polymer concentration were shown to influence the film thickness, the amount of trapped Au{sup 3+} ions, and the volume fraction of Au(0) nanoparticles but not the size of these colloids (about 4 nm). The homogeneity of the gold colloid dispersion within the alginate gels was studied by transmission electron microscopy (TEM) and confirmed by simulation of the surface plasmon resonance (SPR) spectra using the Maxwell-Garnett model. The calculated spectra also provided fruitful information about the gold colloid/alginate interface. Overall, the whole process is controlled by the balance between the M/G ratio, defining the polymer affinity for Au(III) species, and the solution viscosity, controlling the diffusion phenomena.

  7. Optical Properties of Linoleic Acid Protected Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ratan Das

    2011-01-01

    Full Text Available Linoleic acid-protected gold nanoparticles have been synthesized through the chemical reduction of tetrachloroaurate ions by ethanol in presence of sodium linoleate. The structure of these nanoparticles is investigated using transmission electron microscopy, which shows that the Au nanoparticles are spherical in shape with a narrow size distribution which ranges from 8 to 15 nm. Colloidal dispersion of gold nanoparticles in cyclohexane exhibits absorption bands in the ultraviolet-visible range due to surface plasmon resonance, with absorption maximum at 530 nm. Fluorescence spectra of gold nanoparticles also show an emission peak at 610 nm when illuminated at 450 nm. UV-Vis spectroscopy reveals that these nanoparticles remain stable for 10 days.

  8. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Geisler, P.; Bruening, C.; Kern, J.; Prangsma, J.C.; Wu, X.; Feichtner, Thorsten; Ziegler, J.; Weinmann, P.; Kamp, M.; Forchel, A.; Hecht, B. [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P. [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  9. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    CERN Document Server

    Huang, Jer-Shing; Geisler, Peter; Brüning, Christoph; Kern, Johannes; Prangsma, Jord C; Weinmann, Pia; Kamp, Martin; Forchel, Alfred; Biagioni, Paolo; Sennhauser, Urs; Hecht, Bert

    2010-01-01

    Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance for the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. So far the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements will drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large (>100 micron^2) but thin (<80 nm) chemically grown single-crystalline gold flakes, which, after immobilization, serve as an ideal basis for focused-ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized fe...

  10. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga

    Science.gov (United States)

    Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. K.

    2013-04-01

    The process of development of reliable and eco-friendly metallic nanoparticles is an important step in the field of nanotechnology. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold nanoparticles using Padina gymnospora has been attempted and achieved rapid formation of gold nanoparticles in a short duration. The UV-vis spectrum of the aqueous medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. Scanning electron microscopy showed the formation of well-dispersed gold nanoparticles. FTIR spectra of brown alga confirmed that hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. AFM analysis showed the results of particle sizes (53-67 nm) and average height of the particle roughness (60.0 nm). X-ray diffraction (XRD) spectrum of the gold nanoparticles exhibited Bragg reflections corresponding to gold nanoparticles. This environment-friendly method of biological gold nanoparticle synthesis can be applied potentially in various products that directly come in contact with the human body, such as cosmetics, and foods and consumer goods, besides medical applications.

  11. Gold/titania composites: An X-ray absorption spectroscopy study on the influence of the reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Meire, Mieke [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Tack, Pieter [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, 9000 Ghent (Belgium); De Keukeleere, Katrien [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Balcaen, Lieve [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, 9000 Ghent (Belgium); Pollefeyt, Glenn [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Vanhaecke, Frank; Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, 9000 Ghent (Belgium); Van Der Voort, Pascal; Van Driessche, Isabel [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Lommens, Petra, E-mail: Petra.Lommens@UGent.be [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium)

    2015-08-01

    The functionalization of titania based materials with noble metal cocatalysts such as gold or platinum is a well known procedure to improve the catalytic activity of these materials in for example the degradation of organic pollutants or CO conversion. Parameters such as cocatalyst load, noble metal particle size and oxidation state influence the efficiency of these materials. We have impregnated a mesoporous titania powder with a gold salt and used different synthesis routes to reduce the gold ions. A structural analysis was performed using electron microscopy and nitrogen sorption. An X-ray absorption near edge structure spectroscopy study, in both high and low resolution, was performed to investigate the influence of the different reduction methods on the oxidation state of the gold atoms. This technique can also provide information on the local environment of the gold atoms and their interaction with the titanium dioxide host. We found that varying the reduction method has a significant impact on the oxidation state of the gold cocatalysts. This lead to varying interactions with the titania support and charging of the gold nanoparticles. - Highlights: • Influence of reduction method on Au/TiO{sub 2} was studied. • Hydrogen reduction of gold salt results in the smallest particles of 2.4 nm. • XANES is used to determine the oxidation state of gold atoms. • Hydrogen and microwave synthesis produce completely reduced gold particles. • UV reduction of gold salt leads to positively charged particles.

  12. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...... is not to accumulate state or market wealth, but for entrepreneurial skills to become tools towards the liberation of the individual from oppressive systems of control – essentially to add public value rather than economic value. In this presentation I will sketch an anarchist perspective on entrepreneurship, looking...

  13. One-dimensional fossil-like γ-Fe2O3@carbon nanostructure: preparation, structural characterization and application as adsorbent for fast and selective recovery of gold ions from aqueous solution

    Science.gov (United States)

    Gunawan, Poernomo; Xiao, Wen; Hao Chua, Marcus Wen; Poh-Choo Tan, Cheryl; Ding, Jun; Zhong, Ziyi

    2016-10-01

    One-dimensional (1D) magnetic nanostructures with high thermal stability have important industrial applications, but their fabrication remains a big challenge. Herein we demonstrate a scalable approach for the preparation of stable 1D γ-Fe2O3@carbon, which is also applicable for other metal oxide-core and carbon-shell nanostructures, such as 1D TiO2@carbon. One-dimensional ferric oxyhydroxide (α-FeO(OH)) was initially prepared by a hydrothermal method, followed by carbon coating through hydrothermal treatment of the resulting metal oxide in glucose solution. After calcination in N2 gas at 500 °C and subsequent exposure to air, the initial carbon-coated 1D α-Fe2O3 was converted to 1D γ-Fe2O3@carbon, which was very stable without any observed changes even after 1.5 years of storage under ambient conditions. The materials were then used as adsorbents and found to be highly selective towards Au (III) adsorption, of which the maximum adsorption capacity is about 600 mg Au/g sorbent (1132 mg Au/g carbon). The spent sorbent containing Au after adsorption can be readily collected by applying a magnetic field due to the presence of the magnetic core, and the adsorbed Au particles are subsequently recovered after the combustion and dissolution of the sorbent. This work demonstrates not only a facile approach to the fabrication of robust 1D magnetic materials with a stable carbon shell, but also a possible cyanide-free process for the fast and selective recovery of gold from electronic waste and industrial water.

  14. Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghwan [Korea Institute of Industrial Technology, ChonAn, Korea; Zhu, Haoguo [ORNL; Zhang, Zongtao [ORNL; Overbury, Steven {Steve} H [ORNL; Dai, Sheng [ORNL

    2004-01-01

    Catalytic activities of gold strongly depend on its particle size. It is necessary to have homogeneous distributions of small gold nanoparticles with diameters between 2 and 5 nm for excellent catalytic activities. In this study, gold-containing mesoporous silica materials were prepared by a co-synthesis method. The essence of this sol-gel co-synthesis method is to combine together neutral surfactant template synthesis of mesoporous silica materials with the introduction of metal ions via bifunctional silane ligands, so that the formation of mesostructures and metal-ion doping occur simultaneously. The formation of gold nanoparticles with size less than 5 nm inside mesoporous materials (HMS, MSU, and PMO) has been achieved by this co-synthesis sol-gel process. In addition, the effects of post-treatments, such as calcination and reduction, on pore structures and nanoparticle size distributions were also investigated.

  15. Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Østergaard; Larsen, Agnete; Pedersen, Dan Sonne

    2009-01-01

    -treated mice subjected to cryo-lesion served as controls. The effects of gold-treatment were investigated by examining gold-induced growth factor expression (VEGF and FGF) in the first two weeks after the insult, and the extent of the neurostimulatory effect of gold was explored by comparing cell proliferation...... in the subventricular zone as judged by immunohistochemical staining for CDC47. Vimentin staining revealed a decrease in activated microglia and a transient astrogliosis in response to the gold liberation. Moreover, gold ions significantly increase the expression of VEGF and FGF following trauma and a significant...

  16. Caffeic acid: potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles.

    Science.gov (United States)

    Seo, Yu Seon; Cha, Song-Hyun; Yoon, Hye-Ran; Kang, Young-Hwa; Park, Youmie

    2015-04-01

    The sustainable synthesis of gold nanoparticles from gold ions was conducted with caffeic acid as a green reducing agent. The formation of gold nanoparticles was confirmed by spectroscopic and microscopic methods. Spherical nanoparticles with an average diameter of 29.99 ± 7.43 nm were observed in high- resolution transmission electron microscopy and atomic force microscopy images. The newly prepared gold nanoparticles exhibited catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. This system enables the preparation of green catalysts using plant natural products as reducing agents, which fulfills the growing need for sustainability initiatives.

  17. STATUS AND RECENT PERFORMANCE OF THE ACCELERATORS THAT SERVE AS GOLD INJECTOR FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    AHRENS,L.; ALESSI,J.; VAN ASSELT,W.; BENJAMIN,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.A.; CARLSON,C.; DELONG,J.; GARDNER,C.J.; GLENN,J.W.; HAYES,T.; ROSER,T.; SMITH,K.S.; STESKI,D.; TSOUPAS,N.; ZENO,K.; ZHANG,S.Y.

    2001-06-18

    The recent successful commissioning and operation [1] of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) requires the injection of gold ions of specified energy and intensity with longitudinal and transverse emittances small enough to meet the luminosity requirements of the collider. Ion beams with the desired characteristics are provided by a series of three accelerators, the Tandem, Booster and AGS. The current status and recent performance of these accelerators are reviewed in this paper.

  18. Exploitation of marine bacteria for production of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Sharma Nishat

    2012-06-01

    Full Text Available Abstract Background Gold nanoparticles (AuNPs have found wide range of applications in electronics, biomedical engineering, and chemistry owing to their exceptional opto-electrical properties. Biological synthesis of gold nanoparticles by using plant extracts and microbes have received profound interest in recent times owing to their potential to produce nanoparticles with varied shape, size and morphology. Marine microorganisms are unique to tolerate high salt concentration and can evade toxicity of different metal ions. However, these marine microbes are not sufficiently explored for their capability of metal nanoparticle synthesis. Although, marine water is one of the richest sources of gold in the nature, however, there is no significant publication regarding utilization of marine micro-organisms to produce gold nanoparticles. Therefore, there might be a possibility of exploring marine bacteria as nanofactories for AuNP biosynthesis. Results In the present study, marine bacteria are exploited towards their capability of gold nanoparticles (AuNPs production. Stable, monodisperse AuNP formation with around 10 nm dimension occur upon exposure of HAuCl4 solution to whole cells of a novel strain of Marinobacter pelagius, as characterized by polyphasic taxonomy. Nanoparticles synthesized are characterized by Transmission electron microscopy, Dynamic light scattering and UV-visible spectroscopy. Conclusion The potential of marine organisms in biosynthesis of AuNPs are still relatively unexplored. Although, there are few reports of gold nanoparticles production using marine sponges and sea weeds however, there is no report on the production of gold nanoparticles using marine bacteria. The present work highlighted the possibility of using the marine bacterial strain of Marinobacter pelagius to achieve a fast rate of nanoparticles synthesis which may be of high interest for future process development of AuNPs. This is the first report of Au

  19. Where's the silver? Imaging trace silver coverage on the surface of gold nanorods.

    Science.gov (United States)

    Jackson, Stephen R; McBride, James R; Rosenthal, Sandra J; Wright, David W

    2014-04-09

    The development of the seeded growth synthesis for gold nanorods provided the first simple, convenient wet chemistry route to these nanomaterials. Over the past decade, the original silver-assisted seeded growth procedure has been the subject of further modifications that have continuously expanded access to anisotropic gold nanoparticles; however, the role of silver in formation of gold nanorods remains poorly understood. We report the first experimental evidence on the position of silver present on gold nanorods using advanced energy dispersive X-ray spectroscopy. Our results indicate the deposition of silver ions on the surface shows no preference for a specific face or axis. Furthermore, we show that the "dog bone" structures developed from gold nanorod solutions show preferential deposition of silver atoms on the ends and in the crevices.

  20. Impedance Analysis of Colloidal Gold Nanoparticles in Chromatography Paper for Quantitation of an Immunochromatographic Assay.

    Science.gov (United States)

    Hori, Fumitaka; Harada, Yuji; Kuretake, Tatsumi; Uno, Shigeyasu

    2016-01-01

    A detection method of gold nanoparticles in chromatography paper has been developed for a simple, cost-effective and reliable quantitation of immunochromatographic strip test. The time courses of the solution resistance in chromatography paper with the gold nanoparticles solution are electrochemically measured by chrono-impedimetry. The dependence of the solution resistance on the concentration of gold nanoparticles has been successfully observed. The main factor to increase the solution resistance may be obstruction of the ion transport due to the presence of gold nanoparticles. The existence of gold nanoparticles with 1.92 × 10(9) particles/mL in an indistinctly-colored chromatography paper is also identified by a solution resistance measurement. This indicates that the solution resistance assay has the potential to lower the detection limit of the conventional qualitative assay.

  1. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    Science.gov (United States)

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst.

  2. Lamellar multilayer hexadecylaniline-modified gold nanoparticle films deposited by the Langmuir-Blodgett technique

    Indian Academy of Sciences (India)

    Anita Swami; Ashavani Kumar; Murali Sastry

    2003-06-01

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic mixture experiment wherein the molecule hexadecylaniline present in the organic phase leads to electrostatic complexation and reduction of aqueous chloroaurate ions, capping of the gold nanoparticles thus formed and phase transfer of the now hydrophobic particles into the organic phase. Organization of gold nanoparticles at the air-water interface is followed by surface pressure-area isotherm measurements while the formation of multilayer films of the nanoparticles by the Langmuir-Blodgett technique is monitored by quartz crystal microgravimetry, UVVis spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy.

  3. Radiation-enhanced thermal processes during implantation of gold into copper

    Energy Technology Data Exchange (ETDEWEB)

    Perret, N.E.; King, B.V.; Dastoor, P.C. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    A copper (100) single crystal has been implanted with gold ions at temperatures ranging from 133 K to 673 K. Rutherford Backscattering Spectroscopy (RBS) has been used to observe the changes in the gold implant distribution that occur as a function of the sample temperature during implantation. Two distinct effects have been observed. Firstly the gold implant distribution, as a function of depth, broadens with sample temperature. This broadening of the gold depth profile is most marked at temperatures above 473 K. Secondly, the gold is implanted deeper into the copper crystal as the sample temperature is increased. These results are discussed in terms of radiation enhanced diffusion and radiation-induced segregation processes. 10 refs., 3 figs.

  4. Sulfur radical species form gold deposits on Earth.

    Science.gov (United States)

    Pokrovski, Gleb S; Kokh, Maria A; Guillaume, Damien; Borisova, Anastassia Y; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-11-01

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3(-), form very stable and soluble complexes with Au(+) in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10-100 times more efficiently than sulfide and chloride only. As a result, S3(-) exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3(-) during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere.

  5. Heavy ion acceleration using femtosecond laser pulses

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from ultrathin (<200 nm) gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations the time history of the laser bullet is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity , duration 32 fs, focal spot size 5 mkm and energy 27 Joules the calculated reflection, transmission and coupling coefficients from a 20 nm foil are 80 %, 5 % and 15 %, respectively. The conversion efficiency into gold ions is 8 %. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon and flux . Analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the Radiation Pressure Acceleration regime and the onset of the Target Normal Sheath Acceleratio...

  6. Gold electrodes from recordable CDs

    Science.gov (United States)

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  7. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Geethalakshmi R

    2012-10-01

    Full Text Available R Geethalakshmi, DVL SaradaDepartment of Biotechnology, School of Bioengineering, Sri Ramaswamy Memorial University, Kattankulathur, Tamil Nadu, IndiaBackground: There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae has been developed.Methods and results: On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles.Conclusion: It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested.Keywords: Trianthema decandra, gold, silver, nanoparticles, antimicrobial activity

  8. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Elavazhagan T

    2011-06-01

    Full Text Available Tamizhamudu Elavazhagan, Kantha D ArunachalamCentre for Interdisciplinary Research, Directorate of Research, SRM University, Kattankulathur-603203, Tamilnadu, IndiaAbstract: We used an aqueous leaf extract of Memecylon edule (Melastomataceae to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray analysis (EDAX and Fourier transform infra-red spectroscopy (FTIR. The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.Keywords: Memecylon edule, nanoparticles, bioreduction, electron microscopy, FTIR

  9. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    Science.gov (United States)

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  10. Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

    Science.gov (United States)

    Dhanasekar, Naresh Niranjan; Rahul, Ganga Ravindran; Narayanan, Kannan Badri; Raman, Gurusamy; Sakthivel, Natarajan

    2015-07-01

    The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au(3+) to Au(0). TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.

  11. Ion implanted dielectric elastomer circuits

    Science.gov (United States)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  12. Biochemical synthesis of gold and zinc nanoparticles in reverse micelles

    Science.gov (United States)

    Egorova, E. M.

    2010-04-01

    Gold and zinc nanoparticles were obtained in AOT reverse micelles in isooctane by reduction of the corresponding metal ions by the natural pigment quercetin (the biochemical synthesis technique). Gold and zinc ions were introduced into the micellar solution of quercetin in the form of aqueous solutions, HAuCl4 and [Zn(NH3)4]SO4, to the water to AOT molar ratios 1-3 and 3-4, respectively. The process of nanoparticle formation was investigated by spectrophotometry. Nanoparticle size and shape were determined by transmission electron microscopy. The data obtained allow to conclude that there are two steps in metal ion-quercetin interaction: (1) complex formation, and (2) complex dissociation with subsequent formation of nanoparticles and a second product, presumably oxidized quercetin. Gold nanoparticles were found to be of various shapes (spheres, hexahedrons, triangles, and cylinders) and sizes, mainly in the 10-20 nm range; zinc nanoparticles are chiefly spherical and ˜5 nm in size. In both cases, the nanoparticles are stable in the air in micellar solution over long periods of time (from a several months to a several years).

  13. Heavy ion acceleration in the Breakout Afterburner regime

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from an ultrathin (20 nm) gold foil irradiated by sub-picosecond lasers is presented. Using two dimensional particle-in-cell simulations we identified two highly efficient ion acceleration schemes. By varying the laser pulse duration we observed a transition from Radiation Pressure Acceleration to the Breakout Afterburner regime akin to light ions. The underlying physics and ion acceleration regimes are similar to that of light ions, however, nuances of the acceleration process make the acceleration of heavy ions more challenging. Two laser systems are studied in detail: the Texas Petawatt Laser and the Trident laser, the former having pulse duration 180 fs, intermediate between very short femtosecond pulses and picosecond pulses. Both laser systems generated directional gold ions beams (~10 degrees half-angle) with fluxes in excess of 1011 ion/sr and normalized energy >10 MeV/nucleon.

  14. Anti-metastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080.

    Science.gov (United States)

    Karuppaiya, Palaniyandi; Satheeshkumar, Elumalai; Chao, Wei-Ting; Kao, Lin-Yi; Chen, Emily Chin-Fun; Tsay, Hsin-Sheng

    2013-10-01

    Plants are exploited as a potential source for the large-scale production of noble gold nanoparticles in the recent years owing to their various potential applications in nanobiotechnology and nanomedicine. The present work describes green biosynthetic procedures for the production of gold nanoparticles for the first time by using an aqueous extract of the Dysosma pleiantha rhizome. The biosynthesized gold nanoparticles were confirmed and characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy equipped with energy dispersive spectroscopy. The results revealed that aqueous extract of D. pleiantha rhizome has potential to reduce chloroauric ions into gold nanoparticles and the synthesized gold nanoparticles were showed spherical in shape with an average of 127nm. Further, we investigated the anti-metastatic activity of biosynthesized gold nanoparticles against human fibrosarcoma cancer cell line HT-1080. The results showed that the biosynthesized gold nanoparticles were non-toxic to cell proliferation and, also it can inhibit the chemo-attractant cell migration of human fibrosarcoma cancer cell line HT-1080 by interfering the actin polymerization pathway. Thus, the usage of gold nanoparticles biosynthesized from D. pleiantha rhizome can be used as a potential candidate in the drug and gene delivery to metastatic cancer.

  15. An Experimental Styudy on Gold Solubility in Amino Acid Solution and Its Geological Significance

    Institute of Scientific and Technical Information of China (English)

    张景荣; 陆建军; 等

    1996-01-01

    The experiments on gold solubility in amino acid solution mdicate that gold is very intensively soluble in amino acid(or other organic acids),which is extensively present in geological bodies,and is most soluble in histidine.The temperature and concentration,acidity and type of amino acid in the solution are important factors affecting gold-amino acid complexing. The solubility of gold in amino acid is different under different conditions of temperature, amino acid concentration and pH value of the solution,At 80℃ and pH=6-8,gold is most soluble in amino acid.Gold dispersed in water and rocks could be concentrated and transported by amino acid and then precipitated in favorable loci.Amino acids might have played an important role in metallogenesis as well as in the formation of source beds of gold.Nitrogen,oxygen and sulfur in amino acid might have reacted with gold to form soluble complex ions.

  16. Titanium diffusion in gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, William E. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Gregori, Giuliano, E-mail: g.gregori@fkf.mpg.d [California NanoSystems Institute, University of California, Santa Barbara, CA 93106-5050 (United States); Mates, Thomas [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2010-03-01

    In the present study, diffusion phenomena in titanium/gold (Ti/Au) thin films occurring at temperatures ranging between 200 and 400 {sup o}C are investigated. The motivation is twofold: the first objective is to characterize Ti diffusion into Au layer as an effect of different heat-treatments. The second goal is to prove that the implementation of a thin titanium nitride (TiN) layer between Ti and Au can remarkably reduce Ti diffusion. It is observed that Ti atoms can fully diffuse through polycrystalline Au thin films (260 nm thick) already at temperatures as a low as 250 {sup o}C. Starting from secondary ion mass spectroscopy data, the overall diffusion activation energy {Delta}E = 0.66 eV and the corresponding pre-exponential factor D{sub 0} = 5 x 10{sup -11} cm{sup 2}/s are determined. As for the grain boundary diffusivity, both the activation energy range 0.54 < {Delta}E{sub gb} < 0.66 eV and the pre-exponential factor s{sub 0}D{sub gb0} = 1.14 x 10{sup -8} cm{sup 2}/s are obtained. Finally, it is observed that the insertion of a thin TiN layer (40 nm) between gold and titanium acts as an effective diffusion barrier up to 400 {sup o}C.

  17. Invisible gold in Colombian auriferous soils

    Energy Technology Data Exchange (ETDEWEB)

    Bustos Rodriguez, H., E-mail: hbustos@ut.edu.co; Oyola Lozano, D.; Rojas Martinez, Y. A. [Universidad del Tolima, Departamento de Fisica (Colombia); Perez Alcazar, G. A. [Universidad del Valle, Departamento de Fisica (Colombia); Balogh, A. G. [Darmstadt University of Technology, Institute of Materials Science (Germany)

    2005-11-15

    Optic microscopy, X-ray diffraction (XRD), Moessbauer spectroscopy (MS), Electron microprobe analysis (EPMA) and secondary ions mass spectroscopy (SIMS) were used to study Colombian auriferous soils. The auriferous samples, collected from El Diamante mine, located in Guachavez-Narino (Colombia), were prepared by means of polished thin sections and polished sections for EPMA and SIMS. Petrography analysis was made using an optical microscope with a vision camera, registering the presence, in different percentages, of the following phases: pyrite, quartz, arsenopyrite, sphalerite, chalcopyrite and galena. By XRD analysis, the same phases were detected and their respective cell parameters calculated. By MS, the presence of two types of pyrite was detected and the hyperfine parameters are: {delta}{sub 1} = 0.280 {+-} 0.01 mm/s and {Delta}Q{sub 1} = 0.642 {+-} 0.01 mm/s, {delta}{sub 2} = 0.379 {+-} 0.01 mm/s and {Delta}Q{sub 2} = 0.613 {+-} 0.01 mm/s. For two of the samples MS detected also the arsenopyrite and chalcopyrite presence. The mean composition of the detected gold regions, established by EPMA, indicated 73% Au and 27% Ag (electrum type). Multiple regions of approximately 200 x 200 {mu}m of area in each mineral sample were analyzed by SIMS registering the presence of 'invisible gold' associated mainly with the pyrite and occasionally with the arsenopyrite.

  18. 20th-Century Gold Rush.

    Science.gov (United States)

    Wargo, Joseph G.

    1992-01-01

    Presents Nevada's gold rush activities spurred by technological advancements in search methods. Describes the events that led to the twentieth-century gold rush, the techniques for finding deposits and the geological formation process of disseminated gold deposits. Vignettes present the gold extraction process, cross-section, and profile of a…

  19. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  20. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  1. Gold-Catalyzed Synthesis of Heterocycles

    Science.gov (United States)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  2. Protein-mediated autoreduction of gold salts to gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Nivedita; Bhattacharya, Resham; Mukherjee, Priyabrata [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905 (United States)], E-mail: Mukherjee.Priyabrata@mayo.edu

    2008-09-01

    Here we report for the first time that proteins can function as unique reducing agents to produce gold nanoparticles from gold salts. We demonstrate that three different proteins, namely, bovine serum albumin (BSA), Rituximab (RIT-an anti-CD20 antibody) and Cetuximab (C225-anti-EGFR antibody), reduce gold salts to gold nanoparticles (GNP). Interestingly, among all the three proteins tested, only BSA can reduce gold salts to gold nanotriangles (GNT). BSA-induced formation of GNT can be controlled by carefully selecting the reaction condition. Heating or using excess of ascorbic acid (AA) as additional reducing agent shifts the reaction towards the formation of GNP with flower-like morphology, whereas slowing down the reaction either by cooling or by adding small amount of AA directs the synthesis towards GNT formation. GNT is formed only at pH 3; higher pHs (pH 7 and pH 10) did not produce any nanoparticles, suggesting the involvement of specific protein conformation in GNT formation. The nanomaterials formed by this method were characterized using UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). This is an important finding that will have uses in various nanotechnological applications, particularly in the green synthesis of novel nanomaterials based on protein structure.

  3. SYNTHESES OF POLYSTYRENE RESINS CONTAINING POLYETHER OLIGOMERS AND THEIR EXTRACTION FOR GOLD (Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    DONG Shihua; LIU Shi; XU Yuwu

    1994-01-01

    Three polystyrene resins containing polyether oligomers as extractants were synthesized and their extraction properties were studied. Gold (Ⅲ) ion could be extracted rapidly by the resins (T1/2<1min.)with high efficiency and capacity (for LS-B resin that were 99.8% and 95.8mg/gR respectively) from aqueous solution but most of the co-existing metal ions such as Pd (Ⅱ),Cu(Ⅱ), Zn (Ⅱ), Pb (Ⅱ) and Cd (Ⅱ) were remained. The extraction capacity and stripping percentage for gold (Ⅲ) remained unchanged in four extraction-stripping cycles. The resins also showed good column extraction-elution properties.

  4. Chrysopogon zizanioides aqueous extract mediated synthesis characterization of crystalline silver and gold nanoparticles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Arunachalam KD

    2013-07-01

    Full Text Available Kantha D Arunachalam, Sathesh Kumar Annamalai Center for Environmental Nuclear Research, Directorate of Research, SRM University, Chennai, Tamil Nadu, India Abstract: The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3 and chloroauric acid (HAuCl4 respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV-visible spectroscopy, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDAX, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. Keywords: nanoparticles, bioreduction, SEM, silver, gold

  5. Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents

    Science.gov (United States)

    Huang, Chienwen

    Hollow gold nanoparticle with a sub-30nm polycrystalline shell and a 50 nm hollow core has been successfully synthesized through the reduction of sodium gold sulfite by electrochemically evolved hydrogen. Such hollow gold nanoparticles exhibit unique plasmonic properties. They strongly scatter and absorb near infrared light. In this thesis we seek to understand the formation mechanism of hollow gold nanoparticles in this new synthesis process and their plasmonic properties. Also, we explore their biomedical applications as theranostic agents (therapeutic and diagnostic imaging). A lithographically patterned electrode consisting of Ag stripes on a glass substrate was used to investigate the formation process of hollow gold nanoparticles. Ag stripes served as working electrode for electrochemically evolution of hydrogen, and adjacent glass areas provided supporting surface for hydrogen nanobubbles nucleation and growth. Hydrogen nanobubbles served as both templates and reducing agents to trigger the autocatalytic disproportionation reaction of sodium gold sulfite. The effects of applied potential and the additives in the electrolyte have been studied. It has been found that the size and size distribution of hollow gold nanoparticle are directly relative to the applied potential, i.e. the hydrogen evolution rate. It has also been found the addition of Ni2+ ions can greatly improve the size distribution of hollow gold nanoparticles that can be contributed to that the newly electrodeposited nickel metal can enhance the hydrogen evolution efficiency. Another additive, ethylenediamine (EDA) can suppress the autocatalytic reaction of gold sulfite to increase the stability of sodium gold sulfite electrolyte. To capture such electrochemically evolved hydrogen nanobubbles, and subsequently to generate hollow gold nanoparticles in large numbers, alumina membranes were placed on the top of the working electrode. Anodic alumina membrane consists of ~200 nm pores, which provides

  6. Radio Frequency Controlled Stimulation of Intracellular Gold or Silver Nanoparticle Conjugates for Use as Potential Sensors or Modulators of Biological Function

    Science.gov (United States)

    2010-09-01

    metal ion sensors using chitosan -capped gold nanoparticles . Science and Technology of Advanced Materials. 6,335–340. 39. Wang, Z., Lee, J., Lu, Yi...AFRL-RH-WP-TR-2010-0141 Radio Frequency Controlled Stimulation of Intracellular Gold or Silver Nanoparticle Conjugates for Use as Potential...Frequency Controlled Stimulation of Intracellular Gold or Silver Nanoparticle Conjugates for Use as Potential Sensors or Modulators or Biological Function

  7. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  8. Gold island fiber optic sensor

    Science.gov (United States)

    Meriaudeau, Fabrice; Wig, A. G.; Passian, A.; Downey, Todd R.; Buncick, Milan; Ferrell, Trinidad L.

    1999-12-01

    A fiber optic chemical sensor based on gold-island surface plasmon excitation is presented. The sensing part of the fiber is the end of the fiber onto which a thin layer of gold has been deposited to form a particulate surface. Annealing the gold reshapes the particles and produces an optical absorbance near 535 nm with the fiber in air. The optical absorption resonance of the gold particles is shifted if the fiber is immersed in a medium other than air. These resonance shifts are examined by transmission spectroscopy through the fiber. Experimental results for the sensitivity and dynamic range in the measurement of liquid solutions are in agreement with a basic theoretical model which characterizes the surface plasmon using nonretarded electrodynamics.

  9. Gold, coal and oil.

    Science.gov (United States)

    Dani, Sergio U

    2010-03-01

    Jared Diamond has hypothesized that guns, germs and steel account for the fate of human societies. Here I propose an extension of Diamond's hypothesis and put it in other terms and dimensions: gold, coal and oil account not only for the fate of human societies but also for the fate of mankind through the bodily accumulation of anthropogenic arsenic, an invisible weapon of mass extinction and evolutionary change. The background is clear; arsenic species fulfill seven criteria for a weapon of mass extinction and evolutionary change: (i) bioavailability to all living organisms; (ii) imperceptibility; (iii) acute toxicity; (iv) bioaccumulation and chronic toxicity; (v) adverse impact on reproductive fitness and reproductive outcomes and early-age development and growth in a wide range of microbial, plant and animal species including man; (vi) widespread geographical distribution, mobility and ecological persistence on a centennial to millennial basis and (vii) availability in necessary and sufficient amounts to exert evolutionarily meaningful effects. The proof is becoming increasingly feasible as human exploitation of gold, coal and oil deposits cause sustainable rises of arsenic concentrations in the biosphere. Paradoxically, humans are among the least arsenic-resistant organisms because humans are long-lived, encephalized and complex social metazoans. An arsenic accumulation model is presented here to describe how arsenic accumulates in the human body with increasing age and at different provisionally safe exposure levels. Arsenic accumulates in the human body even at daily exposure levels which are within the lowest possible WHO provisional tolerance limits, yielding bodily arsenic concentrations which are above WHO provisional limits. Ongoing consequences of global scale arsenic poisoning of mankind include age-specific rises in morbidity and mortality followed by adaptive changes. The potential rise of successful forms of inborn resistance to arsenic in humans

  10. Synthesis of a New Triazene Reagent and Its Application to the Color Reaction with Gold( Ⅲ ) Ion%一种新的三氮烯试剂的合成并应用于金(Ⅲ)离子的显色反应

    Institute of Scientific and Technical Information of China (English)

    陈文宾; 郑秋霞; 马卫兴; 许兴友

    2011-01-01

    以4-氨基安替比林和对氨基苯磺酸为主要反应物,制备了1-(4-安替比林)-3-(对苯磺酸)三氮烯(ASTA).采用红外光谱法对ASTA的分子组成及结构作了检测.研究了该试剂与金(Ⅲ)的显色反应.在含有Triton X-100的pH 10.3的硼砂-氢氧化钠缓冲溶液中,ASTA与金(Ⅲ)反应生成配合比为2:1的橙红色配合物,在其最大吸收波长496nm处的表观摩尔吸光率为1.8×105L·mol-1·cm-1.金(Ⅲ)的质量浓度在0.06~1.05mg·L-1,范围内与其吸光度呈线性关系,方法的检出限(3S/N)为0.02mg·L-1.方法用于含金矿样品中金(Ⅲ)的测定,结果与原子吸收光谱法相一致,方法的回收率在109.0%~118.2%之间,相对标准偏差(n=6)小于4.0%.%A new reagent, 1-(4-antipyrinyl)-3-(sulfanilic acid)-triazene (ASTA), was synthesized by the reaction between 4-antipyrine and sulfanilic acid. Molecular composition and structure of ASTA were determined by FT-IRS. It was found that in a Na2B4O7-NaOH buffer medium of pH 10. 3 containing Triton X-100, a stable coordination complex (R: Au3+ =2 : 1) was formed by the reaction of ASTA with gold ion, having the absorption maximum at 496 nm. Linear relationship between values of absorbanee and concentration of Au (Ⅲ) ion was obtained in the range of 0.06-1.05 mg·L-1. Detection limit (3S/N) found was 0. 02 mg· L-1 The apparent molar absorptivity of the color system was found to be 1.8 × 105L · mol-1 · cm-1. The proposed method was applied to the determination of Au(Ⅲ) in gold ore samples, and the results obtained were in consistency with those obtained by AAS. Values of recovery were found in the range of 109.0%-118. 2% and RSD (n=6) was less than 4.0%.

  11. In situ non-DLVO stabilization of surfactant-free, plasmonic gold nanoparticles: effect of Hofmeister's anions.

    Science.gov (United States)

    Merk, Vivian; Rehbock, Christoph; Becker, Felix; Hagemann, Ulrich; Nienhaus, Hermann; Barcikowski, Stephan

    2014-04-22

    Specific ion effects ranking in the Hofmeister sequence are ubiquitous in biochemical, industrial, and atmospheric processes. In this experimental study specific ion effects inexplicable by the classical DLVO theory have been investigated at curved water-metal interfaces of gold nanoparticles synthesized by a laser ablation process in liquid in the absence of any organic stabilizers. Notably, ion-specific differences in colloidal stability occurred in the Hückel regime at extraordinarily low salinities below 50 μM, and indications of a direct influence of ion-specific effects on the nanoparticle formation process are found. UV-vis, zeta potential, and XPS measurements help to elucidate coagulation properties, electrokinetic potential, and the oxidation state of pristine gold nanoparticles. The results clearly demonstrate that stabilization of ligand-free gold nanoparticles scales proportionally with polarizability and antiproportionally with hydration of anions located at defined positions in a direct Hofmeister sequence of anions. These specific ion effects might be due to the adsorption of chaotropic anions (Br(-), SCN(-), or I(-)) at the gold/water interface, leading to repulsive interactions between the partially oxidized gold particles during the nanoparticle formation process. On the other hand, kosmotropic anions (F(-) or SO4(2-)) seem to destabilize the gold colloid, whereas Cl(-) and NO3(-) give rise to an intermediate stability. Quantification of surface charge density indicated that particle stabilization is dominated by ion adsorption and not by surface oxidation. Fundamental insights into specific ion effects on ligand-free aqueous gold nanoparticles beyond purely electrostatic interactions are of paramount importance in biomedical or catalytic applications, since colloidal stability appears to depend greatly on the type of salt rather than on the amount.

  12. Gold Nanoparticles as a Visual Indicator for Redox Reaction Between Copper Ion and Cysteine and Its Analytical Application%金纳米颗粒作为Cu2+氧化半胱氨酸的可视化指示剂及其应用

    Institute of Scientific and Technical Information of China (English)

    唐杰; 王健; 王燚; 李原芳

    2011-01-01

    A colorimetric method for copper ion (Cu2+ ) in aqueous solution is described on the basis of the oxidation of thiol group of cysteine by Cu2+ , Which depends on the binding of cysteine-AuNPs and with the damage of binding, the formation of gold nanoparticle aggregates would be restrained. Thereby AuNPs acts as the visualization indicator for the oxidation of cysteine by copper ions. In a medium of pH 3. 6, a linear relationship has been obtained between the absorbance at 525 nm and the concentration of Cu2+ in the range of 8. 0× 10~8 -2. 0× 10-6 mol/L with the correlation coefficient (r) of 0. 9962 and the detection limit (3σ/k) of 1. 5× 10-9 mol/L. The proposed method has been successfully applied to the analysis of synthetic mixtures and water samples.%Cu2+能选择性氧化半胱氨酸,破坏半胱氨酸与金纳米颗粒之间金硫键的形成,阻止半胱氨酸导致的金纳米颗粒聚集.因而,金纳米颗粒可作为Cu2+氧化半胱氨酸的可视化指示剂,本实验据此建立了高选择性检测Cu2+的色度分析方法.在HCl-NaAc缓冲体系(pH 3.6)中,金纳米颗粒在525 nm处的吸光度值与Cu2+的浓度在8.0×10-8~2.0×10-6 mol/L范围内呈良好的线性关系,相关系数为0.9962;检出限(3σ/k)为1.5×10- 9mol/L.将本方法用于天然水体中Cu2+的测定,具有较好的精密度和准确度.

  13. Porous gold nanobelts templated by metal-surfactant complex nanobelts.

    Science.gov (United States)

    Li, Lianshan; Wang, Zhijian; Huang, Teng; Xie, Jinglin; Qi, Limin

    2010-07-20

    Unique, porous gold nanobelts consisting of self-organized nanoparticles were synthesized in a high yield by morphology-preserved transformation from metal-surfactant complex precursor nanobelts formed by a bolaform surfactant dodecane-1,12-bis(trimethylammonium bromide) (N-C(12)-NBr(2)) and HAuCl(4). It was revealed that the precursor nanobelts of the stoichiometric N-C(12)-N(AuCl(4))(2) complex formed through electrostatic combination of the positively charged quaternary ammonium headgroups of N-C(n)-NBr(2) and the negatively charged AuCl(4)(-) ions. They were subsequently converted into porous gold nanobelts with shrunken sizes upon reduction by NaBH(4). The morphology of the produced gold nanostructures could be adjusted by changing the mixing ratio between N-C(12)-NBr(2) and HAuCl(4) in the reaction solution. It was found that the obtained porous Au nanobelts exhibited enhanced catalytic activity toward reduction of 4-nitrophenol compared with solid gold nanobelts, probably owing to their larger surface area and more active sites.

  14. Potentiometric titration of gold, platinum, and some other precious metals

    Energy Technology Data Exchange (ETDEWEB)

    Selig, W.S.

    1991-02-04

    Gold, platinum, and several other platinum metals can be determined by titration with cetylpyridinium chloride (CPC). CPC forms a precipitate with AuCl{sub 4}{sup {minus}} and PtCl{sub 6}{sup 2{minus}}. Differentiation of AuCl{sub 4{minus}} and PtCl{sub 6}{sup 2{minus}} with this titrant is not possible; however, their sum can be determined. Titration with tetraphenylarsonium chloride at pH 1 is selective for tetrachloroaurate, which thus can be determined in the presence of hexachloroplatinate. Hexachloroosmate(IV), tetrachloroplatinite(II), tetrachloropalladate(II), hexachloropalladate(IV), and hexachloroiridate(IV) can also be determined potentiometrically vs. CPC. The indicating electrode is prepared by coating a spectroscopic graphite rod with a solution of poly(vinyl chloride) (PVC) and dioctylphthalate (DOP) in tetrahydrofuran (THF). Gold in gold cyanide plating baths and in potassium aurocyanide can be determined by potentiometric titration vs standard silver nitrate, using a silver ion-selective indicating electrode. The monovalent gold need not be converted to the trivalent state with aqua regia, resulting in a considerable saving of time and effort. Free cyanide and aurocyanide can be titrated sequentially by this method. Chloride does not interfere and can, in fact, also be sequentially determined. 17 refs., 2 figs., 3 tabs.

  15. Shape tailored green synthesis and catalytic properties of gold nanocrystals.

    Science.gov (United States)

    Rajan, Anish; MeenaKumari, M; Philip, Daizy

    2014-01-24

    The use of environmentally benign procedures is highly desirable for the synthesis of nanoparticles. Here we report a simple, versatile, economic, ecofriendly and reproducible green method for the size-tunable synthesis of stable and crystalline gold nanoparticles of varied shape using aqueous extract of Garcinia Combogia fruit. The predominant anisotropic nature in the morphology of synthesized particles at lower quantities of extract gradually shifted to spherical particles with larger quantity of extract and increase of temperature. The onset of reduction, the time-evolution of the Surface Plasmon Resonance (SPR) and the catalytic activity are studied using UV-Visible spectroscopy. The Selected Area Diffraction (SAED) pattern, the lattice fringes in the High Resolution Transmission Electron Microscopic (HRTEM) image and the X-ray Diffraction (XRD) pattern clearly show the pure crystalline nature of the synthesized gold nanoparticles. The role of carboxyl group present in Garcinia Combogia fruit extract in the reduction of chloroaurate ions is established using Fourier Transform Infrared (FTIR) spectra. The size dependent catalytic activity of the green synthesized gold nanoparticles on the reduction of 4-Nitrophenol to 4-Aminophenol using sodium borohydride is studied and reported for the first time. The first order kinetics is fitted and rate constants are calculated. Catalytically active green synthesized gold nanoparticles with controllable size and shape presents an advanced step in future biomedical and chemical applications.

  16. Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract.

    Science.gov (United States)

    Das, Ratul Kumar; Gogoi, Nayanmoni; Bora, Utpal

    2011-06-01

    The present study explores the reducing and capping potentials of ethanolic flower extract of the plant Nyctanthes arbortristis for the synthesis of gold nanoparticles. The extract at different volume fractions were stirred with HAuCl4 aqueous solution at 80 °C for 30 min. The UV-Vis spectroscopic analysis of the reaction products confirmed successful reduction of Au(3+) ions to gold nanoparticles. Transmission electron microscope (TEM) revealed dominant spherical morphology of the gold nanoparticles with an average diameter of 19.8 ± 5.0 nm. X-ray diffraction (XRD) study confirmed crystalline nature of the synthesized particles. Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis of the purified and lyophilized gold nanoparticles confirmed the surface adsorption of biomolecules during preparation and caused long-term (6 months) stability. Low reaction temperature (25 °C) favored anisotropy. The strong reducing power of the flower extract can also be tested in the green synthesis of other metallic nanoparticles.

  17. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.

    Science.gov (United States)

    Takale, Balaram S; Bao, Ming; Yamamoto, Yoshinori

    2014-04-07

    Organic synthesis using gold has gained tremendous attention in last few years, especially heterogeneous gold catalysis based on gold nanoparticles has made its place in almost all organic reactions, because of the robust and green nature of gold catalysts. In this context, gold nanopore (AuNPore) with a 3D metal framework is giving a new dimension to heterogeneous gold catalysts. Interestingly, AuNPore chemistry is proving better than gold nanoparticles based chemistry. In this review, along with recent advances, major discoveries in heterogeneous gold catalysis are discussed.

  18. Mixed monolayer protected gold atom-oxide cluster synthesis and characterization

    Science.gov (United States)

    Nambiar, Sindhu R.; Aneesh, Padamadathil K.; Sukumar, Chinthu; Rao, Talasila P.

    2012-06-01

    Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated.Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30446e

  19. Modeling of gold production in Malaysia

    Science.gov (United States)

    Muda, Nora; Ainuddeen, Nasihah Rasyiqah; Ismail, Hamizun; Umor, Mohd Rozi

    2013-04-01

    This study was conducted to identify the main factors that contribute to the gold production and hence determine the factors that affect to the development of the mining industry in Malaysia. An econometric approach was used by performing the cointegration analysis among the factors to determine the existence of long term relationship between the gold prices, the number of gold mines, the number of workers in gold mines and the gold production. The study continued with the Granger analysis to determine the relationship between factors and gold production. Results have found that there are long term relationship between price, gold production and number of employees. Granger causality analysis shows that there is only one way relationship between the number of employees with gold production in Malaysia and the number of gold mines in Malaysia.

  20. Ion-Ion Neutralization.

    Science.gov (United States)

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  1. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  2. Serum gold concentrations during treatment with auranofin.

    Science.gov (United States)

    Van Riel, P L; Gribnau, F W; Van de Putte, L B; Arts, C W; Van Aernsbergen, A

    1987-03-01

    Serum gold concentrations were measured in rheumatoid arthritis patients during chronic treatment with the orally adsorbable gold compound auranofin. In agreement with data in the literature, the highest serum gold concentration was reached after 16 weeks of treatment with 6 mg auranofin daily. A striking finding in this study was that thereafter the serum gold concentrations did not appear to plateau but declined gradually. Statistically this resulted in a significantly lower concentration after one year as compared with week 16 (p less than 0.05, paired t-test). It is suggested that a shift from protein bound gold to cell-bound gold might be the explanation.

  3. Gold process mineralogy: Objectives, techniques, and applications

    Science.gov (United States)

    Zhou, Joe Y.; Cabri, Louis J.

    2004-07-01

    The extractive metallurgy of gold is largely driven by mineralogical factors such as gold particle size; association with other minerals; coatings; presence of cyanicides, oxygen consumers, and preg-robbers; presence of refractory gold minerals; and locking of submicroscopic gold in sulfide and sulfarsenide mineral structures. Gold process mineralogy addresses all issues related to gold ore processing by the detailed study of an ore or a mill product. The methodology is widely used as a predictive tool in feasibility studies and during the process development stage, and as a trouble-shooting tool for mineral processing and hydrometallurgical operations.

  4. Rapid Synthesis of Size-controlled Gold Nanoparticles by Complex Intramolecular Photoreduction

    Institute of Scientific and Technical Information of China (English)

    DONG Shou-an; YANG Sheng-chun; TANG Chun

    2007-01-01

    A rapid synthesis of size-controlled gold nanoparticles was proposed. The method is based on the sensitive intramolecular photoreduction reaction of Fe( Ⅲ )-EDTA complex in chloroacetic acid-sodium acetate buffer solution,where Fe(Ⅱ)-EDTA complex generated by photo-promotion acts as a reductant of AuCl4- ions. Gold nanoparticles formed were stabilized by EDTA ligand or other protective agents added. As a result, well-dispersed gold nanoparticles with an average diameter range of 6.7 to 50. 9 nm were obtained. According to the characterizations by the UV spectrum and TEM, the intramolecular charge transfer of the excited states of complex Fe(Ⅲ) -EDTA and the mechanism of forming gold nanoparticles were discussed in detail.

  5. Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal-Organic Framework.

    Science.gov (United States)

    Mon, Marta; Ferrando-Soria, Jesús; Grancha, Thais; Fortea-Pérez, Francisco R; Gascon, Jorge; Leyva-Pérez, Antonio; Armentano, Donatella; Pardo, Emilio

    2016-06-29

    A novel chiral 3D bioMOF exhibiting functional channels with thio-alkyl chains derived from the natural amino acid l-methionine (1) has been rationally prepared. The well-known strong affinity of gold for sulfur derivatives, together with the extremely high flexibility of the thioether "arms" decorating the channels, account for a selective capture of gold(III) and gold(I) salts in the presence of other metal cations typically found in electronic wastes. The X-ray single-crystal structures of the different gold adsorbates Au(III)@1 and Au(I)@1 suggest that the selective metal capture occurs in a metal ion recognition process somehow mimicking what happens in biological systems and protein receptors. Both Au(III)@1 and Au(I)@1 display high activity as heterogeneous catalyst for the hydroalkoxylation of alkynes, further expanding the application of these novel hybrid materials.

  6. Synthesis and characterization of gold glyconanoparticles functionalized with sugars of sweet Sorghum syrup.

    Science.gov (United States)

    Kumar, C Ganesh; Mamidyala, Suman Kumar; Sreedhar, Bojja; Reddy, Belum V S

    2011-01-01

    Gold glyconanoparticles were synthesized by a simple, rapid, and eco-friendly method by using sweet Sorghum syrup for application in biomedicine and biotechnology. The nanostructures of the prepared gold nanoparticles were confirmed by using UV-visible absorbance, TEM, SAED, FTIR, EDAX, XRD, and photoluminescence analyses. The formation of gold nanoparticles at both room and boiling temperatures and kinetics of the reaction were monitored by UV-visible spectroscopy and TEM studies. TEM analysis revealed that the obtained nanoparticles were mono-dispersed and spherical in shape with an average particle size of 7 nm. The size of the nanoparticles was influenced by the concentration of Sorghum syrup. The presence of elemental gold was confirmed by EDAX analysis. Based on the FTIR analysis, it was observed that the sugars present in the Sorghum syrup possibly acts as capping agents. The zeta potential analysis revealed that the glyconanoparticles were negatively charged with a potential of -25 mV. The XRD and SAED patterns also suggest that the nanoparticles were crystalline in nature and these particles were found to exhibit visible photoluminescence. Fructose and glucose present in sweet Sorghum syrup were demonstrated as responsible sugars for the reduction of gold ions, and sucrose stabilized the formed nanoparticles. The proposed mechanism for the formation and stabilization of gold glyconanoparticles is based on the phenomenon of "macromolecular crowding." This is the first report on the use of sweet Sorghum syrup for the green synthesis of gold glyconanoparticles at both room and boiling temperatures.

  7. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    Science.gov (United States)

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR).

  8. Green Synthesis of Gold and Silver Nanoparticles Using Averrhoa bilimbi Fruit Extract

    Directory of Open Access Journals (Sweden)

    R. S. Rimal Isaac

    2013-01-01

    Full Text Available We report on rapid one-step green synthesis of gold and silver nanoparticles using fruit extract of Averrhoa bilimbi Linn. UV-Vis absorption spectroscopy was used to monitor the quantitative formation of gold and silver nanoparticles. The characteristics of the obtained gold and silver nanoparticles were studied using UV-Vis absorption spectroscopy (UV/Vis, Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy (SEM, and Energy-dispersive spectroscopy (EDX. UV/Vis spectrum showed Surface Plasmon Resonance (SPR for both gold and silver nanoparticles at 540 and 420 nm. The EDX spectrum of the solution containing gold and silver nanoparticles confirmed the presence of elemental gold and silver signals. The average diameter of the prepared nanoparticles in solution was about 50–150 nm. Synthesized particles were either hexagonal or rhomboidal in shape. This synthesis approach of gold and silver nanoparticles is cost effective and can be widely used in biological systems. The effect of fruit extract and metal ion concentration was also studied.

  9. Root extracts of Polygala tenuifolia for the green synthesis of gold nanoparticles.

    Science.gov (United States)

    Jun, Sang Hui; Kim, Hyun-Seok; Koo, Yean Kyoung; Park, Yohan; Kim, Jinwoong; Cho, Seonho; Park, Youmie

    2014-08-01

    Traditional medicinal plants possess diverse active constituents for exerting their biological activities. Recently, the innovative applications of plant extracts have revealed their promise as 'green' reducing agents for the reduction of metal ions during the synthesis of metallic nanoparticles. Herein, we report the use of 70% ethanol extracts from Polygala tenuifolia roots as a 'green' reducing agent for the production of gold nanoparticles by reducing gold(III) chloride trihydrate. Gold nanoparticles were characterized using UV-Visible spectrophotometry, high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The gold nanoparticles had characteristic surface plasmon resonance bands at 535 nm. HR-TEM and AFM images revealed major spherical-shaped nanoparticles. The average diameter was measured to be 9.77±3.09 nm using HR-TEM images. The crystalline structure of the gold nanoparticles was confirmed through lattice fringes and circular spots within the selected area electron diffraction in the HR-TEM images along with the XRD peaks. The gold nanoparticles exhibited enhanced anticoagulant activity, as assessed by activated partial thromboplastin time. The current method is a straightforward, environmentally friendly, and inexpensive method for the production of gold nanoparticles using extracts from traditional medicinal plants.

  10. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications.

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications.

  11. Incorporation of gold into silicon by thin film deposition and pulsed laser melting

    Science.gov (United States)

    Warrender, Jeffrey M.; Hudspeth, Quentin; Malladi, Girish; Efstathiadis, Harry; Mathews, Jay

    2016-12-01

    We report on the incorporation of gold into silicon at a peak concentration of 1.9 × 1020 at./cm3, four orders of magnitude above the equilibrium solubility limit, using pulsed laser melting of a thin film deposited on the silicon surface. We vary the film thickness and laser process parameters (fluence, number of shots) to quantify the range of concentrations that can be achieved. Our approach achieves gold concentrations comparable to those achieved with ion implantation followed by pulsed laser melting, in a layer with high crystalline quality. This approach offers an attractive alternative to ion implantation for forming high quality, high concentration layers of transition metals like gold in silicon.

  12. ADSORPTION CAPACITY OF ACTIVATED CARBON FIBER FABRIC IN CYANIDE LEACHING LIQUOR OF GOLD ORES

    Institute of Scientific and Technical Information of China (English)

    LIUXiaozhen

    2002-01-01

    Adsorption capacity of ACFF in cyanide leaching liquor of gold ores was studied with cyanide leaching liquor of gold ores,containing various kinds of ions.The adsorbed leaching liquor was analyzed by atomic emission spectroscopy and colorimetric method.The contents of various kinds. of ions in ACFF were determined with X-ray photoctron spectroscopy.ACFF not only adsorbed gold but also adsorbed arsenic,nickel,zinc,calcium,sulphur,bismuth,copper,iron,silver and cyanide,anion.Atomic percentage of C and those of O,N,Zn,Fe increase and decrease respectively with the increase of the layer depth,while those of Ca,Au,Ag keep constant.

  13. Complexity of gold nanoparticle formation disclosed by dynamics study

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Jensen, Palle Skovhus; Sørensen, Karsten

    2013-01-01

    Although chemically synthesized gold nanoparticles (AuNPs) from gold salt (HAuCl4) are among the most studied nanomaterials, understanding the formation mechanisms is a challenge mainly due to limited dynamics information. A range of in situ methods with down to millisecond (ms) time resolution...... have been employed in the present report to monitor time-dependent physical and chemical properties in aqueous solution during the chemical synthesis. Chemical synthesis of AuNPs is a reduction process accompanied by release of ions and protons, and formation of solid particles. Dynamic information......]- to form Au atoms during the early stage of the synthesis process. pH- and conductivity-dynamics point further clearly to formation of coating layers on AuNPs and adsorbate exchange between MES and starch. © 2013 American Chemical Society....

  14. Synthesis and optical properties of gold nanorods with controllable morphology

    Science.gov (United States)

    Ye, Tianyu; Dai, Zhigao; Mei, Fei; Zhang, Xingang; Zhou, Yuanming; Xu, Jinxia; Wu, Wei; Xiao, Xiangheng; Jiang, Changzhong

    2016-11-01

    Searching for architectural building blocks with tunable morphology and peculiarity is a prominent challenge for novel diagnostic and therapeutic applications. Here, the aqueous-based seed-mediated methods for preparing highly mono-dispersed Au nanorods with a different aspect ratio are systematically studied by controlling the amounts of Ag ions and seeds. We also explore the effect of pH on the synthesis of gold nanorods. The realization of the overlap of longitudinal plasmon band and excitation source with different degrees is made by changing the aspect ratio of nanorod in order to determine its effect on the overall surface enhancement. In addition, the gold octahedra are prepared by overgrowth on Au nanorods. The SERS effects of Au nanorods are researched and the FDTD simulations are performed to reveal the morphology induced plasmon modes.

  15. High Brightness Plasmon-Enhanced Nanostructured Gold Photoemitters

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; Kong, Lingmei; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-30

    Plasmonic nanohole arrays are fabricated in gold thin films by focused ion beam (FIB) lithography. Subsequent heat treatment creates sub 100 nm nanometric structures including tips, rods and flakes, all localized in the nanohole array region. The combined nanohole array and nanostructured surface comprise an efficient photoemitter. High brightness photoemission is observed from this construct using photoemission electron microscopy (PEEM), following 780 nm femtosecond (fs) laser irradiation. By comparing our observables to results of finite difference time domain (FDTD) calculations, we demonstrate that photoemission from the sub-100 nm structures is enhanced in the region of propagating surface plasmons launched from the nanohole arrays. Additionally, by tuning hole diameter and separation in the nanohole array, the photoemission intensity of nanostructured photoemitters can be controlled. We observe a photoemission enhancement of over 108, relative to photoemission from the flat region of the gold substrate at laser intensities well below the ablation threshold.

  16. Electrochemical Studies of Glutathione Monolayer Assembled on A Polycrystalline Gold Electrode

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The glutathione (GSH) monolayer and complex monolayer of GSH-metallic ion on polycrys-talline gold electrode were studied by using K3Fe(CN)6 as the redox probe. As for the GSH monolayer, itwas found that the metallic ions could open the ion-gate in the monolayer dramatically in the order La3+>Pb2+>> Ba2+> Ca2+ whereas Zn2+ ion closed the ion-gate. The complexes of GSH-metallic ions were ca-pable of self-assembling the different kind of monolayer. All the differences were related to the structuralconfiguration of the anchored GSH molecule, which changed with the different metallic ions or pH.

  17. Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation

    DEFF Research Database (Denmark)

    Sendroiu, I.E.; Mertens, Stijn; Schiffrin, D.J.

    2006-01-01

    The effects of interparticle distance on the UV-visible absorption spectrum of gold nanocrystals aggregates in aqueous solution have been investigated. The aggregates were produced by ion-templated chelation of omega-mercaptocarboxylic acid ligands covalently attached to the nanoparticles surface...

  18. Comparative Study of Formation and Stabilization of Gold and Silver Clusters and Nanoparticles in Mordenites

    NARCIS (Netherlands)

    Bogdanchikova, N.; Tuzovskaya, I.; Pestryakov, A.; Susarrey-Arce, A.

    2011-01-01

    Supporting silver and gold on mordenites by ion-exchange method with further reduction with H2 leads to formation of neutral and charged metal clusters inside zeolite channels as well as metal nanoparticles on external surface of mordenite. A portion of the cluster states of the metals and stability

  19. Synthesis and luminescence modulation of pyrazine-based gold(III) pincer complexes.

    Science.gov (United States)

    Fernandez-Cestau, Julio; Bertrand, Benoît; Blaya, Maria; Jones, Garth A; Penfold, Thomas J; Bochmann, Manfred

    2015-12-04

    The first examples of pyrazine-based gold(III) pincer complexes are reported; their intense photoemissions can be modified by protonation, N-alkylation or metal ions, without the need for altering the ligand framework. Emissions shift from red (77 K) to blue (298 K) due to thermally activated delayed fluorescence (TADF).

  20. Economic geology: Gold buried by oxygen

    OpenAIRE

    Gaillard, Fabrice; Copard, Y.

    2015-01-01

    International audience; he Witwatersrand Basin in South Africa contains extraordinary amounts of gold. Thermodynamic calculations suggest that the gold may have accumulated there in response to a perfect storm of conditions available only during the Archaean.

  1. A new green chemistry method based on plant extracts to synthesize gold nanoparticles

    Science.gov (United States)

    Montes Castillo, Milka Odemariz

    solved. In this work, secondary metabolites were extracted from alfalfa biomass in liquid phase by hot water, isopropanol, and methanol, and used to reduce tetrachloroaurate ion (AuCl4-) for the synthesis of gold nanoparticles. Biosyntheses of gold nanoparticles were performed by mixing 0.75, 1.5 and 3.0 mM Au3+ solutions with each one of the extracts at a ratio of 3:1 respectively, and shaken at room temperature for 1h. Resulting gold colloids were characterized by UV-Vis spectrophotometry and electron microscopy techniques, showing size and morphology dependency on the reaction conditions. Isopropanol alfalfa extracts reacted with Au 3+ produced gold nanoparticles with a size range of 15-60 nm. The most abundant were from 40-50 nm, and the morphologies found were polygons, decahedra and icosahedra. Methanol alfalfa extracts produced monodisperse 50 nm decahedral and icosahedral gold nanoparticles. Lastly, water alfalfa extracts reacted with Au3+ produced triangular, truncated triangular and hexagonal nanoplates with diameters ranging from 500 nm to 4 mum and thicknesses of ˜15-40 nm. The production of gold nanoplates by alfalfa extracts has never been reported before. In order to extract the formed gold nanoparticles from the biomass, physical and chemical extractions were used. For the chemical extraction, NaCl, dilute H2SO4, Triton X and DI water were tested. In these cases, the best results were obtained with DI water, followed by NaCl. The extracted nanoparticles had an absorption band at about 539 nm. For the physical extractions, alfalfa biomass containing gold nanoparticles were exposed to 400°C, 500°C, 550°C and 600°C to recover the gold nanoparticles. X-ray diffractograms taken after pyrolysis of the biomass showed that the recovered nanoparticles kept their crystal structure.

  2. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in general. 100.4 Section 100.4 Money and Finance: Treasury Regulations Relating to Money and Finance EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general....

  3. Hematite spindles with optical functionalities: growth of gold nanoshells and assembly of gold nanorods.

    Science.gov (United States)

    Spuch-Calvar, Miguel; Pérez-Juste, Jorge; Liz-Marzán, Luis M

    2007-06-01

    The layer-by-layer (LBL) assembly method, combined with the seeded growth technique, have been used to deposit gold shells on the surface of hematite (alpha-Fe(2)O(3)) spindles. While the LBL method yields dense coatings of preformed Au nanoparticles, when AuCl(-)(4) ions are further reduced by a mild reducing agent, thicker, rough nanostructured shells can be grown. The deposition process was monitored by TEM and UV-visible spectroscopy, demonstrating a gradual change in the optical features of the colloids as the surface is more densely covered. The particles so-prepared can find useful applications in cancer therapy and as SERS substrates. Additionally, we show that Au nanorods can be assembled on hematite spindles, providing a flexible way to tune the optical properties of the resulting composite colloids.

  4. Understanding ligand effects in gold clusters using mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2016-01-01

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  5. Understanding ligand effects in gold clusters using mass spectrometry.

    Science.gov (United States)

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  6. Single-crystalline gold nanoplates from a commercial gold plating solution.

    Science.gov (United States)

    Li, Zhonghao; Lapeyre, Véronique; Ravaine, Valérie; Ravaine, Serge; Kuhn, Alexander

    2009-03-01

    A novel route was proposed to synthesize gold nanoplates using a commercial gold plating solution as the reactant. Single-crystalline gold nanoplates can be successfully synthesized by reacting gold plating solution with HCl. The as-prepared nanoplates are from several micrometers to tens of micrometers in size. The effects of reactant concentration and temperature on the morphology of the gold products were investigated. The size of the gold nanoplate increases with the decrease of the amount of gold plating solution, while irregular gold nanoparticles are formed as the HCl concentration becomes low. When the reaction temperature is as low as room temperature, nanoplates with a concavity form. Specifically, it is found that the Cl- plays an important role for the formation of these gold nanoplates. The formation mechanism of the gold nanoplates is studied in detail.

  7. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  8. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  9. Gold, Silver and Bronze Citations.

    Science.gov (United States)

    American School & University, 2003

    2003-01-01

    Presents the gold, silver, and bronze winners of a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, focusing on concepts and ideas that made them exceptional. For each citation, the article offers information on the firm, client, total area, total…

  10. Gold color in dental alloys.

    Science.gov (United States)

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed.

  11. The complex nature of phthalocyanine/gold interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Susi, E-mail: s.wintz@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Treske, Uwe; Knupfer, Martin [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2013-02-15

    We compare the electronic properties of the interface between Au(1 0 0) and cobalt phthalocyanine (CoPc), fluorinated F{sub 16}CoPc as well as CuPc using X-ray photoemission spectroscopy and valence band ultra-violet photoemission spectroscopy. Our results show that in addition to the formation of an interface dipole at the interfaces of CoPc and F{sub 16}CoPc to gold, there is a local charge transfer to the central Co ion, which as a result is reduced to Co(I).

  12. Electron-phonon equilibration in laser-heated gold films

    Science.gov (United States)

    White, T. G.; Mabey, P.; Gericke, D. O.; Hartley, N. J.; Doyle, H. W.; McGonegle, D.; Rackstraw, D. S.; Higginbotham, A.; Gregori, G.

    2014-07-01

    By irradiating a thin metal foil with an intense short-pulse laser, we have created a uniform system far from equilibrium. The deposited energy is initially deposited only within the electronic subsystem, and the subsequent evolution of the system is determined by the details of the electron-phonon coupling. Here, we measure the time evolution of the lattice parameter through multilayer Bragg diffraction and compare the result to classical molecular dynamic simulations to determine the lattice temperature. The electron-ion coupling constant for gold is then determined by comparison with the evolution of a two-temperature electron-phonon system.

  13. Gold recycling; a materials flow study

    Science.gov (United States)

    Amey, Earle B.

    2000-01-01

    This materials flow study includes a description of trends in consumption, loss, and recycling of gold-containing materials in the United States in 1998 in order to illustrate the extent to which gold is presently being recycled and to identify recycling trends. The quantity of gold recycled, as a percent of the apparent supply of gold, was estimated to be about 30 percent. Of the approximately 446 metric tons of gold refined in the United States in 1998, the fabricating and industrial use losses were 3 percent.

  14. New approach to fabricate nanoporous gold film

    Institute of Scientific and Technical Information of China (English)

    Hui Zhou; Lan Jin; Wei Xu

    2007-01-01

    A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SERS). It was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.

  15. I. Unbound serum gold: procedure for quantitation.

    Science.gov (United States)

    Lorber, A; Vibert, G J; Harralson, A F; Simon, T M

    1983-08-01

    The unbound fraction of many drugs appears to be the therapeutically active component. However, the major problem encountered in following unbound serum gold (UBSG) concentration during chrysotherapy has been the ability to quantitate such a small quantity of gold reliably without matrix interference. The methodology detailed here overcomes these difficulties and provides an effective means of monitoring the UBSG fraction during chrysotherapy. We have observed that the unbound fraction of gold dissipates quickly after gold sodium thiomalate administration and constitutes less than 2% of the total serum gold concentration.

  16. Relativistic effects in homogeneous gold catalysis.

    Science.gov (United States)

    Gorin, David J; Toste, F Dean

    2007-03-22

    Transition-metal catalysts containing gold present new opportunities for chemical synthesis, and it is therefore not surprising that these complexes are beginning to capture the attention of the chemical community. Cationic phosphine-gold(i) complexes are especially versatile and selective catalysts for a growing number of synthetic transformations. The reactivity of these species can be understood in the context of theoretical studies on gold; relativistic effects are especially helpful in rationalizing the reaction manifolds available to gold catalysts. This Review draws on experimental and computational data to present our current understanding of homogeneous gold catalysis, focusing on previously unexplored reactivity and its application to the development of new methodology.

  17. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides

    OpenAIRE

    Nahra, Fady; Patrick, Scott R.; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B.; Slawin, Alexandra M. Z.; O'Hagan, David; Steven P. Nolan

    2014-01-01

    We report the synthesis of nine new N-heterocyclic carbene gold bifluoride complexes starting from the corresponding N-heterocyclic carbene gold hydroxides. A new methodology to access N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical an...

  18. Gold nephropathy in juvenile rheumatoid arthritis.

    Science.gov (United States)

    Husserl, F E; Shuler, S E

    1979-01-01

    A 2-year-old girl was treated with gold salts for juvenile rheumatoid arthritis. Treatment had to be discontinued when persistent proteinuria was detected. As this case report indicates, close monitoring of the urine is mandatory during treatment with gold salts to detect early signs of toxicity: hematuria followed by casts and then proteinuria as therapy is continued. Histologic examination with electron microscopy will help to differentiate the different forms of gold toxicity. When the findings are consistent with gold-induced renal involvement, therapy should be discontinued. The gold nephropathy usually resolves in time, with no permanent renal damage.

  19. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  20. Thorough tuning of the aspect ratio of gold nanorods using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Reza Hormozi-Nezhad, M., E-mail: hormozi@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Robatjazi, Hossein; Jalali-Heravi, Mehdi [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of)

    2013-05-24

    Graphical abstract: -- Highlights: •We are finely controlling the aspect ratio of gold nanorods. •We study the effect of variables on aspect ratio (AR) of gold nanorods simultaneously. •We use response surface methodology to make the relation among parameters affect on AR. -- Abstract: In the present work a central composite design based on response surface methodology (RSM) is employed for fine tuning of the aspect ratios of seed-mediated synthesized gold nanorods (GNRs). The relations between the affecting parameters, including ratio of l-ascorbic acid to Au{sup 3+} ions, concentrations of silver nitrate, CTAB, and CTAB-capped gold seeds, were explored using a RSM model. It is observed that the effect of each parameter on the aspect ratio of developing nanorods highly depends on the value of the other parameters. The concentrations of silver ions, ascorbic acid and seeds are found to have a high contribution in controlling the aspect ratios of NRs. The optimized parameters led to a high yield synthesis of gold nanorods with an ideal aspect ratio ranging from 1 (spherical particle) to 4.9. In addition, corresponding tunable surface Plasmon absorption band has been extended to 880 nm. The resulted nanorods were characterized by UV–visible spectrometry and transmission electron microscopy.

  1. Invertebrate water extracts as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles.

    Science.gov (United States)

    Han, Lina; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2013-08-01

    We report the use of water extracts of two invertebrates, snail body and earthworm, as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles. The reaction conditions were optimized by varying the extract concentration, gold ion or silver ion concentration, reaction time, and reaction temperature. The gold and silver nanoparticles exhibited their characteristic surface plasmon resonance bands. Mostly spherical and amorphous shapes of the nanoparticles were synthesized. The average diameters of the gold and silver nanoparticles were 4.56 +/- 1.81 nm and 11.12 +/- 5.25 nm, respectively, when the extract of snail body was used as the reducing agent. The earthworm extracts produced gold and silver nanoparticles with average diameters of 6.70 +/- 2.69 nm and 12.19 +/- 4.28 nm, respectively. This report suggests that the invertebrate natural products have potential as biocompatible reducing agents for the green synthesis of metallic nanoparticles. This utility would open up novel applications of invertebrate natural products as nanocomposites and in nanomedicine.

  2. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucchianico, Sebastiano Di [Karolinska Institutet, Institute of Environmental Medicine (Sweden); Migliore, Lucia [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics (Italy); Marsili, Paolo [Institute of Complex Systems (ISC-CNR) (Italy); Vergari, Chiara [Plasma Diagnostics and Technologies s.r.l. (Italy); Giammanco, Francesco [University of Pisa, Department of Physics “E. Fermi” (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Institute of Complex Systems (ISC-CNR) (Italy)

    2015-05-15

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  3. Mammalian sensitivity to elemental gold (Au?)

    Science.gov (United States)

    Eisler, R.

    2004-01-01

    There is increasing documentation of allergic contact dermatitis and other effects from gold jewelry, gold dental restorations, and gold implants. These effects were especially pronounced among females wearing body-piercing gold objects. One estimate of the prevalence of gold allergy worldwide is 13%, as judged by patch tests with monovalent organogold salts. Eczema of the head and neck was the most common response of individuals hypersensitive to gold, and sensitivity can last for at least several years. Ingestion of beverages containing flake gold can result in allergic-type reactions similar to those seen in gold-allergic individuals exposed to gold through dermal contact and other routes. Studies with small laboratory mammals and injected doses of colloidal gold showed increased body temperatures, accumulations in reticular cells, and dose enhancement in tumor therapy; gold implants were associated with tissue injuries. It is proposed that Au? toxicity to mammals is associated, in part, with formation of the more reactive Au+ and Au3+ species.

  4. Leaching behavior of butanedionedioxime as gold ligand

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Butanedionedioxime, a small organic compound with low-toxicity and good chemical stability, has been proposed as an effective gold ligand in gold extraction. The result of experiment shows that: 1) highly effective gold lixiviantcan be composed of butanedionedioxime (BDM) with many oxidants, especially potassium permanganate; 2)in the leaching system of BD M- K M nO4 the suitable Ox/Lig(ratio of oxidants to gold ligands) tange is 0.20 ~ 0. 50, optimally 0.25 ~0.45 at the pH range of 7 ~ 11; 3) BDM-KMnO4 extraction of gold from an oxide ore is similar to cyanide(cyanide-O2)extraction, but the leaching rate of gold by BDM-KMnO4 is faster than that by cyanide-O2; 4) gold may readily be recov-ered by carbon adsorption and zinc precipitation

  5. 杏核的活性壳:一种用于黄金回收的有价值的吸附剂%Activated Hard Shell of Apricot Stones: A Promising Adsorbent in Gold Recovery

    Institute of Scientific and Technical Information of China (English)

    Mansooreh Soleimani; Tahereh Kaghazchi

    2008-01-01

    Activated carbon has been proven to be an effective adsorbent for the recovery of a wide variety of metal ions from aqueous solutions. In this research, the activated hard shell of Iranian apricot stones was used for gold recovery from electro-plating wastewater. The effect of parameters such as dose and particle size of adsorbent,pH, agitation speed of mixing on the gold recovery was investigated. The results showed that under the optimum operating conditions more than 98% of gold ions were adsorbed onto activated carbon after just 3 h. In addition, the adsorbed gold could be eluted from this adsorbent by improved striping method. The process involves contact of gold-laden adsorbent with a strong base at ambient temperatures followed by elution with an aqueous solution con-taining an organic solvent. It was found that activated hard shell of apricot stones has the potential to replace im-ported commercial activated carbons in gold adsorption processes.

  6. 一种简单快速检测汞离子的1,4-二硫苏糖醇膜修饰金平板电极%Simple and Rapid Determination of Mercury Ions Based on 1,4-Dithiothreitol Assembled Gold Plate Electrode

    Institute of Scientific and Technical Information of China (English)

    曹婷婷; 曹忠; 何婧琳; 梁海琴; 肖忠良

    2014-01-01

    将1,4-二硫苏糖醇(DTT)自组装在100 nm 厚的平整金膜表面,形成 DTT 膜修饰金平板电极(GPE),构建了一种新颖的简单、快速测定汞离子的选择性电极分析方法.通过电化学交流阻抗和循环伏安法探讨了该电极的响应原理,即固定在 Au 表面的 DTT 通过另一端的巯基与汞离子发生强配位作用而吸附结合带正电荷的汞离子,引起电极表面膜电位的变化,从而选择性地识别汞离子.实验结果表明,该电极在 pH =6.0的 Tris-HCl 缓冲溶液中对汞离子有良好的电位响应性能,其线性范围为1.0×10-8~1.0×10-3 mol/ L,能斯特响应斜率为(29.62±0.2) mV/-pc(25℃),检出限为5.1×10-9 mol/ L.该汞离子检测电极的响应时间仅为20 s,且有较好的重现性和稳定性.通过测定各种离子的选择性系数,发现 Cu2+, Fe2+, Na+, K+, Mg2+, Ba2+, Ca2+, Zn2+, Sn2+, Pb2+, Ag+, Al3+, Fe3+, Ni2+, NO-2, IO-3, BrO-3和 ClO-3等离子不干扰该电极对汞离子的检测.此外,将该电极用于实际水样中微量汞离子含量的测定,结果与双硫腙分光光度方法一致,且回收率为98.20%~101.75%.%A simply gold plate electrode(GPE) based on 1,4-dithiothreitol(DTT), which was self-assembled on a surface of flat gold film with a thickness of 100 nm, was developed to construct a novel selective electrode method for rapid detection of mercury ion. Through electrochemical impedance analysis and cyclic voltamme-tric method, the response mechanism of the electrode for selective recognition of Hg2+ was investigated, that the other terminal sulfhydryl group of DTT binding to Au surface can coordinate with Hg2+ due to their strong complexing interaction, resulting in change of membrane potential of the electrode surface. The proposed elec-trode possesses good potential performance responding to Hg2+ with a linear range of 1. 0 ×10-8-1. 0 ×10-3 mol/ L, a Nernst slope of (29. 62±0. 2) mV/ -pc(25 ℃), and a detection limit of 5. 1×10-9 mol/ L

  7. Deposition of gold nanoparticles on silica spheres by electroless metal plating technique.

    Science.gov (United States)

    Kobayashi, Yoshio; Tadaki, Yohei; Nagao, Daisuke; Konno, Mikio

    2005-03-15

    A previously proposed method for metal deposition with silver [Kobayashi et al., Chem. Mater. 13 (2001) 1630] was extended to uniform deposition of gold nanoparticles on submicrometer-sized silica spheres. The present method consisted of three steps: (1) the adsorption of Sn(2+) ions took place on surface of silica particles, (2) Ag(+) ions added were reduced and simultaneously adsorbed to the surface, while Sn(2+) was oxidized to Sn(4+), and (3) Au(+) ions added were reduced and deposited on the Ag surface. TEM observation, X-ray diffractometry, and UV-vis absorption spectroscopy revealed that gold metal nanoparticles with an average particle size of 13 nm and a crystal size of 5.1 nm were formed on the silica spheres with a size of 273 nm at an Au concentration of 0.77 M.

  8. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments.

    Science.gov (United States)

    Burrows, Nathan D; Harvey, Samantha; Idesis, Fred A; Murphy, Catherine J

    2017-02-28

    Since the development of simple, aqueous protocols for the synthesis of anisotropic metal nanoparticles, research into many promising, valuable applications of gold nanorods has grown considerably, but a number of challenges remain, including gold-particle yield, robustness to minor impurities, and precise control of gold nanorod surface chemistry. Herein we present the results of a composite fractional factorial series of experiments designed to screen seven additional potential avenues of control and to understand the seed-mediated silver-assisted synthesis of gold nanorods. These synthesis variables are the amount of sodium borohydride used and the rate of stirring when producing seed nanoparticles, the age of and the amount of seeds added, the reaction temperature, the amounts of silver nitrate and ascorbic acid added, and the age of the reduced growth solution before seed nanoparticles are added to initiate rod formation. This statistical experimental design and analysis method, besides determining which experimental variables are important and which are not when synthesizing gold nanorods (and quantifying their effects), gives further insight into the mechanism of growth by measuring the degree to which variables interact with each other by mapping out their mechanistic connections. This work demonstrates that when forming gold nanorods by the reduction of auric ions by ascorbic acid onto seed nanoparticles, ascorbic acid determines how much gold is reduced, and the amount of seeds determine how it is divided, yet both influence the intrinsic growth rates, in both width and length, of the forming nanorods. Furthermore, this work shows that the reduction of gold proceeds via direct reduction on the surface of seeds and not through a disproportionation reaction. Further control over the length of gold nanorods can be achieved by tuning the amount of silver nitrate or the reaction temperature. This work shows that silver does not directly influence rod length or

  9. Polyvinyl alcohol as an immobilization matrix--a case of gold biosorption.

    Science.gov (United States)

    Khoo, K M; Ting, Y P

    2001-01-01

    The use of polyvinyl alcohol (PVA) as a matrix for cell immobilization has been extensively studied in various biological systems. However, its suitability has not been reported in biosorption studies where inactivated cells are used as biosorbents. In this work, PVA and alginate as immobilization matrices (for the biosorption of gold by a fungal biomass) were investigated by examining their physical and chemical properties. Compared to alginate gels, PVA gels were shown to be more resistant to mechanical abrasion, and more stable over a wide pH range. Although the PVA matrix did not affect the equilibrium uptake in gold biosorption studies, the time required to attain a removal of 80% of the initial metal concentration was 1.7 times that of the freely suspended biosorbent. This contrasts with the alginate immobilized biosorbent which required an increase of well over ten times the duration to attain the same removal efficiency. Results indicated that PVA gels conferred a lower mass transfer resistance than alginate gels. Gold biosorption by the PVA-immobilized fungi followed the commonly used Langmuir and Freundlich adsorption isotherm models although the former gave a better fit. The uptake of gold was dependent on the initial gold concentration and the biomass loading. Using a fungal biosorbent and gold ions as the model system, the results demonstrate the potential in the use of the PVA as a cell immobilisation matrix for biosorption studies.

  10. Ultrasmooth gold thin films by self-limiting galvanic displacement on silicon.

    Science.gov (United States)

    Gutés, Albert; Carraro, Carlo; Maboudian, Roya

    2011-05-01

    Galvanic displacement (GD), a type of electroless deposition, has been used to obtain ultrasmooth gold thin films on silicon . The novel aspect of the method presented herein is the absence of fluoride ions in the liquid phase, and its principal advantage when compared to previous efforts is that the process is inherently self-limiting. The self-limiting factor is due to the fact that in the absence of fluorinated species, no silicon oxide is removed during the process. Thus, the maximum gold film thickness is achieved when elemental silicon is no longer available once the surface is oxidized completely during the galvanic displacement process. X-ray photoelectron spectroscopy has been used as a tool for thickness measurement, using the gold to silicon ratio as an analytical signal. Three gold plating solutions with different concentrations of KAuCl₄ (2, 0.2, and 0.02 mM) have been used to obtain information about the formation rate of the gold film. This XPS analysis demonstrates the formation of gold films to a maximum thickness of ∼3.5 Å. Atomic force microscopy is used to confirm surface smoothness, suggesting that the monolayer growth does not follow the Volmer-Weber growth mode, in contrast to the GD process from aqueous conditions with fluorinated species.

  11. Preparation and characterization of silica–gold core–shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nghiem, Thi Ha Lien, E-mail: halien@iop.vast.ac.vn; Le, Tuyet Ngan; Do, Thi Hue; Vu, Thi Thuy Duong; Do, Quang Hoa; Tran, Hong Nhung [Vietnam Academy of Science and Technology, Institute of Physics (Viet Nam)

    2013-11-15

    Silica–gold core–shell nanoparticles (NPs) were prepared by gold ion plating on hydrophilic-functionalized silica core NPs using formaldehyde as a reducing reagent. The monodisperse silica particles were first prepared by a sol–gel method, while the ultrafine gold colloids (diameter 1–2 nm) were synthesized by the reduction of chloroauric acid with tetrakis(hydroxymethyl)phosphonium chloride. The growth and attachment of the gold NPs onto the functionalized surface of the silica NPs with average diameter ranging from 40 to 180 nm, using a low-temperature-mediated route, were systematically investigated. The coverage of the gold NPs and clusters on the surface of the silica NPs have been evaluated by means of UV–Vis/near-infrared spectroscopy and transmission electron microscopy. The surface plasmon resonance absorption spectra from 550 to 1,000 nm of the core–shell NPs can be effectively controlled by the surface gold coverage or the silica core NP’s size.

  12. [Contact allergy to gold and its alloys. Pertinence of gold salt patch tests].

    Science.gov (United States)

    Collet, E; Lacroix, M; Dalac, S; Ponnelle, C; Lambert, D

    1994-01-01

    Allergic contact dermatitis to gold and its alloys is a rare affection and it is difficult to interpret gold salts patch tests. We report two cases of patients with positive patch tests to 0.5% sodium aurothiosulfate discovered during a dermatology exploration of an occupational contact eczema (for the first patient) and an intolerance to gold jewelry (for the second). There is much confusion in the literature concerning the allergologic exploration of contact dermatitis to gold: no standardized test, possible cross reactions between different gold salts, the tests often irritate. The mechanism of sensitization to gold salts is unknown since pure gold is inalterable and does not contain any salts. The pertinence of a positive test to one or more gold salts must therefore be examined carefully and the diagnosis of gold allergy must not be made without sufficient evidence.

  13. Gold concentration in blood in relation to the number of gold restorations and contact allergy to gold.

    Science.gov (United States)

    Ahnlide, Ingela; Ahlgren, Camilla; Björkner, Bert; Bruze, Magnus; Lundh, Thomas; Möller, Halvor; Nilner, Krister; Schütz, Andrejs

    2002-10-01

    Previous studies have demonstrated an association between gold allergy and the presence of dental gold restorations. The aim of the present study was to investigate the relationship between the concentration of gold in blood (B-Au) and the number of tooth surfaces with gold alloys in subjects with and without contact allergy to gold. In 80 patients referred for patch testing because of eczematous disease, blood samples were taken and analyzed for B-Au using inductively coupled plasma mass spectrometry. The detection limit for the Au determination was 0.04 microg/L. In addition, a dentist made a clinical and radiological examination of the patients and registered the number of dental gold surfaces. Patients with dental gold restorations had a statistically significantly higher B-Au in Mann-Whitney U test (P = 0.025), (range < 0.04-1.07 microg/L) than patients without (range < 0.04-0.15 microg/L). Furthermore, a positive correlation was found between B-Au and the number of dental gold surfaces (P < 0.01). There was no statistically significant difference in B-Au between persons with and without contact allergy to gold. The study thus indicates that gold is released from dental restorations and taken tip into the circulation.

  14. Amorphous carbon interlayers for gold on elastomer stretchable conductors

    Science.gov (United States)

    Manzoor, M. U.; Tuinea-Bobe, C. L.; McKavanagh, F.; Byrne, C. P.; Dixon, D.; Maguire, P. D.; Lemoine, P.

    2011-06-01

    Gold on polydimethylsiloxane (PDMS) stretchable conductors were prepared using a novel approach by interlacing an hydrogenated amorphous carbon (a-C : H) layer between the deposited metal layer and the elastomer. AFM analysis of the a-C : H film surface before gold deposition shows nanoscale buckling, the corresponding increase in specific surface area corresponds to a strain compensation for the first 4-6% of bi-axial tensile loading. Without this interlayer, the deposited gold films show much smaller and uni-directional ripples as well as more cracks and delaminations. With a-C : H interlayer, the initial electrical resistivity of the metal film decreases markedly (280-fold decrease to 8 × 10-6 Ω cm). This is not due to conduction within the carbon interlayer; both a-C : H/PDMS and PDMS substrates are electrically insulating. Upon cyclic tensile loading, both films become more resistive, but return to their initial state after 20 tensile cycles up to 60% strain. Profiling experiments using secondary ion mass spectroscopy and x-ray photoelectron spectroscopy indicate that the a-C : H layer intermixes with the PDMS, resulting in a graded layer of decreasing stiffness. We believe that both this graded layer and the surface buckling contribute to the observed improvement in the electrical performance of these stretchable conductors.

  15. Gold-Speckled Multimodal Nanoparticles for Noninvasive Bioimaging

    Science.gov (United States)

    2008-01-01

    In this report the synthesis, characterization, and functional evaluation of a multimodal nanoparticulate contrast agent for noninvasive imaging through both magnetic resonance imaging (MRI) and photoacoustic tomography (PAT) is presented. The nanoparticles described herein enable high resolution and highly sensitive three-dimensional diagnostic imaging through the synergistic coupling of MRI and PAT capabilities. Gadolinium (Gd)-doped gold-speckled silica (GSS) nanoparticles, ranging from 50 to 200 nm, have been prepared in a simple one-pot synthesis using nonionic microemulsions. The photoacoustic signal is generated from a nonuniform, discontinuous gold nanodomains speckled across the silica surface, whereas the MR contrast is provided through Gd incorporated in the silica matrix. The presence of a discontinuous speckled surface, as opposed to a continuous gold shell, allows sufficient bulk water exchange with the Gd ions to generate a strong MR contrast. The dual imaging capabilities of the particles have been demonstrated through in silicio and in vitro methods. The described particles also have the capacity for therapeutic applications including the thermal ablation of tumors through the absorption of irradiated light. PMID:19466201

  16. Robust nanogap electrodes by self-terminating electroless gold plating.

    Science.gov (United States)

    Serdio V, Victor M; Azuma, Yasuo; Takeshita, Shuhei; Muraki, Taro; Teranishi, Toshiharu; Majima, Yutaka

    2012-11-21

    Robust nanogap electrodes for nanodevices with a separation of 3.0 ± 1.7 nm were simultaneously mass-produced at a yield of 90% by a combination of electron beam lithography (EBL) and electroless gold plating (EGP). Nanogap electrodes demonstrated their robustness as they maintained their structure unchanged up to temperatures of 170 °C, during the isotropic oxygen plasma ashing removal of the amorphous carbon overlayer resulting from scanning electron microscopy observations, therefore maintaining their surface reactivity for EGP and formation of a self-assembled monolayer. A gold layer grows over the electrode surface during EGP, narrowing the separation between the electrodes; growth stops around 3 nm due to a self-termination phenomenon. This is the main factor in the high yield and reproducibility of the EGP process because it prevents contact between the electrodes. A 90% yield is achieved by also controlling the etching and physisorption of gold clusters, which is accomplished by reduction of triiodide ions and heat treatment of the EGP solution, respectively. A mixed self-assembled monolayer of octanethiol and decanedithiol can be formed at the surface of the nanogap electrodes after the oxygen plasma treatment, and decanethiol-protected Au nanoparticles were chemisorbed between the self-terminated nanogap electrodes via decanedithiol. Chemically assembled single-electron transistors based on the nanogap electrodes exhibit ideal, stable, and reproducible Coulomb diamonds.

  17. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties

    OpenAIRE

    Isabelle Russier-Antoine; Franck Bertorelle; Alexander Kulesza; Antonin Soleilhac; Amina Bensalah-Ledoux; Stephan Guy; Philippe Dugourd; Pierre-François Brevet; Rodolphe Antoine

    2016-01-01

    Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. We report a simple synthetic approach for the production of chiral gold-cysteine polymeric nanoparticles soluble in water. Conjugation of cysteine with gold in a polymeric way, leading to ~50 nm diameter nanoparticles, resulted in the generation of new characteristic circular dichroism (CD) signals in the region of 250–400 nm, whereas no CD signal changes were found with c...

  18. Synthesis of DPA dendron encapsulated gold clusters with metal-assembling function

    Directory of Open Access Journals (Sweden)

    Yi Men, Masayoshi Higuchi and Kimihisa Yamamoto

    2006-01-01

    Full Text Available Gold clusters modified with first, second and third generation dendritic polyphenylazomethines (DPA were synthesized by an exchanged reaction of corresponding DPA dendron thiols. Measurements by high performance perfect sizer (HPPS and TEM reveal that their diameters increase with a change in the chain length of the modifying molecules from the first to third generation. These gold clusters with DPA dendrons exhibit coordination quantitatively to metal ions such as Fe3+, Sn2+, etc., because of their imine groups; this then resulted in self-aggregation to form a large sphere.

  19. Efficient Coupling and Transport of a Surface Plasmon at 780 nm in a Gold Nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-28

    We studied plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We designed an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  20. Synthesis of One Dimensional Gold Nanostructures

    Directory of Open Access Journals (Sweden)

    Hongchen Li

    2010-01-01

    Full Text Available Gold nanostructures with shapes of rod, dumbbells, and dog bone have been fabricated by an improved seed-mediated method. It is found that the pH change (the addition of HNO3 or HCl and the presence of Ag+ ions have a great influence on the growth process and aspect ratios of these Au nanocrystals. UV-Vis-NIR absorption spectra for the Au colloidal show that the transverse plasmon absorption band locates at ~520 nm, while the longitudinal plasmon absorption band shifts in a wide spectra region of 750–1100 nm. The obtained Au nanostructures have been investigated by transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray diffractometer. Based on the characterizations and FDTD simulations, most of the obtained Au nanorods are single crystals, possessing an octagonal cross-section bounded by {110} and {100} faces. One model for the anisotropic growth has been proposed. It is found that slow kinetics favor the formation of single-crystalline Au nanorods.

  1. Switchable Imbibition in Nanoporous Gold

    CERN Document Server

    Xue, Yahui; Duan, Huiling; Weissmueller, Joerg; Huber, Patrick

    2014-01-01

    Spontaneous imbibition enables the elegant propelling of nano-flows because of the dominance of capillarity at small length scales. The imbibition kinetics are, however, solely determined by the static geometry of the porous host, the capillarity, and the fluidity of the imbibed liquid. This makes active control particularly challenging. Here, we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid-liquid interfacial tension, i.e. we can accelerate the imbibition front, stop it, and have it proceed at will. Simultaneous measurements of the mass flux and the electrical current allow us to document simple scaling laws for the imbibition kinetics, and to explore the charge flow dynamics in the metallic nanopores. Our findings demonstrate that the high electric conductivity along with the pathways for ionic and/or fluid transport render nanoporous elemental gold a versatile, accurately controllable elec...

  2. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  3. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  4. Gemballa Mirage GT Gold Edition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    前不久,保时捷的专业改装厂Gembaila推出了一款Mirage GT Gold Edition,这款车以Carrera GT为基础,并且使用了大量的碳纤维材料,而且在车身内外配备了一些黄金色的涂装。

  5. Hydrogen oxidation on gold electrode in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  6. CO extrusion in homogeneous gold catalysis: reactivity of gold acyl species generated through water addition to gold vinylidenes.

    Science.gov (United States)

    Bucher, Janina; Stößer, Tim; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2015-01-26

    Herein, we describe a new gold-catalyzed decarbonylative indene synthesis. Synergistic σ,π-activation of diyne substrates leads to gold vinylidene intermediates, which upon addition of water are transformed into gold acyl species, a type of organogold compound hitherto only scarcely reported. The latter are shown to undergo extrusion of CO, an elementary step completely unknown for homogeneous gold catalysis. By tuning the electronic and steric properties of the starting diyne systems, this new reactivity could be exploited for the synthesis of indene derivatives in high yields.

  7. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  8. Feasibilty of electroplated gold for hybrid microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Blessner, P.L.

    1978-01-01

    Electroplating was investigated as a method of providing thick gold films. Because electroplated gold has never been used for hybrid microcircuit (HMC) substrate metallization, this feasibility study was also designed to determine the characteristics of electroplated gold and its compatibility with present HMC fabrication processes. Ceramic substrates 95 by 114 mm (3.75 by 4.5 in.) were electroplated with 6, 10, and 25 ..mu..m of gold after 0.02 ..mu..m of chromium and 0.5 ..mu..m of gold had been either sputtered or vacuum evaporated onto the substrate surfaces. Substrates vacuum evaporated with 6 ..mu..m of gold were used as a control group. The substrates were evaluated for via resistance, RF electrical characteristics, conductor definition and resolution, solder wettability, thermocompression bondability, and environmental stability.

  9. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  10. The Gold Standard Since Alec Ford

    OpenAIRE

    Eichengreen, Barry

    1989-01-01

    This paper surveys studies of the operation of the classical gold standard published subsequent to the appearance of Alec Ford's The Gold Standard 1880-1914: Britain and Argentina in 1962. Contributions tend to fall under two headings: those which emphasize stock equilibrium in money markets (examples of the so-called "monetary approach") and those which emphasize instead stockflow interactions in bond markets. The paper then addresses the perennial question of how the gold standard worked. A...

  11. Electrochemical Assay of Gold-Plating Solutions

    Science.gov (United States)

    Chiodo, R.

    1982-01-01

    Gold content of plating solution is assayed by simple method that required only ordinary electrochemical laboratory equipment and materials. Technique involves electrodeposition of gold from solution onto electrode, the weight gain of which is measured. Suitable fast assay methods are economically and practically necessary in electronics and decorative-plating industries. If gold content in plating bath is too low, poor plating may result, with consequent economic loss to user.

  12. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations.

    Science.gov (United States)

    Domingos, Rute F; Carreira, Sara; Galceran, Josep; Salaün, Pascal; Pinheiro, José P

    2016-05-12

    The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu(2+)) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration.

  13. The Stabilizing Effects in Gold Carbene Complexes.

    Science.gov (United States)

    Nunes Dos Santos Comprido, Laura; Klein, Johannes E M N; Knizia, Gerald; Kästner, Johannes; Hashmi, A Stephen K

    2015-08-24

    Bonding and stabilizing effects in gold carbene complexes are investigated by using Kohn-Sham density functional theory (DFT) and the intrinsic bond orbital (IBO) approach. The π-stabilizing effects of organic substituents at the carbene carbon atom coordinated to the gold atom are evaluated for a series of recently isolated and characterized complexes, as well as intermediates of prototypical 1,6-enyne cyclization reactions. The results indicate that these effects are of particular importance for gold complexes especially because of the low π-backbonding contribution from the gold atom.

  14. Gold Nanoparticle Mediated Phototherapy for Cancer

    Directory of Open Access Journals (Sweden)

    Cuiping Yao

    2016-01-01

    Full Text Available Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations.

  15. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  16. Starfruit-shaped gold nanorods and nanowires: synthesis and SERS characterization.

    Science.gov (United States)

    Vigderman, Leonid; Zubarev, Eugene R

    2012-06-19

    Recently, branched and star-shaped gold nanoparticles have received significant attention for their unique optical and electronic properties, but most examples of such nanoparticles have a zero-dimensional shape with varying numbers of branches coming from a quasi-spherical core. This report details the first examples of higher-order penta-branched gold particles including rod-, wire-, and platelike particles which contain a uniquely periodic starfruitlike morphology. These nanoparticles are synthesized in the presence of silver ions by a seed-mediated approach based on utilizing highly purified pentahedrally twinned gold nanorods and nanowires as seed particles. The extent of the growth can be varied, leading to shifts in the plasmon resonances of the particles. In addition, the application of the starfruit rods for surface-enhanced Raman spectroscopy (SERS) is demonstrated.

  17. Sensitive method of determination of gold (III using diacetyl monoxime isonicotinoyl hydrazone (DMIH

    Directory of Open Access Journals (Sweden)

    Gadikota Chandrasekhar Reddy

    2011-12-01

    Full Text Available Gold (III forms a yellow coloured water soluble complex with diacetyl monoxime isonicotinoyl hydrazone (DMIH reagent in acidic buffer pH 4.5 with ?max at 361 nm. The molar absorptivity and Sandell’s sensitivity are 1.50X10 4 L .mol -1.cm-1 and 0.00333 µg/cm2, respectively .The Beer’s law validity range is 0.985–11.82 µg/mL. The optimum concentration range is 1.97-9.85 µg/mL. Gold (III forms (M:L 1:1 complex with DMIH and stability constant of the complex is 3.263X106. The derivative spectrophotometric determination of Au (III was carried out by measuring peak height method. The developed derivative spectrophotometric method was employed for the determination of gold (III in synthetic alloy samples. The effect of various diverse ions was also studied.

  18. Theoretical and experimental investigations on the nonlinear optical properties of gold(III) dithiolene complexes

    Science.gov (United States)

    Guezguez, I.; Karakas, A.; Iliopoulos, K.; Derkowska-Zielinska, B.; El-Ghayoury, A.; Ranganathan, A.; Batail, P.; Migalska-Zalas, A.; Sahraoui, B.; Karakaya, M.

    2013-11-01

    Degenerate four-wave mixing (DFWM) experiments have been performed to determine the third-order nonlinear optical (NLO) susceptibilities (χ(3)) of gold(III) maleimide dithiolate tetraphenylphosphonium, (PPh4)[Au(midt)2], (Au-P) and gold(III) maleimide dithiolate melamine melaminium hybrid solvate, (C3N6H6)(CNH7+)[Au(midt)2]-·2DMF·2H2O, (Au-Mel). Ab-initio quantum mechanical calculations (time-dependent Hartree-Fock (TDHF) method) of Au-P and Au-Mel have been carried out to compute the electric dipole moment (μ), the dispersion-free and frequency-dependent dipole polarizability (α) and the second hyperpolarizability (γ) values. These theoretical calculations are in good agreement with the experimentally obtained results by the DFWM technique. All the investigations show clearly the effect played by the counter ion on the resulting NLO properties of the two gold complexes.

  19. Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS Studies

    Directory of Open Access Journals (Sweden)

    Ujjwala Gaware

    2012-01-01

    Full Text Available Ecofriendly synthesis of nanoparticles has been inspiring to nanotechnologists especially for biomedical applications. Moreover, anisotropic particle synthesis is an attractive option due to decreased symmetry of such particles often leads to new and unusual chemical and physical behaviour. This paper reports a single-step room-temperature synthesis of gold nanotriangles using a cheap bioresource of reducing and stabilizing agent Piper betle leaf extract. On treating aqueous chloroauric acid solution with Piper betle leaf extract, after 12 hr, complete reduction of the chloroaurate ions was observed leading to the formation of flat and single crystalline gold nanotriangles. These gold nanotriangles can be exploited in photonics, optical coating, optoelectronics, magnetism, catalysis, chemical sensing, and so forth, and are a potential candidate of SERS studies.

  20. Fabrication of High Aspect Ratio Micro-Penning-Malmberg Gold Plated Silicon Trap Arrays

    CERN Document Server

    Narimannezhad, Alireza; Weber, Marc H; Lynn, Kelvin G

    2013-01-01

    Acquiring a portable high density charged particles trap might consist of an array of micro-Penning-Malmberg traps (microtraps) with substantially lower end barriers potential than conventional Penning-Malmberg traps [1]. We report on the progress of the fabrication of these microtraps designed for antimatter storage such as positrons. The fabrication of large length to radius aspect ratio (1000:1) microtrap arrays involved advanced techniques including photolithography, deep reactive ion etching (DRIE) of silicon wafers to achieve through-vias, gold sputtering of the wafers on the surfaces and inside the vias, and thermal compression bonding of the wafers. This paper describes the encountered issues during fabrication and addresses geometry errors and asymmetries. In order to minimize the patch effects on the lifetime of the trapped positrons, the bonded stacks were gold electroplated to achieve a uniform gold surface. We show by simulation and analytical calculation that how positrons confinement time depen...

  1. Impact of Specifically Adsorbing Anions on the Electroless Growth of Gold Nanotubes

    Directory of Open Access Journals (Sweden)

    Falk Muench

    2012-01-01

    Full Text Available Electroless metal deposition on nanochannel-containing templates is a versatile route towards metal nanotubes and nanowires if the plating reaction can be sufficiently controlled. In this study, disulfitoaurate-formaldehyde-based gold plating baths were modified by the addition of halides, pseudohalides, and EDTA. The introduction of specifically adsorbing anions strongly affected the heterogeneously autocatalyzed plating reaction and allowed the regulation of the reaction rate and the product morphology. The new plating baths showed enhanced stability and allowed the synthesis of homogeneous nanotubes of high aspect ratios (>150 in 30 μm thick ion track-etched polymer templates. Depending on the reaction conditions, solid and porous structures consisting of gold nanoparticles of differing size and shape were accessible. The presented strategy offers adapted gold thin films, nanotubes, and nanowires for applications in catalysis or sensing.

  2. Reactivity and resizing of gold nanorods in presence of Cu2+

    Indian Academy of Sciences (India)

    T S Sreeprasad; A K Samal; T Pradeep

    2008-06-01

    Due to the inherent anisotropy of the system, gold nanorods behave differently in comparison to their spherical counterparts. Reactivity of gold nanorods, in presence of cupric ions, was probed in an attempt to understand the chemistry of anisotropic particles. The reaction progresses through a series of intermediates. It can be arrested at any stage to get nanorods of desired dimension and therefore, can be used for their reshaping. The presence or absence of cetyltrimethylammonium bromide (CTAB) on the nanorod surface was found to be determining the site of initiation of the reaction. When a large concentration of CTAB is present in the system, selective etching of the tips of the nanorod occurs and when the nanorods are purified to reduce the amount of CTAB in the solution, the side faces of the nanorod also get reacted. Gold nanorods are converted to particles by further surface reconstructions in a systematic surface specific chemistry.

  3. The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available In our study, graphene oxide is synthesized by Hummers method. And then, carboxylic acid functionalized graphene (graphene-COOH, thiol-functionalized graphene (graphene-SH, and highly dispersive graphene are prepared by chemical modification of respective groups on the graphene surface. Furthermore, we explore a solution-based approach to prepare three differently functionalized graphene-gold composites by one-step chemical reduction of AuCl4 - ions in respective functionalized graphene suspensions, where the gold nanoparticles are deposited on the functionalized graphene surface during their synthesis process. In addition, we compare the influence of surface functionalization on the growth of gold nanoparticles on graphene surface. Transmission electron morphology (TEM and ultraviolet-visible (UV-Vis spectroscopy are employed to study the effect of surface functionalities on AuNPs distribution onto the graphene surface and demonstrate the successful immobilization of AuNPs on graphene surface.

  4. [Intracellular gold content of circulating blood cells using various gold compounds].

    Science.gov (United States)

    Herrlinger, J D; Beress, R; Hecker, U

    1984-01-01

    Evidence on the action mechanisms of gold salts in the treatment of rheumatoid arthritis is still inconclusive. The intracellular localization of the place of action is likely. Therefore not only the serum gold levels but also the intracellular concentration of gold are of special interest. We measured the gold concentration in the serum and in the blood cells after in vitro application of aurothiomalate (Tauredon), gold keratinate (Auro-Detoxin) and triethylphosphine-gold (Ridaura) and in blood samples of patients undergoing these gold salts treatments. Cell-bound concentrations were found to vary extensively as a function of the gold compound used. While no or very little gold was present intracellularly after administration of the 2 parenteral drugs, up to 40% of the circulating gold was found to bind to the cells after administration of the triethylphosphine compound for gastro-intestinal absorption. The red cell concentration was more or less the same as that in the extracellular compartment. Gold apparently accumulated in the white cells, because the cell-bound concentration relative to unit volume was up to 20 times higher than the plasma level. The method used did not offer any information on the actual binding site of gold in white cells, i.e. cytoplasm versus nucleus versus cell membrane.

  5. Gold Fever! Seattle Outfits the Klondike Gold Rush. Teaching with Historic Places.

    Science.gov (United States)

    Blackburn, Marc K.

    This lesson is based on the National Register of Historic Places registration file, "Pioneer Square Historic District," and other sources about Seattle (Washington) and the Klondike Gold Rush. The lesson helps students understand how Seattle exemplified the prosperity of the Klondike Gold Rush after 1897 when news of a gold strike in…

  6. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation.

    Science.gov (United States)

    Bhat, Ravishankar; Sharanabasava, V G; Deshpande, Raghunandan; Shetti, Ullas; Sanjeev, Ganesh; Venkataraman, A

    2013-08-05

    A green chemistry approach to the synthesis of gold nanoparticles using edible mushroom Pleurotus florida (Oyster mushroom) by photo-irradiation method has been attempted. The mixture containing the aqueous gold ions and the mushroom extract was exposed to sunlight; this resulted in the formation of biofunctionalized gold nanoparticles. These nanoparticles were characterized using various techniques like UV-visible spectroscopy; X-ray diffraction studies, Energy dispersive X-ray analysis, Field emission scanning electron microscopy, Atomic force microscopy, Transmission electron microscopy and Fourier transform infrared spectrometry. The obtained biofunctionalized gold nanoparticles showed effective anti-cancer property against four different cancer cell lines A-549 (Human lung carcinoma), K-562 (Human chronic myelogenous leukemia bone marrow), HeLa (Human cervix) and MDA-MB (Human adenocarcinoma mammary gland) and no lethal effect is observed in Vero (African green monkey kidney normal cell) cell lines.

  7. Study of the Agglomeration of 5 to 25nm Gold Nanoparticles as a Function of Viscosity and Ionic Concentration

    Science.gov (United States)

    Stefankiewicz, Adam; Dobbins, Tabbetha

    2013-03-01

    Gold nanoparticles (AuNPs) attached to carcinoma cells and treated with light irradiation are able to convert the light into heat energy, thus killing those cells. In order to get the particles to the affected area, they may be entered into the circulatory system where the environment is highly viscous and comprised of high salt concentrations. This study examines the aggregation behavior of gold nanoparticles under those conditions. Surface charge creates coulombic repulsion between particles. Likewise, highly viscous solutions will prevent aggregation by limiting the rate of transport of gold through the solution. This study examines the aggregation behavior of gold nanopartilces as a function of viscosity (varied using polyethylene glycol). The study also examines the role of excess ions in the solution (varied using 5-Bromo-4-chloro-3-indolyl phosphate disodium salt). The aggregation phenomena was explored using dynamic light scattering for particle size analysis. Early results are presented here.

  8. Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential.

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho; Han, Sung Soo

    2015-12-01

    Sustainable and greener synthesis of intracellular gold nanoparticles using mushroom Flammulina velutipes is reported. Incubation of a mushroom in chloroaurate solution resulted in the synthesis and immobilization of stable gold nanoparticles inside the mushroom mycelia. Transmission electron microscopic (TEM) analysis revealed the presence of gold nanoparticles (⩽20nm) inside the mycelia, primarily on the inner surface of the cell membrane. Inductively coupled plasma-optical emission spectrometry (ICP-OES) revealed that the accumulated gold concentration ranged from 64.4 to 330.5mgkg(-1) dry weight (DW) in the mushroom mycelia. The reduction of Au(3+) ions to Au(0) and stabilization of gold nanoparticles occurred within 1h, and the formation of fcc crystalline gold nanoparticles was confirmed by X-ray diffraction (XRD) analysis. This facile intracellular synthesis of gold nanoparticles by a mushroom without using any toxic chemicals or technologically expensive processes is used as a heterogeneous catalyst in the reduction of organic pollutants methylene blue (MB) and 4-nitrophenol (4NP). The reduction reaction follows pseudo-first order kinetics with a reaction rate constant of 0.0529min(-1) and 0.1236min(-1) for MB and 4NP, respectively. This biological process of biomatrixing of metal nanoparticles for heterogeneous catalytic reactions is simple, nontoxic, environmentally benign, and economically viable compared to the chemical synthetic routes.

  9. Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS

    Institute of Scientific and Technical Information of China (English)

    Sheng Chen; Pengyu Xu; Yue Li; Junfei Xue; Song Han; Weihui Ou; Li Li; Weihai Ni

    2016-01-01

    We report a facile and reproducible approach toward rapid seedless synthesis of single crystalline gold nano-plates with edge length on the order of microns. The reaction is carried out by reducing gold ions with ascorbic acid in the presence of cetyltrimethylammonium bromide (CTAB). Reaction temperature and molar ratio of CTAB/Au are critical for the formation of gold nanoplates in a high yield, which are, respectively, optimized to be 85 °C and 6. The highest yield that can be achieved is 60%at the optimized condition. The synthesis to achieve the microscaled gold nanoplates can be finished in less than 1 h under proper reaction conditions. Therefore, the reported synthesis approach is a time-and cost-effective one. The gold nanoplates were further employed as the surface-enhanced Raman scattering substrates and investigated individually. Interestingly, only those adsorbed with gold nanoparticles exhibit pronounced Raman signals of probe molecules, where a maximum enhancement factor of 1.7 × 107 was obtained. The obtained Raman enhancement can be ascribed to the plasmon coupling between the gold nanoplate and the nanoparticle adsorbed onto it.

  10. Gold/titania composites: An X-ray absorption spectroscopy study on the influence of the reduction method

    Science.gov (United States)

    Meire, Mieke; Tack, Pieter; De Keukeleere, Katrien; Balcaen, Lieve; Pollefeyt, Glenn; Vanhaecke, Frank; Vincze, Laszlo; Van Der Voort, Pascal; Van Driessche, Isabel; Lommens, Petra

    2015-08-01

    The functionalization of titania based materials with noble metal cocatalysts such as gold or platinum is a well known procedure to improve the catalytic activity of these materials in for example the degradation of organic pollutants or CO conversion. Parameters such as cocatalyst load, noble metal particle size and oxidation state influence the efficiency of these materials. We have impregnated a mesoporous titania powder with a gold salt and used different synthesis routes to reduce the gold ions. A structural analysis was performed using electron microscopy and nitrogen sorption. An X-ray absorption near edge structure spectroscopy study, in both high and low resolution, was performed to investigate the influence of the different reduction methods on the oxidation state of the gold atoms. This technique can also provide information on the local environment of the gold atoms and their interaction with the titanium dioxide host. We found that varying the reduction method has a significant impact on the oxidation state of the gold cocatalysts. This lead to varying interactions with the titania support and charging of the gold nanoparticles.

  11. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O;

    2011-01-01

    elucidate the corresponding mode shapes and find that the substrate plays an important role in determining the mode damping. This study demonstrates the need for a plasmonic nano-optics approach to understand the optical excitation and detection mechanisms for the vibrations of plasmonic nanostructures.......We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  12. Ion Chromatography.

    Science.gov (United States)

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  13. Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties.

    Science.gov (United States)

    Stolarczyk, Elżbieta U; Stolarczyk, Krzysztof; Łaszcz, Marta; Kubiszewski, Marek; Maruszak, Wioleta; Olejarz, Wioletta; Bryk, Dorota

    2017-01-01

    Gold nanoparticles conjugated with drug substances are used in diagnostics and therapies. Apart from the combinations involving gold nanoparticles conjugated with drug substances through linkers, a direct bonding is also known. In our paper the example of such a direct bonding between gold nanoparticles and genistein (AuNPs-GE) is presented. This conjugate was obtained in a one-pot synthesis and the formation of AuNPs-GE was monitored in terms of color change and UV-Vis spectroscopy. It has been shown that genistein reduces Au(3+) ions to spherical Au(0) nanocrystallites and acts as a stabilizing agent. The efficiency of the purification of the conjugate from free genistein was controlled by the capillary electrophoresis. Gold nanoparticles are homogeneously shaped and have a narrow range of size from 14 to 33nm and the size of the nanoparticles modified with genistein is around 64.64±0.41nm, as measured by the TEM and DSL techniques, respectively. The zeta potential of the gold nanoparticles modified with genistein is -19.32±0.82mV and suggests a high stability of the nanoparticles and lower toxicity for the normal cells. The identity of genistein on the gold nanoparticles was proved by the electrochemistry, NMR and Raman spectroscopy. The mechanism of the conjugate forming has been proposed. The coverage of gold nanoparticles with genistein 5.09% (m/m) has been calculated from the TGA analysis. Moreover, it has been proved that the obtained conjugate is characterized by a high cytotoxic activity towards cancer cells, as observed in the cell line test.

  14. Colloidal Gold--Collagen Protein Core--Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth.

    Science.gov (United States)

    Xing, Ruirui; Jiao, Tifeng; Yan, Linyin; Ma, Guanghui; Liu, Lei; Dai, Luru; Li, Junbai; Möhwald, Helmuth; Yan, Xuehai

    2015-11-11

    The biogenic synthesis of biomolecule-gold nanoconjugates is of key importance for a broad range of biomedical applications. In this work, a one-step, green, and condition-gentle strategy is presented to synthesize stable colloidal gold-collagen core-shell nanoconjugates in an aqueous solution at room temperature, without use of any reducing agents and stabilizing agents. It is discovered that electrostatic binding between gold ions and collagen proteins and concomitant in situ reduction by hydroxyproline residues are critically responsible for the formation of the core-shell nanoconjugates. The film formed by layer-by-layer assembly of such colloidal gold-collagen nanoconjugates can notably improve the mechanical properties and promote cell adhesion, growth, and differentiation. Thus, the colloidal gold-collagen nanoconjugates synthesized by such a straightforward and clean manner, analogous to a biomineralization pathway, provide new alternatives for developing biologically based hybrid biomaterials toward a range of therapeutic and diagnostic applications.

  15. A simple strategy to fabricate poly (acrylamide-co-alginate)/gold nanocomposites for inactivation of bacteria

    Science.gov (United States)

    Zhang, Yanan; Lou, Zhichao; Zhang, Xiaohong; Hu, Xiaodan; Zhang, Haiqian

    2014-12-01

    A facile and efficient approach to prepare uniform gold nanoparticles (Au NPs) in hybrid hydrogel consisting of acrylamide (AM) and alginate (SA) for antibacterial applications is reported. In this study, reduction of gold ions by acrylamide and alginate (AM-SA) occurred before the polymerization and as-obtained gold colloids are stabilized by AM-SA immediately in the absence of commonly used reducing agents and protective reagents. Via transmittance electron microscopy results, we can conclude that the obtained gold nanoparticles in hydrogel are well dispersed. Furthermore, ultraviolet-visible absorption spectroscopy, Fourier transform infrared and thermogravimetric analysis were used to characterize the structure and composition of the synthetic nanocomposites. Our approach provides well-dispersed nanoparticles around 8 mm in size. It is important to underline that nanoparticle aggregation was not observed during and after gel formation. The prepared Au NPs exhibited remarkable stability in the presence of high pH s, and a range of salt concentrations. Importantly, the hydrogel/gold nanocomposites showed a non-compromised activity to inhibit the growth of a model bacterium, Escherichia coli. With their excellent mechanical behavior, as well as the remained antibacterial activity, the nanocomposites should get various potential applications in the fields of pharmaceutical science and tissue engineering.

  16. Absorption, fluorescence and resonance Rayleigh scattering spectral characteristics of interaction of gold nanoparticle with safranine T

    Institute of Scientific and Technical Information of China (English)

    HE Youqiu; LIU Shaopu; LIU Qin; LIU Zhongfang; HU Xiaoli

    2005-01-01

    The interaction between gold nanoparticle and safranine T (ST) has been studied with resonance Rayleigh scattering (RRS) spectra, absorption and fluorescence spectra. In the pH 5 solution, citrate [(H2L)2-] self-assembles on the surface of positively-charged gold nanoparticle, which results in the [(Au)n(H2L)m]x- complex. In other words, one of carboxylate oxygens in (H2L)2- moves inward and combines with gold nanoparticle. The other carboxylate oxygens moves outward to form a supermolecular complex anion with x negative charges. Then by virtue of electrostatic attraction, hydrophobic force and charge transfer action, the complex anion binds with ST cation to form a new ion-association complex. Here (H2L)2- acts as a bridge. The formation of the complex results in the significant enhancement of RRS intensity, the appearance of new RRS spectrum, the red shift of plasma absorption band of gold nanoparticle as well as the decrease in the absorbance and fluorescence quenching for safranine T. In this work, the interaction between gold nanoparticle and ST on the RRS, absorption and fluorescence spectra has been investigated. The reason why RRS intensity increases greatly and the reaction mechanism have been inquired. The results show that RRS spectra can not only be used to study nanoparticle and reaction product, but also are a sensitive means to characterize and detect nanoparticles.

  17. The Search for Sub-Bandgap Optoelectronic Response in Silicon Hyperdoped with Gold

    Science.gov (United States)

    Mailoa, Jonathan; Akey, Austin; Mathews, Jay; Hutchinson, David; Simmons, Christie; Sullivan, Joseph; Winkler, Mark; Recht, Dan; Persans, Peter; Warrender, Jeffrey; Aziz, Michael; Buonassisi, Tonio

    2013-03-01

    Deep-level dopants have been long known as the lifetime-killer in microelectronic devices. Nevertheless, it has been shown that deep-level donor can facilitate strong absorption of light with energy below the semiconductor bandgap. Due to this strong sub-bandgap absorption, it is possible to engineer silicon devices exhibiting sub-bandgap optoelectronic response, such as silicon-based infrared photodetectors and intermediate-band solar cells. In this work, we show the optoelectronic response of silicon doped with a gold concentration surpassing the equilibrium solubility limit (gold-hyperdoped silicon, Au:Si). We fabricated Au:Si by ion implantation followed by nanosecond pulse laser melting, achieving a gold dopant concentration of over 1019 cm-3. UV-VIS spectrophotometry was performed to measure sub-bandgap light absorption in the Au:Si layer. Our samples with the highest gold concentration have 10-15% absorption of sub-bandgap light. We will present and discuss the sub-bandgap optoelectronic response of this gold-doped silicon.

  18. A simple soft lithographic nanopatterning of gold on gallium arsenide via galvanic displacement.

    Science.gov (United States)

    Lim, Hyuneui; Noh, Jung-Hyun; Choi, Dae-Geun; Kim, Wan-Doo; Maboudian, Roya

    2010-08-01

    Nanoscale patterning of gold layers on GaAs substrate is demonstrated using a combination of soft lithographic molding and galvanic displacement deposition. First, an electroless deposition method has been developed to plate gold on GaAs with ease and cost-effectiveness. The electroless metallization process is performed by dipping the GaAs substrates into a gold salt solution without any reducing agents or additives. The deposition proceeds via galvanic displacement in which gold ions in the aqueous solution are reduced by electrons arising from the GaAs substrate itself. The deposition rate, surface morphology and adhesion property can be modulated by the plating parameters such as the choice of acids and the immersion time. Second, soft lithographic patterning of nanodots, nanorings, and nanolines are demonstrated on GaAs substrates with hard-polydimethylsiloxane (h-PDMS) mold and plasma etching. This method can be easily applied to the metallization and nanopatterning of gold on GaAs surfaces.

  19. Gold nanoparticle growth control - Implementing novel wet chemistry method on silicon substrate

    KAUST Repository

    Al-Ameer, Ammar

    2013-04-01

    Controlling particle size, shape, nucleation, and self-assembly on surfaces are some of the main challenges facing electronic device fabrication. In this work, growth of gold nanoparticles over a wide range of sizes was investigated by using a novel wet chemical method, where potassium iodide is used as the reducing solution and gold chloride as the metal precursor, on silicon substrates. Four parameters were studied: soaking time, solution temperature, concentration of the solution of gold chloride, and surface pre-treatment of the substrate. Synthesized nanoparticles were then characterized using scanning electron microscopy (SEM). The precise control of the location and order of the grown gold overlayer was achieved by using focused ion beam (FIB) patterning of a silicon surface, pre-treated with potassium iodide. By varying the soaking time and temperature, different particle sizes and shapes were obtained. Flat geometrical shapes and spherical shapes were observed. We believe, that the method described in this work is potentially a straightforward and efficient way to fabricate gold contacts for microelectronics. © 2013 IEEE.

  20. RF Sputtering of Gold Contacts On Niobium

    Science.gov (United States)

    Barr, D. W.

    1983-01-01

    Reliable gold contacts are deposited on niobium by combination of RF sputtering and photolithography. Process results in structures having gold only where desired for electrical contact. Contacts are stable under repeated cycling from room temperature to 4.2 K and show room-temperature contact resistance as much as 40 percent below indium contacts made by thermalcompression bonding.

  1. Gold-Collar Workers. ERIC Digest.

    Science.gov (United States)

    Wonacott, Michael E.

    The gold-collar worker has problem-solving abilities, creativity, talent, and intelligence; performs non-repetitive and complex work difficult to evaluate; and prefers self management. Gold-collar information technology workers learn continually from experience; recognize the synergy of teams; can demonstrate leadership; and are strategic thinkers…

  2. Galvanic Synthesis of Hollow Gold Nanoshells

    Science.gov (United States)

    2015-02-01

    pulses in the NIR.2 The advantage of hollow nanoshells over solid gold (Au) or silver (Ag) nanoparticles , or alloys thereof,3 is that the...Karna SP. Synthesis of gold and silver nanoparticles and characterization of structural, optical, and electronic properties. Aberdeen Proving Ground...

  3. 2008: Golden Time in Gold Market

    Institute of Scientific and Technical Information of China (English)

    Guo; Yan

    2008-01-01

      Pushed by increased demand from both jewelers and investors, China has become the drivin, g force behind the world's gold market in 2007. Chinas gold market this year has maintained its growing momentum with booming demand, not only in the domestic market but also in the international market.……

  4. 2008: Golden Time in Gold Market

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Pushed by increased demand from both jewelers and investors, China has become the drivin, g force behind the world's gold market in 2007. Chinas gold market this year has maintained its growing momentum with booming demand, not only in the domestic market but also in the international market.

  5. Sorption Recovery of Gold Thiosulphate Complexes

    Institute of Scientific and Technical Information of China (English)

    A.G.Kholmogorov; O.N.Kononova; 等

    2002-01-01

    The gold sorption from thiosulphate solutions on carbon sorbents and on anion exchangers was studied. It was shown that the anion exchangers AV-17-10P and AP-100 are the most effective and selective at pH=5-8. These anion exchangers can be recommended for the gold recovery from the industrial solutions.

  6. Computational approaches to homogeneous gold catalysis.

    Science.gov (United States)

    Faza, Olalla Nieto; López, Carlos Silva

    2015-01-01

    Homogenous gold catalysis has been exploding for the last decade at an outstanding pace. The best described reactivity of Au(I) and Au(III) species is based on gold's properties as a soft Lewis acid, but new reactivity patterns have recently emerged which further expand the range of transformations achievable using gold catalysis, with examples of dual gold activation, hydrogenation reactions, or Au(I)/Au(III) catalytic cycles.In this scenario, to develop fully all these new possibilities, the use of computational tools to understand at an atomistic level of detail the complete role of gold as a catalyst is unavoidable. In this work we aim to provide a comprehensive review of the available benchmark works on methodological options to study homogenous gold catalysis in the hope that this effort can help guide the choice of method in future mechanistic studies involving gold complexes. This is relevant because a representative number of current mechanistic studies still use methods which have been reported as inappropriate and dangerously inaccurate for this chemistry.Together with this, we describe a number of recent mechanistic studies where computational chemistry has provided relevant insights into non-conventional reaction paths, unexpected selectivities or novel reactivity, which illustrate the complexity behind gold-mediated organic chemistry.

  7. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods Dece

  8. Sesquicentennial: Gold Rush to Golden Statehood.

    Science.gov (United States)

    Sabato, George

    1998-01-01

    Provides an annotated bibliography of educational resources that can be used to support instructional units on the Gold Rush or the sesquicentennial of California's statehood. The materials include workbooks, videos, teacher's guides, monographs, and magazines. Offers a brief history of the Gold Rush and a set of relevant discussion questions.…

  9. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine.

    Science.gov (United States)

    Su, Gaoxing; Yang, Chi; Zhu, Jun-Jie

    2015-01-20

    Hydroxyphenol compounds are often used as reductants in controlling the growth of nanoparticles. Herein, dopamine was used as an effective reductant in seed-mediated synthesis of gold nanorods (GNRs). The as-prepared GNRs (83 × 16 nm) were monodisperse and had a high degree of purity. The conversion ratio from gold ions to GNRs was around 80%. In addition, dopamine worked as an additive. At a very low concentration of hexadecyltrimethylammonium bromide (CTAB; 0.025 M), thinner and shorter GNRs (60 × 9 nm) were successfully prepared. By regulating the concentration of silver ions, CTAB, seeds, and reductant, GNRs with longitudinal surface plasmon resonance (LSPR) peaks ranging from 680 to 1030 nm were synthesized. The growth process was tracked using UV-vis-NIR spectroscopy, and it was found that a slow growth rate was beneficial to the formation of GNRs.

  10. Smart textile device using ion polymer metal compound.

    Science.gov (United States)

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.

  11. Tumor necrosis factor interaction with gold nanoparticles

    Science.gov (United States)

    Tsai, De-Hao; Elzey, Sherrie; Delrio, Frank W.; Keene, Athena M.; Tyner, Katherine M.; Clogston, Jeffrey D.; Maccuspie, Robert I.; Guha, Suvajyoti; Zachariah, Michael R.; Hackley, Vincent A.

    2012-05-01

    We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity.We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis

  12. Enzyme-catalysed deposition of ultrathin silver shells on gold nanorods: a universal and highly efficient signal amplification strategy for translating immunoassay into a litmus-type test.

    Science.gov (United States)

    Yang, Xinjian; Gao, Zhiqiang

    2015-04-25

    On the basis of enzyme-catalysed reduction of silver ions and consequent deposition of ultrathin silver shells on gold nanorods, a highly efficient signal amplification method for immunoassay is developed. For a model analyte prostate-specific antigen, a 10(4)-fold improvement over conventional enzyme-linked immunosorbent assay is accomplished by leveraging on the cumulative nature of the enzymatic reaction and the sensitive response of plasnomic gold nanorods to the deposition the silver shells.

  13. Ordering Gold Nanoparticles with DNA Origami Nanoflowers.

    Science.gov (United States)

    Schreiber, Robert; Santiago, Ibon; Ardavan, Arzhang; Turberfield, Andrew J

    2016-08-23

    Nanostructured materials, including plasmonic metamaterials made from gold and silver nanoparticles, provide access to new materials properties. The assembly of nanoparticles into extended arrays can be controlled through surface functionalization and the use of increasingly sophisticated linkers. We present a versatile way to control the bonding symmetry of gold nanoparticles by wrapping them in flower-shaped DNA origami structures. These "nanoflowers" assemble into two-dimensonal gold nanoparticle lattices with symmetries that can be controlled through auxiliary DNA linker strands. Nanoflower lattices are true composites: interactions between the gold nanoparticles are mediated entirely by DNA, and the DNA origami will fold into its designed form only in the presence of the gold nanoparticles.

  14. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes and dimen......We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  15. Tailored nanoporous gold for ultrahigh fluorescence enhancement.

    Science.gov (United States)

    Lang, X Y; Guan, P F; Fujita, T; Chen, M W

    2011-03-07

    We report molecular fluorescence enhancement of free-standing nanoporous gold in which the nanoporosity can be arbitrarily tailored by the combination of dealloying and electroless gold plating. The nanoporous gold fabricated by this facile method possesses unique porous structures with large gold ligaments and very small pores, and exhibits significant improvements in surface enhanced fluorescence as well as structure rigidity. It demonstrates that the confluence effect of improved quantum yield and excitation of fluorophores is responsible for the large fluorescence enhancement due to the near-field enhancement of nanoporous gold, which arises from the strong electromagnetic coupling between neighboring ligaments and the weakening of plasmon damping of the large ligaments because of the small pore size and large ligament size, respectively.

  16. Magnetically mediated vortexlike assembly of gold nanoshells.

    Science.gov (United States)

    Sun, Jianfei; Dong, Jian; Sun, Dongke; Guo, Zhirui; Gu, Ning

    2012-04-24

    Gold nanoshells currently attract increasing research interests due to the important role in many subjects. For practical applications, random arrangement of the nanoparticles is often unfavored so that the assembly of gold nanoshells is becoming a central issue. We here proposed to utilize time-variant magnetic field to direct the assembly of gold nanoshells. It was discovered that the alternating magnetic field can mediate the vortex-like assembly of gold nanoshells. The mechanism was explored and thought to be relative with the electric field of induction which caused the thermal gradient on the substrate and the electric force. The vortexlike structure as well as the assembly mechanism will play an important role in research and application of gold nanomaterials.

  17. A simple method for energy calibration of heavy-ion beams

    NARCIS (Netherlands)

    Evers, E.J.; Vries, J.W.; Engelbertink, G.A.P.; Leun, C. van der

    1987-01-01

    A method is described for the calibration of analyzing-magnet systems of heavy-ion accelerators. It makes use of resonances in inverse (p, αγ) reactions, i.e. with heavy-ion beams on hydrogen targets. Instead of a gas target we use the very thin hydrogen-containing surface layer on a gold foil, whic

  18. Development of Yttrium alloy ion source and its application in nanofabrication

    CERN Document Server

    Kukharchyk, Nadezhda; Mazarov, Swetlana; Bushev, Pavel; Wieck, Andreas; Mazarov, Paul

    2016-01-01

    We present a new YAuSi Liquid Metal Alloy Ion Source (LMAIS), generating focused ion beams of yttrium ions, and its prospective applications for nanofabrication, sample preparation, lithographic and implantation processes. Working parameters of the AuSiY LMAIS are similar to other gold-silicon based LMAIS. We found anomalously high emission current of triple charged Yttrium ions. Influence of Yttrium implantation on optical qualities of the implanted ion-ensembles is shown in luminescence of co-implanted Erbium ions.

  19. Development of yttrium alloy ion source and its application in nanofabrication

    Science.gov (United States)

    Kukharchyk, Nadezhda; Neumann, Ronna; Mazarov, Swetlana; Bushev, Pavel; Wieck, Andreas D.; Mazarov, Paul

    2016-12-01

    We present a new YAuSi Liquid Metal Alloy Ion Source (LMAIS) generating focused ion beams of yttrium ions, and its prospective applications for nanofabrication, sample preparation, lithographic and implantation processes. Working parameters of the AuSiY LMAIS are similar to other gold-silicon based LMAIS. We found anomalously high emission current of triple charged yttrium ions. Influence of yttrium implantation on optical qualities of the implanted ion-ensembles is shown in luminescence of co-implanted Erbium ions.

  20. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Rute F., E-mail: rdomingos@ipgp.fr [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Carreira, Sara [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Galceran, Josep [Department of Chemistry, University of Lleida and Agrotecnio, Rovira Roure 191, 25198 Lleida (Spain); Salaün, Pascal [School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L693 GP (United Kingdom); Pinheiro, José P. [LIEC/ENSG, UMR 7360 CNRS – Université de Lorraine, 15 Avenue du Charmois, 54500 Vandoeuvre-les-Nancy (France)

    2016-05-12

    The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu{sup 2+}) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration. - Highlights: • AGNES principles are valid at the vibrating gold microwire electrode (VGME). • VGME was successfully employed to quantify free Cu concentrations by using AGNES. • Stability constants of labile systems were in good agreement with predictions.

  1. Gold-silver alloy nanoshells: a new candidate for nanotherapeutics and diagnostics

    Directory of Open Access Journals (Sweden)

    Karmonik Christof

    2011-01-01

    Full Text Available Abstract We have developed novel gold-silver alloy nanoshells as magnetic resonance imaging (MRI dual T 1 (positive and T 2 (negative contrast agents as an alternative to typical gadolinium (Gd-based contrast agents. Specifically, we have doped iron oxide nanoparticles with Gd ions and sequestered the ions within the core by coating the nanoparticles with an alloy of gold and silver. Thus, these nanoparticles are very innovative and have the potential to overcome toxicities related to renal clearance of contrast agents such as nephrogenic systemic fibrosis. The morphology of the attained nanoparticles was characterized by XRD which demonstrated the successful incorporation of Gd(III ions into the structure of the magnetite, with no major alterations of the spinel structure, as well as the growth of the gold-silver alloy shells. This was supported by TEM, ICP-AES, and SEM/EDS data. The nanoshells showed a saturation magnetization of 38 emu/g because of the presence of Gd ions within the crystalline structure with r 1 and r 2 values of 0.0119 and 0.9229 mL mg-1 s-1, respectively (Au:Ag alloy = 1:1. T 1- and T 2-weighted images of the nanoshells showed that these agents can both increase the surrounding water proton signals in the T 1-weighted image and reduce the signal in T 2-weighted images. The as-synthesized nanoparticles exhibited strong absorption in the range of 600-800 nm, their optical properties being strongly dependent upon the thickness of the gold-silver alloy shell. Thus, these nanoshells have the potential to be utilized for tumor cell ablation because of their absorption as well as an imaging agent.

  2. A Chemical-Medical Mystery: Gold Jewelry and Black Marks on Skin

    Science.gov (United States)

    Kebbekus, Barbara B.

    2000-10-01

    Gold jewelry at times makes a black mark or smudge on skin. This may be caused by abrasive powders on the skin (e.g. zinc oxide) but the phenomenon may also be caused by other skin conditions, possibly the presence of chloride ion, acidity, or sulfur-containing amino acids. Some anecdotal evidence is published, but properly designed studies to clarify the actual causes are not available.

  3. Molecular Beam Optical Study of Gold Sulfide and Gold Oxide

    Science.gov (United States)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy

    2016-06-01

    Gold-sulfur and gold-oxygen bonds are key components to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. A major theoretical challenge for describing this bonding is correctly accounting for the large relativistic and electron correlation effects. Such effects are best studied in diatomic, AuX, molecules. Recently, the observed AuS electronic state energy ordering was measured and compared to a simple molecular orbital diagram prediction. Here we more thoroughly investigate the nature of the electronic states of both AuS and AuO from the analysis of high-resolution (FWHM\\cong35MHz) optical Zeeman spectroscopy of the (0,0){B}2Σ--{X}2Π3/2 bands. The determined fine and hyperfine parameters for the {B}2Σ- state of AuO differ from those extracted from the analysis of a hot, Doppler-limited, spectrum. It is demonstrated that the nature of the {B}2Σ- states of AuO and AuS are radically different. The magnetic tuning of AuO and AuS indicates that the {B}2Σ- states are heavily contaminated. Supported by the National Science Foundation under Grant No.1265885. D. L. Kokkin, R. Zhang, T. C. Steimle, I. A. Wyse, B. W. Pearlman and T. D. Varberg, J. Phys. Chem. A., 119(48), 4412, 2015. L. C. O'Brien, B. A. Borchert, A. Farquhar, S. Shaji, J. J. O'Brien and R. W. Field, J. Mol. Spectrosc., 252(2), 136, 2008

  4. Optimization of parameters of a surface-electrode ion trap and experimental study of influences of surface on ion lifetime

    Science.gov (United States)

    Ou, BaoQuan; Zhang, Jie; Zhang, XinFang; Xie, Yi; Chen, Ting; Wu, ChunWang; Wu, Wei; Chen, PingXing

    2016-12-01

    In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.

  5. The 'price' of Olympic Gold.

    Science.gov (United States)

    Hogan, K; Norton, K

    2000-06-01

    In 1981 the Commonwealth Government established the Australian Institute of Sport (AIS). The Australian Sports Commission (ASC) which administers the AIS has 2 objectives: (1) excellence in sports performances; and (2) increased participation in sports and sports activities. State-based institutes of sport have also been established with the same or very similar objectives. Federal policy directs the bulk of the ASC budget to elite athlete programs. A smaller proportion goes towards community participation. The official reason is based on the notion of the 'trickle-down' or 'demonstration' effect. That is, a flow-on of benefits to the broader community in the form of increased participation as a direct result of elite sports success. The aims of this study were to determine the (1) spending pattern to elite sports programs for the 5 Olympics 1976/77 to 1995/96, (2) evidence for the two ASC objectives having been met, and (3) expected medal tally at the 2000 Olympic Games. Results show funding (in 1998 dollars), has accelerated from about $1.2 million (1976/77) to $106 million in (1997/98), particularly since the Games were awarded to Sydney. The total amount spent on elite athletes was $0.918 billion. In the period 1980-96 Australia won 25 gold and 115 total Olympic medals. This equates to approximately $37 million per gold and $8 million per medal in general. There was a significant linear relationship between money spent and total medals won. This was also found when all medal types were analysed independently. The predicted medal tally in 2000 (based on the cost per medal and the expenditure towards Sydney) indicates the medal count will be about 14+/-1 gold, 15+/-2 silver and 33+/-4 bronze. Based on our nation's record of international sporting achievement, there is little doubt we have fulfilled the ASC's first objective. Current data on physical activity patterns of Australians suggest the second objective has not been met. Focusing attention on and achieving

  6. Brightening gold nanoparticles: new sensing approach based on plasmon resonance energy transfer.

    Science.gov (United States)

    Shi, Lei; Jing, Chao; Gu, Zhen; Long, Yi-Tao

    2015-05-11

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F- ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET provides a potential approach for a vitro/vivo sensing with high sensitivity and selectivity.

  7. Origin of the transition voltage in gold-vacuum-gold atomic junctions.

    Science.gov (United States)

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2013-01-18

    The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments.

  8. The giant Jiaodong gold province:The key to a unified model for orogenic gold deposits?

    Institute of Scientific and Technical Information of China (English)

    David I. Groves; M. Santosh

    2016-01-01

    Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially e associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve meta-morphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedi-mentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many other subduction

  9. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  10. Ion focusing

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  11. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    Science.gov (United States)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  12. Cancer theranostics with gold nanoshells.

    Science.gov (United States)

    Zhao, Jun; Wallace, Michael; Melancon, Marites P

    2014-09-01

    Gold nanoshells (AuNSs) present a vivid example of integrating nanoscience in order to solve a biomedical problem. AuNSs exhibit tunable surface plasmon resonance, which can be tuned to the near-infrared region in order to realize optimal tissue penetration. The highly efficient light-to-heat transformation by AuNSs during laser irradiation causes thermal damage to the tumor without damaging healthy organs. Transient nanobubbles can form around AuNSs during laser treatment and induce mechanical stress specifically in tumor cells. AuNSs also serve as a versatile platform for the delivery of various diagnostic and therapeutic agents. In this article, we describe the physicochemical properties of AuNSs in the context of their design, preparation and application in cancer theranostics. Ultimately, we look beyond the current research on AuNSs and discussed future challenges to their successful translation into clinical use.

  13. Accumulation of Gold Nanoparticles in Brassic Juncea

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.T.; Haverkamp, R.G.; Davies, C.E.; Parsons, J.G.; Gardea-Torresdey, J.L.; Agterveld, D.van

    2009-06-03

    Enzymatic digestion is proposed as a method for concentrating gold nanoparticles produced in plants. The mild conditions of digestion are used in order to avoid an increase in the gold particle size, which would occur with a high-temperature process, so that material suitable for catalysis may be produced. Gold nanoparticles of a 5-50-nm diameter, as revealed by transmission electron microscopy (TEM), at concentrations 760 and 1120 ppm Au, were produced within Brassica juncea grown on soil with 22-48 mg Au kg{sup -1}. X-ray absorption near edge spectroscopy (XANES) reveals that the plant contained approximately equal quantities of Au in the metallic (Au{sup 0}) and oxidized (Au{sup +1}) states. Enzymatic digestion dissolved 55-60 wt% of the plant matter. Due to the loss of the soluble gold fraction, no significant increase in the total concentration of gold in the samples was observed. However, it is likely that the concentration of the gold nanoparticles increased by a factor of two. To obtain a gold concentration suitable for catalytic reactions, around 95 wt% of the starting dry biomass would need to be solubilized or removed, which has not yet been achieved.

  14. Accumulation of gold nanoparticles in Brassic juncea.

    Science.gov (United States)

    Marshall, Aaron T; Haverkamp, Richard G; Davies, Clive E; Parsons, Jason G; Gardea-Torresdey, Jorge L; van Agterveld, Dimitri

    2007-01-01

    Enzymatic digestion is proposed as a method for concentrating gold nanoparticles produced in plants. The mild conditions of digestion are used in order to avoid an increase in the gold particle size, which would occur with a high-temperature process, so that material suitable for catalysis may be produced. Gold nanoparticles of a 5-50-nm diameter, as revealed by transmission electron microscopy (TEM), at concentrations 760 and 1120 ppm Au, were produced within Brassica juncea grown on soil with 22-48 mg Au kg(-1). X-ray absorption near edge spectroscopy (XANES) reveals that the plant contained approximately equal quantities of Au in the metallic (Au0) and oxidized (Au+1) states. Enzymatic digestion dissolved 55-60 wt% of the plant matter. Due to the loss of the soluble gold fraction, no significant increase in the total concentration of gold in the samples was observed. However, it is likely that the concentration of the gold nanoparticles increased by a factor of two. To obtain a gold concentration suitable for catalytic reactions, around 95 wt% of the starting dry biomass would need to be solubilized or removed, which has not yet been achieved.

  15. Gold nanoparticles produced in a microalga

    Science.gov (United States)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-12-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40-60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  16. Nature vs. nurture: gold perpetuates "stemness".

    Science.gov (United States)

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  17. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  18. Gel Electrophoresis of Gold-DNA Nanoconjugates

    Directory of Open Access Journals (Sweden)

    T. Pellegrino

    2007-01-01

    Full Text Available Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effective diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.

  19. Alkanetelluroxide-protected gold nanoparticles.

    Science.gov (United States)

    Li, Ying; Silverton, Latoya C; Haasch, Richard; Tong, Yu Ye

    2008-07-15

    The synthesis and characterization of the first air-stable tellurium-containing ligand-protected gold nanoparticles (NPs) are reported. Although the synthesis largely followed the well-known Brust two-phase approach, the starting ligand was dioctyl ditelluride rather than alkanetellurol, which is an analogue of the widely used alkanethiol. Dioctyl ditelluride was used because alkanetellurol is unstable. The 1H and 13C NMR spectra, as well as infrared spectra (IR) of the formed Au NPs, indicated that the Te-Te bond in the starting ligand was broken but the octyl group was intact. This was further corroborated by the solid-state 125Te NMR spectrum that displayed a very broad and significantly downfield-shifted peak, indicating that tellurium was directly bound to the Au core. Furthermore, the O 1s and Te 3d XPS spectra of the Au NPs indicated that the capping ligands were octanetelluroxide. An average particle size of 2.7 nm diameter as measured by transmission electron microscopy (TEM) corresponded to an Au607 core. A two-step weight loss of approximately 22.2% in total was observed in the thermogravimetric analysis, which indicated about 53% ligand monolayer coverage (i.e., Au607(Te(=O)C8H17)133). Additionally, dioctyl ditelluride demonstrated an intriguing reductive power that led to a more sophisticated chemistry of forming the air-stable octanetelluroxide-protected gold NPs. It has been found that (1) when the ratio of Au to Te was about 1.5 a colorless intermediate state similar to Au(I)-SR (the intermediate state widely accepted in the synthesis of thiolate-protected Au NPs) could be obtained and (2) this kind of intermediate state played a key role in the formation of stable Au NPs.

  20. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    Directory of Open Access Journals (Sweden)

    Arunachalam KD

    2013-03-01

    Full Text Available Kantha D Arunachalam, Sathesh Kumar Annamalai, Shanmugasundaram HariCenter for Environmental Nuclear Research, Directorate of Research, SRM University, Chennai, Tamil Nadu, IndiaAbstract: In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production.Keywords: green synthesis, phytochemicals, saponins, nanoparticles, transmission electron microscopy

  1. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum.

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production.

  2. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides.

    Science.gov (United States)

    Yang, Ming; Li, Sha; Wang, Yuan; Herron, Jeffrey A; Xu, Ye; Allard, Lawrence F; Lee, Sungsik; Huang, Jun; Mavrikakis, Manos; Flytzani-Stephanopoulos, Maria

    2014-12-19

    We report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.

  3. Phytomining for Artisanal Gold Mine Tailings Management

    Directory of Open Access Journals (Sweden)

    Baiq Dewi Krisnayanti

    2016-08-01

    Full Text Available Mine tailings are generally disposed of by artisanal and small scale gold miners in poorly constructed containment areas and this leads to environmental risk. Gold phytomining could be a possible option for tailings management at artisanal and small-scale gold mining (ASGM locations where plants accumulate residual gold in their above ground biomass. The value of metal recovered from plants could offset some of the costs of environmental management. Getting gold into plants has been repeatedly demonstrated by many research groups; however, a simple working technology to get gold out of plants is less well described. A field experiment to assess the relevance of the technology to artisanal miners was conducted in Central Lombok, Indonesia between April and June 2015. Tobacco was planted in cyanidation tailings (1 mg/kg gold and grown for 2.5 months before the entire plot area was irrigated with NaCN to induce metal uptake. Biomass was then harvested (100 kg, air dried, and ashed by miners in equipment currently used to ash activated carbon at the end of a cyanide leach circuit. Borax and silver as a collector metal were added to the tobacco ash and smelted at high temperature to extract metals from the ash. The mass of the final bullion (39 g was greater than the mass of silver used as a collector (31 g, indicating recovery of metals from the biomass through the smelt process. The gold yield of this trial was low (1.2 mg/kg dry weight biomass concentration, indicating that considerable work must still be done to optimise valuable metal recovery by plants at the field scale. However, the described method to process the biomass was technically feasible, and represents a valid technique that artisanal and small-scale gold miners are willing to adopt if the economic case is good.

  4. The optical nonlinearity of gold nanoparticles prepared by bioreduction method

    Science.gov (United States)

    Balbuena Ortega, A.; Arroyo Carrasco, M. L.; Gayou, V. L.; Orduña Díaz, A.; Delgado Macuil, R.; Rojas López, Marlon

    2013-11-01

    Nonlinear optical and electronic properties of nanosized metal particles have drawn considerable attention because of their strong and size-dependent plasmon resonance absorption. In a metal nanoparticle system such as gold dispersed in a transparent matrix, an absorption peak due to surface plasmon resonance is usually observed in the visible spectral region. Metal nanoparticles are of special interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearity (χ3) and ultrafast response time. The purpose of this study was to analyze the nonlinear optical properties of biosynthesized gold nanoparticles. The samples were prepared by biosynthesis method using yeast extract as reducing agent and the nonlinear optical properties of the nanoparticles were investigated using a single beam Z-scan technique with a beam power of 20 mW and operated at wavelength of 514 nm. The reaction between metal ions and yeast extracts were monitored by UV-visible spectra of Au nanoparticles in aqueous solution with different pH (3-6). The surface plasmon peak position was shifted from 528 nm to 573 nm, according to of pH variation 4 to 6. The average particle size was calculated by the absorption peak position using the Fernig method, from 42 to 103 nm. The z-scan curves showed a negative nonlocal nonlinear refractive index with a magnitude dependent on the nanoparticle size.

  5. Immobilized papain on gold nanorods as heterogeneous biocatalysts.

    Science.gov (United States)

    Homaei, Ahmad; Barkheh, Hossein; Sariri, Reyhaneh; Stevanato, Roberto

    2014-07-01

    Papain, a thiol protease present in the latex of Carica papaya, is an enzyme which exhibits broad proteolytic activity, and, for this reason, it is utilized in a variety of industrial applications. Immobilization of papain on gold nanoparticles highly preserves its activity and enhances the stability, allowing the reuse of the linked enzyme many times without any significant loss of its catalytic performance. In particular, kcat and KM values remain substantially unchanged, while immobilized form shows a higher activity on a wider pH range retains 80 % residual activity also at 90 °C and shows higher functionality than the free form when incubated for long time (1 h) at 90 °C and at extreme pH values (3 and 12). A higher activity of immobilized papain with respect to the free form in the presence of various bivalent metal ions, known as strong inhibitors of papain, was also found. The reasons of this enhanced stability of gold nanorods immobilized papain are discussed.

  6. Simulations of nonequilibrium warm dense gold produced by ultrafast heating

    Science.gov (United States)

    Holst, B.; Recoules, V.; Torrent, M.; Chen, Z.; Sametoglu, V.; Tsui, Y. Y.; Kirkwood, S. E.; Reid, M.; Mazevet, S.; Ng, A.

    2013-03-01

    The interaction of femtosecond laser pulses with metals produces nonequilibrium states consisting of hot electrons and cold ions. These can last for many picoseconds before relaxing to a thermodynamic equilibrium. Recent experiments using a chirped pulse probe technique provided AC conductivity data of gold at a sufficient time resolution to observe this relaxation process. We developed an ab-initio model that characterizes thermodynamic properties of warm dense matter states in nonequilibrium. Our theoretical scheme combines a standard two temperature model with temperature dependent material parameters and an energy transfer rate that are obtained by means of ab-initio simulations. This enables us to give a prediction for the temperature evolution during the relaxation process. Additionally, we derive the AC conductivity of the nonequilibrium states from our simulations using the Kubo-Greenwood formula. It is used to test our model against measurements. We observe agreement with experiment using an energy relaxation rate, that is smaller than predicted, giving us reason to revisit its determination. We can furthermore provide thermodynamical and structural data of nonequilibrium warm dense gold which are not accessible in experiment.

  7. Nano-imprint gold grating as refractive index sensor

    Science.gov (United States)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2016-05-01

    Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive index sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.

  8. Aggregation and adhesion of gold nanoparticles in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Du Shangfeng, E-mail: s.du@bham.ac.uk; Kendall, Kevin; Toloueinia, Panteha; Mehrabadi, Yasamin; Gupta, Gaurav; Newton, Jill [University of Birmingham, School of Chemical Engineering (United Kingdom)

    2012-03-15

    In applications in medicine and more specifically drug delivery, the dispersion stability of nanoparticles plays a significant role on their final performances. In this study, with the use of two laser technologies, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), we report a simple method to estimate the stability of nanoparticles dispersed in phosphate buffered saline (PBS). Stability has two features: (1) self-aggregation as the particles tend to stick to each other; (2) disappearance of particles as they adhere to surrounding substrate surfaces such as glass, metal, or polymer. By investigating the effects of sonication treatment and surface modification by five types of surfactants, including nonylphenol ethoxylate (NP9), polyvinyl pyrrolidone (PVP), human serum albumin (HSA), sodium dodecyl sulfate (SDS) and citrate ions on the dispersion stability, the varying self-aggregation and adhesion of gold nanoparticles dispersed in PBS are demonstrated. The results showed that PVP effectively prevented aggregation, while HSA exhibited the best performance in avoiding the adhesion of gold nanoparticle in PBS onto glass and metal. The simple principle of this method makes it a high potential to be applied to other nanoparticles, including virus particles, used in dispersing and processing.

  9. Microreactors for Gold Nanoparticles Synthesis: From Faraday to Flow

    Directory of Open Access Journals (Sweden)

    Md. Taifur Rahman

    2014-06-01

    Full Text Available The seminal work of Michael Faraday in 1850s transmuted the “Alchemy of gold” into a fascinating scientific endeavor over the millennia, particularly in the past half century. Gold nanoparticles (GNPs arguably hold the central position of nanosciences due to their intriguing size-and-shape dependent physicochemical properties, non-toxicity, and ease of functionalization and potential for wide range of applications. The core chemistry involved in the syntheses is essentially not very different from what Michael Faraday resorted to: transforming ions into metallic gold using mild reducing agents. However, the process of such reduction and outcome (shapes and sizes are intricately dependent on basic operational parameters such as sequence of addition and efficiency of mixing of the reagents. Hence, irreproducibility in synthesis and maintaining batch-to-batch quality are major obstacles in this seemingly straightforward process, which poses challenges in scaling-up. Microreactors, by the virtue of excellent control over reagent mixing in space and time within narrow channel networks, opened a new horizon of possibilities to tackle such problems to produce GNPs in more reliable, reproducible and scalable ways. In this review, we will delineate the state-of-the-art of GNPs synthesis using microreactors and will discuss in length how such “flask-to-chip” paradigm shift may revolutionize the very concept of nanosyntheses.

  10. 16 CFR 23.4 - Misrepresentation as to gold content.

    Science.gov (United States)

    2010-01-01

    ..., weight ratio, or manner of application of any gold or gold alloy plating, covering, or coating on any... product unless such product or part contains a surface-plating of gold alloy, applied by any process...-plating of gold alloy applied by a mechanical process and of such thickness and extent of surface...

  11. 33 CFR 13.01-10 - Gold and silver bars.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  12. Gold Photoluminescence Wavelength and Polarization Engineering

    CERN Document Server

    Andersen, Sebastian K H; Bozhevolnyi, Sergey I

    2016-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we develop a simple model that faithfully reproduces all features observed in our experiments showing also good quantitative agreement for the PL enhancement

  13. Resonance scattering spectroscopy of gold nanoparticle

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gold nanoparticles in diameter of 10-95 nm have been prepared by Frens procedure, all of which exhibit a resonance scattering peak at 580 nm. The mechanism of resonance scattering for gold nanoparticle has been considered according to the wave motion theory of nanoparticle in liquid. The principle of superamolecular interface energy band(SIEB) has been set up and utilized to explain the relationship between the diameter and colors for gold nanoparticle in liquid. A novel spectrophotometric ruler for the determination of the diameter has been proposed according to the relationship of the maximum absorption wavelength and diameter.

  14. The giant Kalgoorlie Gold Field revisited

    Directory of Open Access Journals (Sweden)

    Noreen Mary Vielreicher

    2016-05-01

    Direct timing constraints on gold mineralization indicate that Fimiston- and Mt Charlotte-style mineralization formed within a relative short period of time around 2.64 Ga, and, as such, support a model of progressive deformation of a rheologically heterogeneous rock package late in the structural history. Fluid characteristics, combined with the structural, metamorphic and absolute timing, support description of gold mineralization at the Golden Mile as orogenic and mesozonal, and this allows direct correlation with orogenic gold deposits worldwide, which classically formed during accretion along convergent margins throughout Earth history.

  15. Gold in the past, today and future

    OpenAIRE

    Rudolf, R; Anžel, M.; Marković, E.; M. Čolić; D. Stamenković

    2012-01-01

    This paper deals with gold, which is described as a chemical element. Special attention is paid to its physical-chemical properties and, furthermore, where or in what form it can be found in nature. We discuss the role it has played through history and we inform how gold has been developed to the level it has reached today’s value. Still more, when gold is broken into nanoparticles, this form could be highly useful for a wide range of processes, including general nanotechnology, electronics m...

  16. Gold versus stock investment: An econometric analysis

    Directory of Open Access Journals (Sweden)

    Martin Surya Mulyadi

    2012-06-01

    Full Text Available It is important to have a portfolio in investment to diversify the investment to different kinds of instruments. Based on previous research, it is concluded that gold is a good portfolio diversifier, a hedge against stock and safe haven in extreme stock market condition. As an investment instrument, stock is exposed to macroeconomic risks and global stock market risks. In this research, we conduct a comparison between the stock investment and gold investment by using the probit econometric model and data from 1997 to 2011. The final result obtained from the model shows that the gold investment is more advantageous than the stock investment.

  17. Designing hollow nano gold golf balls.

    Science.gov (United States)

    Landon, Preston B; Mo, Alexander H; Zhang, Chen; Emerson, Chris D; Printz, Adam D; Gomez, Alan F; DeLaTorre, Christopher J; Colburn, David A M; Anzenberg, Paula; Eliceiri, Matthew; O'Connell, Connor; Lal, Ratnesh

    2014-07-09

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure.

  18. Bio-fabrication of gold nanoparticles using aqueous extract of red tomato and its use as a colorimetric sensor

    Science.gov (United States)

    Barman, Gadadhar; Maiti, Swarnali; Laha, Jayasree Konar

    2013-04-01

    In this work, we report a green method for the synthesis of gold nanoparticles (GNP) using the aqueous extract of red tomato ( Lycopersicon esculentum). We believe that citric acid and ascorbic acid present in tomato juice are responsible for the reduction of gold ions. This biosynthesized GNP in the presence of sodium dodecyl sulfate has been used as a colorimetric sensor to detect and estimate the pesticide, methyl parathion. The GNP in the presence of methyl parathion shows a new peak at 400 nm due to the formation of 4-nitrophenolate ion by catalytic hydrolysis of methyl parathion in alkaline medium. A calibration curve between the absorption coefficients of the 400-nm peak versus the concentration of the pesticide allows the quantitative estimation of the 4-nitrophenolate ion, thereby enabling indirect estimation of methyl parathion present in the system.

  19. Separation and enrichment of gold(III) from environmental samples prior to its flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Senturk, Hasan Basri; Gundogdu, Ali [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 28049 Giresun (Turkey); Duran, Celal [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Arts and Sciences, Pamukkale University, 20020 Denizli (Turkey); Tufekci, Mehmet [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-10-22

    A simple and accurate method was developed for separation and enrichment of trace levels of gold in environmental samples. The method is based on the adsorption of Au(III)-diethyldithiocarbamate complex on Amberlite XAD-2000 resin prior to the analysis of gold by flame atomic absorption spectrometry after elution with 1 mol L{sup -1} HNO{sub 3} in acetone. Some parameters including nitric acid concentration, eluent type, matrix ions, sample volume, sample flow rate and adsorption capacity were investigated on the recovery of gold(III). The recovery values for gold(III) and detection limit of gold were greater than 95% and 16.6 {mu}g L{sup -1}, respectively. The preconcentration factor was 200. The relative standard deviation of the method was <6%. The adsorption capacity of the resin was 12.3 mg g{sup -1}. The validation of the presented procedure was checked by the analysis of CRM-SA-C Sandy Soil certified reference material. The presented procedure was applied to the determination of gold in some environmental samples.

  20. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  1. Uptake and recovery of gold by immobilized persimmon tannin.

    Science.gov (United States)

    Nakajima, A; Sakaguchi, T

    1993-01-01

    Some attempts were made to recover gold from aqueous systems using immobilized persimmon tannin. This adsorbent adsorbed gold from solutions containing hydrogen tetrachloroaurate (III) with high efficiency, whereas there was minimal adsorption from solutions containing gold(I) sodium thiomalate and sodium dicyanoaurate(I). The adsorption of gold was rapid, and was affected by the pH of the solution, temperature, external gold concentration and amount of adsorbent. Adsorbed gold was easily desorbed with 1 mol dm-3 thiourea solution, indicating that immobilized persimmon tannin can be repeatedly re-used for the recovery of gold using adsorption-desorption cycles.

  2. Mechanism of glucose electrochemical oxidation on gold surface

    KAUST Repository

    Pasta, Mauro

    2010-08-01

    The complex oxidation of glucose at the surface of gold electrodes was studied in detail in different conditions of pH, buffer and halide concentration. As observed in previous studies, an oxidative current peak occurs during the cathodic sweep showing a highly linear dependence on glucose concentration, when other electrolyte conditions are unchanged. The effect of the different conditions on the intensity of this peak has stressed the limitations of the previously proposed mechanisms. A mechanism able to explain the presence of this oxidative peak was proposed. The mechanism takes into account ion-sorption and electrochemical adsorption of OH-, buffer species (K2HPO4/KH2PO4) and halides. © 2010 Elsevier Ltd. All rights reserved.

  3. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    Science.gov (United States)

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; Park, J. B.; Rodriguez, J. A.; Stacchiola, D. J.; Senanayake, S. D.

    2016-08-01

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. Starting with a well-ordered Au(111) surface we prepared by ion sputtering gold surfaces modified by pits, used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with defined defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.

  4. Biomedical Applications of DNA-Conjugated Gold Nanoparticles.

    Science.gov (United States)

    Wang, Chun-Chi; Wu, Shou-Mei; Li, Hung-Wen; Chang, Huan-Tsung

    2016-06-16

    Gold nanoparticles (AuNPs) are useful for diagnostic and biomedical applications, mainly because of their ease in preparation and conjugation, biocompatibility, and size-dependent optical properties. However, bare AuNPs do not possess specificity for targets. AuNPs conjugated with DNA aptamers offer specificity for various analytes, such as proteins and small molecules/ions. Although DNA aptamers themselves have therapeutic and target-recognizing properties, they are susceptible to degradation in vivo. When DNA aptamers are conjugated to AuNPs, their stability and cell uptake efficiency both increase, making aptamer-AuNPs suitable for biomedical applications. Additionally, drugs can be efficiently conjugated with DNA aptamer-AuNPs to further enhance their therapeutic efficiency. This review focuses on the applications of DNA aptamer-based AuNPs in several biomedical areas, including anticoagulation, anticancer, antibacterial, and antiviral applications.

  5. Size evolution of gold nanoparticles in a millifluidic reactor.

    Science.gov (United States)

    Li, Yuehao; Sanampudi, Ashwin; Raji Reddy, Vanga; Biswas, Sanchita; Nandakumar, Krishnaswamy; Yemane, Dawit; Goettert, Jost; Kumar, Challa S S R

    2012-01-16

    The size evolution of gold nanoparticles in a millifluidic reactor is investigated using spatially resolved transmission electron microscopy (TEM). The experimental data is supported by numerical simulations, carried out to study the residence-time distribution (RTD) of tracers that have the same properties as Au ions. Size and size distribution of the particles within the channels are influenced by the mixing zones as well as the RTD. However, the Au nanoparticles obtained show a broader size distribution even at the shortest investigated residence time of 3.53 s, indicating that in addition to surface growth reaction kinetics also plays an important role. The comparison of time resolved particle growth within the millifluidic channel with flask-based reactions reveals that the particle size can be controlled better within millifluidic channels. Overall, the results indicate potential opportunities to utilize easy to fabricate millifluidic reactors for the synthesis of nanoparticles, as well as as for carrying out time resolved kinetic studies.

  6. Channeling motion of gold nanospheres on a rippled glassed surface

    Science.gov (United States)

    Gnecco, Enrico; Nita, Pawel; Casado, Santiago; Pimentel, Carlos; Mougin, Karine; Caterina Giordano, Maria; Repetto, Diego; Buatier de Mongeot, Francesco

    2014-12-01

    Gold nanospheres have been manipulated by atomic force microscopy on a rippled glass surface produced by ion beam sputtering and coated with an ultrathin (10 nm thick) graphitic layer. This substrate is characterized by irregular wavy grooves running parallel to a preferential direction. Measurements in ambient conditions show that the motion of the nanoparticles is confined to single grooves (‘channels’), along which the particles move till they are trapped by local bottlenecks. At this point, the particles cross the ripple pattern in a series of consecutive jumps and continue their longitudinal motion along a different channel. Moreover, due to the asymmetric shape of the ripple profiles, the jumps occur in the direction of minimum slope, resembling a ratchet mechanism. Our results are discussed, extending a collisional model, which was recently developed for the manipulation of nanospheres on flat surfaces, to the specific geometry of this problem.

  7. Thumb Imprint Based Detection of Hyperbilirubinemia Using Luminescent Gold Nanoclusters

    Science.gov (United States)

    Basu, Srestha; Sahoo, Amaresh Kumar; Paul, Anumita; Chattopadhyay, Arun

    2016-12-01

    Early and easy detection of diseases, using point-of-care and inexpensive devices, not only provides option for early treatment but also reduces the risk of propagation. Herein we report the fabrication of a robust film based luminescence indicator of bilirubin, which can indicate hyperbilirubinemia through the thumb imprint of the patient. The UV-light induced luminescence intensity of the film, made out of chitosan stabilised gold (Au) nanoclusters, which was effectively quenched in the presence of Cu2+ ions, recovered in the presence of bilirubin from skin or blood serum. Moreover, the sensitivity of detection of bilirubin was tuneable with the amount of Cu2+ added, thereby facilitating the detection of the desired concentration range of bilirubin.

  8. Tuning the characteristics of electrochemically fabricated gold nanowires.

    Science.gov (United States)

    Karim, S; Ensinger, W; Cornelius, T W; Khan, E U; Neumann, R

    2008-11-01

    We have developed different electrochemical procedures for the production of gold nanowires with variable and controllable crystallographic and morphological properties using etched ion track templates. The texture of the nanowires is tuned by the variation of the electrodeposition parameters. Potentiostatic plating at low overvoltage provides strongly (110) textured wires for diameters below 100 nm. With the increase in diameter above 100 nm, this texture decreases and the signal from ({111} planes becomes more pronounced. Under reverse pulse deposition conditions, (100) textured wires are generated. The growth mechanism is discussed in detail in terms of the surface energy minimum principle. In addition, wires are shaped in a reliable way from cylindrical to conical geometry by engineering the pore structure in the template.

  9. Source Strata of Gold in Western Guangdong—Their Identification and Significance in Gold Mineralization

    Institute of Scientific and Technical Information of China (English)

    陆建军; 吴劲薇; 等

    1995-01-01

    Strata of different geological periods extensively outcrop in western Guang-dong Province, but most gold deposits are restricted to the Middle-Late Proterozoic Yunkai Group and the Cambrian Bacun Group,showing obvious strata-boun character-istics .Gold abundance and trace element geochemistry of the Yunkai and Bacun Groups are compared with those of the Ordovician and Silurian strta.The Yunkai Group is considered to be the source strata for gold mineralization in the region.

  10. 从浮选尾矿中回收含金黄铁矿实践%Reclamation of pyrite containing gold from gold floatation tailings

    Institute of Scientific and Technical Information of China (English)

    朱飞; 赵建伟; 王艳慧; 石凤野; 唐彦臣

    2012-01-01

    对河南金源金矿浮选尾矿采用螺旋溜槽粗选、摇床精选重选工艺进行二次回收,得到含金硫精矿,取得了较好的经济效益,每年可为企业获得约1 660万元利润.%Nowadays, cyanidation method is still the most important method for gold leaching from ore in commercial production. The commercial methods to recover gold from pregnant solution or slurry of cyanidation are zinc powder displacement, activated carbon adsorption, ion-exchange and electrodeposition; while the dissolvent leaching and liquid membrane methods are still in research. The paper discusses the progress, application, research and choosing of the mentioned recovery methods.

  11. Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens.

    Science.gov (United States)

    Velmurugan, Palanivel; Iydroose, Mahudunan; Lee, Sang-Myung; Cho, Min; Park, Jung-Hee; Balachandar, Vellingiri; Oh, Byung-Taek

    2014-06-01

    This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag(+) ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5-20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.

  12. Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

    OpenAIRE

    Abyaneh, Majid K; Pietro Parisse; Loredana Casalis

    2016-01-01

    Herein, we present the formation of gold nanorods (GNRs) on novel gold–poly(methyl methacrylate) (Au–PMMA) nanocomposite substrates with unprecedented growth control through the polymer molecular weight (Mw) and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of poly...

  13. Structural controls on Carlin-type gold mineralization in the gold bar district, Eureka County, Nevada

    Science.gov (United States)

    Yigit, O.; Nelson, E.P.; Hitzman, M.W.; Hofstra, A.H.

    2003-01-01

    The Gold Bar district in the southern Roberts Mountains, 48 km northwest of Eureka, Nevada, contains one main deposit (Gold Bar), five satellite deposits, and other resources. Approximately 0.5 Moz of gold have been recovered from a resource of 1,639,000 oz of gold in Carlin-type gold deposits in lower plate, miogeoclinal carbonate rocks below the Roberts Mountains thrust. Host rocks are unit 2 of the Upper Member of the Devonian Denay Formation and the Bartine Member of the McColley Canyon Formation. Spatial and temporal relations between structures and gold mineralization indicate that both pre-Tertiary and Tertiary structures were important controls on gold mineralization. Gold mineralization occurs primarily along high-angle Tertiary normal faults, some of which are reactivated reverse faults of Paleozoic or Mesozoic age. Most deposits are localized at the intersection of northwest- and northeast-striking faults. Alteration includes decalcification, and to a lesser extent, silicification along high-angle faults. Jasperoid (pervasive silicification), which formed along most faults and in some strata-bound zones, accounts for a small portion of the ore in every deposit. In the Gold Canyon deposit, a high-grade jasperoid pipe formed along a Tertiary normal fault which was localized along a zone of overturned fault-propagation folds and thrust faults of Paleozoic or Mesozoic age.

  14. Electrical immunosensor based on a submicron-gap interdigitated electrode and gold enhancement.

    Science.gov (United States)

    Ahn, Junhyoung; Lee, Tae Han; Li, Taihua; Heo, Kwang; Hong, Seunghun; Ko, Jeongheon; Kim, Yongsam; Shin, Yong-Beom; Kim, Min-Gon

    2011-08-15

    We demonstrated that the detection of human interleukin 5 (IL5) with a higher sensitivity than the enzyme-linked immunosorbent assay (ELISA) was possible using mass-producible submicron-gap interdigitated electrodes (IDEs) combined with signal amplification by a gold nanoparticle (AuNP) and gold enhancement. IDEs, facing comb-shape electrodes, can act as simple and miniaturized devices for immunoassay. An IDE with a gap size of 400nm was fabricated by a stepper photolithography process and was applied for the immunoassay of human IL5. A biotinylated anti-human IL5 was immobilized on the streptavidin-modified IDE, and biotin-bovine serum albumin (BSA) and BSA were added sequentially to reduce non-specific binding between the streptavidin-immobilized IDE surface and other proteins. The immunoassay procedure included three main steps: the reaction of human IL5 to form antigen-antibody complexes, the binding of AuNP conjugation with an antibody against human IL5 for the sandwich immunoassay, and gold enhancement for electrical signal amplification. The measurement of electrical current at each step showed that the gold enhancement step was very critical in detection of the concentration of human IL5. Analysis by scanning electron microscope (SEM) showed that close to 1μm particles were formed from 10nm AuNP by the gold enhancement reaction using gold ions and hydroxylamine. Under optimized conditions, human IL5 could be analyzed at 1pgmL(-1) with a wide dynamic range (from 10(-3) to 100ngmL(-1) concentrations).

  15. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Banu, Khaleda, E-mail: kbanu@ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States); Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Shimura, Takayoshi [Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University (Japan); Sadeghi, Saman, E-mail: samsadeghi@mednet.ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States)

    2015-01-01

    Highlights: • Selective detection of gold at non-conducting (NC) polymer modified electrode. • Mimosa tannin oxidized on glassy carbon electrode surface as NC polymeric film. • Permselective diffusion and mediated electron transfer at NC electrode surface. • Chemical recovery of gold is due to the reducing ability of the NC polymeric film. • Adsorption capacity of Au(III) on carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. - Abstract: A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl{sub 4}, and the electrochemical reduction of HAuCl{sub 4} to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl{sub 4} along with FeCl{sub 3} and/or CuCl{sub 2}, the NCPF remained selective toward the electrochemical reduction of HAuCl{sub 4} into the metallic state. The chemical reduction of HAuCl{sub 4} into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes.

  16. Critical View on Electrochemical Impedance Spectroscopy Using the Ferri/Ferrocyanide Redox Couple at Gold Electrodes.

    Science.gov (United States)

    Vogt, Stephan; Su, Qiang; Gutiérrez-Sánchez, Cristina; Nöll, Gilbert

    2016-04-19

    Electrochemical or faradaic impedance spectroscopy (EIS) using the ferri/ferrocyanide couple as a redox probe at gold working electrodes was evaluated with respect to its ability to monitor consecutive surface modification steps. As a model reaction, the reversible hybridization and dehybridization of DNA was studied. Thiol-modified single stranded DNA (ssDNA, 20 bases, capture probe) was chemisorbed to a gold electrode and treated with a solution of short thiols to release nonspecifically adsorbed DNA before hybridization with complementary ssDNA (20 bases, target) was carried out. Reversible dehybridization was achieved by intense rinsing with pure water. The experimental procedures were optimized by kinetic surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) measurements to maximize the increase in reflectivity or decrease in frequency upon hybridization before hybridization/dehybridization was also monitored by EIS. In contrast to SPR and QCM-D, repeatable EIS measurements were not possible at first. Combined SPR/EIS and QCM-D/EIS measurements revealed that during EIS the gold surface is seriously damaged due to the presence of CN(-) ions, which are released from the ferri/ferrocyanide redox probe. Even at optimized experimental conditions, etching the gold electrodes could not be completely suppressed and the repeatability of the EIS measurements was limited. In three out of four experimental runs, only two hybridization/dehybridization steps could be monitored reversibly by EIS. Thereafter etching the gold electrode significantly contributed to the EIS spectra whereas the QCM-D response was still repeatable. Hence great care has to be taken when this technique is used to monitor surface modification at gold electrodes.

  17. Interaction of Saccharomyces cerevisiae with gold: toxicity and accumulation.

    Science.gov (United States)

    Karamushka, V I; Gadd, G M

    1999-12-01

    This paper examines the effects of ionic gold on Saccharomyces cerevisiae, as determined by long-term (growth in gold-containing media) and short-term interactions (H+ efflux activity). An increasing gold concentration inhibited growth and at gold concentration used. Both Ca and Mg enhanced the inhibitory effect of gold on the yeast cells with Ca showing a stronger inhibitory effect than Mg.

  18. Gold revolution--gold nanoparticles for modern medicine and surgery.

    Science.gov (United States)

    Rippel, Radoslaw A; Seifalian, Alexander M

    2011-05-01

    Nanotechnology is a new and exciting branch of science which offers enormous potential for development of medicine and surgery. Gold nanoparticles (GNP) is just one of a variety of nano products which will be available for physician of the future. GNP will give us more effective treatments and diagnosis. We are able to conjugate GNP with peptides, drugs, and other molecules to gain astonishing effects. High quality, non-invasive imaging will inevitably lead to astonishing accuracy diagnostic tools with effective use during surgery. The same principles may be used in the future for drug delivery and thermal treatment of cancer. Detailed DNA detection and regulation may become everyday use technology, in medicine with support from GNP based tools. Bacterial diagnostics and nerve repair are relatively poorly researched areas of application of GNP with possibly astonishing therapeutic effects. Non-invasive clearance of arteriosclerotic plagues with GNP shows a great prospect for further development of minimally invasive surgery. However, before all of those tools will become available for clinicians, in depth toxicology research as well as transitional research and design have to be done to ensure safe clinical practice with maximal benefit for patients.

  19. Preparation of Gold Nanoparticles Protected with Polyelectrolyte

    Institute of Scientific and Technical Information of China (English)

    Xu Ping SUN; Zhe Ling ZHANG; Bai Lin ZHANG; Xian Dui DONG; Shao Jun DONG; Er Kang WANG

    2003-01-01

    Gold nanoparticles were synthesized through the reduction of tetrachlorauric acid (HAuCl4) by NaBH4, with polyethyleneimine(PEI) as stabilizer. The nanoparticles were characterized by UV-vis spectroscopy and atomic force microscopy(AFM).

  20. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...... efficiency of Au-based catalysts. Finally, our theoretical simulations allow us to discuss the selectivity of supported Au nanoparticles....

  1. Epithermal Gold Mineralization in Chinese Tianshan Province

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Tianshan is a part of the complex system of orogenic belts of Phanerozoic in Central Asia. In the northwestern Chinese Tianshan, Borohoro range, the major metallogenic belt in this area is situated between the Yili block and Keguqinshan-Sairim uplift. The intra-arc basins resulting from southward subduction of the Junggar plate and accompanying volcanism are the essential factors for the formation of the hydrothermal system that caused gold mineralization. The adularia-sericite-style epithermal Arxi gold deposit formed in an extensional tectonic setting. In the eastern Tianshan, post-orogenic magmatism resulted in a hydrothermai system that produced the epithermai Xitan gold deposit. Both gold deposits are related to local extensional setting, although differences exist in their timing and location.

  2. Adsorption-induced restructuring of gold nanochains

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Lopez, Nuria; Nørskov, Jens Kehlet;

    2002-01-01

    The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly...

  3. Gold in the past, today and future

    Directory of Open Access Journals (Sweden)

    R. Rudolf

    2012-04-01

    Full Text Available This paper deals with gold, which is described as a chemical element. Special attention is paid to its physical-chemical properties and, furthermore, where or in what form it can be found in nature. We discuss the role it has played through history and we inform how gold has been developed to the level it has reached today’s value. Still more, when gold is broken into nanoparticles, this form could be highly useful for a wide range of processes, including general nanotechnology, electronics manufacturing and the synthesizing of different functional materials. It is important that we know that gold is also used in industry in many engineering applications (contacts in micro-electronics and medicine (dental alloys, implants.

  4. Is Farmland As Good As Gold?

    Directory of Open Access Journals (Sweden)

    Marvin J. Painter

    2011-01-01

    Full Text Available An analysis of Canadian farmland risk and its return on investment shows that a Farmland Real Estate Investment Trust (F-REIT and gold would have significantly enhanced portfolio performance over the past 35 years. Investors who desire low-risk portfolios would not have benefited from an F-REIT or gold investment. However, investors in the medium-risk category could have improved the financial performance of their portfolios by including an F-REIT investment rather than gold. The financial gains from F-REIT result from a level of risk that is lower than gold, REITs, and stocks, an expected yield that is greater than for bonds, and a low correlation with other financial asset returns.

  5. Alaska gold rush trails study: Preliminary draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Preliminary study draft, with maps, of seven gold rush trails in Alaska, to determine suitability for inclusion in the National Scenic Trails system and their...

  6. Analysis on the Impact of the Fluctuation of the International Gold Prices on the Chinese Gold Stocks

    Directory of Open Access Journals (Sweden)

    Jiankang Jin

    2014-01-01

    Full Text Available Five gold stocks in Chinese Shanghai and Shenzhen A-share and Comex gold futures are chosen to form the sample, for the purpose of analysing the impact of the fluctuation of the international gold prices on the gold stocks in Chinese Shanghai and Shenzhen A-share. Using the methods of unit root test, Granger causality test, VAR model, and impulse response function, this paper has analysed the relationship between the price change of the international gold futures and the price fluctuation of gold stocks in Chinese Shanghai and Shenzhen comprehensively. The results suggest the fluctuation of the international gold futures has a strong influence on the domestic futures.

  7. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sohyun [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); Cha, Song-Hyun [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Inyoung [School of Civil, Environmental and Architecture Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Park, Soomin [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Yohan [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); Cho, Seonho [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2016-01-01

    This study focused on the preparation of resveratrol nanocarrier systems and the evaluation of their in vitro antibacterial activities. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) for resveratrol nanocarrier systems were synthesized using green synthetic routes. During the synthesis steps, resveratrol was utilized as a reducing agent to chemically reduce gold and silver ions to AuNPs and AgNPs. This system provides green and eco-friendly synthesis routes that do not involve additional chemical reducing agents. Resveratrol nanocarriers with AuNPs (Res-AuNPs) and AgNPs (Res-AgNPs) were observed to be spherical and to exhibit characteristic surface plasmon resonance at 547 nm and at 412–417 nm, respectively. The mean size of the nanoparticles ranged from 8.32 to 21.84 nm, as determined by high-resolution transmission electron microscopy. The face-centered cubic structure of the Res-AuNPs was confirmed by high-resolution X-ray diffraction. Fourier-transform infrared spectra indicated that the hydroxyl groups and C=C in the aromatic ring of resveratrol were involved in the reduction reaction. Res-AuNPs retained excellent colloidal stability during ultracentrifugation and re-dispersion, suggesting that resveratrol also played a role as a capping agent. Zeta potentials of Res-AuNPs and Res-AgNPs were in the range of − 20.58 to − 48.54 mV. Generally, against Gram-positive and Gram-negative bacteria, the Res-AuNPs and Res-AgNPs exhibited greater antibacterial activity compared to that of resveratrol alone. Among the tested strains, the highest antibacterial activity of the Res-AuNPs was observed against Streptococcus pneumoniae. The addition of sodium dodecyl sulfate during the synthesis of Res-AgNPs slightly increased their antibacterial activity. These results suggest that the newly developed resveratrol nanocarrier systems with metallic nanoparticles show potential for application as nano-antibacterial agents with enhanced activities. - Highlights

  8. PIXE analysis of Trojan gold jewelry

    Science.gov (United States)

    Swann, C. P.; Betancourt, P. P.; Fleming, S.; Floyd, C. R.

    1997-07-01

    Technological advancements in the production of gold jewelry from the Troad in northwest Anatolia in the third millennium BC are investigated by PIXE. Results indicate a higher percentage of Cu at the interface between joined pieces of gold than exists elsewhere on the jewelry, away from joinings. The results indicate the probable use of copper salts as a flux in the manufacture of jewelry with granulation.

  9. Radiochemical separation of gold by amalgam exchange

    Science.gov (United States)

    Ruch, R.R.

    1970-01-01

    A rapid and simple method for the radiochemical separation of gold after neutron activation. The technique is based on treatment with a dilute indium-gold amalgam, both chemical reduction and isotopic exchange being involved. The counting efficiency for 198Au in small volumes of the amalgam is good. Few interferences occur and the method is applicable to clays, rocks, salts and metals. The possibility of determining silver, platinum and palladium by a similar method is mentioned. ?? 1970.

  10. Silver and gold-catalyzed multicomponent reactions

    Directory of Open Access Journals (Sweden)

    Giorgio Abbiati

    2014-02-01

    Full Text Available Silver and gold salts and complexes mainly act as soft and carbophilic Lewis acids even if their use as σ-activators has been rarely reported. Recently, transformations involving Au(I/Au(III-redox catalytic systems have been reported in the literature. In this review we highlight all these aspects of silver and gold-mediated processes and their application in multicomponent reactions.

  11. Size Selective Green Synthesis of Silver and Gold Nanoparticles: Enhanced Antibacterial Efficacy of Resveratrol Capped Silver Sol.

    Science.gov (United States)

    Shukla, Shashi P; Roy, Mainak; Mukherjee, Poulomi; Das, Laboni; Neogy, Suman; Srivastava, Dinesh; Adhikari, Soumyakanti

    2016-03-01

    In view of potential biomedical application of the noble metal nanoparticles, we report a size controlled yet simple and green synthesis of resveratrol stabilized silver and gold nanoparticles having low polydispersity of size. Here, resveratrol plays two simultaneous roles, reducing the metal ions and providing efficient capping of the small nanoparticles. This gives rise to specific size of silver and gold nanoparticles at specific ratios of metal to resveratrol. The particles have been characterized by XRD and transmission electron microscopy. The nanoparticle sols are stable for months. The UV Visible absorption spectra of the silver sol show the plasmon peak of spherical nanoparticles, presence of which is further reflected in the TEM images. Size of the silver particles obtained is in between 11 to 21 nm depending on the ratio of resveratrol to metal ion used. Resveratrol capped silver nanoparticles exhibit high antibacterial activity against Gram negative wild type E coli BW (25113). The minimum inhibitory concentration (MIC) of nano-silver against the bacterium has been estimated to be 6.48 μg/ml, which is significantly lower than that reported in some earlier as well as recent publications. Reaction of gold ions with resveratrol, on the other hand, produces gold nanoparticles of sizes varying from 7 to 29 nm at different ratios of resveratrol to the metal ions. Particles with higher size and aspect ratio are formed at lower concentration of the capping agent whereas particles with very small size and pseudo-spherical morphology are formed at higher capping concentration. Difference in the formation kinetics of silver and gold nanoparticles has been attributed to the different growth mechanisms in the two cases. Possible modes of anchorage of resveratrol to silver nanoparticles have been investigated using surface enhanced resonance Raman spectroscopy (SERS) which shows that the silver nanoparticles are capped by resveratrol molecule primarily through O

  12. EUV and Visible Spectroscopy of Promethiumlike Heavy Ions

    CERN Document Server

    Kobayashi, Yusuke; Omote, Kazuki; Komatsu, Akihiro; Sakoda, Junpei; Minoshima, Maki; Kato, Daiji; Li, Jiguang; Sakaue, Hiroyuki A; Murakami, Izumi; Nakamura, Nobuyuki

    2015-01-01

    We present extreme ultraviolet and visible spectra of promethiumlike tungsten and gold obtained with an electron beam ion trap (EBIT). Although the contributions from a few charge states are involved in the spectra, the charge state of the ion assigned to the observed lines is definitely identified by the time-of-flight analysis of the ions performed at the same time with the spectroscopic measurements. Experimental results are compared with collisional-radiative model calculations as well as previous experimental and theoretical studies.

  13. Gold mobility during Palaeoarchaean submarine alteration

    Science.gov (United States)

    Hofmann, Axel; Pitcairn, Iain; Wilson, Allan

    2017-03-01

    Seafloor alteration provides large amounts of solutes to the hydrosphere. In order to investigate gold mobility during water-rock interaction prior to 3-billion-years ago, low detection limit analysis of Au concentrations was carried out on rocks from marine alteration zones. Stratiform zones recording low-temperature (≤150 °C) seafloor alteration are a characteristic feature of greenstone belts older than 3.0 Ga. Hydrothermal processes were operating on, and immediately below, the seafloor, giving rise to extensive silicification of sub-seafloor volcanic rocks and silicification of seafloor sediments. In order to investigate gold mobility during silicification, unaltered and variably silicified volcanic rocks and associated cherts from Palaeoarchaean greenstone successions (c. 3.4 Ga) of South Africa were analyzed. Results show mobility of gold during silicification of mafic/ultramafic rocks and transfer to the Archaean ocean. Some gold was incorporated into carbonaceous marine sediments overlying the alteration zones. A combination of pervasive silicification, rarity of black shales, and low gold content in komatiites can explain the low mineralization potential of Palaeoarchaean greenstone belts for orogenic gold deposits.

  14. Functionalization of gold nanoparticles as antidiabetic nanomaterial.

    Science.gov (United States)

    Venkatachalam, M; Govindaraju, K; Mohamed Sadiq, A; Tamilselvan, S; Ganesh Kumar, V; Singaravelu, G

    2013-12-01

    In the present investigation, functionalization of gold nanoparticles synthesized using propanoic acid 2-(3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl) (PAT) an active biocomponent isolated from Cassia auriculata is studied in detail. On reaction of PAT with aqueous HAuCl4, rapid formation of stable gold nanoparticles was achieved. Formation of gold nanoparticles was confirmed by UV-vis spectroscopy, XRD, GC-MS,FTIR, TEM and SEM with EDAX. Gold nanoparticles mostly were monodisperse, spherical in shape and ranged in size 12-41 nm. Gold nanoparticles synthesised using PAT was administered to alloxan (150 mg/kg body weight) induced diabetic male albino rats at different doses (0.25, 0.5, 0.75 and 1.0mg/kg body weight) for 28 days. Plasma glucose level, cholesterol and triglyceride were significantly (pgold nanoparticles at dosage of 0.5mg/kg body weight and plasma insulin increased significantly. The newly genre green gold nanoparticles exhibit remarkable protein tyrosine phosphatase 1B inhibitory activity.

  15. The gold rush 1925-35.

    Science.gov (United States)

    Keers, R Y

    1980-12-01

    Although from the time of Koch onwards there had been desultory experiments with a variety of gold preparations in the management of pulmonary tuberculosis, gold as a recognised and accepted treatment did not emerge until 1925. In that year Holger Mollgaard of Copenhagen introduced sanocrysin, a double thiosulphate of gold and sodium, with which he had conducted an extensive series of animal experiments. The results of these were considered to justify its use in clinical practice and two physicians, Secher and Faber, undeterred by its toxicity, reported enthusiastically in its favour. Other Danish physicians followed but, alarmed by violent reactions, modified the dosage, an example followed by British workers. Encouraging results continued to be reported although each series contained a significant proportion of failures, and toxicity remained high. The first properly planned and fully controlled clinical trial took place in the United States and produced a report which was wholly adverse and which sounded the death knell of gold therapy throughout America. Until 1934-35 gold was used extensively in Europe but thereafter there was a sudden and largely universal cessation of interest and within a few years gold, introduced with such éclat and carrying so many high hopes, had vanished from the therapy of tuberculosis even though, at that point, no better alternative was available.

  16. A thermally stable gold(III) hydride: synthesis, reactivity, and reductive condensation as a route to gold(II) complexes.

    Science.gov (United States)

    Roşca, Dragoş-Adrian; Smith, Dan A; Hughes, David L; Bochmann, Manfred

    2012-10-15

    Going for gold: The first thermally stable gold(III) hydride [(C N C)*AuH] is presented. It undergoes regioselective insertions with allenes to give gold(III) vinyl complexes, and reductive condensation with [(C N C)*AuOH] to the air-stable Au(II) product, [(C N C)*(2)Au(2)], with a short nonbridged gold-gold bond.

  17. Effects of metal nanoparticles on the secondary ion yields of a model alkane molecule upon atomic and polyatomic projectiles in secondary ion mass spectrometry.

    Science.gov (United States)

    Wehbe, Nimer; Heile, Andreas; Arlinghaus, Heinrich F; Bertrand, Patrick; Delcorte, Arnaud

    2008-08-15

    A model alkane molecule, triacontane, is used to assess the effects of condensed gold and silver nanoparticles on the molecular ion yields upon atomic (Ga(+) and In(+)) and polyatomic (C60(+) and Bi3(+)) ion bombardment in metal-assisted secondary ion mass spectrometry (MetA-SIMS). Molecular films spin-coated on silicon were metallized using a sputter-coater system, in order to deposit controlled quantities of gold and silver on the surface (from 0 to 15 nm equivalent thickness). The effects of gold and silver islets condensed on triacontane are also compared to the situation of thin triacontane overlayers on metallic substrates (gold and silver). The results focus primarily on the measured yields of quasi-molecular ions, such as (M - H)(+) and (2M - 2H)(+), and metal-cationized molecules, such as (M + Au)(+) and (M + Ag)(+), as a function of the quantity of metal on the surface. They confirm the absence of a simple rule to explain the secondary ion yield improvement in MetA-SIMS. The behavior is strongly dependent on the specific projectile/metal couple used for the experiment. Under atomic bombardment (Ga(+), In(+)), the characteristic ion yields an increase with the gold dose up to approximately 6 nm equivalent thickness. The yield enhancement factor between gold-metallized and pristine samples can be as large as approximately 70 (for (M - H)(+) under Ga(+) bombardment; 10 nm of Au). In contrast, with cluster projectiles such as Bi3(+) and C60(+), the presence of gold and silver leads to a dramatic molecular ion yield decrease. Cluster projectiles prove to be beneficial for triacontane overlayers spin-coated on silicon or metal substrates (Au, Ag) but not in the situation of MetA-SIMS. The fundamental difference of behavior between atomic and cluster primary ions is tentatively explained by arguments involving the different energy deposition mechanisms of these projectiles. Our results also show that Au and Ag nanoparticles do not induce the same behavior in Met

  18. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  19. Curcumin: the Indian solid gold.

    Science.gov (United States)

    Aggarwal, Bharat B; Sundaram, Chitra; Malani, Nikita; Ichikawa, Haruyo

    2007-01-01

    Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

  20. [Sunrise gold foil jacket crown].

    Science.gov (United States)

    Lecardonnel, A

    1989-09-01

    This technique permits the preparation of ceramic jacket crowns made on Sunrise laminated precious metal alloy. The Sunrise foil is gold-colored, made of 99% of precious metals and is 50 microns thick. The die is prepared in order to display a moderate and regular undercut beyond the cervical limit. The margin will be underlined with a red pencil. The Sunrise foil is cut according to predetermined templates. Then the foil is applied without burnishing, according to the technique of jacket crowns on platinum foil only by finger pressure. The double folding on closure is preferably done distally or mesially. Then, the metal base is disinserted, sandblasted with 100 microns aluminum oxide, replaced on its die, and placed in a rubber casing before being placed in the isostatic press, to be subjected to a pressure of 2,000 TSI (14 kg par cm2). Sunrise's orange color reinforces rather subtetly the overall color, making these reconstructions particularly esthetic. The color of the Sunrise metal does not require, therefore a too thick opaque. Any ceramic intended to be fired on a metal base, may be used in respecting its firing protocol. Sunrise, as any other technique of this type, require a careful preparation with a shoulder that has a rounded gingivoaxial line angle. Bridges may be built on the "thimbles" crowns, fitted on Sunrise cores, the pontics being made as a ceramo-metal framework.

  1. Statistical Analyses of Second Indoor Bio-Release Field Evaluation Study at Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Amidan, Brett G.; Pulsipher, Brent A.; Matzke, Brett D.

    2009-12-17

    In September 2008 a large-scale testing operation (referred to as the INL-2 test) was performed within a two-story building (PBF-632) at the Idaho National Laboratory (INL). The report “Operational Observations on the INL-2 Experiment” defines the seven objectives for this test and discusses the results and conclusions. This is further discussed in the introduction of this report. The INL-2 test consisted of five tests (events) in which a floor (level) of the building was contaminated with the harmless biological warfare agent simulant Bg and samples were taken in most, if not all, of the rooms on the contaminated floor. After the sampling, the building was decontaminated, and the next test performed. Judgmental samples and probabilistic samples were determined and taken during each test. Vacuum, wipe, and swab samples were taken within each room. The purpose of this report is to study an additional four topics that were not within the scope of the original report. These topics are: 1) assess the quantitative assumptions about the data being normally or log-normally distributed; 2) evaluate differences and quantify the sample to sample variability within a room and across the rooms; 3) perform geostatistical types of analyses to study spatial correlations; and 4) quantify the differences observed between surface types and sampling methods for each scenario and study the consistency across the scenarios. The following four paragraphs summarize the results of each of the four additional analyses. All samples after decontamination came back negative. Because of this, it was not appropriate to determine if these clearance samples were normally distributed. As Table 1 shows, the characterization data consists of values between and inclusive of 0 and 100 CFU/cm2 (100 was the value assigned when the number is too numerous to count). The 100 values are generally much bigger than the rest of the data, causing the data to be right skewed. There are also a significant number of zeros. Using QQ plots these data characteristics show a lack of normality from the data after contamination. Normality is improved when looking at log(CFU/cm2). Variance component analysis (VCA) and analysis of variance (ANOVA) were used to estimate the amount of variance due to each source and to determine which sources of variability were statistically significant. In general, the sampling methods interacted with the across event variability and with the across room variability. For this reason, it was decided to do analyses for each sampling method, individually. The between event variability and between room variability were significant for each method, except for the between event variability for the swabs. For both the wipes and vacuums, the within room standard deviation was much larger (26.9 for wipes and 7.086 for vacuums) than the between event standard deviation (6.552 for wipes and 1.348 for vacuums) and the between room standard deviation (6.783 for wipes and 1.040 for vacuums). Swabs between room standard deviation was 0.151, while both the within room and between event standard deviations are less than 0.10 (all measurements in CFU/cm2).

  2. Interest of silver and gold metallization for molecular SIMS and SIMS imaging

    Science.gov (United States)

    Delcorte, A.; Bertrand, P.

    2004-06-01

    The metallization procedure, recently proposed for signal improvement in organic secondary ion mass spectrometry (metal assisted-SIMS or MetA-SIMS), has been quantitatively evaluated for Irganox 1010 and polystyrene fragment and quasimolecular ions. In addition to gold, we investigate the effect of silver evaporation as a sample treatment prior to static SIMS analysis. Ion yields and yield enhancement factors are compared for Ag and Au-metallized molecular films, pristine coatings on silicon and sub-monolayers of the same molecules adsorbed on silver and gold. The results are sample-dependent but, as an example, the yield enhancement calculated for metallized polymer additive (Irganox 1010) films with respect to untreated coatings is larger than two orders of magnitude for the quasimolecular ion and a factor between 1 and 10 for characteristic fragments. The interest of the method for imaging SIMS applications is illustrated by the study of a non-uniform coating of polystyrene oligomers on a 100 μm polypropylene film.

  3. A green approach for synthesis of gold and silver nanoparticles by Leishmania sp.

    Science.gov (United States)

    Ramezani, Fatemeh; Jebali, Ali; Kazemi, Bahram

    2012-11-01

    The application of microorganisms for the synthesis of metal nanoparticles as an eco-friendly and promising approach is ongoing. In this paper, an attempt has been made to investigate the capability of Leishmania sp. for synthesis of metal nanoparticles from aqueous silver and gold ions. The samples were analyzed by a UV-Vis spectroscopy and the results showed the absorbance peak values at 420 and 540 nm, respectively, for the surface plasmon resonance of silver and gold nanoparticles. The surface morphology of the nanoparticles in solution was visualized by atomic force microscope and scanning electron microscope images, which showed the production of metallic nanoparticles by this protozoan. Fourier transform infrared spectroscopy analyses confirmed the presence of different bands of protein as capping and stabilizing agent on the nanoparticles surfaces. The synthesized silver and gold nanoparticles were with dimensions ranging between 10 and 100 nm for silver and 50-100 nm for gold. These results of the present study have demonstrated the efficiency of this protozoan for synthesis of nanoparticles, by offering the merits of environmentally friendly, amenability, and time saving for large-scale production.

  4. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity

    Science.gov (United States)

    Yuan, Chun-Gang; Huo, Can; Yu, Shuixin; Gui, Bing

    2017-01-01

    Biological synthesis approach has been regarded as a green, eco-friendly and cost effective method for nanoparticles preparation without any toxic solvents and hazardous bi-products during the process. This present study reported a facile and rapid biosynthesis method for gold nanoparticles (GNPs) from Capsicum annuum var. grossum pulp extract in a single-pot process. The aqueous pulp extract was used as biotic reducing agent for gold nanoparticle growing. Various shapes (triangle, hexagonal, and quasi-spherical shapes) were observed within range of 6-37 nm. The UV-Vis spectra showed surface plasmon resonance (SPR) peak for the formed GNPs at 560 nm after 10 min incubation at room temperature. The possible influences of extract amount, gold ion concentration, incubation time, reaction temperature and solution pH were evaluated to obtain the optimized synthesis conditions. The effects of the experimental factors on NPs synthesis process were also discussed. The produced gold nanoparticles were characterized by transform electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDS) and Fourier Transform infrared spectroscopy (FTIR). The results demonstrated that the as-obtained GNPs were well dispersed and stable with good catalytic activity. Biomolecules in the aqueous extract were responsible for the capping and stabilization of GNPs.

  5. Electrochemiluminescent detection of Pb2+ by graphene/gold nanoparticles and CdSe quantum dots

    Science.gov (United States)

    Lu, Liping; Guo, Linqing; Li, Jiao; Kang, Tianfang; Cheng, Shuiyuan

    2016-12-01

    A highly sensitive electrochemiluminescent detection method for lead ions (Pb(II)) was fabricated based on the distance-dependent quenching of the electrochemiluminescence from CdSe quantum dots by nanocomposites of graphene and gold nanoparticles. Graphene/gold nanoparticles were electrochemically deposited onto a glassy carbon electrode through the constant potential method. Thiol-labeled DNA was then assembled on the surface of the electrode via gold-sulfur bonding, following which the amino-labeled terminal of the DNA was linked to carboxylated CdSe quantum dots by the formation of amide bonds. The 27-base aptamer was designed with two different domains: the immobilization and detection sequences. The immobilization sequence was paired with 12 complementary bases and immobilized on the gold electrode; the single-stranded detection sequence, rich in G bases, formed a G-quadruplex (G4) structure in the presence of Pb2+. The formation of G4 shortens the distance between the CdSe quantum dots and the Au electrode, which decreases the electrochemiluminescent intensity in a linear fashion, proportional to the concentration of Pb(II). The linear range of the sensor was 10-10 to 10-8 mol/L (R = 0.9819) with a detection limit of 10-10 mol/L. This sensor detected Pb(II) in real water samples with satisfactory results.

  6. Assembling Tunable Time-Resolved Fluorescence Layer onto Nano-Gold

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The assembling of a coating of time-resolved fluorescent chelator BSPDA (abbreviated for 4,7-bis(sulfhydrylphenyl)-1,10-phenanthroline-2,9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, BSPDA was synthesized by simple procedures, and then an approach was developed to immobilize BSPDA onto the nano-gold layer deposited on a silane modified glass substrate, whereby europium ion (Ⅲ, Eu3+) was captured and released owing to the interactive process of complexation and dissociation between BSPDA functionalized coating and Eu3+ solution. The fluorescence spectra and related lifetimes were determined. Also, the BSPDA functionalized coating's specific complexation with Eu3+ on the BSPDA assembly layer and the nonspecific adsorption of Eu3+ on the nano-gold layer were compared. These results allowed a selective complexation of Eu3+ by assembling a BSPDA chelating layer on the nano-gold layer;thus, a tunable time-resolved fluorescent layer was covalently attached. The results of the nanoparticle assembling and probing (or labeling) processes to specific bio-systems were very interesting and had significant implications to time-resolved-fluorescence-based detection on biosensor surfaces such as DNA chip and to arrayed light display devices.

  7. Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus

    Indian Academy of Sciences (India)

    Pranav Vasanthi Bathrinarayanan; Dilliganesh Thangavelu; Vasanth Kumar Muthukumarasamy; Chamundeeswari Munusamy; Baskar Gurunathan

    2013-12-01

    Nanotechnology is emerging as one of the most important and revolutionizing area in research field. Nanoparticles are produced by various methods like physical, chemical, mechanical and biological. Biological methods of reduction of metal ions using plants or microorganisms are often preferred because they are clean, nontoxic, safe, biocompatible and environmentally acceptable. In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent. Production of nanoparticles was confirmed by the colour change from yellow to pinkish violet after ∼72 h of reaction. The produced nanoparticles were then characterized by Fourier transform infrared spectroscopy (FT–IR), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction spectroscopy (XRD). SEM images of sample revealed that the nanoparticles were spherical, irregularly shaped with indefinite morphology. Biosynthesized gold nanoparticles were in the range of 85.1–210 nm in size. The presence of gold nanoparticle was confirmed by EDS analysis. Crystalline nature and face-centred cubic structure of synthesized gold nanoparticle was confirmed by XRD pattern.

  8. Subchronic inhalation toxicity of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Chung Yong

    2011-05-01

    Full Text Available Abstract Background Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME of gold nanoparticles remain unclear. Results The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males and 145 g (females, were divided into 4 groups (10 rats in each group: fresh-air control, low-dose (2.36 × 104 particle/cm3, 0.04 μg/m3, middle-dose (2.36 × 105 particle/cm3, 0.38 μg/m3, and high-dose (1.85 × 106 particle/cm3, 20.02 μg/m3. The animals were exposed to gold nanoparticles (average diameter 4-5 nm for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH, and total protein were also monitored in a cellular bronchoalveolar lavage (BAL fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue

  9. Protracted elimination of gold nanoparticles from mouse liver

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Wallin, Håkan; Stoltenberg, Meredin

    2009-01-01

    The present study aims at revealing the fate of 40-nm gold nanoparticles after intravenous injections. The gold nanoparticles were traced histochemically with light and transmission electron microscopy using autometallographic (AMG) staining, and the gold content in the liver was determined...... with inductively coupled plasma mass spectrometry (ICP-MS). Gold nanoparticles were identified in almost all Kupffer cells one day after the injection, but the fraction of gold-loaded cells gradually decreased to about one fifth after 6 months. Transmission electron microscopic analysis showed that the gold......% fall in the gold content over the observed 6 months, the AMG finding of a significant reduction in the stained area of the liver sections and number of macrophages loaded with gold nanoparticles reveals that over time an increasing part of the total amount of gold nanoparticles in the liver...

  10. Beneficiation of the gold bearing ore by gravity and flotation

    Science.gov (United States)

    Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven

    2012-02-01

    Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.

  11. An econometrics method for estimating gold coin futures prices

    Directory of Open Access Journals (Sweden)

    Fatemeh Pousti

    2011-10-01

    Full Text Available In this paper, we present some regression functions to estimate gold coin future price based on gold coin price, future exchange price, price of gold traded globally and trend of time. The proposed model of this paper is used for price estimation of special gold coin traded in Iran. The proposed model of this paper is applied for historical data of future gold prices and the results are discussed. The preliminary results indicate that an increase on gold coin price could increase gold coin future price. An increase on foreign exchange price has negative impact on gold coin future and present trend on time has positive impact on gold coin future.

  12. Blood gold concentrations in children with juvenile rheumatoid arthritis undergoing long-term oral gold therapy.

    Science.gov (United States)

    Giannini, E H; Brewer, E J; Person, D A

    1984-04-01

    During an uncontrolled, open-labelled, open-ended clinical trial of auranofin in children with juvenile rheumatoid arthritis (JRA) we obtained serial blood samples for the purpose of assessing gold content. Our objectives were (1) to observe the pattern of blood gold concentrations over a period of time in children undergoing long-term oral gold therapy, and (2) to observe the effect of changing dosage levels on blood gold concentrations. The initial dosage of auranofin was 0.1 mg/kg/day with allowable increases to 0.2 mg/kg/day. A concurrent nonsteroidal anti-inflammatory drug was allowed. Twenty-one patients were enrolled in the study, and we obtained 2 or more serial samples on 13 of the children. At a constant dosage of 0.1 mg/kg/day, steady state blood gold concentrations were attained in 11 to 13 weeks of therapy and, in the absence of a dosage change, remained remarkably constant through extended periods. The blood gold concentration was related to total daily dosage rather than to the cumulative amount of gold received. Increasing or decreasing the dose resulted in a direct effect on concentration. The clinical value of blood gold levels resulting from auranofin therapy in JRA will have to be established through double-blind controlled trials.

  13. Tectonic setting of Late Cenozoic gold mineralization in the gold belt of Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Deruyter, V.D.

    1985-01-01

    The Gold Belt of Costa Rica is a northwest-elongated zone 15 km wide by 120 km long containing numerous auriferous quartz veins and pyritic silicified patterns upon which abundant small mines are developed. Gold veins are related principally to northeast-southwest and north-south striking, steeply dipping faults. Higher grade ore and thicker veins invariably occur at intersections of these fracture orientations, indicating simultaneous opening at the time of gold introduction. Restriction of gold veins to the northwest-trending arc of Miocene Aguacate Group andesite volcanic rocks, a product of Cocos Plate subduction, suggested approximately coeval formation, but recognition by the writer of the important role played by 2-5 m.y. old altered, gold mineralized rhyolite dikes intruded along north-south gold vein structures and intimately involved with high grade ores at the Esperanza Mine and Rio Chiquito prospect, for example, suggest a much younger period of fracturing and gold introduction. The rhyolite intrusions are more brittle and stockwork mineralized than andesite host rocks and form bulk tonnage gold targets. Initiation of right-lateral movement along the north-south Panama Fracture Zone at 5 m.y.a. within the pattern of northeastward Cocos Plate subduction may have tapped rhyolites from subvolcanic magma chambers into new faults.

  14. Well-Defined Dinuclear Gold Complexes for Preorganization-Induced Selective Dual Gold Catalysis

    NARCIS (Netherlands)

    Vreeken, V.; Broere, D.L.J.; Jans, A.C.H.; Lankelma, M.; Reek, J.N.H.; Siegler, M.A.; van der Vlugt, J.I.

    2016-01-01

    The synthesis, reactivity, and potential of well-defined dinuclear gold complexes as precursors for dual gold catalysis are explored. Using the preorganizing abilities of the ditopic (PNPiPr)-P-H (L-H) ligand, dinuclear Au-I-Au-I complex 1 and mixed-valent Au-I-Au-III complex 2 provide access to str

  15. Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed A. Madani

    2011-12-01

    Full Text Available This research aims to generate a favorability map for gold exploration at the Bulghah gold mine area using integration of geo-datasets within a GIS environment. Spatial data analyses and integration of different geo-datasets are carried out based on knowledge-driven and weighting technique. The integration process involves the weighting and scoring of different layers affecting the gold mineralization at the study area using the index overlay method within PCI Geomatica environment. Generation of the binary predictor maps for lithology, lineaments, faults and favorable contacts precede the construction of the favorability map. About 100 m buffer zones are generated for favorable contacts, lineaments and major faults layers. Internal weighting is assigned to each layer based on favorability for gold mineralization. The scores for lithology, major faults, lineaments and favorable contacts layers in the constructed favorability map are 50%, 25%, 10% and 15%, respectively. Final favorability map for the Bulghah gold mine area shows the recording of two new sites for gold mineralization located at the northern and southern extensions of tonalite–diorite intrusions. The northern new site is now exploited for gold from the Bulghah North mine. The southern new site is narrow and small; its rocks resemble those of the Bulghah gold mine.

  16. Coupling reaction on gold nanoparticle to yield polythiophene/gold nanoparticle alternate network film.

    Science.gov (United States)

    Tanaka, Manabu; Fujita, Remi; Nishide, Hiroyuki

    2009-01-01

    The novel gold nanoparticle, which was stabilized with pi-conjugated molecules bearing functional groups at the terminals, was prepared via conventional procedure by using 5-bromo-2,2'-bithiophene-5'-thiol as a stabilizer. The gold nanoparticle (ca. 3 nm-diameter) showed good dispersion stability in various organic solvents, and its electrochemical and spectroscopic study revealed peculiar properties originated in the pi-conjugated molecular stabilizer, bithiophene derivative. The Pd-catalyzed coupling reaction on the gold nanoparticle was first achieved by using the gold nanoparticle bearing bromo groups at the particle surface and the model boronic acid molecule, 5-formyl-2-thiopheneboronic acid, to yield the terthiophene derivatives on the gold nanoparticle. The 1H-NMR, UV, and TGA analysis supported the progress of the coupling reaction on the gold nanoparticle. This Pd-catalyzed coupling reaction was applied with the borate-terminated polythiophene to form polythiophene/gold nanoparticle alternate network film. The electron microscopic images supported the formation of the network structure. The high electric conductivity on the network film suggested that the conductive characteristic of the film originated from that of the pi-conjugated polythiophene backbone connected with the gold nanoparticle.

  17. China Gold Group Invested 2.18 billion Yuan to Buy Gold Mine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Ministry of Finance recently proclaimed that China Gold Group has invested 2.18 billion Yuan to gain the exploration right on the Yang- shan gold mine in Wen County,Gansu Prov- ince.Yangshan is located at the place where

  18. Kinetics and mechanism of the reaction of gold(III chloride complexes with formic acid

    Directory of Open Access Journals (Sweden)

    Pacławski K.

    2015-01-01

    Full Text Available In this work, the results of kinetic studies of the redox reaction of gold(III chloride complexes ([AuCl4]- with formic acid, are presented. Obtained data suggest the complex character of the reaction which leads to the [AuCl2]- and [AuCl3(COOH]- ions formation as intermediates. In the pH range over 2.5, the final product of the reaction is metallic gold. From the analysis of kinetic data, the rate limiting step is found to be the gold metallic phase formation. The stage of Au(III reduction is relatively fast with the second-order rate constant equal to 61.8 M-1s-1 at temperature 50ºC. The rate of the studied reaction depends on the temperature, reactants concentration and chloride ions concentration. As a result of the data analysis, the scheme of the reaction path has been suggested. Also, the values of enthalpy and entropy of activation for the reaction have been determined.

  19. Electrochemical Metalloimmunoassay Based on Enlargement of Gold Nanoparticle Label Treated with Ag Enhancement System

    Institute of Scientific and Technical Information of China (English)

    WANG Mei-jia; BAI Yu-bai; LI Tie-jin; YUAN Hang; JI Xiao-hui; LIU Zhao-yue; JIA Ruo-kun; WANG Lian-ying; LIU Yan-mei; MA Lan; LI Jing-hong

    2003-01-01

    A novel sensitive electrochemical immunoassay with colloidal gold as the antibody labeling tag and subsequent signal amplification by silver enhancement is described. Colloidal gold was treated by a light-sensitive silver enhancement system which made silver deposit on the surface of colloidal gold(form Au/Ag core-shell structure), followed by the release of the metallic silver atoms anchored on the antibody by oxidative dissolution of them in an acidic solution and the indirect determination of the dissolved Ag+ ions by anodic stripping voltammetry(ASV) at a carbon fiber microelectrode. The electrochemical signal is directly proportional to the amount of analyte(goat IgG) in the standard or a sample. The method was evaluated by means of a noncompetitive heterogeneous immunoassay of immunoglobulin G(IgG) with a concentration as low as 0.2 ng/mL. The high performance of the method is related to the sensitive ASV determination of silver(Ⅰ) at a carbon fiber microelectrode and to the release of a large number of Ag+ ions from each silver shell anchored on the analyte(goat IgG).

  20. Unstable reshaping of gold nanorods prepared by a wet chemical method in the presence of silver nitrate.

    Science.gov (United States)

    Iqbal, Muhammad; Tae, Giyoong

    2006-11-01

    We characterized the stability of the gold nanorods synthesized by means of a seed mediated growth approach in the presence of AgNO3, which consists of synthesis of small diameter seed particles (approximately 4 nm) and subsequent growth of these nanoparticles into nanorods by addition to gold salt solution containing cetyltrimethylammonium bromide (CTAB) in the presence of ascorbic acid. The presence of silver nitrate significantly enhanced the nanorod synthesis as previously reported. However, the synthesized nanorods were unstable and reshaped in aqueous environment; the continuous blue-shift of the 2nd plasmon bands was monitored and the changes in the nanorod morphologies were also observed by electron microscopy with increasing storage time. This reshaping was observed at wide CTAB concentration range regardless of the removal of the unreacted gold or silver ions.

  1. Au与Au合金的微合金化%Microalloying of Gold and Gold Alloys

    Institute of Scientific and Technical Information of China (English)

    宁远涛

    2008-01-01

    Microalloying to pure gold and gold alloys was discussed and summerized. The main effects of microalloying elements in gold alloys are those for strengthening, for regulating electrical resistance, for refining grain-size and for increasing recrystallization temperature. In nearly all applications, the elements with large difference of melting point or atomic size to gold, and those with low solid solubility in gold, such as alkali- and alkali-earth metals, rare earth metals, high melting point metals, metalloids and some simple metals are selected as microalloying elements. Some examples of microalloyed gold alloys are introduced. The effects of many microalloying elements on the properties of gold and gold alloys are often multiple-coincidence. Some selection principles of microalloying elements for gold and gold alloys with various applications are summarized.%讨论和总结了Au与Au合金的微合金化.在Au合金中,微合金化元素的主要作用是强化、调整电阻率、细化晶粒尺寸和提高再结晶温度等. 几乎在所有的应用中,相对于Au具有大的熔点差或原子尺寸差的合金元素,诸如碱和碱土金属、稀土金属、高熔点金属、类金属和某些简单金属被选择作为微合金化元素. 介绍了微合金化Au合金的某些应用.许多微合金化元素对Au和Au合金性能的影响常常是多重和协同的.总结了对于不同应用的Au和Au合金的微合金化元素的某些选择原则.

  2. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  3. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  4. Detection of Cu2+ in Water Based on Histidine-Gold Labeled Multiwalled Carbon Nanotube Electrochemical Sensor

    Science.gov (United States)

    Zhu, Rilong; Zhou, Gangqiang; Tang, Fengxia; Wang, Yeyao

    2017-01-01

    Based on the strong interaction between histidine and copper ions and the signal enhancement effect of gold-labeling carbon nanotubes, an electrochemical sensor is established and used to measure copper ions in river water. In this study the results show that the concentrations of copper ion have well linear relationship with the peak current in the range of 10−11–10−7 mol/L, and the limit of detection is 10−12 mol/L. When using this method to detect copper ions in the Xiangjiang River, the test results are consistent with the atomic absorption method. This study shows that the sensor is convenient to be used in daily monitoring of copper ions in river water.

  5. Detection of Cu2+ in Water Based on Histidine-Gold Labeled Multiwalled Carbon Nanotube Electrochemical Sensor

    Directory of Open Access Journals (Sweden)

    Rilong Zhu

    2017-01-01

    Full Text Available Based on the strong interaction between histidine and copper ions and the signal enhancement effect of gold-labeling carbon nanotubes, an electrochemical sensor is established and used to measure copper ions in river water. In this study the results show that the concentrations of copper ion have well linear relationship with the peak current in the range of 10−11–10−7 mol/L, and the limit of detection is 10−12 mol/L. When using this method to detect copper ions in the Xiangjiang River, the test results are consistent with the atomic absorption method. This study shows that the sensor is convenient to be used in daily monitoring of copper ions in river water.

  6. Application of gold in the field of heterogeneous catalysis

    CERN Document Server

    Luo, Siwei

    2014-01-01

    Gold has been long thought as an inert metal which finds most of its use in jewelry and monetary exchange. However, catalysis by gold has rapidly become a hot topic in chemistry ever since Haruta and Hutchings found gold to be an extraordinary good heterogeneous catalyst in certain reactions. Here in this paper, several model reactions which made gold historically famous as a catalyst and a currently hot topic will be demonstrated, such as oxidation of CO, selective oxidation, and hydrodechlorination. Conclusions on the chemical nature of gold will be made as well as future perspectives of designing gold as a better catalyst.

  7. Precipitation of lamellar gold nanocrystals in molten polymers

    Science.gov (United States)

    Palomba, M.; Carotenuto, G.

    2016-05-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  8. ATP-enhanced peroxidase-like activity of gold nanoparticles.

    Science.gov (United States)

    Shah, Juhi; Purohit, Rahul; Singh, Ragini; Karakoti, Ajay Singh; Singh, Sanjay

    2015-10-15

    Gold nanoparticles (AuNPs) are known to possess intrinsic biological peroxidase-like activity that has applications in development of numerous biosensors. The reactivity of the Au atoms at the surface of AuNPs is critical to the performance of such biosensors, yet little is known about the effect of biomolecules and ions on the peroxidase-like activity. In this work, the effect of ATP and other biologically relevant molecules and ions over peroxidase-like activity of AuNPs are described. Contrary to the expectation that nanoparticles exposed to biomolecules may lose the catalytic property, ATP and ADP addition enhanced the peroxidase-like activity of AuNPs. The catalytic activity was unaltered by the addition of free phosphate, sulphate and carbonate anions however, addition of ascorbic acid to the reaction mixture diminished the intrinsic peroxidase-like activity of AuNPs, even in the presence of ATP and ADP. In contrast to AuNPs, ATP did not synergize and improve the peroxidase activity of the natural peroxidase enzyme, horseradish peroxidase.

  9. Coulomb driven energy boost of heavy ions for laser plasma acceleration

    CERN Document Server

    Braenzel, J; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2014-01-01

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultra thin gold foils have been irradiated by an ultra short laser pulse at an intensity of $6\\times 10^{19}$ W/cm$^{2}$. Highly charged gold ions with kinetic energies up to $> 200$ MeV and a bandwidth limited energy distribution have been reached by using $1.3$ Joule laser energy on target. $1$D and $2$D Particle in Cell simulations show how a spatial dependence on the ions ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a varying charge density along the target normal and is capable of explaining the energy boost of highly charged ions, leading to a higher efficiency in laser acceleration of heavy ions.

  10. Investigation of biophysical mechanisms in gold nanoparticle mediated laser manipulation of cells using a multimodal holographic and fluorescence imaging setup.

    Directory of Open Access Journals (Sweden)

    Stefan Kalies

    Full Text Available Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy.

  11. Engineered Gold Nanoparticles and Plant Adaptation Potential

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-09-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

  12. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    Science.gov (United States)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  13. Amplitude enhancement by a gold dimer

    Science.gov (United States)

    Hong, Xin; Wang, Jingxin; Jin, Zheng

    2016-10-01

    The unique optical properties such as brightness, non-bleaching, good bio-compatibility make gold particles ideal label candidates for molecular probes. Due to the strongly enhanced field, aggregation of gold nanoparticles finds themselves plenty of applications in bio-imaging. But limited by its small cross-section associated with nanometer sized particle, it is a big challenge to employ it in a single molecular detection. The field enhancement results from the effect of plasmonic coupling between two closely attached gold nanoparticle under the right excitation condition. With the aim to apply the gold dimer probe to find the molecules in our recently established optical detection method, we compared of the amplitude enhancement by the dimer relative to a single particle. The amplitude distribution under a highly focused illumination objective was calculated, whose results suggest that at the optimized excitation condition, the local field can be enhanced 190 fold. In consequence, experimental detection was carried out. Gold dimers were linked together by the hybridization of two single chain DNAs. Dimer and single particle probes were mixed together in one detection. Overwhelming contrast between these two kinds of probes were clearly exhibited in the experimental detection image. This method can provide a way to a high specific detection in early diagnosis.

  14. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  15. Simple fabrication of gold nanobelts and patterns.

    Directory of Open Access Journals (Sweden)

    Renyun Zhang

    Full Text Available Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm and micrometer (width ∼20 µm, to decimeter (length ∼0.15 m. The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  16. ION VATAMANU

    Directory of Open Access Journals (Sweden)

    l. Povar

    2012-12-01

    Full Text Available Ion Vatamanu was a chemist, writer and public figure. He was equally passionate about both his chosen fields of activity: chemistry and poetry. Chemistry, with its perfect equilibrium of logic and precision, provided inspiration for lyrical creativity, whereas poetry writing enlivened his imagination and passion for chemistry. He loved his parents. He adored his wife Elena, whom he often gifted a sea of flowers. He loved his daughters Mihaela, Mariana, and Leontina. He loved life, and he loved people.

  17. Ion beam radiation effects in monazite

    Energy Technology Data Exchange (ETDEWEB)

    Picot, V. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France); Deschanels, X. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France)], E-mail: xavier.deschanels@cea.fr; Peuget, S. [CEA Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Ceze (France); Glorieux, B. [Laboratoire des Procedes, Materiaux et Energie Solaire, UPR 8521, Rambla de la Thermodynamique, 66100 Perpignan (France); Seydoux-Guillaume, A.M. [Laboratoire des Mecanismes et Transferts en Geologie, CNRS, Universite Paul Sabatier, IRD, OMP, 14 Avenue Edouard Belin, 31400 Toulouse (France); Wirth, R. [GeoForschungsZentrum Potsdam, PB 4.1, Telegrafenberg, 14473 Potsdam (Germany)

    2008-11-15

    Monazite is a potential matrix for conditioning minor actinides arising from spent fuel reprocessing. The matrix behavior under irradiation must be investigated to ensure long-term containment performance. Monazite compounds were irradiated by gold and helium ions to simulate the consequences of alpha decay. This article describes the effects of such irradiation on the structural and macroscopic properties (density and hardness) of monazites LaPO{sub 4} and La{sub 0.73}Ce{sub 0.27}PO{sub 4}. Irradiation by gold ions results in major changes in the material properties. At a damage level of 6.7 dpa, monazite exhibits volume expansion of about 8.1%, a 59% drop in hardness, and structure amorphization, although Raman spectroscopy analysis shows that the phosphate-oxygen bond is unaffected. Conversely, no change in the properties of these compounds was observed after He ion implantation. These results indicate that ballistic effects predominate in the studied dose range.

  18. In Situ Fourier Transform Infrared Spectroscopic Study of Bisulfate and Sulfate Adsorption on Gold, With and Without the Underpotential Deposition of Copper

    Science.gov (United States)

    1993-04-01

    fleta Entered) In situ surface infrared (IR) spectroelectrochemistry is used to investigate the adsorption of sulfate (SO42 ") and bisulfate ( HS04 ) ions...IR) spectroelectrochemistry is used to investigate the adsorption of sulfate (SO42-) and bisulfate ( HS04 -) ions on polycrystalline gold surfaces in...asymmetric stretch) peak (Figure 7) suggest that for predominantly acidic solutions, HS04 - is lost from the surface as the potential is increased. On

  19. Chiral supramolecular gold-cysteine nanoparticles:Chiroptical and nonlinear optical properties

    Institute of Scientific and Technical Information of China (English)

    Isabelle Russier-Antoine; Franck Bertorelle; Alexander Kulesza; Antonin Soleilhac; Amina Bensalah-Ledoux; Stephan Guy; Philippe Dugourd; Pierre-François Brevet; Rodolphe Antoine

    2016-01-01

    Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. We report a simple synthetic approach for the production of chiral gold-cysteine polymeric nanoparticles soluble in water. Conjugation of cysteine with gold in a polymeric way, leading to ~50 nm diameter nanoparticles, resulted in the generation of new characteristic circular dichroism (CD) signals in the region of 250–400 nm, whereas no CD signal changes were found with cysteine alone. We also investigate their nonlinear optical properties after two-photon absorption. Two-photon emission spectra and first hyper-polarizabilities, as obtained by the hyper-Rayleigh scattering technique, of these particles are presented.

  20. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties

    Directory of Open Access Journals (Sweden)

    Isabelle Russier-Antoine

    2016-10-01

    Full Text Available Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. We report a simple synthetic approach for the production of chiral gold-cysteine polymeric nanoparticles soluble in water. Conjugation of cysteine with gold in a polymeric way, leading to ~50 nm diameter nanoparticles, resulted in the generation of new characteristic circular dichroism (CD signals in the region of 250–400 nm, whereas no CD signal changes were found with cysteine alone. We also investigate their nonlinear optical properties after two-photon absorption. Two-photon emission spectra and first hyper-polarizabilities, as obtained by the hyper-Rayleigh scattering technique, of these particles are presented.