WorldWideScience

Sample records for bio-medical x-ray imaging

  1. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  2. X-Ray Imaging

    Science.gov (United States)

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  3. X-ray (image)

    Science.gov (United States)

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  4. X-ray backscatter imaging

    Science.gov (United States)

    Dinca, Dan-Cristian; Schubert, Jeffrey R.; Callerame, J.

    2008-04-01

    In contrast to transmission X-ray imaging systems where inspected objects must pass between source and detector, Compton backscatter imaging allows both the illuminating source as well as the X-ray detector to be on the same side of the target object, enabling the inspection to occur rapidly and in a wide variety of space-constrained situations. A Compton backscatter image is similar to a photograph of the contents of a closed container, taken through the container walls, and highlights low atomic number materials such as explosives, drugs, and alcohol, which appear as especially bright objects by virtue of their scattering characteristics. Techniques for producing X-ray images based on Compton scattering will be discussed, along with examples of how these systems are used for both novel security applications and for the detection of contraband materials at ports and borders. Differences between transmission and backscatter images will also be highlighted. In addition, tradeoffs between Compton backscatter image quality and scan speed, effective penetration, and X-ray source specifications will be discussed.

  5. X-ray image converters

    International Nuclear Information System (INIS)

    The invention pertains to rare earth phosphor admixtures utilizing thulium-activated lanthanum or gadolinium oxyhalide phosphor material. These materials increase the relative speed and resolution of an X-ray image compared with conventional phosphors as well as reducing the still serious crossover problem now experienced with conventional phosphors. (Auth.)

  6. Digital x-ray imaging

    International Nuclear Information System (INIS)

    Digital radiography is progressively replacing conventional (film-based) radiographic techniques promising consistently high levels of image quality, more effective use of radiation and more efficient work practices. At the same time its introduction poses new challenges to those physical scientists who design radiological imaging systems and those who provide scientific/technical support to a clinical radiology service. In this review scientific aspects of those digital x-ray imaging systems which are proving most successful are described. Physical measurement techniques developed to evaluate the imaging performance and radiation dose efficiency of clinical digital radiography systems are outlined. Finally, directions in which digital x-ray imaging technology may evolve in the coming decade are discussed. (author)

  7. Soft X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seely, John

    1999-05-20

    The contents of this report cover the following: (1) design of the soft x-ray telescope; (2) fabrication and characterization of the soft x-ray telescope; and (3) experimental implementation at the OMEGA laser facility.

  8. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    International Nuclear Information System (INIS)

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  9. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    Science.gov (United States)

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  10. X ray imaging microscope for cancer research

    Science.gov (United States)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  11. Imaging with x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.B.; Cauble, B.; Frieders, G.; Koch, J.A.; MacGowan, B.J.; Matthews, D.L.; Mrowka, S.; Ress, D.; Trebes, J.E.; Weiland, T.L.

    1993-11-01

    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 35--300 {Angstrom}. These sources have high peak brightness and are now being utilized for x-ray imaging and plasma interferometry. In this paper we will describe our efforts to probe long scalelength plasmas using Moire deflectrometry and soft x-ray imaging. The progress in the development of short pulse x-ray lasers using a double pulse irradiation technique which incorporates a travelling wave pump will also be presented.

  12. Perspectives of medical X-ray imaging

    Science.gov (United States)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  13. Perspectives of medical X-ray imaging

    International Nuclear Information System (INIS)

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques

  14. Perspectives of medical X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freudenberger, J. E-mail: joerg.freudenberger@med.siemens.de; Hell, E.; Knuepfer, W

    2001-06-21

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  15. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    OpenAIRE

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  16. Experimental x-ray ghost imaging

    CERN Document Server

    Pelliccia, Daniele; Scheel, Mario; Cantelli, Valentina; Paganin, David M

    2016-01-01

    We report an experimental proof of principle for ghost imaging in the hard x-ray energy range. We used a synchrotron x-ray beam that was split using a thin crystal in Laue diffraction geometry. With an ultra-fast imaging camera, we were able to image x-rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam was correlated with the spatially resolved intensity measured on the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x-rays may open the way to protocols to reduce radiation damage in medical imaging and in non-destructive structural characterization using Free Electron Lasers.

  17. Imaging Cellular Architecture with X-rays

    OpenAIRE

    Larabell, Carolyn A.; Nugent, Keith A.

    2010-01-01

    X-ray imaging of biological samples is progressing rapidly. In this paper we review the progress to date in high resolution imaging of cellular architecture. In particular we survey the progress in soft X-ray tomography and argue that the field is coming of age and that important biological insights are starting to emerge. We then review the new ideas based on coherent diffraction. These methods are at a much earlier stage of development but, as they eliminate the need for X-ray optics, have ...

  18. X-ray imaging: Status and trends

    International Nuclear Information System (INIS)

    There is a veritable renaissance occurring in x-ray imaging. X-ray imaging by radiography has been a highly developed technology in medicine and industry for many years. However, high resolution imaging has not generally been practical because sources have been relatively dim and diffuse, optical elements have been nonexistent for most applications, and detectors have been slow and of low resolution. Materials analysis needs have therefore gone unmet. Rapid progress is now taking place because we are able to exploit developments in microelectronics and related material fabrication techniques, and because of the availability of intense x-ray sources. This report describes the methods and uses of x-ray imaging along with a discussion of technology advances in these areas

  19. X-ray diffraction imaging and analysis

    International Nuclear Information System (INIS)

    The first papers dealing with the very important application of x-ray diffraction to crystal structure analysis were also published in 1912 by W.L. Bragg, while a student at Cambridge. Bragg performed an analysis of the Laue diffraction pattern of zinc blend and determined the correct structure of the crystal lattice. There have been many practical applications for x-ray diffraction techniques. Historically conventional x-ray machines were used as generators and film used as the recording medium. Prior to 1966, all attempts to directly image x-ray diffraction patterns used a large format x-ray image intensifier tube of the same type as conventionally used for medical and industrial fluoroscopy. Since the 1960's numerous electro-optical systems have been developed which are far better suited for real-time viewing and recording of x-ray diffraction patterns. Modern x-ray diffraction imaging systems incorporating rotating anode and pulsed x-ray generators, synchrotron x-ray sources, and optimized electro-optical systems have been used to orient single crystals, to study crystal lattice rotation accompanying plastic deformation, to measure the rate of grain boundary migration during recrystallization annealing of cold-worked metals, to determine the physical state of exploding metals, to rapidly measure residual stress (strain), to study the dynamics of structural phase transitions in ferroelectric crystals, to monitor the amorphous to crystalline phase transformation of rapidly solidified metals, and to record topographic images of lattice defects in quartz, gallium arsenide and nickel alloy turbine blade crystals

  20. X-ray refraction-contrast imaging

    International Nuclear Information System (INIS)

    The conventional x-ray imaging for soft tissue often produced some adverse effects because of contrast medium and high-dose radiation. This report outlines the recently developed a very sensitive x-ray imaging method called as refraction contrast method or x-ray Schlieren method, which allows to detect density difference and irregularity in the soft tissue. In the apparatus (SPring-8 BL47XU), a light emitted from undulator was monochromatized by two-crystal x-ray spectroscope and x-ray passed through a sample was caught by imaging detector equipped with a combination of relay lens and CCD. When a glass capillary (outer diameter: 660 μm, inner diameter: 220 μm) was used as a measuring sample, it was confirmed that the image through geometrical refraction was obtained. When x-ray images of a dragonfly wing obtained by the Schlieren method (sample-detector distance: 5 m) and the conventional contact method were compared, it was demonstrated that reticulate structure of the wing was clearly observed by the former method but not at all by the latter one. At present, the study on efficacy of the refraction contrast imaging is under way using rodents. (M.N.)

  1. Diffraction enhanced x-ray imaging

    International Nuclear Information System (INIS)

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography

  2. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  3. Single Particle X-ray Diffractive Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  4. Quantitative Phase Imaging Using Hard X Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.A.; Gureyev, T.E.; Cookson, D.J.; Paganin, D.; Barnea, Z. [School of Physics, The University of Melbourne, Parkville, Vic, 3052 (Australia)]|[Australian Nuclear Science and Technology Organization, Private Mail Bag 1, Menai, NSW, 2234 (Australia)

    1996-09-01

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. {copyright} {ital 1996 The American Physical Society.}

  5. Quantitative Phase Imaging Using Hard X Rays

    International Nuclear Information System (INIS)

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. copyright 1996 The American Physical Society

  6. X-ray imaging: Perovskites target X-ray detection

    Science.gov (United States)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  7. X-ray imaging using a tunable coherent X-ray source based on parametric X-ray radiation

    International Nuclear Information System (INIS)

    A novel X-ray source based on parametric X-ray radiation (PXR) has been employed for X-ray imaging at the Laboratory for Electron Beam Research and Application (LEBRA), Nihon University. Notable features of PXR are tunable energy, monochromaticity with spatial chirp, narrow local bandwidth and spatial coherence. Since the X-ray beam from the PXR system has a large irradiation area with uniform flux density, the PXR-based source is suited for X-ray imaging, especially for application to phase-contrast imaging. Despite the cone-like X-ray beam, diffraction-enhanced imaging (DEI) can be employed as a phase contrast imaging technique. DEI experiments were performed using 14- to 34-keV X-rays and the phase-gradient images were obtained. The results demonstrated the capability of PXR as an X-ray source for phase-contrast imaging with a large irradiation field attributed to the cone-beam effect. Given the significant properties of the LEBRA-PXR source, the result suggests the possible construction of a compact linac-driven PXR-Imaging instrument and its application to medical diagnoses

  8. X-ray detectors in medical imaging

    International Nuclear Information System (INIS)

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications

  9. X-ray detectors in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Spahn, Martin, E-mail: martin.spahn@siemens.com [Siemens AG, Healthcare Sector, Imaging and Therapy Systems, 91301 Forchheim (Germany)

    2013-12-11

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd{sub 2}O{sub 2}S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  10. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    OpenAIRE

    Esposito, M; Anaxagoras, T; Konstantinidis, AC; Zheng, Y.; Speller, RD; Evans, PM; Allinson, NM; Wells, K.

    2014-01-01

    Recently CMOS Active Pixels Sensors (APSs) have become a valuable alternative to amorphous Silicon and Selenium Flat Panel Imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non...

  11. First X-ray fluorescence CT experimental results at the SSRF X-ray imaging beamline

    Institute of Scientific and Technical Information of China (English)

    DENG Biao; YANG Qun; XIE Hong-Lan; DU Guo-Hao; XIAO Wi-Qiao

    2011-01-01

    X-ray fluorescence CT is a non-destructive technique for detecting elemental composition and distribution inside a specimen. In this paper, the first experimental results of X-ray fluorescence CT obtained at the SSRF X-ray imaging beamline (BL13W1) are described. The test samples were investigated and the 2D elemental image was reconstructed using a filtered back-projection algorithm. In the sample the element Cd was observed. Up to now, the X-ray fluorescence CT could be carried out at the SSRF X-ray imaging beamline.

  12. Digital X-ray imager

    International Nuclear Information System (INIS)

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying source voltage and filtering (predicting the required dynamic range for the detector); evaluating CsI:Tl, CdWO4 and scintillating glass as image converters; recommending image enhancement algorithms. The LLNL modeling results guided the design and experimental elements of the project. The Laboratory's unique array of sources and detectors was employed to resolve specific technical questions. Our image processing expertise was applied to the selection of enhancement tools for image display

  13. The X-ray imager on AXO

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Westergaard, Niels Jørgen Stenfeldt;

    2001-01-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated....... Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X...... thunderstorm system. Additional objective is a detailed mapping of the auroral X-ray and optical emission. XRI comprises a coded mask and a 20 x 40cm(2) CZT detector array covering an energy range from 5 to 200keV....

  14. X-ray phase contrast image simulation

    International Nuclear Information System (INIS)

    A deterministic algorithm is proposed to simulate phase contrast (PC) X-ray images for complex three-dimensional (3D) objects. This algorithm has been implemented in a simulation code named VXI (virtual X-ray imaging). The physical model chosen to account for PC technique is based on the Fresnel-Kirchhoff diffraction theory. The algorithm consists mainly of two parts. The first one exploits the VXI ray-tracing approach to compute the object transmission function. The second part simulates the PC image due to the wave front distortion introduced by the sample. In the first part, the use of computer-aided drawing (CAD) models enables simulations to be carried out with complex 3D objects. Differently from the VXI original version, which makes use of an object description via triangular facets, the new code requires a more 'sophisticated' object representation based on non-uniform rational B-splines (NURBS). As a first step we produce a spatial high resolution image by using a point and monochromatic source and an ideal detector. To simulate the polychromatic case, the intensity image is integrated over the considered X-ray energy spectrum. Then, in order to account for the system spatial resolution properties, the high spatial resolution image (mono or polychromatic) is convolved with the total point spread function of the imaging system under consideration. The results supplied by the proposed algorithm are examined with the help of some relevant examples

  15. A simulator for X-ray images

    International Nuclear Information System (INIS)

    A simulator for X-ray images is presented based on a virtual X-ray source and a virtual human body obtained from tomographic slices. In the simulator it is possible to modify the tube potential, the anodic current, the exposure time, the filtration and some geometric parameters such as source-skin distance, orientation and field size. The virtual body consists of a three-dimensional voxel matrix in which CT numbers for each point of the body are stored. The interactions of X rays passing through the body are evaluated using the pencil beam technique. The image is obtained by computing the dose absorbed by the detector and converting it into optical density using a proper response function. The image spatial resolution is limited by the voxel size. The influence of each parameter on the image quality can be observed interactively. The dose absorbed in each point of the body is an important parameter obtained as output of the simulator. (authors)

  16. A X-ray scanning machine for imaging atomic elements

    OpenAIRE

    Fenelon, A.G.R

    1988-01-01

    X-ray computer axial tomography is a well established technique for producing images which show the spatial variation of X-ray linear attenuation coefficient within an object. X-ray differential K absorbtion edge tomography is the application of computer axial tomography to form images of selected atomic elements within an object, and these images show the distribution of specific atomic element concentration. The technique is to measure the attenuation of X-rays on either side of the K a...

  17. Digital X-ray Imaging in Dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Dankook University, Yongin (Korea, Republic of)

    1999-08-15

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  18. Digital X-ray Imaging in Dentistry

    International Nuclear Information System (INIS)

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  19. X-ray imaging for security applications

    Science.gov (United States)

    Evans, J. Paul

    2004-01-01

    The X-ray screening of luggage by aviation security personnel may be badly hindered by the lack of visual cues to depth in an image that has been produced by transmitted radiation. Two-dimensional "shadowgraphs" with "organic" and "metallic" objects encoded using two different colors (usually orange and blue) are still in common use. In the context of luggage screening there are no reliable cues to depth present in individual shadowgraph X-ray images. Therefore, the screener is required to convert the 'zero depth resolution' shadowgraph into a three-dimensional mental picture to be able to interpret the relative spatial relationship of the objects under inspection. Consequently, additional cognitive processing is required e.g. integration, inference and memory. However, these processes can lead to serious misinterpretations of the actual physical structure being examined. This paper describes the development of a stereoscopic imaging technique enabling the screener to utilise binocular stereopsis and kinetic depth to enhance their interpretation of the actual nature of the objects under examination. Further work has led to the development of a technique to combine parallax data (to calculate the thickness of a target material) with the results of a basis material subtraction technique to approximate the target's effective atomic number and density. This has been achieved in preliminary experiments with a novel spatially interleaved dual-energy sensor which reduces the number of scintillation elements required by 50% in comparison to conventional sensor configurations.

  20. Applications of holography to X-ray imaging

    International Nuclear Information System (INIS)

    In this paper the authors consider various applications of holographic techniques to the problem of soft x-ray imaging. Special attention is given to imaging biological material using x-rays in the wavelength range 24-45A. The authors describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region

  1. The PERCIVAL soft X-ray imager

    Science.gov (United States)

    Wunderer, C. B.; Marras, A.; Bayer, M.; Correa, J.; Göttlicher, P.; Lange, S.; Shevyakov, I.; Smoljanin, S.; Tennert, M.; Viti, M.; Xia, Q.; Zimmer, M.; Das, D.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Turchetta, R.; Cautero, G.; Gianoncelli, A.; Giuressi, D.; Menk, R.; Stebel, L.; Yousef, H.; Marchal, J.; Rees, N.; Tartoni, N.; Graafsma, H.

    2015-02-01

    With the increased brilliance of state-of-the-art Synchrotron radiation sources and the advent of Free Electron Lasers enabling revolutionary science on atomic length and time scales with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon counting capability with low probability of false positives, and (multi)-megapixels. PERCIVAL (``Pixelated Energy Resolving CMOS Imager, Versatile And Large'') is currently being developed by a collaboration of DESY, RAL, Elettra, DLS and Pohang to address this need for the soft X-ray regime. PERCIVAL is a monolithic active pixel sensor (MAPS), i.e. based on CMOS technology. It will be back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to its preliminary specifications, the roughly 10 × 10 cm2, 3.5k × 3.7k monolithic ``PERCIVAL13M'' sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within its 27 μm pixels to measure 1 to ~ 105 (500 eV) simultaneously-arriving photons. A smaller ``PERCIVAL2M'' with ~ 1.4k × 1.5k pixels is also planned. Currently, small-scale back-illuminated prototype systems (160 × 210 pixels of 25 μm pitch) are undergoing detailed testing with X-rays and optical photons. In March 2014, a prototype sensor was tested at 350 eV-2 keV at Elettra's TwinMic beamline. The data recorded include diffraction patterns at 350 eV and 400 eV, knife edge and sub-pixel pinhole illuminations, and comparisons of different pixel types. Another prototype chip will be submitted in fall 2014, first larger sensors could be in hand in late 2015.

  2. Aspergillosis - chest x-ray (image)

    Science.gov (United States)

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  3. Phase-sensitive X-ray imager

    Science.gov (United States)

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  4. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  5. X-ray holographic microscopy: Improved images of zymogen granules

    International Nuclear Information System (INIS)

    Soft x-ray holography has long been considered as a technique for x-ray microscopy. It has been only recently, however, that sub-micron resolution has been obtained in x-ray holography. This paper will concentrate on recent progress we have made in obtaining reconstructed images of improved quality. 15 refs., 6 figs

  6. X-ray holographic microscopy: Improved images of zymogen granules

    International Nuclear Information System (INIS)

    Soft x-ray holography has long been considered as a technique for x-ray microscopy. It has been only recently, however, that sub-micron resolution has been obtained in x-ray holography. This paper will concentrate on recent progress that has been made in obtaining reconstructed images of improved quality. 15 refs., 6 figs

  7. The ITER core imaging x-ray spectrometer: X-ray calorimeter performance

    International Nuclear Information System (INIS)

    We describe the anticipated performance of an x-ray microcalorimeter instrument on ITER. As part of the core imaging x-ray spectrometer, the instrument will augment the imaging crystal spectrometers by providing a survey of the concentration of heavy ion plasma impurities in the core and possibly ion temperature values from the emission lines of different elemental ions located at various radial positions.

  8. The ITER core imaging x-ray spectrometer: x-ray calorimeter performance.

    Science.gov (United States)

    Beiersdorfer, P; Brown, G V; Clementson, J; Dunn, J; Morris, K; Wang, E; Kelley, R L; Kilbourne, C A; Porter, F S; Bitter, M; Feder, R; Hill, K W; Johnson, D; Barnsley, R

    2010-10-01

    We describe the anticipated performance of an x-ray microcalorimeter instrument on ITER. As part of the core imaging x-ray spectrometer, the instrument will augment the imaging crystal spectrometers by providing a survey of the concentration of heavy ion plasma impurities in the core and possibly ion temperature values from the emission lines of different elemental ions located at various radial positions. PMID:21034021

  9. Compact Soft X-Ray Microscopy: Image Processing and Instrumentation

    OpenAIRE

    Stollberg, Heide

    2006-01-01

    Soft x-ray microscopy is a powerful technique for natural-contrast, high-resolution imaging of organic materials. This Thesis describes new instrumentational and new image-processing methods to improve the image quality of the compact x-ray microscope at the Biomedical & X-Ray Physics division at KTH. The microscope is based on a laser-plasma source combined with different condenser optics, either multilayer mirrors or zone plates. Imaging is performed by micro zone plates. The microscope...

  10. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    OpenAIRE

    Toru Aoki; Takuya Nakashima; Hisashi Morii; Yoichiro Neo; Hidenori Mimura

    2008-01-01

    Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source) and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray C...

  11. Development of highly luminescent and water-dispersible lanthanide-based nanomaterials for potential bio-medical imaging

    Science.gov (United States)

    Attanayake, Gayanthi Kumari

    Lanthanide metal ions exhibit fascinating optical and magnetic properties. Lanthanide-based nanomaterials have potential applications in optical devices, telecommunication, electroluminescent devices, bio-analytical sensors, and bio-medical imaging technology. Despite the recent developments, low luminescence characteristics, poor water solubility, and poor cell selectivity of lanthanide-based materials limit their use in bio-medical applications. This project is designed to mainly improve the luminescence properties of Eu(III)-based nanomaterials for their potential use in biomedical applications. In addition, we explore synthetic methods to enhance the water dispersibility and melanoma cell selectivity of the nanoparticles. Current research is designed to address the above mentioned drawbacks of lanthanide-based nanomaterials. Two different nanoparticle systems were developed in this project. i. europium (Eu)-based down-converting nanoparticles, ii. ytterbium (Yb)- erbium (Er)-based upconverting nanoparticles. Many down-converting nanoparticle systems suffer from low-luminescence efficiencies due to their poor light absorption by direct excitation of the lanthanide ions. In order to improve the luminescence characteristics, we have designed a novel nanomaterial by surface-coating it with organic chromophores having strong light absorption properties. LaEuF3.AEP (La=lanthanum, AEP = aminoethyl phosphate) nanoparticles were successfully synthesized using a low temperature heating method and Eu-based NaYF4 nanoparticles were synthesized using a high temperature heating method. A ligand exchange procedure was developed to functionalize the surface of the nanoparticles with an organic chromophore, TTA (thenoyltrifluoroacetone). The TTA functionalized Eu(III)-based nanoparticles exhibit impressive luminescence enhancements utilizing the sensitization effect. Poor water solubility is the main drawback of the upconverting nanoparticles for bio-medical applications. We

  12. Coccidioidomycosis - chest x-ray (image)

    Science.gov (United States)

    This chest x-ray shows the affects of a fungal infection, coccidioidomycosis. In the middle of the left lung (seen on the ... defined borders. Other diseases that may explain these x-ray findings include lung abscesses, chronic pulmonary tuberculosis, chronic ...

  13. Adenocarcinoma - chest x-ray (image)

    Science.gov (United States)

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  14. Adaptative segmentation for phase-contrast X-Ray imaging

    International Nuclear Information System (INIS)

    A set-up for X-Ray Imaging was mounted using a micro source X-ray generator, a Shad-O Box detector and a X-ray Imaging Plate System. We implemented the in-line phase contrast technique in our laboratory. Phase contrast imaging is an emerging X-ray imaging technique capable of improving the conspicuity of fine detail in an image, including some detail which are not visible with conventional techniques. The application of phase contrast imaging techniques to medical diagnostics (e.g. mammography) and the new segmentation adaptative algorithms based in entropy has opened new horizons for X-ray based imaging. The ROI (Region Of Interest) extraction is an important step in de X-ray imaging processing, because it reduces the computational cost. The classical spatial filters used in image segmentation show different results when the dimension of an image changes, this implies modifying the algorithm and it takes longer. The phase contrast technique shows better detail information. In order to avoid different results on images with variable dimensions, we used the non extensive systems concept applied to images through Tsallis entropy that assumes subsets of probabilities for different regions in the X-ray image. The ROI extraction based on Tsallis entropy and phase contrast X-ray images offers high quality region extraction and therefore more accurate diagnoses

  15. CMOS APS detector characterization for quantitative X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Endrizzi, Marco, E-mail: m.endrizzi@ucl.ac.uk [Dipartimento di Fisica, Università di Siena, Via Roma 56, 53100 Siena (Italy); Istituto Nazionale di Fisica Nucleare INFN, sezione di Pisa, 56127 Pisa (Italy); Oliva, Piernicola [Dipartimento di Chimica e Farmacia, Università di Sassari, via Piandanna 4, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Cagliari, 09042 Cagliari (Italy); Golosio, Bruno [Sezione di Matematica, Fisica e Ingegneria dell' Informazione, Università di Sassari, via Piandanna 4, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Cagliari, 09042 Cagliari (Italy); Delogu, Pasquale [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare INFN, sezione di Pisa, 56127 Pisa (Italy)

    2013-03-01

    An X-ray Imaging detector based on CMOS Active Pixel Sensor and structured scintillator is characterized for quantitative X-ray imaging in the energy range 11–30 keV. Linearity, dark noise, spatial resolution and flat-field correction are the characteristics of the detector subject of investigation. The detector response, in terms of mean Analog-to-Digital Unit and noise, is modeled as a function of the energy and intensity of the X-rays. The model is directly tested using monochromatic X-ray beams and it is also indirectly validated by means of polychromatic X-ray-tube spectra. Such a characterization is suitable for quantitative X-ray imaging and the model can be used in simulation studies that take into account the actual performance of the detector.

  16. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described:- the Mark I and the Mark II. Both use a bidimensionally sensitive Multiwire proportional counter as the basic X-ray image transducer coupled to a digital microcomputer system. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multi-frame exposures. (author)

  17. Tuberculosis, advanced - chest x-rays (image)

    Science.gov (United States)

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  18. Phase-contrast X-ray imaging of breast

    Energy Technology Data Exchange (ETDEWEB)

    Keyrilaeinen, Jani; Tenhunen, Mikko (Dept. of Physics, HUCH Cancer Center, Helsinki Univ. Central Hospital, Helsinki (Finland)), e-mail: jani.keyrilainen@hus.fi; Bravin, Alberto (Bio-medical Beamline ID17, European Synchrotron Radiation Facility, Grenoble (France)); Fernandez, Manuel (High Brilliance Beamline ID2, European Synchrotron Radiation Facility, Grenoble (France)); Virkkunen, Pekka (Dept. of Radiology, HUCH Cancer Center, Helsinki Univ. Central Hospital, Helsinki (Finland)); Suortti, Pekka (Dept. of Physics, Univ. of Helsinki, Helsinki (Finland))

    2010-10-15

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here

  19. Phase-contrast X-ray imaging of breast.

    Science.gov (United States)

    Keyriläinen, Jani; Bravin, Alberto; Fernández, Manuel; Tenhunen, Mikko; Virkkunen, Pekka; Suortti, Pekka

    2010-10-01

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here. PMID:20799921

  20. Phase-contrast X-ray imaging of breast

    International Nuclear Information System (INIS)

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here

  1. Dental x-ray image segmentation

    Science.gov (United States)

    Said, Eyad; Fahmy, Gamal F.; Nassar, Diaa; Ammar, Hany

    2004-08-01

    Law enforcement agencies have been exploiting biometric identifiers for decades as key tools in forensic identification. With the evolution in information technology and the huge volume of cases that need to be investigated by forensic specialists, it has become important to automate forensic identification systems. While, ante mortem (AM) identification, that is identification prior to death, is usually possible through comparison of many biometric identifiers, postmortem (PM) identification, that is identification after death, is impossible using behavioral biometrics (e.g. speech, gait). Moreover, under severe circumstances, such as those encountered in mass disasters (e.g. airplane crashers) or if identification is being attempted more than a couple of weeks postmortem, under such circumstances, most physiological biometrics may not be employed for identification, because of the decay of soft tissues of the body to unidentifiable states. Therefore, a postmortem biometric identifier has to resist the early decay that affects body tissues. Because of their survivability and diversity, the best candidates for postmortem biometric identification are the dental features. In this paper we present an over view about an automated dental identification system for Missing and Unidentified Persons. This dental identification system can be used by both law enforcement and security agencies in both forensic and biometric identification. We will also present techniques for dental segmentation of X-ray images. These techniques address the problem of identifying each individual tooth and how the contours of each tooth are extracted.

  2. New intraoral x-ray fluorographic imaging for dentistry

    International Nuclear Information System (INIS)

    A new dental x-ray fluorographic unit has been developed. This unit is composed of small intraoral x-ray tube, a compact x-ray image intensifier, and a high-resolution TV system. The purposes for developing this equipment were to (1) directly observe the tooth during endodontic procedures and (2) reduce x-ray exposure to the patient and the dentist. The radiation exposure can be reduced to about 1/600 the exposure used with conventional dental film. In clinical trials, a satisfactory fluorographic dental image for endodontic treatment was obtained with this new device

  3. X-ray imaging with the PILATUS 100k detector

    DEFF Research Database (Denmark)

    Bech, Martin; Bunk, O.; David, C.;

    2008-01-01

    We report on the application of the PILATUS 100K pixel detector for medical imaging. Experimental results are presented in the form of X-ray radiographs using standard X-ray absorption contrast and a recently developed phase contrast imaging method. The results obtained with the PILATUS detector...

  4. Quantitative phase imaging using hard x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.A.; Paganin, D.; Barnea, Z. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Cookson, D. F. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Gureyev, T.E. [Melbourne Univ., Parkville, VIC (Australia). School of Physics]|[CSIRO, Clayton, VIC (Australia). Div. of Forestry and Forest Products

    1997-06-01

    The quantitative imaging of a phase object using 16 keV x-rays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. It is found that the phase image is in quantitative agreement with independent measurements of the object. 13 refs., 5 figs.

  5. Quantitative phase imaging using hard x-rays

    International Nuclear Information System (INIS)

    The quantitative imaging of a phase object using 16 keV x-rays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. It is found that the phase image is in quantitative agreement with independent measurements of the object. 13 refs., 5 figs

  6. Digital Dental X-Ray Image Segmentation and Feature Extraction

    OpenAIRE

    Abdolvahab Ehsani Rad; Mohd. Shafry Mohd. Rahim; Alireza Norouzi

    2013-01-01

    The process of analysis of such images is important in order to improve quantify medical imaging systems. It is significant to analysis the dental x-ray images we need features of image. In this paper we present a method for segmentation and feature extraction of dental x-ray images. The proposed method has been implemented by using level-set method for segmentation after image enhancement and illustrate contour for teeth to complete the segmentation step. Furthermore, we extracted multiple f...

  7. Fourier-transform Ghost Imaging with Hard X-rays

    OpenAIRE

    Hong YU; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-01-01

    Knowledge gained through X-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. Atomic details of sample structures is achievable by X-ray crystallography, however, it is only applied to crystalline structures. Imaging techniques based on X-ray coherent diffraction or zone plates are capable of resolving the internal structure of non-crystalline materials at nanoscales, but it is still ...

  8. Quantitative methods in phase-contrast x-ray imaging

    International Nuclear Information System (INIS)

    Full text: A new method for extracting quantitative information from phase-contrast x-ray images obtained with microfocus x-ray sources is presented. The proposed technique allows rapid non invasive characterization of the internal structure of thick optically opaque organic samples. The method does not generally involve any sample preparation and does not need any x-ray optical elements (such as monochromators, zone plates, or interferometers)

  9. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongmei; Zhu, Shouping, E-mail: zhusp2009@gmail.com; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin [Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  10. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  11. Image formation in diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    This thesis deals with a physical description of the image formation in static radiographic shadow image X-ray equipment and an analysis of the optimization of such systems. For the latter criteria have been developed that take into account all relevant physical phenomena that relate to properties of the image and the radiation exposure of the patient. The discussion of image formation results in a number of relations between the X-ray system parameters on the one hand and properties of the X-ray image on the other. The three principal aspects considered are energy transfer, modulation transfer and noise. (Auth./C.F.)

  12. Automatic focus algorithms for TDI X-Ray image reconstruction

    OpenAIRE

    Dörr, J; Rosenbaum, M.; Sauer-Greff, W.; Urbansky, R.

    2012-01-01

    In food industry, most products are checked by X-rays for contaminations. These X-ray machines continuously scan the product passing through. To minimize the required X-ray power, a Time, Delay and Integration (TDI) CCD-sensor is used to capture the image. While the product moves across the sensor area, the X-ray angle changes during the pass. As a countermeasure, adjusting the sensor shift speed on a single focal plane of the product can be selected. However, the changing a...

  13. Coherent X-ray Imaging Techniques for Shock Physics

    Science.gov (United States)

    Montgomery, David

    2015-06-01

    X-ray radiography has been used for several decades in dynamic experiments to measure material flow in extreme conditions via absorption of x-rays propagating through the materials. Image contrast in traditional radiography is determined by the absorption coefficients and areal densities of the materials at a given x-ray wavelength, and often limits these measurements to materials with sufficiently high atomic numbers and areal density, while low-Z materials and small areal density variations are completely transparent and not visible in the image. Coherent x-ray sources, such as those found at synchrotrons and x-ray free-electron lasers, provide new opportunities for imaging dynamic experiments due to their high spatial and spectral coherence, high brightness and short temporal duration (x-ray source. Objects that are otherwise transparent to x-rays can be imaged with PCI, and small variations in areal density become visible that would be not observable with traditional radiography. In this talk an overview of PCI will be given, and current applications of this technique in high-energy density physics, shock physics and material dynamics will be presented. Other future uses of imaging using coherent x-ray sources in dynamic high-pressure experiments will be discussed. Work performed under the auspices of DOE by LANL under Contract DE-AC52-06NA25396.

  14. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [BME Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu [ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  15. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  16. Digital Dental X-Ray Image Segmentation and Feature Extraction

    Directory of Open Access Journals (Sweden)

    Abdolvahab Ehsani Rad

    2013-06-01

    Full Text Available The process of analysis of such images is important in order to improve quantify medical imaging systems. It is significant to analysis the dental x-ray images we need features of image. In this paper we present a method for segmentation and feature extraction of dental x-ray images. The proposed method has been implemented by using level-set method for segmentation after image enhancement and illustrate contour for teeth to complete the segmentation step. Furthermore, we extracted multiple features of dental x-ray images using texture statistics techniques by gray-level co-occurrence matrix. Extracted data can perform to obtain the teeth measurements for automatic dental systems such human identification or dental diagnosis systems. Preparatory experiments show the significance of the proposed method to extract teeth from an x-ray image.

  17. X-ray Photon Counting and Two-Color X-ray Imaging Using Indirect Detection.

    Science.gov (United States)

    Dierickx, Bart; Yao, Qiang; Witvrouwen, Nick; Uwaerts, Dirk; Vandewiele, Stijn; Gao, Peng

    2016-01-01

    In this paper, we report on the design and performance of a 1 cm², 90 × 92-pixel image sensor. It is made X-ray sensitive by the use of a scintillator. Its pixels have a charge packet counting circuit topology with two channels, each realizing a different charge packet size threshold and analog domain event counting. Here, the sensor's performance was measured in setups representative of a medical X-ray environment. Further, two-energy-level photon counting performance is demonstrated, and its capabilities and limitations are documented. We then provide an outlook on future improvements. PMID:27240362

  18. Calibration of Cone Beam Rotational X-Ray Image Sequence

    Institute of Scientific and Technical Information of China (English)

    YUHengyong; MOUXuanqin; CAIYuanlong

    2004-01-01

    The real X-ray projection does not abide by Lambert-Beer Law, since the X-ray is polychromatic and the imaging chains are nonlinear. Based on the generating process of X-ray images, an equivalent nonlinear transform model is firstly proposed which considers all the nonlinear factors as one nonlinear transform. Then the 3D (three-dimensional) X-ray projection of cone beam is defined. The constraints of Radon transform, named H-L (Helgasson-ludwig) consistency conditions, are expanded to fan-beam. After that an algorithm is developed to calibrate Rotational X-ray image sequence (RXIS). The algorithm uses a set of exponential functions to approximate the nonlinear inverse transform. According to expanded H-L consistency conditions, finally a kind of nonlinear measure for RXIS is defined. Experimental results show that the proposed algorithm can decrease the nonlinear measure to below 0.01.

  19. Incoherent x-ray scattering in single molecule imaging

    CERN Document Server

    Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

    2014-01-01

    Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

  20. Comparing neutron and X-ray images from NIF implosions

    Directory of Open Access Journals (Sweden)

    Wilson D.C.

    2013-11-01

    Full Text Available Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  1. Comment on "Perspectives of medical X-ray imaging"

    CERN Document Server

    Taibi, A; Tuffanelli, A; Gambaccini, M

    2002-01-01

    In the paper 'Perspectives of medical X-ray imaging' (Nucl. Instr. and Meth. A 466 (2001) 99) the infer, from simple approximations, that the use of HOPG monochromator has no advantage in mammography compared to existing systems. We show that in order to compare imaging properties of different X-ray sources it is necessary to evaluate the spectra after the attenuation of the tissue to be imaged. Indeed, quasi-monochromatic X-ray sources have the potential to enhance image contrast and to reduce patient dose.

  2. Comment on 'Perspectives of medical X-ray imaging'

    International Nuclear Information System (INIS)

    In the paper 'Perspectives of medical X-ray imaging' (Nucl. Instr. and Meth. A 466 (2001) 99) the authors infer, from simple approximations, that the use of HOPG monochromator has no advantage in mammography compared to existing systems. We show that in order to compare imaging properties of different X-ray sources it is necessary to evaluate the spectra after the attenuation of the tissue to be imaged. Indeed, quasi-monochromatic X-ray sources have the potential to enhance image contrast and to reduce patient dose

  3. Comment on ``Perspectives of medical X-ray imaging''

    Science.gov (United States)

    Taibi, A.; Baldelli, P.; Tuffanelli, A.; Gambaccini, M.

    2002-07-01

    In the paper "Perspectives of medical X-ray imaging" (Nucl. Instr. and Meth. A 466 (2001) 99) the authors infer, from simple approximations, that the use of HOPG monochromator has no advantage in mammography compared to existing systems. We show that in order to compare imaging properties of different X-ray sources it is necessary to evaluate the spectra after the attenuation of the tissue to be imaged. Indeed, quasi-monochromatic X-ray sources have the potential to enhance image contrast and to reduce patient dose.

  4. Differences of X-ray exposure between X-ray diagnostics with a conventional X-ray screen-system and with an image-intensifier-television-unit

    International Nuclear Information System (INIS)

    During X-ray diagnostics of patients in the II. Medizinische Poliklinik the X-ray exposure was determined. It corresponded to the data described in literature. Two groups were compared: 518 patients examined with a conventional X-ray screen-system and 642 patients examined with an image-intensifier-television-system. The results demonstrated that with exception of thoracical X-ray examination the replacing of the old system by the television system brought a remarkable increase of the X-ray exposure. The doses depended of the patients constitution to a high degree. (orig.)

  5. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    International Nuclear Information System (INIS)

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction

  6. A backscattered x-ray imager for medical applications

    Science.gov (United States)

    Morris, Eric Jude L.; Dibianca, Frank A.; Shukla, Hemant; Gulabani, Daya

    2005-04-01

    Conventional X-ray radiographic systems rely on transmitted photons for the production of images. Backscatter imaging makes use of the more abundant scattered photons for image formation. Specifically, incoherently (Compton) scattered X-ray photons are detected and used for image formation in this modality of medical imaging. However, additional information is obtained when the transmitted X-ray photons are also detected and used. Transmission radiography produces a two-dimensional image of a three dimensional system, therefore image information from a shallower object is often contaminated by image information from underlying objects. Backscattered x-ray imaging largely overcomes this deficiency by imaging depth selectively, which reduces corruption of shallow imaging information by information from deeper objects lying under it. Backscattered x-ray imaging may be particularly useful for examining anatomical structures at shallow depths beneath the skin. Some typical applications for such imaging might be breast imaging, middle ear imaging, imaging of skin melanomas, etc. Previous investigations, by way of theoretical calculations and computational simulations into the feasibility of this kind of imaging have uncovered high-contrast and SNR parameters. Simulations indicate that this method can be used for imaging relatively high-density objects at depths of up to approximately five centimeters below the surface. This paper presents both theoretical and experimental SNR results on this new medical imaging modality.

  7. AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    Science.gov (United States)

    Sembay, S.; Branduardi-Rayrnont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.

    2012-01-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  8. X-ray microscopic imaging of inertial fusion capsules

    International Nuclear Information System (INIS)

    Inertial fusion chamber is conducted in a metal chamber with polymer capsules. And the capsules are usually made of carbon, hydrogen and other low Z materials. It is difficult for traditional X-ray imaging technique to detect the inertial fusion capsules. X-ray phase contrast imaging has been used in low Z material imaging. However it has not been applied to low Z materials wrapped by strong absorption materials. In this paper, we construct a model and discuss the effect of parameters such as X-ray energy, distance of object to detector, and thickness of strong absorbing materials, on phase contrast imaging quality by simulation and experiment. We found it feasible to perform high resolution and nondestructive detection of inertial fusion capsules in a chamber by X-ray phase contrast imaging. And this technique may have other applications, such as inclusion detection in petroleum exploration. (authors)

  9. New sensors for dental X-ray imaging

    Science.gov (United States)

    Fröjdh, C.; Andersson, J.; Bates, R.; Heuken, M.; Irsigler, R.; Petersson, C. S.; O'Shea, V.; Smith, K.; Stamatakis, H.; Welander, U.

    1999-09-01

    Digital systems for dental X-ray imaging are rapidly replacing conventional film techniques. The major advantages of digital systems are reduced X-ray doses due to increased sensitivity, time savings since no development is needed and reduced use of chemicals for film development. Most of the currently available digital systems are based on a silicon CCD coated with a scintillating material. In this paper we present some of the research going on in order to develop new X-ray imaging sensors with improved sensitivity.

  10. New sensors for dental X-ray imaging

    International Nuclear Information System (INIS)

    Digital systems for dental X-ray imaging are rapidly replacing conventional film techniques. The major advantages of digital systems are reduced X-ray doses due to increased sensitivity, time savings since no development is needed and reduced use of chemicals for film development. Most of the currently available digital systems are based on a silicon CCD coated with a scintillating material. In this paper we present some of the research going on in order to develop new X-ray imaging sensors with improved sensitivity. (author)

  11. Characterizing Complexity of Containerized Cargo X-ray Images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guangxing [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Birrer, Nat [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-19

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  12. GOES-12 Solar X-ray Imager Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GOES Solar X-ray Imager is integrated into the GOES-12 satellite, whose primary mission is to provide Earth-weather monitoring. The SXI is operated by NOAA's...

  13. Three-Dimensional Backscatter X-Ray Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposal is to design, develop and demonstrate a potentially portable Compton x-ray scatter 3D-imaging system by using specially...

  14. Improvements in x-ray image converters and phosphors

    International Nuclear Information System (INIS)

    Improvements to an X-ray image converter comprising crystals of rare earth phosphor admixtures are described. The phosphor admixtures utilize thulium-activated lanthanum and/or gadolinium oxyhalide phosphor material to increase the relative speed and resolution of an X-ray image compared with conventional rare earth phosphors. Examples of various radiographic screens containing one or more of the phosphor materials are given. (U.K.)

  15. Dose optimization in cardiac x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G. [LXi Research, Division of Medical Physics, University of Leeds, Worsley Building, Clarendon Way, Leeds LS2 9JT (United Kingdom)

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting

  16. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  17. Combining X-ray imaging and machine vision

    International Nuclear Information System (INIS)

    The use of x-rays as a light source for medical diagnosis has been around since the early 20th century. The use of x-rays as a tool in nondestructive testing (for industrial use) has been around almost as long. Photographic film has been the medium that converts the x-ray energy that it encounters into areas of light and dark depending on the amount of energy absorbed. Referring to industrial use of x-rays only, may systems have been manufactured that replaced the photographic film with a combination of x-rays, fluorescent screen, and a television camera. This type of system was mainly used as a nondestructive testing tool to inspect various products (such as tires) for internal flaws and always used an operator to make the decisions. In general, the images produced by such systems were poor in nature due to lack of contrast and noise. The improvements in digital image processing and complex algorithms have made it possible to combine machine vision and x-rays to address a whole new spectrum of applications that require automatic analysis for flaw inspection. The objective of this presentation is to familiarize with some of the techniques used to solve automatic real-time x-ray problems. References are made to real applications in the aerospace, pharmaceutical, food, and automotive industries

  18. Multiple-energy X-ray subtraction imaging system

    International Nuclear Information System (INIS)

    This invention relates to x-ray imaging systems, with particular reference to blood vessels. In a primary application the invention relates to obtaining isolated images of an administered contrast agent. The absorption of X-rays transmitted through a body is measured in a plurality of energy ranges and these measurements are processed to obtain image data with the soft tissue component eliminated. Such processed image data is obtained before and after the administration of a contrast agent, such as iodine, to the body. The two sets of processed image data are subtractively combined to obtain an isolated image of the contrast agent which is immune to motion of soft tissue. (author)

  19. Applications of Indirect Imaging techniques in X-ray binaries

    CERN Document Server

    Harlaftis, E T

    2000-01-01

    A review is given on aspects of indirect imaging techniques in X-ray binaries which are used as diagnostics tools for probing the X-ray dominated accretion disc physics. These techniques utilize observed properties such as the emission line profile variability, the time delays between simultaneous optical/X-ray light curves curves, the light curves of eclipsing systems and the pulsed emission from the compact object in order to reconstruct the accretion disc's line emissivity (Doppler tomography), the irradiated disc and heated secondary (echo mapping), the outer disc structure (modified eclipse mapping) and the accreting regions onto the compact object, respectively.

  20. Lensless x-ray imaging in reflection geometry

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Parks, D.H.; Seu, K.A.; Turner, J.J.; Chao, W.; Anderson, E.H.; Cabrini, S.; Kevan, S.D.; Su, R.

    2011-02-03

    Lensless X-ray imaging techniques such as coherent diffraction imaging and ptychography, and Fourier transform holography can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.

  1. A New Approach for Clustering of X-ray Images

    Directory of Open Access Journals (Sweden)

    Chhanda Ray

    2010-07-01

    Full Text Available Medical image databases are a key component in future diagnosis and preventive medicine. Automatic clustering of medical images plays an important role for structuring of a given medical database as well as for searching and retrieval of biomedical images. This paper introduces a new approach for efficient clustering of x-ray images based on various levels of image features. Initially, for each given x-ray image, features have been extracted from three different levels, namely, global, local and pixel. Finally, a new approach, a combination of k-means and hierarchical clustering techniques, has been applied in order to cluster x-ray images. The experimental results are also presented at the end of this paper.

  2. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    International Nuclear Information System (INIS)

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons

  3. Towards hard X-ray imaging at GHz frame rate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Kwiatkowski, Kris K. [Los Alamos National Laboratory; Kapustinsky, Jon S. [Los Alamos National Laboratory

    2012-05-02

    Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  4. X-ray imaging detectors for synchrotron and XFEL sources

    OpenAIRE

    Takaki Hatsui; Heinz Graafsma

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivit...

  5. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  6. Coherent diffraction imaging using focused hard X-rays

    Science.gov (United States)

    Kim, Sunam; Kim, Sangsoo; Lee, Su Yong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Marathe, Shashidhara; Song, Changyong; Gallagher-Jones, Marcus; Kang, Hyon Chol

    2016-05-01

    A quantitative height profile image of a silicon nano-trench structure was obtained via coherent diffraction imaging (CDI) utilizing focused X-rays at a photon energy of 5.5 keV. The ability to optimize the spatial coherence and the photon flux density of a focused X-ray beam was the key technique for achieving such technical progress at a given X-ray photon flux. This was achieved by investigating the tunability of the focused beam's optical properties and performing a CDI experiment with the focused X-rays. The relationship between the focused X-rays' optical properties ( e.g., photon flux density and spatial coherence length) and the incident beam's size, which can be tuned by adjusting the slits in front of the Fresnel zone plate (FZP) was elucidated. We also obtained a quantitative image of a nano-trench sample produced via the reconstruction process of CDI, which utilizes carefully tuned, focused X-rays.

  7. Spectral and imaging characterization of tabletop x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J; Faenov, A Ya; Pikuz, T A; Osterheld, A; Moon, S J; Fournier, K B; Nilsen, J; Skobelev, I Yu; Magunov, A I; Shlyaptsev, V N

    2000-12-01

    We have performed L-shell spectroscopy and one-dimensional (1-D) imaging of a line focus plasma from a laser-heated Fe polished slab using the tabletop COMET laser system at the Lawrence Livermore National Laboratory. These plasmas are used to generate a Ne-like Fe transient gain x-ray laser that is recorded simultaneously. A spherically-curved crystal spectrometer gives high resolution x-ray spectra of the n = 3-2 and n = 4-2 resonance lines with 1-D spatial resolution along the line focus. Spectra are presented for different laser pulse conditions. In addition, a variety of x-ray imaging techniques are described. We discuss imaging results from a double-slit x-ray camera with a spherically-curved crystal spectrometer. We show a high resolution Fe K-{alpha} spectrum from the x-ray laser target that indicates the presence of hot electrons in the x-ray laser plasma.

  8. Fourier-transform Ghost Imaging with Hard X-rays

    CERN Document Server

    Yu, Hong; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-01-01

    Knowledge gained through X-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. Atomic details of sample structures is achievable by X-ray crystallography, however, it is only applied to crystalline structures. Imaging techniques based on X-ray coherent diffraction or zone plates are capable of resolving the internal structure of non-crystalline materials at nanoscales, but it is still a challenge to achieve atomic resolution. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudo-thermal hard X-rays by measuring the second-order intensity correlation function of the light. We show that high resolution Fourier-transform diffraction pattern of a complex structure can be achieved at Fresnel region, and the amplitude and phase distributions of a sample in spatial domain can be retrieved successfully. The method of lensless X-ray Fourier-transform ghost imaging extends X-ray...

  9. Plural image signal system for scanning x-ray apparatus

    International Nuclear Information System (INIS)

    Radiographic images are produced by situating a subject (13) between a scanning x-ray source (16) and an x-ray detector (14) to produce electrical signals indicative of variations of x-ray transmissivity in different regions of the subject (13). A signal processing system (11) enables simultaneous display of a plurality of visible images at a plurality of display devices (52 to 55) with each image emphasizing a different aspect of the information generated by a given scanning of the subject. A feedback circuit (68) from the detector (14) to the x-ray source (16) maintains the average level of the detector signal constant while allowing short term fluctuations so that only abrupt or brief changes of x-ray transmissivity in the subject are visible in a first image at a first display device (52). A second image signal circuit (93) recovers the data suppressed by the feedback circuit (68) to enable a full contrast range image to be presented at another display device (53) and to enableines of an ultrasonic image and for later reading-out of stored lines via the dbye chosen metal dihalide vapor is ionized by ; the total economic market potential is 64.4% of the technical potential, or 2072.4 MW, equivalent to 83,621 BPDE; and the lack of an operating history-detailing system reliability, safety, and operating costs-iment and test components; technology testing; analytmperature fatigue stren obtained

  10. X-ray imaging based on small-angle X-ray scattering using spatial coherence of parametric X-ray radiation

    International Nuclear Information System (INIS)

    X-ray imaging based on small-angle X-ray scattering (SAXS) was carried out using the parametric X-ray radiation (PXR) source at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. The experimental setup employed in this novel imaging approach is the same as that employed in diffraction-enhanced imaging (DEI), a kind of X-ray phase-contrast imaging method. In SAXS-based imaging, the image contrast is correlated with the broadening of the rocking curve peak due to the scattering from micron- or sub-micron-sized grains in the sample material. An experiment using the 25.5-keV PXR beam demonstrated that SAXS-based imaging with PXR provides a substantially strong contrast for granular materials despite the extremely low density of the material.

  11. Comparison of polychromatic and monochromatic X-rays for imaging

    Science.gov (United States)

    Hoheisel, M.; Bernhardt, P.; Lawaczeck, R.; Pietsch, H.

    2006-03-01

    Monochromatic X-rays have been proposed for medical imaging, especially in the mammographic energy range. Our previous investigations have shown that the contrast of objects such as lesions or contrast media can be enhanced considerably by using monochromatic X-rays instead of the common polychromatic spectra. Admittedly, only one specific polychromatic spectrum and one monochromatic energy have been compared so far. In this work, we investigated the contrast yielded by a series of different X-ray spectra obtained by varying tube voltage and beam filtering. This resulted in spectra of different mean energies and spectral widths. The objects under examination were aqueous solutions containing different chemical elements such as I, Gd, Dy, Yb, and Bi. A monoenergetic spectrum at 17.5 keV was obtained using a mammographic X-ray tube with a Mo anode and a monochromator equipped with a HOPG crystal. Moreover, we simulated quasi-monoenergetic spectra at different energies and with different widths. As a result, we demonstrated that in many cases spectra with an energetic width of some keV yield an equivalent contrast to monoenergetic radiation at the same energy. Therefore, the advantage in image contrast of monochromatic X-rays at 17.5 keV over narrow-band polychromatic X-ray spectra obtained by appropriate filtering is only slight. Thus, the additional expenditure on a mammography system with HOPG monochromator that can deliver only a small X-ray dose and the unfavorable slot-scan geometry can be avoided. Moreover, we carried out simulations of monochromatic versus polychromatic spectra throughout the whole radiographic energy range. We found advantages in using monochromatic X-rays at higher energies and thicker objects that will justify their application for diagnostic imaging in a number of specific cases.

  12. Imaging cochlear soft tissue displacement with coherent x-rays

    Science.gov (United States)

    Rau, Christoph; Richter, Claus-Peter

    2015-10-01

    At present, imaging of cochlear mechanics at mid-cochlear turns has not been accomplished. Although challenging, this appears possible with partially coherent hard x-rays. The present study shows results from stroboscopic x-ray imaging of a test object at audio frequencies. The vibration amplitudes were quantified. In a different set of experiments, an intact and calcified gerbil temporal bone was used to determine displacements of the reticular lamina, tectorial membrane, and Reissner’s membrane with the Lucas and Kanade video flow algorithm. The experiments validated high frequency x-ray imaging and imaging in a calcified cochlea. The present work is key for future imaging of cochlear micromechanics at a high spatial resolution.

  13. Reproducibility of Non-X-ray Background for the X-ray Imaging Spectrometer aboard Suzaku

    CERN Document Server

    Tawa, Noriaki; Nagai, Masaaki; Nakamoto, Hajime; Tsunemi, Hiroshi; Yamaguchi, Hiroya; Ishisaki, Yoshitaka; Miller, Eric; Mizuno, Tsunefumi; Dotani, Tadayasu; Ozaki, Masanobu; Katayama, Haruyoshi

    2008-01-01

    One of the advantages of the X-ray Imaging Spectrometer (XIS) system on board Suzaku is its low and stable non-X-ray background (NXB). In order to make the best use of this advantage, modeling the NXB spectra with high accuracy is important to subtract them from the spectra of on-source observations. We construct an NXB database by collecting XIS events when the dark Earth covers the XIS FOV. The total exposure time of the NXB data is about 785 ks for each XIS. It is found that the count rate of the NXB anti-correlates with the cut-off-rigidity and correlates with the count rate of the PIN upper discriminator (PIN-UD) in Hard X-ray Detector on board Suzaku. We thus model the NXB spectrum for a given on-source observation by employing either of these parameters and obtain a better reproducibility of the NXB for the model with PIN-UD than that with the cut-off-rigidity. The reproducibility of the NXB model with PIN-UD is 4.55-5.63% for each XIS NXB in the 1-7 keV band and 2.79-4.36% for each XIS NXB in the 5-12...

  14. X-ray image of male breast papilla

    International Nuclear Information System (INIS)

    A comparative study of the frequency of detection of breast papillae of men on X-ray units without amplifiers of X-ray imaging and with X-ray TV has shown that papilla imaging is a common feature in the performance of a modern X-ray unit: the papillae were detected in 2 to 28% of the cases, respectively. A total of 100 men aged 30 to 80 were investigated to study the shape and height of the papillae because these factors predetermined papilla imaging. The maximum diameter and height of the papillae did not exceed 10 mm. Papilla imaging on a TV screen or a panoramic chest X-ray was formed in a cylindrical or similar shape with the papilla height of 4 mm and over. The shape and structure of 23 detected papilla images were analyzed. The problems of differential diagnosis were considered. Imaging of breast papillae of men was proposed for including them in the list of the so-called chest ''soft tissues''

  15. Energy weighted x-ray dark-field imaging

    CERN Document Server

    Pelzer, Georg; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-01-01

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  16. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  17. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described: the Mark I and the Mark II. Both use a bidimensionally sensitive multiwire proportional counter (MWPC) as the basic X-ray image transducer coupled, in the case of the Mark I to a Digital LSI 11-23 microcomputer system via CAMAC, and in the case of the Mark II to a Digital LSI 11-73 microcomputer system via custom-built data acquisition hardware mounted directly on the Q-bus of the microcomputer. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multiframe exposures. The dedicated digital memories have a resolution of 512x512 pixels of 16 bits, matching well to the spatial resolution of the xenon-filled MWPC (0.5 mm fwhm over an aperture of 200 mm x 200 mm). A 512x512x4 bit video graphics system displays the images in grey scales or colour. (orig.)

  18. Phase-contrast imaging using polychromatic hard X-rays

    International Nuclear Information System (INIS)

    In conventional radiography, X-rays which pass through an object along different paths are differentially absorbed, and the intensity pattern of the emerging beam records the distribution of absorbing materials within the sample. An alternative approach is phase-contrast radiography, which instead records variations of the phase of the emerging radiation. Such an approach offers improved contrast sensitivity, especially when imaging weakly absorbing samples. Unfortunately, current phase-contrast imaging techniques generally require highly monochromatic plane-wave radiation and sophisticated X-ray optics, so their use is greatly restricted. Here we describe and demonstrate a simplified scheme for phase-contrast imaging based on an X-ray source having high spatial (but essentially no chromatic) coherence. The method is compatible with conventional polychromatic micro-focus X-ray tube sources, is well suited to large areas of irradiation, can operate with a lower absorbed dose than traditional X-ray imaging techniques, and should find broad application in clinical, biological and industrial settings. (Author)

  19. Dynamic x-ray imaging of laser-driven nanoplasmas

    Science.gov (United States)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  20. Analyser-based x-ray imaging for biomedical research

    International Nuclear Information System (INIS)

    Analyser-based imaging (ABI) is one of the several phase-contrast x-ray imaging techniques being pursued at synchrotron radiation facilities. With advancements in compact source technology, there is a possibility that ABI will become a clinical imaging modality. This paper presents the history of ABI as it has developed from its laboratory source to synchrotron imaging. The fundamental physics of phase-contrast imaging is presented both in a general sense and specifically for ABI. The technology is dependent on the use of perfect crystal monochromator optics. The theory of the x-ray optics is developed and presented in a way that will allow optimization of the imaging for specific biomedical systems. The advancement of analytical algorithms to produce separate images of the sample absorption, refraction angle map and small-angle x-ray scattering is detailed. Several detailed applications to biomedical imaging are presented to illustrate the broad range of systems and body sites studied preclinically to date: breast, cartilage and bone, soft tissue and organs. Ultimately, the application of ABI in clinical imaging will depend partly on the availability of compact sources with sufficient x-ray intensity comparable with that of the current synchrotron environment. (paper)

  1. X-ray and gamma imaging with multiwire proportional counters

    International Nuclear Information System (INIS)

    The role of the Multiwire Proportional Counter (MWPC) as an X-ray image transducer in integrated digital imaging systems for use in a wide variety of fields (X-ray diffraction, medicine, non-destructive testing, etc.) is discussed with particular reference to the suitability of the technology for wider application than has been the case up to the present. A survey is given of the mechanical, electrical and electronic aspects of MWPC system design and the integration of this technology with microprocessor systems is examined. After a survey of the newer developments in the field of multiwire gaseous detectors it is concluded that this type of technology offers good potential for routine production of integrated digital X-ray imaging systems, possibly on a commercial basis. (orig.)

  2. Feasibility test of Zeff imaging using x-ray interferometry

    International Nuclear Information System (INIS)

    Elemental imaging using X-ray interferometry has been developed. Since the atomic number (Z) of a single-element sample (effective atomic number (Zeff) for a plural-element sample) corresponds to the ratio of the real to imaginary part of the complex refractive index, an elemental map is calculable with the ratio of an absorption and phase-contrast image. Several metal foils underwent feasibility observations by crystal X-ray interferometry, providing accurate detection of X-ray intensity and phase-shift. The obtained Zeff image shows that aluminum, iron, nickel, and copper foil were clearly distinguished, and nickel and copper's Zeff values coincide with ideal Z number within 1%

  3. Automatic focus algorithms for TDI X-Ray image reconstruction

    Science.gov (United States)

    Dörr, J.; Rosenbaum, M.; Sauer-Greff, W.; Urbansky, R.

    2012-09-01

    In food industry, most products are checked by X-rays for contaminations. These X-ray machines continuously scan the product passing through. To minimize the required X-ray power, a Time, Delay and Integration (TDI) CCD-sensor is used to capture the image. While the product moves across the sensor area, the X-ray angle changes during the pass. As a countermeasure, adjusting the sensor shift speed on a single focal plane of the product can be selected. However, the changing angle result in a blurred image in dependance to the thickness of the product. This so-called ''laminographic effect'' can be compensated individually for one plane by inverse filtering. As the plane of contamination is unknown, the blurred image will be inversely filtered for different planes, but only one of these images shows the correctly focussed object. If the correct image can be found, the plane containing the contamination is identified. In this contribution we demonstrate how the correctly focussed images can be found by analyzing the images of all planes. Different characteristics for correctly and incorrectly focussed planes like sharpness, number of objects and edges are investigated by using image processing algorithms.

  4. Four-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Four-channel digital flash X-ray imaging system is developed in authors' lab. Four radiography images at four time intervals of explosion and ballistic trajectory can be obtained using this system. The construction of the system, its specification, and its experimental results are presented

  5. Spinal X-ray image analysis in scoliosis

    NARCIS (Netherlands)

    Sardjono, Tri Arief

    2007-01-01

    In this thesis new image analysis methods are discussed to determine the curvature of scoliotic patients characterised by the Cobb angle and to enhance the vertebral parts based on features from a frontal X-ray image. Chapter 1 provides some background information on scoliosis, how to diagnose it, t

  6. X-ray images of supernova remnants

    International Nuclear Information System (INIS)

    Einstein observations of supernova remnants have been review and analyzed. Images of 44 galactic remnants have been reprocessed, merged when necessary, and collected. Some bright remnants were viewed with both moderate and high resolution instruments (IPC with 1 ft. resolution and HRI with 4 in. resolution). Some IPC images of nearby remnants have been separated into 2 energy bands, 0.2-0.6 keV and 0.6-4.5 keV; whereas most images cover the band 0.2-4.5 keV. These images are illustrated in this paper

  7. X-ray imaging of laser produced plasmas by a compound 3D x-ray lens

    International Nuclear Information System (INIS)

    Pilot scheme for the study of plasma under extreme condition is implemented using a compound 3D X-ray lens. Hard X-ray image of laser plasma produced by irradiating of copper foil by intense laser pulse was recorded using this lens

  8. Advantages of monochromatic x-rays for imaging

    Science.gov (United States)

    Hoheisel, M.; Lawaczeck, R.; Pietsch, H.; Arkadiev, V.

    2005-04-01

    The contrast of X-ray imaging depends on the radiation energy and acquires its maximum value at a certain optimum energy typical for the object under investigation. Usually, higher energies result in reduced contrast, lower energies are absorbed in the object thus having a smaller probability of reaching the detector. Therefore, broad X-ray spectra contain non-optimal quanta to a large extent and deliver images with deteriorated contrast. Since investigations with monochromatic X-rays using synchrotrons are too complex and expensive for routine diagnostic imaging procedures, we propose a simpler approach. A conventional mammography system (Siemens Mammomat 300) with an X-ray tube with a molybdenum anode was supplemented with an X-ray HOPG monochromator (HOPG = Highly Oriented Pyrolytic Graphite) and an exit slit selecting those rays fulfilling Bragg"s condition. The detector is a CCD (Thales TH9570), 4092 x 200 pixels, 54 μm in size. At this slot-scan setup1, measurements have been carried out at 17.5 keV as well as with a polychromatic spectrum with 35 kV tube voltage. The modulation transfer function (MTF) and the detective quantum efficiency (DQE) have been determined from images of a lead bar pattern and flat-field images. Both MTF and DQE depend on orientation (scan or detector direction) for the 17.5 keV monochromatic case. Above 3 mm-1 the DQE values are smaller than those for polychromatic radiation. The contrast yielded by foils of different materials (Al, Cu, Y, Ag) has been studied. In all cases the monochromatic X-rays give rise to about twice the contrast of a polychromatic spectrum.

  9. Metal micro-detector TimePix imaging synchrotron radiation beams at the ESRF Bio-Medical Beamline ID17

    International Nuclear Information System (INIS)

    Characterization studies of the metal micro-detector TimePix measuring dose distribution at the Minibeam Radiation Therapy setup (Bio-Medical Beamline ID17, ESRF) were performed. The results obtained for high intensity synchrotron radiation minibeams illustrate an excellent performance of the TimePix providing in real time 2D image of the dose distribution over many beams in a 14×14 mm2 area. Peak-to-Valley–Dose–Ratios measured by TimePix and gafhromic films agree well.

  10. Metal micro-detector TimePix imaging synchrotron radiation beams at the ESRF Bio-Medical Beamline ID17

    Energy Technology Data Exchange (ETDEWEB)

    Pugatch, V., E-mail: pugatch@kinr.kiev.ua [Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kiev (Ukraine); Campbell, M. [CERN, Geneva (Switzerland); Chaus, A.; Kovalchuk, O. [Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kiev (Ukraine); Llopart, X. [CERN, Geneva (Switzerland); Okhrimenko, O. [Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kiev (Ukraine); Pospisil, S. [Institute of Experimental and Applied Physics, Prague (Czech Republic); Prezado, Y.; Renier, M. [ESRF, Grenoble (France); Tlustos, L. [CERN, Geneva (Switzerland)

    2012-08-01

    Characterization studies of the metal micro-detector TimePix measuring dose distribution at the Minibeam Radiation Therapy setup (Bio-Medical Beamline ID17, ESRF) were performed. The results obtained for high intensity synchrotron radiation minibeams illustrate an excellent performance of the TimePix providing in real time 2D image of the dose distribution over many beams in a 14 Multiplication-Sign 14 mm{sup 2} area. Peak-to-Valley-Dose-Ratios measured by TimePix and gafhromic films agree well.

  11. The High Energy X-ray Imager Technology (HEXITEC) for Solar Hard X-ray Observations

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew

    2015-04-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For current high resolution X-ray mirrors, the HPD is about 25 arcsec. Over a 6-m focal length this converts to 750 µm, the optimum pixel size is around 250 µm. Annother requirement are that the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. The Rutherford Appleton Laboratory (RAL) in the UK has been developing the electronics for such a detector. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT), to create a fine (250 µm pitch) HXR detector. The NASA Marshall Space Flight CenterMSFC and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present on recent results and capabilities as applied to solar observations.

  12. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    International Nuclear Information System (INIS)

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  13. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  14. A new photoelectron imager for X-ray astronomical polarimetry

    International Nuclear Information System (INIS)

    A new photoelectron imager for X-ray astronomical polarimetry (PIAP) has been developed and tested at the Frascati (Rome, Italy) National Laboratories of National Institute of Nuclear Physics (LNF-INFN). A charge-coupled device (CCD) is placed on one of the two conjugate foci of a Cassegrain reflective optics onto which are focused UV photons emitted by means of gas scintillation. This X-ray detector has been built to image the angular distribution of the photoelectron tracks, whose anisotropy measures the X-ray polarization. First tests, performed by using mixtures based on argon gas and benzene at low pressure, show events which are candidate tracks of photoelectrons and Auger electrons produced by a 55Fe source

  15. The Imaging X-Ray Polarimetry Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Ramsey, Brian; O’Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffita, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; Mulieri, Fabio; Marshall, Herman; Matt, Giorgio; Romani, Roger

    2016-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  16. AXIOM: Advanced X-ray Imaging Of the Magnetosphere

    CERN Document Server

    Branduardi-Raymont, G; Eastwood, J P; Sibeck, D G; Abbey, A; Brown, P; Carter, J A; Carr, C M; Forsyth, C; Kataria, D; Kemble, S; Milan, S E; Owen, C J; Peacocke, L; Read, A M; Coates, A J; Collier, M R; Cowley, S W H; Fazakerley, A N; Fraser, G W; Jones, G H; Lallement, R; Lester, M; Porter, F S; Yeoman, T K

    2011-01-01

    Planetary plasma and magnetic field environments can be studied by in situ measurements or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. We describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Our studies have led...

  17. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  18. Dose optimization in pediatric cardiac x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gislason, Amber J.; Davies, Andrew G.; Cowen, Arnold R. [LXi Research, Division of Medical Physics, University of Leeds, Worsley Building, Clarendon Way, Leeds LS2 9JT (United Kingdom)

    2010-10-15

    Purpose: The aim of this research was to explore x-ray beam parameters with intent to optimize pediatric x-ray settings in the cardiac catheterization laboratory. This study examined the effects of peak x-ray tube voltage (kVp) and of copper (Cu) x-ray beam filtration independently on the image quality to dose balance for pediatric patient sizes. The impact of antiscatter grid removal on the image quality to dose balance was also investigated. Methods: Image sequences of polymethyl methacrylate phantoms approximating chest sizes typical of pediatric patients were captured using a modern flat-panel receptor based x-ray imaging system. Tin was used to simulate iodine-based contrast medium used in clinical procedures. Measurements of tin detail contrast and flat field image noise provided the contrast to noise ratio. Entrance surface dose (ESD) and effective dose (E) measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose, which evaluated the dose efficiency of the x-ray parameters investigated. The kVp, tube current (mA), and pulse duration were set manually by overriding the system's automatic dose control mechanisms. Images were captured with 0, 0.1, 0.25, 0.4, and 0.9 mm added Cu filtration, for 50, 55, 60, 65, and 70 kVp with the antiscatter grid in place, and then with it removed. Results: For a given phantom thickness, as the Cu filter thickness was increased, lower kVp was favored. Examining kVp alone, lower values were generally favored, more so for thinner phantoms. Considering ESD, the 8.5 cm phantom had the highest FOM at 50 kVp using 0.4 mm of Cu filtration. The 12 cm phantom had the highest FOM at 55 kVp using 0.9 mm Cu, and the 16 cm phantom had highest FOM at 55 kVp using 0.4 mm Cu. With regard to E, the 8.5 and 12 cm phantoms had the highest FOM at 50 kVp using 0.4 mm of Cu filtration, and the 16 cm phantom had the highest FOM at 50 kVp using 0.25 mm Cu. Antiscatter grid removal improved the FOM for a given set of x-ray

  19. X-ray phase contrast imaging at MAMI

    International Nuclear Information System (INIS)

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation σh=(8.6±0.1) μm in the horizontal and σv=(7.5±0.1) μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv=(0.50±0.05) μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 μm2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf=(1.2±0.4) μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv=(1.2±0.3)μm and a geometrical

  20. Hard X-ray Imaging Polarimeter for PolariS

    Science.gov (United States)

    Hayashida, Kiyoshi

    2016-07-01

    We present the current status of development of hard X-ray imaging polarimeters for the small satellite mission PolariS. The primary aim of PolariS is hard X-ray (10-80keV) polarimetry of sources brighter than 10mCrab. Its targets include stellar black holes, neutron stars, super nova remnants, and active galactic nuclei. This aim is enabled with three sets of hard X-ray telescopes and imaging polarimeters installed on their focal planes. The imaging polarimeter consists of two kinds of (plastic and GSO) scintillator pillars and multi-anode photo multiplier tubes (MAPMTs). When an X-ray photon incident to a plastic scintillator cause a Compton scattering, a recoiled electron makes a signal on the corresponding MAPMT pixel, and a scatted X-rays absorbed in surrounding GSO makes another signal. This provide information on the incident position and the scattered direction. The latter information is employed for polarimetry. For 20keV X-ray incidence, the recoiled electron energy is as low as 1keV. Thus, the performance of this imaging polarimeter is primarily determined by the efficiency that we can detect low level signal of recoiled electrons generated in plastic scintillators. The efficiency could depend on multiple factors, e.g. quenching of light in scintillators, electric noise, pedestal error, cross talk of the lights to adjacent MAPMT pixels, MAPMT dark current etc. In this paper, we examined these process experimentally and optimize the event selection algorithm, in which single photo-electron events are selected. We then performed an X-ray (10-80keV monochromatic polarized beam) irradiation test at a synchrotron facility. The modulation contrast (M) is about 60% in 15-80keV range. We succeeded in detecting recoiled electrons for 10-80keV X-ray incidence, though detection efficiency is lower at lowest end of the energy range. Expected MDP will also be shown.

  1. Carbon Nanotube Electron Emitter for X-ray Imaging

    Directory of Open Access Journals (Sweden)

    Jung Su Kang

    2012-11-01

    Full Text Available The carbon nanotube field emitter array was grown on silicon substrate through a resist-assisted patterning (RAP process. The shape of the carbon nanotube array is elliptical with 2.0 × 0.5 mm2 for an isotropic focal spot size at anode target. The field emission properties with triode electrodes show a gate turn-on field of 3 V/µm at an anode emission current of 0.1 mA. The author demonstrated the X-ray source with triode electrode structure utilizing the carbon nanotube emitter, and the transmitted X-ray image was of high resolution.

  2. Diffraction enhanced X-ray imaging of mammals crystalline lens

    International Nuclear Information System (INIS)

    Crystalline lenses are transparent biological materials where the organization of the lens fibers can also be affected by changes at molecular level, and therefore the structure and morphology of the tissue can be correlated to the loss of transparency of the lens. In this work, internal structure of mammal lenses regarding the long-range ordering of the fibers are investigated by diffraction enhanced X-ray imaging (DEI) radiography. Moreover, DEI and absorption X-ray synchrotron radiographs for healthy and cataractous crystalline lenses are compared. Significant differences in healthy and cataractous crystalline lenses are observed

  3. Diffraction enhanced X-ray imaging of mammals crystalline lens

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, A. [Departamento de Fisica Aplicada, USP, CP 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: antunes@if.usp.br; Hoennicke, M.G. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Curitiba (Brazil); Safatle, A.M.V. [Faculdade de Medicina Veterinaria e Zootecnia, USP, 05508-900 Sao Paulo, SP (Brazil); Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Curitiba (Brazil); Moraes Barros, P.S. [Faculdade de Medicina Veterinaria e Zootecnia, USP, 05508-900 Sao Paulo, SP (Brazil); Morelhao, S.L. [Departamento de Fisica Aplicada, USP, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

    2005-08-15

    Crystalline lenses are transparent biological materials where the organization of the lens fibers can also be affected by changes at molecular level, and therefore the structure and morphology of the tissue can be correlated to the loss of transparency of the lens. In this work, internal structure of mammal lenses regarding the long-range ordering of the fibers are investigated by diffraction enhanced X-ray imaging (DEI) radiography. Moreover, DEI and absorption X-ray synchrotron radiographs for healthy and cataractous crystalline lenses are compared. Significant differences in healthy and cataractous crystalline lenses are observed.

  4. Image quality of medical X-ray systems

    International Nuclear Information System (INIS)

    The quality of images made by medical X-ray systems can only be properly described if the visual system is also taken into account. In this thesis, the visual threshold contrast of edges, bars and disks has been chosen as the criterion. Since these objects resemble medical objects like tumour-mass outlines, blood vessels and micro-calcifications, a correlation with X-ray practice is possible. Only the conventional X-ray systems are considered, but a brief analysis of computerized tomography is given. Considerable attention is paid to unsharpness and the minimization of its influence on the threshold contrast, to the influence of the noise on the threshold contrast, and to the contrast formation as such. The consequences for the dose administered to the patient are also briefly analysed. (Auth.)

  5. Ultrafast two-dimensional x-ray imaging with x-ray streak cameras for laser fusion research (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Shiraga, H.; Miyanaga, N.; Heya, M.; Nakasuji, M.; Aoki, Y.; Azechi, H.; Yamanaka, T.; Mima, K. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565 (Japan)

    1997-01-01

    Ultrafast two-dimensional x-ray imaging is required for diagnosing laser-driven inertial confinement fusion plasmas. Image sampling technique with x-ray streak cameras can meet this requirement. Multi-imaging x-ray streak camera method (MIXS) with temporal and spatial resolutions of 10 ps and 15 {mu}m, respectively, has been developed and successfully utilized for diagnosing the uniformity and heating process of the imploded core plasmas. The two-dimensional sampling-image x-ray streak camera method is also presented. Two types of spectroscopic applications of the MIXS have been developed recently. One is multichannel MIXS, which has three MIXS channels with various spectral responses for time-resolved two-dimensional temperature measurement of the plasmas. Another is monochromatic MIXS for temperature, density, and mixing measurement, in which monochromatic images with Bragg crystals are coupled to MIXS. {copyright} {ital 1997 American Institute of Physics.}

  6. X-ray phase sensitive imaging methods: basic physical principles and potential medical applications

    OpenAIRE

    Chen, Guang-Hong; Zambelli, Joseph; Bevins, Nicholas; Qi, Zhihua; Li, Ke

    2010-01-01

    Phase sensitive imaging theoretically allows for a drastic reduction in x-ray dose while simultaneously achieving comparable or better spatial and contrast resolution compared to traditional x-ray absorption based imaging. Several techniques exist to extract the phase information from an x-ray signal, including x-ray interferometry, diffraction enhanced imaging, in-line holography, coded aperture x-ray imaging, and grating-based interferometry. The physics of each method is reviewed, along wi...

  7. Comparing calculated and measured x-ray images

    International Nuclear Information System (INIS)

    In recent years 2-dimensional radiation-magneto-hydrodynamic (RMHD) calculations have done quite well in matching some important observed parameters of a z-pinch implosion. As the authors gain experience, they field more complex experiments to compare with calculations. Here they discuss both time dependent and time integrated x-ray imaging on Pegasus. Images, using similar filters, are calculated and compared with the data. They also apply some image enhancement to the data

  8. Monitor of All-sky X-ray Image (MAXI)

    International Nuclear Information System (INIS)

    Monitor of All-sky X-ray Image (MAXI) is the first astrophysical payload which will be mounted on the Japanese Experiment Module (JEM) Exposed Facility in 2004. It is an X-ray all-sky monitor with unprecedented sensitivity to watch the activities of the X-ray sources in the whole sky in every 90 minutes. MAXI is boxshaped in 0.8x1.2x1.85 m with the weight of 500 kg. The mission life will be at least 2 years. MAXI has two fan-like field of views (FOV), 106x1.5 deg. each. The X-ray instruments are Gas Slit Camera (GSC) and Solid-state Slit Camera (SSC). The GSC uses gas one-dimensional position sensitive proportional counters with 5340 cm2 effective area in total and the SSC uses CCDs with 200 cm2. Both are capable to detect one-dimensional image which is used to obtain the locations of the X-ray sources in the FOV along the long direction. Together with the scan which determine the other direction, MAXI can scan almost all sky with a precision of better than 1 deg. in the energy range of 0.5-30 keV. The CCD is electrically cooled to -60 deg. C and the camera body is radiatively cooled to -20 deg. C. The CCD chip itself and the radiators may suffer contamination problem. The continuous Ethernet down link will enable us to alert the astronomers in all over the world to the appearance of X-ray transients, novae, bursts, flares etc. We made a test counter and test chips in 1998. Those are being tested in RIKEN, NASDA and Osaka-university. In this paper the test results will be presented, as well as the general description of the MAXI mission

  9. X-ray imaging using digital cameras

    Science.gov (United States)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  10. X-ray imaging in advanced studies of ophthalmic diseases

    International Nuclear Information System (INIS)

    Microscopic characterization of pathological tissues has one major intrinsic limitation, the small sampling areas with respect to the extension of the tissues. Mapping possible changes on vast tissues and correlating them with large ensembles of clinical cases is not a feasible procedure for studying most diseases, as for instance vision loss related diseases and, in particular, the cataract. Although intraocular lens implants are successful treatments, cataract still is a leading public-health issue that grows in importance as the population increases and life expectancy is extended worldwide. In this work we have exploited the radiation-tissue interaction properties of hard x-rays--very low absorption and scattering--to map distinct lesions on entire eye lenses. At the used synchrotron x-ray photon energy of 20 keV (wavelength λ=0.062 nm), scattering and refraction are angular resolved effects. It allows the employed x-ray image technique to efficiently characterize two types of lesions in eye lenses under cataractogenesis: distributions of tiny scattering centers and extended areas of fiber cell compaction. The data collection procedure is relatively fast; allowing dozens of samples to be totally imaged (scattering, refraction, and mass absorption images) in a single day of synchrotron beam time. More than 60 cases of canine cataract, not correlated to specific causes, were investigated in this first application of x-rays to image entire lenses. Cortical opacity cases, or partial opacity, could be related to the presence of calcificated tissues at the cortical areas, clearly visible in the images, whose elemental contents were verified by micro x-ray fluorescence as very rich in calcium. Calcificated tissues were also observed at nuclear areas in some cases of hypermature cataract. Total opacity cases without distinguishable amount of scattering centers consist in 70% of the analyzed cases, where remarkable fissure marks owing to extended areas of fiber cell

  11. Electronic roentgenographic images in presurgical X-ray diagnostics

    International Nuclear Information System (INIS)

    An essential part of radiation exposure in surgery is due to devices and results from the required radiation time interval for continuous X-ray play-back up to the point at which all diagnostically relevant information can be retrieved from the screening image. With single-image storage and short exposure times as well as instant image play-back, this superfluous i.e. redundant radiation can be avoided. The electronic X-ray image is realized by means of a laboratory prototype and evaluated in hospitals. There is a report on clinical results and new technical developments. Remarkable are: the high radiation reduction that could be obtained, the problem - free instant image technique, and especially the advantages of automated exposure in direct film settings. The positive results yield the basis for the product development. (orig./MG)

  12. Imaging and nondispersive spectroscopy of soft X rays using a laboratory X-ray charge-coupled-device system

    Science.gov (United States)

    Luppino, Gerard A.; Doty, John P.; Ricker, George R.; Vallerga, John V.; Ceglio, Natale M.

    1987-01-01

    This paper describes the design and performance of a laboratory instrument for imaging and nondispersive spectroscopy of soft X-rays (300 eV to 10 keV) utilizing a virtual-phase CCD. This instrument has achieved a spatial resolution of 22 microns (limited by pixel size) with an overall array area of 584 x 390 pixels. It has achieved an energy resolution of about 140 eV FWHM for single-pixel Fe-55 X-ray events (5.9 keV) with the CCD operated at -30 C. The CCD has been operated in photon-counting mode at room temperature, and X-ray spectra with an energy resolution of about 450 eV at 5.9 keV have been obtained. The low energy X-ray sensitivity of the CCD also has been demonstrated by detecting carbon K-alpha X-rays (277eV).

  13. Polycapillary optics for soft X-ray imaging and tomography

    International Nuclear Information System (INIS)

    Magnetic plasmas are extended volumetric sources of X-rays, and these emissions could reveal a lot of information about the processes occurring into the plasmas. Unfortunately, the constraints posed by these toroidal devices (high neutron flux, gamma and hard-X background, extremely high radiofrequency powers, high magnetic fields, optical limitations and so on) are very severe and limit strongly the possibility to install X-ray detectors directly into or close to the machine. Soft X-ray diagnostics are meant both as tomography and imaging. We started, therefore, to investigate the feasibility of using polycapillary optics for these purposes, in collaboration between 'Istituto Nazionale di Fisica Nucleare' (INFN)- Frascati, and 'Ente per le Nuove tecnologie, l'Energia e l'Ambiente' (ENEA)-Frascati and the 'Commissariat de l'Energie Atomique' (CEA)-Cadarache. The first tests were performed in order to characterize the polycapillary lenses (convergence, divergence, efficiency, spectral dispersion, etc.) for distances much larger than the optical focal length of the lenses, both for the detector and for the source. A silicon-based C-MOS imager (Medipix 2) has been used as a detector and the micro focus X-ray tubes as point-like sources. Results of these preliminary tests are presented, and the imaging capabilities of a polycapillary lens as well.

  14. Recent developments in X-ray imaging detectors

    CERN Document Server

    Moy, J P

    2000-01-01

    The replacement of the radiographic film in medical imaging has been the driving force in X-ray imaging developments. It requires a approx 40 cm wide detector to cover all examinations, an equivalent noise level of 1-5 X-ray quanta per pixel, and spatial resolution in the range 100-150 mu m. The need for entirely electronic imaging equipments has fostered the development of many X-ray detectors, most of them based on an array of amorphous silicon pixels, which is the only technology capable to achieve such large areas. Essentially, two concepts have been implemented: - intermediate conversion of X-rays to light by a scintillator, detected by an array of light sensitive pixels, comprising a photodiode and a switching device, either a TFT or a diode. - conversion into electron-hole pairs in a photoconductor, collected by an array of electrodes and switches. In both cases, charge amplifiers read the generated charges line by line. Scintillator and photoconductor-based systems are now close to production. They ac...

  15. Fabrication of large area X-ray diffraction grating for X-ray phase imaging

    International Nuclear Information System (INIS)

    X-ray lithography, which uses highly directional synchrotron radiation, is one of the technologies that can be used for fabricating micrometer-sized structures. In X-ray lithography, the accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask. Since X-ray radiation is highly directional, a micro-fabrication technology that produces un-tapered and high aspect ratio highly absorbent structures on a low absorbent membrane is required. Conventionally, a resin material is used as the support membrane for large area X-ray masks. However, resin membranes have the disadvantage that they can sag after several cycles of X-ray exposure due to the heat generated by the X-rays. Therefore, we proposed and used thin carbon wafers for the membrane material because carbon has an extremely small thermal expansion coefficient. We fabricated new carbon membrane X-ray masks, and these results of X-ray lithography demonstrate the superior performance.

  16. New developments in simulating X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    A deterministic algorithm simulating phase contrast (PC) x-ray images for complex 3- dimensional (3D) objects is presented. This algorithm has been implemented in a simulation code named VXI (Virtual X-ray Imaging). The physical model chosen to account for PC technique is based on the Fresnel-Kirchhoff diffraction theory. The algorithm consists mainly of two parts. The first one exploits the VXI ray-tracing approach to compute the object transmission function. The second part simulates the PC image due to the wave front distortion introduced by the sample. In the first part, the use of computer-aided drawing (CAD) models enables simulations to be carried out with complex 3D objects. Differently from the VXI original version, which makes use of an object description via triangular facets, the new code requires a more 'sophisticated' object representation based on Non-Uniform Rational B-Splines (NURBS). As a first step we produce a spatial high resolution image by using a point and monochromatic source and an ideal detector. To simulate the polychromatic case, the intensity image is integrated over the considered x-ray energy spectrum. Then, in order to account for the system spatial resolution properties, the high spatial resolution image (mono or polychromatic) is convolved with the total point spread function of the imaging system under consideration. The results supplied by the presented algorithm are examined with the help of some relevant examples. (authors)

  17. Coding aperture applied to X-ray imaging

    International Nuclear Information System (INIS)

    We present some X-ray images of grids and plasmas. These images were obtained by using a single circular slit (annular code) as coding aperture and a computer decoding process. The experimental resolution is better than 10μm and it is expected to be in the order of 2 or 3 μm with the same code and an improved decoding process

  18. Proton-induced x-ray fluorescence CT imaging

    International Nuclear Information System (INIS)

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm2 CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R2 > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a small animal

  19. AXIOM: Advanced X-ray Imaging of the Magnetosphere

    Science.gov (United States)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2012-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  20. Proton-induced x-ray fluorescence CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena, E-mail: bazalova@stanford.edu; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648 (Japan); Ahmad, Moiz [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Matsuura, Taeko; Takao, Seishin; Shirato, Hiroki; Umegaki, Kikuo [Department of Medical Physics, Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo 060-8648, Japan and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648 (Japan); Matsuo, Yuto [Department of Medical Physics, Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo 060-8648 (Japan); Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2015-02-15

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm{sup 2} CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R{sup 2} > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a

  1. Trends in NOAA Solar X-ray Imager Performance

    Science.gov (United States)

    Hill, Steven M.; Darnell, John A.; Seaton, Daniel B.

    2016-05-01

    NOAA has provided operational soft X-ray imaging of the sun since the early 2000’s. After 15 years of observations by four different telescopes, it is appropriate to examine the data in terms of providing consistent context for scientific missions. In particular, this presentation examines over 7 million GOES Solar X-ray Imager (SXI) images for trends in performance parameters including dark current, response degradation, and inter-calibration. Because observations from the instrument have overlapped not only with each other, but also with research observations like Yohkoh SXT and Hinode XRT, relative performance comparisons can be made. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh’s SXT and Hinode’s XRT, the SUVI instruments will be similar to SOHO’s EIT and SDO’s AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. While NOAA’s principal use of these observations is real-time space weather forecasting, they will continue to provide a reliable context measurement for researchers for decades to come.

  2. Phase Sensitive X-Ray Imaging: Towards its Interdisciplinary Applications

    Science.gov (United States)

    Kottler, C.; Revol, V.; Kaufmann, R.; Urban, C.; Knop, K.; Sennhauser, U.; Jerjen, I.; Lüthi, T.; Cardot, F.; Niedermann, P.; Morel, J.-P.; Maake, C.; Walt, H.; Knop, E.; Blanc, N.

    2010-04-01

    X-ray phase imaging including phase tomography has been attracting increasing attention during the past few decades. The advantage of X-ray phase imaging is that an extremely high sensitivity is achieved for weakly absorbing materials, such as biological soft tissues, which generate a poor contrast by conventional schemes. Especially for such living samples, where the reduction of the applied dose is of paramount interest, phase sensitive measurements schemes have an inherent potential for a significant dose reduction combined with an image quality enhancement. Several methods have been invented for x-ray phase contrast imaging that either use an approach based on interferometry, diffraction or wave-field propagation. Some of these techniques have a potential for commercial applications, such as in medicine, non-destructive testing, security and inspection. The scope of this manuscript thus deals with one particular such technique that measures the diffraction caused by the specimen by means of a grating interferometer. Examples of measurements are shown that depict the potential of phase contrast imaging for future commercial applications, such as in medical imaging, non-destructive testing and inspection for quality control. The current state of the technology is briefly reviewed as well as its shortcomings to be overcome with regard to the applications.

  3. X-ray phase-contrast imaging: the quantum perspective

    International Nuclear Information System (INIS)

    Time-resolved phase-contrast imaging using ultrafast x-ray sources is an emerging method to investigate ultrafast dynamical processes in matter. Schemes to generate attosecond x-ray pulses have been proposed, bringing electronic timescales into reach and emphasizing the demand for a quantum description. In this paper, we present a method to describe propagation-based x-ray phase-contrast imaging in nonrelativistic quantum electrodynamics. We explain why the standard scattering treatment via Fermi’s golden rule cannot be applied. Instead, the quantum electrodynamical treatment of phase-contrast imaging must be based on a different approach. It turns out that it is essential to select a suitable observable. Here, we choose the quantum-mechanical Poynting operator. We determine the expectation value of our observable and demonstrate that the leading order term describes phase-contrast imaging. It recovers the classical expression of phase-contrast imaging. Thus, it makes the instantaneous electron density of non-stationary electronic states accessible to time-resolved imaging. Interestingly, inelastic (Compton) scattering does automatically not contribute in leading order, explaining the success of the semiclassical description. (paper)

  4. Incoherent imaging with the soft X-ray microscope

    Science.gov (United States)

    Burge; Yuan; Morrison; Charalambous; Browne; An

    2000-05-01

    The imaging characteristics for X-ray wavelengths in the "water window" under incoherent imaging conditions (large detector aperture) are examined for the King's College London scanning transmission X-ray microscope with zone-plate objective installed at the Daresbury (UK) synchrotron. The principal consideration was to express image theory, incorporating wave aberrations and apodised zone plates, and to apply the theory to experimental data. Comparisons are made, showing reasonable agreement, for a range of defocus values and two wavelengths. Due to problems in fabrication it was necessary to determine the effective, or operational, zone-plate parameters (radius of outermost active zone rN, width of outermost active zone drN); this was accomplished by through-focus series. Calculated point spread functions were used to deblurr images, in through-focus series of two-dimensional scanned X-ray images of specimen holes and test grating patterns. Significant contrast enhancement is achieved after deconvolution with a best point-to-point resolution of about 35 nm. PMID:10805394

  5. Lens-coupled x-ray imaging systems

    Science.gov (United States)

    Fan, Helen Xiang

    Digital radiography systems are important diagnostic tools for modern medicine. The images are produced when x-ray sensitive materials are coupled directly onto the sensing element of the detector panels. As a result, the size of the detector panels is the same size as the x-ray image. An alternative to the modern DR system is to image the x-ray phosphor screen with a lens onto a digital camera. Potential advantages of this approach include rapid readout, flexible magnification and field of view depending on applications. We have evaluated lens-coupled DR systems for the task of signal detection by analyzing the covariance matrix of the images for three cases, using a perfect detector and lens, when images are affected by blurring due to the lens and screen, and for a signal embedded in a complex random background. We compared the performance of lens-coupled DR systems using three types of digital cameras. These include a scientific CCD, a scientific CMOS, and a prosumer DSLR camera. We found that both the prosumer DSLR and the scientific CMOS have lower noise than the scientific CCD camera by looking at their noise power spectrum. We have built two portable low-cost DR systems, which were used in the field in Nepal and Utah. We have also constructed a lens-coupled CT system, which included a calibration routine and an iterative reconstruction algorithm written in CUDA.

  6. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Mokso, R.

    2013-01-01

    Roč. 729, NOV (2013), s. 85-89. ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffractive-refractive optics * hard X-ray FEL * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013 http://www. science direct.com/ science /article/pii/S0168900213009613

  7. X-ray tomographic imaging in industrial process control

    International Nuclear Information System (INIS)

    Optimisation is essential in today's modern industrial and chemical process industries to increase efficiency and decrease downtime and maintenance costs. Such procedures can range from on-line inspection for the measurement of multi-phase flow, phase velocities, packing and conglomeration to fundamental modelling of flow behaviour to better understand the nature of fluid flow and therefore aid improved design. X-ray tomography is being developed to address these issues both on the microscopic level to characterise and quantify unit cell parameters and the macroscopic level for real time measurement of multiphase flow. The behaviour of macroscopic flow can be predicted using complex simulations however any model is only as good as the input data. Three dimensional x-ray micro-tomography with 100 micron resolution has been developed and could be used to obtain a description of the unit cell, for example volume fractions, contact surface area and particle size distribution and used as basic data for finite element modelling of macroscopic systems. Additionally a high speed x-ray tomography instrument is being developed to measure on-line multiphase flow in fast moving systems. Conventional x-ray tomography is impractical in high speed industrial applications because of the need to rotate either the source/detector assembly or the object. This new system comprises no moving parts and is expected to operate at up to 50 frames per second. The program includes the development of the x-ray source, the detector system, the electronics for data acquisition, the on-line image reconstruction and data analysis. In addition to a practical implementation of this system in an industrial environment it can also be used as a cross-validation of the macroscopic models. Details of each system will be described and the suitability of the applications discussed. (author)

  8. X-ray dynamic defectoscopy utilizing digital image correlation

    Czech Academy of Sciences Publication Activity Database

    Jandejsek, Ivan; Nachtrab, F.; Uhlmann, N.; Vavřík, Daniel

    2011-01-01

    Roč. 6, č. 5 (2011), s. 185-186. ISSN 0168-9002. [International workshop on Radiation imaging detectors /11./. Praha, 28.06.2009-02.07.2009] R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional research plan: CEZ:AV0Z20710524 Keywords : Computed tomography * X-ray Defectoscopy * non-contact technique Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.207, year: 2011

  9. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β-titanium...... alloy, a fossil plant and a dual-phased AlCu alloy. © 2011 by IJTS....

  10. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  11. Dark-field hyperspectral X-ray imaging

    OpenAIRE

    Christopher K. Egan, Simon D. M. Jacques, Thomas Connolley, Matthew D. Wilson, Matthew C. Veale, Paul Seller and Robert J. Cernik

    2014-01-01

    In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitt...

  12. Evaluation of X ray attenuation by means of radiographic images

    International Nuclear Information System (INIS)

    This paper's main goal is to adopt a qualitative methodology to evaluate the attenuation of x-radiation through X-ray images in polymeric materials plus residual lead. To determinate the images it was initially used an experimental setup at the Laboratory for Materials Diagnostics LACTEC. These results correspond to a more qualitative analysis, even with quantitative answers. Through analysis of radiographic images we can measure the intensity of radiation that goes through the plate, making possible to establish a relationship between the attenuation coefficient and the thickness of the material. (author)

  13. Tolerance limits of X-ray image intensity

    International Nuclear Information System (INIS)

    Evaluation of the tolerance limits of X-ray image density accepted by the radiologist shows that for different kinds of examinations, deviations of more than 50% from optimal density lead to images which cannot be used diagnostically. Within this range diagnostic accuracy shows a distinct maximum and diminishes to the limits by 20%. These figures are related to differences in the intensifying factor of screens, sensitivity of films, sensitometric parameters of film processing as well as the doses employed with automatic exposure control devices, measured in clinical conditions. Maximum permissible tolerance limits of the whole imaging system and of its constituents are discussed using the Gaussian law of error addition. (author)

  14. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    International Nuclear Information System (INIS)

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 µm 1 Poly 4 Metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications

  15. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    Science.gov (United States)

    Cha, Bo Kyung; Kim, Cho Rong; Jeon, Seongchae; Kim, Ryun Kyung; Seo, Chang-Woo; Yang, Keedong; Heo, Duchang; Lee, Tae-Bum; Shin, Min-Seok; Kim, Jong-Boo; Kwon, Oh-Kyung

    2013-12-01

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 μm 1 Poly 4 Metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications.

  16. X-ray Imaging Spectroscopy for Planetary Science

    Science.gov (United States)

    Kraft, Ralph P.; Kenter, A.; Murray, S.; Elvis, M.; Branduardi-Raymont, G.; Garcia, M.; Forman, W.; Geary, J.; McCoy, T.; Smith, R.

    2012-10-01

    We are developing monolithic backside illuminated CMOS detectors as soft X-ray imaging spectrometers for high energy astrophysics missions. These devices represent a significant advance over CCD technology and have unique properties that would make them ideal sensors for various planetary mission concepts. The benefits of CMOS include higher levels of integration which provide maximum pixel gain and therefore very low noise, very fast parallel output signal chains for high frame rates. CMOS imaging detectors have zero or one charge transfer so that they can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs provide near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines. Possible mission concepts for these sensors include X-ray fluorescence studies of rocky bodies, and investigation of the magnetospheres of the gas giants and their moons. In this presentation, we discuss the current state of our technology development and outline its scientific potential for planetary physics with particular emphasis on studies of the Jovian magnetosphere. We contrast the capabilities of our instrument with that which has been achieved by the current generation of Earth-orbiting X-ray observatories.

  17. XIPE: the X-ray Imaging Polarimetry Explorer

    CERN Document Server

    Soffitta, Paolo; Bellazzini, Ronaldo; Braga, João; Costa, Enrico; Fraser, George W; Gburek, Szymon; Huovelin, Juhani; Matt, Giorgio; Pearce, Mark; Poutanen, Juri; Reglero, Victor; Santangelo, Andrea; Sunyaev, Rashid A; Tagliaferri, Gianpiero; Weisskopf, Martin; Aloisio, Roberto; Amato, Elena; Attiná, Primo; Axelsson, Magnus; Baldini, Luca; Basso, Stefano; Bianchi, Stefano; Blasi, Pasquale; Bregeon, Johan; Brez, Alessandro; Bucciantini, Niccoló; Burderi, Luciano; Burwitz, Vadim; Casella, Piergiorgio; Churazov, Eugene; Civitani, Marta; Covino, Stefano; da Silva, Rui Miguel Curado; Cusumano, Giancarlo; Dadina, Mauro; D'Amico, Flavio; De Rosa, Alessandra; Di Cosimo, Sergio; Di Persio, Giuseppe; Di Salvo, Tiziana; Dovciak, Michal; Elsner, Ronald; Eyles, Chris J; Fabian, Andrew C; Fabiani, Sergio; Feng, Hua; Giarrusso, Salvatore; Goosmann, René W; Grandi, Paola; Grosso, Nicolas; Israel, Gianluca; Jackson, Miranda; Kaaret, Philip; Karas, Vladimir; Kuss, Michael; Lai, Dong; La Rosa, Giovanni; Larsson, Josefin; Larsson, Stefan; Latronico, Luca; Maggio, Antonio; Maia, Jorge; Marin, Frédéric; Massai, Marco Maria; Mineo, Teresa; Minuti, Massimo; Moretti, Elena; Muleri, Fabio; O'Dell, Stephen L; Pareschi, Giovanni; Peres, Giovanni; Pesce, Melissa; Petrucci, Pierre-Olivier; Pinchera, Michele; Porquet, Delphine; Ramsey, Brian; Rea, Nanda; Reale, Fabio; Rodrigo, Juana Maria; Różańska, Agata; Rubini, Alda; Rudawy, Pawel; Ryde, Felix; Salvati, Marco; Júnior, Valdivino Alexandre de Santiago; Sazonov, Sergey; Sgró, Carmelo; Silver, Eric; Spandre, Gloria; Spiga, Daniele; Stella, Luigi; Tamagawa, Toru; Tamborra, Francesco; Tavecchio, Fabrizio; Dias, Teresa Teixeira; van Adelsberg, Matthew; Wu, Kinwah; Zane, Silvia

    2013-01-01

    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE ...

  18. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    OpenAIRE

    ANDREWS, JOY C; Meirer, Florian; Liu, Yijin; MESTER, ZOLTAN; Pianetta, Piero

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structur...

  19. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)

  20. X-ray imaging performance of structured cesium iodide scintillators.

    Science.gov (United States)

    Zhao, Wei; Ristic, Goran; Rowlands, J A

    2004-09-01

    Columnar structured cesium iodide (CsI) scintillators doped with Thallium (Tl) have been used extensively for indirect x-ray imaging detectors. The purpose of this paper is to develop a methodology for systematic investigation of the inherent imaging performance of CsI as a function of thickness and design type. The results will facilitate the optimization of CsI layer design for different x-ray imaging applications, and allow validation of physical models developed for the light channeling process in columnar CsI layers. CsI samples of different types and thicknesses were obtained from the same manufacturer. They were optimized either for light output (HL) or image resolution (HR), and the thickness ranged between 150 and 600 microns. During experimental measurements, the CsI samples were placed in direct contact with a high resolution CMOS optical sensor with a pixel pitch of 48 microns. The modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) of the detector with different CsI configurations were measured experimentally. The aperture function of the CMOS sensor was determined separately in order to estimate the MTF of CsI alone. We also measured the pulse height distribution of the light output from both the HL and HR CsI at different x-ray energies, from which the x-ray quantum efficiency, Swank factor and x-ray conversion gain were determined. Our results showed that the MTF at 5 cycles/mm for the HR type was 50% higher than for the HL. However, the HR layer produces approximately 36% less light output. The Swank factor below K-edge was 0.91 and 0.93 for the HR and HL types, respectively, thus their DQE(0) were essentially identical. The presampling MTF decreased as a function of thickness L. The universal MTF, i.e., MTF plotted as a function of the product of spatial frequency f and CsI thickness L, increased as a function of L. This indicates that the light channeling process in CsI improved the MTF of

  1. Development of an X-ray System for High-resolution and tomography imaging with a laboratory X-ray source at Pusan National University

    International Nuclear Information System (INIS)

    This kind of radiography imaging skill has important factors; resolution is the most important one among them. Many researchers are already studying for making better resolution of an imaging system. We also set up the X-ray experiment system for various radiography imaging tests via X-ray at NRSL (Neutron and Radiological Science Lab) in Pusan national university. As the first step, X-ray imaging system has been installed and evaluated for X-ray high resolution and tomography imaging. In this study, we drive all steps to get high resolution X-ray images from components of system installed to the performance of system. In the experimental setup presented, a high resolution X-ray imaging system based on open type micro focus X-ray tube variable tube voltage and current, detector system with CMOS flat panel detector and CCD camera, stage translate a sample in micron was tested for getting X-ray high resolution and tomography imaging. We checked this X-ray system represents good performance on high resolution and tomography imaging taking radiography imaging of small fruit. In addition, by using this system, more experiments like X-ray phase contrast imaging, two pair X-ray and detector system and so on will be operated via flexibility of X-ray system at NRSL

  2. Detection of soft X-rays from Alpha Lyrae and Eta Bootis with an imaging X-ray telescope

    Science.gov (United States)

    Topka, K.; Fabricant, D.; Harnden, F. R., Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Results are presented for observations of Alpha Lyr (Vega) and Eta Boo with an imaging X-ray telescope during two rocket flights. It is found that Vega and Eta Boo are soft X-ray sources with respective luminosities of approximately 3 x 10 to the 28th erg/s (0.15-0.8 keV) and 1 x 10 to the 29th erg/s (0.15-1.5 keV). Surface X-ray luminosities of about 640,000 erg/sq cm per sec for Vega and 300,000 erg/sq cm per sec for Eta Boo are estimated and shown to fall within the range of solar coronal X-ray emission. It is concluded that in view of the substantially larger surface areas of these stars, the relatively large total soft X-ray luminosity (as compared with that of the sun) can in both cases be understood as resulting from a moderately active corona, although the Vega observation is in severe conflict with simple models for X-ray emission from single main-sequence stars.

  3. A new method for determining the sensitivity of X-ray imaging observations and the X-ray number counts

    CERN Document Server

    Georgakakis, A; Laird, E S; Aird, J; Trichas, M

    2008-01-01

    We present a new method for determining the sensitivity of X-ray imaging observations, which correctly accounts for the observational biases that affect the probability of detecting a source of a given X-ray flux, without the need to perform a large number of time consuming simulations. We use this new technique to estimate the X-ray source counts in different spectral bands (0.5-2, 0.5-10, 2-10 and 5-10keV) by combining deep pencil-beam and shallow wide-area Chandra observations. The sample has a total of 6295 unique sources over an area of $\\rm 11.8deg^2$ and is the largest used to date to determine the X-ray number counts. We determine, for the first time, the break flux in the 5-10 keV band, in the case of a double power-law source count distribution. We also find an upturn in the 0.5-2keV counts at fluxes below about 6e-17erg/s/cm2. We show that this can be explained by the emergence of normal star-forming galaxies which dominate the X-ray population at faint fluxes. The fraction of the diffuse X-ray bac...

  4. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Non-image-intensified fluoroscopic x-ray system... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... of x-radiation into a visible image. This generic type of device may include signal analysis...

  5. Sophistication of imaging technology of cellular organelles with soft x-ray microscope

    International Nuclear Information System (INIS)

    The development of the transparent soft x-ray photoresist plate and its application to the multi-color imaging of hydrated biological cell is presented. The developed transparent x-ray photoresist plate made it possible to compare between soft x-ray micorscope image and fluorescent microscope images. (author)

  6. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for...

  7. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    Science.gov (United States)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  8. Materials science with SR using x-ray imaging

    International Nuclear Information System (INIS)

    Some examples of applications of synchrotron radiation to materials science demonstrate the importance of microstructure information within structural as well as functional materials in order to control their properties and quality as designed for industrial purposes. To collect such information, x-ray imaging in quasi real time is required in either the microradiographic mode or the diffraction (in transmission) mode. New measurement technologies based on imaging are applied to polycrystalline materials, single crystal materials and multilayered device materials to illustrate what kind of synchrotron radiation facility is most desirable for materials science and engineering. (author)

  9. An X-ray image of the large magellanic cloud

    Science.gov (United States)

    Snowden, S. L.; Petre, R.

    1994-01-01

    We have used archival ROSAT Position Sensitive Proportional Counter (PSPC) pointed observations to construct maps of the Large Magellanic Cloud (LMC) in four energy bands between 0.5 and 2.0 keV. These represent the most complete, deepest, and most detailed X-ray images of the LMC to date. While confirming the general morphology of the diffuse LMC emission observed by Wang et al. with Einstein IPC data, these images reveal a wealth of detailed structure of high statistical significance on angular scales from a few arcminutes to a few degrees. In addition, at least twice as many discrete sources are detected as were found using the IPC.

  10. High-resolution X-ray topographic images of dislocations in a silicon crystal recorded using an X-ray zooming tube

    International Nuclear Information System (INIS)

    A Be-window-type X-ray zooming tube is an X-ray digital imaging system whose magnification factor of X-ray images can be easily varied from 10 to 200, and whose spatial resolution is less than 0.5 μm. This zooming tube was used as an imaging detector in double-crystal X-ray topography to obtain high-resolution images of dislocations in a silicon crystal. X-ray interference images of about 5 μm were observed even though optimal performance of the X-ray zooming tube could not be achieved. The results indicate that the X-ray zooming tube might make a good detector for X-ray topography with minor improvements in its stage structure

  11. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    International Nuclear Information System (INIS)

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. (paper)

  12. Challenges of pixelated scintillators in medical X-ray imaging

    International Nuclear Information System (INIS)

    In current X-ray detectors, spatial resolution is limited by optical photon diffusion in the scintillator layer. A method to prevent photons from reaching neighboring pixels is the embedding of opaque walls within the scintillator. The realization of a pixelated scintillator faces, several challenges to obtain a good imaging performance, especially a high detective quantum efficiency (DQE). To maintain a high X-ray absorption, a high volume fill-factor is required. Losses of secondary light quanta have to be kept to a minimum to maintain an acceptable gain. Moreover, the signal per primary X-ray quanta should have a low variation with the depth of interaction to avoid a high secondary quantum noise (Swank-noise). Light scatter inside the scintillator causes both enhanced light loss and Swank-noise. For this work, a pixelated scintillator has been built from electrochemically etched silicon pore arrays, which are filled with cesium iodide (CsI:Tl). With a pixel pitch of 50 μm, wall thicknesses of 6.5 μm and pore depths of nearly 400 μm are achieved. The modulation transfer function is 40% at 4 lp/mm and 10-20% at 8 lp/mm. The ability of the pores to transport light quanta from their origin to the photodiode is expressed in a light guiding efficiency, which is determined as 6.5% in the better cases. The maximal DQE(0) is 0.28, while the X-ray absorption with the given thickness and fill-factor is 0.57. The difference is explained by high Swank-noise due to optical scatter inside the CsI-filled pores, in agreement to Monte-Carlo simulations of the photon transport inside the pore array structure

  13. Dark-field hyperspectral X-ray imaging.

    Science.gov (United States)

    Egan, Christopher K; Jacques, Simon D M; Connolley, Thomas; Wilson, Matthew D; Veale, Matthew C; Seller, Paul; Cernik, Robert J

    2014-05-01

    In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitted and scattered radiation, using a spectral imaging detector and polychromatic hard X-radiation, making it particularly useful for studying large dense samples for materials science and engineering applications. The method and its extension to three-dimensional imaging is validated with a series of test objects and demonstrated to directly image the crystallographic preferred orientation and formed precipitates across an aluminium alloy friction stir weld section. PMID:24808753

  14. Characterization of an indirect X-ray imaging detector by simulation and experiment.

    Science.gov (United States)

    Doshi, C; van Riessen, G; Balaur, E; de Jonge, M D; Peele, A G

    2015-01-01

    We describe a comprehensive model of a commercial indirect X-ray imaging detector that accurately predicts the detector point spread function and its dependence on X-ray energy. The model was validated by measurements using monochromatic synchrotron radiation and extended to polychromatic X-ray sources. Our approach can be used to predict the performance of an imaging detector and can be used to optimize imaging experiments with broad-band X-ray sources. PMID:25203971

  15. Hybrid Pixel Detectors for gamma/X-ray imaging

    Science.gov (United States)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  16. Autofluorography with an X-Ray Image Amplifier

    International Nuclear Information System (INIS)

    The visualization of organs containing radioactive isotopes emitting X- or gamma-ray photons with energies between 20 and about 100 keV can be achieved by converting the radiation emerging from the organ into light by means of an X-ray image amplifier of conventional design. The apparatus designed for this purpose consists of the following elements: (1) A collimator, the specifications of which are determined by the resolution and by the operating distance desired. (2) An electrostatic focusing X-ray image amplifier, which converts the collimated X- or gamma-ray photons into an optical image of high brightness. (3) A large aperture lens system which projects the image into: (4) A ''Polaroid'' camera loaded with fast (10 000 ASA), high-contrast film. The performance of this apparatus for low-energy photons is superior to that of conventional scintiscanners. The usefulness of this apparatus for the visualization of brain tumours and kidneys and the thyroid gland is discussed. (author)

  17. Imaging properties and its improvements of scanning/imaging x-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Akihisa, E-mail: take@spring8.or.jp; Uesugi, Kentaro; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI / SPring-8), Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination.

  18. Imaging properties and its improvements of scanning/imaging x-ray microscope

    International Nuclear Information System (INIS)

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination

  19. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Image-intensified fluoroscopic x-ray system. 892... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device intended to visualize anatomical structures by converting a pattern of x-radiation into a visible...

  20. Design considerations for soft X-ray television imaging detectors

    International Nuclear Information System (INIS)

    Television sensors for X-rays can be coupled to converters and image intensifiers to obtain active areas, high flux capabilities, quantum efficiency, high time resolution, or ease of construction and operation that may not be obtained with a directly illuminated sensor. A general purpose system which makes use of these capabilities for a number of applications is decribed. Some of the performance characteristics of this type of system are examined, and the expected future developments for such systems are briefly addressed. 19 refs

  1. Structured scintillators for X-ray imaging with micrometre resolution

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Schmidt, Søren; Poulsen, Henning Friis;

    2009-01-01

    shown to be negligible. The concept of such a 3D detector enables ray tracing and super resolution algorithms to be applied. Realized pore geometries have a lower aspect ratio than used in simulations and the roughness of the pore walls gives a 13% decrease in waveguide efficiency. Compared to currently......A 3D X-ray detector for imaging of 30–200 keV photons is described. It comprises a stack of semitransparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described theoretically and...

  2. Water window ptychographic imaging with characterized coherent X-rays

    International Nuclear Information System (INIS)

    Water window ptychographic coherent diffractive imaging was demonstrated at the P04 beamline of PETRA III synchrotron radiation source. The beam coherence was characterized with the non-redundant array method. A ptychographical coherent diffractive imaging experiment in the water window with focused soft X-rays at 500 eV is reported. An X-ray beam with high degree of coherence was selected for ptychography at the P04 beamline of PETRA III synchrotron radiation source. The beam coherence was measured with the newly developed non-redundant array method, and a coherence length of 4.1 µm and global degree of coherence of 35% at 100 µm exit slit opening in the vertical direction were determined. A pinhole, 2.6 µm in size, selected the coherent part of the beam that was used to obtain ptychographic reconstruction results of a lithographically manufactured test sample and a fossil diatom. The achieved resolution was 53 nm for the test sample and was only limited by the size of the detector. The diatom was imaged at a resolution better than 90 nm

  3. Unified theory of x-ray imaging techniques

    International Nuclear Information System (INIS)

    Since the invention of x-ray, conventional radiography has been widely used as a diagnostic tool. In this attempts is made to link all these operations through a generalized mathematical function involving x-ray transmission

  4. Hard X-ray Imaging Microscopy using X-ray Guide Tube as Beam Condenser for Field Illumination

    Science.gov (United States)

    Suzuki, Yoshio; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Nakazawa, Hiromoto; Ohzawa, Sumito; Aoyama, Tomoki; Nii, Hajime; Handa, Katsumi

    2013-10-01

    An optical system for illumination of object in x-ray imaging microscopy is developed. The optical system is a beam condenser consisting of a single-bounce conical-shape mono-capillary (x-ray guide tube: XGT) made of Pyrex glass. The XGT condenser was tested at the beam line 47XU of SPring-8 using a Fresnel zone plate as an objective lens. Comparing with the microscope without beam condenser, the flux density is improved by a factor of 12-20 in the x-ray energy range of 6-8 keV. Test patterns with a 50 nm-structure are clearly resolved at 8 keV with an exposure time less than 1 s.

  5. Quantitative comparison of imaging performance of x-ray interferometric imaging and diffraction enhanced imaging

    International Nuclear Information System (INIS)

    For detailed biomedical observations using the optimum phase-contrast x-ray imaging, quantitative comparisons of imaging performances of two major imaging methods--x-ray interferometric imaging (XII) and diffraction enhanced imaging (DEI)--were performed. Density sensitivity and spatial resolution of each imaging method were evaluated using phantom tomograms obtained by each method with the same x-ray dosage. For practical comparison of the methods, biological samples were also observed under the same conditions. The results show that XII has a higher sensitivity than that of DEI and is thus suitable for observation of soft biological tissues. On the other hand, DEI has a wider dynamic range of density and is thus suitable for observation of samples with large differences in density of different regions.

  6. High energy X-ray phase and dark-field imaging using a random absorption mask

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  7. Imaging bacterial spores by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W. [Univ. of London, Surrey (United Kingdom); Judge, J. [Unilever plc, Sharnbrook (United Kingdom)] [and others

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  8. Microsecond time-resolved 2D X-ray imaging

    International Nuclear Information System (INIS)

    A method is presented which allows to take two-dimensional X-ray images of repetitive processes with recording times in the sub-microsecond range. Various measurements have been performed with a recently introduced novel two-dimensional single photon counter which has been slightly modified in order to determine the exact arrival time of each detected photon. For this purpose a special clock signal is synchronized with the process and is digitized contemporaneously with each event. This technique can be applied even with rate limited detectors and low flux sources, since--unlike in conventional methods, where chopped beams or gated read out electronics are used--all photons are used for the image formation. For the measurements, rapidly moving mechanical systems and conventional X-ray sources have been used, reaching time resolutions of some 10 μs. The technique presented here opens a variety of new biological, medical and industrial applications which will be discussed. As a first application example, three dimensional tomographic reconstructions of rapidly rotating objects (4000 turns/min) are presented

  9. Inspection of refractive x-ray lenses using high-resolution differential phase contrast imaging with a microfocus x-ray source

    International Nuclear Information System (INIS)

    A refractive x-ray lens was characterized using a magnifying cone beam setup for differential phase contrast imaging in combination with a microfocus x-ray tube. Thereby, the differential and the total phase shift of x rays transmitted through the lens were determined. Lens aberrations have been characterized based on these refractive properties

  10. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    OpenAIRE

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system.

  11. Images of the Laser Entrance Hole from the Static X-ray Imager at NIF

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Jones, O; Meezan, N; Milovich, J; Town, R; Alvarez, S; Beeler, R; Bradley, D; Celeste, J; Dixit, S; Edwards, M; Haugh, M; Kalantar, D; Kline, J; Kyrala, G; Landen, O; MacGowan, B; Michel, P; Moody, J; Oberhelman, S; Piston, K; Pivovaroff, M; Suter, L; Teruya, A; Thomas, C; Vernon, S; Warrick, A; Widman, K; Wood, R; Young, B

    2010-05-04

    The Static X-ray Imager (SXI) at the National Ignition Facility (NIF) is a pinhole camera using a CCD detector to obtain images of hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters combined with the CCD response allows recording images in the x-ray range of 3 to 5 keV with 60 {micro}m spatial resolution. The routines used to obtain the apparent size of the backlit LEH, and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition hohlraum) is discussed.

  12. Images of the laser entrance hole from the static x-ray imager at NIF

    International Nuclear Information System (INIS)

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  13. A photon counting pixel detector for X-ray imaging

    International Nuclear Information System (INIS)

    Hybrid semiconductor pixel detector technology is presented in this thesis as an alternative to current imaging systems in medical imaging and synchrotron radiation applications. The technology has been developed from research performed in High Energy Physics, in particular, for the ATLAS experiment at the LHC, planned for 2005. This thesis describes work done by the author on behalf of the MEDIPIX project, a collaboration between 13 international institutions for the development of hybrid pixel detectors for non-HEP applications. Chapter 1 describes the motivation for these detectors, the origin of the technology, and the current state of the art in imaging devices. A description of the requirements of medical imaging on X-ray sensors is described, and the properties of film and CCDs are discussed. The work of the RD19 collaboration is introduced to show the evolution of these devices. Chapter 2 presents the basic semiconductor theory required to understand the operation of these detectors, and a section on image theory introduces the fundamental parameters which are necessary to define the quality of an imaging device. Chapter 3 presents measurements made by the author on a photon counting detector (PCD1) comprising a PCC1 (MEDIPIX1) readout chip bumpbonded to silicon and gallium arsenide pixel detectors. Tests on the seperate readout chip and the bump-bonded assembly are shown with comparisons between the performance of the two materials. Measurements of signal-to-noise ratio, detection efficiency and noise performance are presented, along with an MTF measurement made by the Freiburg group. The X-ray tube energy spectrum was calibrated by REGAM. The performance of the PCD in a powder diffraction experiment using a synchrotron radiation source is described in chapter 4. This chapter reports the first use of a true 2-D hybrid pixel detector in a synchrotron application, and a comparison with the existing scintillator based technology is made. The measurements made

  14. X-ray imaging and detection using plastic scintillating fibers

    CERN Document Server

    Ikhlef, A; Beddar, A S

    2000-01-01

    This paper discusses the application of plastic scintillating fiber array in X-ray imaging with low-energy radiation. This array is coupled to a multichannel intensified photocathode and then to a CCD detector via a fiber optics taper. The length of the fiber array is experimentally optimized for the radiation used. We found here that the length of the fibers (interaction medium) does not contribute too much in the degradation of the spatial resolution under 10 keV irradiation along the axis of the fiber array. Modulation Transfer Function (MTF) measurements of the PSF array are compared to the optics MTF of the imaging system (without the sample) and that cross-talk in the fiber array is found to be negligible for a fiber array thickness of 20 mm.

  15. Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.

    2011-03-03

    We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.

  16. Quantitative biological imaging by ptychographic X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus; Kalbfleisch, Sebastian; Beerlink, Andre; Salditt, Tim [Institut fuer Roentgenphysik, Georg-August-Universitaet Goettingen (Germany); Thibault, Pierre; Dierolf, Martin; Pfeiffer, Franz [Department Physik (E17), Technische Universitaet Muenchen, Garching (Germany); Kewish, Cameron M. [Paul Scherrer Institut, Villigen PSI (Switzerland)

    2010-07-01

    Mesoscopic structures with specific functions are abundant in many cellular systems and have been well characterized by electron microscopy in the past. However, the quantitative study of the three-dimensional structure and density of subcellular components remains a difficult problem. In this contribution we show how these limitations could be overcome in the future by the application of recently introduced and now rapidly evolving coherent X-ray imaging techniques for quantitative biological imaging on the nanoscale. More specifically, we report on a recent scanning (ptychographic) diffraction experiment on unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiourans using only a pinhole as beam defining optical element. As a result quantitative density projections well below optical resolution have been achieved.

  17. Soft x-ray imager (SXI) onboard ASTRO-H

    Science.gov (United States)

    Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi Go; Dotani, Tadayasu; Hiraga, Junko S.; Anabuki, Naohisa; Bamba, Aya; Hatsukade, Isamu; Kohmura, Takayoshi; Mori, Koji; Murakami, Hiroshi; Nakajima, Hiroshi; Ozaki, Masanobu; Uchida, Hiroyuki; Yamauchi, Makoto

    2010-07-01

    We are designing an X-ray CCD camera (SXI) for ASTRO-H, including many new items. We have developed the CCD, CCD-NeXT4, that is a P-channel type CCD. It has a thick depletion layer of 200μm with an imaging area of 30mm square. Since it is back-illuminated, it has a good low energy response and is robust against the impact of micro-meteorites. We will employ 4 chips to cover the area of 60mm square. A mechanical rather than peltier cooler will be employed so that we can cool the CCD to -120°C. We will also introduce an analog ASIC that is placed very close to the CCD. It performs well, having a similar noise level to that assembled by using individual parts used on SUZAKU. We also employ a modulated X-ray source (MXS), that improves the accuracy of the calibration. The SXI will have one of the largest SΩ among various satellites.

  18. Tomography of a Cryo-immobilized Yeast Cell Using Ptychographic Coherent X-Ray Diffractive Imaging

    OpenAIRE

    Giewekemeyer, Klaus; Hackenberger, Claudia; Aquila, Andrew; Wilke, R. N.; Groves, Matthew; Jordanova, R.; Lamzin, V. S.; Borchers, G.; Saksl, K.; Zozulya, A.V.; Sprung, M.; Adrian P. Mancuso

    2015-01-01

    The structural investigation of noncrystalline, soft biological matter using x-rays is of rapidly increasing interest. Large-scale x-ray sources, such as synchrotrons and x-ray free electron lasers, are becoming ever brighter and make the study of such weakly scattering materials more feasible. Variants of coherent diffractive imaging (CDI) are particularly attractive, as the absence of an objective lens between sample and detector ensures that no x-ray photons scattered by a sample are lost ...

  19. Problems and image processing in X-ray film digitization

    International Nuclear Information System (INIS)

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author)

  20. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  1. Grating-based X-ray phase contrast imaging using polychromatic laboratory sources

    International Nuclear Information System (INIS)

    Research highlights: → Efficient use of polychromatic laboratory sources for X-ray phase contrast imaging. → The inter-grating distance is not limited by the polychromaticity of the X-ray source. → Sensitivity for phase measurements can be further improved. → Potential optimizations of the imaging system from an application perspective. - Abstract: X-ray phase contrast imaging has been demonstrated to have an improved contrast over conventional absorption imaging for those weakly absorbing objects. However, most of the hard X-ray phase-sensitive imaging has so far been impractical with laboratory available X-ray sources. Grating-based phase imaging approach has the prominent advantage that polychromatic laboratory X-ray generators can be efficiently used in a Talbot-Lau configuration. Through numerical simulations, we demonstrate here the efficient use of polychromatic X-ray laboratory sources for differential phase contrast imaging. The presented results explain why in recently reported experiments, polychromatic X-ray tubes could be efficiently used in a Talbot-Lau interferometer. Furthermore, the results indicate that the fractional Talbot distance is not limited by the polychromaticity of the X-ray source. Since the sensitivity of phase measurements is proportional to the fractional Talbot distance, the image quality for phase measurements can be further improved. Finally, the potential optimizations of the imaging system are discussed from an application perspective, taking into consideration both available X-ray flux and compactness of the system.

  2. Grating-based X-ray phase contrast imaging using polychromatic laboratory sources

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhili [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao Kun [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Zhu Peiping; Yuan Qingxi; Huang Wanxia; Zhang Kai; Hong Youli [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Ge Xin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu, E-mail: wuzy@ustc.edu.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China)

    2011-04-15

    Research highlights: {yields} Efficient use of polychromatic laboratory sources for X-ray phase contrast imaging. {yields} The inter-grating distance is not limited by the polychromaticity of the X-ray source. {yields} Sensitivity for phase measurements can be further improved. {yields} Potential optimizations of the imaging system from an application perspective. - Abstract: X-ray phase contrast imaging has been demonstrated to have an improved contrast over conventional absorption imaging for those weakly absorbing objects. However, most of the hard X-ray phase-sensitive imaging has so far been impractical with laboratory available X-ray sources. Grating-based phase imaging approach has the prominent advantage that polychromatic laboratory X-ray generators can be efficiently used in a Talbot-Lau configuration. Through numerical simulations, we demonstrate here the efficient use of polychromatic X-ray laboratory sources for differential phase contrast imaging. The presented results explain why in recently reported experiments, polychromatic X-ray tubes could be efficiently used in a Talbot-Lau interferometer. Furthermore, the results indicate that the fractional Talbot distance is not limited by the polychromaticity of the X-ray source. Since the sensitivity of phase measurements is proportional to the fractional Talbot distance, the image quality for phase measurements can be further improved. Finally, the potential optimizations of the imaging system are discussed from an application perspective, taking into consideration both available X-ray flux and compactness of the system.

  3. HETE Soft X-ray Camera imaging: Calibration, performance, and sensitivity

    International Nuclear Information System (INIS)

    The HETE Soft X-ray Camera (SXC) uses X-ray CCDs and a micro-fabricated coded aperture mask to image X-ray sources with sub-arcminute accuracy over a steradian field of view. Calibration of imaging with observations of the Crab and Sco X-1 is described. The accuracy of SXC localizations is determined trough observations of known steady and transient galactic X-ray sources and sensitivity to GRBs is estimated through detections of steady and transient Galactic X-ray sources. [NB: As of October 2002, the SXC had localized 4 GRBs to arcminute accuracy

  4. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    OpenAIRE

    Sheridan C. Mayo; Stevenson, Andrew W.; Stephen W. Wilkins

    2012-01-01

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image ...

  5. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    OpenAIRE

    Sorapong Aootaphao; Thongvigitmanee, Saowapak S.; Jartuwat Rajruangrabin; Chalinee Thanasupsombat; Tanapon Srivongsa; Pairash Thajchayapong

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter ...

  6. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  7. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    International Nuclear Information System (INIS)

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure

  8. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Science.gov (United States)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  9. Single molecule imaging with longer x-ray laser pulses

    CERN Document Server

    Martin, Andrew V; Caleman, Carl; Quiney, Harry M

    2015-01-01

    In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

  10. XIPE: the X-ray imaging polarimetry explorer

    Science.gov (United States)

    Soffitta, Paolo; Barcons, Xavier; Bellazzini, Ronaldo; Braga, João; Costa, Enrico; Fraser, George W.; Gburek, Szymon; Huovelin, Juhani; Matt, Giorgio; Pearce, Mark; Poutanen, Juri; Reglero, Victor; Santangelo, Andrea; Sunyaev, Rashid A.; Tagliaferri, Gianpiero; Weisskopf, Martin; Aloisio, Roberto; Amato, Elena; Attiná, Primo; Axelsson, Magnus; Baldini, Luca; Basso, Stefano; Bianchi, Stefano; Blasi, Pasquale; Bregeon, Johan; Brez, Alessandro; Bucciantini, Niccoló; Burderi, Luciano; Burwitz, Vadim; Casella, Piergiorgio; Churazov, Eugene; Civitani, Marta; Covino, Stefano; Curado da Silva, Rui Miguel; Cusumano, Giancarlo; Dadina, Mauro; D'Amico, Flavio; De Rosa, Alessandra; Di Cosimo, Sergio; Di Persio, Giuseppe; Di Salvo, Tiziana; Dovciak, Michal; Elsner, Ronald; Eyles, Chris J.; Fabian, Andrew C.; Fabiani, Sergio; Feng, Hua; Giarrusso, Salvatore; Goosmann, René W.; Grandi, Paola; Grosso, Nicolas; Israel, Gianluca; Jackson, Miranda; Kaaret, Philip; Karas, Vladimir; Kuss, Michael; Lai, Dong; Rosa, Giovanni La; Larsson, Josefin; Larsson, Stefan; Latronico, Luca; Maggio, Antonio; Maia, Jorge; Marin, Frédéric; Massai, Marco Maria; Mineo, Teresa; Minuti, Massimo; Moretti, Elena; Muleri, Fabio; O'Dell, Stephen L.; Pareschi, Giovanni; Peres, Giovanni; Pesce, Melissa; Petrucci, Pierre-Olivier; Pinchera, Michele; Porquet, Delphine; Ramsey, Brian; Rea, Nanda; Reale, Fabio; Rodrigo, Juana Maria; Różańska, Agata; Rubini, Alda; Rudawy, Pawel; Ryde, Felix; Salvati, Marco; de Santiago, Valdivino Alexandre; Sazonov, Sergey; Sgró, Carmelo; Silver, Eric; Spandre, Gloria; Spiga, Daniele; Stella, Luigi; Tamagawa, Toru; Tamborra, Francesco; Tavecchio, Fabrizio; Teixeira Dias, Teresa; van Adelsberg, Matthew; Wu, Kinwah; Zane, Silvia

    2013-12-01

    Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2-10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15-35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of

  11. Space station application of CCD image sensors for x-ray imaging

    International Nuclear Information System (INIS)

    Charge Coupled Device (CCD) type solid state image sensors are employed in a number of space based imaging experiments and will be the basis for a camera system to acquire x-ray diffraction images on board the Space Station. This paper will present the system engineering considerations that led to the selection of CCDs over other x-ray imaging technologies and the design of the camera system. This will include discussion of the special requirements imposed by the space environment and this x-ray crystallography mission. This systems engineering discussion will be followed by a summary of high spatial resolution CCDs that are candidates for this camera, what may become available in the future, and what improvements would make CCDs even more suited to such X-ray imaging applications on the ground as well as in space

  12. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    Science.gov (United States)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  13. An autonomous CZT module for X-ray diffraction imaging

    International Nuclear Information System (INIS)

    We present the development of a CZT-based detection module dedicated to X-ray diffraction imaging. This kind of application requires a good energy and spatial resolution in order to resolve Bragg peaks. In a first part, we present the detector configuration used and dimensioning constraints. As the input energy range is comprised between 20 and 150 keV, we use 5 mm thick high resistivity CZT crystals. The 660 mm2 detection area is segmented on both sides into 192 anodes and 12 cathodes. Signals from both sides are read jointly in order to perform multi parametric event corrections (depth of interaction, charge sharing, induction sharing). In order to be integrated easily inside an X-ray imaging system, the system has been conceived to be completely autonomous: it is powered by a single 12 V supply and is interfaced with the external system by Ethernet for communication and RS485 for synchronization. In a second part, we describe the system readout architecture and then the implementation of the data processing. An FPGA circuit embeds a digital processing chain that carries out readout ASIC interfacing and advanced multi parametric data corrections. Gain, offset but also depth of interaction and charge sharing are corrected on the flow. Incoming events from different channels are clustered together by comparing their location and time of occurrence. The FPGA also embeds a processor running an operating system that controls the system, carries out all calibrations, automated tests and acquisitions. Eventually, we show the results obtained and demonstrate the relative influence of depth of interaction and charge sharing. Homogeneity of detector behavior is also discussed and the reproducibility of the performance between modules is presented. The average energy resolution at 25 C is 2.4 % FWHM at 122 keV and 3.8 % FWHM at 60 keV and the average efficiency is 73 %. (authors)

  14. Exposure reduction in general dental practice using digital x-ray imaging system for intraoral radiography with additional x-ray beam filter

    International Nuclear Information System (INIS)

    To measure exposure reduction in general dental practice using digital x-ray imaging systems for intraoral radiography with additional x-ray beam filter. Two digital x-ray imaging systems, Pana Digital (Pana-Heraus Dental) and CDR (Schick Technologies), were applied for intraoral radiography in general dental practice. Due to the high sensitivity to x-rays, additional x-ray beam filters for output reduction were used for examination. An Orex W II (Osada Electric Industry) x-ray generator was operated at 60 kVp, 7 mA. X-ray output (air-kerma; Gy) necessary for obtaining clinically acceptable images was measured at 0 to 20 cm in 5 cm steps from the cone tip using an ionizing chamber type 660 (Nuclear Associates) and compared with those for Ektaspeed Plus film (Eastman Kodak). The Pana Digital system was used with the optional filter supplied by Pana-Heraus Dental which reduced the output to 38%. The exposure necessary to obtain clinically acceptable images was only 40% of that for the film. The CDR system was used with the Dental X-ray Beam Filter Kit (Eastman Kodak) which reduced the x-ray output to 30%. The exposure necessary to obtain clinically acceptable images was only 20% of that for the film. The two digital x-ray imaging systems, Pana Digital and CDR, provided large dose savings (60-80%) compared with Ektaspeed Plus film when applied for intraoral radiography in general dental practice. (author)

  15. Resolution enhancement in digital x-ray imaging

    International Nuclear Information System (INIS)

    We have developed a restoration method for radiographs that enhances image sharpness and reveals bone microstructures that were initially hidden in the soft-tissue glare. The method is two fold: the image is first deconvolved using the Richardson-Lucy algorithm and is then divided with a signal modelling the soft-tissue distribution to increase the overall contrast. Each step has its own merits but the power of the restoration method lies in their combination. The originality of the method is its reliance on a priori information at each step in the processing. We have measured and modelled analytically the point-spread function of a low-dose gas microstrip x-ray detector at several beam energies. We measured the relationship between the local image intensity and the noise variance for these images. The soft-tissue signal was also modelled using a minimum-curvature filtering technique. These results were then combined into an image deconvolution procedure that uses wavelet filtering to reduce restoration noise while keeping the enhanced small-scale features. The method was applied successfully to images of a human-torso phantom and improved the contrast of small details on the bones and in the soft tissues. We measured a mean 54% increase in signal to noise ratio and a mean 105% increase in contrast to noise ratio in the 70 and 140 kVp images we analysed. The method was designed to facilitate the analysis of radiographs by relying on two levels of visual inspection. The contrast of the full image is first enhanced by division with the signal modelling the soft-tissue distribution. Based on the result, a radiologist might decide to zoom in on a given image section. The full restoration method is then applied to that region of interest. Indeed, full image deconvolution is often unnecessary since enhanced small-scale details are not visible at large scale; only the section of interest is processed which is more efficient

  16. Assessment of Restoration Methods of X-Ray Images with Emphasis on Medical Photogrammetric Usage

    Science.gov (United States)

    Hosseinian, S.; Arefi, H.

    2016-06-01

    Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  17. ASSESSMENT OF RESTORATION METHODS OF X-RAY IMAGES WITH EMPHASIS ON MEDICAL PHOTOGRAMMETRIC USAGE

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2016-06-01

    Full Text Available Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  18. Coherent X-ray scattering and lensless imaging at the European XFEL Facility

    OpenAIRE

    Vartanyants, I. A.; Robinson, I. K.; McNulty, I.; David, C.; Wochner, P.; Tschentscher, Th.

    2007-01-01

    Coherent X-ray diffraction imaging is a rapidly advancing form of lensless microscopy. The phase information of the diffraction pattern is embedded in a sufficiently sampled coherent diffraction pattern. Using advanced computational methods, this diffraction pattern can be inverted to produce an image of a sample with diffraction-limited resolution. It is attractive to use high-power coherent X-ray beams produced by future X-ray free-electron lasers for imaging nanoscale condensed matter, mat...

  19. Carbon nanotube based X-ray sources: Applications in pre-clinical and medical imaging

    International Nuclear Information System (INIS)

    Field emission offers an alternate method of electron production for Bremsstrahlung based X-ray tubes. Carbon nanotubes (CNTs) serve as very effective field emitters, allowing them to serve as electron sources for X-ray sources, with specific advantages over traditional thermionic tubes. CNT derived X-ray sources can create X-ray pulses of any duration and frequency, gate the X-ray pulse to any source and allow the placement of many sources in close proximity. We have constructed a number of micro-CT systems based on CNT X-ray sources for applications in small animal imaging, specifically focused on the imaging of the heart and lungs. This paper offers a review of the pre-clinical applications of the CNT based micro-CT that we have developed. We also discuss some of the current and potential clinical applications of the CNT X-ray sources.

  20. Lung mass, right upper lung - chest x-ray (image)

    Science.gov (United States)

    This picture is a chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and ... visible in the middle of the chest. The x-ray shows a mass in the right upper lung, ...

  1. Coal worker's lungs - chest x-ray (image)

    Science.gov (United States)

    This chest x-ray shows coal worker's lungs. There are diffuse, small, light areas on both sides (1 to 3 mm) in ... the lungs. Diseases that may result in an x-ray like this include: simple coal workers pneumoconiosis (CWP) - ...

  2. Recent advances in development of water window soft x-ray microscope for imaging hydrated cellular organelles

    International Nuclear Information System (INIS)

    We have developed a hybrid soft x-ray microscopy system combined a water window soft x-ray microscope using a laser plasma soft x-ray source and a fluorescence microscope to identify the cellular organelles in the soft x-ray images. The nydrated biological cells are stained with fluorescent dyes which connect to specific cellular organelles, fluorescent images are taken right before taking a soft x-ray image. By directly comparing between the fluorescent images and the soft x-ray image, we are able to identify the organelles shown in the soft x-ray image. (author)

  3. Characterization of an indirect X-ray imaging detector by simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, C.; Riessen, G. van; Balaur, E. [Department of Physics, La Trobe University, Victoria 3086 (Australia); Centre of Excellence for Coherent X-ray Science, La Trobe University, Victoria 3086 (Australia); Jonge, M.D. de [Australian Synchrotron, Victoria 3168 (Australia); Peele, A.G. [Department of Physics, La Trobe University, Victoria 3086 (Australia); Centre of Excellence for Coherent X-ray Science, La Trobe University, Victoria 3086 (Australia); Australian Synchrotron, Victoria 3168 (Australia); Centre of Excellence for Advanced Molecular Imaging, Australian Synchrotron, Victoria 3168 (Australia)

    2015-01-15

    We describe a comprehensive model of a commercial indirect X-ray imaging detector that accurately predicts the detector point spread function and its dependence on X-ray energy. The model was validated by measurements using monochromatic synchrotron radiation and extended to polychromatic X-ray sources. Our approach can be used to predict the performance of an imaging detector and can be used to optimize imaging experiments with broad-band X-ray sources. - Highlights: • We modeled the point spread function of an indirect X-ray imaging detector. • The effects of optical coupling between detector components were included. • The model was validated with monochromatic and polychromatic X-ray source. • The geometrical arrangement for optimal detector resolution was identified.

  4. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    Science.gov (United States)

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-08-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography.

  5. X-ray image processing software for computing object size and object location coordinates from acquired optical and x-ray images

    International Nuclear Information System (INIS)

    X-ray and Visible image data processing software has been developed in Visual Basic for real time online and offline image information processing for NDT and Medical Applications. Software computes two dimension image size parameters from its sharp boundary lines by raster scanning the image contrast data. Code accepts bit map image data and hunts for multiple tumors of different sizes that may be present in the image definition and then computes size of each tumor and locates its approximate center for registering its location coordinates. Presence of foreign metal and glass balls industrial product such as chocolate and other food items imaged out using x-ray imaging technique are detected by the software and their size and position co-ordinates are computed by the software. Paper discusses ways and means to compute size and coordinated of air bubble like objects present in the x-ray and optical images and their multiple existences in image of interest. (author)

  6. X-Ray Grating Interferometry for Phase-Contrast Imaging and Optics Metrology Applications

    Science.gov (United States)

    David, Christian; Rutishauser, Simon; Thüring, Thomas; Donath, Tilman; Stampanoni, Marco

    2010-04-01

    We report on a hard x-ray interferometry technique based on diffraction gratings fabricated using microlithography techniques. Compared to other x-ray phase-contrast imaging methods, the grating interferometer only has very moderate requirements in terms of coherence. This makes it possible to use the method with standard x-ray tubes, which opens up a huge range of applications e.g. in medical imaging.

  7. Measurement of soft x-ray image by using CCD camera for long pulse discharge

    International Nuclear Information System (INIS)

    A soft x-ray imaging was made a CCD camera installed to a tangential port in LHD. The large number of pixels (1024x512) of with CCD gives a good spatial resolution of 1.8 mm. The tangential soft x-ray image is obtained during long pulse discharge on LHD with a time resolution of 0.5 s. The shift of x-ray emission profile is found for plasmas with different magnetic axes. (J.P.N.)

  8. Pinhole X-ray Fluorescence Imaging of Gadolinium Nanoparticles: A Preliminary Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seong Moon; Sung, Won Mo; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    X-ray fluorescence imaging is a modality for the element-specific imaging of a subject through analysis of characteristic x-rays produced by exploiting the interaction of high atomic number elements and incoming x-rays. Previous studies have utilized a polychromatic x-ray source to investigate the production of in vivo x-ray fluorescence images for the assessment of concentrations and locations of gold nanoparticles. However, previous efforts have so far been unable to detect low concentrations, such as 0.001% gold by weight, which is an expected concentration accumulated in tumors. We examined the feasibility of a monochromatic synchrotron x-rays implementation of pinhole x-ray fluorescence imaging by Monte Carlo simulations using MCNP5. In the current study, gadolinium (Gd) nanoparticles, which have been widely used as a contrast agent in magnetic resonance imaging and also as a dose enhancer in radiation therapy, were chosen for tumor targeting. Since a monochromatic x-ray source is used, the increased x-ray fluorescence signals allow the detection of low concentrations of Gd. Two different monochromatic x-ray beam energies, 50.5 keV near the Kedge energy (i.e., 50.207 keV) of Gd and 55 keV, were compared by their respective imaging results. Using Monte Carlo simulations the feasibility of imaging low concentrations of Gd nanoparticles (e.g., 0.001 wt%) with x-ray fluorescence using monochromatic synchrotron x-rays of two different energies was shown. In the case of imaging a single Gd column inserted in the center of a water phantom, the fluorescence signals from 0.05 wt% and 0.1 wt% Gd columns irradiated with a 50.5 keV photon beam were higher than those irradiated with 55 keV. Below 0.05 wt% region no significant differences were found.

  9. Soft x-ray imaging by a commercial solid-state television camera

    International Nuclear Information System (INIS)

    A commerical, solid-state television camera has been used to record images of soft x radiation (0.8--12 keV). The performance of the camera is theoretically analyzed and experimentally evaluated compared with an x-ray photographic film (Kodak direct exposure film). In the application, the camera has been used to provide image patterns of x rays from laser-produced plasmas. It is demonstrated that the camera has several advantages over x-ray photographic film

  10. Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction

    OpenAIRE

    Nien, Hung; Fessler, Jeffrey A.

    2015-01-01

    Statistical image reconstruction (SIR) methods are studied extensively for X-ray computed tomography (CT) due to the potential of acquiring CT scans with reduced X-ray dose while maintaining image quality. However, the longer reconstruction time of SIR methods hinders their use in X-ray CT in practice. To accelerate statistical methods, many optimization techniques have been investigated. Over-relaxation is a common technique to speed up convergence of iterative algorithms. For instance, usin...

  11. Pinhole X-ray Fluorescence Imaging of Gadolinium Nanoparticles: A Preliminary Monte Carlo Study

    International Nuclear Information System (INIS)

    X-ray fluorescence imaging is a modality for the element-specific imaging of a subject through analysis of characteristic x-rays produced by exploiting the interaction of high atomic number elements and incoming x-rays. Previous studies have utilized a polychromatic x-ray source to investigate the production of in vivo x-ray fluorescence images for the assessment of concentrations and locations of gold nanoparticles. However, previous efforts have so far been unable to detect low concentrations, such as 0.001% gold by weight, which is an expected concentration accumulated in tumors. We examined the feasibility of a monochromatic synchrotron x-rays implementation of pinhole x-ray fluorescence imaging by Monte Carlo simulations using MCNP5. In the current study, gadolinium (Gd) nanoparticles, which have been widely used as a contrast agent in magnetic resonance imaging and also as a dose enhancer in radiation therapy, were chosen for tumor targeting. Since a monochromatic x-ray source is used, the increased x-ray fluorescence signals allow the detection of low concentrations of Gd. Two different monochromatic x-ray beam energies, 50.5 keV near the Kedge energy (i.e., 50.207 keV) of Gd and 55 keV, were compared by their respective imaging results. Using Monte Carlo simulations the feasibility of imaging low concentrations of Gd nanoparticles (e.g., 0.001 wt%) with x-ray fluorescence using monochromatic synchrotron x-rays of two different energies was shown. In the case of imaging a single Gd column inserted in the center of a water phantom, the fluorescence signals from 0.05 wt% and 0.1 wt% Gd columns irradiated with a 50.5 keV photon beam were higher than those irradiated with 55 keV. Below 0.05 wt% region no significant differences were found

  12. In-Line Phase-Contrast Imaging Using Partially Coherent Hard X-Ray

    Institute of Scientific and Technical Information of China (English)

    喻虹; 朱频频; 韩申生; 罗震林; 高琛

    2003-01-01

    An experimental study of in-line hard x-ray phase-contrast imaging had been performed, using the polychromatic output of an x-ray tube. The results are in good agreement with partially coherent theory of hard x-ray phasecontrast imaging. The new technique provides the advantage to obtain the radiographs of large samples in an acceptable exposure time, which is very important to clinical applications.

  13. Gold Nanoparticle Contrast Agents in Advanced X-ray Imaging Technologies

    Directory of Open Access Journals (Sweden)

    Sungsook Ahn

    2013-05-01

    Full Text Available Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.

  14. Towards magnetic 3D x-ray imaging

    Science.gov (United States)

    Fischer, Peter; Streubel, R.; Im, M.-Y.; Parkinson, D.; Hong, J.-I.; Schmidt, O. G.; Makarov, D.

    2014-03-01

    Mesoscale phenomena in magnetism will add essential parameters to improve speed, size and energy efficiency of spin driven devices. Multidimensional visualization techniques will be crucial to achieve mesoscience goals. Magnetic tomography is of large interest to understand e.g. interfaces in magnetic multilayers, the inner structure of magnetic nanocrystals, nanowires or the functionality of artificial 3D magnetic nanostructures. We have developed tomographic capabilities with magnetic full-field soft X-ray microscopy combining X-MCD as element specific magnetic contrast mechanism, high spatial and temporal resolution due to the Fresnel zone plate optics. At beamline 6.1.2 at the ALS (Berkeley CA) a new rotation stage allows recording an angular series (up to 360 deg) of high precision 2D projection images. Applying state-of-the-art reconstruction algorithms it is possible to retrieve the full 3D structure. We will present results on prototypic rolled-up Ni and Co/Pt tubes and glass capillaries coated with magnetic films and compare to other 3D imaging approaches e.g. in electron microscopy. Supported by BES MSD DOE Contract No. DE-AC02-05-CH11231 and ERC under the EU FP7 program (grant agreement No. 306277).

  15. A computer code to simulate X-ray imaging techniques

    International Nuclear Information System (INIS)

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests

  16. A computer code to simulate X-ray imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-09-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.

  17. Single molecule imaging with longer x-ray laser pulses

    OpenAIRE

    Martin, Andrew V.; Corso, Justine K.; Caleman, Carl; Timneanu, Nicusor; Quiney, Harry M.

    2015-01-01

    During the last five years, serial femtosecond crystallography using x-ray laser pulses has developed into a powerful technique for determining the atomic structures of protein molecules from micrometer and sub-micrometer sized crystals. One of the key reasons for this success is the "self-gating" pulse effect, whereby the x-ray laser pulses do not need to outrun all radiation damage processes. Instead, x-ray induced damage terminates the Bragg diffraction prior to the pulse completing its pa...

  18. Quality criteria for chest X-ray image

    International Nuclear Information System (INIS)

    A distinction has to be made between invariable and variable criteria in the determination of chest X-ray picture quality criteria. The invariable criteria are defined by the properties of the object and the psychophysiological laws of perception and cognition, and the variable criteria are determined by the prevailing state of the art of technology. An agreement on these criteria is based on the knowledge of the nature and the technical conditions of X-ray picture production and reproduction. The slogan 'the best picture at the lowest dose' dominates, too, the discussion centering around the X-ray picture of the chest, its quality and criteria. (orig./MG)

  19. The present state and future development of X-ray imaging technology

    International Nuclear Information System (INIS)

    Medical imaging has long been the hot topic of clinical medical sciences, the X-ray imaging equipment is a popular device of current medical imaging, and the digital imaging technology has become a challenge to the conventional plane imaging. The author first discusses that the key of X-ray-based imaging is the generator and detector of X-ray and the improvement of imaging software, and then points out that the future development of medical imaging will aim at the capability of reducing radiation and handling more efficient and accurate data capacity

  20. High-resolution X-ray imaging in fast ignition experiment using Gekko and LFEX lasers

    Directory of Open Access Journals (Sweden)

    Koga M.

    2013-11-01

    Full Text Available We improved diagnostic instruments to measure X-ray images in a hard X-ray harsh environment and succeeded in obtaining clear images with X-ray framing camera and X-ray streak camera in fast ignition experiment conducted in 2011 (FG-02 Experimental Campaign. We found that high-energy X-ray signals could be used as an indicator of the LFEX laser injection time relative to the imploded core. The LFEX laser injection time was estimated with better than 10 ps accuracy. Time-resolved 2D X-ray images suggested that shapes and motions of imploded core plasmas were improved by changing the configuration of the implosion lasers.

  1. X-ray phase imaging using a Gd-based absorption grating fabricated by imprinting technique

    Science.gov (United States)

    Yashiro, Wataru; Kato, Kosuke; Sadeghilaridjani, Maryam; Momose, Atsushi; Shinohara, Takenao; Kato, Hidemi

    2016-04-01

    A high-aspect-ratio absorption grating with a pitch of several µm is a key component of X-ray grating interferometery, which is an X-ray phase imaging technique that allows for highly sensitive X-ray imaging with a compact laboratory X-ray source. Here, we report that X-ray phase imaging was successfully performed at 15 keV by using a 23 ± 1-µm-height, 9-µm-pitch absorption grating (10 × 10 mm2) based on Gd (Gd60Cu25Al15) fabricated by a metallic glass imprinting technique. The imprinting technique is cost-efficient and has a high-production rate, and will be widely used for fabricating gratings not only for X-rays but also neutrons in the near future.

  2. A bidimensional xenon-filled MWPC X-ray imaging detector for biomedical applications

    International Nuclear Information System (INIS)

    The X-ray imaging system developed at the Rutherford Laboratory for biomedical applications is described. It consists of a bidimensional, xenon-filled MWPC operating at NTP, and capable of detecting x-rays of energies up to approximately 50 keV. The chamber data is processed in a PDP-11 computer which is capable of storing and processing the x-ray images so as to provide good pictures of biological structures with a spatial resolution of approximately 2mm. Special attention has been paid to an application in the field of x-ray absorptiometry using monochromatic x-rays of approximately 42 keV and promising results are being obtained. Other potential applications are discussed. Particular attention is drawn to the usefulness of pulse height selection in improving the spatial resolution and imaging capability of an atmospheric pressure MWPC x-ray detector. (author)

  3. Tumour visualisation in human soft tissue using grating-based X-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Herzen, Julia; Willner, Marian; Schleede, Simone; Bech, Martin; Tapfer, Arne; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz [Department of Physics (E17) and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany)

    2011-07-01

    The grating-based phase-contrast imaging provides enhanced image structure details, which are partly complementary or even not attainable with standard X-ray absorption imaging. Especially in the case of biological soft tissue when standard x-ray radiography is often limited due to the weak absorption contrast, this method represents a real alternative. Based on X-ray optical transmission gratings this modality has transferred the phase-contrast imaging from the highly brilliant synchrotron radiation sources to conventional laboratory-based broadband x-ray tubes. Here, we present a study on human soft tissue specimens containing tumours using the grating-based phase contrast imaging at both highly brilliant synchrotron (ESRF, Grenoble), and at conventional X-ray laboratory radiation sources. Our results demonstrate a superior contrast for different kinds of soft tissue in the phase contrast and verify this imaging modality to be a promising candidate to establish phase-contrast imaging in clinical radiology.

  4. Applications of Novel X-Ray Imaging Modalities in Food Science

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Schou

    science for understanding and designing food products. In both of these aspects, X-ray imaging methods such as radiography and computed tomography provide a non-destructive solution. However, since the conventional attenuation-based modality suers from poor contrast in soft matter materials, modalities......-eld imaging produces a contrast based on dierences in microstructure. In order to increase the use of X-ray imaging within food science, possible applications of X-ray phase-contrast and X-ray dark-eld imaging should be studied. To reach these applications, improvements are needed on several aspects of the...... possible applications of novel X-ray imaging modalities within food science. The first two studies mainly concern the image acquisition process of taking the image. Using dark-eld radiography, raw, frozen and defrosted fruit were distinguished, and structural changes in barley seeds during germination were...

  5. Tumour visualisation in human soft tissue using grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    The grating-based phase-contrast imaging provides enhanced image structure details, which are partly complementary or even not attainable with standard X-ray absorption imaging. Especially in the case of biological soft tissue when standard x-ray radiography is often limited due to the weak absorption contrast, this method represents a real alternative. Based on X-ray optical transmission gratings this modality has transferred the phase-contrast imaging from the highly brilliant synchrotron radiation sources to conventional laboratory-based broadband x-ray tubes. Here, we present a study on human soft tissue specimens containing tumours using the grating-based phase contrast imaging at both highly brilliant synchrotron (ESRF, Grenoble), and at conventional X-ray laboratory radiation sources. Our results demonstrate a superior contrast for different kinds of soft tissue in the phase contrast and verify this imaging modality to be a promising candidate to establish phase-contrast imaging in clinical radiology.

  6. The MPI/AIT X-ray imager (MAXI) - high speed pn CCDs for X-ray detection

    International Nuclear Information System (INIS)

    MAXI (MPI/AIT X-ray Imager) is part of a proposal submitted to the European Space Agency (ESA) as focal plane instrumentation of the X-ray Multi Mirror Mission (XMM). Within a collaboration of 13 European institutes we have proposed a fully depleted (sensitive) pn CCD of 280 μm thickness with a homogeneous sensitive area of 36 cm2 and a pixel size of 150x150 μm2 which is well matched with the telescope's angular resolution of 30 arcsec, translating to a position resolution of approximately 1 mm in the focal plane. The X-ray sensitivity will be higher than 90% from 250 eV up to 10 keV, the readout time in the full frame mode of the complete focal plane will be 2 ms with a readout noise of better than 5 e- (rms). Prototypes of all individual components of the camera system have been fabricated and tested. The camera concept will be presented. The measured transfer properties of the CCD and the on-chip electronics will be treated. Taking into account the coupling of the on-chip amplifier to the following front-end electronics the expected performance will be derived. (orig.)

  7. Low Power X-Ray Photon Resolving Imaging Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Instruments employing X-ray detection are countless, in different sectors from medicine to industry and from basic to applied science. Given this importance, and...

  8. XIPE: the X-ray imaging polarimetry explorer

    Czech Academy of Sciences Publication Activity Database

    Soffitta, P.; Barcons, X.; Bellazzini, R.; Braga, J.; Costa, E.; Frase, G.W.; Gburek, S.; Huovelin, J.; Dovčiak, Michal; Karas, Vladimír

    2013-01-01

    Roč. 36, č. 3 (2013), s. 523-567. ISSN 0922-6435 Institutional support: RVO:67985815 Keywords : astronomy * X-ray * polarimetry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.663, year: 2013

  9. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    Directory of Open Access Journals (Sweden)

    Sheridan C. Mayo

    2012-05-01

    Full Text Available X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  10. Federated repositories of X-ray diffraction images.

    Science.gov (United States)

    Androulakis, Steve; Schmidberger, Jason; Bate, Mark A; DeGori, Ross; Beitz, Anthony; Keong, Cyrus; Cameron, Bob; McGowan, Sheena; Porter, Corrine J; Harrison, Andrew; Hunter, Jane; Martin, Jennifer L; Kobe, Bostjan; Dobson, Renwick C J; Parker, Michael W; Whisstock, James C; Gray, Joan; Treloar, Andrew; Groenewegen, David; Dickson, Neil; Buckle, Ashley M

    2008-07-01

    There is a pressing need for the archiving and curation of raw X-ray diffraction data. This information is critical for validation, methods development and improvement of archived structures. However, the relatively large size of these data sets has presented challenges for storage in a single worldwide repository such as the Protein Data Bank archive. This problem can be avoided by using a federated approach, where each institution utilizes its institutional repository for storage, with a discovery service overlaid. Institutional repositories are relatively stable and adequately funded, ensuring persistence. Here, a simple repository solution is described, utilizing Fedora open-source database software and data-annotation and deposition tools that can be deployed at any site cheaply and easily. Data sets and associated metadata from federated repositories are given a unique and persistent handle, providing a simple mechanism for search and retrieval via web interfaces. In addition to ensuring that valuable data is not lost, the provision of raw data has several uses for the crystallographic community. Most importantly, structure determination can only be truly repeated or verified when the raw data are available. Moreover, the availability of raw data is extremely useful for the development of improved methods of image analysis and data processing. PMID:18566516

  11. Correcting Intensity Drift in X-ray Grating-based Phase Contrast Imaging

    International Nuclear Information System (INIS)

    X-ray phase-contrast imaging has become an attractive technique because it can deliver additional information on weakly absorbing materials. Grating-based phase contrast imaging with conventional x-ray source is a breakthrough in x-ray phase contrast imaging because it provides attenuation, refraction and scattering information simultaneously. Therefore, it has potential to be applied in medical and industrial applications. However, in actual experiments, we found that the photon intensity drift of the x-ray source would influence the final images, especially the refraction images. After analyzing the phase-stepping curve, we proposed a correction method to fix the problem due to the effect of intensity drift. The proposed correction method is successfully applied to grating-based phase-contrast imaging setup having un-stable x-ray source. The experimental results show that our method could solve this problem

  12. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arjun S.; Mandal, Pratiti; Zhang, Yongjie; Litster, Shawn [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2015-05-14

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy.

  13. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    International Nuclear Information System (INIS)

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy

  14. Energy-resolved X-ray detectors: the future of diagnostic imaging

    Directory of Open Access Journals (Sweden)

    Pacella D

    2015-01-01

    Full Text Available Danilo Pacella ENEA-Frascati, Rome, Italy Abstract: This paper presents recent progress in the field of X-ray detectors, which could play a role in medical imaging in the near future, with special attention to the new generation of complementary metal-oxide semiconductor (C-MOS imagers, working in photon counting, that opened the way to the energy-resolved X-ray imaging. A brief description of the detectors used so far in medical imaging (photographic films, imaging plates, flat panel detectors, together with the most relevant imaging quality parameters, shows differences between, and advantages of these new C-MOS imagers. X-ray energy-resolved imaging is very attractive not only for the increase of contrast but even for the capability of detecting the nature and composition of the material or tissue to be investigated. Since the X-ray absorption coefficients of the different parts or organs of the patient (object are strongly dependent on the X-ray photon energy, this multienergy ("colored" X-ray imaging could increase enormously the probing capabilities. While dual-energy imaging is now a reality in medical practice, multienergy is still in its early stage, but a promising research activity. Based on this new technique of color X-ray imaging, the entire scheme of source–object–detector could be revised in the future, optimizing spectrum and detector to the nature and composition of the target to be investigated. In this view, a transition to a set of monoenergetic X-ray lines, suitably chosen in energy and intensity, could be envisaged, instead of the present continuous spectra. Keywords: X-ray detectors, X-ray medical imaging, C-MOS imagers, dual and multienergy CT

  15. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    OpenAIRE

    Hongchang Wang; Yogesh Kashyap; Kawal Sawhney

    2016-01-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time...

  16. X-Ray Microscopy at BESSY: From Nano-Tomography to Fs-Imaging

    International Nuclear Information System (INIS)

    The BESSY X-ray microscopy group has developed a new full-field x-ray microscope with glass capillary condenser. It permits tomography and spectromicroscopy of cryogenic as well as heated samples. Correlative light and x-ray microscopy is supported by an incorporated high resolution light microscope. Spectromicroscopy with polarized x-rays from a helical undulator can be performed with E/ΔE = 104. With the planned BESSY High Gain Harmonic Generation Free Electron Laser (HGHG-FEL) x-ray imaging with ultra-short pulses and an integral photon flux of about 1011 photons/pulse in an energy bandwidth of 0.1% will be possible. Single shot imaging with a full field Transmission X-ray Microscope (TXM) employing a beam shaper as a condenser will be feasible with 20 fs pulses

  17. Quantitative Imaging of Single, Unstained Viruses with Coherent X-rays

    CERN Document Server

    Song, Changyong; Mancuso, Adrian; Amirbekian, Bagrat; Peng, Li; Sun, Ren; Shah, Sanket S; Zhou, Z Hong; Ishikawa, Tetsuya; Miao, Jianwei

    2008-01-01

    Since Perutz, Kendrew and colleagues unveiled the structure of hemoglobin and myoglobin based on X-ray diffraction analysis in the 1950s, X-ray crystallography has become the primary methodology used to determine the 3D structure of macromolecules. However, biological specimens such as cells, organelles, viruses and many important macromolecules are difficult or impossible to crystallize, and hence their structures are not accessible by crystallography. Here we report, for the first time, the recording and reconstruction of X-ray diffraction patterns from single, unstained viruses. The structure of the viral capsid inside a virion was visualized. This work opens the door for quantitative X-ray imaging of a broad range of specimens from protein machineries, viruses and organelles to whole cells. Moreover, our experiment is directly transferable to the use of X-ray free electron lasers, and represents a major experimental milestone towards the X-ray imaging of single macromolecules.

  18. Enhancement of dental x-ray images by two channel image processing

    International Nuclear Information System (INIS)

    In this paper, the authors develop a new algorithm for the enhancement of low-contrast details of dental X-ray images using a two channel structure. The algorithm first decomposes an input image in the frequency domain into two parts by filtering: one containing the low frequency components and the other containing the high frequency components. Then these parts are enhanced separately using a transform magnitude modifier. Finally a contrast enhanced image is formed by combining these two processed pats. The performance of the proposed algorithm is illustrated through enhancement of dental X-ray images. The algorithm can be easily implemented on a personal computer

  19. Context sensitive cardiac x-ray imaging: a machine vision approach to x-ray dose control

    Science.gov (United States)

    Kengyelics, Stephen M.; Gislason-Lee, Amber J.; Keeble, Claire; Magee, Derek R.; Davies, Andrew G.

    2015-09-01

    Modern cardiac x-ray imaging systems regulate their radiation output based on the thickness of the patient to maintain an acceptable signal at the input of the x-ray detector. This approach does not account for the context of the examination or the content of the image displayed. We have developed a machine vision algorithm that detects iodine-filled blood vessels and fits an idealized vessel model with the key parameters of contrast, diameter, and linear attenuation coefficient. The spatio-temporal distribution of the linear attenuation coefficient samples, when appropriately arranged, can be described by a simple linear relationship, despite the complexity of scene information. The algorithm was tested on static anthropomorphic chest phantom images under different radiographic factors and 60 dynamic clinical image sequences. It was found to be robust and sensitive to changes in vessel contrast resulting from variations in system parameters. The machine vision algorithm has the potential of extracting real-time context sensitive information that may be used for augmenting existing dose control strategies.

  20. Calibration of x-ray digital tomosynthesis system including the compensation for image distortion

    Science.gov (United States)

    Roh, Young Jun; Koh, Kuk Won; Cho, Hyungsuck; Kim, Jin-Young; Kim, Hyung C.; Byun, Jong-Eun

    1998-10-01

    X-ray laminography and DT (digital tomosynthesis) are promising technologies to form a cross-section image of 3D objects and can be a good solution for inspection interior defects of industrial products. It has been known that digital tomosynthesis method has several advantages over laminography method in that it can overcome the problems such as blurring effect or artifact. The DT system consists of a scanning x-ray tube, an image intensifier as an x-ray image detector, and a CCD camera. To acquire an x-ray image of an arbitrary plane of objects, a set of images (8 images or more) should be synthesized by averaging or minimally calculating point by point. The images, however are distorted according to the configurations of the image intensifier and the x-ray source position. To get a clear and accurate synthesized image, the corresponding points in the distorted images should be accurately determined, and therefore, precise calibration of the DT system is needed to map the corresponding points correctly. In this work, a series of calibration methods for the DT system are presented including the correction of the center offset between the x-ray and the image intensifer, the x-ray steering calibration, and the correction of the distortion of the image. The calibration models are implemented to the DT system and the experiment results are presented and discussed in detail.

  1. Impact of ultrafast electronic damage in single particle x-ray imaging experiments

    OpenAIRE

    Lorenz, U.; Kabachnik, Nikolay; Weckert, E.; Vartanyants, I. A.

    2012-01-01

    In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performin...

  2. Simulation of X-ray Photon and Radiation Dose for Nano CT Imaging

    International Nuclear Information System (INIS)

    This work describes the simulation of x-ray photon and radiation dose used in nano radiographic imaging system. It is well known that smaller size of x-ray focal beam has derived greater benefit to nano-scale resolution (4 photons/mm2/sec) in this CCD detector. Finally radiation dose simulation also furnished the evaluation of optimal parameter of X-ray exposure condition with acceptable dose for in-vivo mouse sample. (Author)

  3. Directional x-ray dark-field imaging of strongly ordered systems

    International Nuclear Information System (INIS)

    Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.

  4. Application of imaging plate to micro-beam X-ray diffraction

    International Nuclear Information System (INIS)

    A new type of integrating area detector system with high sensitivity and high spatial resolution was recently developed for diagnostic radiography. In this detector system, a two dimensional X-ray image is temporarily stored as a distribution of F-centers in a photostimulable phosphor screen called the imaging plate (IP). The image in the IP is then read out by measuring the intensity of fluorescence which is stimulated by a focused He-Ne laser beam scanning the surface of the phosphor screen. The residual X-ray image in the IP can be erased simply by exposing it to a large dose of visible light and the IP can be used repeatedly. The detector has 100% detective quantum efficiency for 0-20 keV X-ray, a spatial resolution better than 0.15mm(fwhm), a dynamic range of 105 and no counting rate limitation. The exposure time can be shorten to 1/20-1/60 in comparison with the use of the X-ray film. In this study, we examined the possibility of the IP for the X-ray studies on the mechanical behaviour of materials by using the back-reflection X-ray technique. An exposure time of more than 30 minutes would be required for a conventional high sensitivity X-ray film in the case of αFe(211) diffraction by Cr-Kα X-rays. When the imaging plates were used in place of the film under the same X-ray condition, we could obtain visually similar patterns by exposing the time of less than 90 seconds. These diffraction patterns can be precisely analyzed with the help of the image processing analyzer. We conclude that this detector system is usable in almost the same way as an X-ray film. Especially, this will be more powerful means in the field of micro-beam X-ray diffraction. (author)

  5. Design of a novel phase contrast X-ray imaging system for mammography

    International Nuclear Information System (INIS)

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an X-ray source of high coherence. The radiation physics group at UCL is currently developing an X-ray phase contrast imaging technique which works with laboratory X-ray sources. The design of this system requires rigorous simulation of the imaging system and the interaction of X-rays with healthy and unhealthy breast tissue. We present in this paper the results of such simulations showing the expected gain in contrast arising from the proposed system and the system's initial design.

  6. Dedicated full-field X-ray imaging beamline at Advanced Photon Source

    International Nuclear Information System (INIS)

    We report the basic beamline design and current status of a new full-field X-ray imaging facility at Sector 32 of the Advanced Photon Source. The beamline consists of an existing hutch at 40 m and a new experiment enclosure at 77 m from the source, with both monochromatic and white-beam undulator X-ray capabilities. Experimental programs being planned for the beamline include high-speed time-resolved imaging, phase-contrast and coherent imaging, diffraction-enhanced imaging, ultra-small-angle scattering imaging, and phase- and absorption-contrast transmission X-ray microscopy

  7. Dedicated full-field X-ray imaging beamline at Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Shen Qun [Advanced Photon Source (APS), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: qshen@aps.anl.gov; Lee, Wah-Keat; Fezzaa, Kamel; Chu, Yong S.; De Carlo, Francesco; Jemian, Peter; Ilavsky, Jan; Erdmann, Mark; Long, Gabrielle G. [Advanced Photon Source (APS), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2007-11-11

    We report the basic beamline design and current status of a new full-field X-ray imaging facility at Sector 32 of the Advanced Photon Source. The beamline consists of an existing hutch at 40 m and a new experiment enclosure at 77 m from the source, with both monochromatic and white-beam undulator X-ray capabilities. Experimental programs being planned for the beamline include high-speed time-resolved imaging, phase-contrast and coherent imaging, diffraction-enhanced imaging, ultra-small-angle scattering imaging, and phase- and absorption-contrast transmission X-ray microscopy.

  8. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  9. Quantitative Mass Density Image Reconstructed from the Complex X-Ray Refractive Index.

    Science.gov (United States)

    Mukaide, Taihei; Iida, Atsuo; Watanabe, Masatoshi; Takada, Kazuhiro; Noma, Takashi

    2015-01-01

    We demonstrate a new analytical X-ray computed tomography technique for visualizing and quantifying the mass density of materials comprised of low atomic number elements with unknown atomic ratios. The mass density was obtained from the experimentally observed ratio of the imaginary and real parts of the complex X-ray refractive index. An empirical linear relationship between the X-ray mass attenuation coefficient of the materials and X-ray energy was found for X-ray energies between 8 keV and 30 keV. The mass density image of two polymer fibers was quantified using the proposed technique using a scanning-type X-ray microbeam computed tomography system equipped with a wedge absorber. The reconstructed mass density agrees well with the calculated one. PMID:26114770

  10. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-05-11

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays.

  11. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    International Nuclear Information System (INIS)

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays

  12. Development of a compact x-ray particle image velocimetry for measuring opaque flows

    International Nuclear Information System (INIS)

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  13. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    International Nuclear Information System (INIS)

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors

  14. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D [Department of Oncology, University of Alberta, Edmonton, AB (Canada); McEwen, M; Shen, H [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, ON (Canada); Siegbahn, EA [Department of Medical Physics, Stockholm University, Stockholm (Sweden); Fallone, BG; Warkentin, B [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2014-08-15

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors.

  15. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, Peter, E-mail: pr20@cornell.edu [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States); Temnykh, Alexander B. [Cornell University, Laboratory for Elem-Particle Physics, Ithaca 14850, NY (United States); Pauling, Alan K. [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States)

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  16. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Science.gov (United States)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  17. Profile reconstruction of grazing-incidence X-ray mirrors from intra-focal X-ray full imaging

    CERN Document Server

    Spiga, D; Bavdaz, M; Burwitz, V; Civitani, M; Citterio, O; Ghigo, M; Hartner, G; Menz, B; Pareschi, G; Proserpio, L; Salmaso, B; Tagliaferri, G; Wille, E

    2015-01-01

    The optics of a number of future X-ray telescopes will have very long focal lengths (10 - 20 m), and will consist of a number of nested/stacked thin, grazing-incidence mirrors. The optical quality characterization of a real mirror can be obtained via profile metrology, and the Point Spread Function of the mirror can be derived via one of the standard computation methods. However, in practical cases it can be difficult to access the optical surfaces of densely stacked mirror shells, after they have been assembled, using the widespread metrological tools. For this reason, the assessment of the imaging resolution of a system of mirrors is better obtained via a direct, full-illumination test in X-rays. If the focus cannot be reached, an intra-focus test can be performed, and the image can be compared with the simulation results based on the metrology, if available. However, until today no quantitative information was extracted from a full-illumination, intra-focal exposure. In this work we show that, if the detec...

  18. High-resolution X-ray imaging based on pixel-structured CsI:Tl scintillating screens for indirect X-ray image sensors

    International Nuclear Information System (INIS)

    We introduce the development of pixel-structured screens with a thallium-doped CsI (CsI:Tl) scintillator for indirect digital X-ray imaging sensors. The indirect-conversion detection method based on the pixel-structured CsI:Tl scintillator provides high spatial resolution X-ray imaging without sacrificing the light spread in thick scintillation layers. The scintillation screens were fabricated by using a vacuum deposition process and filling the CsI:Tl scintillating powders into a two-dimensional pixel-structured silicon array. Pixel structures with 100 μm and 50 μm pixel sizes with wall widths of 20 μm and 200 μm thickness were prepared and the fabricated CsI:Tl scintillating powders were filled into the trench of the pixel structure through a vacuum process. The final scintillation screens with 2.5 cm x 2.5 cm size were prepared and directly coupled to a CCD image sensor with an optical lens for performance evaluation of X-ray imaging. The imaging performance of the samples was investigated in terms of the relative light intensity, the X-ray linearity and the spatial resolution under practical X-ray exposure conditions. These preliminary results imply that pixel-structured CsI:Tl scintillating screens show high spatial resolution by less lateral spread of the emitted visible photons within pixel-structured silicon arrays. However, these X-ray detectors still require improved X-ray sensitivity by coating the reflective layer onto an inner silicon wall surface and filling the scintillating power into pixel structures completely.

  19. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    International Nuclear Information System (INIS)

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films

  20. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    Energy Technology Data Exchange (ETDEWEB)

    Hönnicke, M.G., E-mail: marcelo.honnicke@unila.edu.br [Universidade Federal da Integração Latino-Americana, Foz do Iguaçu (Brazil); Delben, G.J. [Faculdade de Tecnologia Tupy, Curitiba (Brazil); Godoi, W.C. [Universidade Tecnológica Federal do Paraná, Curitiba (Brazil); Swinka-Filho, V. [Instituto de Tecnologia para o Desenvolvimento – LACTEC, Curitiba (Brazil)

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  1. Novelty detection of foreign objects in food using multi-modal X-ray imaging

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Emerson, Monica Jane; Clemmensen, Line Katrine Harder;

    2016-01-01

    plastics not detectable by conventional X-ray absorption radiography. We conduct experiments, where several food products are imaged with common foreign objects typically found in the food processing industry. To evaluate the benefit from using this multi-contrast X-ray technique over conventional X...

  2. X-ray holographic imaging of magnetic order in meander domain structures

    Directory of Open Access Journals (Sweden)

    Jaouen Nicolas

    2013-01-01

    Full Text Available We performed x-ray holography experiments using synchrotron radiation. By analyzing the scattering of coherent circularly polarized x-rays tuned at the Co-2p resonance, we imaged perpendicular magnetic domains in a Co/Pd multilayer. We compare results obtained for continuous and laterally confined films.

  3. Quantitative Phase Imaging with a Scanning Transmission X-Ray Microscope

    OpenAIRE

    de Jonge, M. D.; Hornberger, B.; C. Holzner; Legnini, D.; Paterson, D.; McNulty, I.; Jacobsen, C.; Vogt, S.

    2008-01-01

    We obtain quantitative phase reconstructions from differential phase contrast images obtained with a scanning transmission x-ray microscope and 2.5 keV x rays. The theoretical basis of the technique is presented along with measurements and their interpretation.

  4. Amorphous silicon sensor arrays for X-ray and document imaging

    International Nuclear Information System (INIS)

    Large area amorphous silicon image sensor arrays are important for X-ray medical imaging and document scanning as well as a variety of other applications where large sensor size is required. The paper first summarizes the present state of the flat panel X-ray imager technology, and compares the two main approaches for X-ray detection. The authors then describe the performance of a new, large area, high resolution, radiographic imager based o a single amorphous silicon array with 2,304 x 3,200 pixels, and an active area of 30 x 40 cm (12 x 16 inches)

  5. Application of HSB color model in pseudo dual-energy X-ray transmission imaging system

    International Nuclear Information System (INIS)

    Comparing with the traditional mono-energy X-ray imaging inspection system, dual-energy X-ray transmission imaging system has the ability of simple object identification. It can automatically classify the materials into organic, inorganic and mixture signing with different colors. In order to enhance the object identification ability of dual-energy imaging system, HSB color model was applied in pseudo dual-energy X-ray transmission imaging system and the special method of color mapping was used for signing pixel colour in this paper. The experiments on 1/3 scale system show that the object identification ability is improved by using HSB color model. (authors)

  6. Comment on 'Perspectives of medical X-ray imaging'

    Energy Technology Data Exchange (ETDEWEB)

    Taibi, A. E-mail: taibi@fe.infn.it; Baldelli, P.; Tuffanelli, A.; Gambaccini, M

    2002-07-21

    In the paper 'Perspectives of medical X-ray imaging' (Nucl. Instr. and Meth. A 466 (2001) 99) the authors infer, from simple approximations, that the use of HOPG monochromator has no advantage in mammography compared to existing systems. We show that in order to compare imaging properties of different X-ray sources it is necessary to evaluate the spectra after the attenuation of the tissue to be imaged. Indeed, quasi-monochromatic X-ray sources have the potential to enhance image contrast and to reduce patient dose.

  7. Automatic alignment and reconstruction of images for soft x-ray tomography

    OpenAIRE

    Parkinson, Dilworth Y.; Knoechel, Christian; Yang, Chao; Larabell, Carolyn A.; Le Gros, Mark A.

    2011-01-01

    Soft x-ray tomography (SXT) is a powerful imaging technique that generates quantitative, 3D images of the structural organization of whole cells in a near-native state. SXT is also a high-throughput imaging technique. At the National Center for X-ray Tomography (NCXT), specimen preparation and image collection for tomographic reconstruction of a whole cell require only minutes. Aligning and reconstructing the data, however, take significantly longer. Here we describe a new component of the hi...

  8. Lung mass, right upper lung - chest x-ray (image)

    Science.gov (United States)

    ... chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and the heart ... ray shows a mass in the right upper lung, indicated with the arrow (seen on the left ...

  9. Imaging of reconnection processes in hard X-rays

    NARCIS (Netherlands)

    Svestka, Z.; Poletto, G.

    1984-01-01

    The Hard X-ray Spectrometer aboard the SMM detected several events of energy release late in the development of two-ribbon flares. One such event, at 21:12 UT on 21 May, 1980 ( 20 min after the flare onset and 15 min after the peak of the impulsive phase) is studied in detail. The site of new bright

  10. Exploration of computerized image processing in underexposed and overexposed X-rays of bones and joints

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-chen; ZHANG You-jun; FENG Cheng-qiang; ZHU Yuan-zhong; YAN Shi-yi; LIU Yu-jin

    2004-01-01

    Objective: To study the effective computerized image processing of underexposed and overexposed X-rays of bones and joints. Methods: Ninety-nine conventional X-ray images (82 were overexposed and 17 were underexposed),scanned by an UMAX Astra 4000U Scanner, were converted into digital images on the basis of their analog images. A computerized imaging processing program consisting of five functional modules such as Contrast Stretch, Fast Flourier Transform (FFT), Image Smoothing Modules, Inverse Fast Flourier Transform (IFFT) and Nonlinear Transform performed image contrast stretch and smoothing. Three senior doctors from hospital image sections made their evaluation of all the processed images. Results: Of 82 overexposed films, 71 met the clinical requirements after image processing, and 11 were unable to be applied to clinical diagnosis, accounting for 87% and 13% respectively. Of the other 17 underexposed X-ray images, 11 met the clinical requirements while 6 were not, making a percentage of 64 and 35. Conclusion: Image contrast stretch and smoothing processing are significantly effective on conventional X-ray images which were inappropriately exposed, and can avoid more X-ray radiation caused by handling of radiological photograph again. This method can decrease hospital cost and provide acute and effective X-ray examinations for the treatment and cure for critical patients.

  11. Combined use of hard X-ray phase contrast imaging and X-ray fluorescence microscopy for sub-cellular metal quantification.

    OpenAIRE

    Kosior, Ewelina,; Bohic, Sylvain; Suhonen, Heikki; Ortega, Richard; Devès, Guillaume; Carmona, Asuncion; Marchi, Florence; Guillet, Jean Francois; Cloetens, Peter

    2012-01-01

    Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to obtain quantitative maps of the projected metal concentration in whole cells. The experiments were performed on freeze dried cells at the nano-imaging station ID22NI of the European Synchrotron Radiation Facility (ESRF). X-ray fluorescence analysis gives the areal mass of most major, minor and trace elements; it is validated using a biological standard of known composition. Quantitative phase contrast imag...

  12. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    Science.gov (United States)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  13. An application of active optics to x-ray imaging: X-mas (x-ray milli arc-second) Project

    Science.gov (United States)

    Tsujimoto, Masahiro; Kitamoto, Shunji; Ohkubo, Yohsuke; Sato, Jun'ichi; Watanabe, Takeshi; Sudoh, Keisuke; Sekiguchi, Akiko; Suga, Kazuharu; Sekiguchi, Hiroyuki

    2006-06-01

    We report the current status of the "X-mas" (X-ray milli-arcsecond) project. X-mas is an application of the AO technology to the X-ray optics, aiming to obtain high-resolution defraction-limited X-ray images. Our X-ray telescope employs the Newton optics with a paraboloid primary and a 31-element deformable secondary mirrors. The aperture of the primary mirror is 80 millimeters with the focal length of 2 meters. Multi-layer coating of the mirrors by silicon and molybdenum realizes a large reflectivity of ~60% for the primary and 30-50% for the secondary mirror at 13.5 nm, which enables us to construct a normal incidence optics at this wavelength. We use a laser guide source and a wave front sensor to optimize the form of the secondary deformable mirror for the purpose of offsetting the large-scale figure errors in the X-ray optics. A back-side illumination X-ray CCD detector manufactured by Hamamatsu Photonics is used for X-ray detections. We have assembled all these elements and started to accumulate data. Closed-loop AO is in operation for the laser guide source. Likely X-ray images are obtained through the telescope. The results in 2005-2006 are presented.

  14. Baysian Imaging Concepts for Smart Fracture Detection in X-Ray Images

    Directory of Open Access Journals (Sweden)

    Dr. R. Harikumar

    2013-01-01

    Full Text Available X-ray imaging is a traditional method for detecting fracture for ages. This project paves way for enhancement rather than replacement of the existing technology. It is a step towards thinking beyond digitization of X-ray. This main objective is to provide a better enhanced methodology for reconstructing X-ray images. This is done by incorporating the Bayesian concept of image processing into it. The X-ray is obtained as a running video, decoded, digitized and fed into the processing element. The Very Long Instruction Word (VLIW architecture supporting high speed DSP core TMS320C6455 is used to perform the image enhancement algorithm. The processed image with higher degree of clarity is thus obtained with a good PSNR value. This reconstructed image can then be directed to the display device (LCD Monitor, through a LCD display driver interfaced with the processor. This device also has the potential to take the form of a portable handheld device with certain transformations made to it.

  15. Soft X-ray Images of Krypton Gas-Puff Z-Pinches

    Institute of Scientific and Technical Information of China (English)

    邱孟通; 蒯斌; 曾正中; 吕敏; 王奎禄; 邱爱慈; 张美; 罗建辉

    2002-01-01

    A series of experiments has been carried out on Qiang-guang Ⅰ generator to study the dynamics of krypton gas-puff Z-pinches. The generator was operated at a peak current of 1.5 MA with a rise-time of 80 ns. The specific linear mass of gas liner was about 20 μg/cm in these experiments. In the diagnostic system, a four-frame x-ray framing camera and a pinhole camera were employed. A novel feature of this camera is that it can give time-resolved x-ray images with four frames and energy-resolved x-ray images with two different filters and an array of 8 pinholes integrated into one compact assemble. As a typical experimental result, an averaged radial imploding velocity of 157 km/s over 14 ns near the late phase of implosion was measured from the time-resolved x-ray images. From the time-integrated x-ray image an averaged radial convergence of 0.072 times of the original size was measured. An averaged radial expansion velocity was 130 km/s and the maximum radial convergence of 0.04 times of the original size were measured from the time-resolved x-ray images. The dominant axial wavelengths of instabilities in the plasma were between 1 and 2 mm. The change in average photons energy was observed from energy spectrum- and time-resolved x-ray images.

  16. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-01-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science. PMID:27466217

  17. High energy X-ray phase and dark-field imaging using a random absorption mask

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-01-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science. PMID:27466217

  18. Development of microperiodic mirrors for hard x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Differential phase-contrast imaging with hard x rays can have important applications in medicine, material sciences, and energy research. Phase-contrast methods based on microperiodic optics, such as shearing interferometry, are particularly attractive because they allow the use of conventional x-ray tubes. To enable shearing interferometry with x rays up to 100 keV, we propose using grazing-incidence microperiodic mirrors. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors, based on the difference in grazing-incidence reflectivity between a low-Z substrate and a high-Z film. Using this method, we produced prototype mirrors with 5-100 μm periods and 90 mm active length. Experimental tests with x rays up to 60 keV indicate good microperiodic mirror reflectivity and high-contrast fringe patterns, encouraging further development of the proposed imaging concept.

  19. The system of collection, processing, storage, and communication of X-ray diagnostic images

    International Nuclear Information System (INIS)

    The paper describes a system able to combine conventional techniques of diagnostic x-ray imaging with direct digital imaging on the original receiver with a resolution of 1.2 lin/mm. Digital roentgenography may be introduced into medical practice basing on the system of computers at the working places of roentgenologists and his assistant. Data base of long-term storage of x-ray images and input software for each x-ray picture are outlined. The authors have some experience of utilizing the system in the random sequence of patients (20000) in general and specialized hospitals of Novosibirsk

  20. X-ray Phase Contrast Tomography; Proof of principle for post-mortem imaging

    OpenAIRE

    Zamir, A; Arthurs, O.; Hagen, C. K.; Diemoz, P. C.; Brochard, T.; Bravin, A.; Sebire, N.; A. Olivo

    2015-01-01

    Objectives: To demonstrate the feasibility of using X-ray phase contrast tomography to assess internal organs in a post-mortem piglet model, as a possible non-invasive imaging autopsy technique. Methods: Tomographic images of a new-born piglet were obtained using a Free Space Propagation (FSP) X-ray phase contrast imaging setup at a synchrotron (European Synchrotron Radiation Facility, Grenoble, France). A monochromatic X-ray beam (52 keV) was used in combination with a detector pixel size of...

  1. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    International Nuclear Information System (INIS)

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target

  2. Gaussian higher Order Derivative based Structural Enhancement of Digital Bone X-Ray Images

    Directory of Open Access Journals (Sweden)

    Raka Kundu

    2011-01-01

    Full Text Available A novel method for enhancement of digital X-ray images of bones is presented in this paper. It has come to observation that the proposed method based on the Gaussian higher order derivative shows an appreciable enhancement of edges in digital X-ray images of bones that can be used for detection of various bone deformities as well as for the better understanding of the bone structure. We have achieved a level of improvement in distinguishing the bone information from the other parts of the digital X-ray images.

  3. Calibration Of X-Ray Imaging Devices For Accurate Intensity Measurement

    International Nuclear Information System (INIS)

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  4. CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

    2012-02-16

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  5. Cosmic Star Formation History and Deep X-ray Imaging in the XMM-NEWTON and CHANDRA Era

    OpenAIRE

    Ghosh, Pranab

    2002-01-01

    I summarize X-ray diagnostic studies of cosmic star formation in terms of evolutionary schemes for X-ray binary evolution in normal galaxies with evolving star formation. Deep X-ray imaging studies by CHANDRA and XMM-NEWTON are beginning to constrain both the X-ray luminosity evolution of galaxies and the log N - log S diagnostics of the X-ray background: I discuss these in the above context, summarizing current understanding and future prospects.

  6. X-ray imaging using the thermoluminescent properties of commercial Al2O3 ceramic plates.

    Science.gov (United States)

    Shinsho, Kiyomitsu; Kawaji, Yasuyuki; Yanagisawa, Shin; Otsubo, Keisuke; Koba, Yusuke; Wakabayashi, Genichiro; Matsumoto, Kazuki; Ushiba, Hiroaki

    2016-05-01

    This research demonstrated that commercially available alumina is well-suited for use in large area X-ray detectors. We discovered a new radiation imaging device that has a high spatial resolution, high sensitivity, wide dynamic range, large imaging area, repeatable results, and low operating costs. The high thermoluminescent (TL) properties of Al2O3 ceramic plates make them useful for X-ray imaging devices. PMID:26972627

  7. Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, C. M.; Sun, C.; Pratx, G.; Rao, R.; Xing, L. [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California 94305 (United States); SRI International, Menlo Park, California 94025 (United States); Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California 94305 (United States)

    2010-08-15

    Purpose: The feasibility of x-ray luminescence imaging is investigated using a dual-modality imaging system that merges x-ray and optical imaging. This modality utilizes x-ray activated nanophosphors that luminesce when excited by ionizing photons. By doping phosphors with lanthanides, which emit light in the visible and near infrared range, the luminescence is suitable for biological applications. This study examines practical aspects of this new modality including phosphor concentration, light emission linearity, detector damage, and spectral emission characteristics. Finally, the contrast produced by these phosphors is compared to that of x-ray fluoroscopy. Methods: Gadolinium and lanthanum oxysulfide phosphors doped with terbium (green emission) or europium (red emission) were studied. The light emission was imaged in a clinical x-ray scanner with a cooled CCD camera and a spectrophotometer; dose measurements were determined with a calibrated dosimeter. Using these properties, in addition to luminescence efficiency values found in the literature for a similar phosphor, minimum concentration calculations are performed. Finally, a 2.5 cm agar phantom with a 1 cm diameter cylindrical phosphor-filled inclusion (diluted at 10 mg/ml) is imaged to compare x-ray luminescence contrast with x-ray fluoroscopic contrast at a superficial location. Results: Dose to the CCD camera in the chosen imaging geometry was measured at less than 0.02 cGy/s. Emitted light was found to be linear with dose (R{sup 2}=1) and concentration (R{sup 2}=1). Emission peaks for clinical x-ray energies are less than 3 nm full width at half maximum, as expected from lanthanide dopants. The minimum practical concentration necessary to detect luminescent phosphors is dependent on dose; it is estimated that subpicomolar concentrations are detectable at the surface of the tissue with typical mammographic doses, with the minimum detectable concentration increasing with depth and decreasing with dose. In

  8. Quantitative phase imaging using quadri-wave lateral shearing interferometry. Application to X-ray domain

    International Nuclear Information System (INIS)

    Since Roentgen discovered X-rays, X-ray imaging systems are based on absorption contrast. This technique is inefficient for weakly absorbing objects. As a result, X-ray standard radiography can detect bones lesions, but cannot detect ligament lesions. However, phase contrast imaging can overcome this limitation. Since the years 2000, relying on former works of opticians, X-ray scientists are developing phase sensitive devices compatible with industrial applications such as medical imaging or non destructive control. Standard architectures for interferometry are challenging to implement in the X-ray domain. This is the reason why grating based interferometers became the most promising devices to envision industrial applications. They provided the first x-ray phase contrast images of living human samples. Nevertheless, actual grating based architectures require the use of at least two gratings, and are challenging to adapt on an industrial product. So, the aim of my thesis was to develop a single phase grating interferometer. I demonstrated that such a device can provide achromatic and propagation invariant interference patterns. I used this interferometer to perform quantitative phase contrast imaging of a biological fossil sample and x-ray at mirror metrology. (author)

  9. Development of optical switching readout X-ray detector for high-speed imaging

    International Nuclear Information System (INIS)

    In this study, we demonstrated the feasibility of an X-ray detector with a dual amorphous-selenium (a-Se) layer using an optical switching readout for high-speed X-ray imaging. The X-ray detector consists of a negative voltage bias electrode; a thick a-Se layer for the photoelectric conversion of X-ray photons; an As2Se3 layer employed as an electron-trapping layer for accumulating latent images; a thin a-Se layer for optical readout; alternate opaque and transparent electrodes; and an optical light source for the optical switching readout. The line light of the optical light source, which has a peak wavelength of 470 nm, is operated line by line using electrical scanning for high-speed X-ray imaging. The developed X-ray detector has a pixel pitch of 200 μm with 512 channels. -- Highlights: •The feasibility of X-ray detector for high-speed imaging was demonstrated. •An a-Se was used for optical switching layer for signal charge readout. •As2Se3 layer was employed as electron-trapping layer for accumulating latent images. •The surface light source of blue lights was fabricated for optical switching readout. •The 2D array of readout light can be emitted linearly and scanned electrically line by line

  10. Development of optical switching readout X-ray detector for high-speed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ryun Kyung, E-mail: rkkim@keri.re.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan-si (Korea, Republic of); Jeon, Sung Chae [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan-si (Korea, Republic of); Kim, Jung-Seok [Advanced Research Group, DRTECH Corporation, Seongnam-si (Korea, Republic of); Lee, Ho-Jun [School of Electrical Engineering, Pusan National University, Busan (Korea, Republic of); Heo, Duchang; Cha, Bo Kyung; Seo, Chang-Woo [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan-si (Korea, Republic of); Moon, B.J.; Yoon, J.K. [Advanced Research Group, DRTECH Corporation, Seongnam-si (Korea, Republic of)

    2013-12-11

    In this study, we demonstrated the feasibility of an X-ray detector with a dual amorphous-selenium (a-Se) layer using an optical switching readout for high-speed X-ray imaging. The X-ray detector consists of a negative voltage bias electrode; a thick a-Se layer for the photoelectric conversion of X-ray photons; an As{sub 2}Se{sub 3} layer employed as an electron-trapping layer for accumulating latent images; a thin a-Se layer for optical readout; alternate opaque and transparent electrodes; and an optical light source for the optical switching readout. The line light of the optical light source, which has a peak wavelength of 470 nm, is operated line by line using electrical scanning for high-speed X-ray imaging. The developed X-ray detector has a pixel pitch of 200 μm with 512 channels. -- Highlights: •The feasibility of X-ray detector for high-speed imaging was demonstrated. •An a-Se was used for optical switching layer for signal charge readout. •As{sub 2}Se{sub 3} layer was employed as electron-trapping layer for accumulating latent images. •The surface light source of blue lights was fabricated for optical switching readout. •The 2D array of readout light can be emitted linearly and scanned electrically line by line.

  11. Utilization of synchrotron radiation in analytical chemistry. X-ray imaging and tomography

    International Nuclear Information System (INIS)

    As the movement in X-ray imaging using synchrotron radiation, this paper describes the development of X-ray microscope and the reconstruction of X-ray CT. It also introduces the techniques for generating the phase contrast of X-rays in the phase imaging as the technology that combines the phase contrast method and phase measurement technology. As the techniques for generating the phase contrast of X-rays, there are the following methods, (a) method to form reference waves, followed by making them interfere with the X-rays (object waves) after transmission through the sample, (b) method to detect the refraction of X-rays due to the sample, (c) method to detect the edge enhancement effect through Fresnel diffraction that appears due to the propagation of the X-rays after transmitting the sample, and (d) method to deal with Fraunhofer diffraction (speckles) that is from the isolated sample under coherent illumination, based on iterative phase retrieval method. (A.O.)

  12. Bendable X-ray Optics for High Resolution Imaging

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  13. Development and evaluation of a four-channel digital flash X-ray imaging system

    CERN Document Server

    Wang Yi; Du Hong Lian; Li Yuan Jing; Tian Hui

    2003-01-01

    A four-channel digital flash X-ray imaging system has been developed in our lab. The four flash X-ray heads and four detectors can be used to obtain four radiographic images at four time intervals of an explosion and ballistic trajectory. The cascaded imaging system mainly consists of three parts: (1) a phosphor screen to convert incident X-rays into visible photons; (2) a lens to efficiently collect visible photons emitted by the phosphor screen; and (3) a charge coupled device image sensor to obtain the visible light image. From the analysis of signal and noise propagation, the system is not X-ray quantum-limited, rather the system has secondary quantum sink at the light collecting stage. The construction of the system, theoretical and experimental analysis of performance are presented.

  14. Development and evaluation of a four-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    A four-channel digital flash X-ray imaging system has been developed in our lab. The four flash X-ray heads and four detectors can be used to obtain four radiographic images at four time intervals of an explosion and ballistic trajectory. The cascaded imaging system mainly consists of three parts: (1) a phosphor screen to convert incident X-rays into visible photons; (2) a lens to efficiently collect visible photons emitted by the phosphor screen; and (3) a charge coupled device image sensor to obtain the visible light image. From the analysis of signal and noise propagation, the system is not X-ray quantum-limited, rather the system has secondary quantum sink at the light collecting stage. The construction of the system, theoretical and experimental analysis of performance are presented

  15. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    Science.gov (United States)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  16. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA (United States); Christe, Steven [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Ishikawa, Shin-nosuke [National Astronomical Observatory, Mitaka (Japan); Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee [NASA Marshall Space Flight Center, Huntsville, AL (United States); Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya [Institute of Space and Astronautical Science (ISAS)/JAXA, Sagamihara (Japan); Tajima, Hiroyasu [Solar-Terrestial Environment Laboratory, Nagoya University, Nagoya (Japan); Tanaka, Takaaki [Department of Physics, Kyoto University, Kyoto (Japan); White, Stephen [Air Force Research Laboratory, Albuquerque, NM (United States)

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  17. Phase-contrast imaging using ultrafast x-rays in laser-shocked materials

    International Nuclear Information System (INIS)

    High-energy x-rays, >10 keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in inertial confinement fusion and high-energy density physics. These same x-rays can also be applied to measurements of low-density materials inside high-density Hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200 TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17 keV produced from 2 ps, 100 J laser interactions with a 12 μm molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1 mm thick polystyrene target using 2 ns, 250 J, 532 nm laser drive with phase plates. X-ray images of shocks compare well to one-dimensional hydro calculations.

  18. Phase-contrast imaging using ultrafast x-rays in laser-shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Workman, Jonathan B [Los Alamos National Laboratory; Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk [Los Alamos National Laboratory; Gautier, Donald C [Los Alamos National Laboratory; Montgomery, David S [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory

    2010-01-01

    High-energy x-rays, > 10-keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in Inertial Confinement Fusion (ICF) and High-Energy Density Physics (HEDP). These same x-rays can also be applied to measurements of low-density materials inside high-density hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200-TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17-keV produced from 2-ps, 100-J laser interactions with a 12-micron molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1-mm thick polystyrene target using 2-ns, 250-J, 532-nm laser drive with phase plates. X-ray images of shocks compare well to 1-D hydro calculations, HELIOS-CR.

  19. Phase-contrast X-ray imaging with synchrotron radiation for materials science applications

    International Nuclear Information System (INIS)

    Since Roentgen's discovery of X-rays just over a century ago the vast majority of radiographs have been collected and interpreted on the basis of absorption contrast and geometrical (ray) optics. Recently the possibility of obtaining new and complementary information in X-ray images by utilizing phase-contrast effects has received considerable attention, both in the laboratory context and at synchrotron sources (where much of this activity is a consequence of the highly coherent X-ray beams which can be produced). Phase-contrast X-ray imaging is capable of providing improved information from weakly absorbing features in a sample, together with improved edge definition. Four different experimental arrangements for achieving phase contrast in the hard X-ray regime, for the purpose of non-destructive characterization of materials, will be described. Two of these, demonstrated at ESRF in France and AR in Japan, are based on parallel-beam geometry; the other two, demonstrated at PLS in Korea and APS in USA, are based on spherical-beam geometry. In each case quite different X-ray optical arrangements were used. Some image simulations will be employed to demonstrate salient features of hard X-ray phase-contrast imaging and examples of results from each of the experiments will be shown

  20. Phase-contrast X-ray imaging with synchrotron radiation for materials science applications

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, A.W. E-mail: andrew.stevenson@csiro.au; Gureyev, T.E.; Paganin, D.; Wilkins, S.W.; Weitkamp, T.; Snigirev, A.; Rau, C.; Snigireva, I.; Youn, H.S.; Dolbnya, I.P.; Yun, W.; Lai, B.; Garrett, R.F.; Cookson, D.J.; Hyodo, K.; Ando, M

    2003-01-01

    Since Roentgen's discovery of X-rays just over a century ago the vast majority of radiographs have been collected and interpreted on the basis of absorption contrast and geometrical (ray) optics. Recently the possibility of obtaining new and complementary information in X-ray images by utilizing phase-contrast effects has received considerable attention, both in the laboratory context and at synchrotron sources (where much of this activity is a consequence of the highly coherent X-ray beams which can be produced). Phase-contrast X-ray imaging is capable of providing improved information from weakly absorbing features in a sample, together with improved edge definition. Four different experimental arrangements for achieving phase contrast in the hard X-ray regime, for the purpose of non-destructive characterization of materials, will be described. Two of these, demonstrated at ESRF in France and AR in Japan, are based on parallel-beam geometry; the other two, demonstrated at PLS in Korea and APS in USA, are based on spherical-beam geometry. In each case quite different X-ray optical arrangements were used. Some image simulations will be employed to demonstrate salient features of hard X-ray phase-contrast imaging and examples of results from each of the experiments will be shown.

  1. Texture Based Image Segmentation of Chili Pepper X-Ray Images Using Gabor Filter

    OpenAIRE

    Rajalakshmi, M.; Dr.P.Subashini

    2014-01-01

    Texture segmentation is the process of partitioning an image into regions with different textures containing a similar group of pixels. Detecting the discontinuity of the filter's output and their statistical properties help in segmenting and classifying a given image with different texture regions. In this proposed paper, chili x-ray image texture segmentation is performed by using Gabor filter. The texture segmented result obtained from Gabor filter fed into three texture filters, namely En...

  2. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    Description of the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source. Recent scientific highlights illustrate the femtosecond crystallography, high power density and extreme matter capabilities of the CXI instrument. The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter

  3. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien, E-mail: sboutet@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-15

    Description of the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source. Recent scientific highlights illustrate the femtosecond crystallography, high power density and extreme matter capabilities of the CXI instrument. The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  4. Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging.

    Science.gov (United States)

    Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf

    2012-02-01

    X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. PMID:22273540

  5. eHXI: a permanently installed, hard x-ray imager for the National Ignition Facility

    Science.gov (United States)

    Döppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; Huntington, C. M.; Izumi, N.; LaCaille, G.; Landen, O. L.; Palmer, N.; Park, H.-S.; Thomas, C. A.

    2016-06-01

    We have designed and built a multi-pinhole imaging system for high energy x-rays (>= 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  6. Characterization of NIF cryogenic beryllium capsules using x-ray phase contrast imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, D. S. (David S.); Nobile, A. (Arthur), Jr.; Walsh, Peter J.,

    2004-01-01

    Beryllium capsules filled with cryogenic deuterium and tritium fuel layers may provide many advantages for obtaining ignition at the National Ignition Facility (NIF). However, characterizing the uniformity and thickness of the frozen fuel layer in such a target is challenging since traditional x-ray radiography techniques, which rely on absorption for'image contrast, cannot provide sufficient contrast to image the fuel layer in these low-Z materials. We propose using x-ray phase contrast imaging, which relies on gradients in the refractive index and wave interference, to characterize fuel layer uniformity. We present numerical modeling results of x-ray phase contrast imaging demonstrating the feasibility of this method for target characterization, discuss the necessary x-ray source characteristics, and present concepts for using this technique in the context of dynamic high density plasma experiments.

  7. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  8. Internal quality evaluation of fruit with soft X-ray transparent image

    International Nuclear Information System (INIS)

    In this study, soft X-ray imaging systems are examined as an evaluation method for the internal quality of fruits (peaches, pears, and apples). An imaging system using an X-ray generator, a fluorescent plate and monochrome CCD camera was used for acquiring transmission images of the fruits. As a result, split-pits and rotten cores of fruits were detected through the X-ray images in real-time. Furthermore, by using an X-ray generator with tunable output power, we determined that suitable parameters for the internal quality evaluation of apples were a voltage of 70 kV and a current of 3 mA. However, the discoloration disease of fruit fresh could not be clearly detected because the normal and abnormal flesh parts exhibited too little difference in water content

  9. Quantitative digital X-ray imaging using frozen hydrated and frozen dried tissue sections

    International Nuclear Information System (INIS)

    Application of quantitative X-ray imaging to frozen hydrated tissue sections has presented a number of major problems including lack of a suitable algorithm which could deal effectively with mass loss due to radiation damage, problems of low characteristic X-ray signal to background ratios, and provide a means of analysis of the same location in both hydrated and dried states. This paper presents details of the application of our algorithm for analysis of frozen hydrated, then dried cryosections applied to quantitative X-ray imaging, which provides relatively high precision quantitative measurement of elemental content (related to both wet and dry weight) and water content of each pixel. This algorithm largely circumvents many of the problems of analysis of frozen hydrated tissue sections. Our algorithm for X-ray imaging obtains reasonably precise quantitative measurements coupled with morphological information by trading speed and image resolution. (author)

  10. X-ray phase-contrast imaging of dynamics of complex fluids

    International Nuclear Information System (INIS)

    Complex fluids often exhibit unusual and/or unexpected behaviours in response to external stresses because of their complicated structures and compositions. It is not easy to understand dynamic behaviours of complex fluids based on using conventional imaging methods such as optical or electron microscopy. Recently, x-ray phase-contrast imaging, as one of the most powerful methods, has been introduced for elucidating the dynamic nature of complex fluids, enabling directly looking into the insides of complex fluids thanks to the strong penetration capability and small refractivity of hard x-rays. In this paper, we review representative x-ray imaging studies on dynamics of various complex fluid systems from droplets, bubbles, granular materials and foams to colloids. It is demonstrated that x-ray phase-contrast imaging would help us better identify and utilize the properties of complex fluids. (paper)

  11. Spherical-Wave Far-Field Interferometer for Hard X-Ray Phase Contrast Imaging

    CERN Document Server

    Miao, Houxun; Harmon, Katherine J; Bennett, Eric E; Chedid, Nicholas; Panna, Alireza; Bhandarkar, Priya; Wen, Han

    2014-01-01

    Low dose, high contrast x-ray imaging is of general interest in medical diagnostic applications. X-ray Mach-Zehnder interferometers using collimated synchrotron beams demonstrate the highest levels of phase contrast under a given exposure dose. However, common x-ray sources emit divergent cone beams. Here, we developed a spherical-wave inline Mach-Zehnder interferometer for phase contrast imaging over an extended area with a broadband and divergent source. The first tabletop system was tested in imaging experiments of a mammographic accreditation phantom and various biological specimens. The noise level of the phase contrast images at a clinical radiation dose corresponded to a 6 nano radian bending of the x-ray wavefront. Un-resolved structures with conventional radiography and near-field interferometer techniques became visible at a fraction of the radiation dose.

  12. Wide Field-of-View (FOV) Soft X-Ray Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wide Field-of-View (FOV) Soft X-Ray Imager proposes to be a state-of-art instrument with applications for numerous heliospheric and planetary...

  13. X-Ray Micro-Computed Tomography Imaging of the Buzzard Coulee Chondrite

    Science.gov (United States)

    Melanson, D.; Samson, C.; Herd, R. K.; Fry, C.; McCausland, P. J. A.; Umoh, J.; Holdsworth, D. W.

    2012-03-01

    This abstract outlines research and some results of X-ray micro-computed tomography imaging of the Buzzard Coulee H4 chondrite. A comparison of bulk density results and an analysis of radio-density profile curves are discussed.

  14. An X-ray Imaging Survey of Quasar Jets -- Testing the Inverse Compton Model

    CERN Document Server

    Marshall, H L; Schwartz, D A; Murphy, D W; Lovell, J E J; Worrall, D M; Birkinshaw, M; Perlman, E S; Godfrey, L; Jauncey, D L

    2011-01-01

    We present results from continued Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. X-rays are detected from 24 of the 39 jets observed so far. We compute the distribution of alpha_rx, the spectral index between the X-ray and radio bands, showing that it is broad, extending at least from 0.8 to 1.2. While there is a general trend that the radio brightest jets are detected most often, it is clear that predicting the X-ray flux from the radio knot flux densities is risky so a shallow X-ray survey is the most effective means for finding jets that are X-ray bright. We test the model in which the X-rays result from inverse Compton (IC) scattering of cosmic microwave background (CMB) photons by relativistic electrons in the jet moving with high bulk Lorentz factor nearly along the line of sight. Depending on how the jet magnetic fields vary with z, the observed X-ray to radio flux ratios do not follow the redshift dependence exp...

  15. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Reischig, P.;

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes...... and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific...... material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain...

  16. Phase-Contrast Imaging of Nanostructures with Incoherent Femtosecond Laser Driven Soft X-Ray Source

    International Nuclear Information System (INIS)

    Application of polychromatic (1.5-15 nm) soft X-ray emission of a spatially large (>0.1 mm) bright femtosecond laser driven plasma source for propagation based phase contrast imaging of nanometer thick foils and biological samples is considered. Diffraction and phase contrast effects increased quality and contrast of the experimental images, registered by LiF crystal X-ray detector with submicron resolution.

  17. Three-dimensional imaging of human stem cells using soft X-ray tomography

    OpenAIRE

    Niclis, J. C.; Murphy, S. V.; Parkinson, D. Y.; ZEDAN, A; Sathananthan, A.H.; Cram, D. S.; P. Heraud

    2015-01-01

    Three-dimensional imaging of human stem cells using transmission soft X-ray tomography (SXT) is presented for the first time. Major organelle types—nuclei, nucleoli, mitochondria, lysosomes and vesicles—were discriminated at approximately 50 nm spatial resolution without the use of contrast agents, on the basis of measured linear X-ray absorption coefficients and comparison of the size and shape of structures to transmission electron microscopy (TEM) images. In addition, SXT was used to visua...

  18. Ptychographic coherent x-ray diffractive imaging in the water window

    OpenAIRE

    Giewekemeyer, K.; Beckers, M.; Gorniak, T.; Grunze, M.; Salditt, T.; Rosenhahn, A.

    2011-01-01

    Coherent x-ray diffractive microscopy enables full reconstruction of the complex transmission function of an isolated object to diffraction-limited resolution without relying on any optical elements between the sample and detector. In combination with ptychography, also specimens of unlimited lateral extension can be imaged. Here we report on an application of ptychographic coherent diffractive imaging (PCDI) in the soft x-ray regime, more precisely in the so-called water wi...

  19. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ashish, E-mail: neoashu@hotmail.com; Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar [Neutron and X-ray Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2015-06-24

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility.

  20. Simulation of a tangential soft x-ray imaging system

    International Nuclear Information System (INIS)

    Tangentially viewing soft x-ray (SXR) cameras are capable of detecting nonaxisymmetric plasma structures in magnetically confined plasmas. They are particularly useful for studying stationary perturbations or phenomenon that occur on a timescale faster than the plasma rotation period. Tangential SXR camera diagnostics are planned for the DIII-D and NSTX tokamaks to elucidate the static edge magnetic structure during the application of 3D perturbations. To support the design of the proposed diagnostics, a synthetic diagnostic model was developed using the CHIANTI database to estimate the SXR emission. The model is shown to be in good agreement with the measurements from an existing tangential SXR camera diagnostic on NSTX.

  1. Carbon Nanotube Electron Emitter for X-ray Imaging

    OpenAIRE

    Jung Su Kang; Je Hwang Ryu; Kyu Chang Park

    2012-01-01

    The carbon nanotube field emitter array was grown on silicon substrate through a resist-assisted patterning (RAP) process. The shape of the carbon nanotube array is elliptical with 2.0 × 0.5 mm2 for an isotropic focal spot size at anode target. The field emission properties with triode electrodes show a gate turn-on field of 3 V/µm at an anode emission current of 0.1 mA. The author demonstrated the X-ray source with triode electrode structure utilizing the carbon nanotube em...

  2. Automatic Extraction of Femur Contours from Calibrated X-Ray Images using Statistical Information

    Directory of Open Access Journals (Sweden)

    Xiao Dong

    2007-09-01

    Full Text Available Automatic identification and extraction of bone contours from x-ray images is an essential first step task for further medical image analysis. In this paper we propose a 3D statistical model based framework for the proximal femur contour extraction from calibrated x-ray images. The automatic initialization to align the 3D model with the x-ray images is solved by an Estimation of Bayesian Network Algorithm to fit a simplified multiple component geometrical model of the proximal femur to the x-ray data. Landmarks can be extracted from the geometrical model for the initialization of the 3D statistical model. The contour extraction is then accomplished by a joint registration and segmentation procedure. We iteratively updates the extracted bone contours and an instanced 3D model to fit the x-ray images. Taking the projected silhouettes of the instanced 3D model on the registered x-ray images as templates, bone contours can be extracted by a graphical model based Bayesian inference. The 3D model can then be updated by a non-rigid 2D/3D registration between the 3D statistical model and the extracted bone contours. Preliminary experiments on clinical data sets verified its validity.

  3. Toward the development of a soft x-ray reflection imaging microscope in the Schwarzschild configuration using a soft x-ray laser at 18. 2 nm

    Energy Technology Data Exchange (ETDEWEB)

    Dicicco, D.; Rosser, R. (Princeton X-Ray Laser, Inc., Monmouth Junction, NJ (United States)); Kim, D.; Suckewer, S. (Princeton Univ., NJ (United States). Plasma Physics Lab.)

    1991-12-01

    We present the recent results obtained from a soft X-ray reflection imaging microscope in the Schwarzschild configuration. The microscope demonstrated a spatial resolution of 0.7 {mu}m with a magnification of 16 at 18.2 nm. The soft X-ray laser at 18.2 nm was used as an X-ray source. Mo/Si multilayers were coated on the Schwarzschild optics and the normal incidence reflectivity at 18.2 nm per surface was measured to be {approximately} 20 %. 18 refs., 6 figs.

  4. Projection x-ray imaging with photon energy weighting: experimental evaluation with a prototype detector.

    Science.gov (United States)

    Shikhaliev, Polad M

    2009-08-21

    The signal-to-noise ratio (SNR) in x-ray imaging can be increased using a photon counting detector which could allow for rejecting electronics noise and for weighting x-ray photons according to their energies. This approach, however, was not feasible for a long time because photon counting x-ray detectors with very high count rates, good energy resolution and a large number of small pixels were required. These problems have been addressed with the advent of new detector materials, fast readout electronics and powerful computers. In this work, we report on the experimental evaluation of projection x-ray imaging with a photon counting cadmium-zinc-telluride (CZT) detector with energy resolving capabilities. The detector included two rows of pixels with 128 pixels per row with 0.9 x 0.9 mm(2) pixel size, and a 2 Mcount pixel(-1) s(-1) count rate. The x-ray tube operated at 120 kVp tube voltage with 2 mm Al-equivalent inherent filtration. The x-ray spectrum was split into five regions, and five independent x-ray images were acquired at a time. These five quasi-monochromatic x-ray images were used for x-ray energy weighting and material decomposition. A tissue-equivalent phantom was used including contrast elements simulating adipose, calcifications, iodine and air. X-ray energy weighting improved the SNR of calcifications and iodine by a factor of 1.32 and 1.36, respectively, as compared to charge integrating. Material decomposition was performed by dual energy subtraction. The low- and high-energy images were generated in the energy ranges of 25-60 keV and 60-120 keV, respectively, by combining five monochromatic image data into two. X-ray energy weighting was applied to low- and high-energy images prior to subtraction, and this improved the SNR of calcifications and iodine in dual energy subtracted images by a factor of 1.34 and 1.25, respectively, as compared to charge integrating. The detector energy resolution, spatial resolution, linearity, count rate, noise and

  5. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    International Nuclear Information System (INIS)

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation

  6. Low voltage imaging and X-ray microanalysis in the SEM: challenges and opportunities

    Science.gov (United States)

    Wuhrer, R.; Moran, K.

    2016-02-01

    Low voltage imaging, X-ray microanalysis and X-ray mapping has become very important for the investigation of nanomaterials and their surfaces. This is especially true for low voltage imaging of non-conductive samples and beam sensitive samples. Operating the SEM at lower accelerating voltage allows for greater surface sensitivity, the ability to minimize charging effects, nanometre scale lateral X-ray spatial resolution and nanoscale X-ray depth sensitivity. Determining the correct accelerating voltage for imaging in a SEM is dependent on the instrument's operating performance at low voltage, the material being viewed, and other factors that limit effectiveness of low voltage microanalysis, which will be discussed in this paper.

  7. Imaging instantaneous electron flow with ultrafast resonant x-ray scattering

    CERN Document Server

    Popova-Gorelova, Daria

    2015-01-01

    We propose a novel way to image dynamical properties of nonstationary electron systems using ultrafast resonant x-ray scattering. Employing a rigorous theoretical analysis within the framework of quantum electrodynamics, we demonstrate that a single scattering pattern from a nonstationary electron system encodes the instantaneous interatomic electron current in addition to the structural information usually obtained by resonant x-ray scattering from stationary systems. Thus, inelastic contributions that are indistinguishable from elastic processes induced by a broadband probe pulse, instead of being a concern, serve as an advantage for time-resolved resonant x-ray scattering. Thereby, we propose an approach combining elastic and inelastic resonant x-ray scattering for imaging dynamics of nonstationary electron systems in both real space and real time. In order to illustrate its power, we show how it can be applied to image the electron hole current in an ionized diatomic molecule.

  8. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.;

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...... resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission......, at least an order of magnitude stricter than previous limits. With longer duration observations and a weakening solar cycle (resulting in an increased livetime), future NuSTAR observations will have sensitivity to a wider range of temperatures as well as possible non-thermal emission....

  9. X-ray refraction-contrast computed tomography images using dark-field imaging optics

    International Nuclear Information System (INIS)

    If an x-ray beam containing internal information derived from sample soft tissue is incident upon a Laue-case analyzer, the beam will subsequently split into a forwardly diffracted beam and a separate diffracted beam. Using these beams acquired simultaneously, a refraction-contrast computed tomography (CT) imaging system for biomedical use with lower radiation dose can be easily realized, and has a high depicting capability on the soft tissues compared with conventional x-ray CT based on absorption contrast principles. In this paper, we propose an imaging system using dark-field imaging for CT measurement based on a tandem system of Bragg- and Laue-case crystals with two two-dimensional detectors, along with a data-processing method to extract information on refraction from the measured entangled intensities by use of rocking curve fitting with polynomial functions. Reconstructed images of soft tissues are presented and described.

  10. Automatic Defect Detection in X-Ray Images Using Image Data Fusion

    Institute of Scientific and Technical Information of China (English)

    TIAN Yuan; DU Dong; CAI Guorui; WANG Li; ZHANG Hua

    2006-01-01

    Automatic defect detection in X-ray images is currently a focus of much research at home and abroad. The technology requires computerized image processing, image analysis, and pattern recognition. This paper describes an image processing method for automatic defect detection using image data fusion which synthesizes several methods including edge extraction, wave profile analyses, segmentation with dynamic threshold, and weld district extraction. Test results show that defects that induce an abrupt change over a predefined extent of the image intensity can be segmented regardless of the number, location, shape, or size. Thus, the method is more robust and practical than the current methods using only one method.

  11. Image reconstruction in serial femtosecond nanocrystallography using x-ray free-electron lasers

    Science.gov (United States)

    Chen, Joe P. J.; Kirian, Richard A.; Beyerlein, Kenneth R.; Bean, Richard J.; Morgan, Andrew J.; Yefanov, Oleksandr M.; Arnal, Romain D.; Wojtas, David H.; Bones, Phil J.; Chapman, Henry N.; Spence, John C. H.; Millane, Rick P.

    2015-09-01

    Serial femtosecond nanocrystallography (SFX) is a form of x-ray coherent diffraction imaging that utilises a stream of tiny nanocrystals of the biological assembly under study, in contrast to the larger crystals used in conventional x-ray crystallography using conventional x-ray synchrotron x-ray sources. Nanocrystallography utilises the extremely brief and intense x-ray pulses that are obtained from an x-ray free-electron laser (XFEL). A key advantage is that some biological macromolecules, such as membrane proteins for example, do not easily form large crystals, but spontaneously form nanocrystals. There is therefore an opportunity for structure determination for biological molecules that are inaccessible using conventional x-ray crystallography. Nanocrystallography introduces a number of interesting image reconstruction problems. Weak diffraction patterns are recorded from hundreds of thousands of nancocrystals in unknown orientations, and these data have to be assembled and merged into a 3D intensity dataset. The diffracted intensities can also be affected by the surface structure of the crystals that can contain incomplete unit cells. Furthermore, the small crystal size means that there is potentially access to diffraction information between the crystalline Bragg peaks. With this information, phase retrieval is possible without resorting to the collection of additional experimental data as is necessary in conventional protein crystallography. We report recent work on the diffraction characteristics of nanocrystals and the resulting reconstruction algorithms.

  12. Computer-aided detection of tubes and lines in portable chest X-ray images

    International Nuclear Information System (INIS)

    A computer-aided detection method for highlighting lines and tubes in a portable chest X-ray image is developed. The method determines a region of interest in the image, and processes the image to provide edge enhancement forming an edge-enhanced image. Edge segments in the edge-enhanced image are detected. Connected lines from the edge segments are formed to obtain a set of connected lines. A tube structure is identified by pairing, from the set of connected lines, one or more pairs of edges separated by a width dimension in a predetermined range. A tip is detected according to the convergence or divergence of paired connected lines. Tube and tip are outlined on the radiographic image. Preliminary results showed that computer-aided detection of tubes in portable chest X-ray images is promising. It is expected that computer-aided interpretation of portable chest X-ray images improve the overall workflow and efficiency. (orig.)

  13. A flying spot X-ray system for Compton backscatter imaging.

    Science.gov (United States)

    Herr, M D; McInerney, J J; Lamser, D G; Copenhaver, G L

    1994-01-01

    A Compton X-ray backscatter imaging (CBI) system using a single detector and a mechanically rastered "flying spot" X-ray beam has been designed, built, and tested. While retaining the essential noninvasive imaging capability of previous multiple detector CBI devices, this single detector system incorporates several advances over earlier CBI devices: more efficient detection of scattered X-rays, reduced X-ray exposure, and a simplified scan protocol more suitable for use with humans. This new CBI system also has specific design features to permit automating data acquisition from multiple two-dimensional image planes for integration into a 3D dynamic surface image. A simulated multislice scan study of a human thorax phantom provided X-ray dosimetry data verifying a very low X-ray dose (~50 mrem) delivered by this imaging device. Validation experiments with mechanical models show that surface displacement at typical heart beat frequencies can be measured to the nearest 0.1 mm (SD). PMID:18218521

  14. Amorphous silicon image sensors for x-ray detection in NDT

    International Nuclear Information System (INIS)

    Acquiring radiographic images in a digital format offers significant advantages over film. Besides eliminating the need for chemical processing, a digital image can be easily stored for more convenient retrieval, transmitted to remote locations for interpretation, and image processed to provide enhanced interpretation and greater latitude in exposure. Amorphous silicon image sensors, developed by dpiX, a Xerox Company, offer an improved method of acquiring digital x-ray images. Amorphous silicon image sensor technology provides the opportunity to have large format size similar to x-ray film, high resolution, and a compact package for ease of use in NDT applications. This technology can also be used to replace x-ray image intensifier tubes to provide real-time fluoroscopic imaging for capturing time related events such as x-ray examination of objects on a conveyor belt. This paper presents a description of amorphous silicon image sensor technology and provides examples of the performance that can be achieved using a system that has an 8 x 10 inch x-ray image acquisition area and 127 micron pixels for 4 lp/mm resolution

  15. Myocardial perfusion image with attentuation correction by X-ray in detection of CAD

    International Nuclear Information System (INIS)

    Purpose: Attenuation correction by transmission image has been demonstrated to be a good method to improve the image quality and the diagnostic accuracy of myocardial perfusion. The purpose of this research is to evaluate the myocardial peffusion image with attenuation correction by X-ray. Methods: Twenty-six patients suspected coronary artery disease (CAD) underwent stress-rest 99mTc-MIBI myocardial perfusion image (MPI) with and without X-ray transmission image by an SPECT/CT system, and coronary angiography (CAG). The MPIs were reconstructed into two types: with and without X-ray attenuation correction (AC) and analyzed by nuclear physician. Results: There were 12 patients and 14 patients with and without CAD, respectively. Image quality of MPI with AC is much better than that of MPI without AC. The sensitivity MPI with and without AC in detection of CAD were 83.3% and 91.7%, respectively, p value is 0.537. Both specificities of MPI with and without AC in excluding to CAD were 100%. However, MPI with AC overestimate myocardial perfusion abnormality in anterior wall of let ventricle and underestimate that in posterior wall, compared with MPI without AC. Conclusion: X-ray attenuation correction can obviously improve the image quality of myocardial perfusion image. Myocardial perfusion image with X-ray attenuation correction has comparable diagnostic accuracy to that myocardial perfusion image without attenuation correction. However, its clinical value in detection of coronary artery disease is needed more researches. (authors)

  16. Contrast optimization in X-ray radiography with single photon counting imagers of Medipix type

    Czech Academy of Sciences Publication Activity Database

    Jandejsek, Ivan; Dammer, J.; Jakůbek, J.; Vavřík, Daniel; Žemlička, J.

    2012-01-01

    Roč. 7, C12011 (2012), s. 1-5. ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /14./. Figueira da Foz, Coimbra, 01.07.2012-05.07.2012] R&D Projects: GA ČR GAP105/11/1551 Grant ostatní: GA MKO(CZ) DF12P01OVV048 Institutional support: RVO:68378297 Keywords : X-ray detectors * X-ray radiography and digital radiography * inspection with x-rays Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/7/12/C12011/

  17. Radiation exposure and image quality in x-Ray diagnostic radiology physical principles and clinical applications

    CERN Document Server

    Aichinger, Horst; Joite-Barfuß, Sigrid; Säbel, Manfred

    2012-01-01

    The largest contribution to radiation exposure to the population as a whole arises from diagnostic X-rays. Protecting the patient from radiation is a major aim of modern health policy, and an understanding of the relationship between radiation dose and image quality is of pivotal importance in optimising medical diagnostic radiology. In this volume the data provided for exploring these concerns are partly based on X-ray spectra, measured on diagnostic X-ray tube assemblies, and are supplemented by the results of measurements on phantoms and simulation calculations.

  18. X-ray imaging diagnostics for the inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  19. Imaging of lateral spin valves with soft x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mosendz, O.; Mihajlovic, G.; Pearson, J. E.; Fischer, P.; Im, M.-Y.; Bader, S. D.; Hoffmann, A.

    2009-05-01

    We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L{sub 3} absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-rays at the Co and Cu L{sub 3} absorption edges.

  20. High-Resolution Chandra X-ray Imaging and Spectroscopy of the Sigma Orionis Cluster

    OpenAIRE

    Skinner, S.L.; Sokal, K. R.; Cohen, D. H.; Gagne, M.; Owocki, S.P.; Townsend, R. D.

    2008-01-01

    We present results of a 90 ksec Chandra X-ray observation of the young sigma Orionis cluster (age ~3 Myr) obtained with the High Energy Transmission Grating Spectrometer. We use the high resolution grating spectrum and moderate resolution CCD spectrum of the massive central star sigma Ori AB (O9.5V + B0.5V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the p...

  1. Low-intensity x-ray and gamma-ray imaging device

    Science.gov (United States)

    Yin, L. I.

    1978-01-01

    Low-dosage, low-power X-ray system can be made completely self-contained, allowing fluoroscopy and radiography to be carried out in field and remote locations. New device, known as "lixiscope," can be used with conventional X-ray machine turned down to low level, or, it can be operated with radioisotope source for hand-held portable applications. Originally developed for X-ray astronomy, lixiscope obtains high sensitivity by using intermediate stages of photoelectron conversion and electron amplification to generate image suitable for direct viewing or for recording on film.

  2. Manufacturing and testing of X-ray imaging components with high precision

    Institute of Scientific and Technical Information of China (English)

    HU Jia-sheng; WU Xü

    2005-01-01

    In the latest 20 years, X-ray imaging technology has developed rapidly in order to meet the needs of X-ray photo-etching,spatial exploration technology, high-energy physics, procedure diagnosis of ICF,etc. Since refractive indices of materials in the X-ray region are lower than 1, and X-ray is strongly absorbed by materials, the characteristics of X-ray increase greatly difficulty to obtain X-ray image. Conventional imaging methods are hardly suitable to X-ray range. In general, grazing reflective imaging and coding aperture imaging methods have been adopted more and more.We have designed a non-coaxial grazing reflective X-ray microscope which is composed of four spherical mirrors, in order to satisfy the requirement of the diagnosis of inertial confinement fusion (ICF). The four mirrors have the same radius of curvature. The radius of each mirror is 29 000 mm and the aperture is 30 mm×15 mm. Allowable tolerance of the radius is ≤0.2% and one of surface roughness (rms) is ≤0.6 nm. Evidently it is very difficult to fabricate and test such mirrors. In order to obtain eligible mirrors, we choose 18 mirror roughcasts and array them on a round disk according to format. The combined manufacturing method can ensure high accordant quality. The fabricated mirrors are tested by both templet and double round aperture methods. Radius errors of the mirrors is about 53 mm. The surface roughness (rms) of the mirrors is inspected by the relative interferometric equipment (WYKO) and atomic force microscope. Before and after coating the measured surface roughness is averagely 0.52 nm and 0.4 nm, respectively.

  3. Study of Scintillator thickness optimization of lens-coupled X-ray imaging detectors

    Science.gov (United States)

    Xie, H.; Du, G.; Deng, B.; Chen, R.; Xiao, T.

    2016-03-01

    Lens-coupled X-ray in-direct imaging detectors are very popular for high-resolution X-ray imaging at the third generation synchrotron radiation facilities. This imaging system consists of a scintilator producing a visible-light image of X-ray beam, a microscope objective, a mirror reflecting at 90° and a CCD camera. When the thickness of the scintillator is matched with the numerical aperture (NA) of the microscope objective, the image quality of experimental results will be improved obviously. This paper used an imaging system at BL13W beamline of Shanghai Synchrotron Radiation Facility (SSRF) to study the matching relation between the scintillator thickness and the NA of the microscope objective with a real sample. By use of the matching relation between the scintillator thickness and the NA of the microscope objective, the optimal imaging results have been obtained.

  4. Study of Scintillator thickness optimization of lens-coupled X-ray imaging detectors

    International Nuclear Information System (INIS)

    Lens-coupled X-ray in-direct imaging detectors are very popular for high-resolution X-ray imaging at the third generation synchrotron radiation facilities. This imaging system consists of a scintilator producing a visible-light image of X-ray beam, a microscope objective, a mirror reflecting at 90° and a CCD camera. When the thickness of the scintillator is matched with the numerical aperture (NA) of the microscope objective, the image quality of experimental results will be improved obviously. This paper used an imaging system at BL13W beamline of Shanghai Synchrotron Radiation Facility (SSRF) to study the matching relation between the scintillator thickness and the NA of the microscope objective with a real sample. By use of the matching relation between the scintillator thickness and the NA of the microscope objective, the optimal imaging results have been obtained

  5. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilities

    International Nuclear Information System (INIS)

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  6. Phase Sensitive X-Ray Diffraction Imaging Study of Protein Crystals

    Science.gov (United States)

    Hu, Z. W.

    2003-01-01

    The study of defects and growth of protein crystals is of importance in providing a fundamental understanding of this important category of systems and the rationale for crystallization of better ordered crystals for structural determination and drug design. Yet, as a result of the extremely weak scattering power of x-rays in protein and other biological macromolecular crystals, the extinction lengths for those crystals are extremely large and, roughly speaking, of the order of millimeters on average compared to the scale of micrometers for most small molecular crystals. This has significant implication for x-ray diffraction and imaging study of protein crystals, and presents an interesting challenge to currently available x-ray analytical techniques. We proposed that coherence-based phase sensitive x-ray diffraction imaging could provide a way to augment defect contrast in x-ray diffraction images of weakly diffracting biological macromolecular crystals. I shall examine the principles and ideas behind this approach and compare it to other available x-ray topography and diffraction methods. I shall then present some recent experimental results in two model protein systems-cubic apofemtin and tetragonal lysozyme crystals to demonstrate the capability of the coherence-based imaging method in mapping point defects, dislocations, and the degree of perfection of biological macromolecular crystals with extreme sensitivity. While further work is under way, it is intended to show that the observed new features have yielded important information on protein crystal perfection and nucleation and growth mechanism otherwise unobtainable.

  7. Novel large-area MIS-type x-ray image sensor for digital radiography

    Science.gov (United States)

    Kameshima, Toshio; Kaifu, Noriyuki; Takami, Eiichi; Morishita, Masakazu; Yamazaki, Tatsuya

    1998-07-01

    We have developed a brand new, large-area X-ray image sensor for Digital Radiography System (DRS). The sensor utilizes a thin film transistor (TFT)/metal insulator semiconductor (MIS)-type photoelectric converter array made from hydrogenated amorphous silicon (a-Si:H). The sensor has 2688 X 2688 pixels at a pitch of 160 micrometer. The active area is 17 inch X 17 inch. The sensor utilizes scintillator coupled to the array. The light generated by X-rays is detected by the MIS-type photoelectric converters, and the resultant signals are scanned out by switching the TFTs. The a-Si TFT/MIS-type photoelectric converter array is characterized by high signal to noise ratio (SNR) and simple fabrication process. We will describe the principle and the performance of the sensor. In addition, we will present some X-ray images of a human subject obtained with this sensor. Dynamic range of the sensor covers most of the exposure range for radiography. SNR is limited almost only by the X-ray photon noise. MTF is sufficient for digital chest radiography. X-ray images have good contrast. The experimental results and obtained images show that the brand new sensor has great advantages for replacing X-ray film. The simple fabrication process of the sensor promises high productivity and low cost of DRS.

  8. X-ray imaging and spectroscopy using low cost COTS CMOS sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lane, David W., E-mail: d.w.lane@cranfield.ac.uk [Department of Engineering and Applied Science, Cranfield University, Shrivenham, Swindon SN6 8LA (United Kingdom)

    2012-08-01

    Whilst commercial X-ray sensor arrays are capable of both imaging and spectroscopy they are currently expensive and this can limit their widespread use. This study examines the use of very low cost CMOS sensors for X-ray imaging and spectroscopy based on the commercial off the shelf (COTS) technology used in cellular telephones, PC multimedia and children's toys. Some examples of imaging using a 'webcam' and a modified OmniVision OV7411 sensor are presented, as well as a simple energy dispersive X-ray detector based on an OmniVision OV7221 sensor. In each case X-ray sensitivity was enabled by replacing the sensor's front glass window with a 5 {mu}m thick aluminium foil, with X-rays detected as an increase in a pixel's dark current due to the generation of additional electron-hole pairs within its active region. The exposure control and data processing requirements for imaging and spectroscopy are discussed. The modified OV7221 sensor was found to have a linear X-ray energy calibration and a resolution of approximately 510 eV.

  9. Sub-pixel porosity revealed by x-ray scatter dark field imaging

    Science.gov (United States)

    Revol, V.; Jerjen, I.; Kottler, C.; Schütz, P.; Kaufmann, R.; Lüthi, T.; Sennhauser, U.; Straumann, U.; Urban, C.

    2011-08-01

    X-ray scatter dark field imaging based on the Talbot-Lau interferometer allows for the measurement of ultra-small angle x-ray scattering. The latter is related to the variations in the electron density in the sample at the sub- and micron-scale. Therefore, information on features of the object below the detector resolution can be revealed. In this article, it is demonstrated that scatter dark field imaging is particularly adapted to the study of a material's porosity. An interferometer, optimized for x-ray energies around 50 keV, enables the investigation of aluminum welding with conventional laboratory x-ray tubes. The results show an unprecedented contrast between the pool and the aluminum workpiece. Our conclusions are confirmed due to micro-tomographic three-dimensional reconstructions of the same object with a microscopic resolution.

  10. X-ray image converters utilizing rare earth phosphor mixtures

    International Nuclear Information System (INIS)

    In an X-ray screen comprising a transparent support with a photographic film on each side, each film has a coating of a phosphor mixture comprising polyhedral Gd2O2S:Tb of average size 6 to 20 μ and plate-like LnOX:Tm of average size 2 to 12 μ wherein Ln=La or Gd, X=Cl or Br and Tm is present from 0.05 to 1 mole %. The mixture gives improved resolution and reduces the problem of light crossing over the transparent support. According to whether blue sensitive or green sensitive film is used, the ratio of phosphors is varied. U.V. absorbing and light reflecting layers may be incorporated in the structure. (author)

  11. Chest x-ray

    Science.gov (United States)

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  12. X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications

    Science.gov (United States)

    Lu, J.; Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Pablant, N. A.; Beiersdorfer, P.; Caughey, T. A.; Brunner, J.

    2014-11-01

    A two-dimensional stigmatic x-ray imaging scheme, consisting of two spherically bent crystals, one concave and one convex, was recently proposed [M. Bitter et al., Rev. Sci. Instrum. 83, 10E527 (2012)]. The Bragg angles and the radii of curvature of the two crystals of this imaging scheme are matched to eliminate the astigmatism and to satisfy the Bragg condition across both crystal surfaces for a given x-ray energy. In this paper, we consider more general configurations of this imaging scheme, which allow us to vary the magnification for a given pair of crystals and x-ray energy. The stigmatic imaging scheme has been validated for the first time by imaging x-rays generated by a micro-focus x-ray source with source size of 8.4 μm validated by knife-edge measurements. Results are presented from imaging the tungsten Lα1 emission at 8.3976 keV, using a convex Si-422 crystal and a concave Si-533 crystal with 2d-spacings of 2.21707 Å and 1.65635 Å and radii of curvature of 500 ± 1 mm and 823 ± 1 mm, respectively, showing a spatial resolution of 54.9 μm. This imaging scheme is expected to be of interest for the two-dimensional imaging of laser produced plasmas.

  13. X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J., E-mail: jlu@pppl.gov [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Beiersdorfer, P. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Caughey, T. A.; Brunner, J. [Inrad Optics, 181 Legrand Avenue, Northvale, New Jersey 07647 (United States)

    2014-11-15

    A two-dimensional stigmatic x-ray imaging scheme, consisting of two spherically bent crystals, one concave and one convex, was recently proposed [M. Bitter et al., Rev. Sci. Instrum. 83, 10E527 (2012)]. The Bragg angles and the radii of curvature of the two crystals of this imaging scheme are matched to eliminate the astigmatism and to satisfy the Bragg condition across both crystal surfaces for a given x-ray energy. In this paper, we consider more general configurations of this imaging scheme, which allow us to vary the magnification for a given pair of crystals and x-ray energy. The stigmatic imaging scheme has been validated for the first time by imaging x-rays generated by a micro-focus x-ray source with source size of 8.4 μm validated by knife-edge measurements. Results are presented from imaging the tungsten Lα1 emission at 8.3976 keV, using a convex Si-422 crystal and a concave Si-533 crystal with 2d-spacings of 2.21707 Å and 1.65635 Å and radii of curvature of 500 ± 1 mm and 823 ± 1 mm, respectively, showing a spatial resolution of 54.9 μm. This imaging scheme is expected to be of interest for the two-dimensional imaging of laser produced plasmas.

  14. An evaluation method of x ray imaging system resolution for non engineers

    International Nuclear Information System (INIS)

    Nowadays, digital Radiography (DR) systems are widely used in clinical sites and substitute the analog-film x-ray imaging systems. The resolution of DR images depends on several factors such as characteristic contrast and motion of the object, the focal spot size and the quality of x-ray beam, x-ray scattering, the performance of the DR detector (x-ray conversion efficiency, the intrinsic resolution). The DR detector is composed of an x-ray capturing element, a coupling element and a collecting element, which systematically affect the system resolution. Generally speaking, the resolution of a medical imaging system is the discrimination ability of anatomical structures. Modulation transfer function (MTF) is widely used for the quantification of the resolution performance for an imaging system. MTF is defined as the frequency response of the imaging system to the input of a point spread function and can be obtained by doing Fourier transform of a line spread function, which is extracted from a test image. In clinic, radiologic technologists, who are in charge of system maintenance and quality control, have to evaluate or make routine check on their imaging system. However, it is not an easy task for the radiologic technologists to measure MTF accurately due to lack of their engineering and mathematical backgrounds. The objective of this study is to develop and provide for radiologic technologists a medical system imaging evaluation tool, so that they can measure and quantify system performance easily

  15. Investigations on x-ray luminescence CT for small animal imaging

    Science.gov (United States)

    Badea, C. T.; Stanton, I. N.; Johnston, S. M.; Johnson, G. A.; Therien, M. J.

    2012-03-01

    X-ray Luminescence CT (XLCT) is a hybrid imaging modality combining x-ray and optical imaging in which x-ray luminescent nanophosphors (NPs) are used as emissive imaging probes. NPs are easily excited using common CT energy x-ray beams, and the NP luminescence is efficiently collected using sensitive light-based detection systems. XLCT can be recognized as a close analog to fluorescence diffuse optical tomography (FDOT). However, XLCT has remarkable advantages over FDOT due to the substantial excitation penetration depths provided by x-rays relative to laser light sources, long-term photo-stability of NPs, and the ability to tune NP emission within the NIR spectral window. Since XCLT uses an x-ray pencil beam excitation, the emitted light can be measured and back-projected along the x-ray path during reconstruction, where the size of the x-ray pencil beam determines the resolution for XLCT. In addition, no background signal competes with NP luminescence (i.e., no auto fluorescence) in XLCT. Currently, no small animal XLCT system has been proposed or tested. This paper investigates an XLCT system built and integrated with a dual source micro-CT system. A novel sampling paradigms that results in more efficient scanning is proposed and tested via simulations. Our preliminary experimental results in phantoms indicate that a basic CT-like reconstruction is able to recover a map of the NP locations and differences in NP concentrations. With the proposed dual source system and faster scanning approaches, XLCT has the potential to revolutionize molecular imaging in preclinical studies.

  16. Spatial Harmonic Imaging of X-ray Scattering—Initial Results

    OpenAIRE

    Wen, Han; Bennett, Eric E.; Hegedus, Monica M.; Carroll, Stefanie C.

    2008-01-01

    Coherent X-ray scattering is related to the electron density distribution by a Fourier transform, and therefore a window into the microscopic structures of biological samples. Current techniques of scattering rely on small-angle measurements from highly collimated X-ray beams produced from synchrotron light sources. Imaging of the distribution of scattering provides a new contrast mechanism which is different from absorption radiography, but is a lengthy process of raster or flue scans of the...

  17. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    Science.gov (United States)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien

    2015-01-01

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter. PMID:25931062

  18. Coherent X-ray imaging for corrosion evaluation - A preliminary assessment

    Science.gov (United States)

    Lawson, Larry

    When a layered joint corrodes, the X-ray transmissivity may either be enhanced by material thinning or reduced by corrosion-product accumulation; it may also remain constant. A framework is presented for the X-ray scattering measurement of corrosion in cases where transmission measurements would be subject to uncertainties. A comparison is conducted between Compton backscatter and coherent-imaging modalities; the statistics thus far obtained for these are inconclusive, although both appear to be feasible.

  19. Imaging of lateral spin valves with soft X-ray microscopy

    OpenAIRE

    Mosendz, O.; Mihailovic, G.; Pearson, J. E.; Fischer, P.; Im, M.-Y; Bader, S. D.; Hoffmann, A

    2009-01-01

    We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L$_3$ absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-...

  20. Spherical crystal imaging spectrometer (SCIS) for cosmic x-ray spectroscopy.

    Science.gov (United States)

    Schnopper, H W; Taylor, P O

    1980-10-01

    The application of a spherically bent crystal x-ray spectrometer to cosmic x-ray problems is discussed. This is the only geometry whose diffraction properties are preserved under all rotations of the spacecraft. The combination of Bragg reflection and spherical aberration provides for stigmatic imaging of extended sources and minimum spatial and/or spectral resolution loss arising from source extent and spacecraft pointing errors. The sensitivity of the instrument is discussed in the context of a Spacelab mission. PMID:20234612

  1. Optical and uv/x-ray imaging diagnostics for imploding foil experiments

    International Nuclear Information System (INIS)

    In this paper, the authors use a framing camera consisting of 4 gated microchannel plates with adjustable gate and interframe times to record optical or uv/x-ray emission images during the implosion of inductively driven ultra-thin cylindrical foils. Since the flux compression generator and the opening switch are driven by high explosives, the framing camera is located at a distance from the experiment. For optical imaging in the visible region, an f/10, 2800 mm focal length catadioptric telescope is used to image the foil into the microchannel plates. For uv/x-ray imaging, we mount a disposable pinhole camera on the target chamber with a P-Terphenyl-coated screen to convert the uv/x-ray image into the visible region, the same optical imaging procedure is then used. This instrument is well suited for recording a sequence of events where the brightness changes by many orders of magnitude

  2. Applications of 'edge-on' illuminated porous plate detectors for diagnostic X-ray imaging

    CERN Document Server

    Shikhaliev, P M

    2002-01-01

    Scanning X-ray imaging systems for non-invasive diagnostics have several advantages over conventional imaging systems using area detectors. They significantly reduce the detected scatter radiation, cover large areas and potentially provide high spatial resolution. Applications of one-dimensional gaseous detectors and 'edge-on' illuminated silicon strip detectors for scanning imaging systems are currently under intensive investigation. The purpose of this work is to investigate 'edge-on' illuminated Porous Plate (PP) detectors for applications in diagnostic X-ray imaging. MicroChannel Plate (MCP), which is a common type of PP, has previously been investigated as a detector in surface-on illumination mode for medical X-ray imaging. However, its detection efficiency was too low for medical imaging applications. In the present study, the PP are used in the 'edge-on' illumination mode. Furthermore, the structural parameters of different PP types are optimized to improve the detection efficiency in the diagnostic X...

  3. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    Science.gov (United States)

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    2016-09-01

    We present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional data cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. We demonstrate this ‘big data’ approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.

  4. Image fusion in x-ray differential phase-contrast imaging

    Science.gov (United States)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  5. Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)

    Science.gov (United States)

    Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond

    2000-01-01

    The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.

  6. Characterization of a 20-nm hard x-ray focus by ptychographic coherent diffractive imaging

    Science.gov (United States)

    Vila-Comamala, Joan; Diaz, Ana; Guizar-Sicairos, Manuel; Gorelick, Sergey; Guzenko, Vitaliy A.; Karvinen, Petri; Kewish, Cameron M.; Färm, Elina; Ritala, Mikko; Mantion, Alexandre; Bunk, Oliver; Menzel, Andreas; David, Christian

    2011-09-01

    Recent advances in the fabrication of diffractive X-ray optics have boosted hard X-ray microscopy into spatial resolutions of 30 nm and below. Here, we demonstrate the fabrication of zone-doubled Fresnel zone plates for multi-keV photon energies (4-12 keV) with outermost zone widths down to 20 nm. However, the characterization of such elements is not straightforward using conventional methods such as knife edge scans on well-characterized test objects. To overcome this limitation, we have used ptychographic coherent diffractive imaging to characterize a 20 nm-wide X-ray focus produced by a zone-doubled Fresnel zone plate at a photon energy of 6.2 keV. An ordinary scanning transmission X-ray microscope was modified to acquire the ptychographic data from a strongly scattering test object. The ptychographic algorithms allowed for the reconstruction of the image of the test object as well as for the reconstruction of the focused hard X-ray beam waist, with high spatial resolution and dynamic range. This method yields a full description of the focusing performance of the Fresnel zone plate and we demonstrate the usefulness ptychographic coherent diffractive imaging for metrology and alignment of nanofocusing diffractive X-ray lenses.

  7. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited).

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2014-11-01

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments. PMID:25430346

  8. X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations

    International Nuclear Information System (INIS)

    Avalanche multiplication in amorphous selenium (a-Se) can provide a large, adjustable gain for active matrix flat panel imagers (AMFPI), enabling quantum noise limited x-ray imaging during both radiography and fluoroscopy. In the case of direct conversion AMFPI, the multiplication factor for each x ray is a function of its depth of interaction, and the resulting variations in gain can reduce the detective quantum efficiency (DQE) of the system. An experimental method was developed to measure gain fluctuations by analyzing images of individual x rays that were obtained using a video camera with an a-Se target operated in avalanche mode. Pulse height spectra (PHS) of the charge produced per x ray were recorded for monoenergetic 30.9, 49.4, and 73.8 keV x-ray sources. The rapid initial decay and long tail of each PHS can be explained by a model in which positive charge dominates the initiation of avalanche. The Swank information factor quantifies the effect of gain fluctuation on DQE and was calculated from the PHS. The information factor was found to be 0.5 for a 25 μm a-Se layer with a maximum gain of ∼300. Changing the energy of the incident x ray influenced the range of the primary photoelectron and noticeably affected the tail of the experimental PHS, but did not significantly change the avalanche Swank factor

  9. The Wide Field Imager of the International X-ray Observatory

    International Nuclear Information System (INIS)

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m2 at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ftx18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024x1024 pixels of 100x100μm2 size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  10. The Wide Field Imager of the International X-ray Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, A., E-mail: astefan@hll.mpg.d [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Johannes Gutenberg-Universitaet, Inst. f. anorganische und analytische Chemie, 55099 Mainz (Germany); Bautz, M.W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Burrows, D.N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bombelli, L.; Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano (Italy); INFN Sezione di Milano, Milano (Italy); Fraser, G. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Heinzinger, K. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Herrmann, S. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Kuster, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstr. 9, 64289 Darmstadt (Germany); Lauf, T. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Lechner, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Lutz, G. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Majewski, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Meuris, A. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Murray, S.S. [Harvard/Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2010-12-11

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m{sup 2} at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ftx18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024x1024 pixels of 100x100{mu}m{sup 2} size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  11. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  12. Effects of Fiber-optic Plates on Image Quality of CMOS X-ray Detectors

    International Nuclear Information System (INIS)

    Radiation damage and its effects on image quality of Complementary metal-oxide-semiconductor (CMOS) devices have also been reported by previous studies. In this regard, most CMOS sensor manufacturers usually employ a fiber-optic plate (FOP) bonded to the CMOS photodiode array. In this configuration, the FOP layer absorbs un-attenuated x-ray photons through an overlaid scintillator; otherwise the un-attenuated photons might be absorbed within the CMOS photodiode array directly. Therefore, it is important to select an optimal thickness of an FOP layer for the long-term use of CMOS sensors providing high-quality images. By comparing the image qualities of the CMOS detector measured without and with FOP, the effects of FOP on the imaging system have been investigated for various x-ray spectra. Measurements showed that the FOP degraded the x-ray sensitivity and resolving power, whereas it enhanced noise properties by absorbing un-attenuated x-ray photons. As a result, the use of FOP enhances the DQE performance which mainly governs x-ray image quality. However, for a low exposure imaging, the use of FOP may not be appropriate because it reduces the light photon transmittance by ∼55% which implies that the image quality could be easily affected by additional electronics noise rather than quantum noise. In this regard, the use of FOP may be more appropriate for industrial applications in which irradiation condition is harsh

  13. Effects of Fiber-optic Plates on Image Quality of CMOS X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Seungman; Han, Jong Chul; Kim, Ho Kyung [Pusan National Univ., Busan (Korea, Republic of)

    2014-05-15

    Radiation damage and its effects on image quality of Complementary metal-oxide-semiconductor (CMOS) devices have also been reported by previous studies. In this regard, most CMOS sensor manufacturers usually employ a fiber-optic plate (FOP) bonded to the CMOS photodiode array. In this configuration, the FOP layer absorbs un-attenuated x-ray photons through an overlaid scintillator; otherwise the un-attenuated photons might be absorbed within the CMOS photodiode array directly. Therefore, it is important to select an optimal thickness of an FOP layer for the long-term use of CMOS sensors providing high-quality images. By comparing the image qualities of the CMOS detector measured without and with FOP, the effects of FOP on the imaging system have been investigated for various x-ray spectra. Measurements showed that the FOP degraded the x-ray sensitivity and resolving power, whereas it enhanced noise properties by absorbing un-attenuated x-ray photons. As a result, the use of FOP enhances the DQE performance which mainly governs x-ray image quality. However, for a low exposure imaging, the use of FOP may not be appropriate because it reduces the light photon transmittance by ∼55% which implies that the image quality could be easily affected by additional electronics noise rather than quantum noise. In this regard, the use of FOP may be more appropriate for industrial applications in which irradiation condition is harsh.

  14. X-ray diffraction and imaging with a coherent beam: application to X-ray optical elements and to crystals exhibiting phase inhomogeneities

    International Nuclear Information System (INIS)

    The exceptional properties of synchrotron light sources have been exploited in very different disciplines, from archaeology to chemistry, from material science to biology, from medicine to physics. Among these properties it is important to mention the high brilliance, continuum spectrum, high degree of polarization, time structure, small source size and divergence of the beam, the last resulting in a high transversal coherence of the produced radiation. This high transversal coherence of the synchrotron sources has permitted the development of new techniques, e.g. phase contrast imaging, X-ray photon correlation spectroscopy and coherent X-ray diffraction imaging (CXDI). This thesis work will consist essentially of three parts. In the first part it will be presented the work done as a member of the X-ray Optics Group of ESRF in the characterization of high quality diamond crystals foreseen as X-ray optical elements. The characterization has been done using different complementary X-ray techniques, such as high resolution diffraction, topography, grazing incidence diffraction, reflectivity and measurements of the coherence preservation using the Talbot effect. In the second part, I will show the result obtained in the study of the temperature behaviours of the domain in periodically poled ferroelectrics crystals. This type of measurements, based on Bragg-Fresnel diffraction, are possible only thanks to the high degree of coherence of the beam. In the third part, I will present the results obtained in the characterization of diamonds foreseen for applications other than X-ray optical elements. (author)

  15. Digital image analysis of X-ray television with an image digitizer

    International Nuclear Information System (INIS)

    When video signals of X-ray fluoroscopy were transformed from analog-to-digital ones with an image digitizer, their digital characteristic curves, pre-sampling MTF's and digital Wiener spectral could be measured. This method was advant ageous in that it was able to carry out data sampling because the pixel values inputted could be verified on a CRT. The system of image analysis by this method is inexpensive and effective in evaluating the image quality of digital system. Also, it is expected that this method can be used as a tool for learning the measurement techniques and physical characteristics of digital image quality effectively. (author)

  16. Design of a prototype tri-electrode ion-chamber for megavoltage X-ray imaging

    International Nuclear Information System (INIS)

    High-energy (megavoltage) X-ray imaging is widely used in industry (e.g., aerospace, construction, material sciences) as well as in health care (radiation therapy). One of the fundamental problems with megavoltage imaging is poor contrast and spatial resolution in the detected images due to the dominance of Compton scattering at megavoltage X-ray energies. Therefore, although megavoltage X-rays can be used to image highly attenuating objects that cannot be imaged at kilovoltage energies, the former does not provide the high image quality that is associated with the latter. A high contrast and spatial resolution detector for high-energy X-ray fields called the kinestatic charge detector (KCD) is presented here. The KCD is a tri-electrode ion-chamber based on highly pressurized noble gas. The KCD operates in conjunction with a strip-collimated X-ray beam (for high scatter rejection) to scan across the imaging field. Its thick detector design and unique operating principle provides enhanced charge signal integration for high quality imaging (quantum efficiency ∼50%) despite the unfavorable implications of high-energy X-ray interactions on image quality. The proposed design for a large-field prototype KCD includes a cylindrical pressure chamber along with 576 signal-collecting electrodes capable of resolving at 2 mm-1. The collecting electrodes are routed out of the chamber through the flat end-cap, thereby optimizing the mechanical strength of the chamber. This article highlights the simplified design of the chamber using minimal components for simple assembly. In addition, fundamental imaging measurements and estimates of ion recombination that were performed on a proof-of-principle test chamber are presented. The imaging performance of the prototype KCD was found to be an order-of-magnitude greater than commercial phosphor screen based flat-panel systems, demonstrating the potential for high-quality megavoltage imaging for a variety of industrial applications

  17. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A. [Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2009-04-15

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.

  18. Closed-bore XMR (CBXMR) systems for aortic valve replacement: x-ray tube imaging performance.

    Science.gov (United States)

    Bracken, John A; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A

    2009-04-01

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation. PMID:19472613

  19. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  20. Interior tomography in x-ray differential phase contrast CT imaging

    OpenAIRE

    Lauzier, Pascal Thériault; Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2012-01-01

    Differential phase contrast computed tomography (DPC-CT) is an x-ray imaging method that uses the wave properties of imaging photons as the contrast mechanism. It has been demonstrated that DPC images can be obtained using a conventional x-ray tube and a Talbot–Lau-type interferometer. Due to the limited size of the gratings, current data acquisition systems only offer a limited field of view, and thus are prone to data truncation. As a result, the reconstructed DPC-CT image may suffer from i...

  1. Soft X-ray Tomography and Cryogenic Light Microscopy: The Cool Combination in Cellular Imaging

    OpenAIRE

    McDermott, Gerry; Le Gros, Mark A.; Knoechel, Christian G.; Uchida, Maho; Larabell, Carolyn A.

    2009-01-01

    Soft x-ray tomography (SXT) is ideally suited to imaging sub-cellular architecture and organization, particularly in eukaryotic cells. SXT is similar in concept to the well-established medical diagnostic technique computed axial tomography (CAT), except SXT is capable of imaging with a spatial resolution of 50 nm, or better. In soft x-ray tomography (SXT) cells are imaged using photons from a region of the spectrum known as the ‘water window’. This results in quantitative, high-contrast image...

  2. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  3. X-ray imaging of JET. A design study for a streak camera application

    International Nuclear Information System (INIS)

    A single dimensional imaging system is proposed which will image a strip of the JET plasma up to 320 times per shot with a time resolution of better than 50 μs using the bremsstrahlung X-rays. The images are obtained by means of a pinhole camera followed by an X-ray image intensifier system the output of which is in turn digitised by a photodiode array. The information is stored digitally in a fast memory and is immediately available for display or analysis. (author)

  4. A low cost X-ray imaging device based on BPW-34 Si-PIN photodiode

    Science.gov (United States)

    Emirhan, E.; Bayrak, A.; Yücel, E. Barlas; Yücel, M.; Ozben, C. S.

    2016-05-01

    A low cost X-ray imaging device based on BPW-34 silicon PIN photodiode was designed and produced. X-rays were produced from a CEI OX/70-P dental tube using a custom made ±30 kV power supply. A charge sensitive preamplifier and a shaping amplifier were built for the amplification of small signals produced by photons in the depletion layer of Si-PIN photodiode. A two dimensional position control unit was used for moving the detector in small steps to measure the intensity of X-rays absorbed in the object to be imaged. An Aessent AES220B FPGA module was used for transferring the image data to a computer via USB. Images of various samples were obtained with acceptable image quality despite of the low cost of the device.

  5. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  6. The Study on the Attenuation of X-ray and Imaging Quality by Contents in Stomach

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kyung Rae; Ji, Youn Sang; Kim, Chang Bok; Choi, Seong Kwan; Moon, Sang In [Dept. of Radiological Technology, Gwangju Health College University, Gwangju (Korea, Republic of); Dieter, Kevin [Dept. of Physical Therapy, Gwangju Health College University, Gwangju (Korea, Republic of)

    2009-03-15

    This study examined the change in the attenuation of X-rays with the ROI (Region of Interest) in DR (Digital Radiography) according to the stomach contents by manufacturing a tissue equivalent material phantom to simulate real stomach tissue based on the assumption that there is some attenuation of X-rays and a difference in imaging quality according to the stomach contents. The transit dosage by the attenuation of X-rays decreased with increasing protein thickness, which altered the average ROI values in the film and DR images. A comparison of the change in average ROI values of the film and DR image showed that the image in film caused larger density changes with varying thickness of protein than the image by DR. The results indicate that NPO (nothing by mouth) is more important in film system than in DR system.

  7. Achromatic approach to phase-based multi-modal imaging with conventional X-ray sources.

    Science.gov (United States)

    Endrizzi, Marco; Vittoria, Fabio A; Kallon, Gibril; Basta, Dario; Diemoz, Paul C; Vincenzi, Alessandro; Delogu, Pasquale; Bellazzini, Ronaldo; Olivo, Alessandro

    2015-06-15

    Compatibility with polychromatic radiation is an important requirement for an imaging system using conventional rotating anode X-ray sources. With a commercially available energy-resolving single-photon-counting detector we investigated how broadband radiation affects the performance of a multi-modal edge-illumination phase-contrast imaging system. The effect of X-ray energy on phase retrieval is presented, and the achromaticity of the method is experimentally demonstrated. Comparison with simulated measurements integrating over the energy spectrum shows that there is no significant loss of image quality due to the use of polychromatic radiation. This means that, to a good approximation, the imaging system exploits radiation in the same way at all energies typically used in hard-X-ray imaging. PMID:26193618

  8. The Study on the Attenuation of X-ray and Imaging Quality by Contents in Stomach

    International Nuclear Information System (INIS)

    This study examined the change in the attenuation of X-rays with the ROI (Region of Interest) in DR (Digital Radiography) according to the stomach contents by manufacturing a tissue equivalent material phantom to simulate real stomach tissue based on the assumption that there is some attenuation of X-rays and a difference in imaging quality according to the stomach contents. The transit dosage by the attenuation of X-rays decreased with increasing protein thickness, which altered the average ROI values in the film and DR images. A comparison of the change in average ROI values of the film and DR image showed that the image in film caused larger density changes with varying thickness of protein than the image by DR. The results indicate that NPO (nothing by mouth) is more important in film system than in DR system.

  9. Knee x-ray image analysis method for automated detection of osteoarthritis.

    Science.gov (United States)

    Shamir, Lior; Ling, Shari M; Scott, William W; Bos, Angelo; Orlov, Nikita; Macura, Tomasz J; Eckley, D Mark; Ferrucci, Luigi; Goldberg, Ilya G

    2009-02-01

    We describe a method for automated detection of radiographic osteoarthritis (OA) in knee X-ray images. The detection is based on the Kellgren-Lawrence (KL) classification grades, which correspond to the different stages of OA severity. The classifier was built using manually classified X-rays, representing the first four KL grades (normal, doubtful, minimal, and moderate). Image analysis is performed by first identifying a set of image content descriptors and image transforms that are informative for the detection of OA in the X-rays and assigning weights to these image features using Fisher scores. Then, a simple weighted nearest neighbor rule is used in order to predict the KL grade to which a given test X-ray sample belongs. The dataset used in the experiment contained 350 X-ray images classified manually by their KL grades. Experimental results show that moderate OA (KL grade 3) and minimal OA (KL grade 2) can be differentiated from normal cases with accuracy of 91.5% and 80.4%, respectively. Doubtful OA (KL grade 1) was detected automatically with a much lower accuracy of 57%. The source code developed and used in this study is available for free download at www.openmicroscopy.org. PMID:19342330

  10. Staring/focusing lobster-eye hard x-ray imaging for non-astronomical objects

    Science.gov (United States)

    Gertsenshteyn, Michael; Jannson, Tomasz; Savant, Gajendra

    2005-08-01

    A new approach to hard X-ray imaging is proposed, based on staring optics consisting of a lobster-eye lens. This new Staring Imaging Lobster-Eye X-Ray approach is especially suited to X-ray lobster-eye imaging of non-astronomical objects at finite distances, because the staring optics replacing the standard scanning optics, result in an extremely efficient power budget, making possible not only the use of low-efficiency Compton backscattering but also operation with low-flux X-ray beams, increasing operator safety. The lobster-eye optics, consisting of square-cross-section microchannels, transmit an X-ray beam by total external reflection. This mode of operation has already been verified for viewing astronomical objects. Its major challenge is minimizing image defocusing by apodization. For this purpose, a new lens imaging equation is derived, and a new local optical axis concept is defined. Applications include medical imaging, cargo inspection, non-destructive testing, industrial and security safeguards, and surveillance.

  11. A glass-sealed field emission x-ray tube based on carbon nanotube emitter for medical imaging

    Science.gov (United States)

    Yeo, Seung Jun; Jeong, Jaeik; Ahn, Jeung Sun; Park, Hunkuk; Kwak, Junghwan; Noh, Eunkyong; Paik, Sanghyun; Kim, Seung Hoon; Ryu, Jehwang

    2016-04-01

    We report the design and fabrication of a carbon nanotube based a glass-sealed field emission x-ray tube without vacuum pump. The x-ray tube consists of four electrodes with anode, focuser, gate, and cathode electrode. The shape of cathode is rectangular for isotropic focal spot size at anode target. The obtained x-ray images show clearly micrometer scale.

  12. Analysis of the 1980 November 18 limb flare observed by the hard X-ray imaging spectrometer (HXIS)

    NARCIS (Netherlands)

    Hoyng, P.; Haug, E.; Elwert, G.

    1984-01-01

    X-ray images of the 18 November 1980 limb flare taken by the HXIS instrument aboard SMM were analysed. The hard X-rays originated from three spots on the SW limb of the solar disk with different altitudes and time evolution. The locations of the brightest spots in hard and soft X-rays are compared w

  13. Performance of a small-field digital detector for soft x-ray imaging

    Science.gov (United States)

    Seifert, Allen; Flynn, Michael J.; Shah, Manjul; Nagarkar, Vivek V.

    2001-06-01

    X-ray imaging detectors capable of very high resolution for a small field of view are important for x-ray micro-tomography, small specimen radiography, and certain x-ray scattering experiments. We have investigated the performance of small field detectors using scintillation phosphors coupled to a scientific CCD detector. The specific detector designs considered had fields of 8-12 mm that were used to record x-ray energies of 8-20 keV. The purpose of this work is to report the resolution (MTF) of designs that employed different optical coupling methods and different scintillation phosphor materials. For one detector system with a thin Gd2O2S phosphor a resolution of 48 lp/mm (presampled MTF = 0.10) was measured with pixels of 10.54 microns (Nyquist = 47.44) and a field of view of 12.14 mm x 13.09 mm.

  14. Design of a novel phase contrast x-ray imaging system for mammography

    International Nuclear Information System (INIS)

    It is hoped that x-ray phase contrast imaging (XPCi) will provide a generational improvement in the effectiveness of mammography. XPCi is sensitive to the refraction which x-rays undergo as a result of the variation in x-ray propagation speeds within an object. XPCi is, however, seldom used in clinical applications owing mainly to a lack of suitable systems. The radiation physics group at UCL has previously designed and built an XPCi system sensitive to phase gradients in one dimension for application in security inspection. We present here the design methodology and final design of a prototype XPCi system sensitive to phase gradients in two directions for use in mammography. The technique makes efficient use of the flux available from a laboratory x-ray source, thus making it suitable for clinical use.

  15. Imaging observations of X-ray albedo in a compact disc flare

    Science.gov (United States)

    Battaglia, Marina; Kontar, Eduard

    X-rays from solar flare sources are an important diagnostic tool for particle acceleration and transport in the solar atmosphere. However, the observed flux at Earth is composed of direct emission and photons which are Compton backscattered from the photosphere. This contribu-tion can account for up to 40 We present imaging observations of a compact flare on the solar disc. The source full-width-half maximum was determined at different energies using X-ray visibility forward fitting. The observed source size increases and decreases with energy with a maximum size at about 40 keV, contrary to observations made in limb events. The behavior is consistent with predictions from Monte Carlo simulations of X-ray photon transport in which X-ray visibilities were computed from simulated maps and fitted using visibility forward fit.

  16. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    International Nuclear Information System (INIS)

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO2 clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm2 scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than ±3%

  17. Impact of ultrafast electronic damage in single particle x-ray imaging experiments

    CERN Document Server

    Lorenz, U; Weckert, E; Vartanyants, I A

    2012-01-01

    In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources.

  18. A rotating tomographic imager for solar extreme-ultraviolet/soft X-ray emission

    Science.gov (United States)

    Davila, Joseph M.; Thompson, W. T.

    1992-04-01

    A concept is presented for a high-resolution EUV/soft-X-ray imager that has much in common with the medical imaging procedure of tomography. The resulting instrument is compatible with a simpler, less costly spin-axis-stabilized spacecraft. To demonstrate the fidelity of the reconstruction procedure, the observation and reconstruction is simulated to compare the results with the original image.

  19. The virtues of positive-definite reconstruction of X-ray and gamma-ray images

    International Nuclear Information System (INIS)

    This paper reports laboratory tests of a Fourier-type rotational modulation collimator system for imaging hard X-rays and gamma rays. The images have been reconstructed by two methods - a conventional back-projection procedure and a positively-constrained iterative technique based on maximum likelihood. The results clearly show better spatial resolution and contrast in the maximum-likelihood images. (orig.)

  20. FEATURE EXTRACTION ON COLORED X-RAY IMAGES BY BIT-PLANE SLICING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Dr.M.Mohammed Sathik,

    2010-07-01

    Full Text Available A fracture is a crack or break in the bone. This can be easily detected by taking an X-ray in that area. But sometimes these images lack sufficient details needed to diagnose. So these images can be enhanced by adding the color map. To add the RGB color to the Destination image, the reference image ‘mood’ color is taken. Although adding color to the gray scale has no much impact, but the human labor is much reduced. After adding color to the original image, it adds up details to the target image. In the second part of this paper, Bit-Plane slicing method is used to extract the details of a Colored X-Ray Image. This method produces different bit level images. In this paper Bit Level 6 is evaluated for RGB colors of the Original image and it is evaluated with the Bit level 6 of the original image. The result shows that the colored X-Ray image Bit level6 yield more details than the Bit level6 of gray scale X-Ray image.

  1. Study on two-dimensional distribution of X-ray image based on improved Elman algorithm

    International Nuclear Information System (INIS)

    The principle of the X-ray detector which can simultaneously perform the measurement of the exposure rate and 2D (two-dimensional) distribution is described. A commercially available CMOS image sensor has been adopted as the key part to receive X-ray without any scintillators. The correlation between the pixel value (PV) and the absorbed exposure rate of X-ray is studied using the improved Elman neural network. Comparing the optimal adjustment process of the BP (Back Propagation) neural network and the improved Elman neural network, the neural network parameters are selected based on the fitting curve and the error curve. The experiments using the practical production data show that the proposed method achieves high accurate predictions to 10−15, which is consistent with the anticipated value. It is proven that it is possible to detect the exposure rate using the X-ray detector with the improved Elman algorithm for its advantages of fast converges and smooth error curve. - Highlights: • A method to measure the X-ray radiation with low cost and miniaturization. • A general CMOS image sensor is used to detect X-ray. • The system can measure exposure rate and 2D distribution simultaneously. • The Elman algorithm is adopted to improve the precision of the radiation detector

  2. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    International Nuclear Information System (INIS)

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S0) of the a-Se layers was 63±2 nC cm-2 cGy-1. It was found that S decreases to 30% of S0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x1022 ehp m-3 s-1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a strong

  3. A general theory of interference fringes in x-ray phase grating imaging

    International Nuclear Information System (INIS)

    Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers

  4. A general theory of interference fringes in x-ray phase grating imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Aimin; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: liu@ou.edu [Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35249 (United States); Liu, Hong, E-mail: xwu@uabmc.edu, E-mail: liu@ou.edu [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2015-06-15

    Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  5. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  6. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  7. Multiframe, Single Line-of-Sight X-Ray Imager for Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kevin L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR or OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.

  8. Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination

    Science.gov (United States)

    Endrizzi, Marco; Astolfo, Alberto; Vittoria, Fabio A.; Millard, Thomas P.; Olivo, Alessandro

    2016-05-01

    We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system.

  9. Wide field-of-view soft X-ray imaging for solar wind-magnetosphere interactions

    Science.gov (United States)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; Read, A. M.; Sembay, S.; Thomas, N. E.

    2016-04-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  10. MMX-I: data-processing software for multimodal X-ray imaging and tomography.

    Science.gov (United States)

    Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea

    2016-05-01

    A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors' knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments. PMID:27140159

  11. Microfocus X-ray imaging of the internal geometry of brachytherapy seeds

    International Nuclear Information System (INIS)

    Precise and reliable geometrical data on the internal structure of seeds are indispensable for dosimetric calculation in brachytherapy. We used a novel microfocus X-ray imaging technique for observing the internal structure of brachytherapy seeds. Two popular 125I seed models were evaluated. Obtained high precision images enabled us to observe the internal structure of seeds qualitatively. Geometrical size parameters were evaluated quantitatively with uncertainty of 0.01–0.04 mm (k=2). - Highlights: • The internal geometry of brachytherapy seeds was evaluated nondestructively. • A novel microfocus X-ray imaging method was used for the first time for this purpose. • The two 125I seed models commercially available in Japan were evaluated. • The microfocus X-ray imaging method was found to be useful for this purpose. • Geometrical size parameters were obtained for the two seed models

  12. X-ray imaging optimization using virtual phantoms and computerized observer modelling.

    Science.gov (United States)

    Son, I-Y; Winslow, M; Yazici, B; Xu, X G

    2006-09-01

    This study develops and demonstrates a realistic x-ray imaging simulator with computerized observers to maximize lesion detectability and minimize patient exposure. A software package, ViPRIS, incorporating two computational patient phantoms, has been developed for simulating x-ray radiographic images. A tomographic phantom, VIP-Man, constructed from Visible Human anatomical colour images is used to simulate the scattered portion using the ESGnrc Monte Carlo code. The primary portion of an x-ray image is simulated using the projection ray-tracing method through the Visible Human CT data set. To produce a realistic image, the software simulates quantum noise, blurring effects, lesions, detector absorption efficiency and other imaging artefacts. The primary and scattered portions of an x-ray chest image are combined to form a final image for computerized observer studies and image quality analysis. Absorbed doses in organs and tissues of the segmented VIP-Man phantom were also obtained from the Monte Carlo simulations. Approximately 25,000 simulated images and 2,500,000 data files were analysed using computerized observers. Hotelling and Laguerre-Gauss Hotelling observers are used to perform various lesion detection tasks. Several model observer tasks were used including SKE/BKE, MAFC and SKEV. The energy levels and fluence at the minimum dose required to detect a small lesion were determined with respect to lesion size, location and system parameters. PMID:16912382

  13. Material specific X-ray imaging using an energy-dispersive pixel detector

    International Nuclear Information System (INIS)

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics

  14. Material specific X-ray imaging using an energy-dispersive pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Egan, Christopher K., E-mail: christopher.egan@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul [STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jacques, Simon D.M.; Cernik, Robert J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  15. Spine Localization in X-ray Images Using Interest Point Detection

    OpenAIRE

    Benjelloun, Mohammed; Mahmoudi, Saïd

    2008-01-01

    This study was conducted to evaluate a new method used to calculate vertebra orientation in medical x-ray images. The goal of this work is to develop an x-ray image segmentation approach used to identify the location and the orientation of the cervical vertebrae in medical images. We propose a method for localization of vertebrae by extracting the anterior—left—faces of vertebra contours. This approach is based on automatic corner points of interest detection. For this task, we use the Harris...

  16. X-ray photon-in/photon-out methods for chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Matthew A.

    2010-03-24

    Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.

  17. Quantitative In-Line Phase-Contrast Imaging with Multienergy X Rays

    International Nuclear Information System (INIS)

    We present a new method for quantitative nondestructive characterization of objects by x-ray phase-contrast imaging. Spatial distributions of the projected values of the complex refractive index in the sample are reconstructed by processing near-field images collected at a fixed sample-to-detector distance using a polychromatic incident beam and an energy-sensitive area detector, such as a CCD used in the photon-counting spectroscopy mode. The method has the potential advantages of decreased radiation dose and increased accuracy compared to conventional techniques of x-ray imaging

  18. Quantitative In-Line Phase-Contrast Imaging with Multienergy X Rays

    Science.gov (United States)

    Gureyev, T. E.; Mayo, S.; Wilkins, S. W.; Paganin, D.; Stevenson, A. W.

    2001-06-01

    We present a new method for quantitative nondestructive characterization of objects by x-ray phase-contrast imaging. Spatial distributions of the projected values of the complex refractive index in the sample are reconstructed by processing near-field images collected at a fixed sample-to-detector distance using a polychromatic incident beam and an energy-sensitive area detector, such as a CCD used in the photon-counting spectroscopy mode. The method has the potential advantages of decreased radiation dose and increased accuracy compared to conventional techniques of x-ray imaging.

  19. MC simulation study of X-ray image in a high pressure xenon gas chamber

    International Nuclear Information System (INIS)

    The multi-wire proportional counter (MWPC) has been intensively applied to the image formation measurement in high energy physics. The interaction of various energy X-rays (20-100 keV) with Xe atoms in a MWPC filled with high pressure Xe gas was studied by Monte Carlo simulation. The influence of scattered X-ray and Xenon's KX-ray on the accuracy of position determination with the counter was investigated. The distortion of image coursed by scattered and KX-rays was studied by low density virtual model simulation. A method was proposed to correct the image distortion

  20. Comparative imaging of liquids in rocks by NMR and differential x ray CT

    International Nuclear Information System (INIS)

    The authors of this paper applied NMR Imaging and X-ray Computerized Tomography to the study of the structural properties of rocks. Samples from different porous rocks; sandstones, granites, limestones have been successively examined by both techniques. NMR images have been obtained on water saturated samples. The spatial distribution of liquid indicates the effective porosity. By contrast, x Ray images display the mineral content of rocks. Standard tomographs do not have the required resolution to see pores smaller than 100 μm. The authors used water as a contrast agent to localize porosities by differential CT. Comparative results are shown

  1. X-ray phase computed tomography for nanoparticulated imaging probes and therapeutics: preliminary feasibility study

    Science.gov (United States)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2011-03-01

    With the scientific progress in cancer biology, pharmacology and biomedical engineering, the nano-biotechnology based imaging probes and therapeutical agents (namely probes/agents) - a form of theranostics - are among the strategic solutions bearing the hope for the cure of cancer. The key feature distinguishing the nanoparticulated probes/agents from their conventional counterparts is their targeting capability. A large surface-to-volume ratio in nanoparticulated probes/agents enables the accommodation of multiple targeting, imaging and therapeutic components to cope with the intra- and inter-tumor heterogeneity. Most nanoparticulated probes/agents are synthesized with low atomic number materials and thus their x-ray attenuation are very similar to biological tissues. However, their microscopic structures are very different, which may result in significant differences in their refractive properties. Recently, the investigation in the x-ray grating-based differential phase contrast (DPC) CT has demonstrated its advantages in differentiating low-atomic materials over the conventional attenuation-based CT. We believe that a synergy of x-ray grating-based DPC CT and nanoparticulated imaging probes and therapeutic agents may play a significant role in extensive preclinical and clinical applications, or even become a modality for molecular imaging. Hence, we propose to image the refractive property of nanoparticulated imaging probes and therapeutical agents using x-ray grating-based DPC CT. In this work, we conduct a preliminary feasibility study with a focus to characterize the contrast-to-noise ratio (CNR) and contrast-detail behavior of the x-ray grating-based DPC CT. The obtained data may be instructive to the architecture design and performance optimization of the x-ray grating-based DPC CT for imaging biomarker-targeted imaging probes and therapeutic agents, and even informative to the translation of preclinical research in theranostics into clinical applications.

  2. Three-dimensional imaging of nanoscale materials by using coherent x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jianwei

    2011-04-18

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-ray diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a

  3. High-resolution X-ray imaging for microbiology at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and their associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria (∼1 microm x 4 microm in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies

  4. Development of a hardened X-ray imager for the Megajoule Laser radiative environment

    International Nuclear Information System (INIS)

    Thermonuclear fusion experiments are led on Megajoule class laser facility by imploding a capsule filled with Deuterium and Tritium. In this context, it is necessary to diagnose the core size and the shape of the compressed target in order to provide valuable information and identify reasons for failure. State of the art X-ray imaging diagnostics cannot realize measurements without being perturbed by the nuclear background. The diagnostic that has been designed in this thesis combine high spatial resolution X-ray imaging at high energy and radiation tolerance to nuclear background. We have first guaranteed, theoretically and experimentally, survivability of X ray multilayer coating to energetic neutrons irradiation. Consequently, we have design the X-ray imaging system in order to achieve 5 μm resolution in a spectral range up to 95 keV. The X-ray image has then been converted into visible light in order to be easily transferred through a hardened optical relay to a protected area where the optical analyser is set. This analyser, combining light amplifier and pixelised detector, has also been studied and a novel method has been developed to reduce nuclear related transient perturbations on the device. This by parts design associated with Monte-Carlo Simulation (GEANT4) and experimental campaign on FCI facility (OMEGA) led to a coherent diagnostic architecture which will sustain high level of nuclear perturbation. (author)

  5. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    International Nuclear Information System (INIS)

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  6. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  7. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging

  8. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Michael W.M., E-mail: michael.jones@latrobe.edu.au [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Dearnley, Megan K. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Riessen, Grant A. van [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Abbey, Brian [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Melbourne Centre for Nanofabrication, Victoria 3168 (Australia); Putkunz, Corey T. [ARC Centre of Excellence for Coherent X-Ray Science, School of Physics, The University of Melbourne, Victoria 3010 (Australia); Junker, Mark D. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Vine, David J. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Centre for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nugent, Keith A. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Peele, Andrew G. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Australian Synchrotron, 800 Blackburn Road, Clayton 3168 (Australia); Tilley, Leann [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia)

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging.

  9. Coded apertures allow high-energy x-ray phase contrast imaging with laboratory sources

    Science.gov (United States)

    Ignatyev, K.; Munro, P. R. T.; Chana, D.; Speller, R. D.; Olivo, A.

    2011-07-01

    This work analyzes the performance of the coded-aperture based x-ray phase contrast imaging approach, showing that it can be used at high x-ray energies with acceptable exposure times. Due to limitations in the used source, we show images acquired at tube voltages of up to 100 kVp, however, no intrinsic reason indicates that the method could not be extended to even higher energies. In particular, we show quantitative agreement between the contrast extracted from the experimental x-ray images and the theoretical one, determined by the behavior of the material's refractive index as a function of energy. This proves that all energies in the used spectrum contribute to the image formation, and also that there are no additional factors affecting image contrast as the x-ray energy is increased. We also discuss the method flexibility by displaying and analyzing the first set of images obtained while varying the relative displacement between coded-aperture sets, which leads to image variations to some extent similar to those observed when changing the crystal angle in analyzer-based imaging. Finally, we discuss the method's possible advantages in terms of simplification of the set-up, scalability, reduced exposure times, and complete achromaticity. We believe this would helpful in applications requiring the imaging of highly absorbing samples, e.g., material science and security inspection, and, in the way of example, we demonstrate a possible application in the latter.

  10. The mechanism, characteristics and recent trend of the various X-ray imaging sensors

    International Nuclear Information System (INIS)

    In nondestructive inspections, the intensity distribution of the X-ray transmitted through an object is visualized. The high voltage of X-ray tubes ranges from 20 to 450 kV. Proper sensors for the visualization under various conditions have been developed and commercialized. Recently the performance of sensors has been much improved due to the progress of semiconductor production process, the speedup of data transmission interface, and the improvement of the speed and possible amount of the data in processing by personal computers. 'Sensors' are actually X-ray detectors including the photodiode array combine with scintillators, the X-ray film, the computed radiography, the scintillator plate camera, the X-ray CCD camera, the flat panel detector, and so on. Performance of these sensors, together with that of X-ray generator, will determine the quality of images. Each sensor involves specific technologies on materials, design, fabrication and inspection. Characteristics and recent trend of these sensors are presented. (J.P.N.)

  11. Using of a microcapillary refractive X-ray lens for focusing and imaging

    International Nuclear Information System (INIS)

    The microcapillary lens, formed by air bubbles in a hollow core glass capillary filled with epoxy, is a novel design of a compound refractive lens for X-rays. The epoxy enclosed between two air bubbles has the form of a biconcave lens and acts as a positive lens for X-rays. Each individual lens is spherical with radius of curvature equal to the inner radius of the capillary. Up to 500 individual biconcave lenses can be formed in a single capillary with diameters from 50 to 500 μm. Due to the small radius of curvatures that can be achieved, microcapillary lenses typically have shorter focal lengths than those made by compression or injection molding. For example, microcapillary lenses with a focal length about 5 cm for 8 keV X-rays and 50-micron aperture are readily available. We have produced a set of lenses in a 200-micron inner-diameter glass capillary with 100-350 individual microlenses and measured their parameters at the Stanford Synchrotron Radiation Laboratory and at the Advanced Photon Source. Our investigations have also shown that the lenses are suitable for imaging applications with an X-ray tube as a source of X-rays. A simple X-ray microscope is discussed. The microscope consists of a copper anode X-ray tube, X-ray lens and CCD-camera. The object, lens and CCD-camera were placed in-line at distances to satisfy the lens formula. It is shown that the field of view of the microscope is about 1 mm and resolution is equal to 3-5 μm

  12. An X-ray IMAGING SURVEY OF QUASAR JETS: TESTING THE INVERSE COMPTON MODEL

    International Nuclear Information System (INIS)

    We present results from continued Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. X-rays are detected from 24 of the 39 jets observed so far. We compute the distribution of α rx, the spectral index between the X-ray and radio bands, showing that it is broad, extending at least from 0.8 to 1.2. While there is a general trend that the radio brightest jets are detected most often, it is clear that predicting the X-ray flux from the radio knot flux densities is risky, so a shallow X-ray survey is the most effective means for finding jets that are X-ray bright. We test the model in which the X-rays result from inverse Compton (IC) scattering of cosmic microwave background (CMB) photons by relativistic electrons in the jet moving with a high bulk Lorentz factor nearly along the line of sight. Depending on how the jet magnetic fields vary with z, the observed X-ray to radio flux ratios do not follow the redshift dependence expected from the IC-CMB model. For a subset of our sample with known superluminal motion based on VLBI observations, we estimate the angle of the kiloparsec-scale jet to the line of sight by considering the additional information in the bends observed between parsec- and kiloparsec-scale jets. These angles are sometimes much smaller than estimates based on the IC-CMB model with a Lorentz factor of 15, indicating that these jets may decelerate significantly from parsec scales to kiloparsec scales.

  13. Development of an x-ray prism for analyzer based imaging systems

    International Nuclear Information System (INIS)

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  14. New developments of X-ray fluorescence imaging techniques in laboratory

    Science.gov (United States)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  15. Improved image quality in computerised tomography with proper X-ray energy parameter settings

    International Nuclear Information System (INIS)

    Image quality in Computerised Tomography (CT) depends strongly on the quality of the CT-projection data. CT projection data, in its turn, depend on sample composition and dimension, contrasting details within the sample and the equipment used, i.e. X-ray spectra, filtration, detector response, equipment geometry and CT parameters (such as number of projections, number of pixels, reconstruction filter, etc.). This work focuses on the problem of selecting the optimal physical parameters in order to maximize the signal-to-noise ratio in CT projection data (SNRCT) between a contrasting detail and the surrounding material for CT-scanner equipped with poly-energetic X-ray sources (conventional X-ray tubes) and scintillator screen based detector systems (image intensifier and optical video chain). The first paper (I) presents the derivation and verification of a poly-energetic theoretical model for SNRCT. This model was used to find the tube potential setting yielding maximum SNRCT. It was shown that simplified calculations, which were valid for mono-energetic X-ray sources and/or photon counting detectors, do not correctly predict the optimal tube potential. The study also includes measurements of the actual X-ray source energy spectrum and photon transport Monte Carlo simulations of the response by the detector system. In the second paper (II) the model for SNRCT has been used with robust design engineering to find a setting of several control factors which maximizes the SNRCT and which was robust to the variation of type of contrasting detail. How the optimal settings of the control factors were affected of the exposure limits (i.e. defocusing) of the micro focal X-ray source was also investigated. The imaging control factors of interest were: tube potential, filter thickness, optical aperture and a X-ray attenuation equalization filter design of aluminium. 16 refs

  16. Dedicated mammography: Imaging with monochromatic X-rays and a clinical mammography unit

    International Nuclear Information System (INIS)

    The aim of the current studies is to implement monochromatic X-rays on a conventional diagnostic mammography unit for the improvement of image quality and/or the reduction of radiation dose. The experimental setup consists of a conventional mammography unit with monochromator module mounted at the exit of the X-ray tube and a digital linear array detector instead of the screen-film system for image acquisition. The heart of the monochromator module is a curved HOPG (highly oriented pyrolytic graphite) crystal and a slit collimator. The monochromator is adjusted to 17.5 keV (Kα-emission line of the Mo-anode). For image acquisition the object moves through the X-ray beam, which is fixed in space and directed on the detector (12 bit sensitivity, operated at 54 μm resolution). The final images were reconstructed from the measured images, a reference image and the detector background. Lead calibration grids, a contrast detail phantom and gadolinium (Gd) or iodine (I) containing contrast media were investigated. The exposure dose was measured. The results reveal that only the 17.5 keV Kα-emission line of the Mo-anode passes the monochromator while the Kβ-emission line and the bremsstrahlung spectrum are rejected. The photon flux is considerably lower for monochromatic than for polychromatic X-rays under identical geometric conditions but sufficient to investigate 5 cm thick objects. The contrast response functions (CRF) for polychromatic and monochromatic X-rays are very similar while contrast values are in favor of the monochromatic illumination. In comparison to polychromatic X-rays, the 17.5 monochromatic X-rays lead to higher contrast for Gd or I containing contrast media. Monochromatic imaging has a high potential in diagnostic mammography: image contrast is improved and radiation dose can be reduced in comparison to polychromatic imaging. For clinical installation, high-power X-ray tubes are mandatory and the imaging procedure should be adapted to the slot

  17. The geometry of three-dimensional measurement from paired coplanar x-ray images.

    Science.gov (United States)

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    This article outlines the geometric principles which underlie the process of making craniofacial measurements in three dimensions by combining information from pairs of coplanar x-ray images. The main focus is upon the rationale of the method rather than upon the computational details. We stress particularly the importance of having available accurate measurements as to the relative positions of the x-ray tubes and the film plane. The use of control arrays of radiopaque "points" whose projected images upon the film plane allow the retrospective calculation of the spatial relationship between the x-ray tubes and the film plane is explained. Finally, the question of correcting for movement of the subject between two films of an image pair is considered briefly. PMID:6578682

  18. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented. (paper)

  19. Application of x-ray imaging to current profile measurements in the PEGASUS experiment

    International Nuclear Information System (INIS)

    For low-aspect ratio toroidal devices, flux shape information can be used as a constraint for reconstruction of the plasma current profile and q profile. A model current profile was used to compare the sensitivity of the equilibrium reconstruction using soft x-ray (SXR) image constraints to motional Stark effect (MSE) constraints. The deviation in the χ2 of the fit versus current profile was similar in both cases, showing that the SXR data is as good a constraint on the equilibrium as MSE information. There are two soft x-ray imaging systems under consideration to determine the shape of the internal flux surfaces on PEGASUS. One diagnostic consists of a series of vertically spaced, tangentially viewing linear detector arrays. Another design using a two-dimensional pinhole camera for a soft x-ray image of the plasma is also being evaluated. copyright 1999 American Institute of Physics

  20. Phase-contrast x-ray imaging and tomography of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    We have analyzed the model organism Caenorhabditis elegans with the help of phase-contrast x-ray tomography. This work combines techniques from x-ray imaging studies of single biological cells by in-line holography with three-dimensional reconstruction and furthermore extends these studies to the multicellular level. To preserve the sub-cellular ultrastructure of the nematodes, we used the near-native sample preparation of high-pressure freezing as commonly used in the field of electron microscopy. For the presented samples, a standard, non-magnifying parallel-beam setting, as well as a magnifying, divergent-beam setting using nanofocusing optics is evaluated based on their tomographic reconstruction potential. In this paper, we address difficulties in sample preparation and issues of image processing. By experimental refinement and through optimized reconstruction procedures, we were able to perform x-ray imaging studies on a living specimen. (paper)

  1. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    Science.gov (United States)

    Shaikh, A. M.; Romesh, C.; Kolage, T. S.; Sharma, Archana

    2015-06-01

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ˜13±2 mm diameter covering an area with intensity of ˜27000 PSL/mm2 is obtained on the imaging plate kept at a distance of ˜200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry

  2. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    International Nuclear Information System (INIS)

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm2 is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry

  3. Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian, E-mail: wang.zhentian@gmail.co [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Huang Zhifeng, E-mail: huangzhifeng@mail.tsinghua.edu.c [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Yin Hongxia; Wang Zhenchang [Medical Imaging Center, Beijing TongRen Hospital, Beijing 100084 (China); Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich (Switzerland)

    2011-04-11

    The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.

  4. Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging

    International Nuclear Information System (INIS)

    The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.

  5. Numerical simulation of X-ray image converter tube

    International Nuclear Information System (INIS)

    A bilamellar image converter tube was introduced, which adopts plate poles and electric quadrupole lenses. Based on the bilamellar tube model, the structure, operation mode and imaging characteristics, etc. of the tube were analyzed. The results show that the bilamellar structure can effectively control the space-charge effect and thus increase the temporal/spatial resolution of imaging. (authors)

  6. Theoretical analysis of x-ray CT phase-contrast imaging

    Science.gov (United States)

    Feng, Sheng; Liu, Song; Zhang, Xuelong

    2008-12-01

    Recently phase contrast imaging has attracted much attention. An obvious advantage of using X-rays for imaging the internal structure of relatively thick samples lies in its high degree of penetration of solid objects. However, often leads to poor image contrast for soft tissue. Phase contrast imaging can be very useful in such situation, as the phase of the transmitted beam may often be more sensitive indicator of density of sample than convention contrast. On the other hand, Computed Tomography is the best technology in the aspect of X-rays detection. Using the technology, the detected object can be imaged to three-dimensional image, so as to observe the inner structure of object, and be convenient to the disease examination. If the phase contrast imaging can be used to the technology of Computed Tomography, the high resolution image can be gained. The technology will become the development orientation of medical image. The aim of this article was to apply the theory of X-rays phase contrast imaging to the traditional X-CT technique. For this purpose, the formula deduced from the imaging theory with parallel monochromatic X-rays illuminating the object based on the Fresnel-Kircohhof theory had been completed and a formula similar to that of the traditional X-CT reconstruction had been gained, which was Radon transform formula. At last, X-rays reconstruction simulation had been carried out according to the formula, and proved that the method could be used in clinical medical imaging. The method discussed in this paper had a very bright prospect for application.

  7. Multi-scale image fusion for x-ray grating-based mammography

    Science.gov (United States)

    Jiang, Xiaolei; Zhang, Li; Wang, Zhentian; Stampanoni, Marco

    2012-10-01

    X-ray phase contrast imaging (PCI) can provide high sensitivity of weakly absorbing low-Z objects in medical and biological fields, especially in mammography. Grating-based differential phase contrast (DPC) method is the most potential PCI method for clinic applications because it can works well with conventional X-ray tube and it can retrieve attenuation, DPC and dark-field information of the samples in a single scanning. Three kinds of information have different details and contrast which represent different physical characteristics of X-rays with matters. Hence, image fusion can show the most desirable characteristics of each image. In this paper, we proposed a multi-scale image fusion for X-ray grating-based DPC mammography. Firstly, non-local means method is adopted for denoising due to the strong noise, especially for DPC and dark-field images. Then, Laplacian pyramid is used for multi-scale image fusion. The principal component analysis (PCA) method is used on the high frequency part and the spatial frequency method is used on the low frequency part. Finally, the fused image is obtained by inverse Laplacian pyramid transform. Our algorithm is validated by experiments. The experiments were performed on mammoDPC instrumentation at the Paul Scherrer Institut in Villigen, Switzerland. The results show that our algorithm can significantly show the advantages of three kinds of information in the fused image, which is very helpful for the breast cancer diagnosis.

  8. Three-dimensional imaging of dislocations by X-ray diffraction laminography

    International Nuclear Information System (INIS)

    Synchrotron radiation laminography with X-ray diffraction contrast enables three-dimensional imaging of dislocations in monocrystalline wafers. We outline the principle of the technique, the required experimental conditions, and the reconstruction procedure. The feasibility and the potential of the method are demonstrated by three-dimensional imaging of dislocation loops in an indent-damaged and annealed silicon wafer.

  9. Three-dimensional imaging of dislocations by X-ray diffraction laminography

    Energy Technology Data Exchange (ETDEWEB)

    Haenschke, D. [Karlsruhe Institute of Technology (KIT), Laboratory for Applications of Synchrotron Radiation (LAS), 76128 Karlsruhe (Germany); Helfen, L. [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS/ANKA), 76344 Eggenstein (Germany); European Synchrotron Radiation Facility (ESRF), BP220, 38043 Grenoble (France); Altapova, V. [Karlsruhe Institute of Technology (KIT), Laboratory for Applications of Synchrotron Radiation (LAS), 76128 Karlsruhe (Germany); National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Danilewsky, A. [University Freiburg, Kristallographie, Institut fuer Geowissenschaften, 79104 Freiburg (Germany); Baumbach, T. [Karlsruhe Institute of Technology (KIT), Laboratory for Applications of Synchrotron Radiation (LAS), 76128 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS/ANKA), 76344 Eggenstein (Germany)

    2012-12-10

    Synchrotron radiation laminography with X-ray diffraction contrast enables three-dimensional imaging of dislocations in monocrystalline wafers. We outline the principle of the technique, the required experimental conditions, and the reconstruction procedure. The feasibility and the potential of the method are demonstrated by three-dimensional imaging of dislocation loops in an indent-damaged and annealed silicon wafer.

  10. Three-dimensional imaging of dislocations by X-ray diffraction laminography

    Science.gov (United States)

    Hänschke, D.; Helfen, L.; Altapova, V.; Danilewsky, A.; Baumbach, T.

    2012-12-01

    Synchrotron radiation laminography with X-ray diffraction contrast enables three-dimensional imaging of dislocations in monocrystalline wafers. We outline the principle of the technique, the required experimental conditions, and the reconstruction procedure. The feasibility and the potential of the method are demonstrated by three-dimensional imaging of dislocation loops in an indent-damaged and annealed silicon wafer.

  11. A new computed tomography X-ray system to image nuclear weapon components

    International Nuclear Information System (INIS)

    A new computed tomography x-ray system developed by Lawrence Livermore National Laboratory of the United States, the Confined Large Optical Scintillator Screen and Imaging System (CoLOSSIS), can be used to image nuclear weapon components. After describing the development background, outline, working principle and key technology of the system, the application and prospects of the system are discussed. (authors)

  12. X-ray imaging performance of scintillator-filled silicon pore arrays

    International Nuclear Information System (INIS)

    The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 μm. A very high aspect ratio was achieved with wall thicknesses of 4-7 μm and pore depths of about 400 μm. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore array structure

  13. Development of X-ray dark-field imaging towards clinical application

    Institute of Scientific and Technical Information of China (English)

    ANDO Masami; RUBENSTEIN Edward; ROBERSON Joseph; SHIMAO Daisuke; SUGIYAMA Hiroshi; TAKEDA Ken; UENO Ei; WADA Hiroshi; HASHIMOTO Eiko; HASHIZUME Hiroyuki; HYODO Kazuyuki; INOUE Hajime; ISHIKAWA Tetsuya; KUNISADA Toshiyuki; MAKSIMENKO Anton; PATTANASIRIWISAWA Wanwisa

    2004-01-01

    Review of X-ray dark-field imaging under development is presented. Its goal is its application to clinical diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tissues in detail one needs high contrast and high spatial resolution say ~50 μm. This X-ray optics comprises a Bragg asymmetric monochro-collimator and a Bragg case or a Laue case filter with capability of analyzing angle in a parallel position. Their diffraction index is 4,4,0 and the X-ray energy 35 keV (λ= 0.0354 nm). The filter has 0.6 mm thickness in the Bragg case or 1.075 mm or 2.15 mm thickness in the Laue case. Under this condition only the refracted X-rays from object can transmit through the filter while the beam that may receive absorption and/or phase change will not. Soft tissues at human joints thus taken show high contrast images so that the DFI is promising for clinical diagnosis. Preliminary X-ray absorption images of another clinical candidates of ear bones are also shown.

  14. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E; Kozioziemski, B; Moody, J; Koch, J; Mapoles, E; Montesanti, R; Youngblood, K; Letts, S; Nikroo, A; Sater, J; Atherton, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.

  15. Development of X-ray dark-field imaging towards clinical application

    International Nuclear Information System (INIS)

    Review of X-ray dark-field imaging under development is presented. Its goal is its application to clinical diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tissues in detail one needs high contrast and high spatial resolution say ∼50 μm. This X-ray optics comprises a Bragg asymmetric monochro-collimator and a Bragg case or a Laue case filter with capability of analyzing angle in a parallel position. Their diffraction index is 4,4,0 and the X-ray energy 35 keV (λ=0.0354 nm). The filter has 0.6 mm thickness in the Bragg case or 1.075 mm or 2.15 mm thickness in the Laue case. Under this condition only the refracted X-rays from object can transmit through the filter while the beam that may receive absorption and/or phase change will not. Soft tissues at human joints thus taken show high contrast images so that the DFI is promising for clinical diagnosis. Preliminary X-ray absorption images of another clinical candidates of ear bones are also shown. (authors)

  16. An investigation of infection control for x-ray cassettes in a diagnostic imaging department

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Matthew [School of Allied Health Professions and Science, Faculty of Health, Wellbeing and Science, University Campus Suffolk, Rope Walk, Ipswich, Suffolk, IP4 1LT (United Kingdom); Harvey, Jane M. [School of Allied Health Professions and Science, Faculty of Health, Wellbeing and Science, University Campus Suffolk, Rope Walk, Ipswich, Suffolk, IP4 1LT (United Kingdom)], E-mail: j.harvey@ucs.ac.uk

    2008-11-15

    Introduction: This research was conducted to investigate if X-ray cassettes could be a possible source of pathogens capable of causing nosocomial infections, and if they could be a possible vector for cross infection within the hospital environment. Method: The research involved the swabbing of X-ray cassettes in a Diagnostic Imaging Department of a large hospital in the east of England. Two areas of the Diagnostic Imaging Department were included in the study. Research concentrated on X-ray cassettes used for mobile radiography, accident and emergency and inpatient use. Forty cassettes were swabbed in total specifically for general levels of bacterial contamination, also for the presence or absence of methicillin-resistant Staphylococcus aureus (MRSA). A mapping exercise was completed following the location of an X-ray cassette typically used in mobile radiography. The exercise noted the level of direct contact with patient's skin and other possible routes of infection. Results: The results demonstrated that there were large levels of growth of samples taken from cassettes and developed in the Microbiology Department. Coagulase-negative Staphylococcus, Micrococci, Diptheroids and species of Bacillus were all identified. The mapping exercise in which the journey of a 35/43 cm cassette used for mobile radiography was tracked found that contact with patient's skin and potential pathogens or routes of cross infection was a common occurrence whilst undertaking mobile radiography. Conclusion: The research has identified the presence of bacterial contamination on cassettes. The research established that X-ray cassettes/imaging plates are often exposed to pathogens and possible routes of cross infection; also that patient's skin often comes directly in contact with the X-ray cassette/imaging plate. The research also shows that as cassettes/imaging plates are a potential source of cross infection, the Diagnostic Imaging Department may be partly responsible

  17. Computer-aided quantitative control applied to image and radiation of x-ray equipment

    International Nuclear Information System (INIS)

    Complete test of publication follows. Introduction. Using of digital x-ray equipment allows to limit the radiation effect on patients and to improve the quality of medical images. In this paper the comparative research of film and digital x-ray equipment was performed by computer-aided quantitative control. Materials and methods. Film x-ray equipment RUM-20M (Mostrentgen, Russian) and digital x-ray equipment Multix Pro (Siemens, Germany) were compared. For radiation control of micro-roentgen radiation the monitor RM-60 (Aware Electronix, USA) connected with computer was used. The quality of medical images was estimated with an aid of test object TRS-2 (Ukraine). The medical images were tested by evaluation of contours deformation level and quantitative heterogeneous pattern. The proposed algorithm and software for estimation of spatial chaos in digital medical image is based on calculation of the skew and the spread parameters and autocorrelation function. Results. Comparative experimental study showed that x-ray diagnostic system Multix Pro has higher value of the scale characteristic and the relative sensitivity by 55% and 32% respectively in comparison with to RUM-20M, as well as resolution was also higher by 41%. Thus the air dose x-radiation on a surface of the detector is 7,7 times lower. Conclusion. Performed analysis spoke about the necessity to upgrade the x-ray instrumentation of low-doses by receivers with digital image processing and harmonization of domestic rules for dose loads and image quality in accordance with European standards.

  18. An investigation of infection control for x-ray cassettes in a diagnostic imaging department

    International Nuclear Information System (INIS)

    Introduction: This research was conducted to investigate if X-ray cassettes could be a possible source of pathogens capable of causing nosocomial infections, and if they could be a possible vector for cross infection within the hospital environment. Method: The research involved the swabbing of X-ray cassettes in a Diagnostic Imaging Department of a large hospital in the east of England. Two areas of the Diagnostic Imaging Department were included in the study. Research concentrated on X-ray cassettes used for mobile radiography, accident and emergency and inpatient use. Forty cassettes were swabbed in total specifically for general levels of bacterial contamination, also for the presence or absence of methicillin-resistant Staphylococcus aureus (MRSA). A mapping exercise was completed following the location of an X-ray cassette typically used in mobile radiography. The exercise noted the level of direct contact with patient's skin and other possible routes of infection. Results: The results demonstrated that there were large levels of growth of samples taken from cassettes and developed in the Microbiology Department. Coagulase-negative Staphylococcus, Micrococci, Diptheroids and species of Bacillus were all identified. The mapping exercise in which the journey of a 35/43 cm cassette used for mobile radiography was tracked found that contact with patient's skin and potential pathogens or routes of cross infection was a common occurrence whilst undertaking mobile radiography. Conclusion: The research has identified the presence of bacterial contamination on cassettes. The research established that X-ray cassettes/imaging plates are often exposed to pathogens and possible routes of cross infection; also that patient's skin often comes directly in contact with the X-ray cassette/imaging plate. The research also shows that as cassettes/imaging plates are a potential source of cross infection, the Diagnostic Imaging Department may be partly responsible for adding to

  19. Experimental study of a single-pixel prototype anti-scatter detector for megavoltage x-ray imaging

    Science.gov (United States)

    Tian, Y.; Pang, G.

    2016-02-01

    Scattered x rays are detrimental to the image quality of x-ray transmission radiography. Anti-scatter grids have been used in diagnostic x-ray imaging to improve the image quality but are not practical to use for megavoltage (MV) x-ray imaging in radiotherapy since a MV grid would be very bulky, heavy, and costly. An inherent anti-scatter detector based on Čerenkov radiation was introduced recently for MV x-ray imaging. The purpose of this work is to investigate experimentally the anti-scatter property of a single pixel prototype detector. The scatter to primary ratio (SPR) has been measured using a linear accelerator with a 6 MV x-ray beam. It has been found that the SPR for the prototype detector is 30-60% less than that of an ionization chamber, depending on the imaging geometry. This indicates the prototype detector is less sensitive to scattered radiation.

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...