WorldWideScience

Sample records for bio-functional subwavelength optical

  1. Subwavelength metal grating metamaterial for polarization selective optical antireflection coating

    CERN Document Server

    Kim, Wonkyu; Hendrickson, Joshua

    2015-01-01

    A metamaterial structure consisting of a one-dimensional metal/air-gap subwavelength grating is investigated for optical antireflection coating on germanium substrate in the infrared regime. For incident light polarized perpendicularly to the grating lines, the metamaterial exhibits effective dielectric property and Fabry-Perot like plasmon-coupled optical resonance results in complete elimination of reflection and enhancement of transmission. It is found that the subwavelength grating metamaterial antireflection structure does not require a deep subwavelength grating period, which is advantageous for device fabrication. Maximal transmittance of 93.4% with complete elimination of reflection is seen in the mid-wave infrared range.

  2. Graphene supports the propagation of subwavelength optical solitons

    CERN Document Server

    Nesterov, M L; Nikitin, A Yu; Garcia-Vidal, F J; Martin-Moreno, L

    2012-01-01

    We study theoretically nonlinear propagation of light in a graphene monolayer. We show that the large intrinsic nonlinearity of graphene at optical frequencies enables the formation of quasi one-dimensional self-guided beams (spatial solitons) featuring subwavelength widths at moderate electric-field peak intensities. We also demonstrate a novel class of nonlinear self-confined modes resulting from the hybridization of surface plasmon polaritons with graphene optical solitons.

  3. Optically pumped subwavelength-scale metallodielectric nanopatch resonators

    Science.gov (United States)

    Kwon, Kyungmok; You, Jong-bum; Shim, Jaeho; Jung, Youngho; Yu, Kyoungsik

    2016-01-01

    We discuss subwavelength-scale semiconductor metal-optic resonators placed on the metal substrate with various top metal plate sizes. Albeit with large optical losses, addition of metal layers converts a leaky semiconductor nano-block into a highly-confined optical cavity. Optically pumped lasing action is observed with the extended top metal layer that can significantly suppress the radiation losses. Careful investigation of self-heating effects during the optical carrier injection process shows the importance of temperature-dependent material properties in the laser rate equation model and the overall laser performances. PMID:27549640

  4. Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization

    Institute of Scientific and Technical Information of China (English)

    Jing Qin; Richard M Silver; Bryan M Barnes; Hui Zhou; Ronald G Dixson; Mark-Alexander Henn

    2016-01-01

    Quantitative optical measurements of deep subwavelength,three-dimensional (3D),nanometric structures with sensitivity to sub-nanometer details address a ubiquitous measurement challenge.A Fourier domain normalization approach is used in the Fourier optical imaging code to simulate the full 3D scattered light field of nominally 15 nm-sized structures,accurately replicating the light field as a function of the focus position.Using the full 3D light field,nanometer scale details such as a 2 nm thin conformal oxide and nanometer topography are rigorously fitted for features less than one-thirtiethof the wavelength in size.The densely packed structures are positioned nearly an order of magnitude closer than the conventional Rayleigh resolution limit and can be measured with sub-nanometer parametric uncertainties.This approach enables a practical measurement sensitivity to size variations of only a few atoms in size using a high-throughput optical configuration with broad application in measuring nanometric structures and nanoelectronic devices.

  5. Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces.

    Science.gov (United States)

    Zhong, Qiuhang; Veerasubramanian, Venkat; Wang, Yun; Shi, Wei; Patel, David; Ghosh, Samir; Samani, Alireza; Chrostowski, Lukas; Bojko, Richard; Plant, David V

    2014-07-28

    We report on the design and characterization of focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces. With implementation of waveguide dispersion engineered subwavelength structures, an ultra-wide 1-dB bandwidth of over 100 nm (largest reported to date) near 1550 nm is experimentally achieved for transverse-electric polarized light. By tapering the subwavelength structures, back reflection is effectively suppressed and grating coupling efficiency is increased to -4.7 dB. A compact device footprint of 40 µm × 20 µm is realized by curving the gratings in a focusing scheme. PMID:25089441

  6. Sub-wavelength resonant structures at microwave and optical frequencies

    OpenAIRE

    Simić, Aleksandar

    2011-01-01

    Sub-wavelength scale resonant structures have been at the forefront of physics and engineering in the past decade. They offer a path for creation of new materials and great advancements in the field of photonics. This dissertation deals with design, fabrication and characterization of sub -wavelength resonant structures. In the first part, we investigate the application of passive sub-wavelength resonators in meta-materials --- materials that have electromagnetic properties otherwise unattain...

  7. Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light

    CERN Document Server

    Park, Jongchan; Lee, KyeoReh; Cho, Yong-Hoon; Park, YongKeun

    2016-01-01

    Due to its time-reversal nature, optical phase conjugation generates a monochromatic light wave which retraces its propagation paths. Here, we demonstrate the regeneration of a subwavelength optical focus by phase conjugation. Monochromatic light from a subwavelength source is scattered by random nanoparticles, and the scattered light is phase conjugated at the far-field region by coupling its wavefront into a single-mode optical reflector using a spatial light modulator. Then the conjugated beam retraces its propagation paths and forms a refocus on the source at the subwavelength scale. This is the first direct experimental realization of subwavelength focusing beyond the diffraction limit with far-field time reversal in the optical domain.

  8. Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films.

    Science.gov (United States)

    Ctistis, G; Papaioannou, E; Patoka, P; Gutek, J; Fumagalli, P; Giersig, M

    2009-01-01

    In this study, we present our experimental results on the optical, magnetic, as well as magneto-optic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Different meshes were used with hole diameters ranging between 220 and 330 nm while the interhole distance has been kept constant at 470 nm. The hole pattern modifies completely the magnetic behavior of the cobalt films; it gives rise to an increase of the coercive field of the in-plane magnetization with increasing hole diameter and to the appearance of out-of-plane magnetization components. Magneto-optic measurements show a spectacular magneto-optic response at wavelengths where surface plasmon-polaritons are supported by the structure as deduced in optical measurements. The experiments demonstrate the ability to artificially control the magnetic and thus the magneto-optic properties in hole array structures. PMID:19072720

  9. Acoustically tuneable optical transmission through a subwavelength hole with a bubble

    CERN Document Server

    Maksymov, Ivan S

    2016-01-01

    Efficient manipulation of light with sound in subwavelength-sized volumes is important for applications in photonics, phononics and biophysics, but remains elusive. We theoretically demonstrate the control of light with MHz-range ultrasound in a subwavelength, 300 nm wide water-filled hole with a 100 nm radius air bubble. Ultrasound-driven pulsations of the bubble modulate the effective refractive index of the hole aperture, which gives rise to spectral tuning of light transmission through the hole. This control mechanism opens up novel opportunities for tuneable acousto-optic and optomechanical metamaterials, and all-optical ultrasound transduction.

  10. Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter

    OpenAIRE

    Jung, Yongmin; Brambilla, Gilberto; Richardson, David J

    2008-01-01

    We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400~1700 nm) was demonstrated with a 1?m SOW. The ability to ob...

  11. Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas.

    Science.gov (United States)

    Miyata, Masashi; Hatada, Hideaki; Takahara, Junichi

    2016-05-11

    Metallic nanostructures can be designed to effectively reflect different colors at deep-subwavelength scales. Such color manipulation is attractive for applications such as subwavelength color printing; however, challenges remain in creating saturated colors with a general and intuitive design rule. Here, we propose a simple design approach based on all-aluminum gap-plasmonic nanoantennas, which is capable of designing colors using knowledge of the optical properties of the individual antennas. We demonstrate that the individual-antenna properties that feature strong light absorption at two distinct frequencies can be encoded into a single subwavelength-pixel, enabling the creation of saturated colors, as well as a dark color in reflection, at the optical diffraction limit. The suitability of the designed color pixels for subwavelength printing applications is demonstrated by showing microscopic letters in color, the incident polarization and angle insensitivity, and color durability. Coupled with the low cost and long-term stability of aluminum, the proposed design strategy could be useful in creating microscale images for security purposes, high-density optical data storage, and nanoscale optical elements.

  12. General modal properties of optical resonances in subwavelength nonspherical dielectric structures

    CERN Document Server

    Huang, Lujun; Cao, Linyou

    2013-01-01

    Subwavelength dielectric structures offer an attractive low loss alternative to plasmonic structures for the development of resonant optics functionality such as metamaterials. Nonspherical like rectangular structures are of most interest from the standpoint of device development due to fabrication convenience. However, no intuitive fundamental understanding of optical resonance in nonspherical structures is available, which has substantially delayed the device development with dielectric materials. Here we elucidate the general fundamentals of optical resonances in nonspherical subwavelength dielectric structures of different shapes (rectangular or triangular) and dimensionalities (1D nanowires and 0D nanoparticles). We demonstrate that the optical properties (i.e. light absorption) of nonspherical structures are dictated by the eigenvalue of the structure's leaky modes. Leaky modes are defined as natural optical modes with propagating waves outside the structure. We also elucidate the dependence of the eige...

  13. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Science.gov (United States)

    Azad, Abul K.; Chen, Hou-Tong; Taylor, Antoinette J.; Zhang, Weili; O'Hara, John F.

    2011-02-01

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate ultrafast optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a thin conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of ~10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor hole arrays. Optically pumping the semiconductor hole arrays favors excitation of surface plasmon resonance. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stop-band to a pass-band and up to π/ 2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz

  14. Optical transmission through hexagonal arrays of subwavelength holes in thin metal films.

    Science.gov (United States)

    Ctistis, G; Patoka, P; Wang, X; Kempa, K; Giersig, M

    2007-09-01

    We have studied the light transmission through hexagonal arrays of subwavelength holes in thin gold and aluminum films, varying the film thickness between 20 and 120 nm while the hole diameter as well as the interhole distance have been kept constant at approximately 300 and approximately 500 nm, respectively. The films were characterized by means of UV-vis spectroscopy and scanning near-field optical microscopy (SNOM). PMID:17715985

  15. Routing of deep-subwavelength optical beams without reflection and diffraction using infinitely anisotropic metamaterials

    Science.gov (United States)

    Catrysse, Peter B.; Fan, Shanhui

    2015-03-01

    Media that are described by extreme electromagnetic parameters, such as very large/small permittivity/permeability, have generated significant fundamental and applied interest in recent years. Notable examples include epsilon-near-zero, ultra-low refractive-index, and ultra-high refractive-index materials. Many photonic structures, such as waveguides, lenses, and photonic band gap materials, benefit greatly from the large index contrast provided by such media. In this paper, I discuss our recent work on media with infinite anisotropy, i.e., infinite permittivity (permeability) in one direction and finite in the other directions. As an illustration of the unusual optical behaviors that result from infinite anisotropy, I describe efficient light transport in deep-subwavelength apertures filled with infinitely anisotropic media. I then point out some of the opportunities that exist for controlling light at the nano-scale using infinitely anisotropic media by themselves. First, I show that a single medium with infinite anisotropy enables diffraction-free propagation of deep-subwavelength beams. Next, I demonstrate interfaces between two infinitely anisotropic media that are impedancematched for complete deep-subwavelength beams and enable reflection-free routing with zero bend radius that is entirely free from diffraction effects even when deep-subwavelength information is encoded on the beams. These behaviors indicate an unprecedented possibility to use media with infinite anisotropy to manipulate beams with deepsubwavelength features, including complete images. To illustrate physical realizability, I demonstrate a metamaterial design using existing materials in a planar geometry, which can be implemented using well-established nanofabrication techniques. This approach provides a path to deep-subwavelength routing of information-carrying beams and far-field imaging unencumbered by diffraction and reflection.

  16. Optical transmission through hexagonal sub-wavelength hole arrays in thin metal films

    Energy Technology Data Exchange (ETDEWEB)

    Ctistis, Georgios; Patoka, Piotr; Giersig, Michael [Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn (Germany)

    2007-07-01

    Nanostructured surfaces exhibit extraordinary optical properties as plasmon assisted transmission through sub-wavelength hole arrays. In this study we present near-field optical results of the light transmission through a nano-hole array in a metal film (gold and aluminium) produced by means of nanosphere lithography. The film thickness varied between 20 and 120 nm while the hole diameter and the inter-hole distance were kept constant at approx. 270 and 500 nm, respectively. Dependent on the thickness, a change in the transmission mechanism could be observed.

  17. Subwavelength grating enabled on-chip ultra-compact optical true time delay line.

    Science.gov (United States)

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  18. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    Science.gov (United States)

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  19. High resolution on-chip optical filter array based on double subwavelength grating reflectors.

    Science.gov (United States)

    Horie, Yu; Arbabi, Amir; Han, Seunghoon; Faraon, Andrei

    2015-11-16

    An optical filter array consisting of vertical narrow-band Fabry-Pérot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths (Δλ/λ = 5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. Operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate. PMID:26698468

  20. Design & Analysis of Optical Lenses by using 2D Photonic Crystals for Sub-wavelength Focusing

    Directory of Open Access Journals (Sweden)

    Rajib Ahmed

    2013-01-01

    Full Text Available 2D Photonic lenses (Convex-Convex, Convex-Plane, Plane-Convex, Concave-Concave, Concave-plane, and PlaneConcave have been designed, simulated and optimized for optical communication using FDTD method. The effect of Crystal structures (Rectangular, Hexagonal, Face centered Cubic (FCC, Body centered Cubic (BCC, variation lattice constant (Λ, hole radius(r, reflective index (n, is demonstrated to get optimized parameters. Finally, with optimized parameters the effect of variation of lens radius on focal lengths and Electrical Field Intensity (Ey is analyzed. Like optical lens, the focal length of photonic lens is also increased with lens radii, has dependency on optical axis. Moreover, with optimized parameters, ConcaveConcave lens have been found as an optimal photonic lens that show sub-wavelength focusing with spatial resolutions-9.22439μm (Rectangular crystal, 7.379512μm (Hexagonal Crystal, 7.840732μm (FCC, BCC.

  1. Ultradense, Deep Subwavelength Nanowire Array Photovoltaics As Engineered Optical Thin Films

    KAUST Repository

    Tham, Douglas

    2010-11-10

    A photovoltaic device comprised of an array of 20 nm wide, 32 nm pitch array of silicon nanowires is modeled as an optical material. The nanowire array (NWA) has characteristic device features that are deep in the subwavelength regime for light, which permits a number of simplifying approximations. Using photocurrent measurements as a probe of the absorptance, we show that the NWA optical properties can be accurately modeled with rigorous coupled-wave analysis. The densely structured NWAs behave as homogeneous birefringent materials into the ultraviolet with effective optical properties that are accurately modeled using the dielectric functions of bulk Si and SiO 2, coupled with a physical model for the NWA derived from ellipsometry and transmission electron microscopy. © 2010 American Chemical Society.

  2. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    to the classical Yee scheme, it allows the correct application of electromagnetic boundary conditions. moreover, it does not represent the physical structure using a staircase approximation, but takes into account the exact geometry, and thus significantly reduces the required number of points per wavelength...... the two most severe sources of errors in the finite difference time domain method based on Yee's recipe, namely the staircasing and the lack of application of the electromagnetic boundary conditions at material interfaces. GEneralizations of the method to solve three dimensional modeling problems based......The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role...

  3. MEMS optical tunable filter based on free-standing subwavelength silicon layers

    Science.gov (United States)

    Omran, Haitham; Sabry, Yasser M.; Sadek, Mohamed; Hassan, Khaled; Shalaby, Mohamed Y.; Khalil, Diaa

    2014-03-01

    We report a MEMS optical tunable filter based on high-aspect-ratio etching of sub-wavelength silicon layers on a silicon- on-insulator wafer. The reported filter has measured free-spectral and filter-tuning ranges of approximately 100 nm and a finesse of about 20 around a wavelength of 1550 nm, enabled by the use of 1000 nm-thick silicon layers and a balanced tilt-free motion using a lithographically-aligned electrostatic actuator. The average insertion loss of the filter is about 12 dB with a superior wavelength-dependent loss of about 1.5 dB. The filter has an out-of-band to in-band wavelength rejection ratio that is better than 20 dB. The reported filter experimental characteristics and its integrability are suitable for the production of integrated swept sources for optical coherence tomography application and miniaturized spectrometers.

  4. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    Science.gov (United States)

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-08-01

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm-1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.

  5. Optically resonant subwavelength films for tamper-indicating tags and seals

    Science.gov (United States)

    Alvine, Kyle J.; Suter, Jonathan D.; Bernacki, Bruce E.; Bennett, Wendy D.

    2015-05-01

    We present the design, modeling and performance of a proof-of-concept tamper indicating approach that exploits newlydeveloped subwavelength-patterned films. These films have a nanostructure-dependent resonant optical reflection that is wavelength, angle, and polarization dependent. As such, they can be tailored to fabricate overlay transparent films for tamper indication and authentication of sensitive or controlled materials not possible with currently-known technologies. An additional advantage is that the unique optical signature is dictated by the geometry and fabrication process of the nanostructures in the film, rather than on the material used. The essential structure unit in the subwavelength resonant coating is a nanoscale Open-Ring Resonator (ORR). This building block is fabricated by coating a dielectric nanoscale template with metal to form a hemispherical shell-like structure. This curved metallic shell structure has a cross-section with an intrinsic capacitance and inductance and is thus the optical equivalent to the well-known "LC" circuit where the capacitance and inductance are determined by the nanoshell dimensions. For structures with sub 100 nm scale, this resonance occurs in the visible electromagnetic spectrum, and in the IR for larger shells. Tampering of the film would be visible though misalignment of the angle-sensitive features in the film. It is additionally possible to add in intrinsic oxidation and strain sensitive matrix materials to further complicate tamper repair and counterfeiting. Cursory standoff readout would be relatively simple using a combination of a near-infrared (or visible) LED flashlight and polarizer or passively using room lighting illumination and a dispersive detector.

  6. Optically resonant subwavelength films for tamper-indicating tags and seals

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Suter, Jonathan D.; Bernacki, Bruce E.; Bennett, Wendy D.

    2015-05-23

    We present the design, modeling and performance of a proof-of-concept tamper indicating approach that exploits newly-developed subwavelength-patterned films. These films have a nanostructure-dependent resonant optical reflection that is wavelength, angle, and polarization dependent. As such, they can be tailored to fabricate overlay transparent films for tamper indication and authentication of sensitive or controlled materials not possible with currently-known technologies. An additional advantage is that the unique optical signature is dictated by the geometry and fabrication process of the nanostructures in the film, rather than on the material used. The essential structure unit in the subwavelength resonant coating is a nanoscale Open-Ring Resonator (ORR). This building block is fabricated by coating a dielectric nanoscale template with metal to form a hemispherical shell-like structure. This curved metallic shell structure has a cross-section with an intrinsic capacitance and inductance and is thus the optical equivalent to the well-known “LC” circuit where the capacitance and inductance are determined by the nanoshell dimensions. For structures with sub 100 nm scale, this resonance occurs in the visible electromagnetic spectrum, and in the IR for larger shells. Tampering of the film would be visible though misalignment of the angular dependence of the features in the film. It is additionally possible to add in intrinsic oxidation and strain sensitive matrix materials to further complicate tamper repair and counterfeiting. Cursory standoff readout would be relatively simple using a combination of a near-infrared (or visible) LED flashlight and polarizer or passively using room lighting illumination and a dispersive detector.

  7. Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin

    CERN Document Server

    Conti, Claudio; DelRe, Eugenio

    2011-01-01

    We predict the existence of a novel class of multidimensional light localizations in out-of-equilibrium ferroelectric crystals. In two dimensions, the non-diffracting beams form at arbitrary low power level and propagate even when their width is well below the optical wavelength. In three dimensions, a novel form of subwavelength light bullets is found. The effects emerge when compositionally disordered crystals are brought to their metastable glassy state, and can have a profound impact on super-resolved imaging and ultra-dense optical storage, while resembling many features of the so-called metamaterials, as the suppression of evanescent waves.

  8. Impact of filling ratio on subwavelength optical imaging with two different geometries

    CERN Document Server

    Khalil, Md Ibrahim; Rahman, Atiqur; Belov, Pavel A

    2014-01-01

    Metallic nano-structured lens has the potential applications of transporting subwavelength imaging information and it is achieved by manipulating the length of the nanorod and the periodicity of the rod array. In this paper, we demonstrate the impact of filling ratio on the subwavelength imaging capabilities of such a lens. Through full-wave electromagnetic simulation, we have demonstrated that the imaging performance of silver (Ag) nanorod array does not only depend on the length and periodicity but also on the filling ratios or the radius of the wire medium. We have investigated two different geometries for nanorod e.g., cylindrical and triangular rod and examined their performance for different filling ratios.

  9. Optical Transmission Through Sub-Wavelength Slits in Metals: from Theory to Applications

    OpenAIRE

    Guillaumée, Mickaël

    2010-01-01

    This thesis explores the properties of the transmission of light through subwavelength slits in metal films. Theoretical and experimental studies on the transmission through slits in metals are presented. In addition, the potential use of these slits for different applications is investigated. The theoretical aspect concentrates on the study of the transmission of light through slit arrays. It is observed that high transmission is due to the coupling of two...

  10. Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array

    Science.gov (United States)

    Zhang, Xiangnan; Liu, Guiqiang; Liu, Zhengqi; Hu, Ying; Cai, Zhengjie

    2015-12-01

    We propose and numerically investigate the optical transmission behaviors of a sub-wavelength metal film perforated with a two-dimensional square array of compound circular holes. Enhanced optical transmission is obtained by using the finite-difference time-domain (FDTD) method, which can be mainly attributed to the excitation and coupling of localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs), and Fano Resonances. The redshift of the transmission peak can be achieved by enlarging the size and number of small holes, the environmental dielectric constant. These indicate that the proposed structure has potential applications in integrated optoelectronic devices such as plasmonic filters and sensors. supported by National Natural Science Foundation of China (Nos. 11464019, 11264017, 11004088), Young Scientist Development Program of China (No. 20142BCB23008) and the Natural Science Foundation of Jiangxi Province, China (Nos. 2014BAB212001, 20112BBE5033)

  11. The Subwavelength Optical Field Confinement in a Multilayered Microsphere with Quasiperiodic Spherical Stack

    Directory of Open Access Journals (Sweden)

    Gennadiy N. Burlak

    2008-01-01

    Full Text Available We study the frequency spectrum of nanoemitters placed in a microsphere with a quasiperiodic subwavelength spherical stack. The spectral evolution of transmittancy at the change of thickness of two-layer blocks, constructed following the Fibonacci sequence, is investigated. When the number of layers (Fibonacci order increases, the structure of spectrum acquires a fractal form. Our calculations show the radiation confinement and gigantic field enhancement, when the ratio of layers’ widths in twolayer blocks of the stack is close to the golden mean value.

  12. Fundamental mechanism underlying subwavelength optics of metamaterials: Charge oscillation-induced light emission and interference

    CERN Document Server

    Huang, X R; Wang, Mu

    2009-01-01

    Interactions between light and conducting nanostructures can result in a variety of novel and fascinating phenomena. These properties may have wide applications, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture about coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., spoof surface plasmons but without the dispersion property of classical surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms (e.g. resonance), is mainly a geometrical effect that can be universally involved in light scattering from all periodic and nonperiodic structures containing free electrons, including perfect conductors. The spoof surface ...

  13. Large-Area Sub-Wavelength Optical Patterning via Long-Range Ordered Polymer Lens Array.

    Science.gov (United States)

    Wu, Jin; Liow, Chihao; Tao, Kai; Guo, Yuanyuan; Wang, Xiaotian; Miao, Jianmin

    2016-06-29

    Fabrication of large-area, highly orderly, and high-resolution nanostructures in a cost-effective fashion prompts advances in nanotechnology. Herein, for the first time, we demonstrate a unique strategy to prepare a long-range highly regular polymer lens from photoresist nanotrenches based templates, which are obtained from underexposure. The relationship between exposure dose and the cross-sectional morphology of produced photoresist nanostructures is revealed for the first time. The polymer lens arrays are repeatedly used for rapid generation of sub-100 nm nanopatterns across centimeter-scale areas. The light focusing properties of the nanoscale polymer lens are investigated by both simulation and experiment. It is found that the geometry, size of the lens, and the exposure dose can be deployed to adjust the produced feature size, spacing, and shapes. Because the polymer lenses are derived from top-down photolithography, the nearly perfect long-range periodicity of produced nanopatterns is ensured, and the feature shapes can be flexibly designed. Because this nanolithographic strategy enables subwavelength periodical nanopatterns with controllable feature size, geometry, and composition in a cost-effective manner, it can be optimized as a viable and potent nanofabrication tool for various technological applications. PMID:27301636

  14. Feasibility demonstration of a massively parallelizable optical near-field sensor for sub-wavelength defect detection and imaging

    Science.gov (United States)

    Mostafavi, Mahkamehossadat; Diaz, Rodolfo E.

    2016-05-01

    To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002. Full physics simulations of the photonic antenna detector element that enables this instrument, show that using conventional red laser light (in the 600 nm range) the detector magnifies the signal from an 8 nm particle by up to 1.5 orders of magnitude. The antenna is a shaped slot element in a 60 nm silver film. The ability of this detector element to resolve λ/78 objects is confirmed experimentally at radio frequencies by fabricating an artificial material structure that mimics the optical permittivity of silver scaled to 2 GHz, and “cutting” into it the slot antenna. The experimental set-up is also used to demonstrate the imaging of a patterned surface in which the critical dimensions of the pattern are λ/22 in size.

  15. Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures

    Science.gov (United States)

    Ji, Boyu; Qin, Jiang; Tao, Haiyan; Hao, Zuoqiang; Lin, Jingquan

    2016-09-01

    We demonstrate subwavelength imaging and control of localized near-field distribution under resonant and off-resonant excitation of identical gold bowtie nanostructures through photoemission electron microscopy. Control of the near-field distribution was realized by polarization rotation of single femtosecond laser pulse and variation of the phase delay of two orthogonally polarized femtosecond laser pulses. We show that the localized optical near-field distribution can be well controlled either among the corners of the nano-prisms in the bowtie for resonant excitation or the edges for off-resonant excitation. A better visualization of the PEEM image is achieved for resonant excitation than in the case of off-resonant excitation. The experimental results of the optical near-field distribution control are well reproduced by finite-difference time-domain simulations and understood by linear combination of electric charge distribution of the bowtie by s- and p- polarized light illumination. In addition, a shift of the near-field excitation position with inverted or unchanged phase, alternatively an un-shift of the excitation position but only with inverted phase of the near-field, can be realized by rotating the polarization angle of a single pulse and coherent control of two orthogonally polarized fs laser pulses.

  16. Rapid replication and facile modulation of subwavelength antireflective polymer film using injection nanomolding and optical property of multilayer coatings

    Science.gov (United States)

    Fuh, Yiin-Kuen; Peng, Cheng-Chang; Huang, Chieh-Tse

    2013-10-01

    A rapid, cost-effective and high-throughput process for nanotexturing subwavelength structures with high uniformity using the polycarbonate (PC) is realized via injection nanomolding. The process enables the precise control of nanohole array (NHA) surface topography (nanohole depth, diameter, and periodicity) over large areas thereby presenting a highly versatile platform for fabricating substrates with user-defined, functional performance. Specifically, the optical property of the PC substrates were systematically characterized and tuned through the modulation of the depths of NHA. The aspect ratio submicron holes can be easily modulated and experimentally proven by simply adjusting the molding temperature. The nanotextured depths were reliably fabricated in the range of 200 to 400 nm with a period of approximately 700 nm. The fabricated PC films can reduce the reflectivity from an original bare film of 10.2% and 8.9% to 1.4% and 2.1% with 400-nm depth of nanoholes at the wavelength of 400 and 550 nm, respectively. Compared with conventional moth-like nanostructures with nanopillar arrays with heights adjustable only by an etching process, this paper proposes a facile route with submicron holes to achieve a similar antireflective function, with a significantly reduced time and facile height modulation capability. Furthermore, the effects of multilayer coatings of dielectric and metallic layers on the nanomolded NHA have been performed and potential sensing application is explored.

  17. Atom waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber

    CERN Document Server

    Le Kien, F; Hakuta, K; Kien, Fam Le

    2004-01-01

    We suggest using a two-color evanescent light field around a subwavelength-diameter fiber to trap and guide atoms. The optical fiber carries a red-detuned light and a blue-detuned light, with both modes far from resonance. When both input light fields are circularly polarized, a set of trapping minima of the total potential in the transverse plane is formed as a ring around the fiber. This design allows confinement of atoms to a cylindrical shell around the fiber. When one or both of the input light fields are linearly polarized, the total potential has two local minimum points in the transverse plane. This design allows confinement of atoms to two straight lines parallel to the fiber axis. Due to the thin thickness of the fiber, we can use far-off-resonance fields with substantially differing evanescent decay lengths to produce a net potential with a large depth, a large coherence time, and a large trap lifetime. For example, a 0.2-$\\mu$m-radius silica fiber carrying 30 mW of 1.06-$\\mu$m-wavelength light and...

  18. About the Heisenberg's uncertainty principle and the determination of effective optical indices in integrated photonics at high sub-wavelength regime

    CERN Document Server

    Bêche, Bruno

    2016-01-01

    Within the Heisenberg's uncertainty principle it is explicitly discussed the impact of these inequalities on the theory of integrated photonics at sub-wavelength regime. More especially, the uncertainty of the effective index values in nanophotonics at sub-wavelength regime, which is defined as the eigenvalue of the overall opto-geometric problems in integrated photonics, appears directly stemming from Heisenberg's uncertainty. An apt formula is obtained allowing us to assume that the incertitude and the notion of eigenvalue called effective optical index or propagation constant is inversely proportional to the spatial dimensions of a given nanostructure yielding a transfer of the fuzziness on relevant senses of eigenvalues below a specific limit's volume.

  19. Fabrication and Analysis of Three-Layer All-Silicon Interference Optical Filter with Sub-Wavelength Structure toward High Performance Terahertz Optics

    CERN Document Server

    Makitsubo, Hironobu; Kataza, Hirokazu; Mita, Makoto; Suzuki, Toyoaki; Yamamoto, Keita

    2016-01-01

    We propose an all-silicon multi-layer interference filter composed solely of silicon with sub-wavelength structure (SWS) in order to realize high performance optical filters operating in the THz frequency region with robustness against cryogenic thermal cycling and mechanical damage. We demonstrate fabrication of a three-layer prototype using well-established common micro-electro-mechanical systems (MEMS) technologies as a first step toward developing practical filters. The measured transmittance of the three-layer filter agrees well with the theoretical transmittances calculated by a simple thin-film calculation with effective refractive indices as well as a rigorous coupled-wave analysis simulation. We experimentally show that SWS layers can work as homogeneous thin-film interference layers with effective refractive indices even if there are multiple SWS layers in a filter.

  20. Saturation of atomic transitions using sub-wavelength diameter tapered optical fibers in rubidium vapor

    CERN Document Server

    Jones, D E; Pittman, T B

    2014-01-01

    We experimentally investigate ultralow-power saturation of the rubidium D2 transitions using a tapered optical fiber (TOF) suspended in a warm Rb vapor. A direct comparison of nonlinear absorption measurements for the TOF system with those obtained in a standard free-space vapor cell system highlights the differences in saturation behavior for the two systems. The effects of hyperfine pumping in the TOF system are found to be minimized due to the short atomic transit times through the highly confined evanescent optical mode guided by the TOF. The TOF system data is well-fit by a relatively simple empirical absorption model that indicates nanoWatt-level saturation powers.

  1. Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures

    OpenAIRE

    Yang, Hui; Gijs, Martin A.M.

    2015-01-01

    A technique that allows direct optical imaging of nanostructures and determines quantitatively geometric nanofeatures beyond the classical diffraction limit by using high-refractive index glass microspheres is introduced. The glass microsphere is put on a nanostructure that is immersed in oil and collects the sample's near-field evanescent wave and transforms it into a propagating one, thereby generating a magnified image in the far-field which is recorded by a conventional oil-immersion micr...

  2. 表面等离子体亚波长光学前沿进展%Progress in surface plasmon subwavelength optics

    Institute of Scientific and Technical Information of China (English)

    张斗国; 王沛; 焦小瑾; 唐麟; 鲁拥华; 明海

    2005-01-01

    目前表面等离子体激元(surface plasmon polaritons,SPPs)在光存储、光激发、显微术以及生物光子学等领域中的应用前景受到了广泛的关注.文章介绍了SPPs的基本性质和表面等离子体亚波长光学(surface plasmons subwavelength optics)研究中的热点问题及发展方向.

  3. Effects of interplay between metal subwavelength slits on extraordinary optical transmission

    Institute of Scientific and Technical Information of China (English)

    Wei Fei-Fei; Wang Huai-Yu; Zhou Yun-Song

    2013-01-01

    In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity oscillates,with the period being just the light wavelength,as a function of the spacing between slits.As the number of slits increases,the transmissivity varies in one of three ways.It can increase,attenuate,or remain basically unchanged,depending on the spacing between slits.Each way is in an oscillatory manner.The slit interaction responsible for the oscillating transmission strength that depends on slit spacing is the subject of more detailed investigation.The interaction most intuitively manifests as a current distribution in the metal surface between slits.We find that this current is attenuated in an oscillating fashion from the slit comers to the center of the region between two adjacent slits,and we present a mathematical expression for its waveform.

  4. A straightforward approximate analysis of Kerr nonlinear processes in sub-wavelength diameter optical fiber with better accuracy over variational technique

    Science.gov (United States)

    Sadhu, Arunangshu; Sarkar, Somenath

    2016-05-01

    We report a simple and straightforward approximate analysis to investigate the effect of Kerr type nonlinear optical processes in sub-wavelength diameter step index optical fibers based on Marcuse method in single mode region. Optimum core diameters of such fibers, predicted by us, together with relevant core nonlinearity coefficient and effective area are seen to be compatible with the analytical values indicating the validity of this novel application of the elegant approximate method. However, the corresponding values, obtained by earlier variational method, show larger discrepancy with analytical findings in comparison with ours. Also, maximum enhancement of nonlinear processes within single mode region, confirming almost the analytical method, assures less diffraction. Formulations, coupled with simplicity and novelty of the present analysis, should find wide use by system users and experimentalists in this emerging area.

  5. Ab initio analytical model of light transmission through a cylindrical subwavelength hole in an optically thick film

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2011-01-01

    The rigorous analytical theory of light transmission through a cylindrical hole of arbitrary diameter in an optically thick film is developed. The approach is based on the introduction of fictitious surface currents at both hole openings and both film surfaces. The solution of Maxwell’s equations...... obeying the boundary conditions at all interfaces is obtained in the form of the Fourier integral over the axial-wave-vector component. The exact integral equation which determines the field-amplitude Fourier transforms is derived. The general approach is simplified in the case of an elongated hole, where...... the film thickness considerably exceeds the hole diameter. It is emphasized that a specific pole corresponding to excitation of surface plasmon polaritons does not appear in the analysis. The theory is illustrated by the calculation of light transmission through a subwavelength hole in an Ag film....

  6. Subwavelength Plasmonic Waveguides and Plasmonic Materials

    Directory of Open Access Journals (Sweden)

    Ruoxi Yang

    2012-01-01

    Full Text Available With the fast development of microfabrication technology and advanced computational tools, nanophotonics has been widely studied for high-speed data transmission, sensitive optical detection, manipulation of ultrasmall objects, and visualization of nanoscale patterns. As an important branch of nanophotonics, plasmonics has enabled light-matter interactions at a deep subwavelength length scale. Plasmonics, or surface plasmon based photonics, focus on how to exploit the optical property of metals with abundant free electrons and hence negative permittivity. The oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of metal surfaces and potentially result in extreme light confinement. The objective of this article is to review the progress of subwavelength or deep subwavelength plasmonic waveguides, and fabrication techniques of plasmonic materials.

  7. Bio-Functional Au/Si Nanorods for Pathogen Detection

    Science.gov (United States)

    Technical Abstract Nanotechnology applications for food safety and biosecurity, especially development of nanoscale sensors for foodborne pathogen measurement are emerging. A novel bio-functional nanosensor for Salmonella detection was developed using hetero-nanorods. The silica nanorods were fabr...

  8. Subwavelength nanopatterning of photochromic diarylethene films

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, Precious; Brimhall, Nicole; Menon, Rajesh [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Andrew, Trisha L. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castagna, Rossella; Bertarelli, Chiara [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' ' Giulio Natta' ' , Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano (Italy); Center for Nano Science and Technology - PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (Italy)

    2012-04-30

    The resolution of optical patterning is constrained by the far-field diffraction limit. In this letter, we describe an approach that exploits the unique photo- and electro-chemistry of diarylethene photochromic molecules to overcome this diffraction limit and achieve sub-wavelength nanopatterning.

  9. High-index-contrast subwavelength grating VCSEL

    DEFF Research Database (Denmark)

    Gilet, Philippe; Olivier, Nicolas; Grosse, Philippe;

    2010-01-01

    In this article, we report our results on 980nm high-index-contrast subwavelength grating (HCG) VCSELs for optical interconnection applications. In our structure, a thin undoped HCG layer replaces a thick p-type Bragg mirror. The HCG mirror can feasibly achieve polarization-selective reflectivities...

  10. Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher

    1998-01-01

    We present a reflection scanning near-field optical microscope utilizing counter-directional light propagation in an uncoated fiber probe, cross-polarized detection and shear-force feedback. Topographical and near-field optical imaging with a scanning speed of up to 10 mu m/s and a lateral...

  11. Extreme localization of light with femtosecond subwavelength rogue waves

    KAUST Repository

    Liu, Changxu

    2015-01-01

    By using theory and experiments, we investigate a new mechanism based on spontaneous synchronization of random waves which generates ultrafast subwavelength rare events in integrated photonic chips. © 2014 Optical Society of America.

  12. Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique

    CERN Document Server

    Ho, Sze Phing; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto

    2015-01-01

    We propose an all-optical Knife Edge characterization technique and we demonstrate its working principle by characterizing the sub-{\\lambda} features of a spatially modulated Terahertz source directly on the nonlinear crystal employed for the Terahertz generation.

  13. Bio-functional Au/Si Nanrods for Pathogen Detection

    Science.gov (United States)

    Nanotechnology applications for food safety and biosecurity, especially development of nanoscale sensors for foodborne pathogen measurement are emerging. A novel bio-functional nanosensor for Salmonella detection was developed using hetero-nanorods. The silica nanorods were fabricated by glancing a...

  14. Subwavelength films for standoff radiation dosimetry

    Science.gov (United States)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Suter, Jonathan D.

    2015-05-01

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiationsensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  15. Subwavelength films for standoff radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Suter, Jonathan D.

    2015-05-22

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiation-sensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  16. Subwavelength resonant nanostructured films for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Bernacki, Bruce E.; Suter, Jonathan D.; Bennett, Wendy D.; Edwards, Daniel L.; Mendoza, Albert

    2013-05-29

    We present a novel subwavelength nanostructure architecture that may be utilized for optical standoff sensing applications. The subwavelength structures are fabricated via a combination of nanoimprint lithography and metal sputtering to create metallic nanostructured films encased within a transparent media. The structures are based on the open ring resonator (ORR) architecture and have their analog in resonant LC circuits, which display a resonance frequency that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any perturbation of the nanostructured films due to chemical or environmental effects can alter the inductive or capacitive behavior of the subwavelength features, which can shift the resonant frequency and provide an indication of the external stimulus. This shift in resonance can be interrogated remotely either actively using either laser illumination or passively using hyperspectral or multispectral sensing. These structures may be designed to be either anisotropic or isotropic, which can also provide polarization-sensitive interrogation. Due to the nanometer-scale of the structures, they can be tailored to be optically responsive in the visible or near infrared spectrum with a highly reflective resonant peak that is dependent solely on structural dimensions and material characteristics. We present experimental measurements of the optical response of these structures as a function of wavelength, polarization, and incident angle demonstrating the resonant effect in the near infrared region. Numerical modeling data showing the effect of different fabrication parameters such as structure parameters are also discussed.

  17. Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale Plasmonics, Photonic Materials and Sub-Wavelength Resolution

    CERN Document Server

    Collins, John

    2013-01-01

    This volume presents a considerable number of interrelated contributions dealing with the new scientific ability to shape and control matter and electromagnetic fields on a sub-wavelength scale. The topics range from the fundamental ones, such as photonic metamateriials, plasmonics and sub-wavelength resolution to the more applicative, such as detection of single molecules, tomography on a micro-chip, fluorescence spectroscopy of biological systems, coherent control of biomolecules, biosensing of single proteins, terahertz spectroscopy of nanoparticles, rare earth ion-doped nanoparticles, random lasing, and nanocoax array architecture. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique. The contributions that appear in this volume were presented at a NATO Advanced Study Institute that was held in Erice, ...

  18. Transfer of orbital angular momentum through sub-wavelength waveguides.

    Science.gov (United States)

    Wang, Yanqin; Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Luo, Xiangang

    2015-02-01

    Data capacity of optical communication is achieving its limit owing to the non-linear effect of optical fiber. As an effective alternative, light carrying orbital angular momentum can greatly increase the capacity for its unprecedented degree of freedom. We demonstrate the propagation of orbital angular momentum with topological charge of 1 and 2 in plasmonic circular waveguide with sub-wavelength diameter with little propagation loss of 2.73 dB/μm, which has never been observed in optical fibers with sub-wavelength diameter. We also confirm that lights carrying orbital angular momentum can be maintained in sharp bended sub-wavelength waveguide. This plasmonic waveguide may serve as a key component in on-chip systems involving OAM.

  19. Nanostructured and subwavelength waveguides fundamentals and applications

    CERN Document Server

    Skorobogatiy, Maksim

    2012-01-01

    Optical waveguides take a prominent role in photonics because they are able to trap and to transport light efficiently between a point of excitation and a point of detection. Moreover, waveguides allow the management of many of the fundamental properties of light and allow highly controlled interaction with other optical systems. For this reason waveguides are ubiquitous in telecommunications, sensing, spectroscopy, light sources, and high power light delivery. Nanostructured and subwavelength waveguides have additional advantages; they are able to confine light at a length scale below the dif

  20. A microspectrometer based on subwavelength metal nanohole array

    Science.gov (United States)

    Cui, Jun; Xia, Liangping; Yang, Zheng; Yin, Lu; Zheng, Guoxing; Yin, Shaoyun; Du, Chunlei

    2014-11-01

    Catering to the active demand of the miniaturization of spectrometers, a simple microspectrometer with small size and light weight is presented in this paper. The presented microspectrometer is a typical filter-based spectrometer using the extraordinary optical transmission property of subwavelength metal hole array structure. Different subwavelength metal nanohole arrays are designed to work as different filter units obtained by changing the lattice parameters. By processing the filter spectra with a unique algorithm based on sparse representation, the proposed spectrometer is demonstrated to have the capability of high spectral resolution and accuracy. Benefit for the thin filmed feature, the microspectrometer is expected to find its application in integrated optical systems.

  1. Single-cycle gap soliton in a subwavelength structure

    OpenAIRE

    Xie, Xiao-Tao; Macovei, Mihai A.

    2010-01-01

    We demonstrate that a single sub-cycle optical pulse can be generated when a pulse with a few optical cycles penetrates through resonant two-level dense media with a subwavelength structure. The single-cycle gap soliton phenomenon in the full Maxwell-Bloch equations without the frame of slowly varying envelope and rotating wave approximations is observed. Our study shows that the subwavelength structure can be used to suppress the frequency shift caused by intrapulse four-wave mixing in conti...

  2. Subwavelength THz imaging of graphene photoconductivity

    CERN Document Server

    Hornett, Samuel M; Vardaki, Martha Z; Beckerleg, Chris; Hendry, Euan

    2016-01-01

    Using a spatially structured, optical pump pulse with a THz probe pulse, we are able to determine spatial variations of the ultrafast THz photoconductivity with sub-wavelength resolution (75 $\\mu m \\approx \\lambda/5$ at 0.8 THz) in a planar graphene sample. We compare our results to Raman spectroscopy and correlate the existence of the spatial inhomogeneities between the two measurements. We find a strong correlation with inhomogeneity in electron density. This demonstrates the importance of eliminating inhomogeneities in doping density during CVD growth and fabrication for photoconductive devices.

  3. Spaser spectroscopy with subwavelength spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lozovik, Yurii E., E-mail: lozovik@isan.troitsk.ru [Institute of Spectroscopy RAS, Moscow Region, Troitsk (Russian Federation); Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny (Russian Federation); Moscow Institute of Electronics and Mathematics, HSE, Moscow (Russian Federation); All-Russia Research Institute of Automatics, Moscow (Russian Federation); Nechepurenko, Igor A.; Dorofeenko, Alexander V.; Andrianov, Eugeny S.; Pukhov, Alexander A. [Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny (Russian Federation); Institute for Theoretical and Applied Electromagnetics RAS, Moscow (Russian Federation); All-Russia Research Institute of Automatics, Moscow (Russian Federation)

    2014-02-07

    We propose a method for high-sensitivity subwavelength spectromicroscopy based on the usage of a spaser (plasmonic nanolaser) in the form of a scanning probe microscope tip. The high spatial resolution is defined by plasmon localization at the tip, as is the case for apertureless scanning near-field optical microscopy. In contrast to the latter method, we suggest using radiationless plasmon pumping with quantum dots instead of irradiation with an external laser beam. Due to absorption at the transition frequencies of neighboring nano-objects (molecules or clusters), dips appear in the plasmon generation spectrum. The highest sensitivity is achieved near the generation threshold.

  4. Joint FDTD-Optical/FEM-Electrical Numerical Simulation of Reflection-Type Subwavelength-Microstructure InSb Infrared Focal-Plane Arrays

    Science.gov (United States)

    He, J. L.; Hu, W. D.; Ye, Z. H.; Lv, Y. Q.; Chen, X. S.; Lu, W.

    2016-05-01

    The design of a reflection-type subwavelength microstructure has been numerically investigated to concentrate incident light onto pixels for improved photoresponse of InSb infrared focal-plane arrays. Compared with traditional microlenses placed on top of the detector substrate, this reflection-type microstructure is better suited for extremely small pixel pitches. The structure is simulated using a joint numerical method combining the finite-difference time-domain method based on Maxwell's curl equations and the finite-element method based on the Poisson and continuity equations. The results show that this advanced design could effectively improve device response without sacrificing crosstalk. The optimal structure parameters are obtained theoretically, with response increase of approximately 100%.

  5. Joint FDTD-Optical/FEM-Electrical Numerical Simulation of Reflection-Type Subwavelength-Microstructure InSb Infrared Focal-Plane Arrays

    Science.gov (United States)

    He, J. L.; Hu, W. D.; Ye, Z. H.; Lv, Y. Q.; Chen, X. S.; Lu, W.

    2016-09-01

    The design of a reflection-type subwavelength microstructure has been numerically investigated to concentrate incident light onto pixels for improved photoresponse of InSb infrared focal-plane arrays. Compared with traditional microlenses placed on top of the detector substrate, this reflection-type microstructure is better suited for extremely small pixel pitches. The structure is simulated using a joint numerical method combining the finite-difference time-domain method based on Maxwell's curl equations and the finite-element method based on the Poisson and continuity equations. The results show that this advanced design could effectively improve device response without sacrificing crosstalk. The optimal structure parameters are obtained theoretically, with response increase of approximately 100%.

  6. Bio-functionalization of silicon nitride-based piezo-resistive microcantilevers

    Indian Academy of Sciences (India)

    Nitin S Kale; Manoj Joshi; P Nageswara Rao; S Mukherji; V Ramgopal Rao

    2009-08-01

    Methods of bio-functionalize silicon nitride involve process steps to convert it into an oxynitride via plasma implantation techniques. Such methods can potentially damage microstructures such as cantilevers. In this paper, we report successful bio-functionalization of Hotwire CVD silicon nitride-based piezo-resistive cantilevers without any oxygen plasma treatment. Process to fabricate such structures and to bio-functionalize them is discussed in detail.

  7. Subwavelength hole arrays with nanoapertures fabricated by scanning probe nanolithography

    Directory of Open Access Journals (Sweden)

    Jakšić Z.

    2006-01-01

    Full Text Available Owing to their surface plasmon-based operation, arrays of subwavelength holes show extraordinary electromagnetic transmission and intense field localizations of several orders of magnitude. Thus they were proposed as the basic building blocks for a number of applications utilizing the enhancement of nonlinear optical effects. We designed and simulated nanometer-sized subwavelength holes using an analytical approach. In our experiments we used the scanning probe method for nanolithographic fabrication of subwavelength hole arrays in silver layers sputtered on a positive photoresist substrate. We fabricated ordered nanohole patterns with different shapes, dispositions and proportions. The smallest width was about 60 nm. We characterized the fabricated samples by atomic force microscopy.

  8. Subwavelength terahertz imaging with graphene hyperlens

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2012-01-01

    ) [2]. Direct scaling of optical designs to the THz range is not possible, since metal’s negative permittivity becomes too large in absolute value. This is why the employment of new materials is required. In this contribution we report for the first time the graphene wire medium based hyperlens....... Stacking multiple structured graphene layers provides the hyperbolic dispersion. To restore the graphene wire medium dispersion diagrams and isofrequency contours we developed a rigorous numerical method. It also gives the possibility to calculate the permittivity tensor and to check the applicability...... of the homogeneous medium approach. Our numerical simulations in COMSOL and CST Microwave Studio confirm the subwavelength imaging properties of the graphene hyperlens. An example of magnification of two point sources separated by λ/5 to the size of few wavelength, which then can be detected with conventional optics...

  9. Diamond turning of high-precision roll-to-roll imprinting molds for fabricating subwavelength gratings

    Science.gov (United States)

    Liu, Chun-Wei; Yan, Jiwang; Lin, Shih-Chieh

    2016-06-01

    Diamond turning of high-precision molds is a vital process for the roll-to-roll-based ultraviolet resin imprinting process in fabricating subwavelength gratings. The effects of the grating shape and grating period on diffraction efficiencies and diffraction angles were simulated. Experiments were then conducted to examine the effects of shape design, grating period, and cutting speed on machinability of the mold. According to the optical measurement results, the performance of the subwavelength gratings matched the design well at various incident angles. The results confirm that diamond turning of high-precision molds is a feasible approach for ensuring the continual mass production of subwavelength gratings.

  10. Deep Subwavelength Plasmonic Lasers

    CERN Document Server

    Oulton, Rupert F; Zentgraf, Thomas; Ma, Renmin; Gladden, Christopher; Dai, Lun; Bartal, Guy; Zhang, Xiang

    2009-01-01

    Laser science has tackled physical limitations to achieve higher power, faster and smaller light sources. The quest for ultra-compact laser that can directly generate coherent optical fields at the nano-scale, far beyond the diffraction limit of light, remains a key fundamental challenge. Microscopic lasers based on photonic crystals, micro-disks, metal clad cavities and nanowires can now reach the diffraction limit, which restricts both the optical mode size and physical device dimension to be larger than half a wavelength. While surface plasmons are capable of tightly localizing light, ohmic loss at optical frequencies has inhibited the realization of truly nano-scale lasers. Recent theory has proposed a way to significantly reduce plasmonic loss while maintaining ultra-small modes by using a hybrid plasmonic waveguide. Using this approach, we report an experimental demonstration of nano-scale plasmonic lasers producing optical modes 100 times smaller than the diffraction limit, utilizing a high gain Cadmiu...

  11. Super sub-wavelength patterns in photon coincidence detection

    Science.gov (United States)

    Liu, Ruifeng; Zhang, Pei; Zhou, Yu; Gao, Hong; Li, Fuli

    2014-02-01

    High-precision measurements implemented with light are desired in all fields of science. However, light acts as a wave, and the Rayleigh criterion in classical optics yields a diffraction limit that prevents obtaining a resolution smaller than the wavelength. Sub-wavelength interference has potential application in lithography because it beats the classical Rayleigh resolution limit. Here, we carefully study second-order correlation theory to establish the physics behind sub-wavelength interference in photon coincidence detection. A Young's double slit experiment with pseudo-thermal light is performed to test the second-order correlation pattern. The results show that when two point detectors are scanned in different ways, super sub-wavelength interference patterns can be obtained. We then provide a theoretical explanation for this surprising result, and demonstrate that this explanation is also suitable for the results found for entangled light. Furthermore, we discuss the limitations of these types of super sub-wavelength interference patterns in quantum lithography.

  12. Subwavelength line imaging using plasmonic waveguides

    CERN Document Server

    Podoliak, Nina; Prangsma, Jord C; Pinkse, Pepijn W H

    2015-01-01

    We investigate the subwavelength imaging capacity of a two-dimensional fanned-out plasmonic waveguide array, formed by air channels surrounded by gold metal layers for operation at near-infrared wavelengths, via finite element simulations. High resolution is achieved on one side of the device by tapering down the channel width while simultaneously maintaining propagation losses of a few dB. On the other, low-resolution side, output couplers are designed to optimize coupling to free space and to minimize channel cross talk via surface plasmons. Point sources separated by {\\lambda}/15 can still be clearly distinguished. Moreover, up two 90% of the power of a point dipole is coupled to the device. Applications are high-resolution linear detector arrays and, by operating the device in reverse, high-resolution optical writing.

  13. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    Science.gov (United States)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  14. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    International Nuclear Information System (INIS)

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells. (paper)

  15. Stacked subwavelength gratings for imaging polarimetry

    Science.gov (United States)

    Deguzman, Panfilo Castro

    The stacking of subwavelength gratings (SWG) in an integrated structure is presented for an application in imaging polarimetry. Imaging polarimetry extends the capability of conventional imaging by providing polarization information about a scene, in addition to variations in intensity. In this dissertation, a novel approach is introduced to develop a real-time imaging polarimeter. Subwavelength gratings are implemented as linear and circular polarization filters that are directly mounted onto the focal plane array of an infrared (IR) camera. Wire grid polarizers are used as linear polarization filters. The stacked structure, consisting of a wire grid polarizer and a form birefringent quarter-wave plate (QWP), implements the circular polarization filter and is the focus of this dissertation. Initial investigations of the development of the individual SWG components and their integration are presented. Rigorous Coupled Wave Analysis (RCWA) was used to design the SWG structures. A broadband form birefringent quarter-wave plate for the 3.5 to 5 μm wavelength range was designed as a grating structure patterned directly into the substrate. Two fabrication methods for the wire grid polarizer were investigated. A 0.5 μm period polarizer was patterned by interference lithography. A 1 μm period polarizer was patterned by contact printing. The stacking of the subwavelength grating structures was analyzed using the Jones Matrix calculus and a new RCWA method (developed by fellow graduate student Jianhua Jiang). Stacked SWG's were fabricated as large area (1.3 cm x 1.3 cm) filters and as a 256 x 256 array of small aperture (15 μm x 15 μm) pixels. Two stack designs were investigated, referred to as Stack I and Stack II. Stack I consisted of the 0.5 μm period polarizer and the form birefringent QWP. Stack II consisted of the I μm grid period polarizer and the form birefringent QWP. Simulation and measured results are presented to compare the cases of samples with and

  16. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces

    Science.gov (United States)

    Almeida, Euclides; Shalem, Guy; Prior, Yehiam

    2016-01-01

    Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique metasurface phase matching that is required for efficient nonlinear processes. We discuss the difference between scattering by a grating and by subwavelength phase-gradient elements. We show that for such interfaces an anomalous phase-matching condition prevails, which is the nonlinear analogue of the generalized Snell's law. The subwavelength phase control of optical nonlinearities paves the way for the design of ultrathin, flat nonlinear optical elements. We demonstrate nonlinear metasurface lenses, which act both as generators and as manipulators of the frequency-converted signal.

  17. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces.

    Science.gov (United States)

    Almeida, Euclides; Shalem, Guy; Prior, Yehiam

    2016-01-01

    Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique metasurface phase matching that is required for efficient nonlinear processes. We discuss the difference between scattering by a grating and by subwavelength phase-gradient elements. We show that for such interfaces an anomalous phase-matching condition prevails, which is the nonlinear analogue of the generalized Snell's law. The subwavelength phase control of optical nonlinearities paves the way for the design of ultrathin, flat nonlinear optical elements. We demonstrate nonlinear metasurface lenses, which act both as generators and as manipulators of the frequency-converted signal. PMID:26797164

  18. Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Kuladeep, Rajamudili; Sahoo, Chakradhar; Narayana Rao, Desai, E-mail: dnrsp@uohyd.ernet.in, E-mail: dnr-laserlab@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-06-02

    Laser-induced ripples or uniform arrays of continuous near sub-wavelength or discontinuous deep sub-wavelength structures are formed on single-crystalline silicon (Si) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Si wafers at normal incidence in air and by immersing them in dimethyl sulfoxide using linearly polarized Ti:sapphire fs laser pulses of ∼110 fs pulse duration and ∼800 nm wavelength. Morphology studies of laser written surfaces reveal that sub-wavelength features are oriented perpendicular to laser polarization, while their morphology and spatial periodicity depend on the surrounding dielectric medium. The formation mechanism of the sub-wavelength features is explained by interference of incident laser with surface plasmon polaritons. This work proves the feasibility of fs laser direct writing technique for the fabrication of sub-wavelength features, which could help in fabrication of advanced electro-optic devices.

  19. Vertical Transport of Subwavelength Localized Surface Electromagnetic Modes

    CERN Document Server

    Gao, Fei; Zhang, Youming; Shi, Xihang; Yang, Zhaoju; Zhang, Baile

    2015-01-01

    Transport of subwavelength electromagnetic (EM) energy has been achieved through near-field coupling of highly confined surface EM modes supported by plasmonic nanoparticles, in a configuration usually staying on a two-dimensional (2D) substrate. Vertical transport of similar modes along the third dimension, on the other hand, can bring more flexibility in designs of functional photonic devices, but this phenomenon has not been observed in reality. In this paper, designer (or spoof) surface plasmon resonators (plasmonic meta-atoms) are stacked in the direction vertical to their individual planes in demonstrating vertical transport of subwavelength localized surface EM modes. Dispersion relation of this vertical transport is determined from coupled mode theory and is verified with near-field transmission spectrum and field mapping with a microwave near-field scanning stage. This work extends the near-field coupled resonator optical waveguide (CROW) theory into the vertical direction, and may find applications ...

  20. Tunneling inhibition for subwavelength light

    CERN Document Server

    Huang, Changming; Ye, Fangwei; Kartashov, Yaroslav V; Chen, Xianfeng; Torner, Lluis

    2013-01-01

    We show that light tunneling inhibition may take place in suitable dynamically modulated waveguide arrays for light spots whose features are remarkably smaller than the wavelength of light. We found that tunneling between neighboring waveguides can be suppressed for specific frequencies of the out-of-phase refractive index modulation, affording undistorted propagation of the input subwavelength light spots over hundreds of Rayleigh lengths. Tunneling inhibition turns out to be effective only when the waveguide separation in the array is above a critical threshold. Inclusion of a weak focusing nonlinearity is shown to improve localization. We analyze the phenomenon in purely dielectric structures and also in arrays containing periodically spaced metallic layers.

  1. Metadevice for intensity modulation with sub-wavelength spatial resolution

    CERN Document Server

    Cencillo-Abad, Pablo; Plum, Eric

    2016-01-01

    Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic beam diffraction, light focusing and holography without unwanted diffraction artefacts.

  2. Smart phone based bacterial detection using bio functionalized fluorescent nanoparticles

    International Nuclear Information System (INIS)

    We are describing immunochromatographic test strips with smart phone-based fluorescence readout. They are intended for use in the detection of the foodborne bacterial pathogens Salmonella spp. and Escherichia coli O157. Silica nanoparticles (SiNPs) were doped with FITC and Ru(bpy), conjugated to the respective antibodies, and then used in a conventional lateral flow immunoassay (LFIA). Fluorescence was recorded by inserting the nitrocellulose strip into a smart phone-based fluorimeter consisting of a light weight (40 g) optical module containing an LED light source, a fluorescence filter set and a lens attached to the integrated camera of the cell phone in order to acquire high-resolution fluorescence images. The images were analysed by exploiting the quick image processing application of the cell phone and enable the detection of pathogens within few minutes. This LFIA is capable of detecting pathogens in concentrations as low as 105 cfu mL−1 directly from test samples without pre-enrichment. The detection is one order of magnitude better compared to gold nanoparticle-based LFIAs under similar condition. The successful combination of fluorescent nanoparticle-based pathogen detection by LFIAs with a smart phone-based detection platform has resulted in a portable device with improved diagnosis features and having potential application in diagnostics and environmental monitoring. (author)

  3. Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures

    KAUST Repository

    D’Apuzzo, Fausto

    2014-10-11

    Extraordinary optical transmission (EOT) peaks mediated by plasmonic excitations can be observed in a variety of subwavelength patterned metallic surfaces. In this paper, we have fabricated and spectroscopically characterized plasmon devices exhibiting EOT peaks at terahertz (THz) frequencies. These devices, which resonate with intermediate and collective modes of macromolecules, can be used for detection of materials of biological interest and their performances have been experimentally determined by measuring the variation of the EOT frequencies for thin sub-micrometric organic layers deposited onto the device surface.

  4. Imaging of sub-wavelength structures radiating coherently near microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, Alexey V., E-mail: avmaslov@yandex.ru [University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Astratov, Vasily N., E-mail: astratov@uncc.edu [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001 (United States)

    2016-02-01

    Using a two-dimensional model, we show that the optical images of a sub-wavelength object depend strongly on the excitation of its electromagnetic modes. There exist modes that enable the resolution of the object features smaller than the classical diffraction limit, in particular, due to the destructive interference. We propose to use such modes for super-resolution of resonant structures such as coupled cavities, metal dimers, or bowties. A dielectric microsphere in contact with the object forms its magnified image in a wide range of the virtual image plane positions. It is also suggested that the resonances may significantly affect the resolution quantification in recent experimental studies.

  5. Subwavelength-thick Lenses with High Numerical Apertures and Large Efficiency Based on High Contrast Transmitarrays

    CERN Document Server

    Arbabi, Amir; Ball, Alexander J; Bagheri, Mahmood; Faraon, Andrei

    2014-01-01

    We report subwavelength-thick, polarization insensitive micro-lenses operating at telecom wavelength with focal spots as small as 0.57 wavelengths and measured focusing efficiency up to 82%. The lens design is based on high contrast transmitarrays that enable control of optical phase fronts with subwavelength spatial resolution. A rigorous method for ultra-thin lens design, and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. The transmitarrays, composed of silicon nano-posts on glass, could be fabricated by high-throughput photo or nanoimprint lithography, thus enabling widespread adoption.

  6. Subwavelength propagation and localization of light using surface plasmons: A brief perspective

    Indian Academy of Sciences (India)

    G V Pavan Kumar; Danveer Singh; Partha Pratim Patra; Arindam Dasgupta

    2014-01-01

    Surface plasmons at the metal–dielectric interface have emerged as an important candidate to propagate and localize light at subwavelength scales. By tailoring the geometry and arrangement of metallic nanoarchitectures, propagating and localized surface plasmons can be obtained. In this brief perspective, we discuss: (1) how surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) can be optically excited in metallic nanoarchitectures by employing a variety of optical microscopy methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.

  7. Quantum well effect based on hybridization bandgap in deep subwavelength coupled meta-atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongqiang; Li, Yunhui, E-mail: liyunhui@tongji.edu.cn; Wu, Qian; Jiang, Haitao; Zhang, Yewen; Chen, Hong

    2015-09-01

    In this paper, quantum well (QW) effect in a hybridization bandgap (HBG) structure via hiring deep subwavelength coupled meta-atoms is investigated. Subwavelength zero-index-metamaterial-based resonators acting as meta-atoms are side-coupled to a microstrip, forming the HBG structure. Both numerical and microwave experimental results confirm that, through properly hiring another set of meta-atoms, band mismatch between two HBGs can be introduced resulting in the HBG QW effect. Compared with the conventional QW structure based on Bragg interferences in photonic crystal, the device length of the proposed HBG QW structure can be reduced to only 1/4, demonstrating well the deep subwavelength property. Therefore, the above features make our design of HBG QW structures suitable to be utilized as multi-channel filters or multiplexers in microwave and optical communication system.

  8. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    Science.gov (United States)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  9. Sub-wavelength interference in macroscopic observation

    International Nuclear Information System (INIS)

    We study the generalized Young's double-slit interference for the beam produced in the spontaneous parametric down-conversion (SPDC). It has been found that the sub-wavelength interference can occur macroscopically in both the two-photon intensity measurement and the single-photon spatial intensity-correlation measurement. The former refers to the quantum entanglement and the latter originates from the thermal spatial correlation. We show the visibility and the strength of the interference fringe related to the SPDC interaction, which may provide a strong sub-wavelength lithography with a moderate visibility in practical application

  10. Scattering of singular beams by subwavelength objects

    CERN Document Server

    Hemo, Evyatar; Shamir, Joseph

    2013-01-01

    In recent years, there has been a mounting interest in better methods of measuring nanoscale objects, especially in fields such as nanotechnology, biomedicine, cleantech, and microelectronics. Conventional methods have proved insufficient, due to the classical diffraction limit or slow and complicated measuring procedures. The purpose of this paper is to explore the special characteristics of singular beams with respect to the investigation of subwavelength objects. Singular beams are light beams that contain one or more singularities in their physical parameters, such as phase or polarization. We focus on the three-dimensional interaction between electromagnetic waves and subwavelength objects to extract information about the object from the scattered light patterns.

  11. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces

    OpenAIRE

    Almeida, Euclides; Shalem, Guy; Prior, Yehiam

    2016-01-01

    Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique ...

  12. Cylindrical metamaterial-based subwavelength antenna

    DEFF Research Database (Denmark)

    Erentok, Aycan; Kim, Oleksiy S.; Arslanagic, Samel

    2009-01-01

    A subwavelength monopole antenna radiating in the presence of a truncated cylindrical shell, which has a capped top face and is made of a negative permittivity metamaterial, is analyzed numerically by a method of moments for the volume-surface integral equation oil the one hand, and a finite...

  13. Interplay between evanescence and disorder in deep subwavelength photonic structures

    Science.gov (United States)

    Herzig Sheinfux, Hanan; Kaminer, Ido; Genack, Azriel Z.; Segev, Mordechai

    2016-01-01

    Deep subwavelength features are expected to have minimal impact on wave transport. Here we show that in contrast to this common understanding, disorder can have a dramatic effect in a one-dimensional disordered optical system with spatial features a thousand times smaller than the wavelength. We examine a unique regime of Anderson localization where the localization length is shown to scale linearly with the wavelength instead of diverging, because of the role of evanescent waves. In addition, we demonstrate an unusual order of magnitude enhancement of transmission induced due to localization. These results are described for electromagnetic waves, but are directly relevant to other wave systems such as electrons in multi-quantum-well structures. PMID:27708260

  14. Subwavelength Imaging with Dielectric Metamaterial Solid-Immersion Lens

    CERN Document Server

    Fan, Wen; Wang, Zengbo; Lukyanchuk, Boris; Wu, Limin

    2015-01-01

    The limited resolution of a conventional optical microscope stems from the fact that the subwavelength information of an object is carried by evanescent waves, which exponentially decays in space and cannot reach the imaging plane. We introduce here a metamaterial solid immersion lens (mSIL), which utilizes closely-packed high-index nanoparticles as a composite media to effectively convert and transport evanescent waves from near-field to far-field. About 20% of evanescent wave energy of an ideal point source can be directed into far-field by mSIL. This has led to the exceptional imaging performance of mSIL in visible. Using 15 nm diameter TiO2 (n=2.55) nanoparticles as building block, we demonstrated that 45 nm -75 nm features can be resolved by the mSIL under a white light microscope. Our approach opens up the possibility to obtain a 'perfect lens' using pure dielectric materials.

  15. Electromagnetic modeling of large subwavelength-patterned highly resonant structures.

    Science.gov (United States)

    Chaumet, P C; Demésy, G; Gauthier-Lafaye, O; Sentenac, A; Popov, E; Fehrembach, A-L

    2016-05-15

    The rigorous modeling of large (hundreds of wavelengths) optical resonant components patterned at a subwavelength scale remains a major issue, especially when long range interactions cannot be neglected. In this Letter, we compare the performances of the discrete dipole approximation approach to that of the Fourier modal, the finite element and the finite difference time domain methods, for simulating the spectral behavior of a cavity resonator integrated grating filter (CRIGF). When the component is invariant along one axis (two-dimensional configuration), the four techniques yield similar results, despite the modeling difficulty of such a structure. We also demonstrate, for the first time to the best of our knowledge, the rigorous modeling of a three-dimensional CRIGF. PMID:27177002

  16. Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction

    CERN Document Server

    Colquitt, D J; Craster, R V; Roux, P; Guenneau, S R L

    2016-01-01

    We consider the canonical problem of an array of rods, which act as resonators, placed on an elastic substrate; the substrate being either a thin elastic plate or an elastic half-space. In both cases the flexural plate, or Rayleigh surface, waves in the substrate interact with the resonators to create interesting effects such as effective band-gaps for surface waves or filters that transform surface waves into bulk waves; these effects have parallels in the field of optics where such sub-wavelength resonators create metamaterials, and metasurfaces, in the bulk and at the surface respectively. Here we carefully analyse this canonical problem by extracting the dispersion relations analytically thereby examining the influence of both the flexural and compressional resonances on the propagating wave. For an array of resonators atop an elastic half-space we augment the analysis with numerical simulations. Amongst other effects, we demonstrate the striking effect of a dispersion curve that transitions from Rayleigh...

  17. Thermal Emission by a Subwavelength Aperture

    CERN Document Server

    Joulain, Karl; Carminati, Rémi

    2015-01-01

    We calculate, by means of fluctuational electrodynamics, the thermal emission of an aperture filled by vacuum or a material at temperature T. We show that thermal emission is very different whether the aperture size is large or small compared to the thermal wavelength. Subwavelength apertures filled with vacuum (subwavelength blackbody) have their thermal emission strongly decreased compared to classical blackbodies. A simple expression of their emissivity can be calculated and their total emittance scales as T 8 instead of T 4 for large apertures. Thermal emission of disk of materials with a size comparable to the wavelength is also discussed. It is shown in particular that emissivity of such a disk is increased when the material can support surface waves such as phonon polaritons.

  18. Surface-plasmon mode hybridization in sub-wavelength microdisk lasers

    OpenAIRE

    Perahia, R.; Alegre, T. P. Mayer; Safavi-Naeini, A.; Painter, O.

    2009-01-01

    Hybridization of surface-plasmon and dielectric waveguide whispering-gallery modes are demonstrated in a semiconductor microdisk laser cavity of sub-wavelength proportions. A metal layer is deposited on top of the semiconductor microdisk, the radius of which is systematically varied to enable mode hybridization between surface-plasmon and dielectric modes. The anti-crossing behavior of the two cavity mode types is experimentally observed via photoluminescence spectroscopy and optically pumped...

  19. Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate

    Institute of Scientific and Technical Information of China (English)

    沈祥伟; 刘正堂; 李阳平; 卢红成; 徐启远; 刘文婷

    2009-01-01

    Sub-wavelength structures(SWS) were prepared on Ge substrates through photolithography and reactive ion etching(RIE) technology for broadband antireflective purposes in the long wave infrared(LWIR) waveband of 8-12 μm.Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope(AFM).Infrared transmission performance of the SWS was investigated by Fourier transform infrared(FTIR) spectrometer.Results show that the etched patterns were of high uniformity ...

  20. Sub-wavelength surface gratings for light redirection in transparent substrates

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Christiansen, Mads Brøkner;

    2012-01-01

    We demonstrate sub-wavelength grating couplers patterned on glass surfaces which are designed to convert incident free-space radiation into guided modes along the glass material. The devices are fabricated by nanoimprint lithography and the measured optical performance is compared to a simple mod...... panes and display applications with minimal influence on vision quality. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738777]...

  1. Subwavelength nanobrush target to collimate fast electrons

    Science.gov (United States)

    Zhao, Zongqing; Cao, Lihua; Cao, Leifeng; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Dong, Kegong; Zhang, Baohan; Ding, Yongkun; Gu, Yuqiu

    2011-10-01

    A subwavelength nanobrush target was proposed to collimate fast electrons in laser plasma interaction, which consists of a 5 μm copper underlay covered with a 20 μm thick layer of metallic fibers. The diameter of the individual fibers is about 200 nm and the spacing between them is about 150 nm. The experiment was hold at SILEX-I laser facility (10 J, 31 fs, 300 TW). When a subwavelength nanobrush target interacts with ultraintense laser of 7.9*1018/cm2, highly collimated fast electron beam with divergence angle nearly zero whereas the divergence of the plane target is 40 degree. Two-dimensional particle-in-cell (PIC) simulations show that the fast electrons will be accelerated and guided by strong transient electromagnetic fields created at the wall surfaces of nanobrushs. Both experiment and simulation show that the subwavelength nanobrush target can indeed generate fast electrons more efficiency and collimate them. The scheme should be useful for fast ignition and K α source research in inertial confinement fusion.

  2. Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials.

    Science.gov (United States)

    Amin Yavari, S; Ahmadi, S M; van der Stok, J; Wauthle, R; Riemslag, A C; Janssen, M; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-08-01

    Bio-functionalizing surface treatments are often applied for improving the bioactivity of biomaterials that are based on otherwise bioinert titanium alloys. When applied on highly porous titanium alloy structures intended for orthopedic bone regeneration purposes, such surface treatments could significantly change the static and fatigue properties of these structures and, thus, affect the application of the biomaterial as bone substitute. Therefore, the interplay between biofunctionalizing surface treatments and mechanical behavior needs to be controlled. In this paper, we studied the effects of two bio-functionalizing surface treatments, namely alkali-acid heat treatment (AlAcH) and acid-alkali (AcAl), on the static and fatigue properties of three different highly porous titanium alloy implants manufactured using selective laser melting. It was found that AlAcH treatment results in minimal mass loss. The static and fatigue properties of AlAcH specimens were therefore not much different from as-manufactured (AsM) specimens. In contrast, AcAl resulted in substantial mass loss and also in significantly less static and fatigue properties particularly for porous structures with the highest porosity. The ratio of the static mechanical properties of AcAl specimens to that of AsM specimen was in the range of 1.5-6. The fatigue lives of AcAl specimens were much more severely affected by the applied surface treatments with fatigue lives up to 23 times smaller than that of AsM specimens particularly for the porous structures with the highest porosity. In conclusion, the fatigue properties of surface treated porous titanium are dependent not only on the type of applied surface treatment but also on the porosity of the biomaterial.

  3. Aperture optical antennas

    CERN Document Server

    Wenger, Jerome

    2014-01-01

    This contribution reviews the studies on subwavelength aperture antennas in the optical regime, paying attention to both the fundamental investigations and the applications. Section 2 reports on the enhancement of light-matter interaction using three main types of aperture antennas: single subwavelength aperture, single aperture surrounded by shallow surface corrugations, and subwavelength aperture arrays. A large fraction of nanoaperture applications is devoted to the field of biophotonics to improve molecular sensing, which are reviewed in Section 3. Lastly, the applications towards nano-optics (sources, detectors and filters) are discussed in Section 4.

  4. Optomechanical THz detection with a sub-wavelength resonator

    CERN Document Server

    Belacel, Cherif; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo

    2016-01-01

    The terahertz spectral domain offers a myriad of applications spanning chemical spectroscopy, medicine, security and imaging [1], it has also recently become a playground for fundamental studies of light-matter interactions [2-6]. Terahertz science and technology could benefit from optomechanical approaches, which harness the interaction of light with miniature mechanical resonators [7,8]. So far, optomechanics has mostly focused on the optical and microwave domains, leading to new types of quantum experiments [9-11] and to the development of optical-microwave converters [12-14]. Here we propose and validate the concept of terahertz optomechanics, by coupling far-infrared photons to the mechanical degrees of freedom of the flexible part of a sub-wavelength split-ring resonator [15]. The resulting mechanical signal is read-out optically, allowing our semiconductor/metal device to operate as a compact and efficient terahertz detector with a noise equivalent power of 8 nW/Hz^0.5 and a linear dynamics over five d...

  5. Optimizing the subwavelength grating of L-band Annular Groove Phase Masks for high coronagraphic performance

    CERN Document Server

    Catalan, Ernesto Vargas; Forsberg, Pontus; Jolivet, Aïssa; Baudoz, Pierre; Carlomagno, Brunella; Delacroix, Christian; Habraken, Serge; Mawet, Dimitri; Surdej, Jean; Absil, Olivier; Karlsson, Mikael

    2016-01-01

    Context. The Annular Groove Phase Mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. Aims. We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. Methods. Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. Results. The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile....

  6. Sub-wavelength image stitching with removable microsphere-embedded thin film

    Science.gov (United States)

    Du, Bintao; Ye, Yong-Hong; Hou, Jinglei; Guo, Minglei; Wang, Tian

    2016-01-01

    Imaging by dielectric microspheres embedded in thin film is a simple technique to achieve optical super-resolution. However, the film-thickness effect has not caused enough attention, and its field of view (FOV) is very limited. We first introduce a method to fabricate barium titanate glass (BTG) microsphere-embedded ultrathin polydimethylsiloxane (PDMS) films, and study their sub-wavelength imaging properties as a function of the film thickness. Our experimental results reveal that for an individual microsphere, its FOV obviously increases as the film thickness decreases, while the corresponding magnification changes barely. When the PDMS film thickness is 5-10 μm, the FOV of a microsphere is the largest, and the images produced by the neighboring close-packed microspheres with the same size can be stitched together to form a large image, realizing effective view expansion. Our results will boost the practical capacity of BTG microsphere-embedded film for sub-wavelength imaging.

  7. Topology Optimization of Sub-Wavelength Antennas

    DEFF Research Database (Denmark)

    Erentok, Aycan; Sigmund, Ole

    2011-01-01

    We propose a topology optimization strategy for the systematic design of a three-dimensional (3D), conductor-based sub-wavelength antenna. The post-processed finite-element (FE) models of the optimized structure are shown to be self-resonant, efficient and exhibit distorted omnidirectional......, elliptically polarized far-field radiation patterns. The computed approximate Q value for this antenna is QZ(ω0)≈ 7.74 for ω0=2π × 350.8 MHz and it is 1.64 times larger than the theoretical lower bound value....

  8. In vitro bio-functionality of gallium nitride sensors for radiation biophysics

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Markus [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Howgate, John [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Schmid, Martin [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Schoell, Sebastian; Sachsenhauser, Matthias [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Adiguezel, Denis [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Stutzmann, Martin; Sharp, Ian D. [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Thalhammer, Stefan, E-mail: stefan.thalhammer@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth

  9. Modulation of unpolarized light in planar aligned subwavelength-pitch deformed-helix ferroelectric liquid crystals

    CERN Document Server

    Kesaev, Vladimir V; Kiselev, Alexei D

    2016-01-01

    We study the electro-optic properties of subwavelength-pitch deformed-helix ferroelectric liquid crystals (DHFLC) illuminated with unpolarized light. In the experimental setup based on the Mach-Zehnder interferometer, it was observed that the reference and the sample beams being both unpolarized produce the interference pattern which is insensitive to rotation of in-plane optical axes of the DHFLC cell. We find that the field-induced shift of the interference fringes can be described in terms of the electrically dependent Pancharatnam relative phase determined by the averaged phase shift, whereas the visibility of the fringes is solely dictated by the phase retardation.

  10. Extraordinary Transmission in the UV Range from Sub-wavelength Slits on Semiconductors

    CERN Document Server

    Vincenti, M A; Akozbek, N; Buncick, M; Bloemer, M J; Scalora, M

    2009-01-01

    In this paper we describe a way to achieve the extraordinary transmission regime from sub-wavelength slits carved on semiconductor substrates. Unlike metals, the dielectric permittivity of typical semiconductors like GaAs or GaP is negative beginning in the extreme UV range (lambda <= 270nm). We show that the metal-like response of bulk semiconductors exhibits surface plasmon waves that lead to extraordinary transmission in the UV and soft X-ray ranges. The importance of realistic material response versus perfect conductors is also discussed. These findings may be important in high resolution photo-lithography, near field optical devices and ultra high density optical storage.

  11. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface.

    Science.gov (United States)

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  12. Water purification by bio-function; Seibutsu kino niyoru suishitsu joka

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H. [Yamagata University, Yamagata (Japan)

    1999-11-30

    The author has been studying aquifer heat reservation method as a main theme, and from this water quality purification by bio-function has been derived as a separated theme. The aquifer heat reservation method is a method to reduce a large amount of warm water (or cold water) to underground, to reserve the heat energy for 6 months, and to utilize the hot heat in winter for warming and cold heat in summer for cooling. It was discovered during a field experiment that a doughnut-shaped iron colloid dam was formed around a heat reserving well and improved the heat recovery rate to over 60% by interfering natural convection as well as contributed to the purification of reserved water. As a result of the investigation of anaerobe contained in a peat layer for the purpose of the utilization of the purification effect, bacillus was proven to be most excellent. This paper describes experiences of the author throughout this research by dividing chapters to (1) iron bacteria, (2) bio-filter including algae, (3) peat layer, (4) bacillus. (NEDO)

  13. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Junkyu [Bio alpha., Co. Ltd., Gimhae (Korea, Republic of)

    2014-05-15

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He{sup +} ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He{sup +} ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft.

  14. Suspended core subwavelength fibers: practical designs for the low-loss terahertz guidance

    CERN Document Server

    Rozé, Mathieu; Mazhorova, Anna; Walther, Markus; Skorobogatiy, Maksim

    2011-01-01

    In this work we report two designs of subwavelength fibers packaged for practical terahertz wave guiding. We describe fabrication, modeling and characterization of microstructured polymer fibers featuring a subwavelength-size core suspended in the middle of a large porous outer cladding. This design allows convenient handling of the subwavelength fibers without distorting their modal profile. Additionally, the air-tight porous cladding serves as a natural enclosure for the fiber core, thus avoiding the need for a bulky external enclosure for humidity-purged atmosphere. Fibers of 5 mm and 3 mm in outer diameters with a 150 \\mu m suspended solid core and a 900 \\mu m suspended porous core respectively, were obtained by utilizing a combination of drilling and stacking techniques. Characterization of the fiber optical properties and the near-field imaging of the guided modes were performed using a terahertz near-field microscopy setup. Near-field imaging of the modal profiles at the fiber output confirmed the effe...

  15. Theory of light scattering in subwavelength metallic slot antenna array fabricated on subwavelength thin film

    Science.gov (United States)

    Choi, S. B.; Park, D. J.

    2015-10-01

    We demonstrate an analytic model that describes the near-field electromagnetic field profile near a subwavelength-sized metallic slot antenna fabricated on a thin dielectric substrate having a subwavelength thickness reaching λ/1000 in the terahertz frequency region. We found two-dimensional light diffraction induced by the two-dimensional nature of the slot antenna, and back-reflected waves interfered with each other in a complicated manner, resulting in a coupling of the Fourierdecomposed field amplitudes between the diffraction orders along the x and the y directions. We applied these findings to our model by modifying a previously developed model [D. J. Park et al., J. Korean Phys. Soc. 65, 1390 (2014)], and we monitor the effect on far-field transmission. This coupling effect was found to contribute to removal of physically-meaningless spikes or divergences in the transmission spectra, especially for relatively thick substrates.

  16. Terahertz phase microscopy in the sub-wavelength regime

    Science.gov (United States)

    Yi, Minwoo; Lee, Kanghee; Song, Jin-Dong; Ahn, Jaewook

    2012-04-01

    Gouy phase shift is a well-known behavior that occurs when a propagating light is focused, but its behavior in the sub-wavelength confinement is not yet known. Here, we report the theoretical and experimental study of the aperture-size dependency of the Gouy phase shift in the sub-wavelength diffraction regime. In experiments carried out with laser-induced terahertz (THz) wave emission from various semiconductor apertures, we demonstrate the use of Guoy phase shit for sub-wavelength THz microscopy.

  17. Thermal emission by a subwavelength aperture

    Science.gov (United States)

    Joulain, Karl; Ezzahri, Younès; Carminati, Rémi

    2016-04-01

    We calculate, by means of fluctuational electrodynamics, the thermal emission of an aperture separating from the outside, vacuum or a material at temperature T. We show that thermal emission is very different whether the aperture size is large or small compared to the thermal wavelength. Subwavelength apertures separating vacuum from the outside have their thermal emission strongly decreased compared to classical blackbodies which have an aperture much larger than the wavelength. A simple expression of their emissivity can be calculated and their total emissive power scales as T8 instead of T4 for large apertures. Thermal emission of disk of materials with a size comparable to the wavelength is also discussed. It is shown in particular that emissivity of such a disk is increased when the material can support surface waves such as phonon polaritons.

  18. Extremely Sub-wavelength Planar Magnetic Metamaterials

    CERN Document Server

    Chen, Wen-Chen; Mak, Kelley M; Caira, Nicholas W; Padilla, Willie J

    2011-01-01

    We present highly sub-wavelength magnetic metamaterials designed for operation at radio frequencies (RFs). A dual layer design consisting of independent planar spiral elements enables experimental demonstration of a unit cell size (a) that is ~ 700 times smaller than the resonant wavelength ({\\lambda}0). Simulations indicate that utilization of a conductive via to connect spiral layers permits further optimization and we achieve a unit cell that is {\\lambda}0/a ~ 2000. Magnetic metamaterials are characterized by a novel time domain method which permits determination of the complex magnetic response. Numerical simulations are performed to support experimental data and we find excellent agreement. These new designs make metamaterial low frequency experimental investigations practical and suggest their use for study of magneto-inductive waves, levitation, and further enable potential RF applications.

  19. GHz Electroluminescence Modulation in Nanoscale Subwavelength Emitters.

    Science.gov (United States)

    Rossella, Francesco; Piazza, Vincenzo; Rocci, Mirko; Ercolani, Daniele; Sorba, Lucia; Beltram, Fabio; Roddaro, Stefano

    2016-09-14

    We investigate light emission from nanoscale point-sources obtained in hybrid metal-GaAs nanowires embedding two sharp axial Schottky barriers. Devices are obtained via the formation of Ni-rich metallic alloy regions in the nanostructure body thanks to a technique of controlled thermal annealing of Ni/Au electrodes. In agreement with recent findings, visible-light electroluminescence can be observed upon suitable voltage biasing of the junctions. We investigate the time-resolved emission properties of our devices and demonstrate an electrical modulation of light generation up to 1 GHz. We explore different drive configurations and discuss the intrinsic bottlenecks of the present device architecture. Our results demonstrate a novel technique for the realization of fast subwavelength light sources with possible applications in sensing and microscopy beyond the diffraction limit. PMID:27532324

  20. In vitro bio-functionality of gallium nitride sensors for radiation biophysics.

    Science.gov (United States)

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan

    2012-07-27

    There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on

  1. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    Science.gov (United States)

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke

    2016-03-22

    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  2. Antenna-assisted enhanced transmission through subwavelength nanoholes

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    By structural engineering of sub-wavelength apertures, we numerically demonstrate that transmission through apertures can be significantly enhanced. Based on equivalent circuit theory analysis, structured apertures are obtained with a 1900-fold transmission enhancement factor. We show that the...

  3. Enhanced absorption of graphene strips with a multilayer subwavelength grating structure

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jin-Hua; Huang, Yong-Qing, E-mail: yqhuang@bupt.edu.cn; Duan, Xiao-Feng; Wang, Qi; Zhang, Xia; Wang, Jun; Ren, Xiao-Min [State Key Laboratory of Information Photonics and Optical Communications, Institute of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-12-01

    The optical absorption of graphene strips covered on a multilayer subwavelength grating (MSG) surface is theoretically investigated. The absorption of graphene strips with MSG is enhanced in the wavelength range of 1500 nm to 1600 nm by critical coupling, which is associated with the combined effects of a guided resonance of MSG and its photonic band gap effect. The critical coupling of the graphene strips can be controlled by adjusting the incident angle without changing the structural parameters of MSG. The absorption of graphene strips can also be tuned by varying key parameters, such as grating period, strip width, and incident angle.

  4. Subwavelength imaging of sparse broadband sources surrounded by an open disordered medium from a single antenna

    CERN Document Server

    Li, Lianlin; Cui, Tie Jun

    2014-01-01

    In this letter we study the subwavelength imaging of sparse broadband sources inside a disordered medium by processing the data acquired by a single antenna. A mathematical model has been developed for solving such problem based on the idea of sparse reconstruction. We show that the strongly disordered medium can serves as an efficient apparatus for compressive measurement, which shifts the complexity of devising compressive sensing (CS) hardware from the design, fabrication and electronic control. The proposed method and associated results can find applications in several imaging disciplines, such as optics, THz, RF or ultrasound imaging.

  5. Focus issue introduction: nonlinear optics 2013.

    OpenAIRE

    Dadap, J. I.; Karlsson, M.; Panoiu, N. C.

    2013-01-01

    Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.

  6. Nanostructures for very broadband or multi-frequency transition from wave beams to a subwavelength light distributions

    CERN Document Server

    Luukkonen, O; Simovski, C

    2011-01-01

    In this paper we suggest and theoretically study a tapered plasmonic nanostructure which connects the incident wave beam with a subwavelength spatial region where the field is locally enhanced in a broad frequency range or for different operation frequencies. This spatial region has a frequency stable location near the contour of the tapered structure. This results from a special waveguide mode which can also exist in the tapered structure. We foresee many possible applications for our structure from prospective near-field scanning optical microscopes to interconnects between conventional optical waveguides and prospective optical nanocircuits.

  7. Plasmon transmission through excitonic subwavelength gaps

    CERN Document Server

    Sukharev, Maxim

    2016-01-01

    We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorodes. The absence of spacer in the gap separating the rods the system exhibits the strong coupling between longitudinal plasmons in the two rods. The nature and magnitude of this coupling is studied by varying various geometrical parameters. When the length of one rod is varied this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. As a function of frequency the transmission is dominated by a splitted longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap, and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When off-resonant $2-$level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic lineshape, the tran...

  8. Plasmon transmission through excitonic subwavelength gaps

    Science.gov (United States)

    Sukharev, Maxim; Nitzan, Abraham

    2016-04-01

    We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorods. In the absence of spacer in the gap separating the rods, the system exhibits strong coupling behavior between longitudinal plasmons in the two rods. The nature and magnitude of this coupling are studied by varying various geometrical parameters. As a function of frequency, the transmission is dominated by a split longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When the length of one rod is varied, this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. When off-resonant 2-level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic line shape, the transmission is strongly modified, showing characteristics of strong exciton-plasmon coupling. Most strongly modified is the transmission near the lower frequency "bonding" plasmon mode. The presence of resonant molecules in the gap affects not only the molecule-field interaction but also the spatial distribution of the field intensity and the electromagnetic energy flux across the junction.

  9. Acoustic transmission through compound subwavelength slit arrays

    Science.gov (United States)

    Ward, G. P.; Hibbins, A. P.; Sambles, J. R.; Smith, J. D.

    2016-07-01

    The angular dependence of the transmission of sound in air through four types of two-dimensional slit arrays formed of aluminium slats is explored, both experimentally and numerically. For a simple, subwavelength periodic slit array, it is well known that Fabry-Perot-like waveguide resonances, supported by the slit cavities, coupled to diffracted evanescent waves, result in enhanced acoustic transmission at frequencies determined by the length, width, and separation of each slit cavity. We demonstrate that altering the spacing or width of some of the slits to form a compound array (i.e., an array having a basis comprised of more than one slit) results in sharp dips in the transmission spectra, which may have a strong angular dependence. These features correspond to phase resonances, which have been studied extensively in the electromagnetic case. This geometry allows for additional near-field configurations compared to the simple array, whereby the field in adjacent cavities can be out of phase. Several types of compound slit arrays are investigated; one such structure is optimized to minimize the effect of boundary-layer loss mechanisms present in each slit cavity, thereby achieving a deep, sharp transmission minimum in a broad maximum.

  10. Subwavelength gratings for OVDs - From local interactions to using light-transport

    CERN Document Server

    Basset, Guillaume; Lütolf, Fabian; Davoine, Laurent; Schnieper, Marc

    2015-01-01

    In the past 30 years, subwavelength gratings have been developed and produced as highly secured Diffractive Optical Variable Image Devices (DOVIDs). They allowed new distinct optical effects and dramatically lowered DOVIDs counterfeiting. In particular, subwalength gratings coated with a high refractive index dielectric are well-known and mass-produced to secure documents, such as the Diffractive Identification Devices (DIDs). These submicronic gratings are called Zero Order Devices or Filters (ZOD, ZOF) or diffractive microstructures designed for Zero-order read-out. Similar structures are called Resonant Waveguide Gratings (RWG) or Resonant Leaky Mode Waveguides, when optimized for different purposes. A study using time-resolved optical simulations can demonstrate and quantify how light is coupled and propagation in DIDs structure when observed across the gratings (in collinear incidence). The leaky resonant modes of the RWG are playing a significant role in the appearance of DIDs in collinear incidence, wh...

  11. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies

    Science.gov (United States)

    Fan, Wen; Yan, Bing; Wang, Zengbo; Wu, Limin

    2016-01-01

    Although all-dielectric metamaterials offer a low-loss alternative to current metal-based metamaterials to manipulate light at the nanoscale and may have important applications, very few have been reported to date owing to the current nanofabrication technologies. We develop a new “nano–solid-fluid assembly” method using 15-nm TiO2 nanoparticles as building blocks to fabricate the first three-dimensional (3D) all-dielectric metamaterial at visible frequencies. Because of its optical transparency, high refractive index, and deep-subwavelength structures, this 3D all-dielectric metamaterial-based solid immersion lens (mSIL) can produce a sharp image with a super-resolution of at least 45 nm under a white-light optical microscope, significantly exceeding the classical diffraction limit and previous near-field imaging techniques. Theoretical analysis reveals that electric field enhancement can be formed between contacting TiO2 nanoparticles, which causes effective confinement and propagation of visible light at the deep-subwavelength scale. This endows the mSIL with unusual abilities to illuminate object surfaces with large-area nanoscale near-field evanescent spots and to collect and convert the evanescent information into propagating waves. Our all-dielectric metamaterial design strategy demonstrates the potential to develop low-loss nanophotonic devices at visible frequencies. PMID:27536727

  12. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies.

    Science.gov (United States)

    Fan, Wen; Yan, Bing; Wang, Zengbo; Wu, Limin

    2016-08-01

    Although all-dielectric metamaterials offer a low-loss alternative to current metal-based metamaterials to manipulate light at the nanoscale and may have important applications, very few have been reported to date owing to the current nanofabrication technologies. We develop a new "nano-solid-fluid assembly" method using 15-nm TiO2 nanoparticles as building blocks to fabricate the first three-dimensional (3D) all-dielectric metamaterial at visible frequencies. Because of its optical transparency, high refractive index, and deep-subwavelength structures, this 3D all-dielectric metamaterial-based solid immersion lens (mSIL) can produce a sharp image with a super-resolution of at least 45 nm under a white-light optical microscope, significantly exceeding the classical diffraction limit and previous near-field imaging techniques. Theoretical analysis reveals that electric field enhancement can be formed between contacting TiO2 nanoparticles, which causes effective confinement and propagation of visible light at the deep-subwavelength scale. This endows the mSIL with unusual abilities to illuminate object surfaces with large-area nanoscale near-field evanescent spots and to collect and convert the evanescent information into propagating waves. Our all-dielectric metamaterial design strategy demonstrates the potential to develop low-loss nanophotonic devices at visible frequencies. PMID:27536727

  13. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide.

    Science.gov (United States)

    Yang, Chengliang; Wu, Qiang; Xu, Jingjun; Nelson, Keith A; Werley, Christopher A

    2010-12-01

    Femtosecond optical pulses were used to generate THz-frequency phonon polariton waves in a 50 micrometer lithium niobate slab, which acts as a subwavelength, anisotropic planar waveguide. The spatial and temporal electric field profiles of the THz waves were recorded for different propagation directions using a polarization gating imaging system, and experimental dispersion curves were determined via a two-dimensional Fourier transform. Dispersion relations for an anisotropic slab waveguide were derived via analytical analysis and found to be in excellent agreement with all observed experimental modes. From the dispersion relations, we analyze the propagation-direction-dependent behavior, effective refractive index values, and generation efficiencies for THz-frequency modes in the subwavelength, anisotropic slab waveguide. PMID:21164986

  14. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging

    Science.gov (United States)

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-04-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques.

  15. Subwavelength-grating-assisted broadband polarization-independent directional coupler.

    Science.gov (United States)

    Liu, Lu; Deng, Qingzhong; Zhou, Zhiping

    2016-04-01

    This Letter presents both numerical and experimental results of a polarization-independent directional coupler based on slot waveguides with a subwavelength grating. The measured coupling efficiency is 97.4% for TE and 96.7% for TM polarization at a wavelength of 1550 nm. Further analysis shows that the proposed subwavelength grating directional coupler has a fabrication tolerance of ±20  nm for the grating structure and that the coupling efficiencies for the two polarizations are both higher than -0.5  dB (∼89%), exceeding the entire C-band (1525-1570 nm) experimentally. PMID:27192309

  16. Transmission of electromagnetic waves through sub-wavelength channels

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    We propose a method of tunneling electromagnetic (EM) waves through a channel with sub-wavelength cross section. By filling the channel with high-ε isotropic material and implementing two matching layers with uniaxial metamterial substrates, the guided waves can go through the narrow channel...... without being cut off, as if it has just passed through the original empty waveguide. Both the magnitude and phase information of the EM fields can be effectively restored after passing this channel, regardless of the polarization of the incoming wave. The performance of this subwavelength channel, which...

  17. Subwavelength rectangular cavity partially filled with left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Tian; Chen Yan; Feng Yi-Jun

    2006-01-01

    In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity, and such a cavity becomes a subwavelength cavity. The eigenvalue equation of the cavity is derived and the resonant frequencies of the novel modes are calculated by using numerical simulation. We also discuss the stability of the novel resonant modes and show the best condition under which a useful rectangular cavity of subwavelength dimensions with tolerable stability is obtained.

  18. Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface

    OpenAIRE

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-01-01

    Metasurfaces are a family of novel wavefront shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality as their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a desig...

  19. Properties of Sub-wavelength Resonances in Metamaterial Cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Clausen, N.C.J.; Pedersen, R.R.;

    2008-01-01

    The analytical solution for the canonical configuration with electric line source illumination of concentric metamaterial cylinders is employed to study the properties of the observed sub-wavelength resonances. The near- and far-field distributions, the frequency and geometry bandwidths, and the...

  20. Second Harmonic Generation in Deeply Sub-Wavelength Waveguides

    CERN Document Server

    Roppo, V; de Ceglia, D; Scalora, M

    2012-01-01

    We theoretically investigate second harmonic generation in extremely narrow, sub-wavelength semiconductor and dielectric waveguides. We discuss a novel guiding mechanism characterized by the inhibition of diffraction and the suppression of cut-off limits in the context of a light trapping phenomenon that sets in under conditions of general phase and group velocity mismatch between the fundamental and the generated harmonic.

  1. Retrieval of Effective Parameters of Subwavelength Periodic Photonic Structures

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Yankovskaya, Elizaveta A.; Zhukovsky, Sergei;

    2014-01-01

    We revisit the standard Nicolson Ross Weir method of effective permittivity and permeability restoration of photonic structures for the case of subwavelength metal-dielectric multilayers. We show that the direct application of the standard method yields a false zero-epsilon point and an associated...

  2. Low-loss intersection of subwavelength plasmonic slot waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger

    2008-01-01

    The properties of crossing for two perpendicular subwavelength plasmonic slot waveguides are theoretically investigated. Results show when encountering a nano intersection the crosstalk for the direct crossing is around 25%, almost the same as throughput. In terms of symmetry considerations and r...

  3. Wavelength-independent field enhancement in subwavelength gratings

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Novitsky, Andrey; Shyroki, D.;

    2011-01-01

    We show that lamellar metal gratings exhibit total transmission of incident radiation and strong nonresonant electric field enhancement in extremely subwavelength regime (in the nanometer-sized slits). With high accuracy the enhancement equals the ratio of the grating period to the slit width, it...... is independent on the wavelength and metal thickness....

  4. Theoretical analysis and experiment of subwavelength structure-integrated red AlGaInP light-emitting diodes for uniform field distribution and enhanced light extraction efficiency

    Science.gov (United States)

    Lee, Gil Ju; Song, Young Min

    2016-03-01

    We report theoretical and experimental analysis of antireflective subwavelength structures (SWSs) on GaP substrates to enhance the light output with a uniform light distribution of AlGaInP-based red light-emitting diodes (LEDs). Scaling issues on the optical performance are analyzed by the calculation results from finite-difference time-domain (FDTD) and rigorous coupled-wave analysis (RCWA) methods. The optical simulation reveals that SWSs with a period of 100-150 nm achieve highest optical output power, while maintaining a uniform light field distribution, in the subwavelength regime. To validate our theoretical results, disordered SWSs with a tapered shape were fabricated on a GaP layer of AlGaInP red LEDs by lithography-free dry etching of Ag nanoparticles. The SWS-integrated LED shows a uniform light output distribution with an improved light output power compared with the conventional LED.

  5. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    International Nuclear Information System (INIS)

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  6. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air

    CERN Document Server

    Zhao, Jiayu; Guo, Lanjun; Wang, Zhi; Cheng, Ya; Liu, Weiwei; Xu, Zhizhan

    2013-01-01

    Terahertz (THz) imaging provides cutting edge technique in biology, medical sciences and non-destructive evaluation. However, due to the long wavelength of the THz wave, the obtained resolution of THz imaging is normally a few hundred microns and is much lower than that of the traditional optical imaging. We introduce a sub-wavelength resolution THz imaging technique which uses the THz radiation generated by a femtosecond laser filament in air as the probe. This method is based on the fact that the femtosecond laser filament forms a waveguide for the THz wave in air. The diameter of the THz beam, which propagates inside the filament, varies from 20 {\\mu}m to 50 {\\mu}m, which is significantly smaller than the wavelength of the THz wave. Using this highly spatially confined THz beam as the probe, THz imaging with resolution as high as 20 {\\mu}m (~{\\lambda}/38) can be realized.

  7. Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement.

    Science.gov (United States)

    Ma, Youqiao; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2014-02-15

    In this Letter, a novel waveguide based on hybrid surface plasmon polaritons (HSPPs) is proposed and numerically analyzed. This waveguide consists of two dielectric nanowires placed on both sides of a nanowedge-patterned metal film, which can confine light in the ultra-deep-subwavelength region (ranging from λ²/4000 to λ²/400) with a long propagation length (ranging from 1200 to 3500 μm). Compared to a previous HSPPs waveguide without the nanowedges, with the same propagation length, our proposed structure has much higher mode confinement with 1 order of magnitude smaller normalized mode area. An investigation of the effect of structural perturbations indicates that our proposed waveguide also has good tolerance of fabrication errors. The proposed waveguide could be an interesting alternative structure to realize nanolasers and optical trapping.

  8. Subwavelength Microstructures Fabrication by Self-Organization Processes in Photopolymerizable Nanocomposite

    Directory of Open Access Journals (Sweden)

    I. Yu. Denisyuk

    2012-01-01

    Full Text Available This paper describes our research results on nanometers sizes subwavelength nanostructure fabrication by UV curing of special nanocomposite material with self-organization and light self-focusing effects. For this purpose, special UV curable nanocomposite material with a set of effects was developing: light self-focusing in the photopolymer with positive refractive index change, self-organization based on photo-induced nanoparticles transportation, and oxygen-based polymerization threshold. Both holographic and projection lithography writing methods application for microstructure making shows geometrical optical laws perturbation as result of nanocomposite self-organization effects with formation of nanometers-sized high-aspect-ratio structures. Obtained results will be useful for diffraction limit overcoming in projection lithography as well as for deep lithography technique.

  9. Near-field properties of diffraction through a circular subwavelength-size aperture

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-Ling; Zhou Ming; Gao Chuan-Yu; Zhang Wei

    2012-01-01

    Analytical nonparaxial vectorial electric field expressions for both Gaussian beams and plane waves diffracted through a circular aperture are derived by using the vector plane angular spectrum method for the first time,which is suitable for the subwavelength aperture and the near-field region.The transverse properties of intensity distributions and their evolutions with the propagating distance,and the power transmission functions for diffracted fields containing the whole field,the evanescent field and the propagating field are investigated in detail,which is helpful for understanding the relationship between evanescent and propagating components in the near-field region and can be applied to apertured near-field scanning optical microscopy.

  10. Influence of grating thickness in low-contrast subwavelength grating concentrating lenses

    Science.gov (United States)

    Ye, Mao; Yi, Ya Sha

    2016-07-01

    Conventional subwavelength grating concentrating lenses are designed based on calculated phase overlap, wherein the phase change is fixed by the grating thickness, bar-width, and airgap, and therefore the focus. We found that certain concentration effects can still be maintained by changing the grating thickness with the same bar-widths and airgap dimensions. Following that, we discovered the existence of the grating thickness threshold; light concentration intensity spikes upon exceeding this limit. However, the light concentration property does not change continuously with respect to a steady increase in grating thickness. This observation indicates that there exists a concentration mode self-interference effect along the light propagation direction inside the gratings. Our results may provide guidance in designing and fabricating microlenses in a potentially more easy and controllable manner. Such approaches can be utilized in various integrated nanophotonics applications ranging from optical cavities and read/write heads to concentrating photovoltaics.

  11. Far-field subwavelength imaging from a single broadband antenna in combined with strongly disordered medium

    CERN Document Server

    Li, Lianlin; Cui, Tie Jun

    2014-01-01

    The far-field subwavlength imaging is a challenging issue. In this letter we demonstrate numerically that the far-field subwavelength imaging of weakly scattering objects can be obtained by processing the data acquired by a single antenna, which benefits from the use of the strongly disordered medium. A mathematical model has been proposed for solving such problem based on the idea of sparse reconstruction. Moreover, this study leads to an important conclusion that the strongly disordered medium can serves as an efficient apparatus for the single-antenna compressive measurement, which shifts the complexity of devising compressive sensing (CS) hardware from the design, fabrication and electronic control. The proposed method and associated results can find applications in several imaging disciplines, such as optics, THz, RF or ultrasound imaging.

  12. Numerical Investigation of Vertical Cavity Lasers with Subwavelength Gratings Using the Fourier Modal Method

    CERN Document Server

    Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    We show the strength of the Fourier modal method (FMM) for numerically investigating the optical properties of vertical cavities including subwavelength gratings. Three different techniques for determining the resonance frequency and Q-factor of a cavity mode are compared. Based on that, the Fabry-Perot approach has been chosen due to its numerical efficiency. The computational uncertainty in determining the resonance frequency and Q-factor is investigated, showing that the uncertainty in the Q-factor calculation can be a few orders of magnitude larger than that in the resonance frequency calculation. Moreover, a method for reducing 3D simulations to lower-dimensional simulations is suggested, and is shown to enable approximate and fast simulations of certain device parameters. Numerical calculation of the cavity dispersion, which is an important characteristic of vertical cavities, is illustrated. By employing the implemented FMM, it is shown that adiabatic heterostructures designs are advantageous compared ...

  13. Sub-wavelength bubble in photon coincidence detection

    CERN Document Server

    Liu, Ruifeng; Zhou, Yu; Gao, Hong; Li, Fuli

    2013-01-01

    Sub-wavelength interference has a potential application in lithography to beat the classical Rayleigh limit of resolution. We carefully study the second-order correlation theory and find there is a bubble of sub-wavelength interference in photon coincidence detection. A Young's double-slit experiment with thermal light is carried out to test the second-order correlation pattern. The result shows that when different scanning ways of two point detectors are chosen, we can get arbitrary-wavelength interference patterns. We then give a theoretical explanation to this surprising result, and find this explanation is also suitable for the result by using entangled light. Furthermore, the question of whether this kind of arbitrary-wavelength interference patterns can be used in quantum lithography is also analyzed.

  14. A spatially shifted beam approach to subwavelength focusing

    CERN Document Server

    Markley, Loic; Eleftheriades, George V

    2008-01-01

    With the development of negative-refractive-index metamaterials over the last decade, the challenge of subwavelength focusing has received considerable attention. The difficulties associated with image degradation from losses and with scalability to high frequencies led to alternative near-field techniques being explored. In this paper, we propose a slotted metal screen that focuses the near-field above the limit imposed by diffraction and furthermore, is easily scaled from microwave to Terahertz frequencies and beyond. Using subwavelength spaced dipole slots with induced currents of alternating signs, the superposition of shifted beam patterns produces a focus that can be tightened beyond the diffraction limit. An analytical model is developed that agrees very well with full-wave simulations and is corroborated by experimental results at microwave frequencies.

  15. Adjustable subwavelength localization in a hybrid plasmonic waveguide

    CERN Document Server

    Belan, S A; Vorobev, P E

    2012-01-01

    The hybrid plasmonic waveguide consists of a high-permittivity dielectric nanofiber embedded in a low-permittivity dielectric near a metal surface. This architecture is considered as one of the most perspective candidates for long-range subwavelength guiding. We present qualitative analysis and numerical results which reveal advantages of the special waveguide design when dielectric constant of the cylinder is greater than the absolute value of the dielectric constant of the metal. In this case the arbitrary subwavelength mode size can be achieved by controlling the gap width. Our qualitative analysis is based on consideration of sandwich-like conductor-gap-dielectric system. The numerical solution is obtained by expansion of the hybrid plasmonic mode over single cylinder modes and the surface plasmon-polariton modes of the metal screen and matching the boundary conditions.

  16. Left-handed metamaterial coatings for subwavelength-resolution imaging.

    Science.gov (United States)

    Zapata-Rodríguez, Carlos J; Pastor, David; Martínez, Luis E; Miret, Juan J

    2012-09-01

    We report on a procedure to improve the resolution of far-field imaging by using a neighboring high-index medium that is coated with a left-handed metamaterial. The resulting plot can also exhibit an enhanced transmission by considering proper conditions to retract backscattering. Based on negative refraction, geometrical aberrations are considered in detail since they may cause a great impact in this sort of diffraction-unlimited imaging by reducing its resolution power. We employ a standard aberration analysis to refine the asymmetric configuration of metamaterial superlenses. We demonstrate that low-order centrosymmetric aberrations can be fully corrected for a given object plane. For subwavelength-resolution imaging, however, high-order aberrations become of relevance, which may be balanced with defocus. Not only the point spread function but also numerical simulations based on the finite-element method support our theoretical analysis, and subwavelength resolution is verified in the image plane.

  17. 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta;

    2013-01-01

    We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing the re...... efficiency. The HCG VCSEL shows a total tuning range of 16 nm around an emission wavelength of 1060 nm with 1-mW output power....

  18. Extra energy coupling through subwavelength hole arrays via stochastic resonance

    OpenAIRE

    Masson, Jean-Baptiste; Gallot, Guilhem

    2007-01-01

    Interaction between metal surface waves and periodic geometry of subwavelength structures is at the core of the recent but crucial renewal of interest in plasmonics. One of the most intriguing points is the observation of abnormal strong transmission through these periodic structures, which can exceed by orders of magnitude the classical transmission given by the filling factor of the plate. The actual paradigm is that this abnormal transmission arises from the periodicity, and then that such...

  19. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  20. Breaking of Energy Conservation Law: Creating and Destroying of Energy by Subwavelength Nanosystems

    OpenAIRE

    Kukhlevsky, S. V.

    2006-01-01

    The extra energy, negative energy and annihilation of energy by the subwavelength conservative systems that have a wave nature of light or matter (quantum) objects are predicted. The creating and destroying of energy break the energy conservation law in any subwavelength physical system. The paradoxical phenomenon is demonstrated in the context of extraordinary transmission of light and matter through subwavelength apertures [T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and E. Moreno ...

  1. Nitidine chloride-assisted bio-functionalization of reduced graphene oxide by bovine serum albumin for impedimetric immunosensing.

    Science.gov (United States)

    Li, Yu; Zhang, Zhao; Zhang, Yuting; Deng, Dongmei; Luo, Liqiang; Han, Baosan; Fan, Chunhai

    2016-05-15

    A novel protocol of label-free electrochemical impedance immunosensor based on bovine serum albumin-nitidine chloride-reduced graphene oxide (BSA-NC-rGO) nanocomposite was proposed for quantitative determination of carcino-embryonic antigen (CEA). BSA was anchored to rGO via the aromatic plane of NC by π-stacking interaction to realize bio-functionalization of rGO, and then gold nanoparticles (AuNPs) were electrodeposited onto the surface of BSA-NC-rGO nanocomposite. The morphology, conductivity and interaction of different nanocomposites were characterized by scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and UV-vis spectrum. CEA monoclonal antibody (anti-CEA) was conjugated to AuNPs via gold-thiol chemistry to construct electrochemical immunosensing platform, and the specific immunoreaction between CEA and anti-CEA was monitored by EIS. Under optimum conditions, CEA could be quantified in a wide range of 0.1-200 ng mL(-1) (R=0.9948) with low detection limit of 0.067 ng mL(-1). The proposed immunosensor exhibited great potential for detecting blood samples. PMID:26748371

  2. All-dielectric subwavelength metasurface focusing lens.

    Science.gov (United States)

    West, Paul R; Stewart, James L; Kildishev, Alexander V; Shalaev, Vladimir M; Shkunov, Vladimir V; Strohkendl, Friedrich; Zakharenkov, Yuri A; Dodds, Robert K; Byren, Robert

    2014-10-20

    We have proposed, designed, manufactured and tested low loss dielectric micro-lenses for infrared (IR) radiation based on a dielectric metamaterial layer. This metamaterial layer was created by patterning a dielectric surface and etching to sub-micron depths. For a proof-of-concept lens demonstration, we have chosen a fine patterned array of nano-pillars with variable diameters. Gradient index (GRIN) properties were achieved by engineering the nano-pattern characteristics across the lens, so that the effective optical density of the dielectric metamaterial layer peaks around the lens center, and gradually drops at the lens periphery. A set of lens designs with reduced reflection and tailorable phase gradients have been developed and tested, demonstrating focal distances of a few hundred microns, beam area contraction ratio up to three, and insertion losses as low as 11%. PMID:25401653

  3. Complete Control of Polarization and Phase of Light with High Efficiency and Sub-wavelength Spatial Resolution

    CERN Document Server

    Arbabi, Amir; Bagheri, Mahmood; Faraon, Andrei

    2014-01-01

    Meta-surfaces are planar structures that locally change polarization, phase, and amplitude of light, thus enabling flat, lithographically patterned free-space optical components with functionalities controlled by design. Several types of meta-surfaces have been reported, but low efficiency and the inability to provide simultaneous phase and polarization control have limited their applications. Here we demonstrate a platform based on high-contrast dielectric elliptical nano-posts providing complete and efficient control of polarization and phase with sub-wavelength spatial resolution. The unprecedented freedom in manipulating light not only enables realization of conventional free-space transmissive optical elements such as phase-plates, wave-plates and beam-splitters, but also elements with novel functionalities such as general polarization switchable phase holograms and arbitrary vector beam generators which will change the design paradigms for free-space optical systems.

  4. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light

    Science.gov (United States)

    Bor, E.; Turduev, M.; Kurt, H.

    2016-08-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.

  5. Subwavelength grating-mirror VCSEL with a thin oxide gap

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper; Gilet, Philippe;

    2008-01-01

    A new vertical-cavity surface-emitting laser (VCSEL) structure based on a subwavelength grating mirror and a thin oxide gap is suggested and numerically investigated. The structure is shown to exhibit similar threshold gain, suppression of higher order transverse modes, and polarization stability...... as a grating-mirror VCSEL reported in the literature based on a thick air gap. The thin oxide gap structure has a number of advantages including easier fabrication, better mechanical stability, and very strong single-mode properties....

  6. Broadband high reflectivity in subwavelength-grating slab waveguides

    CERN Document Server

    Cui, Xuan; Zhou, Zhongxiang

    2015-01-01

    We computationally study a subwavelength dielectric grating structure, show that slab waveguide modes can be used to obtain broadband high reflectivity, and analyze how slab waveguide modes influence reflection. A structure showing interference between Fabry-Perot modes, slab waveguide modes, and waveguide array modes is designed with ultra-broadband high reflectivity. Owing to the coupling of guided modes, the region with reflectivity R > 0.99 has an ultra-high bandwidth ( {\\Delta}f/f > 30%). The incident-angle region with R > 0.99 extends over a range greater than 40{\\deg}. Moreover, an asymmetric waveguide structure is studied using a semiconductor substrate.

  7. Broadband line imaging with subwavelength resolution using plasmonic waveguides

    OpenAIRE

    Podoliak, N.; Horak, P.; Prangsma, J.C.; Pinkse, P.W.H.

    2015-01-01

    In this paper we design a high-resolution line imaging device allowing for broadband operation at near-infrared wavelengths ranging from 1 ?m to 2 ?m utilizing the advantage of subwavelength light confinement in plasmonic waveguides. The device consists of an array of air-guided plasmonic waveguides in gold with fanned-out geometry. In the main part of the device the separation between waveguides increases gradually from the input towards the output. High resolution is achieved on the input s...

  8. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...

  9. High performance absorber structure using subwavelength multi-branch dimers

    Science.gov (United States)

    He, Kebo; Su, Guangyao; Liu, Chuanhong; Gou, Fangwang; Zhang, Zhaoyu

    2012-11-01

    As the desire growing of the thin film absorption structure for various sub-wavelength applications such as photo detector, thin-film thermal emitters, thermo photovoltaic cells, and multi-color filters, we proposed a type of subwavelength multi-branch dimers which exhibit several tunable dipole-dipole-like plasmonic resonances and integrated it into metal-insulator-metal structure as the top layer. The structures are studied through numerical calculation by finite element method. When normal incident is considered, the novel structure shows three absorption peaks in the considered wavelength range. One peak has near-perfect absorption and the other two also show excellent absorption.. When different angle oblique incident is considered, the absorption only has slight change, which is useful to an ultrathin absorber structure. In addition, we find that the thickness of the dielectric layer can tune the absorption rates for each absorption peak. In general, the multi-branch dimers can easily tune its absorption rates and spectrum via the change of their geometric parameters such as branch lengths, branch angles, and dielectric layer thickness.

  10. Low Contrast Dielectric Metasurface Optics

    OpenAIRE

    Zhan, Alan; Colburn, Shane; Trivedi, Rahul; Dodson, Chris; Majumdar, Arka

    2015-01-01

    The miniaturization of current image sensors is largely limited by the volume of the optical elements. Using a sub-wavelength patterned quasi-periodic structure, also known as a metasurface, one can build planar optical elements based on the principle of diffraction. However, it was believed that high refractive index materials are required for metasurface optics. Here, we show that one can employ the design principles of a metasurface even with low contrast materials, such as silicon nitride...

  11. An optical metasurface planar camera

    OpenAIRE

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are 2D arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optical design by enabling complex low cost systems where multiple metasurfaces are lithographically stacked on top of each other and are integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here, we demonstrate this concept w...

  12. Photonic crystal-adaptive optical devices

    DEFF Research Database (Denmark)

    Buss, Thomas

    -doped liquid crystal gain medium for the realization of cheap and compact optically pumped, electrically tunable lasers. Finally, a transparent projection display is presented which uses sub-wavelength gratings for redirection of light guided inside a waveguide and facilitates electro-optic switching by means...

  13. Propagation characteristics of the silica and silicon subwavelength-diameter hollow wire waveguides

    Institute of Scientific and Technical Information of China (English)

    Man Wu; Weiqing Huang; Lingling Wang

    2008-01-01

    @@ The basic propagation properties of the silica and silicon subwavelength-diameter hollow wire waveguides have been investigated by comparison. It shows that the silica and silicon subwavelength-diameter hollow wire waveguides have some interesting properties, such as enhanced evanescent field in the cladding, enhanced intensity in the hollow core, and large waveguide dispersion. For the different confinement ability, the enhanced field in the hollow core and cladding of the silica subwavelength-diameter hollow wire is much stronger than that of the silicon one for the same size.

  14. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Science.gov (United States)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  15. Acoustic metasurface-based perfect absorber with deep subwavelength thickness

    Science.gov (United States)

    Li, Yong; Assouar, Badreddine M.

    2016-02-01

    Conventional acoustic absorbers are used to have a structure with a thickness comparable to the working wavelength, resulting in major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in an extremely low frequency region. The metasurface possessing a deep subwavelength thickness down to a feature size of ˜ λ / 223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have an high impact on amount of applications due to the extremely thin thickness, easy fabrication, and high efficiency of the proposed structure.

  16. Superradiance of a subwavelength array of independent classical nonlinear emitters

    CERN Document Server

    Nefedkin, N E; Zyablovsky, A A; Pukhov, A A; Vinogradov, A P; Lisyansky, A A

    2015-01-01

    We suggest a mechanism for the emergence of a superradiance burst in a subwavelength array of nonlinear classical emitters. We assume that the emitters interact via their common field of radiative response and that they may have an arbitrary distribution of initially phases. We show that only if this distribution is not uniform, a non-zero field of radiative response arises leading to a superradiance burst. Although this field cannot synchronize the emitters, it forces fast oscillations of a classical nonlinear emitter to have long-period envelopes. Constructive interference in the envelopes creates a large dipole moment of the array which results in a superradiance pulse. The intensity of the superradiance is proportional to the squared number of the emitters, which envelopes participate in the fluctuation.

  17. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits.

    Science.gov (United States)

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T

    2016-05-05

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.

  18. Modular sub-wavelength diffractive light modulator for high-definition holographic displays

    International Nuclear Information System (INIS)

    Holography is undoubtedly the ultimate 3D visualization technology, offering true 3D experience with all the natural depth cues, without the undesirable side-effects of current stereoscopic systems (uncomfortable glasses, strained eyes, fatiguing experience). Realization of a high-definition holographic display however requires a number of breakthroughs from existing prototypes. One of the main challenges lies in technology scaling, as holography is based on light diffraction and interference – to achieve wide viewing angles, the light-modulating pixels need to be spaced close to or below the wavelength of the used visible light. Furthermore, achieving high 3D image quality, hundreds of millions of such individually programmable pixels are needed. As a solution, we develop a modular sub-wavelength light modulator, consisting of three main sub-systems: the optical sub-system, comprising a 2D array of sub-wavelength pixels; the driver sub-system for individual pixel control, and the holographic computational engine. Based on conclusions from our state-of-the art studies, numerous experiments and holographic demonstrators, we have focused on reflective phase-modulating MEMS-based system and its scaling beyond 500nm pitch. We have devised a unique binary-programmable phase-modulating pixel architecture realizing vertical pixel displacement of up to 150nm at 500nm by 500nm pixel pitch, while sustaining low operating voltages compatible with CMOS driver circuitry. IMEC SiGe MEMS technology enables integration of the CMOS pixel-line drivers, scan-line drivers and I/O circuits underneath the 2D MEMS array, resulting in a compact and modular single-chip system design. Refresh rates of few hundred frames per second are achieved using our patented segmented driver-array architecture. Integrated circuits implementing parallel holographic computational engines can be added to the module using advanced 3D stacking technology. Herein we further report on our progress in

  19. Localized Polymerization Using Single Photon Photoinitiators in Two-photon process for Fabricating Subwavelength Structures

    CERN Document Server

    Ummethala, Govind; Chaudhary, Raghvendra P; Hawal, Suyog; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    Localized polymerization in subwavelength volumes using two photon dyes has now become a well-established method for fabrication of subwavelength structures. Unfortunately, the two photon absorption dyes used in such process are not only expensive but also proprietary. LTPO-L is an inexpensive, easily available single photon photoinitiator and has been used extensively for single photon absorption of UV light for polymerization. These polymerization volumes however are not localized and extend to micron size resolution having limited applications. We have exploited high quantum yield of radicals of LTPO-Lfor absorption of two photons to achieve localized polymerization in subwavelength volumes, much below the diffraction limit. Critical concentration (10wt%) of LTPO-Lin acrylate (Sartomer) was found optimal to achieve subwavelength localized polymerization and has been demonstrated by fabricating 2D/3D complex nanostructures and functional devices such as variable polymeric gratings with nanoscaled subwavelen...

  20. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates

    Science.gov (United States)

    Wan, Yating; Li, Qiang; Liu, Alan Y.; Chow, Weng W.; Gossard, Arthur C.; Bowers, John E.; Hu, Evelyn L.; Lau, Kei May

    2016-05-01

    Subwavelength micro-disk lasers (MDLs) as small as 1 μm in diameter on exact (001) silicon were fabricated using colloidal lithography. The micro-cavity gain medium incorporating five-stacked InAs quantum dot layers was grown on a high crystalline quality GaAs-on-V-grooved-Si template with no absorptive intermediate buffers. Under continuous-wave optical pumping, the MDLs on silicon exhibit lasing in the 1.2-μm wavelength range with low thresholds down to 35 μW at 10 K. The MDLs compare favorably with devices fabricated on native GaAs substrates and state-of-the-art work reported elsewhere. Feasibility of device miniaturization can be projected by size-dependent lasing characteristics. The results show a promising path towards dense integration of photonic components on the mainstream complementary metal-oxide-semiconductor platform.

  1. Determination of the complex refractive index of a subwavelength-diameter platinum or gold pipe by light scattering.

    Science.gov (United States)

    Tajima, Fumiaki; Nishiyama, Yoshio

    2016-09-01

    The complex refractive indices of Pt and Au pipes that are subwavelength in diameter have been found to be different from those of metal thin films for the first time. The metal pipe is made from a spider silk of half-wavelength diameter clad with Pt or Au and illuminated by a plane-polarized laser of wavelength 660 nm at normal incidence. The angular distribution of the light intensity scattered by the pipe is measured and fitted using theoretical calculations based on the corresponding model. The fitting results have lead to the optimum values and uncertainty ranges of the indices and the diameter of the pipe. A field emission scanning electron microscope confirms the diameter from the optical estimation and reveals an image of the surface of the pipe. PMID:27607485

  2. Diffractive optics and nanophotonics resolution below the diffraction limit

    CERN Document Server

    Minin, Igor

    2016-01-01

    In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...

  3. Metallic Strip Gratings in the Sub-Subwavelength Regime

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2014-07-01

    Full Text Available Metallic strip gratings (MSG have different applications, ranging from printed circuits to filters in microwave domains. When they are under the influence of an electromagnetic field, evanescent and/or abnormal modes appear in the region between the traces, their utilization leading to the development of new electromagnetic nondestructive evaluation methods. This paper studies the behavior of MSGs in the sub-subwavelength regime when they are excited with TEz or TMz polarized plane waves and the slits are filled with different dielectrics. The appearance of propagating, evanescent and abnormal modes is emphasized using an electromagnetic sensor with metamaterials lens realized with two conical Swiss rolls, which allows the extraction of the information carried by the guided evanescent waves. The evanescent waves, manipulated by the electromagnetic sensor with metamaterial lenses, improve the electromagnetic images so that a better spatial resolution is obtained, exceeding the limit imposed by diffraction. Their theoretical and experimental confirmation opens the perspective for development of new types of sensors working in radio and microwave frequencies.

  4. Subwavelength engineered fiber-to-chip silicon-on-sapphire interconnects for mid-infrared applications (Conference Presentation)

    Science.gov (United States)

    Alonso-Ramos, Carlos; Han, Zhaohong; Le Roux, Xavier; Lin, Hongtao; Singh, Vivek; Lin, Pao Tai; Tan, Dawn; Cassan, Eric; Marris-Morini, Delphine; Vivien, Laurent; Wada, Kazumi; Hu, Juejun; Agarwal, Anuradha; Kimerling, Lionel C.

    2016-05-01

    The mid-Infrared wavelength range (2-20 µm), so-called fingerprint region, contains the very sharp vibrational and rotational resonances of many chemical and biological substances. Thereby, on-chip absorption-spectrometry-based sensors operating in the mid-Infrared (mid-IR) have the potential to perform high-precision, label-free, real-time detection of multiple target molecules within a single sensor, which makes them an ideal technology for the implementation of lab-on-a-chip devices. Benefiting from the great development realized in the telecom field, silicon photonics is poised to deliver ultra-compact efficient and cost-effective devices fabricated at mass scale. In addition, Si is transparent up to 8 µm wavelength, making it an ideal material for the implementation of high-performance mid-IR photonic circuits. The silicon-on-insulator (SOI) technology, typically used in telecom applications, relies on silicon dioxide as bottom insulator. Unfortunately, silicon dioxide absorbs light beyond 3.6 µm, limiting the usability range of the SOI platform for the mid-IR. Silicon-on-sapphire (SOS) has been proposed as an alternative solution that extends the operability region up to 6 µm (sapphire absorption), while providing a high-index contrast. In this context, surface grating couplers have been proved as an efficient means of injecting and extracting light from mid-IR SOS circuits that obviate the need of cleaving sapphire. However, grating couplers typically have a reduced bandwidth, compared with facet coupling solutions such as inverse or sub-wavelength tapers. This feature limits their feasibility for absorption spectroscopy applications that may require monitoring wide wavelength ranges. Interestingly, sub-wavelength engineering can be used to substantially improve grating coupler bandwidth, as demonstrated in devices operating at telecom wavelengths. Here, we report on the development of fiber-to-chip interconnects to ZrF4 optical fibers and integrated SOS

  5. Engineering optical properties of semiconductor metafilm superabsorbers

    Science.gov (United States)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2016-04-01

    Light absorption in ultrathin layer of semiconductor has been considerable interests for many years due to its potential applications in various optical devices. In particular, there have been great efforts to engineer the optical properties of the film for the control of absorption spectrums. Whereas the isotropic thin films have intrinsic optical properties that are fixed by materials' properties, metafilm that are composed by deep subwavelength nano-building blocks provides significant flexibilities in controlling the optical properties of the designed effective layers. Here, we present the ultrathin semiconductor metafilm absorbers by arranging germanium (Ge) nanobeams in deep subwavelength scale. Resonant properties of high index semiconductor nanobeams play a key role in designing effective optical properties of the film. We demonstrate this in theory and experimental measurements to build a designing rule of efficient, controllable metafilm absorbers. The proposed strategy of engineering optical properties could open up wide range of applications from ultrathin photodetection and solar energy harvesting to the diverse flexible optoelectronics.

  6. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  7. Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures

    CERN Document Server

    Cai, Ben Geng; Ma, Hui Feng; Jiang, Wei Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    One-dimensional (1D) subwavelength corrugated metal structures has been described to support spoof surface plasmon polaritons (SPPs). Here we demonstrate that a modulated 1D subwavelength corrugated metal structure can convert spoof SPPs to propagating waves. The structure is fed at the center through a slit with a connected waveguide on the input side. The subwavelength corrugated metal structure on the output surface is regarded as metasurface and modulated periodically to realize the leaky-wave radiation at the broadside. The surface impedance of the corrugated metal structure is modulated by using cosine function and triangle-wave function, respectively, to reach the radiation effect. Full wave simulations and measuremental results are presented to validate the proposed design.

  8. Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures.

    Science.gov (United States)

    Cai, Ben Geng; Li, Yun Bo; Ma, Hui Feng; Jiang, Wei Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    One-dimensional (1D) subwavelength corrugated metal structures has been described to support spoof surface plasmon polaritons (SPPs). Here we demonstrate that a periodically modulated 1D subwavelength corrugated metal structure can convert spoof SPPs to propagating waves. The structure is fed at the center through a slit with a connected waveguide on the input side. The subwavelength corrugated metal structure on the output surface is regarded as metasurface and modulated periodically to realize the leaky-wave radiation at the broadside. The surface impedance of the corrugated metal structure is modulated by using cosine function and triangle-wave function, respectively, to reach the radiation effect. Full wave simulations and measuremental results are presented to validate the proposed design. PMID:27035269

  9. A biomimetic projector with high subwavelength directivity based on dolphin biosonar

    Science.gov (United States)

    Zhang, Yu; Gao, Xiaowei; Zhang, Sai; Cao, Wenwu; Tang, Liguo; Wang, Ding; Li, Yan

    2014-09-01

    Based on computed tomography of a Yangtze finless porpoise's biosonar system, a biomimetic structure was designed to include air cavity, gradient-index material, and steel outer-structure mimicking air sacs, melon, and skull, respectively. The mainlobe pressure was about three times higher, the angular resolution was one order of magnitude higher, and the effective source size was orders of magnitude larger than those of the subwavelength source without the biomimetic structure. The superior subwavelength directivity over a broad bandwidth suggests potential applications of this biomimetic projector in underwater sonar, medical ultrasonography, and other related applications.

  10. Enhanced surface acceleration of fast electrons by using sub-wavelength grating targets

    CERN Document Server

    Hu, Guang-yue; Wang, Wen-tao; Wang, Jing-wei; Huang, Lin-gen; Wang, Xin; Xu, Yi; Liu, Jian-sheng; Shen, Bai-fei; Yu, Wei; Li, Ru-xin; Xu, Zhi-zhan

    2010-01-01

    Surface acceleration of fast electrons in intense laser-plasma interaction is improved by using sub-wavelength grating targets. The fast electron beam emitted along the target surface was enhanced by more than three times relative to that by using planar target. The total number of the fast electrons ejected from the front side of target was also increased by about one time. The method to enhance the surface acceleration of fast electron is effective for various targets with sub-wavelength structured surface, and can be applied widely in the cone-guided fast ignition, energetic ion acceleration, plasma device, and other high energy density physics experiments.

  11. Terahertz imaging of sub-wavelength particles with Zenneck surface waves

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Cía, M., E-mail: m.navarro@imperial.ac.uk [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom); Centre for Plasmonics and Metamaterials, Imperial College London, London SW7 2AZ (United Kingdom); Centre for Terahertz Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Natrella, M.; Graham, C.; Renaud, C. C.; Seeds, A. J.; Mitrofanov, O., E-mail: o.mitrofanov@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Dominec, F.; Kužel, P., E-mail: kuzelp@fzu.cz [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Delagnes, J. C.; Mounaix, P., E-mail: p.mounaix@loma.u-bordeaux1.fr [LOMA, Bordeaux 1 University, CNRS UMR 4798, 351 cours de la Libération, 33405 Talence (France)

    2013-11-25

    Impact of sub-wavelength-size dielectric particles on Zenneck surface waves on planar metallic antennas is investigated at terahertz (THz) frequencies with THz near-field probe microscopy. Perturbations of the surface waves show the particle presence, despite its sub-wavelength size. The experimental configuration, which utilizes excitation of surface waves at metallic edges, is suitable for THz imaging of dielectric sub-wavelength size objects. As a proof of concept, the effects of a small strontium titanate rectangular particle and a titanium dioxide sphere on the surface field of a bow-tie antenna are experimentally detected and verified using full-wave simulations.

  12. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  13. Magnetic field concentrator for probing optical magnetic metamaterials.

    Science.gov (United States)

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  14. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications.

    Science.gov (United States)

    Alias, Mohd S; Yang, Yang; Ng, Tien K; Dursun, Ibrahim; Shi, Dong; Saidaminov, Makhsud I; Priante, Davide; Bakr, Osman M; Ooi, Boon S

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption.

  15. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications

    KAUST Repository

    Alias, Mohd Sharizal Bin

    2015-12-22

    The high optical gain and absorption of organic–inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption.

  16. Optically transduced MEMS gyro device

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Bogart, Gregory R; Langlois, Eric; Okandan, Murat

    2014-05-20

    A bulk micromachined vibratory gyro in which a proof mass has a bulk substrate thickness for a large mass and high inertial sensitivity. In embodiments, optical displacement transduction is with multi-layer sub-wavelength gratings for high sensitivity and low cross-talk with non-optical drive elements. In embodiments, the vibratory gyro includes a plurality of multi-layer sub-wavelength gratings and a plurality of drive electrodes to measure motion of the proof mass induced by drive forces and/or moments and induced by the Coriolis Effect when the gyro experiences a rotation. In embodiments, phase is varied across the plurality gratings and a multi-layer grating having the best performance is selected from the plurality.

  17. Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Wang P

    2015-01-01

    Full Text Available Pu Wang,1,* Yazhuo Qu,2,* Chuan Li,3 Li Yin,2 Caifei Shen,1 Wei Chen,3 Shiming Yang,4 Xiuwu Bian,2 Dianchun Fang11Institute of Gastroenterology, 2Institute of Pathology, 3Department of Radiology, Southwest Hospital, The Third Military Medical University, Chongqing, People’s Republic of China; 4Department of Gastroenterology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People’s Republic of China*These authors contributed equally to this workPurpose: Nano dense-silica (dSiO2 has many advantages such as adjustable core–shell structure, multiple drug delivery, and controllable release behavior. Improving the gastric tumor-specific targeting efficiency based on the development of various strategies is crucial for anti-cancer drug delivery systems.Methods: Superparamagnetic iron oxide nanoparticles (SPION were coated with dSiO2 as core–shell nanoparticles, and labeled with near infra-red fluorescence (NIRF dye 800ZW (excitation wavelength: 778 nm/­emission wavelength: 806 nm and anti-CD146 monoclonal antibody YY146 for magnetic resonance (MR/NIRF imaging study in xenograft gastric cancer model. The morphology and the size of pre- and postlabeling SPION@dSiO2 core–shell nanoparticles were characterized using transmission electron microscopy. Iron content in SPION@dSiO2 nanoparticles was measured by inductively coupled plasma optical emission spectrometry. Fluorescence microscopy and fluorescence-activated cell sorter studies were carried out to confirm the binding specificity of YY146 and 800ZW–SPION@dSiO2–YY146 on MKN45 cells. In vivo and in vitro NIRF imaging, control (nanoparticles only and blocking studies, and histology were executed on MKN45 tumor-bearing nude mice to estimate the affinity of 800ZW–SPION@dSiO2–YY146 to target tumor CD146.Results: 800ZW–SPION@dSiO2–YY146 nanoparticles were uniformly spherical in shape and dispersed evenly in a cell culture medium. The diameter of the nanoparticle

  18. Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions

    NARCIS (Netherlands)

    Adam, A.J.L.; Kašalynas, I.; Hovenier, J.N.; Klaassen, T.O.; Gao, J.R.; Orlova, E.E.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.

    2006-01-01

    The need to reach single-mode lasing and minimize at the same time the electrical dissipation of cryogenically operated terahertz quantum cascade lasers may result in small and subwavelength cavity dimensions. To assess the influence of such dimensions on the shape of the laser emission, we have mea

  19. Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Iakovlev, Vladimir; Sirbu, Alexei;

    2010-01-01

    A widely-tunable single-mode 1.3 μm vertical-cavity surface-emitting laser structure incorporating a microelectromechanical system-tunable high-index-contrast subwavelength grating (HCG) mirror is suggested and numerically investigated. A linear tuning range of 100 nm and a wavelength tuning effi...

  20. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Volkov, V.S.; Nielsen, Rasmus Bundgaard;

    2008-01-01

    We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass- production compatible offering large-scale parallel fabrication of plasmonic components, is developed...

  1. Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger; Qiu, M.

    2007-01-01

    Enhanced transmissions through a gold film with arrays of subwavelength holes are theoretically studied, employing the rigid full vectorial three dimensional finite difference time domain method. Influence of air-holes shape to the transmission is firstly studied, which confirms two different res...

  2. High power laser antireflection subwavelength grating on fused silica by colloidal lithography

    Science.gov (United States)

    Ye, Xin; Huang, Jin; Geng, Feng; Liu, Hongjie; Sun, Laixi; Yan, Lianghong; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2016-07-01

    In this study we report on an efficient and simple method to fabricate an antireflection subwavelength grating on a fused silica substrate using two-step reactive ion etching with monolayer polystyrene colloidal crystals as masks. We show that the period and spacing of the obtained subwavelength grating were determined by the initial diameter of polystyrene microspheres and the oxygen ion etching duration. The height of pillar arrays can be adjusted by tuning the second-step fluorine ion etching duration. These parameters are proved to be useful in tailoring the antireflection properties of subwavelength grating using a finite-difference time-domain (FDTD) method and effective medium theory. The subwavelength grating exhibits excellent antireflection properties. The near-field distribution of the SWG which is directly patterned into the substrate material is performed by a 3D-FDTD method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure, which has the potential to promote the ability of anti-laser-induced damage. For 10 ns pulse duration and 1064 nm wavelength, we experimentally determined their laser induced damage threshold to 32 J cm‑2, which is nearly as high as bulk fused silica with 31.5 J cm‑2.

  3. A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    of polygonal cylinders excited by a nearby electric line current is analyzed numerically and it is shown, through detailed analysis of the near-field distribution and radiation resistance, that these polygonal cylinders do indeed support sub-wavelength resonances similar to those of the circular cylinders...

  4. Omnidirectional luminescence enhancement of fluorescent SiC via pseudoperiodic antireflective subwavelength structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Yakimova, Rositza;

    2012-01-01

    In the present work, an approach of fabricating pseudoperiodic antireflective subwavelength structures (ARS) on fluorescent SiC by using self-assembled etch mask is demonstrated. By applying the pseudoperiodic (ARS), the average surface reflectance at 6° incidence over the spectral range of 390-7...

  5. Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting

    Energy Technology Data Exchange (ETDEWEB)

    Das, Manasmita; Basak, A; Pramanik, P [Department of Chemistry, Indian Institute of Technology, Kharagpur (India); Mishra, Debasish; Maiti, T K [Department of Biotechnology, Indian Institute of Technology, Kharagpur (India)], E-mail: md_manasmita@yahoo.com, E-mail: panchanan_123@yahoo.com

    2008-10-15

    The present study describes a systematic approach towards the design and development of novel, bio-functionalized, magneto-fluorescent nanoparticles for cancer-specific targeting. Biocompatible, hydrophilic, magneto-fluorescent nanoparticles with surface-pendant amine, carboxyl or aldehyde groups, to be later used for bio-conjugation, were designed using an aminophosphonic acid coupling agent. These magneto-fluorescent nanoparticles were further functionalized with folic acid, using diverse conjugation strategies. A series of new iron-oxide folate nanoconjugates with excellent aqueous dispersion stability and reasonably good hydrodynamic sizes under a wide range of physiological conditions were developed. These ultradispersed nanosystems were analyzed for their physicochemical properties and cancer-cell targeting ability, facilitated by surface modification with folic acid. The nanoparticle size, charge, surface chemistry, magnetic properties and colloidal stability were extensively studied using a variety of complementary techniques. Confocal microscopy, performed with folate receptor positive human cervical HeLa cancer cells, established that these non-cytotoxic iron-oxide folate nanoconjugates were effectively internalized by the target cells through receptor-mediated endocytosis. Cell-uptake behaviors of nanoparticles, studied using magnetically activated cell sorting (MACS), clearly demonstrated that cells over-expressing the human folate receptor internalized a higher level of these nanoparticle-folate conjugates than negative control cells.

  6. Synthesis, characterization and magnetic property of maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles and their protective coating with pepsin for bio-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bandhu, A.; Sutradhar, S.; Mukherjee, S. [Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal (India); Greneche, J.M. [Laboratoire de Physique de l’Etat Condensé – UMR CNRS 6087, Université du Maine, 72085, Le Mans Cedex 9 (France); Chakrabarti, P.K., E-mail: pabitra_c@hotmail.com [Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal (India)

    2015-10-15

    Highlights: • Maghemite nanoparticles were prepared by a modified co-precipitation method. • Nanoparticles were then successfully coated with pepsin for bio-functionlization. • XRD and Mössbauer spectra confirmed the maghemite phase of the nanoparticles. • Magnetic data were analysed to evaluate particle size, anisotropy etc. - Abstract: Maghemite nanoparticles (γ-Fe{sub 2}O{sub 3}) are prepared by co-precipitation method. To obtain bio-functionalized magnetic nanoparticles for magnetically controlled drug delivery, the prepared nanoparticles are successfully coated with pepsin, a bio-compatible polymer and digestive enzyme. Crystallographic phase of the nanoparticles is confirmed by X-ray diffractograms (XRD), high resolution transmission electron microscopy (HRTEM) and {sup 57}Fe Mössbauer spectrometry. The average size of nanoparticles/nanocrystallites is estimated from the (3 1 1) peak of the XRD pattern using Debye–Scherrer formula. Results of HRTEM of coated and bare samples are in good agreement with those extracted from the XRD analysis. The dynamic magnetic properties are observed and different quantities viz., coercive field, magnetization, remanence, hysteresis losses etc., are estimated, which confirmed the presence of superparamagnetic relaxation of nanoparticles. Mössbauer spectra of the samples recorded at both 300 and 77 K, confirmed that the majority of particles are maghemite together with a very small fraction of magnetite nanoparticles.

  7. Study on the effect of micro-gravity on bio-functions; Seitai kino eno bisho juryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The effect of micro-gravity on bio-functions and vital reaction was studied using the facility of Underground Gravity-free Experiment Center Co. On the effect on osteoblast shape and gene expression, although fluorochrome reacting with Ca was well taken into cells, no significant difference in Ca content in cells was observed before/after falling. Expression of genes related to cell propagation was controlled under micro-gravity. Protoplast fusion of Lentinus was unaffected by micro-gravity. The mRNA fragments of gravity sensitive mutant of rice plant were affected by micro-gravity. Paramecium was set swimming in solutions with different specific gravities. The reaction behavior of Paramecium was affected by the difference in specific gravity between cell bodies and solutions. The water content metabolism functions of a mouse with needle stimulus, in particular excretory, were slightly promoted by micro- gravity. The cortisol level in blood of a falling mouse group rose showing strong stress. As the preliminary study on the geotaxis of insects, motion of bagworm was observed. 12 refs., 38 figs., 4 tabs.

  8. Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit

    CERN Document Server

    Hamilton, Alasdair C

    2008-01-01

    Volumes of sub-wavelength electromagnetic elements can act like homogeneous materials: metamaterials. In analogy, sheets of optical elements such as prisms can act ray-optically like homogeneous sheet materials. In this sense, such sheets can be considered to be metamaterials for light rays (METATOYs). METATOYs realize new and unusual transformations of the directions of transmitted light rays. We study here, in the ray-optics and scalar-wave limits, the wave-optical analog of such transformations, and we show that such an analog does not always exist. Perhaps this is the reason why many of the ray-optical possibilities offered by METATOYs have never before been considered.

  9. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V; Wang, Jiyang

    2013-11-12

    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region.

  10. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V.; Wang, Jiyang

    2013-01-01

    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region. PMID:24217130

  11. Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures.

    Science.gov (United States)

    Cheng, Bo Han; Chang, Kai Jiun; Lan, Yung-Chiang; Tsai, Din Ping

    2015-01-01

    This work develops and analyzes a planar subwavelength device with the ability of one-dimensional resolution at visible frequencies that is based on alternately arranged insulator-metal (IM) and insulator-insulator-metal (IIM) composite structures. The mechanism for the proposed device to accomplish subwavelength resolution is elucidated by analyzing the dispersion relations of the IM-IIM composite structures. Electromagnetic simulations based on the finite element method (FEM) are performed to verify that the design of the device has subwavelength resolution. The ability of subwavelength resolution of the proposed device at various visible frequencies is achieved by slightly varying the constituent materials and geometric parameters. The proposed devices have potential applications in multi-functional material, real-time super-resolution imaging, and high-density photonic components. PMID:25613463

  12. Lowering plasma frequency by enhancing the effective mass of electrons: A route to deep sub-wavelength metamaterials

    Institute of Scientific and Technical Information of China (English)

    Qin Gang; Wang Jia-Fu; Yan Ming-Bao; Chen Wei; Chen Hong-Ya; Li Yong-Feng

    2013-01-01

    Deep sub-wavelength metamaterials are the key to the further development of practical metamaterials with small volumes and broadband properties.We propose to reduce the electrical sizes of metamaterials down to more sub-wavelength scales by lowering the plasma frequencies of metallic wires.The theoretical model is firstly established by analyzing the plasma frequency of continuous thin wires.By introducing more inductance elements,the effective electron mass can be enhanced drastically,leading to significantly lowered plasma frequencies.Based on this theory,we demonstrate that both the electric and the magnetic plasma frequencies of metamaterials can be lowered significantly and thus the electrical sizes of metamaterials can be reduced to more sub-wavelength scales.This provides an efficient route to deep sub-wavelength metamaterials and will give rigorous impetus for the further development of practical metamaterials.

  13. Optical Mode Control by Geometric Phase in Quasicrystal Metasurface

    OpenAIRE

    Yulevich, Igor; Maguid, Elhanan; Shitrit, Nir; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2015-01-01

    We report on the observation of optical spin-controlled modes from a quasicrystalline metasurface as a result of an aperiodic geometric phase induced by anisotropic subwavelength structure. When geometric phase defects are introduced in the aperiodic structured surface, the modes exhibit polarization helicity dependence resulting in the optical spin-Hall effect. The radiative thermal dispersion bands from a quasicrystal structure were studied where the observed bands arise from the optical sp...

  14. Polarization sensitive optical elements by ultrafast laser nanostructuring of glass

    OpenAIRE

    Gecevičius, Mindaugas

    2015-01-01

    In this theses I will concentrate on femtosecond laser induced modification in silica glass. One type of modification in fused silica is subwavelength nanogratings. This modification exhibits form birefringence and therefore optical elements can be fabricated based on nanogratings. The main goal of my work was development and fabrication of practical optical elements based on femtosecond laser induced nanogratings. In order to be able to fabricate optical elements, laser induced modificat...

  15. Generalized Uncertainty Principle and Analogue of Quantum Gravity in Optics

    OpenAIRE

    Braidotti, Maria Chiara; Musslimani, Ziad H.; Conti, Claudio

    2016-01-01

    The design of optical systems capable of processing and manipulating ultra-short pulses and ultra-focused beams is highly challenging with far reaching fundamental technological applications. One key obstacle routinely encountered while implementing sub-wavelength optical schemes is how to overcome the limitations set by standard Fourier optics. A strategy to overcome these difficulties is to utilize the concept of generalized uncertainty principle (G-UP) that has been originally developed to...

  16. Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon

    CERN Document Server

    Pittman, T B; Franson, J D

    2013-01-01

    We demonstrate nanowatt-level saturated absorption using a sub-wavelength diameter tapered optical fiber (TOF) suspended in a gas of metastable xenon atoms. This ultralow-power nonlinearity is enabled by a small optical mode area propagating over a relatively long distance through the Xe gas. The use of inert noble gasses in these kinds of TOF experiments may offer practical advantages over the use of reactive alkali vapors such as rubidium.

  17. A subwavelength Stokes polarimeter on a silicon chip

    Science.gov (United States)

    Espinosa Soria, A.; Rodríguez-Fortuño, Francisco J.; Griol, Amadeu; Martínez, Alejandro

    2016-04-01

    Measuring the state of polarization (SoP) of light beams is of paramount importance in many scientific and technological disciplines, including chemistry, biosensing, astronomy and optical communications. Commercial polarimeters are built by using bulky and expensive optical elements, including half-wave plates or grid polarizers, with little prospect for miniaturization. Inspired by the concept of spin-orbit coupling, here we introduce a nanophotonic polarimeter that measures the full SoP - Stokes parameters - of a light beam over an ultrabroad wavelength range. The active region of the device, formed by a metallic nanoantenna on top of a silicon waveguide crossing, is less than a square wavelength, one order of magnitude smaller than polarimeters based on metasurfaces and many orders of magnitude smaller than commercial devices. Our approach is universal and therefore applicable to any wavelength regime and technological platform, opening a new route for miniaturized polarimeters.

  18. NSOM tips as subwavelength sources for azimuthally polarized light

    CERN Document Server

    Ploss, Daniel; Pfeifer, Hannes; Banzer, Peter; Peschel, Ulf

    2014-01-01

    The aim of near-field scanning optical microscopy (NSOM) is to reveal the distribution of the electromagnetic field around nanoscale objects. The full vectorial nature of this field is more difficult to measure than just its amplitude. It can only be fully reconstructed with exact knowledge of the optical properties of the probe. Here, we report and numerically explain that NSOM tips with a well-defined apex diameter selectively support azimuthally polarized light (|$E_{\\text{azi}}$|$^2$/|$E_{\\text{tot}}$|$^2$ $\\approx$ 55$\\,$% $\\pm $ 5$\\,$% for 1.4$\\,$\\mu m tip aperture diameter and \\lambda$_0$ = 1550$\\,$nm). We attribute the generation of azimuthal polarization in the metal-coated fiber tip to symmetry breaking in the bend and subsequent plasmonic mode filtering in the truncated conical taper.

  19. Exploiting spatiotemporal degrees of freedom for far field subwavelength focusing using time reversal in fractals

    CERN Document Server

    Dupré, Matthieu; Fink, Mathias; Lerosey, Geoffroy

    2016-01-01

    Materials which possess a high local density of states varying at a subwavelength scale theoretically permit to focus waves onto focal spots much smaller than the free space wavelength. To do so metamaterials -manmade composite media exhibiting properties not available in nature- are usually considered. However this approach is limited to narrow bandwidths due to their resonant nature. Here, we prove that it is possible to use a fractal resonator alongside time reversal to focus microwaves onto $\\lambda/15$ subwavelength focal spots from the far field, on extremely wide bandwidths. We first numerically prove that this approach can be realized using a multiple channel time reversal mirror, that utilizes all the degrees of freedom offered by the fractal resonator. Then we experimentally demonstrate that this approach can be drastically simplified by coupling the fractal resonator to a complex medium, here a cavity, that efficiently converts its spatial degrees of freedom into temporal ones. This allows to achie...

  20. Resonant Effects of FPL and SPP for Light Transmitting through Subwavelength Metallic Gratings

    Institute of Scientific and Technical Information of China (English)

    马佑桥; 周骏; 何苗; P. Mormile

    2011-01-01

    A new model is proposed to explain the physical mechanism of the extraordinary transmission enhancement in subwavelength metallic grating. The extraordinary transmission enhancement is described by the co-operation of Fabry Perot-like (FPL) resonance and the surface plasmon polariton (SPP) resonance. The rigorous coupled-wave analysis (RCWA) and the finite difference time domain (FDTD) method are employed to illustrate the model by calcu- lating the transmission and the field distributions in the subwavelength metallic grating, respectively. And the numerical calculations show that transmission enhancement is achieved when the coupling resonance of the incident light, the surface plasmon polariton mode and the Fabry-Perot-Like mode is happened, which are in good agreement with the proposed model.

  1. Sub-wavelength Lithography of Complex 2D and 3D Nanostructures without Dyes

    CERN Document Server

    Chaudhary, Raghvendra P; Ummethala, Govind; Hawal, Suyog R; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    One-photon or two photon absorption by dye molecules in photopolymers enable direct 2D & 3D lithography of micro/nano structures with high spatial resolution and can be used effectively in fabricating artificially structured nanomaterials. However, the major bottleneck in unleashing the potential of this useful technique is the indispensable usage of dyes that are extremely expensive, highly toxic and usually insoluble in commercially available photopolymers. Here we report a simple, inexpensive and one-step technique for direct-writing of micro/nanostructures, with sub-wavelength resolution at extremely high speeds without using any one photon or two photon absorbing dye. We incorporated large amount (20 weight %) of inexpensive photoinitiator into the photopolymer and utilized its two-photon absorbing property for sub-wavelength patterning. Complex 2D and 3D patterns were fabricated with sub-micron resolution, in commercially available liquid photopolymer to show the impact/versatility of this technique...

  2. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng

    2014-04-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  3. Bloch waves in an arbitrary two-dimensional lattice of subwavelength Dirichlet scatterers

    CERN Document Server

    Schnitzer, Ory

    2016-01-01

    We study waves governed by the planar Helmholtz equation, propagating in an infinite lattice of subwavelength Dirichlet scatterers, the periodicity being comparable to the wavelength. Applying the method of matched asymptotic expansions, the scatterers are effectively replaced by asymptotic point constraints. The resulting coarse-grained Bloch-wave dispersion problem is solved by a generalised Fourier series, whose singular asymptotics in the vicinities of scatterers yield the dispersion relation governing modes that are strongly perturbed from plane-wave solutions existing in the absence of the scatterers; there are also empty-lattice waves that are only weakly perturbed. Characterising the latter is useful in interpreting and potentially designing the dispersion diagrams of such lattices. The method presented, that simplifies and expands on Krynkin & McIver [Waves Random Complex, 19 347 2009], could be applied in the future to study more sophisticated designs entailing resonant subwavelength elements di...

  4. Electromagnetic Diffraction Analysis of 2-D Antireflective Subwavelength Grating with Coned Profile

    Institute of Scientific and Technical Information of China (English)

    张殿文; 卢振武; 鱼卫星; 李凤有

    2002-01-01

    2D subwavelength multilevel (2-, 4-, 8-, etc. levels) columned stairstep grating with coned spatial profile has been designed to reduce reflection. In this paper, the rigorous coupled-wave theory is employed to analyze the electromagnetic diffraction property of the columned stairstep grid grating. The structure is shown to achieve extremely low reflectance over a wide field of view and a wide light wave band.

  5. Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide

    OpenAIRE

    Villafranca Velasco, Aitor; Calvo Padilla, María Luisa; Cheben, Pavel; Ortega Moñux, Alejandro; Alonso Ramos, Carlos Alberto; Molina Fernández, Íñigo; Lapointe, Jean; Vachon, Martin; Janz, Siegfried; Xu, Dan-Xia

    2012-01-01

    The design and fabrication of an ultracompact silicon-on-insulator polarization converter is reported. The polarization conversion with an extinction ratio of 16 dB is achieved for a conversion length of only 10 mu m. Polarization rotation is achieved by inducing a vertical asymmetry by forming in the waveguide core two subwavelength trenches of different depths. By taking advantage of the calibrated reactive ion etch lag, the two depths are implemented using a single mask and etching process...

  6. Finite-Element Simulations of Light Propagation through Circular Subwavelength Apertures

    CERN Document Server

    Burger, S; Zschiedrich, L; Schmidt, F; 10.1117/12.822828

    2009-01-01

    Light transmission through circular subwavelength apertures in metallic films with surrounding nanostructures is investigated numerically. Numerical results are obtained with a frequency-domain finite-element method. Convergence of the obtained observables to very low levels of numerical error is demonstrated. Very good agreement to experimental results from the literature is reached, and the utility of the method is demonstrated in the investigation of the influence of geometrical parameters on enhanced transmission through the apertures.

  7. Record Performance of Electrical Injection Sub-wavelength Metallic-Cavity Semiconductor Lasers at Room Temperature

    OpenAIRE

    Ding, K Kang; Hill, MT Martin; Liu, ZC; Yin, LJ; Veldhoven, van, A.D.; Ning, CZ

    2012-01-01

    Metallic-Cavity lasers or plasmonic nanolasers of sub-wavelength sizes have attracted great attentions in recent years, with the ultimate goal of achieving continuous wave (CW), room temperature (RT) operation under electrical injection. Despite great efforts, a conclusive and convincing demonstration of this goal has proven challenging. By overcoming several fabrication challenges imposed by the stringent requirement of such small scale devices, we were finally able to achieve this ultimate ...

  8. Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays

    OpenAIRE

    Estrada, Héctor; Candelas, Pilar; Uris, Antonio; Belmar, Francisco; F. Meseguer; García de Abajo, Francisco Javier

    2008-01-01

    We report on the large impact of the hole filling fraction on the ultrasonic transmission spectra of periodic subwavelength hole arrays. We demonstrate both theoretically and experimentally that transmission peaks become narrower as the filling fraction decreases. Our results are consistent in plates with different thickness values and provide a route map for the design of plates with tailored acoustic transmission profiles. © 2008 American Institute of Physics.

  9. Normal incidence narrowband transmission filtering capabilities using symmetry-protected modes of a subwavelength, dielectric grating.

    Science.gov (United States)

    Foley, Justin M; Phillips, Jamie D

    2015-06-01

    We computationally study a normal incidence narrowband transmission filter based on a subwavelength dielectric grating that operates through Fano interference between supported guided leaky modes of the system. We characterize the filtering capabilities as the cross section of the grating is manipulated and suggest techniques for experimental demonstration. Using group theory, we study the plane wave coupling to the supported modes that leads to broadband reflectance and narrowband transmittance responses for rectangular, pentagonal, rhomboidal, and right trapezoidal cross-sectional geometries. PMID:26030577

  10. Nonlinear spectroscopy in the near-field: time resolved spectroscopy and subwavelength resolution non-invasive imaging

    Science.gov (United States)

    Namboodiri, Mahesh; Khan, Tahirzeb; Karki, Khadga; Kazemi, Mehdi Mohammad; Bom, Sidhant; Flachenecker, Günter; Namboodiri, Vinu; Materny, Arnulf

    2014-04-01

    The combination of near-field microscopy along with nonlinear optical spectroscopic techniques is presented here. The scanning near-field imaging technique can be integrated with nonlinear spectroscopic techniques to improve spatial and axial resolution of the images. Additionally, ultrafast dynamics can be probed down to nano-scale dimension. The review shows some examples for this combination, which resulted in an exciton map and vibrational contrast images with sub-wavelength resolution. Results of two-color femtosecond time-resolved pump-probe experiments using scanning near-field optical microscopy (SNOM) on thin films of the organic semiconductor 3,4,9,10 Perylenetetracarboxylic dianhydride (PTCDA) are presented. While nonlinear Raman techniques have been used to obtain highly resolved images in combination with near-field microscopy, the use of femtosecond laser pulses in electronic resonance still constitutes a big challenge. Here, we present our first results on coherent anti-Stokes Raman scattering (fs-CARS) with femtosecond laser pulses detected in the near-field using SNOM. We demonstrate that highly spatially resolved images can be obtained from poly(3-hexylthiophene) (P3HT) nano-structures where the fs-CARS process was in resonance with the P3HT absorption and with characteristic P3HT vibrational modes without destruction of the samples. Sub-diffraction limited lateral resolution is achieved. Especially the height resolution clearly surpasses that obtained with standard microCARS. These results will be the basis for future investigations of mode-selective dynamics in the near-field.

  11. Atom trapping and guiding with a subwavelength-diameter optical fiber

    CERN Document Server

    Balykin, V I; Le Kien, F; Liang, J Q; Morinaga, M; Kien, Fam Le

    2004-01-01

    We suggest using an evanescent wave around a thin fiber to trap atoms. We show that the gradient force of a red-detuned evanescent-wave field in the fundamental mode of a silica fiber can balance the centrifugal force when the fiber diameter is about two times smaller than the wavelength of the light and the component of the angular momentum of the atoms along the fiber axis is in an appropriate range. As an example, the system should be realizable for Cesium atoms at a temperature of less than 0.29 mK using a silica fiber with a radius of 0.2 $\\mu$m and a 1.3-$\\mu$m-wavelength light with a power of about 27 mW.

  12. Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays

    Science.gov (United States)

    Camacho, Miguel; Boix, Rafael R.; Medina, Francisco

    2016-06-01

    The authors present a computationally efficient technique for the analysis of extraordinary transmission through both infinite and truncated periodic arrays of slots in perfect conductor screens of negligible thickness. An integral equation is obtained for the tangential electric field in the slots both in the infinite case and in the truncated case. The unknown functions are expressed as linear combinations of known basis functions, and the unknown weight coefficients are determined by means of Galerkin's method. The coefficients of Galerkin's matrix are obtained in the spatial domain in terms of double finite integrals containing the Green's functions (which, in the infinite case, is efficiently computed by means of Ewald's method) times cross-correlations between both the basis functions and their divergences. The computation in the spatial domain is an efficient alternative to the direct computation in the spectral domain since this latter approach involves the determination of either slowly convergent double infinite summations (infinite case) or slowly convergent double infinite integrals (truncated case). The results obtained are validated by means of commercial software, and it is found that the integral equation technique presented in this paper is at least two orders of magnitude faster than commercial software for a similar accuracy. It is also shown that the phenomena related to periodicity such as extraordinary transmission and Wood's anomaly start to appear in the truncated case for arrays with more than 100 (10 ×10 ) slots.

  13. Optical Detection of Single Nanoparticles with a Sub-wavelength Fiber-Taper

    CERN Document Server

    Zhu, Jiangang; Yang, Lan

    2013-01-01

    A nanoparticle detection scheme with single particle resolution is presented. The sensor contains only a taper fiber thus offering the advantages of compactness and installation flexibility. Sensing method is based on monitoring the transmitted light power which shows abrupt jumps with each particle binding to the taper surface. The experimental validation of the sensor is demonstrated with polystyrene nanoparticles of radii 120 nm and 175 nm in the 1550 nm wavelength band.

  14. Sub-wavelength Laser Nanopatterning using Droplet Lenses

    Science.gov (United States)

    Duocastella, Martí; Florian, Camilo; Serra, Pere; Diaspro, Alberto

    2015-11-01

    When a drop of liquid falls onto a screen, e.g. a cell phone, the pixels lying underneath appear magnified. This lensing effect is a combination of the curvature and refractive index of the liquid droplet. Here, the spontaneous formation of such lenses is exploited to overcome the diffraction limit of a conventional laser direct-writing system. In particular, micro-droplets are first laser-printed at user-defined locations on a surface and they are later used as lenses to focus the same laser beam. Under conditions described herein, nanopatterns can be obtained with a reduction in spot size primarily limited by the refractive index of the liquid. This all-optics approach is demonstrated by writing arbitrary patterns with a feature size around 280 nm, about one fourth of the processing wavelength.

  15. Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials

    KAUST Repository

    Tizei, Luiz H. G.

    2015-03-01

    Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the optical band gap can be measured with nanometer-scale resolution, which is 50 times smaller than the wavelength of the emitted photons. By performing core-loss EELS at the same regions, we observe that variations in the excitonic signature follow the chemical composition. The exciton peaks are observed to be broader at interfaces and heterogeneous regions, possibly due to interface roughness and alloying effects. Moreover, we do not observe shifts of the exciton peak across the interface, possibly because the interface width is not much larger than the exciton Bohr radius.

  16. Effective PT-symmetric metasurfaces for subwavelength amplified sensing

    Science.gov (United States)

    Xiao, Shiyi; Gear, James; Rotter, Stefan; Li, Jensen

    2016-08-01

    We propose a novel design principle for ultrathin metasurfaces to realize optically amplified sensing with a performance that exceeds those of passive coherent perfect absorbers by several orders of magnitude. Our strategy is based on a generalized condition of lasing, coherent perfect absorption and their coexistence in metamaterials that feature an effective PT-symmetry. The devices we introduce here can be operated in configurations that involve both a one-sided or a two-sided wave incidence, where the latter case allows us to tune the degree of amplified absorption through the coherent phase between the two input beams. We also discuss how the conditions on the material parameters can be relaxed, away from the ideal case, such that a substantial amplification of the sensing performance can easily be reached in practical applications.

  17. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    Science.gov (United States)

    Girón-Sedas, J. A.; Mejía-Salazar, J. R.; Moncada-Villa, E.; Porras-Montenegro, N.

    2016-07-01

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  18. Anisotropic Contrast Optical Microscope

    CERN Document Server

    Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-01-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...

  19. Accurate Feeding of Nanoantenna by Singular Optics for Nanoscale Translational and Rotational Displacement Sensing.

    Science.gov (United States)

    Xi, Zheng; Wei, Lei; Adam, A J L; Urbach, H P; Du, Luping

    2016-09-01

    Identifying subwavelength objects and displacements is of crucial importance in optical nanometrology. We show in this Letter that nanoantennas with subwavelength structures can be excited precisely by incident beams with singularity. This accurate feeding beyond the diffraction limit can lead to dynamic control of the unidirectional scattering in the far field. The combination of the field discontinuity of the incoming singular beam with the rapid phase variation near the antenna leads to remarkable sensitivity of the far-field scattering to the displacement at a scale much smaller than the wavelength. This Letter introduces a far-field deep subwavelength position detection method based on the interaction of singular optics with nanoantennas. PMID:27661688

  20. Optical nano-antennas and metamaterials

    OpenAIRE

    Sailing He; Yanxia Cui; Yuqian Ye; Pu Zhang; Yi Jin

    2009-01-01

    We review some recent approaches to transmission enhancement and light harvesting based on optical nano-antennas and metamaterials. Nano-cavity antennas are used to enhance the extraordinary transmission of TM-polarized light through vertical nano-slits in a metal film. The enhanced transmission of TE-polarized waves through an array of subwavelength-slits in a thin metal film at low frequencies (including microwave) is also investigated. Light harvesting with a metamaterial cloaking shell is...

  1. Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template.

    Science.gov (United States)

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lee, Soo Hyun; Yu, Jae Su

    2015-09-23

    Highly transparent and flexible triboelectric nanogenerators (TENGs) were fabricated using the subwavelength-architectured (SWA) polydimethylsiloxane (PDMS) with a nanoporous anodic aluminum oxide (AAO) template as a replica mold. The SWA PDMS could be utilized as a multifunctional film for a triboelectric layer, an antireflection coating, and a self-cleaning surface. The nanopore arrays of AAO were formed by a simple, fast, and cost-effective electrochemical oxidation process of aluminum, which is relatively impressive for fabrication of the TENG device. For electrical contacts, the SWA PDMS was laminated on the indium tin oxide (ITO)-coated polyethylene terephthalate (PET) as a bottom electrode, and the bare ITO-coated PET (i.e., ITO/PET) was used for the top electrode. Compared to the ITO/PET, the SWA PDMS on the ITO/PET improved the transmittance from 80.5 to 83% in the visible wavelength region and also had high transmittances of >85% at wavelengths of 430-455 nm. The SWA PDMS also exhibited the hydrophobic surface with a water contact angle (θCA) of ∼115°, which can be useful for self-cleaning applications. The average transmittance (Tavg) of the entire TENG device was observed to be ∼70% over a broad wavelength range. At an external pushing frequency of 0.5 Hz, for the TENG device with the ITO top electrode, open-circuit voltage (VOC) and short-circuit current (ISC) values of ∼3.8 V and ∼0.8 μA were obtained instantaneously, respectively, which were higher than those (i.e., VOC ≈ 2.2 V, and ISC ≈ 0.4 μA) of the TENG device with a gold top electrode. The effect of external pushing force and frequency on the output device performance of the TENGs was investigated, including the device robustness. A theoretical optical analysis of SWA PDMS was also performed. PMID:26301328

  2. Polarization-selective optical transmission through a plasmonic metasurface

    OpenAIRE

    Pelzman, Charles; Cho, Sang-Yeon

    2015-01-01

    We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident bea...

  3. Photonic Nanojet in Optical Tweezers

    CERN Document Server

    Neves, Antonio Alvaro Ranha

    2015-01-01

    Photonic nanojets has been brought into attention ten years ago for potential application as ultramicroscopy technique, using its sub-wavelength resolution to enhance detection and interaction with matter. For these novel applications under development, optically trapping a sphere, acts as an ideal framework to employ these nanojets. In this case, the nanojet is generated by a highly focused incident beam contrary to the traditional plane wave. It inherits the advantage from optical trapping, with the microsphere in equilibrium on the beam propagation axis, and be positioned arbitrarily in space, especially for intracellular applications. Moreover, due to optical scattering forces, when in equilibrium, there is a shift of the sphere centre with respect to the beam focus. However, within the stable equilibrium of an optical tweezers configuration, it does not allow the formation of a photonic nanojet. To overcome this, a double optical tweezers, in an unorthodox configuration of two collinearly and co-propagat...

  4. Optical antennas as nanoscale resonators

    CERN Document Server

    Agio, Mario

    2011-01-01

    Recent progress in nanotechnology has enabled us to fabricate subwavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interaction, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  5. Optical antennas as nanoscale resonators.

    Science.gov (United States)

    Agio, Mario

    2012-02-01

    Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  6. Application of holographic sub-wavelength diffraction gratings for monitoring of kinetics of bioprocesses

    Energy Technology Data Exchange (ETDEWEB)

    Tamulevicius, Tomas, E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science of Kaunas University of Technology, Savanoriu Ave. 271, LT-50131, Kaunas (Lithuania); Seperys, Rimas; Andrulevicius, Mindaugas; Kopustinskas, Vitoldas; Meskinis, Sarunas; Tamulevicius, Sigitas [Institute of Materials Science of Kaunas University of Technology, Savanoriu Ave. 271, LT-50131, Kaunas (Lithuania); Mikalayeva, Valeryia; Daugelavicius, Rimantas [Department of Biochemistry and Biotechnologies of Vytautas Magnus University, Vileikos St. 8, LT-44404 Kaunas (Lithuania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Refractive index sensor based on DLC holographic sub-wavelength period grating. Black-Right-Pointing-Pointer Spectroscopic analysis of polarized white light reflected from the grating. Black-Right-Pointing-Pointer Control of critical wavelength shift and reflectivity changes. Black-Right-Pointing-Pointer Testing of model liquid analyte materials. Black-Right-Pointing-Pointer Evaluation of interaction between B. subtilis cells and lysozyme. - Abstract: In this work we present a refractive index (RI) sensor based on a sub-wavelength holographic diffraction grating. The sensor chip was fabricated by dry etching of the finely spaced (d = 428 nm) diffraction grating in SiO{sub x} doped diamond like carbon (DLC) film. It is shown that employing a fabricated sensor chip, and using the proposed method of analysis of data, one can inspect kinetics of processes in liquids occurring in the vicinity of the grating surface. The method is based on the spectral composition analysis of polarized polychromatic light reflected from the sub-wavelength diffraction grating. The RI measurement system was tested with different model liquid analytes including 25 wt.%, 50 wt.% sugar water solutions, 10 Degree-Sign C, 50 Degree-Sign C distilled water, also Gram-positive bacteria Bacillus subtilis interaction with ion-permeable channels forming antibiotic gramicidin D and a murolytic enzyme lysozyme. Analysis of the data set of specular reflection spectra enabled us to follow the kinetics of the RI changes in the analyte with millisecond resolution. Detectable changes in the effective RI were not worse than {Delta}n = 10{sup -4}.

  7. Young's experiment with a double slit of sub-wavelength dimensions.

    Science.gov (United States)

    Lee, Kanghee; Lim, Jongseok; Ahn, Jaewook

    2013-08-12

    We report that the interference pattern of Young's double-slit experiment changes as a function of polarization in the sub-wavelength diffraction regime. Experiments carried out with terahertz time-domain spectroscopy reveal that diffracted waves from sub-wavelength-scale slits exhibit either positive or negative phase shift with respect to Gouy phase depending on the polarization. Theoretical explanation based on the induction of electric current and magnetic dipole in the vicinity of the slits shows an excellent agreement with the experimental results.

  8. Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide.

    Science.gov (United States)

    Velasco, Aitor V; Calvo, María L; Cheben, Pavel; Ortega-Moñux, Alejandro; Schmid, Jens H; Ramos, Carlos Alonso; Fernandez, Iñigo Molina; Lapointe, Jean; Vachon, Martin; Janz, Siegfried; Xu, Dan-Xia

    2012-02-01

    The design and fabrication of an ultracompact silicon-on-insulator polarization converter is reported. The polarization conversion with an extinction ratio of 16 dB is achieved for a conversion length of only 10 μm. Polarization rotation is achieved by inducing a vertical asymmetry by forming in the waveguide core two subwavelength trenches of different depths. By taking advantage of the calibrated reactive ion etch lag, the two depths are implemented using a single mask and etching process. The measured converter loss is -0.7 dB and the 3 dB bandwidth is 26 nm. PMID:22297354

  9. Enhancement of Time Reversal Sub-wavelength Wireless Transmission Using Pulse Shaping Technique (submit/1139227)

    CERN Document Server

    Ding, Shuai; Zang, Rui; Zou, Lianfeng; Wang, Bing-Zhong; Caloz, Christophe

    2014-01-01

    A novel time-reversal subwavelength transmission technique, based on pulse shaping circuits (PSCs), is proposed. This technique removes the need for complex or electrically large electromagnetic structures by generating channel diversity via pulse shaping instead of angular spectrum transformation. It is shown that, compared to our previous time-reversal system based on chirped delay lines, the PSC approach offers greater flexibility and larger possible numbers of channels, i.e. ultimately higher transmission throughput. The PSC based time-reversal system is also demonstrated experimentally.

  10. Enhancement of Time-Reversal Subwavelength Wireless Transmission Using Pulse Shaping

    CERN Document Server

    Ding, Shuai; Zou, Lianfeng; Wang, Bingzhong; Caloz, Christophe

    2014-01-01

    A novel time-reversal subwavelength transmission technique, based on pulse shaping circuits (PSCs), is proposed. Compared to previously reported approaches, this technique removes the need for complex or electrically large electromagnetic structures by generating channel diversity via pulse shaping instead of angular spectrum transformation. Moreover, the pulse shaping circuits (PSCs) are based on Radio Analog Signal Processing (R-ASP), and therefore do not suffer from the well-known issues of digital signal processing in ultrafast regimes. The proposed PSC time-reversal systems is mathematically shown to offer high channel discrimination under appropriate PSC design conditions, and is experimentally demonstrated for the case of two receivers.

  11. Millimeter-Wave Broadband Anti-Reflection Coatings Using Laser Ablation of Sub-Wavelength Structures

    CERN Document Server

    Matsumura, Tomotake; Wen, Qi; Hanany, Shaul; Koch, Jürgen; Suttman, Oliver; Schütz, Viktor

    2016-01-01

    We report on the first use of laser ablation to make sub-millimeter, broad-band, anti-reflection coatings (ARC) based on sub-wavelength structures (SWS) on alumina and sapphire. We used a 515 nm laser to produce pyramid-shaped structures with pitch of about 320 \\mu m and total height of near 800 \\mu m. Transmission measurements between 70 and 140 GHz are in agreement with simulations using electromagnetic propagation software. The simulations indicate that SWS ARC with the fabricated shape should have a fractional bandwidth response of $\\Delta \

  12. Tunable plasmonic enhancement of light scattering and absorption in graphene-coated subwavelength wires

    CERN Document Server

    Riso, Máximo; Depine, Ricardo A

    2015-01-01

    The electromagnetic response of subwavelength wires coated with a graphene monolayer illuminated by a linearly polarized plane waves is investigated. The results show that the scattering and extintion cross-sections of the coated wire can be dramatically enhanced when the incident radiation resonantly excites localized surface plasmons. The enhancements occur for p--polarized incident waves and for excitation frequencies that correspond to complex poles in the coefficients of the multipole expansion for the scattered field. By dynamically tuning the chemical potential of graphene, the spectral position of the enhancements can be chosen over a wide range.

  13. Enhanced non-resonant light transmission through subwavelength slits in metal

    CERN Document Server

    Pors, Anders; Sahakyan, Khachik; Bozhevolnyi, Sergey I

    2016-01-01

    We analytically describe light transmission through a single subwavelength slit in a thin perfect electric conductor screen for the incident polarization being perpendicular to the slit, and derive simple, yet accurate, expressions for the average electric field in the slit and the transmission efficiency. The analytic results are consistent with full-wave numerical calculations, and demonstrate that slits of widths ~100nm in real metals may feature non-resonant (i.e., broadband) field enhancements of ~100 and transmission efficiency of ~10 at infrared or terahertz frequencies, with the associated metasurface-like array of slits becoming transparent to the incident light.

  14. Phase study of the generated surface plasmon waves in light transmission through a subwavelength aperture

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Xiao, Sanshui; Farzad, Mahmood Hosseini

    2014-01-01

    Interference of surface plasmon (SP) waves plays a key role in light transmission through a subwavelength aperture surrounded by groove structures. In order to characterize interference of the hole and groove-generated SP waves, their phase information was carefully investigated using finite...... difference time domain simulations. In a structure with only one groove, constructive interference of the generated SP waves will enhance transmitted light by a factor of 5.4 compared with that of a single hole. Increasing the groove number to 3 in the design, which supports constructive interference of SP...... waves, will enhance the transmission coefficient to 10.5 times that for the single-hole transmission coefficient....

  15. Deep-Subwavelength-Scale Directional Sensing Based on Highly Localized Dipolar Mie Resonances

    Science.gov (United States)

    Zhu, Xuefeng; Liang, Bin; Kan, Weiwei; Peng, Yugui; Cheng, Jianchun

    2016-05-01

    This paper reports the formation of highly localized Mie resonances on a closed metasurface encapsulating a rigid core and the realization of directional sensing at deep-subwavelength scale (diameter ˜λ /8 ) with the proposed physical model. Based on modal-expansion and mode-matching methods, it is theoretically shown that the extremely anisotropic metasurface shell can support varied orders of Mie resonances around the rigid core. We further experimentally demonstrate that the Mie resonance with a dipolelike profile is strongly excited under the illumination of a plane wave at low frequencies, enabling the sensitive directional sensing due to the intensified and azimuthally dependent pressure field.

  16. Generation and subwavelength focusing of longitudinal magnetic fields in a metallized fiber tip.

    Science.gov (United States)

    Ploss, Daniel; Kriesch, Arian; Pfeifer, Hannes; Banzer, Peter; Peschel, Ulf

    2014-06-01

    We demonstrate experimentally and numerically that in fiber tips as they are used in NSOMs azimuthally polarized electrical fields (|E(azi)|2 / |E(tot)|2 ≈55% ± 5% for λ0 = 1550 nm), respectively subwavelength confined (FWHM ≈450 nm ≈λ0/3.5) magnetic fields, are generated for a certain tip aperture diameter (d = 1.4 μm). We attribute the generation of this field distribution in metal-coated fiber tips to symmetry breaking in the bend and subsequent plasmonic mode filtering in the truncated conical taper. PMID:24921567

  17. Quasi-perfect absorption by sub-wavelength acoustic panels in transmission using accumulation of resonances due to slow sound

    CERN Document Server

    Jiménez, Noé; Pagneux, Vincent; Groby, Jean-Philippe

    2016-01-01

    We theoretically and experimentally report sub-wavelength resonant panels for low-frequency quasi-perfect sound absorption including transmission by using the accumulation of cavity resonances due to the slow sound phenomenon. The sub-wavelength panel is composed of periodic horizontal slits loaded by identical Helmholtz resonators (HRs). Due to the presence of the HRs, the propagation inside each slit is strongly dispersive, with near-zero phase velocity close to the resonance of the HRs. In this slow sound regime, the frequencies of the cavity modes inside the slit are down-shifted and the slit behaves as a subwavelength resonator. Moreover, due to strong dispersion, the cavity resonances accumulate at the limit of the bandgap below the resonance frequency of the HRs. Near this accumulation frequency, simultaneously symmetric and antisymmetric quasi-critical coupling can be achieved. In this way, using only monopolar resonators quasi-perfect absorption can be obtained in a material including transmission.

  18. Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd;

    2013-01-01

    as a template. Measured transmission spectra illustrate the excitation of graphene-plasmon polaritons, which is further supported by numerical simulations and theoretical prediction of plasmon-band diagrams. Our grating-assisted coupling to graphene-plasmon polaritons forms an important platform for graphene......We experimentally demonstrate graphene-plasmon polariton excitation in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The subwavelength silicon grating is fabricated by a nanosphere lithography technique with a self-assembled nanosphere array......-based opto-electronics applications....

  19. Deep-Subwavelength Spatial Characterization of Angular Emission from Single-Crystal Au Plasmonic Ridge Nanoantennas

    CERN Document Server

    Coenen, Toon; Polman, Albert; 10.1021/nn204750d

    2013-01-01

    We use spatially and angle-resolved cathodoluminescence imaging spectroscopy to study, with deep subwavelength resolution, the radiation mechanism of single plasmonic ridge antennas with lengths ranging from 100 to 2000 nm. We measure the antenna's standing wave resonances up to the fifth order and measure the dispersion of the strongly confined guided plasmon mode. By directly detecting the emitted antenna radiation with a 2D CCD camera we are able to measure the angular emission patterns associated with each individual antenna resonance. We demonstrate that the shortest ridges can be modeled as a single point dipole emitter oriented either upward (m=0) or in-plane (m=1). The far-field emission pattern for longer antennas (m>2) is well described by two interfering in-plane point dipoles at the end facets giving rise to an angular fringe pattern, where the number of fringes increases as the antenna becomes longer. Taking advantage of the deep subwavelength excitation resolution of the cathodoluminescence tech...

  20. Subwavelength topological structures resulting from surface two-plasmon resonance by femtosecond laser exposure solid surface.

    Science.gov (United States)

    Song, Hai-Ying; Liu, Shi-Bing; Liu, H Y; Wang, Yang; Chen, Tao; Dong, Xiang-Ming

    2016-05-30

    We present that surface two-plasmon resonance (STPR) in electron plasma sheet produced by a femtosecond laser irradiating a solid surface is the self-formation mechanism of periodic subwavelength ripple structures. Peaks of overdense electrons, formed by resonant two-plasmon wave mode, pull bound ions out of the metal surface. Thus, the wave pattern of STPR is "carved" on the surface by Coulomb ablation (removal) due to periodic distributed strong electrostatic field produced by charge separation. To confirm the STPR model, we have performed analogical carving experiments by two femtosecond laser beams with perpendicular polarizations and time delay. The results explicitly show that two wave patterns of STPR generated by each beam are independently created in the pulse exposure area of a target surface, which is like the traditional "layer-carving" technique by comparison with the structured topological features. The time-scale of ablation dynamics and the electron temperature in ultrafast interaction are also verified by a time-resolved spectroscopy experiment and numerical simulation, respectively. The present model can self-consistently explain the formation of subwavelength ripple structures even with spatial periods shorter than half of the laser wavelength, shedding light on the understanding of ultrafast laser-solid interaction. PMID:27410135

  1. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime.

    Science.gov (United States)

    St-Gelais, Raphael; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2016-06-01

    Thermal radiation between parallel objects separated by deep subwavelength distances and subject to large thermal gradients (>100 K) can reach very high magnitudes, while being concentrated on a narrow frequency distribution. These unique characteristics could enable breakthrough technologies for thermal transport control and electricity generation (for example, by radiating heat exactly at the bandgap frequency of a photovoltaic cell). However, thermal transport in this regime has never been achieved experimentally due to the difficulty of maintaining large thermal gradients over nanometre-scale distances while avoiding other heat transfer mechanisms, namely conduction. Here, we show near-field radiative heat transfer between parallel SiC nanobeams in the deep subwavelength regime. The distance between the beams is controlled by a high-precision micro-electromechanical system (MEMS). We exploit the mechanical stability of nanobeams under high tensile stress to minimize thermal buckling effects, therefore keeping control of the nanometre-scale separation even at large thermal gradients. We achieve an enhancement of heat transfer of almost two orders of magnitude with respect to the far-field limit (corresponding to a 42 nm separation) and show that we can maintain a temperature gradient of 260 K between the cold and hot surfaces at ∼100 nm distance.

  2. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications

    Directory of Open Access Journals (Sweden)

    Katherine Han

    2014-01-01

    Full Text Available This paper reviews the current progress in mathematical modeling of anti-reflective subwavelength structures. Methods covered include effective medium theory (EMT, finite-difference time-domain (FDTD, transfer matrix method (TMM, the Fourier modal method (FMM/rigorous coupled-wave analysis (RCWA and the finite element method (FEM. Time-based solutions to Maxwell’s equations, such as FDTD, have the benefits of calculating reflectance for multiple wavelengths of light per simulation, but are computationally intensive. Space-discretized methods such as FDTD and FEM output field strength results over the whole geometry and are capable of modeling arbitrary shapes. Frequency-based solutions such as RCWA/FMM and FEM model one wavelength per simulation and are thus able to handle dispersion for regular geometries. Analytical approaches such as TMM are appropriate for very simple thin films. Initial disadvantages such as neglect of dispersion (FDTD, inaccuracy in TM polarization (RCWA, inability to model aperiodic gratings (RCWA, and inaccuracy with metallic materials (FDTD have been overcome by most modern software. All rigorous numerical methods have accurately predicted the broadband reflection of ideal, graded-index anti-reflective subwavelength structures; ideal structures are tapered nanostructures with periods smaller than the wavelengths of light of interest and lengths that are at least a large portion of the wavelengths considered.

  3. Near-field aperture-probe as a magnetic dipole source and optical magnetic field detector

    OpenAIRE

    Denkova, Denitza; Verellen, Niels; Silhanek, Alejandro V.; Van Dorpe, Pol; Moshchalkov, Victor V.

    2014-01-01

    Scanning near-field field optical microscopy (SNOM) is a technique, which allows sub-wavelength optical imaging of photonic structures. While the electric field components of light can be routinely obtained, imaging of the magnetic components has only recently become of interest. This is so due to the development of artificial materials, which enhance and exploit the typically weak magnetic light-matter interactions to offer extraordinary optical properties. Consequently, both sources and det...

  4. Nondispersive optical activity of meshed helical metamaterials.

    Science.gov (United States)

    Park, Hyun Sung; Kim, Teun-Teun; Kim, Hyeon-Don; Kim, Kyungjin; Min, Bumki

    2014-11-17

    Extreme optical properties can be realized by the strong resonant response of metamaterials consisting of subwavelength-scale metallic resonators. However, highly dispersive optical properties resulting from strong resonances have impeded the broadband operation required for frequency-independent optical components or devices. Here we demonstrate that strong, flat broadband optical activity with high transparency can be obtained with meshed helical metamaterials in which metallic helical structures are networked and arranged to have fourfold rotational symmetry around the propagation axis. This nondispersive optical activity originates from the Drude-like response as well as the fourfold rotational symmetry of the meshed helical metamaterials. The theoretical concept is validated in a microwave experiment in which flat broadband optical activity with a designed magnitude of 45° per layer of metamaterial is measured. The broadband capabilities of chiral metamaterials may provide opportunities in the design of various broadband optical systems and applications.

  5. Low Contrast Dielectric Metasurface Optics

    CERN Document Server

    Zhan, Alan; Trivedi, Rahul; Dodson, Chris; Majumdar, Arka

    2015-01-01

    The miniaturization of current image sensors is largely limited by the volume of the optical elements. Using a sub-wavelength patterned quasi-periodic structure, also known as a metasurface, one can build planar optical elements based on the principle of diffraction. However, it was believed that high refractive index materials are required for metasurface optics. Here, we show that one can employ the design principles of a metasurface even with low contrast materials, such as silicon nitride. We validate our theory by fabricating and experimentally characterizing several silicon nitride based lenses and vortex beam generators . The fabricated lenses achieved beam spots of less than 1 {\\mu}m with numerical apertures as high as ~ 0.75. A transmission efficiency of 90% and focusing efficiency of 40% in the visible regime was observed. Our results pave the way towards building low-loss metasurface based optical elements at visible frequencies using low contrast materials.

  6. Near-field studies of surface plasmon generation: optical and terahertz studies

    NARCIS (Netherlands)

    Kihm, H.W.; Lee, K.G.; Seo, M.A.; Ahn, K.J.; Adam, A.J.L.; Kang, J.H.; Park, Q.H.; Planken, P.C.M.; Kim, D.S.

    2008-01-01

    We study the dielectric constant dependent diffraction phenomena of single slit apertures, both theoretically and experimentally. We experimentally simulate perfect metal and real metal cases by investigating subwavelength diffraction by a single slit, both in nano-optical and in terahertz regimes,

  7. Single molecule mapping of the optical field distribution of probes for near-field microscopy

    NARCIS (Netherlands)

    Veerman, J.A.; Garcia-Parajo, M.F.; Kuipers, L.; Hulst, van N.F.

    1999-01-01

    The most difficult task in near-field scanning optical microscopy (NSOM) is to make a high quality subwavelength aperture probe, Recently we have developed high definition NSOM probes by focused ion beam (FIB) milling. These probes have a higher brightness, better polarization characteristics, bette

  8. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy

    OpenAIRE

    Farahani, Javad N.; Eisler, Hans-Jürgen; Pohl, Dieter W; Pavius, Michaël; Flückiger, Philippe; Gasser, Philippe; Hecht, Bert

    2007-01-01

    A method for the fabrication of bow-tie optical antennas at the apex of pyramidal Si3N4 atomic force microscopy tips is described. We demonstrate that these novel optical probes are capable of sub-wavelength imaging of single quantum dots at room temperature. The enhanced and confined optical near-field at the antenna feed gap leads to locally enhanced photoluminescence (PL) of single quantum dots. Photoluminescence quenching due to the proximity of metal is found to be insignificant. The met...

  9. Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks

    CERN Document Server

    Anquillare, E L; Hsu, C W; DeLacy, B G; Joannopoulos, J D; Johnson, S G; Soljacic, M

    2016-01-01

    Subwavelength resonators, ranging from single atoms to metallic nanoparticles, typically exhibit a narrow-bandwidth response to optical excitations. We computationally design and experimentally synthesize tailored distributions of silver nanodisks to extinguish light over broad and varied frequency windows. We show that metallic nanodisks are two-to-ten-times more efficient in absorbing and scattering light than common structures, and can approach fundamental limits to broadband scattering for subwavelength particles. We measure broadband extinction per volume that closely approaches theoretical predictions over three representative visible-range wavelength windows, confirming the high efficiency of nanodisks and demonstrating the collective power of computational design and experimental precision for developing new photonics technologies.

  10. 80-nm-tunable high-index-contrast subwavelength grating long-wavelength VCSEL: Proposal and numerical simulations

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper; Sirbu, Alexei;

    2010-01-01

    A widely-tunable single-mode long wavelength vertical-cavity surface-emitting laser structure employing a MEMStunable high-index-contrast subwavelength grating (HCG) is suggested and numerically investigated. A very large 80- nm linear tuning range was obtained as the HCG was actuated by -220...

  11. Analytical modeling for microwave and optical metasurfaces

    Science.gov (United States)

    Monti, Alessio; Soric, Jason; Alù, Andrea; Toscano, Alessandro; Bilotti, Filiberto

    2016-06-01

    A metasurface is an artificial structure composed by an ultrathin surface textured at a subwavelength scale. In the last years, metasurfaces have been revealed to be particularly useful in the design of electromagnetic scattering cancellation devices operating at microwave and optical frequencies. In this contribution we summarize our results about the analytical modelling of microwave and optical metasurfaces composed, respectively, by patterned metallic surfaces and arrays of plasmonic nanoparticles. The analytical results are compared with the numerical ones obtained with a proper set of full-wave simulations showing an excellent agreement.

  12. All-semiconductor metamaterial-based optical circuit board at the microscale

    Energy Technology Data Exchange (ETDEWEB)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  13. All-semiconductor metamaterial-based optical circuit board at the microscale

    International Nuclear Information System (INIS)

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing

  14. Coherent perfect absorption in deeply subwavelength films in the single photon regime

    CERN Document Server

    Roger, Thomas; Bolduc, Eliot; Valente, Joao; Heitz, Julius J F; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay; Faccio, Daniele

    2016-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single photon regime is of great interest yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply sub-wavelength 50% absorber. We show that while absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, e.g. a localised plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications.

  15. Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures.

    Science.gov (United States)

    Kuo, Shou-Yi; Hsieh, Ming-Yang

    2014-07-01

    In the article, a study of sub-wavelength grating (SWG) nanostructures for broadband and omni-directional anti-reflection coatings (ARCs) on Cu2ZnSnS4 (CZTS) solar cells using the rigorous coupled-wave analysis (RCWA) method is presented. Various SWG nanostructures of different shapes and periodic geometry on CZTS solar cells are discussed in detail. The optimized reflectance decreased to 1.67%, and efficiency increased to 13.74%, accordingly. The omni-directional and broadband antireflections of the SWG nanostructures are also investigated. Under a simulated 1-sun condition and with the light incident angle increased to 80°, cells with SWG nanostructures enhanced the short-circuit current density by 16.5%. This considerable enhancement in light harvesting is attributed to the linearly graded effective refractive index profile from the air to the device surface. PMID:24890020

  16. Anomalous backward scattering of light by a two-side-open subwavelength metallic slit

    CERN Document Server

    Kukhlevsky, S V; Csapo, L; Janssens, K; Samek, O

    2005-01-01

    The backward scattering of TM-polarized light by a two-side-open subwavelength slit in a metal film is analyzed. We show that the reflection coefficient versus wavelength possesses a Fabry-Perot-like dependence that is similar to the anomalous behavior of transmission reported in the study [Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001)]. The open slit totally reflects the light at the near-to-resonance wavelengths. In addition, we show that the interference of incident and resonantly backward-scattered light produces in the near-field diffraction zone a spatially localized wave whose intensity is 10-10^3 times greater than the incident wave, but one order of magnitude smaller than the intra-cavity intensity. The amplitude and phase of the resonant wave at the slit entrance and exit are different from that of a Fabry-Perot cavity.

  17. Efficient near-field energy transfer and relieved Casimir stiction between sub-wavelength gratings

    Science.gov (United States)

    Liu, Xianglei; Zhao, Bo; Zhang, Zhuomin

    2015-03-01

    The promising applications of near-field heat transfer in thermophotovoltaic devices, thermal imaging, thermal rectifiers, and local thermal management have motivated the search for nanostructures capable of supporting higher efficiency or greater heat flux than simple planar substances. In this work, efficient and delocalized radiative heat transfer between two aligned 1D sub-wavelength gratings is demonstrated based on the scattering theory using the rigorous coupled-wave analysis (RCWA). It is shown that the heat flux can be greatly enhanced and the accurate prediction may differ significantly from that of the geometry-based Derjaguin's proximity approximation (PA). The underlying mechanism is attributed to the excitation of hyperbolic modes that increase the energy transmission by supporting propagation of waves with large parallel wavevectors and. Besides efficient energy transport, the performance is robust, insensitive to the relative lateral shift. In addition, the Casimir stiction considering both quantum and thermal fluctuations is found to be relieved compared with bulks.

  18. Asymmetric Fabry-Perot-inspired subwavelength phase shifters for tunable metasurfaces

    CERN Document Server

    Colburn, Shane; Majumdar, Arka

    2016-01-01

    Metasurfaces with tunable spatial phase functions could benefit numerous applications. Currently, most approaches to tuning rely on mechanical stretching which cannot control phase locally, or by modulating the refractive index to exploit rapid phase changes with the drawback of also modulating amplitude. Here, we propose a method to realize phase modulation at subwavelength length scales while maintaining unity amplitude. Our device is inspired by an asymmetric Fabry-Perot resonator, with pixels comprising a scattering nanopost on top of a distributed Bragg reflector, capable of providing a nearly 2{\\pi} nonlinear phase shift with less than 2% refractive index modulation. Using the designed pixels, we simulate a tunable metasurface composed of an array of moderately coupled nanopost resonators, realizing axicons, vortex beam generators, and aspherical lenses with both variable focal length and in-plane scanning capability, achieving nearly diffraction-limited performance. The experimental feasibility of the ...

  19. Plasmon-enhanced Kerr nonlinearity via subwavelength-confined anisotropic Purcell factors

    Science.gov (United States)

    Ren, Juanjuan; Chen, Hongyi; Gu, Ying; Zhao, Dongxing; Zhou, Haitao; Zhang, Junxiang; Gong, Qihuang

    2016-10-01

    We theoretically investigate the enhancement of Kerr nonlinearity through anisotropic Purcell factors provided by plasmon nanostructures. In a three-level atomic system with crossing damping, larger anisotropism of Purcell factors leads to more enhanced Kerr nonlinearity in electromagnetically induced transparency windows. While for fixed anisotropic Purcell factors, Kerr nonlinearity with orthogonal dipole moments increases with the decrease of its crossing damping, and Kerr nonlinearity with nonorthogonal dipole moments is very sensitive to both the value of crossing damping and the orientation of the dipole moments. We design the non-resonant gold nanorods array, which only provides subwavelength-confined anisotropic Purcell factors, and demonstrate that the Kerr nonlinearity of cesium atoms close to the nanorods array can be modulated at the nanoscale. These findings should have potential application in ultracompact quantum logic devices.

  20. Multi-angle fluorometer technique for the determination of absorption and scattering coefficients of subwavelength nanoparticles.

    Science.gov (United States)

    Shortell, Matthew P; Hewins, Rodney A; Fernando, Joseph F S; Walden, Sarah L; Waclawik, Eric R; Jaatinen, Esa A

    2016-07-25

    A thorough analysis of the resonance light scattering (RLS) technique for quantitative scattering measurements of subwavelength nanoparticles is reported. The systematic error associated with using a measurement at a single angle to represent all of the scattered light is investigated. In-depth analysis of the reference material was performed to identify and minimize the error associated with the reference material. Semiconductor ZnO nanobullets and spherical Au nanoparticles of various sizes were used to verify the approach. A simple and inexpensive modification to standard fluorometers is demonstrated using a glass prism allowing scattering measurements in the slightly forward and backwards directions. This allows quantification of the systematic error associated with RLS which is consistently overlooked. PMID:27464160

  1. Long-range surface plasmon polaritons with subwavelength mode expansion in an asymmetrical system

    Institute of Scientific and Technical Information of China (English)

    Chen Jian-Jun; Li Zhi; Gong Qi-Huang

    2009-01-01

    Long-range surface plasmon polariton (LRSPP) modes in an asymmetrical system,in which the thin metal film is sandwiched between a semi-infinite substrate and a high permittivity polymer film with a finite thickness,are theoretically calculated and analyzed.Due to the high permittivity of the polymer film,at proper polymer film thicknesses,the index-matching condition of the dielectrics at both sides of the metal can be satisfied for supporting LRSPP modes,and the electromagnetic field above the metal can be localized well.It is found that these LRSPP modes have both long propagation lengths and subwavelength mode expansion above the metal at the optimal polymer film thicknesses.Furthermore,the requirements on the refractive index and the thickness of the polymer film to support LRSPP modes at the optimal thicknesses are found to be not critical.

  2. Super-transmission from a finite subwavelength arrangement of slits in a metal film.

    Science.gov (United States)

    Chen, Shuwen; Jin, Shilong; Gordon, Reuven

    2014-06-01

    A theory is presented for the transmission of transverse magnetic waves through a finite number of subwavelength slits in metal film. While a single slit achieves the single channel limit on resonance, multiple slits show super-transmission exceeding the single channel limit. The phenomenon of super-transmission is revealed as a result of cross-coupling of modes and confirmed by simulations. The influence of finite permittivity in the IR and microwave regime is included by perturbative corrections to the theory. The theory agrees quantitatively with past experiments and finite-difference time-domain simulations. By considering two or more modes in the slit region, our theory provides an approach to the analysis of cross-coupling among slits, which allows for super-transmission and features of a Fano resonance.

  3. Dielectric inspired scaling of polarization conversion subwavelength resonances in open ultrathin chiral structures

    Science.gov (United States)

    Serebryannikov, Andriy E.; Mutlu, Mehmet; Ozbay, E.

    2015-11-01

    It is shown that the scaling of subwavelength resonances in open ultrathin chiral structures can be obtained by varying only the permittivity of dielectric spacers, while multiband one-way polarization conversion and related asymmetric transmission remain possible. These features are quite general and obtainable in a wide range of parameter variation. Surprisingly, the difference in the power of ɛ for the classical ɛ-1/2 scaling rule and the empirical rules obtained in the present letter does not exceed 22%, giving an important entry point for future theoretical studies and design strategies. Both spectral scaling and conservation of the polarization characteristics can be achieved by using either tunneling or real-index impedance matching. The scaled structures with strong polarization and directional selectivity may have thickness of λ/100 and smaller.

  4. Efficient bending and focusing of light beam with all-dielectric subwavelength structures

    Science.gov (United States)

    Shen, Yue; Luo, Xiangang

    2016-05-01

    In this paper, all-dielectric subwavelength structures are proposed to construct beam deflectors and lenses that modulate the light fields efficiently. These devices are composed of planar array of silicon pyramids with spatially varying geometric shapes, thereby introducing arbitrary phase shift to the propagating light. Meanwhile, owing to the intrinsic low-reflection property, average reflectance as low as 10% is accomplished. The lenses were rigorously designed in both one-dimensional (1D) and two-dimensional (2D) cases. Due to the symmetry of the unit cell, there is no limitation on the polarization state of the incident light. Since no plasmonic loss is incorporated, this design could meet the requirement of wavefront manipulation for laser beams.

  5. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains.

    Science.gov (United States)

    Jiang, Lan; Shi, Xuesong; Li, Xin; Yuan, Yanping; Wang, Cong; Lu, Yongfeng

    2012-09-10

    This study reveals that the periods, ablation areas and orientations of periodic surface structures (ripples) in fused silica can be adjusted by using designed femtosecond (fs) laser pulse trains to control transient localized electron dynamics and corresponding material properties. By increasing the pulse delays from 0 to 100 fs, the ripple periods are changed from ~550 nm to ~255 nm and the orientation is rotated by 90°. The nearwavelength/subwavelength ripple periods are close to the fundamental/second-harmonic wavelengths in fused silica respectively. The subsequent subpulse of the train significantly impacts free electron distributions generated by the previous subpulse(s), which might influence the formation mechanism of ripples and the surface morphology.

  6. Resolution of objects within subwavelength range by using the near field of a dipole

    CERN Document Server

    Kolkiran, Aziz

    2012-01-01

    We analyze the far field resolution of apertures which are illuminated by a point dipole located at subwavelength distances. It is well known that radiation emitted by a localized source can be considered a combination of travelling and evanescent waves, when represented by the angular spectrum method. The evanescent wave part of the source can be converted to propagating waves by diffraction at the aperture thereby it contributes to the far field detection. Therefore one can expect an increase in the resolution of objects. We present explicit calculations showing that the resolution at the far zone is improved by decreasing the source-aperture distance. We also utilize the resolution enhancement by the near field of a dipole to resolve two closely located apertures. The results show that without the near field (evanescent field) the apertures are not resolved whereas with the near field of the dipole the far zone intensity distribution shows improved resolution. This method eliminates the requirements of nea...

  7. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer

    Science.gov (United States)

    Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun

    2016-06-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy.

  8. Investigation of the chip to photodetector coupler with subwavelength grating on SOI

    Science.gov (United States)

    Li, Hongqiang; Cui, Beibei; Liu, Yu; Liu, Hongwei; Zhang, Zanyun; Zhang, Cheng; Tang, Chunxiao; Li, Enbang

    2016-01-01

    We report on two kinds of investigation of the chip to photodetector coupler (CTPC) with uniform and blazed subwavelength grating (SWG) on silicon-on-insulator (SOI) that were conducted for silicon-based hybrid photodetector integration in an arrayed waveguide grating demodulation integrated microsystem. The theoretical model is presented, 3D FDTD and BPM simulations are used to optimize the coupler design. InP/InGaAs photodetector and SOI wafer were integrated through benzocyclobutene bonding. An efficient high-power absorption for TE mode in a broad band is achieved. The power absorption efficiencies of uniform and blazed SWGs in silicon-based hybrid photodetector integration at 1550 nm reach 73% and 75%, respectively in the simulation and it reaches as high as 25% in the measurement when coupling the TE-polarized 1550 nm light.

  9. Ultra broadband waveveguide coupler using an anisotropic sub-wavelength metamaterial

    CERN Document Server

    Halir, Robert; Luque-González, Jose Manuel; Sarmiento-Merenguel, Jose Darío; Schmid, Jens; Wangüemert-Pérez, Gonzalo; Xu, Dan-Xia; Wang, Shurui; Ortega-Moñux, Alejandro; Molina-Fernández, Íñigo

    2016-01-01

    Multimode interference couplers are a fundamental building block in many integrated photonic systems, ranging from high-speed coherent receivers to quantum splitters. However, their basic structure has remained fundamentally unchanged for almost four decades, limiting their size and operation bandwidth. Using sub-wavelength metamaterials, photonic devices with break-through size and performance have been recently reported. Leveraging the inherent anisotropy of these structures, here we derive a semi-analytic expression that enables the design of compact and ultra broadband multimode interference couplers. We experimentally demonstrate virtually perfect operation over a bandwidth in excess of 300nm (500nm in simulation), for a device three times shorter than its conventional counterpart, making this the most broadband multimode interference coupler reported to date. These results will enable ultra broadband integrated systems for applications in communications and sensing.

  10. Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer

    CERN Document Server

    Xiao, S; Qiu, M; Mortensen, Niels Asger; Qiu, Min; Xiao, Sanshui

    2007-01-01

    Enhanced transmissions through a gold film with arrays of subwavelength holes are theoretically studied, employing the rigid full vectorial three dimensional finite difference time domain method. Influence of air-holes shape to the transmission is firstly studied, which confirms two different resonances attributing to the enhanced transmission: the localized waveguide resonance and periodic surface plasmon resonances. For the film coated with dielectric layers, calculated results show that in the wavelength region of interest the localized waveguide resonant mode attributes to sensing rather than the periodic gold-glass surface plasmon mode. Although the detected peak is fairly broad and the shift is not too pronounced, we emphasize the contribution for sensing from the localized waveguide resonant mode, which may opens up new ways to design surface plasmon based sensors.

  11. Efficient vortex generation in sub-wavelength epsilon-near-zero slabs

    CERN Document Server

    Ciattoni, Alessandro; Rizza, Carlo

    2016-01-01

    We show that a homogeneous and isotropic slab, illuminated by a circularly polarized beam with no topological charge, produces vortices of order two in the opposite circularly polarized components of the reflected and transmitted fields, as a consequence of the difference between transverse magnetic and transverse electric dynamics. In the epsilon-near-zero regime, we find that vortex generation is remarkably efficient in sub-wavelength thick slabs up to the paraxial regime. This physically stems from the fact that a vacuum paraxial field can excite a nonparaxial field inside an epsilon-near-zero slab since it hosts slowly varying fields over physically large portion of the bulk. Our theoretical predictions indicate that epsilon-near-zero media hold great potential as nanophotonic elements for manipulating the angular momentum of the radiation, since they are available without resorting to complicated micro/nano fabrication processes and can operate even at very small (ultraviolet) wavelengths.

  12. One-step Patterning of Sub-wavelength Plasmonic Gratings in Metal-Polymer Composites

    CERN Document Server

    Chaudhary, Raghvendra P; Jaiswal, Arun; Hawal, Suyog R; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    2D and 3D micro/nano fabrication based on two-photon polymerization (TPP) has emerged as a strong contender for additive manufacturing for wide variety of applications. In this manuscript we report one step patterning of structurally stable, subwavelength 2D and 3D gold nanostructures using femto-second laser by incorporating single photon photoinitiator only in pure and metal precursor doped polymers. The metal polymer composite nanostructures are written directly by in-situ reduction of gold precursor within the photoresist using femto-second laser irradiation. The photo-initiator triggers the reduction of gold precursor and induces simultaneous polymerization of the photoresist based on two-photon absorption phenomenon. Diffraction gratings with varied loading of gold precursors in photoresist have been fabricated and characterized by measuring their diffraction efficiencies in the infrared region. Minimum line width of 390 nm has been achieved for 5 wt% gold loaded polymers. Systematic studies of the effe...

  13. Self-assembly of subwavelength nanostructures with symmetry breaking in solution

    Science.gov (United States)

    Tian, Xiang-Dong; Chen, Shu; Zhang, Yue-Jiao; Dong, Jin-Chao; Panneerselvam, Rajapandiyan; Zhang, Yun; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-01-01

    Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness. The Raman tag of 4-mercaptobenzoic acid (MBA) assists the self-assembly process and endows the subwavelength asymmetric nanostructures with surface-enhanced Raman scattering (SERS) activity. Moreover, thick silica shells (above 50 nm thickness) can be coated on the self-assembled nanostructures in situ to stabilize the whole nanostructures, paving the way toward bioapplications. Single particle scattering spectroscopy with a 360° polarization resolution is performed on individual Ag nanocube and Au nanosphere dimers, correlated with high-resolution TEM characterization. The asymmetric dimers exhibit strong configuration and polarization dependence Fano resonance properties. Overall, the solution-based self-assembly method reported here is opening up new opportunities to prepare diverse multicomponent nanomaterials with optimal performance.Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm

  14. Experimental Demonstration of Effective Medium Approximation Breakdown in Deeply Subwavelength All-Dielectric Multilayers

    CERN Document Server

    Zhukovsky, Sergei V; Takayama, Osamu; Shkondin, Evgeniy; Malureanu, Radu; Jensen, Flemming; Lavrinenko, Andrei V

    2015-01-01

    We experimentally demonstrate the effect of anomalous breakdown of the effective medium approximation in all-dielectric deeply subwavelength thickness ($d \\sim\\lambda/160-\\lambda/30$) multilayers, as recently predicted theoretically [H.H. Sheinfux et al., Phys. Rev. Lett. 113, 243901 (2014)]. Multilayer stacks are composed of alternating alumina and titania layers fabricated using atomic layer deposition. For light incident on such multilayers at angles near the total internal reflection we observe pronounced differences in the reflectance spectra for structures with 10-nm versus 20-nm thick layers, as well as for structures with different layers ordering, contrary to the predictions of the effective medium approximation. The reflectance difference can reach values up to 0.5, owing to the chosen geometrical configuration with an additional resonator layer employed for the enhancement of the effect. Our results are important for the development of new high-precision multilayer ellipsometry methods and schemes,...

  15. Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers

    Science.gov (United States)

    Smith, Evan M.; Nath, Janardan; Ginn, James; Peale, Robert E.; Shelton, David

    2016-05-01

    Subwavelength resonant structures designed for long-wave infrared (LWIR) absorption have been integrated with a standard vanadium-oxide microbolometer. Dispersion of the dielectric refractive index provides for multiple overlapping resonances that span the 8-12 μm LWIR wavelength band, a broader range than can be achieved using the usual quarter-wave resonant cavity engineered into the air-bridge structures. Experimental measurements show a 49% increase in responsivity for LWIR and a 71% increase across a full waveband as compared to a similar device designed for only LWIR absorption, using a 300°C blackbody at 35 Hz chopping rate. Increased thermal time constant due to additional mass is shown to lessen this enhancement at higher chopping rates.

  16. Integrated circuit layout design methodology for deep sub-wavelength processes

    Science.gov (United States)

    Torres Robles, Juan Andres

    One of the critical aspects of semiconductor fabrication is the patterning of multiple design layers onto silicon wafers. Since 180nm processes came online, the semiconductor industry has operated under conditions in which the critical features are smaller than the wavelength of light used during the patterning process. Such sub-wavelength conditions present many challenges because topology, rather than feature width and space, defines the yield characteristics of the devices. Pattern variability can contribute as much as 80% of the total timing margins defined by traditional SPICE corner models. Because feature variability is undesirable from electrical considerations, this work proposes a physical design verification methodology that emphasizes pattern robustness to process variations. This new method is based on a framework composed of manufacturability objects, operators and guidelines, which permits the definition of a scoring system ranking the manufacturing process and the manufacturability of the designs. This framework is intended to alleviate circuit design and verification challenges and it based on three new concepts: the first relates to compact process model requirements. The second involves the definition of a new design object, called pv-Band, which reflects layout sensitivity to process variations. The third is the specification of two manufacturability metrics that, when optimized, can improve yield by accounting layout sensitivities across multiple design levels (e.g., Active, polysilicon, contact, metal 1, etc.). By integrating these new concepts (process models, pv-Bands and manufacturability metrics) with existing knowledge, this work moves forward the state-of-the-art of physical design and verification of integrated circuits subject to sub-wavelength effects.

  17. Acoustic perfect absorber based on metasurface with deep sub-wavelength thickness (Conference Presentation)

    Science.gov (United States)

    Assouar, Badreddine; Li, Yong

    2016-04-01

    The concept of the coiling up space, based on which artificial structures could exhibit extreme acoustic properties, such as high refractive index, double negativity, near-zero index, etc., have been investigated intensively recently due to the fascinating underlying physics and diverse potential applications [1-3]. One of the most important functionality is the ability to shrink bulky structures into deep sub-wavelength scale. It is therefore intuitive to prospect that the concept of coiling up space, if could be extended into the perforated system, will benefit to significantly reduce the total thickness while keeping total absorption. Conventional acoustic absorbers require a structure with a thickness comparable to the working wavelength, resulting major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in extremely low frequency region. The metasurface possessing a deep sub-wavelength thickness down to a feature size of ~ lambda/223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have high impact on amount of applications due to the extremely thin thickness, easy fabrication and high efficiency of the proposed structure. References 1. Z. Liang and J. Li, Phys. Rev. Lett. 108, 114301 (2012). 2. Y. Li, B. Liang, X. Tao, X. F. Zhu, X. Y. Zou, and J. C. Cheng, Appl. Phys. Lett. 101, 233508 (2012). 3. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014).

  18. Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications

    KAUST Repository

    Alias, Mohd Sharizal

    2015-07-30

    The coherent amplified spontaneous emission and high photoluminescence quantum efficiency of organolead trihalide perovskite have led to research interest in this material for use in photonic devices. In this paper, the authors present a focused-ion beam patterning strategy for methylammonium lead tribromide (MAPbBr3) perovskite crystal for subwavelength grating nanophotonic applications. The essential parameters for milling, such as the number of scan passes, dwell time, ion dose, ion current, ion incident angle, and gas-assisted etching, were experimentally evaluated to determine the sputtering yield of the perovskite. Based on our patterning conditions, the authors observed that the sputtering yield ranged from 0.0302 to 0.0719 μm3/pC for the MAPbBr3 perovskite crystal. Using XeF2 for the focused-ion beam gas-assisted etching, the authors determined that the etching rate was reduced to between 0.40 and 0.97, depending on the ion dose, compared with milling with ions only. Using the optimized patterning parameters, the authors patterned binary and circular subwavelength grating reflectors on the MAPbBr3 perovskite crystal using the focused-ion beam technique. Based on the computed grating structure with around 97% reflectivity, all of the grating dimensions (period, duty cycle, and grating thickness) were patterned with nanoscale precision (>±3 nm), high contrast, and excellent uniformity. Our results provide a platform for utilizing the focused-ion beam technique for fast prototyping of photonic nanostructures or nanodevices on organolead trihalide perovskite.

  19. An optical metasurface planar camera

    CERN Document Server

    Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are 2D arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optical design by enabling complex low cost systems where multiple metasurfaces are lithographically stacked on top of each other and are integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here, we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has an f-number of 0.9, an angle-of-view larger than 60$^\\circ$$\\times$60$^\\circ$, and operates at 850 nm wavelength with large transmission. The camera exhibits high image quality, which indicates the potential of this technology to produce a paradigm shift in future designs of imaging systems for microscopy, photograp...

  20. Three-dimensional optical holography using a plasmonic metasurface

    Science.gov (United States)

    Huang, Lingling; Chen, Xianzhong; Mühlenbernd, Holger; Zhang, Hao; Chen, Shumei; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Cheah, Kok-Wai; Qiu, Cheng-Wei; Li, Jensen; Zentgraf, Thomas; Zhang, Shuang

    2013-01-01

    Benefitting from the flexibility in engineering their optical response, metamaterials have been used to achieve control over the propagation of light to an unprecedented level, leading to highly unconventional and versatile optical functionalities compared with their natural counterparts. Recently, the emerging field of metasurfaces, which consist of a monolayer of photonic artificial atoms, has offered attractive functionalities for shaping wave fronts of light by introducing an abrupt interfacial phase discontinuity. Here we realize three-dimensional holography by using metasurfaces made of subwavelength metallic nanorods with spatially varying orientations. The phase discontinuity takes place when the helicity of incident circularly polarized light is reversed. As the phase can be continuously controlled in each subwavelength unit cell by the rod orientation, metasurfaces represent a new route towards high-resolution on-axis three-dimensional holograms with a wide field of view. In addition, the undesired effect of multiple diffraction orders usually accompanying holography is eliminated.

  1. Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Prof.Dr. Lukas Novotny

    2004-10-18

    The seventh conference in the NFO conference series, held here in Rochester, provided to be the principal forum for advances in sub-wavelength optics, near-field optical microscopy, local field enhancement, instrumental developments and the ever-increasing range of applications. This conference brought together the diverse scientific communities working on the theory and application of near-field optics (NFO) and related techniques.

  2. Optical near-field excitation at the semiconductor band edge: Field distributions, anisotropic transitions and quadrupole enhancement

    NARCIS (Netherlands)

    Heydt, von der A.; Knorr, A.; Hanewinkel, B.; Koch, S.W.

    2000-01-01

    The optical near-field response of a three dimensional subwavelength aperture-semiconductor system is analyzed within a finite difference time domain scheme for Maxwell's and excitonic material equations. The analysis includes the field modification due to the high refractive index environment and t

  3. Optical Trapping and Control of a Nanowire by a Nanoaperture

    CERN Document Server

    Aporvari, Mehdi Shafiei; Volpe, Giovanni

    2015-01-01

    We demonstrate that a single sub-wavelength nanoaperture in a metallic thin film can be used to achieve dynamic optical trapping and control of a single dielectric nanowire. A nanoaperture can trap a nanowire, control its orientation when illuminated by a linearly-polarized incident field, and also rotate the nanowire when illuminated by a circularly-polarized incident field. Compared to other designs, this approach has the advantages of a low-power driving field entailing low heating and photodamage.

  4. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn;

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  5. Direct fabrication of periodic patterns with hierarchical sub-wavelength structures on poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) thin films using femtosecond laser interference patterning

    International Nuclear Information System (INIS)

    A simple optical interference method for the fabrication of simply periodic and periodic with a substructure on poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) using femtosecond laser interference patterns is demonstrated. The femtosecond laser pulse was split by a diffractive beam splitter and overlapped with two lenses. Homogeneous periodic arrays could be fabricated even using a single laser pulse. In addition, multipulse irradiation resulted in reproducible sub-wavelength ripples oriented perpendicularly to the laser polarization with spatial period from 170 to 220 nm (around one-fourth of the laser wavelength). In addition, the observed size of the spatial period was not affected by the number of incident laser pulses or accumulated energy density. Using high energy pulses it was possible to completely remove the PEDOT:PSS layer without inducing damage to the underneath substrate.

  6. I.I. Rabi Prize Talk: Exploring New Frontiers of Quantum Optical Science

    Science.gov (United States)

    Lukin, Mikhail

    2009-05-01

    In this talk we will discuss recent developments involving a new scientific interface between quantum optics and atomic physics, many body physics, nanoscience and quantum information science. Specific examples include quantum manipulation of individual spins and photons using impurities in diamond and control of light-matter interactions using sub-wavelength localization of optical fields. Novel applications of these techniques ranging from implementation of ideas from quantum information science to nanoscale magnetic sensing will be discussed.

  7. Optical and electrical excitation of nanoantennas with atomic-scale gaps

    OpenAIRE

    Kern, Johannes

    2015-01-01

    Nano-antennas are an emerging concept for the manipulation and control of optical fields at the sub-wavelength scale. In analogy to their radio- and micro-wave counterparts they provide an efficient link between propagating and localized fields. Antennas operating at optical frequencies are typically on the order of a few hundred nanometer in size and are fabricated from noble metals. Upon excitation with an external field the electron gas inside the antenna can respond resonantly, if the dim...

  8. 3D micro-optical elements for generation of tightly focused vortex beams

    OpenAIRE

    Balčytis Armandas; Hakobyan Davit; Gabalis Martynas; Žukauskas Albertas; Urbonas Darius; Malinauskas Mangirdas; Petruškevičius Raimondas; Brasselet Etienne; Juodkazis Saulius

    2015-01-01

    Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable ...

  9. Optical vortex beam generator at nanoscale level

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; de Angelis, Francesco

    2016-07-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications.

  10. Analytical model of the enhanced light transmission through subwavelength metal slits: Green's function formalism versus Rayleigh's expansion

    CERN Document Server

    Kukhlevsky, S V; Mechler, M; Samek, O

    2006-01-01

    We present an analytical model of the resonantly enhanced transmission of light through a subwavelength nm-size slit in a thick metal film. The simple formulae for the transmitted electromagnetic fields and the transmission coefficient are derived by using the thin-slit approximation and the Green function formalism for the solution of Maxwell's equations. The resonance wavelengths are in agreement with the semi-analytical model [Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001)], which solves the wave equations by using the Rayleigh field expansion. Our formulae, however, show great resonant enhancement of a transmitted wave, while the Rayleigh expansion model predicts attenuation. The difference is attributed to the near-field subwavelength diffraction, which is not considered by the models based on the Rayleigh expansion.

  11. Effect of a dielectric substrate with a subwavelength thickness on light diffraction by rectangular hole arrays on metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. J.; Jeong, M. S. [Sungkyunkwan University, Suwon (Korea, Republic of); Choi, S. B. [Incheon National University, Incheon (Korea, Republic of)

    2014-11-15

    A theoretical study of the effect of ultrathin dielectric substrate in THz wave diffraction phenomena on a subwavelength nanostructured system is conducted. The proposed system is composed of a dielectric substrate with a thickness of ∼ λ/1000 and a subwavelength-scaled rectangular hole array on a metal thin film in THz wavelength region. A modified Rayleigh diffraction theory has been developed to take into account the contribution of reflection at the air-substrate interface. A calculation of the terahertz transmission while varying the thickness shows that the effect of a thin dielectric substrate starts to vanish when the thickness becomes ∼1/100 of the incident light's wavelength. Theoretically, the results are well explained because most electric fields are confined near the rectangular aperture, which results in the dominant existence of the field inside the thin substrate. Additionally, the effect of a thin dispersive substrate is discussed.

  12. Negative refraction and subwavelength imaging of a photonic-crystal slab for the frequencies in the third band

    Institute of Scientific and Technical Information of China (English)

    Shuai Feng; Cheng Ren; Degang Xu; Yiquan Wang

    2009-01-01

    Negative refraction and subwavelength imaging properties of a two-dimensional(2D)photonic crystal(PC)slab are studied by the finite-difference time-domain method.The PC consists of a triangular lattice of air holes immersed in a dielectric.For a certain frequency range in the third photonic band,the directions of the group velocities and the phase velocities can be opposite,so the PC can work as a kind of negative refractive-index material.The light radiated from a point source can form a subwavelength image spot through the PC slab.Negative refraction and an effective refractive index of the PC slab n=-1 can be achieved for the incident wave with its incident angle within a certain range.

  13. Polarization-selective optical transmission through a plasmonic metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Pelzman, Charles; Cho, Sang-Yeon, E-mail: sangycho@nmsu.edu [Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, New Mexico, 88003-8001 (United States)

    2015-06-22

    We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident beam, switching of enhanced optical transmission bands through the metasurface was experimentally demonstrated. This demonstration is a significant step towards developing advanced multispectral imaging devices.

  14. Cavity-enhanced optical detection of carbon nanotube Brownian motion

    CERN Document Server

    Stapfner, S; Hunger, D; Weig, E M; Reichel, J; Favero, I

    2012-01-01

    Optical cavities with small mode volume are well-suited to detect the vibration of sub-wavelength sized objects. Here we employ a fiber-based, high-finesse optical microcavity to detect the Brownian motion of a freely suspended carbon nanotube at room temperature under vacuum. The optical detection resolves deflections of the oscillating tube down to 50pm/Hz^1/2. A full vibrational spectrum of the carbon nanotube is obtained and confirmed by characterization of the same device in a scanning electron microscope. Our work successfully extends the principles of high-sensitivity optomechanical detection to molecular scale nanomechanical systems.

  15. Thermal image encryption obtained with a SiO2 space-variant subwavelength grating supporting surface phonon-polaritons.

    Science.gov (United States)

    Dahan, Nir; Niv, Avi; Biener, Gabriel; Kleiner, Vladimir; Hasman, Erez

    2005-12-01

    Space-variant partially polarized thermal emission is investigated. We show that by coupling surface phonon-polaritons to a propagating field, large anisotropy of the emissivity is obtained within a narrow spectral range. We experimentally demonstrate this effect by fabricating a space-variant subwavelength grating on a SiO2 substrate to encrypt an image in the polarization state of a thermal radiation field. PMID:16342718

  16. Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range

    OpenAIRE

    Reinhard, Benjamin; Schmitt, Klemens M.; Wollrab, Viktoria; Neu, Jens; Beigang, René; Rahm, Marco

    2012-01-01

    We present a metamaterial-based terahertz (THz) sensor for thickness measurements of subwavelength-thin materials and refractometry of liquids and liquid mixtures. The sensor operates in reflection geometry and exploits the frequency shift of a sharp Fano resonance minimum in the presence of dielectric materials. We obtained a minimum thickness resolution of 12.5 nm (1/16000 times the wavelength of the THz radiation) and a refractive index sensitivity of 0.43 THz per refractive index unit. We...

  17. Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique

    Science.gov (United States)

    Tu, Hui-Lin; Xiao, Shao-Qiu

    2016-05-01

    The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysis of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.

  18. Using optical nanofibers for spectroscopy

    CERN Document Server

    Garcia-Fernandez, R; Bruse, F; Dan, C; Karapetyan, K; Rehband, O; Stiebeiner, A; Wiedemann, U; Meschede, D; Rauschenbeutel, A

    2011-01-01

    We review our recent progress in the production and characterization of tapered optical fibers with a sub-wavelength diameter waist. Such fibers exhibit a pronounced evanescent field and are therefore a useful tool for highly sensitive evanescent wave spectroscopy of adsorbates on the fiber waist or of the medium surrounding. We use a carefully designed flame pulling process that allows us to realize preset fiber diameter profiles. In order to determine the waist diameter and to verify the fiber profile, we employ scanning electron microscope measurements and a novel accurate in situ optical method based on harmonic generation. We use our fibers for linear and non-linear absorption and fluorescence spectroscopy of surface-adsorbed organic molecules and investigate their agglomeration dynamics. Furthermore, we apply our spectroscopic method to quantum dots on the surface of the fiber waist and to caesium vapor surrounding the fiber. Finally, towards dispersive measurements, we present our first results on buil...

  19. Sub-wavelength fluorescent polymer coatings to convert standard glass capillaries into robust microfluidic refractometric sensors

    Science.gov (United States)

    Rowland, Kristopher J.; François, Alexandre; Hoffmann, Peter; Monro, Tanya M.

    2013-03-01

    A capillary microresonator platform for label-free refractometric sensing is demonstrated by coating the interior of thick-walled silica capillaries with a sub-wavelength layer of high refractive index, dye-doped polymer. No intermediate processing, such as etching or tapering, of the capillary is required. Side illumination and detection of the polymer layer reveals a fluorescence spectrum that is periodically modulated by the presence of whispering gallery modes within the layer. The fabricated capillary resonators exhibited sensitivities to changes in internal refractive index of up to 29.44 nm/RIU, demonstrated by flowing through aqueous dilutions of glucose. Thick walled capillaries are used in order to readily allow interfacing with existing biological and chemical sensing and separation platforms such as capillary electrophoresis or gas chromatography where such capillaries are routinely used. The interior polymer coating method described here could enable the use of a wide range of materials for the design of optofluidic label-free sensors integrated with industry standard (bio)chemical analytical separation platforms.

  20. Subwavelength Imaging in a One-Dimensional Metal-Dielectric Structure

    Institute of Scientific and Technical Information of China (English)

    LI Ming-Yu; GU Pei-Fu; ZHANG Jin-Long; LI Yi-Yu; LIU Xu

    2007-01-01

    We analyse the dispersion relation of a one-dimensional(1D)metal-dielectric(MD)structure for H-polarized light (i.e.the magnetic field is parallel to the interfaces of the layers)and use the transfer matrix method to simulate the subwavelength image effect through the 1D-MD structure.The structure operates in the self-collimation regime,and does not involve negative refraction or amplification of evanescent waves.The Fabry-Perot Fesollance effect is studjed in order to obtain optimum parameters for maximum transmission.A resolution of λ/10 for a single point source is achieved when the thickness of the 1D-MD is about 300nm,Taking into account the actual values of the didectric constants of the metal(silver) and the dielectric(HfO2)layers,we find that a silver/HfO2 stack,with suitable parameters,has a resolution of λ/5 at visible wavelengths.

  1. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana, E-mail: dnrsp@uohyd.ac.in, E-mail: dnr-laserlab@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Deepak, K. L. N. [Department of Physics and Center for Research in Photonics, University of Ottawa, 150 Louis Pasteur, Ottawa K1N6N5, Ontario (Canada)

    2014-09-21

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  2. Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Youming; Zhang, Baile

    2016-05-01

    Magnetic coupling is generally much weaker than electric Coulomb interaction. This also applies to the well-known magnetic "meta-atoms," or split-ring resonators (SRRs) as originally proposed by Pendry et al. [IEEE Trans. Microwave Theory Tech. 47, 2075 (1999), 10.1109/22.798002], in which the associated electric dipole moments usually dictate their interaction. As a result, stereometamaterials, a stack of identical SRRs, were found with electric coupling so strong that the dispersion from merely magnetic coupling was overturned. Recently, other workers have proposed a new concept of magnetic localized surface plasmons, supported on metallic spiral structures (MSSs) at a deep-subwavelength scale. Here, we experimentally demonstrate that a stack of these magnetic "meta-atoms" can have dominant magnetic coupling in both of its two configurations. This allows magnetic-coupling-dominant energy transport along a one-dimensional stack of MSSs, as demonstrated with near-field transmission measurement. Our work not only applies this type of magnetic "meta-atom" into metamaterial construction, but also provides possibilities of magnetic metamaterial design in which the electric interaction no longer takes precedence.

  3. Simple fabrication of antireflective silicon subwavelength structure with self-cleaning properties.

    Science.gov (United States)

    Kim, Bo-Soon; Ju, Won-Ki; Lee, Min-Woo; Lee, Cheon; Lee, Seung-Gol; Beom-Hoan, O

    2013-05-01

    A subwavelength structure (SWS) was formed via a simple chemical wet etching using a gold (Au) catalyst. Single nano-sized Au particles were fabricated by metallic self-aggregation. The deposition and thermal annealing of the thin metallic film were carried out. Thermal annealing of a thin metallic film enables the creation of metal nano particles by isolating them from each other by means of the self-aggregation of the metal. After annealing, the samples were soaked in an aqueous etching solution of hydrofluoric acid and hydrogen peroxide. When silicon (Si) was etched for 2 minutes using the Au nano particles, the reflectance was decreased almost 0% over the entire wavelength range from 300 to 1300 nm due to its deep and steeply double tapered structure. When given varying incident angle degrees from 30 degrees to 60 degrees, the reflectance was also maintained at less than 3%. Following this, the etched silicon was treated with a plasma-polymerized fluorocarbon (PPFC) film of about 5 nm using an ICP reactor for surface modification. The result of this surface treatment, the contact angle increased significantly from 27.5 degrees to 139.3 degrees. The surface modification was successful and maintained almost 0% reflectance because of the thin film deposition. PMID:23858915

  4. Lamb waves based fast subwavelength imaging using a DORT-MUSIC algorithm

    Science.gov (United States)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-02-01

    A Lamb wave-based, subwavelength imaging algorithm is developed for damage imaging in large-scale, plate-like structures based on a decomposition of the time-reversal operator (DORT) method combined with the multiple signal classification (MUSIC) algorithm in the space-frequency domain. In this study, a rapid, hybrid non-contact scanning system was proposed to image an aluminum plate using a piezoelectric linear array for actuation and a laser Doppler vibrometer (LDV) line-scan for sensing. The physics of wave propagation, reflection, and scattering that underlies the response matrix in the DORT method is mathematically formulated in the context of guided waves. The singular value decomposition (SVD) and MUSIC-based imaging condition enable quantifying the damage severity by a `reflectivity' parameter and super-resolution imaging. With the flexibility of this scanning system, a considerably large area can be imaged using lower frequency Lamb waves with limited line-scans. The experimental results showed that the hardware system with a signal processing tool such as the DORT-MUSIC (TR-MUSIC) imaging technique can provide rapid, highly accurate imaging results as well as damage quantification with unknown material properties.

  5. High accuracy models of sources in FDTD computations for subwavelength photonics design simulations

    Science.gov (United States)

    Cole, James B.; Banerjee, Saswatee

    2014-09-01

    The simple source model used in the conventional finite difference time domain (FDTD) algorithm gives rise to large errors. Conventional second-order FDTD has large errors (order h**2/ 12), h = grid spacing), and the errors due to the source model further increase this error. Nonstandard (NS) FDTD, based on a superposition of second-order finite differences, has been demonstrated to give much higher accuracy than conventional FDTD for the sourceless wave equation and Maxwell's equations (h**6 / 24192). Since the Green's function for the wave equation in free space is known, we can compute the field due to a point source. This analytical solution is inserted into the NS finite difference (FD) model and the parameters of the source model are adjusted so that the FDTD solution matches the analytical one. To derive the scattered field source model, we use the NS-FD model of the total field and of the incident field to deduce the correct source model. We find that sources that generate a scattered field must be modeled differently from ones radiate into free space. We demonstrate the high accuracy of our source models by comparing with analytical solutions. This approach yields a significant improvement inaccuracy, especially for the scattered field, where we verified the results against Mie theory. The computation time and memory requirements are about the same as for conventional FDTD. We apply these developments to solve propagation problems in subwavelength structures.

  6. Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes

    Science.gov (United States)

    Liu, Liqin; Luo, Yunfei; Zhao, Zeyu; Zhang, Wei; Gao, Guohan; Zeng, Bo; Wang, Changtao; Luo, Xiangang

    2016-07-01

    In this paper, large area and deep sub-wavelength interference patterns are realized experimentally by using odd surface plasmon modes in the metal/insulator/metal structure. Theoretical investigation shows that the odd modes possesses much higher transversal wave vector and great inhibition of tangential electric field components, facilitating surface plasmon interference fringes with high resolution and contrast in the measure of electric field intensity. Interference resist patterns with 45 nm (∼λ/8) half-pitch, 50 nm depth, and area size up to 20 mm × 20 mm were obtained by using 20 nm Al/50 nm photo resist/50 nm Al films with greatly reduced surface roughness and 180 nm pitch exciting grating fabricated with conventional laser interference lithography. Much deeper resolution down to 19.5 nm is also feasible by decreasing the thickness of PR. Considering that no requirement of expensive EBL or FIB tools are employed, it provides a cost-effective way for large area and nano-scale fabrication.

  7. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators

    Science.gov (United States)

    Qin, Feifei; Zhang, Qiang; Xiao, Jun-Jun

    2016-07-01

    The use of resonant structures to control scattering strength and directionality is of importance in various electromagnetic systems. Here we propose and demonstrate sub-wavelength unidirectional scattering by two nearby spoof localized surface plasmon resonators for microwave. The principle is that metal surfaces corrugated by grooves can support magnetic dipolar modes, as well as electric dipolar modes. The resonance is essentially dictated by the geometric parameter of the structure, enabling extremely high degrees of freedom for tuning the scattering properties of the resonator. Particularly, by adjusting the thickness of the resonators, we can make the magnetic dipole mode of one resonator have nearly the same resonant frequency with that of the electric dipole mode of the other resonator. We show that nearly zero backscattering happens when the distance between the two resonators is subwavelenght but larger than a certain value, otherwise strong vertical coupling and mode splitting occur. The results can be extended to other frequency bands and might find application in unique resonant devices as a radio frequency (RF) antenna, filter and metasurface.

  8. Time Reversal in Subwavelength-Scaled Resonant Media: Beating the Diffraction Limit

    Directory of Open Access Journals (Sweden)

    Fabrice Lemoult

    2011-01-01

    Full Text Available Time reversal is a physical concept that can focus waves both spatially and temporally regardless of the complexity of the propagation medium. Time reversal mirrors have been demonstrated first in acoustics, then with electromagnetic waves, and are being intensively studied in many fields ranging from underwater communications to sensing. In this paper, we will review the principles of time reversal and in particular its ability to focus waves in complex media. We will show that this focusing effect depends on the complexity of the propagation medium rather than on the time reversal mirror itself. A modal approach will be utilized to explain the physical mechanism underlying the concept. A particular focus will be given on the possibility to break the diffraction barrier from the far field using time reversal. We will show that finite size media made out of coupled subwavelength resonators support modes which can radiate efficiently in the far field spatial information of the near field of a source. We will show through various examples that such a process, due to reversibility, permits to beat the diffraction limit using far field time reversal, and especially that this result occurs owing to the broadband inherent nature of time reversal.

  9. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators

    Science.gov (United States)

    Qin, Feifei; Zhang, Qiang; Xiao, Jun-Jun

    2016-01-01

    The use of resonant structures to control scattering strength and directionality is of importance in various electromagnetic systems. Here we propose and demonstrate sub-wavelength unidirectional scattering by two nearby spoof localized surface plasmon resonators for microwave. The principle is that metal surfaces corrugated by grooves can support magnetic dipolar modes, as well as electric dipolar modes. The resonance is essentially dictated by the geometric parameter of the structure, enabling extremely high degrees of freedom for tuning the scattering properties of the resonator. Particularly, by adjusting the thickness of the resonators, we can make the magnetic dipole mode of one resonator have nearly the same resonant frequency with that of the electric dipole mode of the other resonator. We show that nearly zero backscattering happens when the distance between the two resonators is subwavelenght but larger than a certain value, otherwise strong vertical coupling and mode splitting occur. The results can be extended to other frequency bands and might find application in unique resonant devices as a radio frequency (RF) antenna, filter and metasurface. PMID:27405356

  10. Measuring the mode volume of plasmonic nanocavities using coupled optical emitters

    CERN Document Server

    Russell, Kasey J; Hu, Evelyn; 10.1103/PhysRevB.85.245445

    2012-01-01

    Metallic optical systems can confine light to deep sub-wavelength dimensions, but verifying the level of confinement at these length scales typically requires specialized techniques and equipment for probing the near-field of the structure. We experimentally measured the confinement of a metal-based optical cavity by using the cavity modes themselves as a sensitive probe of the cavity characteristics. By perturbing the cavity modes with conformal dielectric layers of sub-nm thickness using atomic layer deposition, we find the exponential decay length of the modes to be less than 5% of the free-space wavelength (\\lambda) and the mode volume to be of order \\lambda^3/1000. These results provide experimental confirmation of the deep sub-wavelength confinement capabilities of metal-based optical cavities.

  11. EDITORIAL: Nanostructures + Light = 'New Optics'

    Science.gov (United States)

    Zheludev, Nikolay; Shalaev, Vladimir

    2005-02-01

    Suddenly, at the end of the last century, classical optics and classical electrodynamics became fashionable again. Fields that several generations of researchers thought were comprehensively covered by the famous Born and Wolf textbook and were essentially dead as research subjects were generating new excitement. In accordance with Richard Feynman’s famous quotation on nano-science, the optical community suddenly discovered that 'there is plenty of room at the bottom'—mixing light with small, meso- and nano-structures could generate new physics and new mind-blowing applications. This renaissance began when the concept of band structure was imported from electronics into the domain of optics and led to the development of what is now a massive research field dedicated to two- and three-dimensional photonic bandgap structures. The field was soon awash with bright new ideas and discoveries that consolidated the birth of the 'new optics'. A revision of some of the basic equations of electrodynamics led to the suspicion that we had overlooked the possibility that the triad of wave vector, electric field and magnetic field, characterizing propagating waves, do not necessarily form a right-handed set. This brought up the astonishing possibilities of sub-wavelength microscopy and telescopy where resolution is not limited by diffraction. The notion of meta-materials, i.e. artificial materials with properties not available in nature, originated in the microwave community but has been widely adopted in the domain of optical research, thanks to rapidly improving nanofabrication capabilities and the development of sub-wavelength scanning imaging techniques. Photonic meta-materials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials. The structural units of meta-materials can be tailored in shape and size; their composition and morphology can be artificially tuned, and inclusions can be

  12. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching

    Science.gov (United States)

    Ye, Xin; Jiang, Xiaodong; Huang, Jin; Geng, Feng; Sun, Laixi; Zu, Xiaotao; Wu, Weidong; Zheng, Wanguo

    2015-08-01

    Fused silica subwavelength structures (SWSs) with an average period of ~100 nm were fabricated using an efficient approach based on one-step self-masking reactive ion etching. The subwavelength structures exhibited excellent broadband antireflection properties from the ultraviolet to near-infrared wavelength range. These properties are attributable to the graded refractive index for the transition from air to the fused silica substrate that is produced by the ideal nanocone subwavelength structures. The transmittance in the 400-700 nm range increased from approximately 93% for the polished fused silica to greater than 99% for the subwavelength structure layer on fused silica. Achieving broadband antireflection in the visible and near-infrared wavelength range by appropriate matching of the SWS heights on the front and back sides of the fused silica is a novel strategy. The measured antireflection properties are consistent with the results of theoretical analysis using a finite-difference time-domain (FDTD) method. This method is also applicable to diffraction grating fabrication. Moreover, the surface of the subwavelength structures exhibits significant superhydrophilic properties.

  13. Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths....... Is is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realise imaging of optical contrast on the sub-wavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical...

  14. Photonic nanojets in optical tweezers

    International Nuclear Information System (INIS)

    Photonic nanojets have been brought into attention ten years ago for potential application in ultramicroscopy, because of its sub-wavelength resolution that can enhance detection and interaction with matter. For these novel applications under development, the optical trapping of a sphere acts as an ideal framework to employ photonic nanojets. In the present study, we generated nanojets by using a highly focused incident beam, in contrast to traditional plane waves. The method inherits the advantage of optical trapping, especially for intracellular applications, with the microsphere in equilibrium on the beam propagation axis and positioned arbitrarily in space. Moreover, owing to optical scattering forces, when the sphere is in equilibrium, its center shifts with respect to the focal point of the incident beam. However, when the system is in stable equilibrium with a configuration involving optical tweezers, photonic nanojets cannot be formed. To overcome this issue, we employed double optical tweezers in an unorthodox configuration involving two collinear and co-propagating beams, the precise positioning of which would turn on/off the photonic nanojets, thereby improving the applicability of photonic nanojets. - Highlights: • Photonic nanojets from an optically trapped microsphere are presented. • Electromagnetic beams are described by using beam shape coefficients. • Beam shape coefficients are determined by generalized Lorenz–Mie theory. • Scheme to turn on and off a photonic nanojet is described

  15. Nanostructure arrays in free-space: optical properties and applications

    International Nuclear Information System (INIS)

    Dielectric and metallic gratings have been studied for more than a century. Nevertheless, novel optical phenomena and fabrication techniques have emerged recently and have opened new perspectives for applications in the visible and infrared domains. Here, we review the design rules and the resonant mechanisms that can lead to very efficient light–matter interactions in sub-wavelength nanostructure arrays. We emphasize the role of symmetries and free-space coupling of resonant structures. We present the different scenarios for perfect optical absorption, transmission or reflection of plane waves in resonant nanostructures. We discuss the fabrication issues, experimental achievements and emerging applications of resonant nanostructure arrays. (review article)

  16. Optimized optical "tractor beam" for core-shell nanoparticles.

    Science.gov (United States)

    Wang, Neng; Lu, Wanli; Ng, Jack; Lin, Zhifang

    2014-04-15

    It is known that core-shell subwavelength nanoparticles consisting of a dielectric shell and a metallic core can simultaneously support electric and magnetic dipolar resonances, which enhance forward scattering and suppress backward scattering. This creates favorable conditions for optical tractor beam applications. Using the generalized Lorenz-Mie theory and Maxwell stress tensor formulation, we demonstrate how optical pulling forces can be induced and optimized by first-order Bessel beams with appropriate polarization. The transverse stability of the core-shell nanoparticle under ambient damping is also verified by linear stability analysis and dynamical simulation. PMID:24979003

  17. Transmission and Reflection through $1$D Metallo-Dielectric Gratings of Real Metals under Sub-wavelength Condition

    CERN Document Server

    Rahman, A T M Anishur; Vasilev, Krasimir

    2015-01-01

    Under the sub-wavelength condition ($w<\\lambda/2$), an analytical model of light transmission and reflection through $1$D metallo-dielectric gratings of real metals has been developed. It has been shown that the transmission intensity associated with the Fabry-Perot (FP) resonance of a $1$D metallo-dielectric grating of a real metal decreases with the increasing grating thickness and the dielectric constant of the ridge material. Further, it has also been demonstrated that the intensity of the FP resonance increases with the increasing slit width while it is independent of the grating period ($P$) and the incidence angle (when $P << \\lambda$

  18. Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Lin Men-Ku

    2009-01-01

    Full Text Available Abstract We have developed a simple and scalable approach for fabricating sub-wavelength structures (SWS on silicon nitride by means of self-assembled nickel nanoparticle masks and inductively coupled plasma (ICP ion etching. Silicon nitride SWS surfaces with diameter of 160–200 nm and a height of 140–150 nm were obtained. A low reflectivity below 1% was observed over wavelength from 590 to 680 nm. Using the measured reflectivity data in PC1D, the solar cell characteristics has been compared for single layer anti-reflection (SLAR coatings and SWS and a 0.8% improvement in efficiency has been seen.

  19. Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range

    CERN Document Server

    Reinhard, Benjamin; Wollrab, Viktoria; Neu, Jens; Beigang, René; Rahm, Marco

    2012-01-01

    We present a metamaterial-based terahertz (THz) sensor for thickness measurements of subwavelength-thin materials and refractometry of liquids and liquid mixtures. The sensor operates in reflection geometry and exploits the frequency shift of a sharp Fano resonance minimum in the presence of dielectric materials. We obtained a minimum thickness resolution of 12.5 nm (1/16000 times the wavelength of the THz radiation) and a refractive index sensitivity of 0.43 THz per refractive index unit. We support the experimental results by an analytical model that describes the dependence of the resonance frequency on the sample material thickness and the refractive index.

  20. Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Reinhard, Benjamin; Schmitt, Klemens M.; Neu, Jens [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Wollrab, Viktoria; Beigang, Rene; Rahm, Marco [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Fraunhofer Institute for Physical Measurement Techniques IPM, 79110 Freiburg (Germany)

    2012-05-28

    We present a metamaterial-based terahertz (THz) sensor for thickness measurements of subwavelength-thin materials and refractometry of liquids and liquid mixtures. The sensor operates in reflection geometry and exploits the frequency shift of a sharp Fano resonance minimum in the presence of dielectric materials. We obtained a minimum thickness resolution of 12.5 nm (1/16 000 times the wavelength of the THz radiation) and a refractive index sensitivity of 0.43 THz per refractive index unit. We support the experimental results by an analytical model that describes the dependence of the resonance frequency on the sample material thickness and the refractive index.

  1. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhou; Tu, Juan; Cheng, Jianchun [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); Guo, Xiasheng, E-mail: guoxs@nju.edu.cn, E-mail: dzhang@nju.edu.cn [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Wu, Junru [Department of Physics, University of Vermont, Burlington, Vermont 05405 (United States); Huang, Pingtong [Department of Ultrasound, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009 (China); Zhang, Dong, E-mail: guoxs@nju.edu.cn, E-mail: dzhang@nju.edu.cn [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080 (China)

    2015-09-14

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  2. Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures.

    Science.gov (United States)

    Shi, Xuesong; Jiang, Lan; Li, Xin; Wang, Sumei; Yuan, Yanping; Lu, Yongfeng

    2013-10-01

    This study proposes a method for adjusting subwavelength ripple periods and the corresponding double-grating structures formed on fused silica by designing femtosecond laser pulse trains based on localized transient electron density control. Four near-constant period ranges of 190-490 nm of ripples perpendicular to the polarization are obtained by designing pulse trains to excite and modulate the surface plasmon waves. In the period range of 350-490 nm, the double-grating structure is fabricated in one step, which is probably attributable to the grating-assisted enhanced energy deposition and subsequent thermal effects.

  3. Growth Control and Optics of Organic Nanoaggregates

    DEFF Research Database (Denmark)

    Balzer, Frank; Rubahn, Horst-Günter

    2005-01-01

    Light-emitting organic nanofibers made of phenyl molecules like para-hexaphenyl (p-6P) and grown on muscovite mica form a model system well-suited for the study of optics in the sub-wavelength regime. We demonstrate that p-6P nanofibers can be grown with high control of the morphology of individual...... nanoaggregates and also of the mutual alignment of aggregates by the use of appropriate growth conditions and substrate surfaces. The nanofibers can be detached from the substrate, thus allowing one to study the optical response under a huge variety of fundamentally different conditions, from individual floating...... aggregates to dense bunches of interacting aggregates. We show examples of linear and nonlinear optical properties of the blue-light-emitting aggregates and mention possible applications in future submicrometer-sized optoelectronics....

  4. Nanoscale optical interferometry with incoherent light

    Science.gov (United States)

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171

  5. GDS-3 initiative: advanced design-through-chip infrastructure for subwavelength technology

    Science.gov (United States)

    Pack, Robert C.; Heins, Mitchell D.; Chatila, Ahmad R.; Boksha, Victor V.; Cottrell, D.; Berglund, C. Neil; Hogan, J.; James, F.; Vucurevich, T.; Bales, M.; Shimasaki, K.

    2002-07-01

    In this paper we review current design-to-silicon manufacturing challenges and complexities confronting the IC design and manufacturing worlds as the industry prepares for sub-100nm technology node IC production and discuss a simplifying infrastructure and various principles for reducing and managing these complexities. Rapidly increasing overall complexity spanning all elements of the design- through-silicon 'ecosystem' and entanglement of the intricacies of traditionally separable design and manufacturing process technical disciplines is increasingly evident in long-loop design-mask-FAB iterations portending a widening of the design-productivity gap and an impact on the cost-effectiveness and productivity of the IC industry. Using the concept of 'technology overshoot' we conclude that the IC industry must broaden its development efforts and diversify investments to include those of building a robust and inherently simplifying interface infrastructure between design and manufacturing and to enable the efficiencies required of a maturing industry. We also explore the concept of modularity and how other mature industries have employed it to optimize efficiencies and investments and conclude that while the design and manufacturing worlds have practiced a number of fundamental concepts of modularity - the overall desegregation of the industry as a whole as case in point - a consistent, well-planed architecture for managing the interface between the two worlds has not yet been employed; hindering the development and migration of much needed productivity and cost-effectiveness enhancements. We then discus the impact of these factors on the industry in light of sub-wavelength era lithography resolution enhancement technologies and related manufacturing process and device physics issue, which increasingly impact the design flow. Recognizing that significant improvement to the design-silicon manufacturing interface is required, lastly we discuss a solution in the form of a

  6. Threshold Dependence of Deep- and Near-subwavelength Ripples Formation on Natural MoS2 Induced by Femtosecond Laser

    Science.gov (United States)

    Pan, Yusong; Yang, Ming; Li, Yumei; Wang, Zhenhua; Zhang, Chunling; Zhao, Ying; Yao, Jianghong; Wu, Qiang; Xu, Jingjun

    2016-01-01

    Deep sub-wavelength ripples (DSRs) and near sub-wavelength ripples (NSRs) with uniform periods of ~160 nm and ~660 nm generated at the MoS2-vacuum interface is reported for the first time by the processing of femtosecond laser (800 nm, 120 fs, 1 kHz) in this paper. The DSRs and NSRs formation fluence thresholds are experimentally determined as 160 mJ/cm2 and 192 mJ/cm2, respectively. In addition, the ripple period is insensitive to the pulse number. Moreover, Raman analyses show that the MoS2 lattice in the irradiated area does not exhibit oxidation at room environment and the crystalline representation is well preserved in NSRs region. We attribute our result to the joint interactions of the spallation and sublimation of layered MoS2 together with the laser induced surface plasmon polaritons and propose an explanation to the threshold dependence of the ripple period. Our study provides some insights for ultrafast laser-matter interactions and indicates a simple effective method for future nano-fabrication of MoS2.

  7. Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area.

    Science.gov (United States)

    Gui, Chengcheng; Wang, Jian

    2015-01-01

    We present a novel design of wedge hybrid plasmonic terahertz (THz) waveguide consisting of a silicon (Si) nanowire cylinder above a triangular gold wedge with surrounded high-density polyethylene as cladding. It features long propagation length and ultra-small deep-subwavelength mode confinement. The mode properties of wedge hybrid plasmonic THz waveguide are comprehensively characterized in terms of propagation length (L), normalized mode area (Aeff/A0), figure of merit (FoM), and chromatic dispersion (D). The designed wedge hybrid plasmonic THz waveguide enables an ultra-small deep-subwavelength mode area which is more than one-order of magnitude smaller compared to previous rectangular one. When choosing the diameter of Si nanowire cylinder, a smaller diameter (e.g. 10 μm) is preferred to achieve longer L and higher FoM, while a larger diameter (e.g. 60 μm) is favorable to obtain smaller Aeff/A0 and higher FoM. We further study the impacts of possible practical fabrication errors on the mode properties. The simulated results of propagation length and normalized mode area show that the proposed wedge hybrid plasmonic THz waveguide is tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, variation of wedge tip angle, and variation of wedge tip curvature radius. PMID:26155782

  8. Properties of Transmission and Leaky Modes in a Plasmonic Waveguide Constructed by Periodic Subwavelength Metallic Hollow Blocks.

    Science.gov (United States)

    Wu, Jin Jei; Wu, Chien Jang; Shen, Jian Qi; Hou, Da Jun; Lo, Wen Chen

    2015-01-01

    Based on the concept of low-frequency spoof surface plasmon polaritons (spoof SPPs), a kind of leaky mode is proposed in a waveguide made of a subwavelength metal-block array with open slots. Numerical results reveal that a new transmission mode is found in the periodic subwavelength metal open blocks. This modal field is located inside the interior of a hollow block compared with that in a solid metal block array. The dispersion curve shows that such a new SPPs mode has a negative slope, crossing the light line, and then going into a zone of leaky mode at higher frequencies. The leaky mode has a wider frequency bandwidth, and this can lead to a radiation scanning angle of 53° together with high radiation efficiency. Based on the individual characteristics exhibited by a frequency-dependent radiation pattern for the present leaky mode, the waveguide structure can have potential applications such as frequency dividers and demultiplexers. Experimental verification of such a leaky mode at microwave has been performed, and the experimental results are found to be consistent with the theoretical analysis. PMID:26403387

  9. Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks

    OpenAIRE

    Anquillare, E. L.; Miller, O D; Hsu, C. W.; DeLacy, B. G.; Joannopoulos, J. D.; Johnson, S. G.; Soljacic, M.

    2016-01-01

    Subwavelength resonators, ranging from single atoms to metallic nanoparticles, typically exhibit a narrow-bandwidth response to optical excitations. We computationally design and experimentally synthesize tailored distributions of silver nanodisks to extinguish light over broad and varied frequency windows. We show that metallic nanodisks are two-to-ten-times more efficient in absorbing and scattering light than common structures, and can approach fundamental limits to broadband scattering fo...

  10. Nonlinear optics and spectroscopy at the nanoscale with a hollow-pyramid aperture SNOM

    Energy Technology Data Exchange (ETDEWEB)

    Biagioni, P [Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Celebrano, M [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Polli, D [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Labardi, M [PolyLab CNR-INFM, largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Zavelani-Rossi, M [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Duo, L [Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2007-03-15

    We report on a novel near-field microscope in which ultrashort laser pulses are coupled into hollow-pyramid cantilever probes. The high throughput, absence of polarization pinning and absence of chirping, which are premium features of such probes, enable obtaining sufficient peak power in the near-field to perform nonlinear optical experiments. We show experimental results on second-harmonic generation from metal nanostructures and two-photon excitation of fluorescent conjugated polymers on the subwavelength scale.

  11. Amplitude and phase evolution of optical fields inside periodic photonic structures

    OpenAIRE

    Flück, E.; Hammer, M; Otter, A.M.; Korterik, J P; Kuipers, L.; Hulst, van der, R.W.M.

    2003-01-01

    Optical amplitude distributions of light inside periodic photonic structures are visualized with subwavelength resolution. In addition, using a phase-sensitive photon scanning tunneling microscope, we simultaneously map the phase evolution of light. Two different structures, which consist of a ridge wave-guide containing periodic arrays of nanometer scale features, are investigated. We determine the wavelength dependence of the exponential decay rate inside the periodic arrays. Furthermore, v...

  12. High-efficiency light-wave control with all-dielectric optical Huygens' metasurfaces

    OpenAIRE

    Decker, Manuel; Staude, Isabelle; Falkner, Matthias; Dominguez, Jason; Neshev, Dragomir N.; Brener, Igal; Pertsch, Thomas; Kivshar, Yuri S.

    2014-01-01

    Optical metasurfaces have developed as a breakthrough concept for advanced wave-front engineering enabled by subwavelength resonant nanostructures. However, reflection and/or absorption losses as well as low polarisation-conversion efficiencies pose a fundamental obstacle for achieving high transmission efficiencies that are required for practical applications. Here we demonstrate, for the first time to our knowledge, highly efficient all-dielectric metasurfaces for near-infrared frequencies ...

  13. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    OpenAIRE

    Hennequin, Yves; Allier, Cédric P.; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create be...

  14. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  15. Graphene, plasmons and transformation optics

    International Nuclear Information System (INIS)

    Here we study subwavelength gratings for coupling into graphene plasmons by means of an analytical model based on transformation optics that is not limited to very shallow gratings. We consider gratings that consist of a periodic modulation of the charge density in the graphene sheet, and gratings formed by this conductivity modulation together with a dielectric grating placed in close vicinity of the graphene. Explicit expressions for the dispersion relation of the plasmon polaritons supported by the system, and reflectance and transmittance under plane wave illumination are given. We discuss the conditions for maximising the coupling between incident radiation and plasmons in the graphene, finding the optimal modulation strength for a conductivity grating. (paper)

  16. Optical Mode Control by Geometric Phase in Quasicrystal Metasurface

    Science.gov (United States)

    Yulevich, Igor; Maguid, Elhanan; Shitrit, Nir; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2015-11-01

    We report on the observation of optical spin-controlled modes from a quasicrystalline metasurface as a result of an aperiodic geometric phase induced by anisotropic subwavelength structure. When geometric phase defects are introduced in the aperiodic structured surface, the modes exhibit polarization helicity dependence resulting in the optical spin-Hall effect. The radiative thermal dispersion bands from a quasicrystal structure are studied where the observed bands arise from the optical spin-orbit interaction induced by the aperiodic space-variant orientations of anisotropic antennas. The optical spin-flip behavior of the revealed modes that arise from the geometric phase pickup is experimentally observed within the visible spectrum by measuring the spin-projected diffraction patterns. The introduced ability to manipulate the light-matter interaction of quasicrystals in a spin-dependent manner provides the route for molding light via spin-optical aperiodic artificial planar surfaces.

  17. Optical Mode Control by Geometric Phase in Quasicrystal Metasurface

    CERN Document Server

    Yulevich, Igor; Shitrit, Nir; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2015-01-01

    We report on the observation of optical spin-controlled modes from a quasicrystalline metasurface as a result of an aperiodic geometric phase induced by anisotropic subwavelength structure. When geometric phase defects are introduced in the aperiodic structured surface, the modes exhibit polarization helicity dependence resulting in the optical spin-Hall effect. The radiative thermal dispersion bands from a quasicrystal structure were studied where the observed bands arise from the optical spin-orbit interaction induced by the aperiodic space-variant orientations of anisotropic antennas. The optical spin-flip behavior of the revealed modes that arise from the geometric phase pickup was experimentally observed within the visible spectrum by measuring the spin-projected diffraction patterns. The introduced ability to manipulate the light-matter interaction of quasicrystals in a spin-dependent manner provides the route for molding light via spin-optical aperiodic artificial planar surfaces.

  18. Size-dependent optical imaging properties of high-index immersed microsphere lens

    Science.gov (United States)

    Guo, Minglei; Ye, Yong-Hong; Hou, Jinglei; Du, Bintao

    2016-03-01

    The imaging properties of high-index immersed microsphere lenses in the diameter range of 5-300 µm are experimentally studied. Our experimental results show that shifting the focal plane of the objective lens can result in different optical properties. When light beams generated from the objective lens are focused near the low surface of the microsphere lens, interference rings can be observed by a conventional optical microscopy, and its diameter and ring number increase with the diameter of microspheres, which can be similarly described by conventional wave optics. When the focal plane of the objective lens is further turned down about several microns, the Blu-ray disk with sub-wavelength structures can be discerned with a magnification up to 4.5 × and field of view up to 14 µm. The image contrast and resolution decrease as the microsphere diameter increases. Calculations of the electric field distributions indicate that the "photonic nanojet" induced by the microsphere performs an important role in sub-wavelength imaging. The surrounding medium can be expected to improve the formation of both the sub-wavelength images and the interference rings. Our studies will help the understanding of the imaging mechanisms in microsphere lenses.

  19. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  20. Creating optical near-field orbital angular momentum in a gold metasurface.

    Science.gov (United States)

    Chen, Ching-Fu; Ku, Chen-Ta; Tai, Yi-Hsin; Wei, Pei-Kuen; Lin, Heh-Nan; Huang, Chen-Bin

    2015-04-01

    Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results. PMID:25798810

  1. Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics

    CERN Document Server

    Wuttke, C; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-01-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.

  2. Creating optical near-field orbital angular momentum in a gold metasurface.

    Science.gov (United States)

    Chen, Ching-Fu; Ku, Chen-Ta; Tai, Yi-Hsin; Wei, Pei-Kuen; Lin, Heh-Nan; Huang, Chen-Bin

    2015-04-01

    Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results.

  3. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.

    Science.gov (United States)

    Wuttke, C; Becker, M; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-06-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings that enclose a subwavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F=86 while the on-resonance transmission is T=11%. The characteristics of our resonator fulfill the requirements of nonlinear optics and cavity quantum electrodynamics in the strong coupling regime. These characteristics, combined with the demonstrated ease of use and advantageous mode geometry, open a realm of applications.

  4. Multipolar third-harmonic generation driven by optically-induced magnetic resonances

    CERN Document Server

    Smirnova, Daria A; Smirnov, Lev A; Kivshar, Yuri S

    2016-01-01

    We analyze the third-harmonic generation from high-index dielectric nanoparticles and discuss the basic features and multipolar nature of the parametrically generated electromagnetic fields near the Mie-type optical resonances in silicon particles. By combining both analytical and numerical methods, we study the nonlinear scattering from simple nanoparticle geometries such as spheres and disks driven by the magnetic dipole resonance. We reveal the approaches for manipulating and directing the resonantly enhanced nonlinear emission with subwavelength all-dielectric structures that can be of a particular interest for a design of nonlinear optical antennas and engineering the magnetic optical nonlinear response at nanoscale.

  5. Optical nano-antennae as compact and efficient couplers from free-space to waveguide modes

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Volodymyr; Malureanu, Radu;

    2015-01-01

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Other possibilities include, among others, grating couplers and end-fire end couplers. Our efforts were concentrated on nano-antennae used for coupling IR light in the telecom...... range from an optical fibre to a plasmonic slot waveguide. This type of coupling is still difficult to achieve and finding an efficient way in obtaining it would advance the use of plasmonic waveguides for optical interconnects....

  6. Optical Nano-antennae as Compact and Efficient Couplers from Free-space to Waveguide Modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir A.; Malureanu, Radu; Volkov, Valentyn;

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Our efforts were concentrated on coupling between an optical fibre and a plasmonic slot waveguide. Such coupling is still an issue to be solved in order to advance the use...... of plasmonic waveguides for optical interconnects. During the talk, we will present our modelling optimisation, fabrication and measurement of the nano-antennae functionality. For the modelling part, we used CST Microwave studio for optimising the antenna geometry. Various antennae were modelled and fabricated...

  7. High symmetry versus optical isotropy of a negative-index metamaterial

    DEFF Research Database (Denmark)

    Menzel, Christoph; Rockstuhl, Carsten; Lliew, Rumen;

    2010-01-01

    Optically isotropic metamaterials MMs are required for the implementation of subwavelength imaging systems. At first glance one would expect that their design should be based on unit cells exhibiting a cubic symmetry being the highest crystal symmetry. It is anticipated that this is a sufficient...... in carcass negative index MM. We show that this MM is basically optically isotropic but not in the spectral domain where it exhibits negative refraction. The primary goal of this contribution is to introduce a tool that allows to probe a MM against optical isotropy....

  8. Excitation of plasmon modes in a graphene monolayer supported on a 2D subwavelength silicon grating

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd;

    2013-01-01

    Graphene is a two-dimensional (2D) carbon-based material, whose unique electronic and optical properties have attracted a great deal of research interest. Despite the fact that graphene is an atomically thin layer the optical absorption of a single layer can be as high as 2.3% (defined by the fine...... structure constant). Nevertheless, for light-matter interactions this number is imposing challenges and restrictions for graphene-based optoelectronic devices. One promising way to enhance optical absorption is to excite graphene-plasmon polaritons (GPPs) supported by graphene....

  9. Nonlinear Optics with Tapered Fibers and Magneto-Optically Trapped Rubidium

    Science.gov (United States)

    Little, Bethany; Mullarkey, Chris; Howell, John; Vamivakas, Nick; Lin, Qiang

    2016-05-01

    Tapered optical fibers of sub-wavelength diameter present a promising means of integrating the light-atom interaction into larger scale devices. We present work on a tapered fiber system loaded by a magneto optical trap of Rubidium atoms, in which a combination of red and blue detuned beams create a one-dimensional lattice trap along the fiber. The same fiber is used for interacting with the atoms in the trap via the evanescent fields of light propagating along the fiber. Light storage has been demonstrated in a similar system with Cesium, and we believe that much nonlinear optics remains to be explored in this regime. We also plan to see how these nonlinear effects can be enhanced with the addition of a micro-resonator such as the ones in.

  10. Random-phase metasurfaces at optical wavelengths

    DEFF Research Database (Denmark)

    Pors, Anders; Ding, Fei; Chen, Yiting;

    2016-01-01

    the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting...... of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light....... Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector....

  11. Optimised low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range

    CERN Document Server

    Pastuszczak, Anna

    2011-01-01

    We optimise the effective skin-depth and resolution of Ag-TiO2, Ag-SrTiO3, and Ag-GaP multilayers for imaging with sub-wavelength resolution. In terms of transmission and resolution the optimised multilayers outperform simple designs based on combined use of effective medium theory, impedance matching and Fabry-Perot resonances. For instance, an optimised Ag-GaP multilayer consisting of only 17 layers, operating at the wavelength of 490 nm and having a total thickness equal to one wavelength, combines 78% intensity transmission with a resolution of 60 nm. It is also shown that use of the effective medium theory leads to sub-optimal multilayer designs with respect to the trade-off between the skin depth and resolution already when the period of the structure is on the order of 40 nm or larger.

  12. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    International Nuclear Information System (INIS)

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  13. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    International Nuclear Information System (INIS)

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results

  14. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Ae; Jang, Sung Min; Kim, Sung June [School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742 (Korea, Republic of); Byun, Kyung Min [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Kyujung; Kim, Donghyun [Program of Nanomedical Science and Technology, Yonsei University, Seoul 120-749 (Korea, Republic of); Ma, Kyungjae; Oh, Youngjin [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Sung Guk [College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 (United States); Shuler, Michael L, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2010-09-03

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  15. Fabrication of sub-wavelength antireflective structure to enhance the efficiency of InGaAs solar cells

    Directory of Open Access Journals (Sweden)

    Yen-Yu Chou

    2014-08-01

    Full Text Available Large differences in the refractive index between semiconductors (Si, GaAs, etc. and air produces considerable Fresnel loss, which can seriously hinder the absorption of sunlight by photovoltaic solar cells. This study presents a cost-effective roller nanoimprinting technique for the fabrication of sub-wavelength structures (SWSs as an alternative to conventional anti-reflective coatings used to reduce reflectance in triple-junction InGaP/InGaAs/Ge solar cells. The proposed nanoimprinting technology uses a soft PDMS mold duplicated from a hard silicon template, which is fabricated using PS sphere lithography and dry etching processes. To evaluate the anti-reflective performance of SWSs, we employed rigorous coupled wave analysis (RCWA to simulate the propagation of electromagnetic plane waves in a GaAs substrate. Simulation results demonstrated a considerable reduction in reflectance resulting from a gradual change in the refractive index provided by SWSs. Photoelectric conversion efficiency was also increased.

  16. Dielectric Optical-Controlled Magnifying Lens by Nonlinear Negative Refraction

    CERN Document Server

    Cao, Jianjun; Zheng, Yuanlin; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2014-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive index. Recent advancements in nanotechnology enable novel lenses, such as, superlens, hyperlens, Luneburg lens, with sub-wavelength resolution capabilities by specially designing materials' refractive indices with meta-materials and transformation optics. However, these artificially nano/micro engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here we experimentally demonstrate for the first time a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applicat...

  17. Generalized Uncertainty Principle and Analogue of Quantum Gravity in Optics

    CERN Document Server

    Braidotti, Maria Chiara; Conti, Claudio

    2016-01-01

    The design of optical systems capable of processing and manipulating ultra-short pulses and ultra-focused beams is highly challenging with far reaching fundamental technological applications. One key obstacle routinely encountered while implementing sub-wavelength optical schemes is how to overcome the limitations set by standard Fourier optics. A strategy to overcome these difficulties is to utilize the concept of generalized uncertainty principle (G-UP) that has been originally developed to study quantum gravity. In this paper we propose to use the concept of G-UP within the framework of optics to show that the generalized Schrodinger equation describing short pulses and ultra-focused beams predicts the existence of a minimal spatial or temporal scale which in turn implies the existence of maximally localized states. Using a Gaussian wavepacket with complex phase, we derive the corresponding generalized uncertainty relation and its maximally localized states. We numerically show that the presence of nonlin...

  18. Causality relations for materials with strong artificial optical chirality

    CERN Document Server

    Gorkunov, M V; Ezhov, A A; Artemov, V V; Rogov, O Y

    2014-01-01

    We demonstrate that the fundamental causality principle being applied to strongly chiral artificial materials yields the generalized Kramers-Kronig relations for the observables -- circular dichroism and optical activity. The relations include the Blaschke terms determined by material-specific features - the zeros of transmission amplitude on the complex frequency plane. By the example of subwavelength arrays of chiral holes in silver films we show that the causality relations can be used not only for a precise verification of experimental data but also for resolving the positions of material anomalies and resonances and quantifying the degree of their chiral splitting.

  19. Subwavelength imaging with materials of in-principle arbitrarily low index contrast

    International Nuclear Information System (INIS)

    Perfect imaging with Maxwell's fish eye opens the exciting prospect of passive imaging systems with a resolution no longer limited by the wave nature of light. But it also challenges some of the accepted wisdom of super-resolution imaging and therefore has been subject to controversy and discussion. Here we describe an idea for even simpler perfect-imaging systems based on geometrical optics and prove by experiment that it works. (paper)

  20. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity.

    Science.gov (United States)

    Saeed, A; Panaro, S; Zaccaria, R Proietti; Raja, W; Liberale, C; Dipalo, M; Messina, G C; Wang, H; De Angelis, F; Toma, A

    2015-06-09

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding.

  1. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    KAUST Repository

    Saeed, A.

    2015-06-09

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. © 2015, Nature Publishing Group. All rights reserved.

  2. Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique

    CERN Document Server

    Nayak, K P

    2012-01-01

    We demonstrate that thousands of periodic nano-craters are fabricated on a subwavelength-diameter tapered optical fiber, an optical nanofiber, by irradiating with just a single femtosecond laser pulse. A key aspect of the fabrication is that the nanofiber itself acts as a cylindrical lens and focuses the femtosecond laser beam on its shadow surface. We also demonstrate that such periodic structures on the nanofiber, act as a 1-D photonic crystal (PhC). Such PhC structures on the nanofiber will strongly enhance the field confinement in such a tapered fiber-based system and may open new avenues in nanophotonics and quantum information technology.

  3. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode.

    Science.gov (United States)

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten; Petersen, Paul Michael; Ou, Haiyan

    2011-03-14

    We have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the first time to our best knowledge, the influence of sub-wavelength structures on both the color rendering index (CRI) and the correlated color temperature (CCT) of the monolithic white LED have been demonstrated. The CRI of the monolithic white LED could be improved from 92.68 to around 94 by applying a cylinder structure, and the CCT could be modified in a very large range with appropriate design of the cylinder structure. PMID:21445218

  4. External quantum efficiency-enhanced PtSi Schottky-barrier detector utilizing plasmonic ZnO:Al nanoparticles and subwavelength gratings

    Institute of Scientific and Technical Information of China (English)

    Bingxin Kang; Yi Cai; Lingxue Wang

    2016-01-01

    A infrared light trapping structure combining front subwavelength gratings and rear ZnO:Al nanoparticles for a PtSi Schottky-barrier detector over a 3-5 μm waveband is theoretically investigated.By selecting the proper plasmonic material and optimizing the parameters for the proposed structure,the absorption of the PtSi layer is dramatically improved.The theoretical results show that this improvement eventually translates into an equivalent external quantum efficiency (EQE) enhancement of 2.46 times at 3-3.6 μm and 2.38 times at 3.6-5 μm compared to conventional structures.This improvement in the EQE mainly lies in the increase of light path lengths within the PtSi layer by the subwavelength grating diffraction and nanoparticle-scattering effects.

  5. Optical absorbers based on strong interference in ultra-thin films

    CERN Document Server

    Kats, Mikhail A

    2016-01-01

    Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry-Perot-type cavities, by using the emerging concepts of plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large-scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on "ultra-thin-film interference", including the concepts of loss-induc...

  6. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  7. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode

    OpenAIRE

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten; Petersen, Paul Michael; Ou, Haiyan

    2011-01-01

    We have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the ...

  8. The Design of Binary Diffrative Microlens with Subwavelength Structures%二元衍射微透镜的亚波长结构设计方法

    Institute of Scientific and Technical Information of China (English)

    陈思乡; 易新建; 曾延安

    2001-01-01

    本文结合标量衍射理 论和等效媒质理论提出了二元衍射微透镜的亚波长设计新方法。根据标量理论位相量化的概 念,分析连续浮雕透镜的相移函数,结合等效媒质理论的等效折射率表达式,可以确定亚波 长结构透镜的面型函数。%Based on the combination of two approx imate theories,effective medium theory and scalar diffractive theory,a novel pro cedure for designing diffractive lens by use of subwavelength structures is disc ussed.By comparing the phase shift of continuous relief to that of subwavelength structures,the binary profiles of subwavelength lens,which offer high diffracti ve efficiencies yet require only single step fabrication,could be determined on the basis of the closed-form expression from effective medium theory.

  9. Giant field enhancement by funneling effect into sub-wavelength slit-box resonators

    CERN Document Server

    Chevalier, Paul; Haidar, Riad; Pardo, Fabrice

    2014-01-01

    Inspired by the acoustic Helmholtz resonator, we propose a slit-box electromagnetic nanoantenna able to concentrate the energy of an incident beam into surfaces a thousand times smaller than with a classical lens. This design gives birth to giant field intensity enhancement in hot volume, throughout the slit. It reaches $10^4$ in the visible up to $10^8$ in the THz range even with focused beams thanks to an omnidirectional reception. These properties could target applications requiring extreme light concentration, such as SEIRA, non-linear optics and biophotonics.

  10. Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review

    Directory of Open Access Journals (Sweden)

    Alessio Monti

    2015-05-01

    Full Text Available In this contribution, we review and discuss our recent results on the design of optical scattering cancellation devices based on an array of plasmonic nanoparticles. Starting from two different analytical models available to describe its electromagnetic behavior, we show that a properly designed array of plasmonic nanoparticles behaves both as an epsilon-near-zero metamaterial and as a reactive metasurface and, therefore, can be successfully used to reduce the optical scattering of a subwavelength object. Three different typologies of nanoparticle arrays are analyzed: spherical, core-shell, and ellipsoidal nanoparticles. We prove, both theoretically and through full-wave simulations, that such nanostructures can be successfully used as a cloaking device at ultraviolet and optical frequencies.

  11. Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band.

    Science.gov (United States)

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Cheben, Pavel; Schmid, Jens H; Wang, Shurui; Halir, Robert; Ortega-Moñux, Alejandro; Xu, Dan-Xia; Vivien, Laurent; Lapointe, Jean; Janz, Siegfried; Dado, Milan

    2016-06-13

    We report, for the first time, on the design and experimental demonstration of fiber-chip surface grating couplers based on subwavelength grating engineered nanostructure operating in the low fiber chromatic dispersion window (around 1.3 μm wavelengths), which is of great interest for short-reach data communication applications. Our coupler designs meet the minimum feature size requirements of large-volume deep-ultraviolet stepper lithography processes. The fiber-chip couplers are implemented in a standard 220-nm-thick silicon-on-insulator (SOI) platform and are fabricated by using a single etch process. Several types of couplers are presented, specifically the uniform, the apodized, and the focusing designs. The measured peak coupling efficiency is -2.5 dB (56%) near the central wavelength of 1.3 μm. In addition, by utilizing the technique of the backside substrate metallization underneath the grating couplers, the coupling efficiency of up to -0.5 dB (89%) is predicted by Finite Difference Time Domain (FDTD) calculations. PMID:27410309

  12. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal

    2015-08-19

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  13. A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index

    Science.gov (United States)

    Xu-Feng, Li; Wei, Peng; Ya-Li, Zhao; Qiao, Wang; Ji-Lin, Wei

    2016-03-01

    In this paper, a subwavelength metal-grating assisted sensor of Kretschmann style that is capable of detecting the sample with a refractive index higher than that of the substrate is proposed. The sensor configuration is similar to the traditional Kretschmann structure, but the metal film is pattered into a grating. As a TM-polarized laser beam impinges from the substrate, a resonant dip point in reflectance curve is produced at a certain incident angle. Our studies indicate that the sensing sensitivity and resolution are affected by the grating’s gap and period, and after these parameters have been optimized, a sensing sensitivity of 51.484°/RIU is obtained with a slightly changing resolution. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137005 and 61178067), the Science Foundation of Shanxi Province, China (Grant No. 2013021004-3/2014021021-1), the Pre-studied Project on Weapon Equipment, China (Grant No. 201262401090404), and the Specialized Research Foundation for Doctor of School, China (Grant No. 20122027).

  14. Optical vortex beam generator at nanoscale level.

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  15. Optical vortex beam generator at nanoscale level

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  16. Progress in nonlinear nano-optics

    CERN Document Server

    Lienau, Christoph; Grunwald, Rüdiger

    2015-01-01

    This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.

  17. Planar optics with patterned chiral liquid crystals

    Science.gov (United States)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-01

    Reflective metasurfaces based on metallic and dielectric nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0-2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.

  18. Transformation optics beyond the manipulation of light trajectories.

    Science.gov (United States)

    Ginis, Vincent; Tassin, Philippe

    2015-08-28

    Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces--a quadratic function of the fields--follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics.

  19. CONFERENCE NOTE: European Optical Society, Topical Meeting Optical Metrology and Nanotechnology, Engelberg, Switzerland, 27 30 March 1994

    Science.gov (United States)

    1993-01-01

    This meeting, organized by the Paul Scherrer Institute's Department of Applied Solid State Physics, will be held from 27 30 March 1994 at the Hotel Regina-Titlis, Engelberg, Switzerland. The aim is to bring together scientists from two important fields of current research and increasing industrial relevance. Optical metrology is a traditional discipline of applied optics which reached the nanometre scale a long time ago. Nanotechnology is setting new limits and represents a major challenge to metrology, as well as offering new opportunities to optics. The meeting is intended to help define a common future for optical metrology and nanotechnology. Topics to be covered include: nanometre position control and measuring techniques ultrahigh precision interferometry scanning probe microscopy (AFM, SNOM, etc.) surface modification by scanning probe methods precision surface fabrication and characterization nanolithography micro-optics, diffractive optics components, including systems and applications subwavelength optical structures synthetic optical materials structures and technologies for X-ray optics. For further information please contact: Jens Gobrecht (Secretary), Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.Tel. (41)56992529; Fax (41) 5698 2635.

  20. Ultrafast broadband tuning of resonant optical nanostructures using phase change materials

    CERN Document Server

    Rudé, Miquel; Cetin, Arif E; Miller, Timothy A; Carrilero, Albert; Wall, Simon; de Abajo, F Javier García; Altug, Hatice; Pruneri, Valerio

    2015-01-01

    The phenomenon of extraordinary optical transmission {EOT} through arrays of nanoholes patterned in a metallic film has emerged as a promising tool for a wide range of applications, including photovoltaics, nonlinear optics, and sensing. Designs and methods enabling the dynamic tuning of the optical resonances of these structures are essential to build efficient optical devices, including modulators, switches, filters, and biosensors. However, the efficient combination of EOT and dynamic tuning remains a challenge, mainly because of the lack of materials that can induce modulation over a broad spectral range at high speeds. Here, we demonstrate tuneable resonance wavelength shifts as large as 385 nm - an order of magnitude higher than previously reported - through the combination of phase change materials {PCMs}, which exhibit dramatic variations in optical properties upon transitions between amorphous and crystalline phases, with properly designed subwavelength nanohole metallic arrays. We further find throu...

  1. Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates

    CERN Document Server

    Boriskina, Svetlana V

    2011-01-01

    A major challenge for plasmonics as an enabling technology for quantum information processing is the realization of active spatio-temporal control of light on the nanoscale. The use of phase-shaped pulses or beams enforces specific requirements for on-chip integration and imposes strict design limitations. We introduce here an alternative approach, which is based on exploiting the strong sub-wavelength spatial phase modulation in the near-field of resonantly-excited high-Q optical microcavities integrated into plasmonic nanocircuits. Our theoretical analysis reveals the formation of areas of circulating powerflow (optical vortices) in the near-fields of optical microcavities, whose positions and mutual coupling can be controlled by tuning the microcavities parameters and the excitation wavelength. We show that optical powerflow though nanoscale plasmonic structures can be dynamically molded by engineering interactions of microcavity-induced optical vortices with noble-metal nanoparticles. The proposed strateg...

  2. Hybrid optical-thermal devices and materials for light manipulation and radiative cooling

    CERN Document Server

    Boriskina, Svetlana V; Hsu, Wei-Chun; Weinstein, Lee; Huang, Xiaopeng; Loomis, James; Xu, Yanfei; Chen, Gang

    2015-01-01

    We report on optical design and applications of hybrid meso-scale devices and materials that combine optical and thermal management functionalities owing to their tailored resonant interaction with light in visible and infrared frequency bands. We outline a general approach to designing such materials, and discuss two specific applications in detail. One example is a hybrid optical-thermal antenna with sub-wavelength light focusing, which simultaneously enables intensity enhancement at the operating wavelength in the visible and reduction of the operating temperature. The enhancement is achieved via light recycling in the form of whispering-gallery modes trapped in an optical microcavity, while cooling functionality is realized via a combination of reduced optical absorption and radiative cooling. The other example is a fabric that is opaque in the visible range yet highly transparent in the infrared, which allows the human body to efficiently shed energy in the form of thermal emission. Such fabrics can find...

  3. Optic neuritis

    Science.gov (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  4. Fast IR imaging with sub-wavelength resolution using a transient near-field probe

    Energy Technology Data Exchange (ETDEWEB)

    Palanker, D.V.; Knippels, G.M.H.; Smith, T.I.; Alan Schwettman, H. [Picosecond FEL Center, W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

    1998-09-02

    We present a method for the remote generation of a transient near-field probe using conventional IR microscopy optics. Photo-induced reflectivity generated by picosecond pulses of visible light incident on the surface of a semiconductor substrate is used to create transient mirrors with dimensions determined by the spot size of the visible light. The IR light scattered by such sub-wavelength-size mirror is collected after propagating through the sample. As the sample is located on the semiconductor substrate, no near-field distance control is required, and the image can be taken at the speed of typical laser scanning microscope. And since the near-field probe is generated remotely - using light - the sample to be imaged can be covered by, or encased in, a transparent liquid or solid. The resolution of such an IR microscope is determined by the dimensions of the transient mirror, i.e., by the spot size of the visible light and its penetration depth into the substrate. To prevent resolution degradation due to diffusion of the photo-excited carriers in the substrate, the probe (IR) pulse duration should not exceed a few tens of picoseconds. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Optical waveguide behavior of Se-doped and undoped CdS one-dimensional nanostructures using near-field optical microscopy

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao; LIU Dan; PAN Anlian; FANG Zheyu; HUANG Shan; ZHU Xing

    2009-01-01

    The optical waveguide behaviors of CdS and CdSxSe1-x nanostructures are studied using near-field optical microscopy. Optical measurements demonstrate that light may be guided on sub-wavelength scales along CdS nanoribbons in straight or bent structures. The photoluminescence (PL) spectra from nanoribbon emission using scanning near-field optical microscopy are analyzed under different inci-dent laser intensities. The PL spectra along Se-doped and undoped CdS nanoribbons at different propagation distances are investigated. Both the guided PL spectra of Se-doped and undoped CdS nanoribbons show red-shifts because of the band-edge absorption. Our results are useful for the de-velopment of new kinds of functional nano devices.

  6. Bioinformatics Analysis on Molecular Network and Bio-function ofBu-Fei-Yi- Shen Decoction%基于生物信息学方法探析补肺益肾方的分子网络及生物功能

    Institute of Scientific and Technical Information of China (English)

    李立; 冯素香; 白菁安; 姜淼; 吕诚; 郭洪涛; 李建生; 吕爱平

    2015-01-01

    目的:通过生物信息学方法探析治疗慢性阻塞性肺疾病(COPD)有效方剂补肺益肾方的分子网络及生物功能,为中药复方药理机制研究提供新思路.方法:通过在线数据库查找补肺益肾方中药成分的化合物,在PubChem数据库中检索这些化合物的靶蛋白,运用Ingenuity Pathway Analysis(IPA)软件对二者进行分子网络、生物功能及相关生物学通路的构图和解析.结果:查找到补肺益肾方的靶蛋白共239个,可构建成9个分子网络,其中最相关的前3个分子网络功能为:Cellular Development、Energy Production和Cancer.与补肺益肾方最相关的前3个生物功能为:Cellular Growth and Proliferation、Cell Death and Survival和Inflammatory Response.与补肺益肾方最相关的前3个生物学通路为:Cell Cycle:G1/S Checkpoint Regulation、Chronic Myeloid Leukemia Signaling、Cyclins and Cell Cycle Regulation.结论:通过查找中药化合物靶标并通过IPA软件进行分析的生物信息学方法可以用于解析补肺益肾方的分子网络及生物功能.%This article was aimed to study the molecular network and bio-function ofBu-Fei-Yi-Shen (BFYS) decoction for chronic obstructive pulmonary disease (COPD) by bioinformatics analysis, in order to provide new ideas for research on pharmacological mechanism of Chinese medicine compound prescription. Components of herbs in BFYS decoction were searched in the databases. Targeted proteins of each component were found from PubChem. Comparison analyses were performed on molecular network, bio-function and canonical pathways by Ingenuity Pathway Analysis (IPA). The results showed that there were 239 target proteins of BFYS decoction. There were 9 molecular networks of BFYS decoction. The top 3 networks' functions were Cellular Development, Energy Production, and Cancer. The top 3 bio-function of BFYS decoction were Cellular Growth and Proliferation, Cell Death and Survival, and Inflammatory Response. The top 3

  7. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler

    Science.gov (United States)

    Xu, Yin; Xiao, Jinbiao

    2016-01-01

    On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of −31.41/−22.43 dB and −34.74/−33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence. PMID:27306112

  8. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler.

    Science.gov (United States)

    Xu, Yin; Xiao, Jinbiao

    2016-01-01

    On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of -31.41/-22.43 dB and -34.74/-33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence. PMID:27306112

  9. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler

    Science.gov (United States)

    Xu, Yin; Xiao, Jinbiao

    2016-06-01

    On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of -31.41/-22.43 dB and -34.74/-33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence.

  10. Integrated Diffractive Optics for Surface Ion Traps

    Science.gov (United States)

    Streed, Erik; Ghadimi, Moji; Blums, Valdis; Norton, Benjamin; Connor, Paul; Amini, Jason; Volin, Curtis; Lobino, Mirko; Kielpinski, David

    2016-05-01

    Photonic interconnects are a bottleneck to achieving large-scale trapped ion quantum computing. We have modified a Georgia Tech Research Institute microwave chip trap by using e-beam lithography to write reflective diffractive collimating optics (80 μm x 127 μm, f=58.6 μm, λ=369.5nm) on the center electrode. The optics have an NA of 0.55 x 0.73, capturing 13.2% of the solid angle. To evaluate the optics 174Yb+ was loaded by isotope selective photo-ionization from a thermal oven and then shuttled to imaging sites. Near diffraction limited sub-wavelength ion images were obtained with an observed spot sized FWHM of 338 nm x 268 nm vs. a diffraction limit of 336 nm x 257 nm. The total photon collection efficiency was measured to be 5.2+/-1.2%. Coupling into a single mode fiber of up to 2.0+/-0.6% was observed, limited by mismatch in the coupling optics. Image mode quality indicates coupling up to 4% may be possible. Funding from Australian Research Council and IARPA.

  11. Fundamental limits to the optical response of lossy media

    CERN Document Server

    Miller, Owen D; Reid, M T Homer; Hsu, Chia Wei; DeLacy, Brendan G; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G

    2015-01-01

    At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of lossy media, bounding the largest enhancements possible given intrinsic material losses. Through basic conservation-of-energy principles, we derive limits to per-volume absorption and scattering rates, and to local-density-of-states enhancements that represent the power radiated or expended by a dipole near a material body. We provide examples of structures that approach our limits, and also specific frequency ranges at which common structures fall orders of magnitudes short. Underlying the limits is a simple metric, $|\\chi|^2 / \\operatorname{Im} \\chi$ for a material with susceptibility $\\chi$, that enables broad technological evaluation of lossy media across optical frequencies.

  12. Transparent subdiffraction optics: nanoscale light confinement without metal

    CERN Document Server

    Jahani, Saman

    2014-01-01

    The integration of nanoscale electronics with conventional optical devices is restricted by the diffraction limit of light. Metals can confine light at the subwavelength scales needed, but they are lossy, while dielectric materials do not confine evanescent waves outside a waveguide or resonator, leading to cross talk between components. We show that light can be confined below the diffraction limit using completely transparent artificial media. Our approach relies on controlling the optical momentum of evanescent waves, an important electromagnetic property overlooked in photonic devices. For practical applications, we propose a class of waveguides using this approach that outperforms the cross talk performance by 1 order of magnitude as compared to any existing photonic structure. Our work overcomes a critical stumbling block for nanophotonics by completely averting the use of metals and can impact electromagnetic devices from the visible to microwave frequency ranges.

  13. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode

    DEFF Research Database (Denmark)

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten;

    2011-01-01

    (CRI) and the correlated color temperature (CCT) of the monolithic white LED have been demonstrated. The CRI of the monolithic white LED could be improved from 92.68 to around 94 by applying a cylinder structure, and the CCT could be modified in a very large range with appropriate design of the...... simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the first time to our best knowledge, the influence of sub-wavelength structures on both the color rendering index...

  14. Experimental evidence of cut-wire-induced enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen

    Science.gov (United States)

    di Gennaro, Emiliano; Gallina, Ilaria; Andreone, Antonello; Castaldi, Giuseppe; Galdi, Vincenzo

    2010-12-01

    Recent numerical studies have demonstrated the possibility of achieving substantial enhancements in the transmission of transverse-electric-polarized electromagnetic fields through subwavelength slits in a thin metallic screen by placing single or paired metallic cut-wire arrays at a close distance from the screen. In this Letter, we report on the first experimental evidence of such extraordinary transmission phenomena, via microwave (X/Ku-band) measurements on printed-circuit-board prototypes. Experimental results agree very well with full-wave numerical predictions, and indicate an intrinsic robustness of the enhanced transmission phenomena with respect to fabrication tolerances and experimental imperfections.

  15. Experimental evidence of cut-wire-induced enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen

    CERN Document Server

    Di Gennaro, Emiliano; Andreone, Antonello; Castaldi, Giuseppe; Galdi, Vincenzo

    2010-01-01

    Recent numerical studies have demonstrated the possibility of achieving substantial enhancements in the transmission of transverse-electric-polarized electromagnetic fields through subwavelength slits in a thin metallic screen by placing single or paired metallic cut-wire arrays at a close distance from the screen. In this Letter, we report on the first experimental evidence of such extraordinary transmission phenomena, via microwave (X/Ku-band) measurements on printed-circuit-board prototypes. Experimental results agree very well with full-wave numerical predictions, and indicate an intrinsic robustness of the enhanced transmission phenomena with respect to fabrication tolerances and experimental imperfections.

  16. Paired cut-wire arrays for enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen

    CERN Document Server

    Gallina, Ilaria; Galdi, Vincenzo; Di Gennaro, Emiliano; Andreone, Antonello

    2009-01-01

    It has recently been shown that the transmission of electromagnetic fields through sub-wavelength slits (parallel to the electric field direction) in a thin metallic screen can be greatly enhanced by covering one side of the screen with a cut-wire array laid on a dielectric layer. In this Letter, we show that a richer phenomenology (which involves both electric- and magnetic-type resonances) can be attained by pairing a second cut-wire array at the other side of the screen. Via a full-wave comprehensive parametric study, we illustrate the underlying mechanisms and explore the additional degrees of freedom endowed.

  17. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.

    Science.gov (United States)

    Yao, Yu; Shankar, Raji; Kats, Mikhail A; Song, Yi; Kong, Jing; Loncar, Marko; Capasso, Federico

    2014-11-12

    Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions. PMID:25310847

  18. Vertical optical ring resonators fully integrated with nanophotonic waveguides on silicon-on-insulator substrates

    CERN Document Server

    Madani, Abbas; Stolarek, David; Zimmermann, Lars; Ma, Libo; Schmidt, Oliver G

    2015-01-01

    We demonstrate full integration of vertical optical ring resonators with silicon nanophotonic waveguides on silicon-on-insulator substrates to accomplish a significant step towards 3D photonic integration. The on-chip integration is realized by rolling up 2D differentially strained TiO2 nanomembranes into 3D microtube cavities on a nanophotonic microchip. The integration configuration allows for out of plane optical coupling between the in-plane nanowaveguides and the vertical microtube cavities as a compact and mechanically stable optical unit, which could enable refined vertical light transfer in 3D stacks of multiple photonic layers. In this vertical transmission scheme, resonant filtering of optical signals at telecommunication wavelengths is demonstrated based on subwavelength thick walled microcavities. Moreover, an array of microtube cavities is prepared and each microtube cavity is integrated with multiple waveguides which opens up interesting perspectives towards parallel and multi-routing through a ...

  19. Creating a zero-order resonator using an optical surface transformation

    CERN Document Server

    Sun, F; He, S

    2015-01-01

    A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space).

  20. Efficient broad- and tunable-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks

    CERN Document Server

    Anquillare, Emma L; Hsu, Chia Wei; DeLacy, Brendan G; Joannopoulos, John D; Soljacic, Marin

    2015-01-01

    Sub-wavelength resonators typically exhibit a narrow-bandwidth response to optical excitations. We computationally design and experimentally synthesize tailored distributions of silver nanodisks to extinguish light over broad, tunable frequency windows. We show that metallic nanodisks are two- to twenty-times more efficient in absorbing and scattering light than common structures. Per-volume efficiency increases away from the plasma frequency of the underlying metal. We measure broadband extinction per volume that closely approaches theoretical predictions over three representative visible-range wavelength windows, confirming the high efficiency of nanodisks and demonstrating the collective power of computational design and experimental precision for developing new photonics technologies.

  1. Plasma-etched nanostructures for optical applications (Presentation Recording)

    Science.gov (United States)

    Schulz, Ulrike; Rickelt, Friedrich; Munzert, Peter; Kaiser, Norbert

    2015-08-01

    A basic requirement for many optical applications is the reduction of Fresnel-reflections. Besides of interference coatings, nanostructures with sub-wavelength size as known from the eye of the night-flying moth can provide antireflective (AR) properties. The basic principle is to mix a material with air on a sub-wavelength scale to decrease the effective refractive index. To realize AR nanostructures on polymers, the self-organized formation of stochastically arranged antireflective structures using a low-pressure plasma etching process was studied. An advanced procedure involves the use of additional deposition of a thin oxide layer prior etching. A broad range of different structure morphologies exhibiting antireflective properties can be generated on almost all types of polymeric materials. For applications on glass, organic films are used as a transfer medium. Organic layers as thin film materials were evaluated to identify compounds suitable for forming nanostructures by plasma etching. The vapor deposition and etching of organic layers on glass offers a new possibility to achieve antireflective properties in a broad spectral range and for a wide range of light incidence.

  2. All-optical active switching in individual semiconductor nanowires

    Science.gov (United States)

    Piccione, Brian; Cho, Chang-Hee; van Vugt, Lambert K.; Agarwal, Ritesh

    2012-10-01

    The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components, and solutions incorporating direct-bandgap semiconductors are important in achieving this end. Optical processing of data at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties and stronger optical confinement. They are therefore ideal candidates for nanoscale optical network components, as well as model systems for understanding optical confinement. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light-matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast and photonic crystal devices.

  3. Impact of optical antennas on active optoelectronic devices.

    Science.gov (United States)

    Bonakdar, Alireza; Mohseni, Hooman

    2014-10-01

    Remarkable progress has been made in the fabrication and characterization of optical antennas that are integrated with optoelectronic devices. Herein, we describe the fundamental reasons for and experimental evidence of the dramatic improvements that can be achieved by enhancing the light-matter interaction via an optical antenna in both photon-emitting and -detecting devices. In addition, integration of optical antennas with optoelectronic devices can lead to the realization of highly compact multifunctional platforms for future integrated photonics, such as low-cost lab-on-chip systems. In this review paper, we further focus on the effect of optical antennas on the detectivity of infrared photodetectors. One particular finding is that the antenna can have a dual effect on the specific detectivity, while it can elevate light absorption efficiency of sub-wavelength detectors, it can potentially increase the noise of the detectors due to the enhanced spontaneous emission rate. In particular, we predict that the detectivity of interband photon detectors can be negatively affected by the presence of optical antennas across a wide wavelength region covering visible to long wavelength infrared bands. In contrast, the detectivity of intersubband detectors could be generally improved with a properly designed optical antenna.

  4. Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition

    CERN Document Server

    Woźniak, Paweł; Brönstrup, Gerald; Banyer, Peter; Christiansen, Silke; Leuchs, Gerd

    2015-01-01

    The direct writing using a focused electron beam allows for fabricating truly three-dimensional structures of sub-wavelength dimensions in the visible spectral regime. The resulting sophisticated geometries are perfectly suited for studying light-matter interaction at the nanoscale. Their overall optical response will strongly depend not only on geometry but also on the optical properties of the deposited material. In case of the typically used metal-organic precursors, the deposits show a substructure of metallic nanocrystals embedded in a carbonaceous matrix. Since gold-containing precursor media are especially interesting for optical applications, we experimentally determine the effective permittivity of such an effective material. Our experiment is based on spectroscopic measurements of planar deposits. The retrieved permittivity shows a systematic dependence on the gold particle density and cannot be sufficiently described using the common Maxwell-Garnett approach for effective medium.

  5. Quantum Theory of Cavityless Feedback Cooling of An Optically Trapped Nanoparticle

    CERN Document Server

    Rodenburg, B; Vamivakas, A N; Bhattacharya, M

    2015-01-01

    We present a quantum theory of cavityless feedback cooling of an optically trapped harmonically oscillating subwavelength dielectric particle, a configuration recently realized in several experiments. Specifically, we derive a Markovian master equation that treats the mechanical as well as optical degrees of freedom quantum mechanically. Employing this equation, we solve for the nanoparticle phonon number dynamics exactly, and extract analytic expressions for the cooling timescale and the steady state phonon number. We present experimental data verifying the predictions of our model in the classical regime, and also demonstrate that quantum ground state preparation is within reach of ongoing experiments. Our work provides a quantitative framework for future theoretical modeling of the cavityless quantum optomechanics of optically trapped dielectric particles.

  6. Quantum optical effective-medium theory for loss-compensated metamaterials

    DEFF Research Database (Denmark)

    Amooghorban, Ehsan; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    A central aim in metamaterial research is to engineer subwavelength unit cells that give rise to desired effective-medium properties and parameters, such as a negative refractive index. Ideally one can disregard the details of the unit cell and employ the effective description instead. A popular...... strategy to compensate for the inevitable losses in metallic components of metamaterials is to add optical gain material. Here we study the quantum optics of such loss-compensated metamaterials at frequencies for which effective parameters can be unambiguously determined. We demonstrate that the usual...... effective parameters are insufficient to describe the propagation of quantum states of light. Furthermore, we propose a quantum optical effective-medium theory instead and show that it correctly predicts the properties of the light emerging from loss-compensated metamaterials. © 2013 American Physical...

  7. Cavity nano-optomechanics: a nanomechanical system in a high finesse optical cavity

    CERN Document Server

    Stapfner, Sebastian; Hunger, David; Paulitschke, Philipp; Reichel, Jakob; Karrai, Khaled; Weig, Eva M; 10.1117/12.705901

    2011-01-01

    The coupling of mechanical oscillators with light has seen a recent surge of interest, as recent reviews report.[1, 2] This coupling is enhanced when confining light in an optical cavity where the mechanical oscillator is integrated as back- mirror or movable wall. At the nano-scale, the optomechanical coupling increases further thanks to a smaller optomechanical interaction volume and reduced mass of the mechanical oscillator. In view of realizing such cavity nano- optomechanics experiments, a scheme was proposed where a sub-wavelength sized nanomechanical oscillator is coupled to a high finesse optical microcavity.[3] Here we present such an experiment involving a single nanomechanical rod precisely positioned into the confined mode of a miniature Fabry-P\\'erot cavity.[4] We describe the employed stabilized cavity set-up and related finesse measurements. We proceed characterizing the nanorod vibration properties using ultrasonic piezo-actuation methods. Using the optical cavity as a transducer of nanomechan...

  8. The Optical Excitation of Zigzag Carbon Nanotubes with Photons Guided in Nanofibers

    CERN Document Server

    Broadfoot, S; Jaksch, D

    2011-01-01

    We consider the excitation of electrons in semiconducting carbon nanotubes by photons from the evanescent field created by a subwavelength-diameter optical fiber. The strongly changing evanescent field of such nanofibers requires dropping the dipole approximation. We show that this leads to novel effects, especially a high dependence of the photon absorption on the relative orientation and geometry of the nanotube-nanofiber setup in the optical and near infrared domain. In particular, we calculate photon absorption probabilities for a straight nanotube and nanofiber depending on their relative angle. Nanotubes orthogonal to the fiber are found to perform much better than parallel nanotubes when they are short. As the nanotube gets longer the absorption of parallel nanotubes is found to exceed the orthogonal nanotubes and approach 100% for extremely long nanotubes. In addition, we show that if the nanotube is wrapped around the fiber in an appropriate way the absorption is enhanced. We find that optical and ne...

  9. Optically and Electrically Tunable Dirac Points and Zitterbewegung in Graphene-Based Photonic Superlattices

    CERN Document Server

    Deng, Hanying; Malomed, Boris A; Chen, Xianfeng; Panoiu, Nicolae C

    2015-01-01

    We demonstrate that graphene-based photonic superlattices provide a versatile platform for electrical and all-optical control of photonic beams with deep-subwavelength accuracy. Specifically, by inserting graphene sheets into periodic metallo-dielectric structures one can design optical superlattices that posses photonic Dirac points (DPs) at frequencies at which the spatial average of the permittivity of the superlattice, $\\bar{ \\varepsilon}$, vanishes. Similar to the well-known zero-$\\bar{n}$ bandgaps, we show that these zero-$\\bar{\\varepsilon}$ DPs are highly robust against structural disorder. We also show that, by tuning the graphene permittivity via the optical Kerr effect or electrical doping, one can induce a spectral variation of the DP exceeding \\SI{30}{\

  10. Near-field aperture-probe as a magnetic dipole source and optical magnetic field detector

    CERN Document Server

    Denkova, Denitza; Silhanek, Alejandro V; Van Dorpe, Pol; Moshchalkov, Victor V

    2014-01-01

    Scanning near-field field optical microscopy (SNOM) is a technique, which allows sub-wavelength optical imaging of photonic structures. While the electric field components of light can be routinely obtained, imaging of the magnetic components has only recently become of interest. This is so due to the development of artificial materials, which enhance and exploit the typically weak magnetic light-matter interactions to offer extraordinary optical properties. Consequently, both sources and detectors of the magnetic field of light are now required. In this paper, assisted by finite-difference time-domain simulations, we suggest that the circular aperture at the apex of a metal coated hollow-pyramid SNOM probe can be approximated by a lateral magnetic dipole source. This validates its use as a detector for the lateral magnetic near-field, as illustrated here for a plasmonic nanobar sample. Verification for a dielectric sample is currently in progress. We experimentally demonstrate the equivalence of the reciproc...

  11. Fiscal 1997 R and D project on industrial science and technology under a consignment form NEDO. R and D of the technology of accelerated formation of bio-functions; 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Kasokugata seibutsu kino kochiku gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As a part of the study on accelerated formation of bio- functions, analysis technology of experimental systems for in vitro evolution of protein molecules was studied. For the analysis, recognition of a fitness landscape is indispensable. Improvement of adaptive walk is possible through its analysis in an ordered space based on features of the landscape. By the last fiscal year, the knowledge of the fitness (heat-stability) landscape was obtained in the experimental system of PEP (prolyl endopeptidase) in which an adaptive walk mechanism was found to function effectively (mutated protein with a heat-stability effectively improved by adaptive walk was obtained). To obtain more general fitness landscape information, landscapes of various proteins to a fitness should be examined, and the effectiveness of approaches to efficient adaptive walk on the fitness other than a heat-stability should be clarified. The second experimental system using LOD (lactate oxidase) was thus constructed to examine the heat-stability landscape. In addition, the system of in vitro molecular evolution of proteinase inhibitor (Cystatin B) was constructed. 3 refs., 3 figs., 2 tabs.

  12. Highly polarized emission from a GaN-based ultraviolet light-emitting diode using a Si-subwavelength grating on a SiO2 underlayer

    Science.gov (United States)

    Takashima, Yuusuke; Tanabe, Masato; Haraguchi, Masanobu; Naoi, Yoshiki

    2016-06-01

    The polarization characteristics of a 370 nm GaN-based ultraviolet light-emitting diode (UV-LED) were controlled by a subwavelength grating (SWG) on a low-refractive-index SiO2 underlayer inserted between the SWG and LED surface. Highly polarized UV emission was demonstrated by utilizing the Bloch eigenmode resonance in the SWG structure for the two orthogonal polarization states. The polarization ratio of the emission reached 16:1, which is the highest reported to date for direct emission from a GaN-based UV-LED. The decrease in UV emission was also prevented by suppressing the diffracted plane wave and by increasing the amplitude of the wave incident onto the SWG structure; this increase was achieved by taking advantage of the low refractive index of SiO2.

  13. Paired Cut-Wire Arrays for Enhanced Transmission of Transverse-Electric Fields Through Subwavelength Slits in a Thin Metallic Screen

    Science.gov (United States)

    Gallina, Ilaria; Castaldi, Giuseppe; Galdi, Vincenzo; Di Gennaro, Emiliano; Andreone, Antonello

    It has recently been shown that the transmission of electromagnetic fields through sub-wavelength slits (parallel to the electric field direction) in a thin metallic screen can be greatly enhanced by covering one side of the screen with a metallic cut-wire array laid on a dielectric layer. In this Letter, we show that a richer phenomenology (which involves both electric- and magnetic-type resonances) can be attained by pairing a second cut-wire array at the other side of the screen. Via a full-wave comprehensive parametric study, we illustrate the underlying mechanisms and explore the additional degrees of freedom endowed, as well as their possible implications in the engineering of enhanced transmission phenomena.

  14. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Science.gov (United States)

    Malerba, M.; Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; De Angelis, F.; Colombelli, R.

    2016-07-01

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  15. Free-carrier contribution to all-optical switching in Mie-resonant hydrogenated amorphous silicon nanodisks

    Science.gov (United States)

    Vabishchevich, Polina P.; Shorokhov, Alexander S.; Shcherbakov, Maxim R.; Fedyanin, Andrey A.

    2016-03-01

    Conventionally, all-optical switching devices made out from bulk silicon and other semiconductors are limited by free-carrier relaxation time which spans from picoseconds to microseconds. In this work, we discuss the possibility to suppress the undesired long free-carrier relaxation in subwavelength dielectric nanostructures exhibiting localized magnetic Mie resonances. Numerical calculations show the unsymmetrical modification of the transmittance spectra of the nanodisks due the free carriers photo-injection. Such a spectral dependance allows to control temporal response of the nanostructure by varying the laser pulse spectum.

  16. Random-phase metasurfaces at optical wavelengths.

    Science.gov (United States)

    Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P; Bozhevolnyi, Sergey I

    2016-01-01

    Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector. PMID:27328635

  17. Optical antennas with sinusoidal modulation in width.

    Science.gov (United States)

    Dikken, Dirk Jan; Segerink, Frans B; Korterik, Jeroen P; Pfaff, Stefan S; Prangsma, Jord C; Herek, Jennifer L

    2016-08-01

    Small metal structures sustaining plasmon resonances in the optical regime are of great interest due to their large scattering cross sections and ability to concentrate light to subwavelength volumes. In this paper, we study the dipolar plasmon resonances of optical antennas with a constant volume and a sinusoidal modulation in width. We experimentally show that by changing the phase of the width-modulation, with a small 10 nm modulation amplitude, the resonance shifts over 160 nm. Using simulations we show how this simple design can create resonance shifts greater than 600 nm. The versatility of this design is further shown by creating asymmetric structures with two different modulation amplitudes, which we experimentally and numerically show to give rise to two resonances. Our results on both the symmetric and asymmetric antennas show the capability to control the localization of the fields outside the antenna, while still maintaining the freedom to change the antenna resonance wavelength. The antenna design we tested combines a large spectral tunability with a small footprint: all the antenna dimensions are factor 7 to 13 smaller than the wavelength, and hold potential as a design element in meta-surfaces for beam shaping.

  18. Random-phase metasurfaces at optical wavelengths

    Science.gov (United States)

    Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P.; Bozhevolnyi, Sergey I.

    2016-06-01

    Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.

  19. Metasurface-loaded waveguide for transformation optics applications

    Science.gov (United States)

    Wei, Pengjiang; Xiao, Shiyi; Xu, Yadong; Chen, Huanyang; Tak Chu, Sai; Li, Jensen

    2016-04-01

    We theoretically investigate a two-dimensional metasurface-loaded waveguide as a generic platform for transformation optics (TO) applications. The mode indices can achieve values much less or greater than one by tuning the reflection phase from the metasurface. Due to the subwavelength feature size of the metasurface, we develop an effective description of the wave propagation using an artificial electromagnetic boundary approach, which replaces the effective medium description of TO for bulk media. We numerically demonstrate a constant zero-index medium for wave collimation, gradient index profiles as Luneburg and Maxwell fisheye lenses and a wave bender based on the finite embedded coordinate transformation. These investigations provide a feasible route to perform TO with metasurfaces as waveguide boundaries, yet the designs can still be obtained using an effective boundary approach with only a few constitutive parameters.

  20. Inverse design of periodic metallic slits for extraordinary optical transmission

    CERN Document Server

    Deng, Yongbo; Liu, Zhenyu; Wu, Yihui

    2016-01-01

    The inverse design methodology of periodic metallic slits for extraordinary optical transmission is presented based on the topology optimization method. Several topological configurations of periodic metallic slits with typical subwavelength size are derived with transmission peaks at the prescribed incident wavelengths in the visible light region, where the transmissivity is enhanced by effective excitation of surface-plasmon-polariton at the inlet side of the slit, Fabry-P\\'erot resonance of surface-plasmon-polariton inside the slit and radiation of the electromagnetic energy at the outlet side of the slit. The transmission peaks of the derived metallic configurations are raised along with the red shift of the incident wavelength, because of the reduction of the energy absorption and increase of the propagation distance of surface-plasmon-polariton. And the shift of transmission peak is controlled by prescribing a different incident wavelength in the corresponding topology optimization problem. To reduce th...

  1. Optically Thin Metallic Films for High-radiative-efficiency Plasmonics

    CERN Document Server

    Yang, Yi; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-01-01

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and ...

  2. Modern optics

    CERN Document Server

    Guenther, B D

    2015-01-01

    Modern Optics is a fundamental study of the principles of optics using a rigorous physical approach based on Maxwell's Equations. The treatment provides the mathematical foundations needed to understand a number of applications such as laser optics, fiber optics and medical imaging covered in an engineering curriculum as well as the traditional topics covered in a physics based course in optics. In addition to treating the fundamentals in optical science, the student is given an exposure to actual optics engineering problems such as paraxial matrix optics, aberrations with experimental examples, Fourier transform optics (Fresnel-Kirchhoff formulation), Gaussian waves, thin films, photonic crystals, surface plasmons, and fiber optics. Through its many pictures, figures, and diagrams, the text provides a good physical insight into the topics covered. The course content can be modified to reflect the interests of the instructor as well as the student, through the selection of optional material provided in append...

  3. Properties of high-frequency sub-wavelength ripples on stainless steel 304L under ultra short pulse laser irradiation

    NARCIS (Netherlands)

    Mitko, V.S.; Röer, G.R.B.E.; Huis in 't veld, A.J.; Skolski, J.Z.P.; Obona, J.V.; Ocelík, V.; Hosson, J.T.M.de

    2011-01-01

    The paper concentrates on surface texturing on sub-micro meter scale with ultra short laser pulses that has several applications, e.g. changing the hydrophilic/hydrophobic performance, optical or tribological properties of materials. In general, the formations of wavy structures, or ripples on a sur

  4. Properties of High-Frequency Sub-Wavelength Ripples on Stainless Steel 304L under Ultra Short Pulse Laser Irradiation

    NARCIS (Netherlands)

    Mitko, V.S.; Römer, G.R.B.E.; Huis in ‘t Veld, A.J.; Skolski, J.Z.P.; Obona, J.V.; Ocelík, V.; Hosson, J.T.M. De

    2011-01-01

    The paper concentrates on surface texturing on sub-micro meter scale with ultra short laser pulses that has several applications, e.g. changing the hydrophilic/hydrophobic performance, optical or tribological properties of materials. In general, the formations of wavy structures, or ripples on a sur

  5. Bio-Functional Constituents from the Stems of Liriodendron tulipifera

    Directory of Open Access Journals (Sweden)

    Chung-Yi Chen

    2012-04-01

    Full Text Available Four known compounds have been isolated from the stems of Liriodendron tulipifera, and the structures of these pure constituents were determined using spectroscopic analysis. Isolated compounds were screened for free radical scavenging ability, metal chelating power assay and ferric reducing antioxidant power assay (FRAP. The anti-tyrosinase effects of L. tulipifera compounds were calculated the inhibition of hydroxylation of L-tyrosine to L-dopa according to an in vitro mushroom tyrosinase assay. The study also examined the bio-effects of the four compounds on the human melanoma A375.S2, and showed that liriodenine (1 and (--norglaucine (4 significantly inhibited the proliferation of melanoma cells in the cell viability assay. Wound healing results indicated that liriodenine (1, (--glaucine (3 and (--norglaucine (4 exerted anti-migration potential. Interestingly, (--glaucine (3, neither liriodenine (1 nor (--norglaucine (4 showed promising anti-migration potential without inducing significant cytotoxicity. Furthermore, a dramatically increased level of intracellular reactive oxygen species (ROS was detected from (--glaucine (3. The cell cycle assessment demonstrated a moderate G2/M accumulation by (--glaucine (3. The above results revealed the anti-cancer effects of L. tulipifera compounds, especially on the anti-migration ability indicating the promising chemopreventive agents to human skin melanoma cells.

  6. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  7. Optimizing Photon Collection from Point Sources with Adaptive Optics

    Science.gov (United States)

    Hill, Alexander; Hervas, David; Nash, Joseph; Graham, Martin; Burgers, Alexander; Paudel, Uttam; Steel, Duncan; Kwiat, Paul

    2015-05-01

    Collection of light from point-like sources is typically poor due to the optical aberrations present with very high numerical-aperture optics. In the case of quantum dots, the emitted mode is nonisotropic and may be quite difficult to couple into single- or even few-mode fiber. Wavefront aberrations can be corrected using adaptive optics at the classical level by analyzing the wavefront directly (e.g., with a Shack-Hartmann sensor); however, these techniques are not feasible at the single-photon level. We present a new technique for adaptive optics with single photons using a genetic algorithm to optimize collection from point emitters with a deformable mirror. We first demonstrate our technique for improving coupling from a subwavelength pinhole, which simulates isotropic emission from a point source. We then apply our technique in situto InAs/GaAs quantum dots, obtaining coupling increases of up to 50% even in the presence of an artificial source of drift.

  8. Fluctuating nanomechanical systems in a high finesse optical microcavity

    CERN Document Server

    Favero, I; Hunger, D; Paulitschke, P; Reichel, J; Lorenz, H; Weig, E M; Karrai, K

    2009-01-01

    Confining a laser field between two high reflectivity mirrors of a high-finesse cavity can increase the probability of a given cavity photon to be scattered by an atom traversing the confined photon mode. This enhanced coupling between light and atoms is successfully employed in cavity quantum electrodynamics experiments and led to a very prolific research in quantum optics. The idea of extending such experiments to sub-wavelength sized nanomechanical systems has been recently proposed in the context of optical cavity cooling. Here we present an experiment involving a single nanorod consisting of about 10^9 atoms precisely positioned to plunge into the confined mode of a miniature high finesse Fabry-Perot cavity. We show that the optical transmission of the cavity is affected not only by the static position of the nanorod but also by its vibrational fluctuation. While an imprint of the vibration dynamics is directly detected in the optical transmission, back-action of the light field is also anticipated to qu...

  9. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  10. Physics of Negative Refraction and Negative Index Materials Optical and Electronic Aspects and Diversified Approaches

    CERN Document Server

    Krowne, Clifford M

    2007-01-01

    This book deals with the subject of optical and electronic negative refraction (NR) and negative index materials NIM). Diverse approaches for achieving NR and NIM are covered, such as using photonic crystals, phononic crystals, split-ring resonators (SRRs) and continuous media, focusing of waves, guided-wave behavior, and nonlinear effects. Specific topics treated are polariton theory for LHMs (left handed materials), focusing of waves, guided-wave behavior, nonlinear optical effects, magnetic LHM composites, SRR-rod realizations, low-loss guided-wave bands using SRR-rods unit cells as LHMs, NR of electromagnetic and electronic waves in uniform media, field distributions in LHM guided-wave structures, dielectric and ferroelectric NR bicrystal heterostructures, LH metamaterial photonic-crystal lenses, subwavelength focusing of LHM/NR photonic crystals, focusing of sound with NR and NIMs, and LHM quasi-crystal materials for focusing.

  11. Nanoscale and femtosecond optical autocorrelator based on a single plasmonic nanostructure

    International Nuclear Information System (INIS)

    We demonstrated a nanoscale size, ultrafast and multiorder optical autocorrelator with a single plasmonic nanostructure for measuring the spatio-temporal dynamics of femtosecond laser light. As a nanostructure, we use a split hole resonator (SHR), which was made in an aluminium nanofilm. The Al material yields the fastest response time (100 as). The SHR nanostructure ensures a high nonlinear optical efficiency of the interaction with laser radiation, which leads to (1) the second, (2) the third harmonics generation and (3) the multiphoton luminescence, which, in turn, are used to perform multi-order autocorrelation measurements. The nano-sized SHR makes it possible to conduct autocorrelation measurements (i) with a subwavelength spatial resolution and (ii) with no significant influence on the duration of the laser pulse. The time response realized by the SHR nanostructure is about 10 fs. (letter)

  12. Efficient graphene based electro-optical modulator enabled by interfacing plasmonic slot and silicon waveguides

    CERN Document Server

    Ding, Yunhong; Zhu, Xiaolong; Hu, Hao; Bozhevolnyi, Sergey I; Oxenløwe, Leif Katsuo; Mortensen, N Asger; Xiao, Sanshui

    2016-01-01

    Graphene based electro-absorption modulators involving dielectric optical waveguides or resonators have been widely explored, suffering however from weak graphene-light interaction due to poor overlap of optical fields with graphene layers. Surface plasmon polaritons enable light concentration within subwavelength regions opening thereby new avenues for strengthening graphene-light interactions. Through careful optimization of plasmonic slot waveguides, we demonstrate efficient and compact graphene-plasmonic modulators that are interfaced with silicon waveguides and thus fully integrated in the silicon-on-insulator platform. By advantageously exploiting low-loss plasmonic slot-waveguide modes, which weakly leak into a substrate while feature strong fields within the two-layer-graphene covered slots in metal, we have successfully achieved a tunability of 0.13 dB/{\\mu}m for our fabricated graphene-plasmonic waveguide modulators with low insertion loss, which significantly exceeds the performance of previously r...

  13. Nonlocal modification and quantum optical generalization of effective-medium theory for metamaterials

    DEFF Research Database (Denmark)

    Wubs, Martijn; Yan, Wei; Amooghorban, Ehsan;

    2013-01-01

    A well-known challenge for fabricating metamaterials is to make unit cells significantly smaller than the operating wavelength of light, so one can be sure that effective-medium theories apply. But do they apply? Here we show that nonlocal response in the metal constituents of the metamaterial...... leads to modified effective parameters for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite hyperbolic metamaterials we show that nonlocal...... response affects their operation as superlenses, and interestingly that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether the effective...

  14. Transmission degradation and preservation for tapered optical fibers in rubidium vapor

    CERN Document Server

    Lai, M M; Pittman, T B

    2012-01-01

    The use of sub-wavelength diameter tapered optical fibers (TOF's) in warm rubidium vapor has recently been identified as a promising system for realizing ultra-low-power nonlinear optical effects. However, at the relatively high atomic densities needed for many of these experiments, rubidium atoms accumulating on the TOF surface can cause a significant loss of overall transmission through the fiber. Here we report direct measurements of the time-scale associated with this transmission degradation for various rubidium density conditions. Transmission is affected almost immediately after the introduction of rubidium vapor into the system, and declines rapidly as the density is increased. More significantly, we show how a heating element designed to raise the TOF temperature can be used to reduce this transmission loss and dramatically extend the effective TOF transmission lifetime.

  15. Spectrally-engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis

    CERN Document Server

    Boriskina, S V

    2006-01-01

    We report a theoretical study of clusters of evanescently-coupled 2D whispering-gallery (WG) mode optical micro-cavities (termed "photonic molecules") as chemosensing and biosensing platforms. Photonic molecules (PMs) supporting modes with narrow linewidths, wide mode spacing, and greatly enhanced sensitivity to the changes in the dielectric constant of their environment and to the presence of individual sub-wavelength sized nanoparticles in the PM evanescent-field region are numerically designed. This type of optical biosensor can be fabricated in a variety of material platforms and integrated on a single chip that makes it a promising candidate for a small and robust lab-on-a-chip device. Possible applications of the developed methodology and the designed PM structures to the near-field microscopy, single nano-emitter microcavity lasing, and cavity-controlled single-molecule fluorescence enhancement are also discussed.

  16. Applied optics

    International Nuclear Information System (INIS)

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed

  17. 亚波长金属块阵列的太赫兹传感芯片%Terahertz Sensing Chip of Sub-wavelength Metallic Arrays

    Institute of Scientific and Technical Information of China (English)

    王思江; 毛洪艳; 夏良平; 杨忠波; 魏东山; 崔洪亮; 杜春雷

    2016-01-01

    光波波段的生化传感器件已很常见且可实现单分子探测,但由于光波波长在纳米量级,制作出的器件的结构尺寸小、加工难度大、传感重复性较差。因此,本文提出一种亚波长金属块阵列结构的太赫兹(Terahertz, THz)传感芯片,在理论上基于法布里-珀罗(FP)共振建立了其传感模型,结合有限元方法分析了亚波长金属结构局域表面等离子体共振对其传感灵敏度的影响规律。然后采用正交光刻工艺制作出了结构均一的传感芯片,传感实验表明,该芯片对0.025 mol/L的D(+)-葡萄糖水溶液可产生53 GHz的频移量,传感灵敏度高,有望应用于高灵敏的太赫兹生物传感。%Recently, light wave band biochemical sensors of single molecule detection are common to be seen. However, because of the light wave’s nano-scale length, the devices of small size are difficult to process and have poor sensing repeatability. Therefore, we proposed a terahertz (Terahertz, THz) sensor chip constituted of simple sub-wavelength metal block arrays. In theory, we established its sensing model based on Fabry-Perot (FP) resonance, combined with the analysis of the influence of the localized surface plasmon resonance of sub-wavelength metal structure of sensitivity in the Finite Element Method (FEM). Based on this, a large area and homogeneous structure was fabricated with the orthogonal lithography. The experimental result indicates that the resonance frequency shift 53 GHz for 0.025 mol/L D(+)-Glucose solution, which possess high sensitivity. Our works can provide theoretical guidance for the design of high sensitive terahertz sensor.

  18. Reconfigurable optical-force-drive chirp and delay line in micro- or nanofiber Bragg grating

    Science.gov (United States)

    Luo, Wei; Xu, Fei; Lu, Yan-qing

    2015-05-01

    The emergence of optical micro- or nanofibers (MNFs) with subwavelength diameter, which have ultralight mass and an intense light field, provides an opportunity for developing fiber-based optomechanical systems. In this study we show theoretically an optomechanical effect in silica MNF Bragg gratings (MNFBGs). The light-induced mechanical effect results in continuously distributed strain along the grating and the power-related strain introduces an optically reconfigurable chirp in the grating period. We develop optomechanical coupled-mode equations and analyze theoretically the influence of the optical-force-induced nonlinearity and chirp on the grating performance. Compared with the weak Kerr effect, the optomechanical effect dominates in the properties' evolution of MNFBGs. Significant group-velocity reduction and switching effect have been demonstrated theoretically at medium power level. This kind of optomechanical MNFBG with optically reconfigurable chirp may offer a path toward an all-optical tunable bandwidth of Bragg resonance and may lead to useful applications such as all-optical switching, optically controlled dispersion, and slow or fast light.

  19. Optical fibres

    CERN Document Server

    Geisler, J; Boutruche, J P

    1986-01-01

    Optical Fibers covers numerous research works on the significant advances in optical fibers, with particular emphasis on their application.This text is composed of three parts encompassing 15 chapters. The first part deals with the manufacture of optical fibers and the materials used in their production. The second part describes optical-fiber connectors, terminals and branches. The third part is concerned with the major optoelectronic components encountered in optical-communication systems.This book will be of value to research scientists, engineers, and patent workers.

  20. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  1. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  2. Near-field for electrodynamics at sub-wavelength scales: generalizing to an arbitrary number of dielectrics.

    Science.gov (United States)

    Li, Shaohong; Gao, Yi; Neuhauser, Daniel

    2012-06-21

    We extend the recently developed near-field (NF) method to include an arbitrary number of dielectrics. NF assumes that the dipoles and fields respond instantaneously to the density, without retardation. The central task in NF is the solution of the Poisson equation for every time step, which is here done by a conjugate gradient method which handles any dielectric distribution. The optical response of any metal-dielectric system can now be studied very efficiently in the near field region. The improved NF method is first applied to simple benchmark systems: a gold nanoparticle in vacuum and embedded in silica. The surface plasmons in these systems and their dependence on the dielectrics are reproduced in the new NF approach. As a further application, we study a silver nanoparticle-based structure for the optical detection of a "lipid" (i.e., dielectric) layer in water, where the layer is wrapping around part of the metallic nanostructure. We show the ~0.1-0.15 eV shift in the spectrum due to the presence of the layer, for both spherical and non-spherical (sphere+rod) systems with various polarizations.

  3. Broadband Rydberg Atom-Based Electric-Field Probe: From Self-Calibrated Measurements to Sub-Wavelength Imaging

    CERN Document Server

    Holloway, Christopher L; Jefferts, Steven; Schwarzkopf, Andrew; Anderson, David A; Miller, Stephanie A; Thaicharoen, Nithiwadee; Raithel, Georg

    2014-01-01

    We discuss a fundamentally new approach for the measurement of electric (E) fields that will lead to the development of a broadband, direct SI-traceable, compact, self-calibrating E-field probe (sensor). This approach is based on the interaction of radio frequency (RF) fields with alkali atoms excited to Rydberg states. The RF field causes an energy splitting of the Rydberg states via the Autler-Townes effect and we detect the splitting via electromagnetically induced transparency (EIT). In effect, alkali atoms placed in a vapor cell act like an RF-to-optical transducer, converting an RF E-field strength measurement to an optical frequency measurement. We demonstrate the broadband nature of this approach by showing that one small vapor cell can be used to measure E-field strengths over a wide range of frequencies: 1 GHz to 500 GHz. The technique is validated by comparing experimental data to both numerical simulations and far-field calculations for various frequencies. We also discuss various applications, in...

  4. Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Korobkin, D.; Urzhumov, Y.A.; Neuner, B. III; Shvets, G. [The University of Texas at Austin, Department of Physics, Austin, TX (United States); Zorman, C. [Case Western Reserve University, Department of Electrical Engineering, Cleveland, OH (United States); Zhang, Z.; Mayergoyz, I.D. [University of Maryland, Department of Electrical and Computer Engineering, College Park, MD (United States)

    2007-09-15

    We theoretically and experimentally study electromagnetic properties of a novel mid-infrared metamaterial: optically thin silicon carbide (SiC) membrane perforated by an array of sub-wavelength holes. Giant absorption and transmission is found using Fourier transformed infrared (FTIR) microscopy and explained by introducing a frequency-dependent effective permittivity {epsilon}{sub eff}({omega}) of the perforated film. The value of {epsilon}{sub eff}({omega}) is determined by the excitation of two distinct types of hole resonances: delocalized slow surface polaritons (SSPs) whose frequencies are largely determined by the array period, and a localized surface polariton (LSP) corresponding to the resonance of an isolated hole. Only SSPs are shown to modify {epsilon}{sub eff}({omega}) strongly enough to cause giant transmission and absorption. Because of the sub-wavelength period of the hole array, anomalous optical properties can be directly traced to surface polaritons, and their interpretation is not obscured by diffractive effects. Giant absorbance of this metamaterial can be utilized in designing highly efficient thermal radiation sources. (orig.)

  5. Enhanced optical characteristics of terahertz bandpass filters based on plasmonic nanoparticles

    Science.gov (United States)

    Yadollahzadeh, Sajjad; Baghban, Hamed

    2016-04-01

    Plasmonic nanostructures enable considerable control and manipulation of light at the subwavelength scale and are promising for demonstration of optical metamaterials with enhanced spectral response. In this paper, we introduce a generation of terahertz bandpass filters that exploit the characteristics of subwavelength plasmonic nanoparticles. The design procedure is discussed based on a well-known complementary split ring resonator with a resonant feature at the THz region (˜1.5 THz), and it has been shown that device design based on plasmonic nanoparticles can conquer the poor off-resonance selectivity limit of common THz filters and exhibit higher transmission response, faster roll-off, and almost ripple-free operation. A much larger coupling capacitance for nanoparticles in the touching condition can modify the resonance wavelength, and localized hot spots enhance the device sensitivity for special applications. The effect of plasmonic nanoparticle size on the filtering characteristics is also discussed. A simple fabrication procedure based on discontinuous islandized surface morphology of thin metallic films on a dielectric has been proposed for demonstration of the THz filters introduced here.

  6. Applied optics and optical design

    CERN Document Server

    Conrady, A E

    2011-01-01

    ""For the optical engineer it is an indispensable work."" - Journal, Optical Society of America""As a practical guide this book has no rival."" - Transactions, Optical Society""A noteworthy contribution,"" - Nature (London)Part I covers all ordinary ray-tracing methods, together with the complete theory of primary aberrations and as much of higher aberration as is needed for the design of telescopes, low-power microscopes and simple optical systems. Chapters: Fundamental Equations, Spherical Aberration, Physical Aspect of Optical Images, Chromatic Aberration, Design of Achromatic Object-Glass

  7. Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation

    Science.gov (United States)

    Varsanik, J. S.; Bernstein, J. J.

    2013-09-01

    Integrated optic/microfluidic devices have proven to be useful tools in many sensing applications. However, the resolution and sensitivity of existing devices is limited by the processes and materials chosen for their fabrication. A procedure for the production of a new family of low-noise, high-resolution integrated microfluidic optical detection devices is presented, along with results from a prototype device. The device architecture is presented, highlighting design choices made in fluidics and optical integration to minimize scattered light. Diffused waveguides were fabricated, characterized, and modeled. A plasmonic resonator is designed, simulated, and integrated into the system to achieve electric field enhancement and localization to sub-micron dimensions. The device was tested to demonstrate both field enhancement and localization. The procedure that was developed enables the creation of integrated devices capable of high-resolution detection of fluorescent samples. The interrogation region was 200 nm long in the direction of flow, achieving sub-wavelength resolution in an integrated device. Furthermore, discrete fluorescent particles 20 nm in diameter were individually detected, demonstrating the high resolution and sensitivity capabilities of this family of devices.

  8. Ultracompact vibrometry measurement with nanometric accuracy using optical feedback

    Science.gov (United States)

    Jha, Ajit; Azcona, Francisco; Royo, Santiago

    2015-05-01

    The nonlinear dynamics of a semiconductor laser with optical feedback (OF) combined with direct current modulation of the laser is demonstrated to suffice for the measurement of subwavelength changes in the position of a vibrating object. So far, classical Optical Feedback Interferometry (OFI) has been used to measure the vibration of an object given its amplitude is greater than half the wavelength of emission, and the resolution of the measurement limited to some tenths of the wavelength after processing. We present here a methodology which takes advantage of the combination of two different phenomena: continuous wave frequency modulation (CWFM), induced by direct modulation of the laser, and non-linear dynamics inside of the laser cavity subject to optical self-injection (OSI). The methodology we propose shows how to detect vibration amplitudes smaller than half the emission wavelength with resolutions way beyond λ/2, extending the typical performance of OFI setups to very small amplitudes. A detailed mathematical model and simulation results are presented to support the proposed methodology, showing its ability to perform such displacement measurements of frequencies in the MHz range, depending upon the modulation frequency. Such approach makes the technique a suitable candidate, among other applications, to economic laser-based ultrasound measurements, with applications in nondestructive testing of materials (thickness, flaws, density, stresses), among others. The results of simulations of the proposed approach confirm the merit of the figures as detection of amplitudes of vibration below λ/2) with resolutions in the nanometer range.

  9. Geometrical Optics

    Science.gov (United States)

    Lindlein, Norbert; Leuchs, Gerd

    This chapter shall discuss the basics and the applications of geometrical optical methods in modern optics. Geometrical optics has a long tradition and some ideas are many centuries old. Nevertheless, the invention of modern personal computers which can perform several million floating-point operations in a second also revolutionized the methods of geometrical optics and so several analytical methods lost importance whereas numerical methods such as ray tracing became very important. Therefore, the emphasis in this chapter is also on modern numerical methods such as ray tracing and some other systematic methods such as the paraxial matrix theory.

  10. Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna.

    Science.gov (United States)

    Tian, Jingyi; Li, Qiang; Yang, Yuanqing; Qiu, Min

    2016-02-21

    The study of all-dielectric nanoantennas has become an emerging branch of the study of optical nanoantennas in recent years, with all-dielectric nanoantennas having an outstanding ability to tailor forward and backward unidirectional scattering arising from interference mainly between electric dipoles and magnetic dipoles induced simultaneously inside a nanoparticle. To further control their radiation properties, we demonstrate the off-normal scattering, by a silicon stair-like nanoantenna, of an incident near-infrared plane wave due to multipolar interference. The radiation angle could be tailored over a 20-degree range by tuning the geometric parameters of the nanoantenna. A multipolar model was adopted to interpret the interference among one electric dipole, two magnetic dipoles and one electric quadrupole induced inside the nanoantenna. The maximum radiation angle reached 20° at a wavelength near 1550 nm. Such a stair-like nanoantenna sets a good example for further flexible manipulation of multipolar resonances inside all-dielectric nanoparticles, which is an essential step towards practical application of all-dielectric nanoantennas in the near future.

  11. Supramolecular interfacial architectures for optical biosensing with surface plasmons

    Science.gov (United States)

    Knoll, Wolfgang; Park, Hyeyoung; Sinner, Eva-Kathrin; Yao, Danfeng; Yu, Fang

    2004-10-01

    We describe several approaches to design, synthesize and assemble supramolecular (bio-)functional interfacial architectures for applications in optical biosensing using, in particular, surface plasmon field-enhanced fluorescence spectroscopy (SPFS). Firstly, we discuss the build-up of an interfacial catcher probe layer for surface-hybridization studies with PCR amplicons. The well-established biotin-streptavidin coupling scheme is used to assemble a peptide nucleic acid (PNA) probe matrix. SPFS allows then for a very detailed and quantitative evaluation of the kinetics and affinities of the association and dissociation reactions between these catcher oligonucleotide strands and chromophore-labeled PCR (125 bp) strands from solution. The second example concerns the study of protein binding using an ELISA-analogue sandwich approach: a primary antibody against the prostate-specific antigen (PSA) used in these examples is coupled to a dextran binding matrix at the sensor surface via EDC/NHS-coupling. The detection limits for PSA are then evaluated using a 2-step- or 1-step-antigen/secondary antibody strategy by monitoring the fluorescence intensity emitted from chromophore-labels covalently bound to the secondary antibody. The final system that we describe involves a novel model membrane system, i.e., a tethered bimolecular lipid membrane (tBLM). Reconstitution of integrin receptors then allows for a quantitative study of the binding of fluorophore-labeled collagen fragments to the membrane-based integrin receptors.

  12. Optical latches using optical amplifiers

    Science.gov (United States)

    Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2013-05-01

    Optical latches are important for a wide range of applications including communication systems, optical logic systems, optical random access memory (RAM) and encryption. All optical logic operations using quantum dot (QD) based semiconductor optical amplifier (SOA) and Mach-Zehnder interferometer (MZI) have been studied. The building block of an optical latch such as NAND gate has been fabricated and their operation experimentally demonstrated at ~ 80 GHz. A rate equation model has been developed for the QD-SOA-MZI and it has been used to analyze the Boolean logic operation. The model has been used to analyze the Set-Reset (S-R) latch and the D-Flip-Flop (DFF) devices. The DFF is the basic device for building larger logic circuits. The results show that the latches would work to speeds of ~ 250 Gb/s.

  13. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  14. Optic neuritis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, H; Sellebjerg, F

    2004-01-01

    To study the involvement of the chemokine receptor CXCR3 and its ligands (CXCL9/Mig, CXCL10/IP-10, CXCL11/ITAC) in optic neuritis (ON).......To study the involvement of the chemokine receptor CXCR3 and its ligands (CXCL9/Mig, CXCL10/IP-10, CXCL11/ITAC) in optic neuritis (ON)....

  15. Lagrangian optics

    CERN Document Server

    Lakshminarayanan, Vasudevan; Thyagarajan, K

    2002-01-01

    Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the ...

  16. Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides.

    Science.gov (United States)

    Ooi, Kelvin J A; Bai, Ping; Gu, Ming Xia; Ang, Lay Kee

    2011-08-29

    A novel plasmonic waveguide-coupled nanocavity with a monopole antenna is proposed to localize the optical power from a hybrid plasmonic waveguide and subsequently convert it into electrical current. The nanocavity is designed as a Fabry-Pérot waveguide resonator, while the monopole antenna is made of a metallic nanorod directly mounted onto the metallic part of the waveguide terminal which acts as the conducting ground. The nanocavity coincides with the antenna feed sandwiched in between the antenna and the ground. Maximum power from the waveguide can be coupled into, and absorbed in the nanocavity by means of the field resonance in the antenna as well as in the nanocavity. Simulation results show that 42% optical power from the waveguide can be absorbed in a germanium filled nanocavity with a nanoscale volume of 220 × 150 × 60 nm3. The design may find applications in nanoscale photo-detection, subwavelength light focusing and manipulating, as well as sensing. PMID:21935068

  17. Optical holography

    CERN Document Server

    Collier, Robert

    2013-01-01

    Optical Holography deals with the use of optical holography to solve technical problems, with emphasis on the properties of holograms formed with visible light. Topics covered include the Fourier transform, propagation and diffraction, pulsed-laser holography, and optical systems with spherical lenses. A geometric analysis of point-source holograms is also presented, and holograms and hologram spatial filters formed with spatially modulated reference waves are described. This book is comprised of 20 chapters and begins with an introduction to concepts that are basic to understanding hologr

  18. Hybrid optical-thermal devices and materials for light manipulation and radiative cooling

    Science.gov (United States)

    Boriskina, Svetlana V.; Tong, Jonathan K.; Hsu, Wei-Chun; Weinstein, Lee; Huang, Xiaopeng; Loomis, James; Xu, Yanfei; Chen, Gang

    2015-09-01

    We report on optical design and applications of hybrid meso-scale devices and materials that combine optical and thermal management functionalities owing to their tailored resonant interaction with light in visible and infrared frequency bands. We outline a general approach to designing such materials, and discuss two specific applications in detail. One example is a hybrid optical-thermal antenna with sub-wavelength light focusing, which simultaneously enables intensity enhancement at the operating wavelength in the visible and reduction of the operating temperature. The enhancement is achieved via light recycling in the form of whispering-gallery modes trapped in an optical microcavity, while cooling functionality is realized via a combination of reduced optical absorption and radiative cooling. The other example is a fabric that is opaque in the visible range yet highly transparent in the infrared, which allows the human body to efficiently shed energy in the form of thermal emission. Such fabrics can find numerous applications for personal thermal management and for buildings energy efficiency improvement.

  19. Drugs of abuse detection in saliva based on actuated optical method

    Science.gov (United States)

    Shao, Jie; Li, Zhenyu; Jiang, Hong; Wang, Wenlong; Wu, Yixuan

    2014-12-01

    There has been a considerable increase in the abuse of drugs during the past decade. Combing drug use with driving is very dangerous. More than 11% of drivers in a roadside survey tested positive for drugs, while 18% of drivers killed in accidents tested positive for drugs as reported in USA, 2007. Toward developing a rapid drug screening device, we use saliva as the sample, and combining the traditional immunoassays method with optical magnetic technology. There were several methods for magnetic nanoparticles detection, such as magnetic coils, SQUID, microscopic imaging, and Hall sensors. All of these methods were not suitable for our demands. By developing a novel optical scheme, we demonstrate high-sensitivity detection in saliva. Drugs of abuse are detected at sub-nano gram per milliliter levels in less than 120 seconds. Evanescent wave principle has been applied to sensitively monitor the presence of magnetic nanoparticles on the binding surface. Like the total internal reflection fluorescence microscope (TIRFM), evanescent optical field is generated at the plastic/fluid interface, which decays exponentially and penetrates into the fluid by only a sub-wavelength distance. By disturbance total internal reflection with magnetic nanoparticles, the optical intensity would be influenced. We then detected optical output by imaging the sensor surface onto a CCD camera. We tested four drugs tetrahydrocannabinol (THC), methamphetamine (MAMP), ketamine (KET), morphine (OPI), using this technology. 100 ng mL-1 sensitivity was achieved, and obvious evidence showed that this results could be improved in further researches.

  20. Efficient optical coupling into ultra-compact plasmonic slot waveguides using dipole nanoantennas

    Science.gov (United States)

    Gao, Qian; Ren, Fanghui; Wang, Alan X.

    2016-03-01

    Nanoantenna is used for coupling free space radiation to subwavelength plasmonic waveguide. We provide a theoretical design of ultra-compact dipole nanoantennas --- Yagi-Uda antenna with a reflector in telecom range and experimentally demonstrate efficient optical coupling between lensed fiber and plasmonic slot waveguide by utilizing our designed nanoantenna. We also prove that the couple-in efficiency of 8% from the lensed fiber does not equal to the couple-out efficiency of 50% from the plasmonic slot waveguide using the same nanoantenna design, which is different than many published and experimental results. We also study the relationship between couple in efficiency and the incident light spot size, which is experimentally characterized.

  1. Estimation of Purcell factor from mode-splitting spectra in an optical microcavity

    CERN Document Server

    Ozdemir, Sahin Kaya; He, Lina; Yang, Lan

    2011-01-01

    We investigate scattering process in an ultra-high-Q optical microcavity coupled to subwavelength scatterers by introducing "splitting quality" Qsp, a dimensionless parameter defined as the ratio of the scatterer-induced mode splitting to the total loss of the coupled system. A simple relation is introduced to directly estimate the Purcell factor from single-shot measurement of transmission spectrum of scatterer-coupled cavity. Experiments with polystyrene (PS) and gold (Au) nanoparticles, Erbium ions and Influenza A virions show that Purcell-factor-enhanced preferential funneling of scattering into the cavity mode takes place regardless of the scatterer type. Experimentally determined highest Qsp for single PS and Au nanoparticles are 9.4 and 16.19 corresponding to Purcell factors with lower bounds of 353 and 1049, respectively. The highest observed Qsp was 31.2 for an ensemble of Au particles. These values are the highest Qsp and Purcell factors reported up to date.

  2. Design of Optical Metamaterial Mirror with Metallic Nanoparticles for Broadband Light Absorption in Graphene Optoelectronic Devices

    CERN Document Server

    Lee, Seungwoo

    2015-01-01

    A general metallic mirror (i.e., a flat metallic surface) has been a popular optical component that can contribute broadband light absorption to thin-film optoelectronic devices; nonetheless, such electric mirror with a reversal of reflection phase inevitably causes the problem of minimized electric field near at the mirror surface (maximized electric field at one quarter of wavelength from mirror). This problem becomes more elucidated, when the deep-subwavelength-scaled two-dimensional (2D) material (e.g., graphene and molybdenum disulfide) is implemented into optoelectronic device as an active channel layer. The purpose of this work was to conceive the idea for using a charge storage layer (spherical Au nanoparticles (AuNPs), embedded into dielectric matrix) of the floating-gate graphene photodetector as a magnetic mirror, which allows the device to harness the increase in broadband light absorption. In particular, we systematically examined whether the versatile assembly of spherical AuNP monolayer within ...

  3. THz Generation by Optical Rectification and Competition with Other Nonlinear Processes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-Yu; HAMEAU Sophie; TIGNON Jér(o)me

    2008-01-01

    We present a study of the competition between tera-hertz (THz) generation by optical rectification in (110)Zn Te crystals,two-photon absorption,second harmonic generation and flee-carrier absorption.The two-photon nonlinear absorption coefficient,second harmonic generation efficiency and flee-carrier absorption coefficient in the THz range are measured independently.The incident pump field is shown to be depleted by two-photon absorption and the THz radiation is shown to be reduced,upon focusing,by free-carrier absorption.The reduction of the generated THz radiation upon tight focusing is explained,provided that one also takes into account diffraction effects from the sub-wavelength THz source.

  4. Near-field measurement of modal interference in optical nanofibers for sub-Angstrom radius sensitivity

    CERN Document Server

    Fatemi, Fredrik K; Solano, Pablo; Fenton, Eliot F; Beadie, Guy; Rolston, Steven L; Orozco, Luis A

    2016-01-01

    Optical nanofibers (ONF) of subwavelength dimensions confine light in modes with a strong evanescent field that can trap, probe, and manipulate nearby quantum systems. To measure the evanescent field and propagating modes, and to optimize ONF performance, a surface probe is desirable during fabrication. We demonstrate a nondestructive measurement of light propagation in ONFs by sampling the local evanescent field with a microfiber. This approach reveals the behavior of all propagating modes, and because the modal beat lengths in cylindrical waveguides depend strongly on radius, simultaneously provides exquisite sensitivity to the ONF radius. We show that our measured spatial frequencies provide a map of the average ONF radius (over a 600 micrometer window) along the 10 mm ONF waist with 40 picometer resolution and high signal-to-noise ratio. The measurements agree with scanning electron microscopy (SEM) to within SEM instrument resolution. This fast method is immune to polarization, intrinsic birefringence, m...

  5. Critical field enhancement of asymptotic optical bound states in the continuum

    Science.gov (United States)

    Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2015-12-01

    We study spectral singularities and critical field enhancement factors associated with embedded photonic bound states in subwavelength periodic Si films. Ultrahigh-Q resonances supporting field enhancement factor exceeding 108 are obtained in the spectral vicinity of exact embedded eigenvalues in spite of deep surface modulation and vertical asymmetry of the given structure. Treating relations between the partial resonance Q and field enhancement factors with an analytical coupled-mode model, we derive a general strategy to maximize the field enhancement associated with these photonic bound states in the presence of material dissipation. The analytical expression for the field enhancement quantitatively agrees with rigorous numerical calculations. Therefore, our results provide a general knowledge for designing practical resonance elements based on optical bound states in the continuum in various applications.

  6. Micro-lensed single-mode optical fiber with high numerical aperture

    CERN Document Server

    Kato, Shinya; Aoki, Takao

    2013-01-01

    We show that the output mode of a single-mode optical fiber can be directly focused to a sub-wavelength waist with a finite working distance by tapering the fiber to a diameter of the order of the wavelength and terminating it with a spherically/hemispherically shaped tip. Numerical simulations show that a beam waist with a width of as small as 0.62\\lambda can be formed. We fabricate micro-lensed fibers and construct a probe-scanning confocal reflection microscope. Measurements on gold nano-particles show a spatial profile with a width of 0.29\\lambda for \\lambda = 850 nm, which is in good agreement with the numerical simulations. Due to their monolithic structures, these micro-lensed fibers will be flexible substitutes for conventional compound lenses in various experimental conditions such as cryogenic temperature and ultra-high vacuum.

  7. High-efficiency light-wave control with all-dielectric optical Huygens' metasurfaces

    CERN Document Server

    Decker, Manuel; Falkner, Matthias; Dominguez, Jason; Neshev, Dragomir N; Brener, Igal; Pertsch, Thomas; Kivshar, Yuri S

    2014-01-01

    Optical metasurfaces have developed as a breakthrough concept for advanced wave-front engineering enabled by subwavelength resonant nanostructures. However, reflection and/or absorption losses as well as low polarisation-conversion efficiencies pose a fundamental obstacle for achieving high transmission efficiencies that are required for practical applications. Here we demonstrate, for the first time to our knowledge, highly efficient all-dielectric metasurfaces for near-infrared frequencies using arrays of silicon nanodisks as meta-atoms. We employ the main features of Huygens' sources, namely spectrally overlapping electric and magnetic dipole resonances of equal strength, to demonstrate Huygens' metasurfaces with a full transmission-phase coverage of 360 degrees and near-unity transmission, and we confirm experimentally full phase coverage combined with high efficiency in transmission. Based on these key properties, we show that all-dielectric Huygens' metasurfaces could become a new paradigm for flat opti...

  8. Analysis of CMOS Compatible Cu-Based TM-Pass Optical Polarizer

    KAUST Repository

    Ng, Tien Khee

    2012-02-10

    A transverse-magnetic-pass (TM-pass) optical polarizer based on Cu complementary metal-oxide-semiconductor technology platform is proposed and analyzed using the 2-D method-of-lines numerical model. In designing the optimum configuration for the polarizer, it was found that the metal-insulator-metal (MIM) polarizer structure is superior compared to the insulator-metal-insulator polarizer structure due to its higher polarization extinction ratio (PER) and low insertion loss. An optimized MIM TM-pass polarizer exhibits simulated long wavelength pass filter characteristics of > ?1.2 ?m, with fundamental TM 0 and TE 0 mode transmissivity of >70% and <5%, respectively, and with PER ?11.5 dB in the wavelength range of 1.2-1.6 ?m. The subwavelength and submicrometer features of this TM-polarizer are potentially suitable for compact and low power photonics integrated circuit implementation on silicon-based substrates. © 1989-2012 IEEE.

  9. Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Longfang [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005 (Australia); Department of Electrical and Electronic Engineering, The University of Bristol, Bristol, BS8 1TH (United Kingdom); López-García, Martin; Oulton, Ruth; Klemm, Maciej [Department of Electrical and Electronic Engineering, The University of Bristol, Bristol, BS8 1TH (United Kingdom); Withayachumnankul, Withawat; Fumeaux, Christophe, E-mail: christophe.fumeaux@adelaide.edu.au [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005 (Australia); Shah, Charan M.; Mitchell, Arnan; Bhaskaran, Madhu; Sriram, Sharath [Functional Materials and Microsystems Research Group, School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)

    2014-11-10

    The capability of manipulating light at subwavelength scale has fostered the applications of flat metasurfaces in various fields. Compared to metallic structure, metasurfaces made of high permittivity low-loss dielectric resonators hold the promise of high efficiency by avoiding high conductive losses of metals at optical frequencies. This letter investigates the spectral and angular characteristics of a dielectric resonator metasurface composed of periodic sub-arrays of resonators with a linearly varying phase response. The far-field response of the metasurface can be decomposed into the response of a single grating element (sub-array) and the grating arrangement response. The analysis also reveals that coupling between resonators has a non-negligible impact on the angular response. Over a wide wavelength range, the simulated and measured angular characteristics of the metasurface provide a definite illustration of how different grating diffraction orders can be selectively suppressed or enhanced through antenna sub-array design.

  10. Quantum optics

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund

    2013-01-01

    Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....

  11. Ocean optics

    Energy Technology Data Exchange (ETDEWEB)

    Spinard, R.W.; Carder, K.L.; Perry, M.J.

    1994-12-31

    This volume is the twenty fifth in the series of Oxford Monographs in Geology and Geophysics. The propagation off light in the hydra-atmosphere systems is governed by the integral-differential Radiative Transfer Equation (RTE). Closure and inversion are the most common techniques in optical oceanography to understand the most basic principles of natural variability. Three types of closure are dealt with: scale closure, experimental closure, and instrument closure. The subject is well introduced by Spinard et al. in the Preface while Howard Gordon in Chapter 1 provides an in-depth introduction to the RTE and its inherent problems. Inherent and apparent optical properties are dealt with in Chapter 2 by John Kirk and the realities of optical closure are presented in the following chapter by Ronald Zaneveld. The balance of the papers in this volume is quite varied. The early papers deal in a very mathematical manner with the basics of radiative transfer and the relationship between inherent and optical properties. Polarization of sea water is discussed in a chapter that contains a chronological listing of discoveries in polarization, starting at about 1000 AD with the discovery of dichroic properties of crystals by the Vikings and ending with the demonstration of polarotaxis in certain marine organisms by Waterman in 1972. Chapter 12 on Raman scattering in pure water and the pattern recognition techniques presented in Chapter 13 on the optical effects of large particles may be of relevance to fields outside ocean optics.

  12. Fiscal 1997 R and D project on industrial science and technology under a consignment from NEDO. R and D of the technology of accelerated formation of bio-functions (R and D of the technology of creation of novel advanced enzymes); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Kasokugata seibutsu kino kochiku gijutsu no kenkyu kaihatsu (shingata kokino koso sosei gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes R and D on creation technique of novel advanced enzymes. In fiscal 1997, a novel mutagenesis technique was developed to obtain more kinds of mutational genes by shuffling between clonal genes as compared with the previous homogeneous recombination. A genotype- and phenotype-linking technology was developed by expressing random motifs (peptide as components of the active site of protein) on bacteria, and by developing a single-motif protein library. Study was made on a selection system for functional molecules of catalytic activities in a gene level, and a selection system for function of signal transduction. Analysis and evaluation study on vitro experimental technology can be efficiently promoted by recognizing the fitness landscape of target protein molecules. As a result, instead of the conventional method which needs several cycles of mutation and screening of 3-4 week/cycle, an efficient method possible to obtain multiple mutants was established. Research work was also promoted by various organizations to develop an accelerated formation technology of bio-functions. 68 refs., 51 figs., 14 tabs.

  13. Plasmonic Nanomaterials for Optical-to-Electrical Energy Conversion

    Science.gov (United States)

    Sheldon, Matthew

    High-quality semiconductor solids have been the dominant photovoltaic materials platform for decades. Although several alternative approaches have been proposed, e.g. dye-sensitized cells or polymeric solids, none compete in terms of cost and conversion efficiency, the crucial benchmarks for industrial scale implementation. However, semiconductors suffer from several fundamental limitations relating to the microscopic mechanism of power conversion that preclude them, even theoretically, from achieving conversion efficiency at the Carnot limit of 95%. Indeed, the fundamentally different tasks of semiconductors in photovoltaic devices, both as optical absorbers, and separately, for electron-hole pair separation and collection, often demand opposing trade-offs in materials optimization. Alternatively, recent advances in subwavelength metal optics, e.g. nanophotonics, metamaterials, and plasmonics, provide several new examples where nanostructured metals perform the separate tasks of absorption and charge separation necessary for photovoltaic power conversion. Nanostructured metals are extremely efficient broadband absorbers of radiation, with tailorable optical properties throughout the visible and infrared spectrum. It is traditionally assumed that the lack of a band gap and consequent fast electronic relaxation (fs) and short mean free path (100 nm) hinders efficient carrier collection. However, new phenomena resulting from the remarkable energy concentration and nanoscale collection geometry afforded by plasmonic systems suggest new strategies may be possible that use all metal structures. In this talk, I will describe two ongoing studies in our laboratory that exemplify opportunities for metal-based optical energy conversion: (1) Excitation with circularly polarized illumination can induce strong, persistent electrical drift currents in resonant metal nanostructures via the inverse faraday effect. (2) Plasmonic absorption in metal nanostructures provides an

  14. Control of optical spin Hall shift in phase-discontinuity metasurface by weak value measurement post-selection.

    Science.gov (United States)

    Lee, Y U; Wu, J W

    2015-01-01

    Spin Hall effect of light is a spin-dependent transverse shift of optical beam propagating along a curved trajectory, where the refractive index gradient plays a role of the electric field in spin Hall effect of solid-state systems. In order to observe optical spin Hall shift in a refraction taking place at air-glass interface, an amplification technique was necessary such as quantum weak measurement. In phase-discontinuity metasurface (PMS) a rapid phase-change along metasurface takes place over subwavelength distance, which leads to a large refractive index gradient for refraction beam enabling a direct detection of optical spin Hall shift without amplification. Here, we identify that the relative optical spin Hall shift depends on incidence angle at PMS, and demonstrate a control of optical spin Hall shift by constructing weak value measurement with a variable phase retardance in the post-selection. Capability of optical spin Hall shift control permits a tunable precision metrology applicable to nanoscale photonics such as angular momentum transfer and sensing. PMID:26354387

  15. CODEX optics

    Science.gov (United States)

    Delabre, Bernard; Manescau, Antonio

    2010-07-01

    CODEX is a high resolution spectrograph for the ESO E-ELT. A classical spectrograph can only achieve a resolution of about 120.000 on a 42 m telescope with extremely large echelle gratings and cameras. This paper describes in detail the optical concept of CODEX, which uses only optical elements size similar to those in current high resolution spectrographs. This design is based on slicers, anamorphic beams and slanted VPHG as cross dispersers. In this new version of the CODEX design, no special expensive materials as calcium fluoride or abnormal dispersion glasses are needed. The optical quality is excellent and compatible with 10K x 10K detectors with 10 μm pixels.

  16. Optical memory

    Science.gov (United States)

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  17. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  18. Statistical optics

    CERN Document Server

    Goodman, Joseph W

    2015-01-01

    This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications.  The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i

  19. Quantum optics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Quantum Optics laboratory (Polytechnic School, France) is presented. The research program is focused on the behavior of dense and dilute materials submitted to short and high-intensity light radiation fields. Nonlinear optics techniques, with time and spatial resolution, are developed. An important research activity concerns the investigations on the interactions between the photon beams and the inhomogeneous or composite materials, as well as the artificial microstructures. In the processes involving molecular beams and surfaces, the research works on the photophysics of surfaces and the molecule-surface interactions, are included

  20. Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities.

    Science.gov (United States)

    van Vugt, Lambert K; Piccione, Brian; Cho, Chang-Hee; Aspetti, Carlos; Wirshba, Aaron D; Agarwal, Ritesh

    2011-04-28

    Semiconductor nanowire waveguide cavities hold promise for nanophotonic applications such as lasers, waveguides, switches, and sensors due to the tight optical confinement in these structures. However, to realize their full potential, high quality nanowires, whose emission at low temperatures is dominated by free exciton emission, need to be synthesized. In addition, a proper understanding of their complex optical properties, including light-matter coupling in these subwavelength structures, is required. We have synthesized very high-quality wurztite CdS nanowires capped with a 5 nm SiO(2) conformal coating with diameters spanning 100-300 nm using physical vapor and atomic layer deposition techniques and characterized their spatially resolved photoluminescence over the 77-298 K temperature range. In addition to the Fabry-Pérot resonator modulated emission from the ends of the wires, the low temperature emission from the center of the wire shows clear free excitonic peaks and LO phonon replicas, persisting up to room-temperature in the passivated wires. From laser scanning measurements we determined the absorption in the vicinity of the excitonic resonances. In addition to demonstrating the high optical quality of the nanowire crystals, these results provide the fundamental parameters for strong light-matter coupling studies, potentially leading to low threshold polariton lasers, sensitive sensors and optical switches at the nanoscale. PMID:21214218