WorldWideScience

Sample records for bio-energy crops zea

  1. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  2. Arsenic accumulation in maize crop (Zea mays): a review.

    Science.gov (United States)

    Rosas-Castor, J M; Guzmán-Mar, J L; Hernández-Ramírez, A; Garza-González, M T; Hinojosa-Reyes, L

    2014-08-01

    Arsenic (As) is a metalloid that may represent a serious environmental threat, due to its wide abundance and the high toxicity particularly of its inorganic forms. The use of arsenic-contaminated groundwater for irrigation purposes in crop fields elevates the arsenic concentration in topsoil and its phytoavailability for crops. The transfer of arsenic through the crops-soil-water system is one of the more important pathways of human exposure. According to the Food and Agriculture Organization of the United Nations, maize (Zea mays L.) is the most cultivated cereal in the world. This cereal constitutes a staple food for humans in the most of the developing countries in Latin America, Africa, and Asia. Thus, this review summarizes the existing literature concerning the conditions involved in agricultural soil that leads to As influx into maize crops and the uptake mechanisms, metabolism and phytotoxicity of As in corn plants. Additionally, the studies of the As accumulation in raw corn grain and corn food are summarized, and the As biotransfer into the human diet is highlighted. Due to high As levels found in editable plant part for livestock and humans, the As uptake by corn crop through water-soil-maize system may represent an important pathway of As exposure in countries with high maize consumption.

  3. Amelioration of drought-induced negative responses by elevated CO2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop.

    Science.gov (United States)

    Sekhar, Kalva Madhana; Reddy, Kanubothula Sitarami; Reddy, Attipalli Ramachandra

    2017-02-25

    Present study describes the responses of short rotation coppice (SRC) mulberry, a potential bio-energy tree, grown under interactive environment of elevated CO2 (E) and water stress (WS). Growth in E stimulated photosynthetic performance in well-watered (WW) as well as during WS with significant increases in light-saturated photosynthetic rates (A Sat), water use efficiency (WUEi), intercellular [CO2], and photosystem-II efficiency (F V/F M and ∆F/F M') with concomitant reduction in stomatal conductance (g s) and transpiration (E) compared to ambient CO2 (A) grown plants. Reduced levels of proline, H2O2, and malondialdehyde (MDA) and higher contents of antioxidants including ascorbic acid and total phenolics in WW and WS in E plants clearly demonstrated lesser oxidative damage. Further, A plants showed higher transcript abundance and antioxidant enzyme activities under WW as well as during initial stages of WS (15 days). However, with increasing drought imposition (30 days), A plants showed down regulation of antioxidant systems compared to their respective E plants. These results clearly demonstrated that future increased atmospheric CO2 enhances the photosynthetic potential and also mitigate the drought-induced oxidative stress in SRC mulberry. In conclusion, mulberry is a potential bio-energy tree crop which is best suitable for short rotation coppice forestry-based mitigation of increased [CO2] levels even under intermittent drought conditions, projected to prevail in the fast-changing global climate.

  4. Evaluation of production yield and thermal processing of switchgrass as a bio-energy crop for the Mediterranean region

    Energy Technology Data Exchange (ETDEWEB)

    Vamvuka, D.; Topouzi, V.; Sfakiotakis, S. [Department of Mineral Resources Engineering, Technical University of Crete (Greece)

    2010-09-15

    Switchgrass, a warm-season perennial grass, could play an important role for Europe in supplying sustainably produced lignocellulosic biomass, as its establishment cost is low and its productivity high under low input conditions. The aim of this study was to evaluate the adaptability and biomass productivity of switchgrass under the Greek climatic conditions and furthermore its suitability for heat and electricity applications, by performing fuel analyses, pyrolysis and combustion tests. Three-year field trials with different irrigation and fertilization levels showed that each level of irrigation had a significant effect on dry matter yields, while nitrogen effect was not pronounced. Yields were similar in the second and third year and ranged from 15.4% to 24 tons/ha. Fuel characterization showed a high volatile content and calorific value, whereas low ash, sulphur, nitrogen and chlorine contents. Ashes were rich in Si, K and P and some micronutrients, such as Zn. The ash fusion temperatures of the stems, which were richer in alkali, were low for combustion processes, revealing slagging/fouling problems in boilers without crop pre-treatment. However, their ash content was very low. The thermochemical reactivity of the stems was higher than that of the leaves, especially in air. The greater amount of minerals in the leaves inhibited the reaction rates in either nitrogen or air atmospheres. A first-order parallel reactions model for pyrolysis and a power low model for combustion fitted the experimental results accurately and kinetic parameters were derived. Irrigation/fertilization treatment had a positive effect on the combustion performance of the stems. (author)

  5. Nutrient flows in small-scale bio-energy use in developing countries

    NARCIS (Netherlands)

    Bonten, L.T.C.; Wösten, J.H.M.

    2012-01-01

    This study explored the opportunities for the retention and return of nutrients in local bio-energy production using energy crops (oil palm, jatropha and cassava), fuel wood, manure, rice husks and a common pest plant (water hyacinth). For all bio-energy systems some return of nutrients is possible,

  6. Evolution of Resistance by Helicoverpa zea (Lepidoptera: Noctuidae) Infesting Insecticidal Crops in the Southern United States.

    Science.gov (United States)

    Pan, Zaiqi; Onstad, David; Crain, Philip; Crespo, Andre; Hutchison, William; Buntin, David; Porter, Pat; Catchot, Angus; Cook, Don; Pilcher, Clint; Flexner, Lindsey; Higgins, Laura

    2016-04-01

    We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton.

  7. The global technical potential of bio-energy in 2050 considering sustainability constraints.

    Science.gov (United States)

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-12-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows.

  8. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea.

    Science.gov (United States)

    Welch, Kara L; Unnithan, Gopalan C; Degain, Ben A; Wei, Jizhen; Zhang, Jie; Li, Xianchun; Tabashnik, Bruce E; Carrière, Yves

    2015-11-01

    To delay evolution of resistance by insect pests, farmers are rapidly increasing their use of transgenic crops producing two or more Bacillus thuringiensis (Bt) toxins that kill the same pest. A key condition favoring durability of these "pyramided" crops is the absence of cross-resistance between toxins. Here we evaluated cross-resistance in the major lepidopteran pest Helicoverpa zea (Boddie) to Bt toxins used in pyramids. In the laboratory, we selected a strain of this pest with Bt toxin Cry1Ac followed by selection with MVP II, a formulation containing a hybrid protoxin that is identical to Cry1Ac in the active portion of the toxin and 98.5% identical overall. We calculated the resistance ratio as the EC50 (concentration causing mortality or failure to develop beyond the first instar of 50% of larvae) for the laboratory-selected strain divided by the EC50 for its field-derived parent strain that was not selected in the laboratory. The resistance ratio was 20.0-33.9 (mean=27.0) for MVP II, 57.0 for Cry1Ac, 51.3 for Cry1A.105, 22.4 for Cry1Ab, 3.3 for Cry2Ab, 1.8 for Cry1Fa, and 1.6 for Vip3Aa. Resistance ratios were 2.9 for DiPel ES and 2.0 for Agree VG, which are commercial Bt spray formulations containing Cry1Ac, other Bt toxins, and Bt spores. By the conservative criterion of non-overlap of 95% fiducial limits, the EC50 was significantly higher for the selected strain than its parent strain for MVP II, Cry1Ac, Cry1A.105, Cry1Ab, Cry2Ab and DiPel ES. For Cry1Fa, Vip3Aa, and Agree VG, significantly lower susceptibility to a high concentration indicated low cross-resistance. The resistance ratio for toxins other than Cry1Ac was associated with their amino acid sequence similarity to Cry1Ac in domain II. Resistance to Cry1Ac and the observed cross-resistance to other Bt toxins could accelerate evolution of H. zea resistance to currently registered Bt sprays and pyramided Bt crops.

  9. Effects of citrate-coated silver nanoparticles on interactions between soil bacteria and the major crop plant Zea mays

    Science.gov (United States)

    Doody, Michael; Bais, Harsh; Jin, Yan

    2014-05-01

    The increasing use of silver nanoparticles (AgNPs) in commercial antimicrobial products presents an opportunity for increased environmental exposures. While the behavior of AgNPs in surface waters is becoming increasingly understood, little research has been conducted on the effects of these, or any nanoparticles, on soil-dwelling bacteria and major crop plants. Because of the importance of soil bacteria to the overall health of natural and agricultural soils, it is necessary to better understand how AgNPs interact with common bacterial species such as Bacillus subtilis and Escherichia coli. It is further necessary to quantify the effect of AgNPs on major crop plants, including Zea mays, a staple crop for much of the world. Finally, research is needed on how complex plant-microbe interactions that originate in the rhizosphere may be disrupted by AgNPs. Our preliminary data show highly statistically significant growth inhibition near 30% for both species of bacteria exposed to 1.0 mg L-1 citrate-coated AgNPs (c-AgNPs). Growth curves compiled from absorbance data show a similar dose-response for both species. Treatment with aqueous Ag as AgNO3 slightly inhibits E. coli (90 ± 5 %), but enhances growth of B. subtilis to 127 ± 23% of control. These results indicate that toxicity may be related to specific nano-scale properties of the c-AgNPs. On-going experiments measure potential growth inhibition, root development and morphology of Z. mays exposed to c-AgNPs, and resulting changes in plant-microbe interactions.

  10. BioEnergy Feasibility in South Africa

    Science.gov (United States)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  11. Comparative impact of genetically modified and non modified maize (Zea mays L.) on succeeding crop and associated weed.

    Science.gov (United States)

    Ibrahim, Muhammad; Ahmed, Naseer; Ullah, Faizan; Shinwari, Zabta Khan; Bano, Asghari

    2016-04-01

    This research work documents the comparative impact of genetically modified (GM) (insect resistance) and non modified maize (Zea mays L.) on growth and germination of succeeding crop wheat (Triticum aestivum L.) and associated weed (Avena fatua L.). The aqueous extracts of both the GM and non-GM maize exhibited higher phenolic content than that of methanolic extracts. Germination percentage and germination index of wheat was significantly decreased by GM methanolic extract (10%) as well as that of non-GM maize at 3% aqueous extract. Similarly germination percentage of weed (Avena fatua L.) was significantly reduced by application of 3% and 5% methanolic GM extracts. All extracts of GM maize showed non-significant effect on the number of roots, root length and shoot length per plant but 5% and 10% methanolic extracts of non-GM maize significantly increased the number of roots per plant of wheat seedling. Similarly, 10% methanolic extract of GM maize significantly increased the number of roots per plant of weed seedling. Methanolic extracts of GM and non-GM maize (3% and 5%) significantly decreased the protease activity in wheat as compared to untreated control.

  12. Bioenergy Status Document 2012; Statusdocument Bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.; Croezen, H. [CE Delft, Delft (Netherlands)

    2013-05-15

    In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] Het statusdocument bio-energie 2012 geeft de huidige status weer van bio-energie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken in de ontwikkelingen van bio-energie, voor overheden en marktpartijen.

  13. Bio energy in Norway; Bioenergi i Noreg

    Energy Technology Data Exchange (ETDEWEB)

    Hamnaberg, Haavard; Sidelnikova, Maria

    2011-07-01

    The main conclusion in this report is that it is possible to make available about 14 TWh bio energy in Norway than what is used today to a charge that is located less than ca. 30 oere / kWh. Almost all this potential come from the forest and requires an increase in output up to the net sustained yield. Further 5 TWh may be available in the form of biogas at a cost that is both higher and have greater uncertainty than the fixed bio energy. It is set up a cost curve based on this work, which is quoted here. This reflects only the technical costs, and does not regard wages, commissions, taxes or fees. The value of alternative uses of biomass are not considered. The cost curve must therefore not be mixed with a supply curve. (eb)

  14. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  15. Bio-energy status document 2012; Statusdocument bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.L.; Van Grinsven, A.H.; Bergsma, G.C.; Croezen, H.C.

    2013-05-15

    In 2012 bio-energy contributed over 71 PJ to the Dutch energy supply, a rise of almost 2 PJ over 2011. This means that 75% of the renewable energy consumed in the Netherlands is now derived from biomass. The growth is due mainly to the increase in the mandatory biotransport fuel percentage from 4.25% to 4.5%. The use of energy from 'other biomass combustion' (incl. paper sludge, green waste and chicken excrement) recovered to the level of 2010, following a marked drop in 2011 due to plant maintenance, termination of the MEP ('Environmental Quality of Power Generation') subsidy scheme and high biomass prices. At large power stations there was a considerable decrease in co-incineration of biomass because of incidents (a fire at the Nijmegen coal-fired plant) and a maintenance backlog (at the Amer power station). These are some of the results reported in the 'Bio-energy status document 2012', prepared by CE Delft for NL Agency. In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] De bijdrage van bio-energie aan de Nederlandse energievoorziening bedroeg in 2012 ruim 71 PJ, een stijging van bijna 2 PJ ten opzichte van 2011. Daarmee is 75% van het verbruik van hernieuwbare energie in Nederland afkomstig van bio-energie. De stijging wordt vooral veroorzaakt door de oplopende bijmengplicht van biotransportbrandstoffen van 4,25% naar 4,5%. Verbruik van energie uit 'overige biomassaverbranding' (o.a. papierslib, groenafval en kippenmest) herstelde zicht tot het niveau van 2010, na een forse daling in 2011 door onderhoud aan installaties, afloop van MEP-subsidies en hoge prijzen van biomassa. Het bij- en meestoken van biomassa in grote elektriciteitscentrales daalde juist aanzienlijk door calamiteiten en uitloop van onderhoud (brand kolencentrale bij Nijmegen

  16. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ., Bozeman, MT (United States); Alcorn-Windy Boy, Jessica [Montana State Univ., Bozeman, MT (United States); Abedin, Md. Joynal [Montana State Univ., Bozeman, MT (United States); Maglinao, Randy [Montana State Univ., Bozeman, MT (United States)

    2014-09-30

    MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy duty diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.

  17. Determination of Genetic Coefficients of Some Maize (Zea mays L.) Cultivars of Iran for Application in Crop Simulation Models

    OpenAIRE

    S Rahimi Moghaddam; R. Deihimfard; S Soufizadeh; J Kambouzia; F Nazariyan Firuzabadi; H Eyni Nargeseh

    2015-01-01

    A field experiment was conducted at the research field of the University of Lorestan in 2011 as a randomized complete block design with three replications to estimate genetic coefficients of some maize (Zea mays L.) cultivars. Treatments include six maize cultivars (T.V.C.767 and S.C.704 from late maturing group, T N.S640 and Maxima from mid-maturing group, and Koppany and D.C.370 from early maturing group). Results showed that there were significant differences among cultivars in terms of st...

  18. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ. Northern, Havre, MT (United States); Windy Boy, Jessica [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Maglinao, Randy Latayan [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Abedin, Md. Joynal [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence

    2017-03-02

    The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additives considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally

  19. Preparation of the soil for the energy policy turnaround. With bio-energy for more climate protection and sustainability. Collection of essays with contributions from science, practice and policy; Den Boden bereiten fuer die Energiewende. Mit Bioenergie fuer mehr Klimaschutz und Nachhaltigkeit. Aufsatzsammlung mit Beitraegen aus Wissenschaft, Praxis und Politik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    In order to create acceptance by understanding and in order to support the energy policy turnaround, the Agency for Renewable Energies (Berlin, Federal Republic of Germany) supplies several contributions to the following topics: (1) Bio-energy and the energy policy turnaround; (2) Sustainability by means of bio-energy, but how?; (3) How can energy crops modify the region?; (4) Bio-Energy and the landscape of the future; (5) Isles with green energy: Bio-Energy for decentralized solutions; (6) Bio-energy and organic agriculture; (7) Forest and field in the climate protection.

  20. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    Science.gov (United States)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  1. Understanding yields in alley cropping maize (Zea mays L. ) and Cassia siamea Lam. under semi-arid conditions in Machakos,Eastern Kenya

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Six seasons of experiments in Machakos, Kenya, revealed that above about 150 mm of rainfall, maize yields per row in alley cropped “replacement” agroforestry (AF) plots, of Cassia siamea Lam. and maize (Zea mays, cv. Katumani Composite B), may be expected to exceed those in the control (sole maize) plots. Such yields were insufficient to compensate for the area “lost” to the hedgerows. Below about 150 mm the control plots may be expected to perform better. This result was due to competition for water. Greater association of the fine roots of Cassia and maize was observed in the middle of the alleys than near the hedgerows. Photosynthetic consequences of shading were insignificant relative to other factors. In the alleys, reductions of soil temperature due to shade in the western and eastern maize rows were higher than in the middle row. Soil moisture extraction was higher in the AF than in the control plots. In the AF plots, moisture extraction was greater under the central maize rows than under those nearest the Cassia. Yield patterns followed such soil temperature and soil moisture patterns. Maize transpiration and photosynthetic rates were significantly higher in the control than in the AF plots during a below-average rainy season but not during above-average rainy seasons. It is concluded that alley cropping under semi-arid conditions should be approached differently from the system worked on. It must at least provide strong physical protection of crops and/or soils and have a strong economic incentive to be of interest to the farmers.

  2. Determination of Genetic Coefficients of Some Maize (Zea mays L. Cultivars of Iran for Application in Crop Simulation Models

    Directory of Open Access Journals (Sweden)

    S Rahimi Moghaddam

    2015-09-01

    Full Text Available A field experiment was conducted at the research field of the University of Lorestan in 2011 as a randomized complete block design with three replications to estimate genetic coefficients of some maize (Zea mays L. cultivars. Treatments include six maize cultivars (T.V.C.767 and S.C.704 from late maturing group, T N.S640 and Maxima from mid-maturing group, and Koppany and D.C.370 from early maturing group. Results showed that there were significant differences among cultivars in terms of stem dry weight, maximum number of kernel per ear, thermal time from the flag leaf appearance to flowering, thermal time from flowering to maturity, phyllochron interval, grain weight, maximum plant height and minimum growth degree days during vegetative period. The highest (649.2 and lowest (350.6 maximum number of kernel per ear belonged to cultivars S.C.704 and D.C.370, respectively. Also, the highest and lowest stem dry weight, phyllochron interval and maximum plant height belonged to cultivars S.C.704 and D.C.370, respectively. Among genetic coefficients, the minimum growth degree days required for vegetative growth and the maximum number of kernel per ear had the greatest correlation with grain yield (r=0.72 and r=0.84, respectively. Overall, the results portrayed that the estimated genetic coefficients of the cultivars are not identical in different models and varied in a defined range.

  3. Seletividade de herbicidas para a cultura de milho (Zea mays aplicados em diferentes estádios fenológicos da cultura Selectivity to corn crop (Zea mays of herbicides applied in different crop phenological stages

    Directory of Open Access Journals (Sweden)

    R.F. López-Ovejero

    2003-12-01

    -emergence herbicides on corn crop under no-tillage system, kept weed-free throughout the crop cycle. The corn hybrid Pioneer 3027 was sown and the experimental design consisted of randomized blocks with 22 treatments and 3 replications. The following herbicide treatments (in g a.i. ha-1 were applied in the respective phenological stages (number of definitive leaves = NF: atrazine + metolachlor (1,400 + 2,100 under pre-emergence conditions of the crop; (atrazine + metolachlor + nicosulfuron [(1,000 + 1,500 + 20] with the crop presenting NF = 2; atrazine + vegetal oil (2,400 + 1,800, NF = 2, 4 and 8, atrazine + simazine (1,250 + 1,250, NF = 2, 4 and 8; nicosulfuron (40 - NF = 2, 4 and 8; 20 _ NF = 4 and 8 and 52 _ NF = 4 and 8; (atrazine + vegetal oil + nicosulfuron [(800 + 600 + 20; (800 + 600 + 40 e (800 + 600 + 52, NF = 4 and 8. Visual evaluations of the phytotoxicity symptoms were performed at 7, 14, and 21 days after each herbicide application, adopting the European Weed Research Council grading, besides parameters related to crop yield components and final yield. The results indicated that the herbicides did not affect the duration of the phenological stage of the crop. When sprayed at the phenological stage 2 (NF = 8, some herbicides reduced crop yield due to the decrease in total number of corn grain rows per ear, total number of grains per row, and mass of 1,000 grains; being thus advisable to apply herbicides in the corn crop from seeding through the phenological stage 1 (NF = 4, in order to avoid phytotoxicity to the corn crop.

  4. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea mays, L.).

    Science.gov (United States)

    Savy, Davide; Cozzolino, Vincenza; Vinci, Giovanni; Nebbioso, Antonio; Piccolo, Alessandro

    2015-11-05

    The molecular composition of water-soluble lignins isolated from four non-food bioenergy crops (cardoon CAR, eucalyptus EUC, and two black poplars RIP and LIM) was characterized in detail, and their potential bioactivity towards maize germination and early growth evaluated. Lignins were found to not affect seed germination rates, but stimulated the maize seedling development, though to a different extent. RIP promoted root elongation, while CAR only stimulated the length of lateral seminal roots and coleoptile, and LIM improved only the coleoptile development. The most significant bioactivity of CAR was related to its large content of aliphatic OH groups, C-O carbons and lowest hydrophobicity, as assessed by (31)P-NMR and (13)C-CPMAS-NMR spectroscopies. Less bioactive RIP and LIM lignins were similar in composition, but their stimulation of maize seedling was different. This was accounted to their diverse content of aliphatic OH groups and S- and G-type molecules. The poorest bioactivity of the EUC lignin was attributed to its smallest content of aliphatic OH groups and largest hydrophobicity. Both these features may be conducive of a EUC conformational structure tight enough to prevent its alteration by organic acids exuded from vegetal tissues. Conversely the more labile conformational arrangements of the other more hydrophilic lignin extracts promoted their bioactivity by releasing biologically active molecules upon the action of exuded organic acids. Our findings indicate that water-soluble lignins from non-food crops may be effectively used as plant biostimulants, thus contributing to increase the economic and ecological liability of bio-based industries.

  5. Zhongrun,Heading for Advanced Bio-Energy Technology%Zhongrun, Heading for Advanced Bio-Energy Technology

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Huaibei Zhongrun Bio-energy Technology Development Co.,Ltd.is a high-tech Sino-US joint venture,also a participator of the 12th CHITEC.Its majority shareholder is Anhui Huaibei Mining Group and it is co-sponsored by Anhui Guohua Group and US Sun Pharmaceutical Industries Ltd.

  6. Evaluation of bio-energy potential using world energy models; Sekai energy model ni yoru bio energy no potential hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, J.; Yamaji, K. [The University of Tokyo, Tokyo (Japan); Yamamoto, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-01-30

    Bio-energy potential is evaluated using world energy models. The world energy model is a dynamic model by which the total cost of energy systems between 1995 and 2055 can be minimized on the basis of the optimization type world energy demand and supply model. For the given utilization costs of transportation, recovery and planting, the utilization of bio-energy is promoted even under the cost minimization condition. However, the utilization amount varies in a wide range by changing the utilization costs. Among conversion technologies of bio-energy, it is biomass liquefaction that provides the largest utilization amount. Thermal demand, direct combustion for power generation, and biomass gasification follow to the above. Biomass-integrated gasifier/gas turbine (BIG/GT) is to be used up to 2020. It is not to be used after 2030, due to the complete shift to the biomass liquefaction. For a model including the utilization of fast breeder after 2030, the utilization amount of bio-energy is not to change. Competition with food and land utilization is to be investigated. 11 refs., 19 figs., 4 tabs.

  7. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    Energy Technology Data Exchange (ETDEWEB)

    Helby, Peter (ed.); Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  8. Analysis of the market for bio energy - locally and internationally. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    This report aims to describe the market potential for biogas and biomass heat and power applications, and to assess the opportunities and barriers for development of such biomass markets locally and internationally. The project has been commissioned by ENERCOAST whose overall aim is to create a market for bio energy in the North Sea area. The project uses Denmark, Central Denmark Region, and three Danish municipalities (Randers, Norddjurs, and Syddjurs) to illustrate the challenges related to developing a more substantial market for bio energy trade. A parallel study also commissioned by ENERCOAST and carried out by Ea Energy Analyses assessed the sustainability of relevant biomass supply chains related to the resource accessibility in the three municipalities. The primary focus was on biogas, straw, wood residues, and energy crops for combined heat and power production and the results were presented in a report released in July of 2010 entitled 'SSCM Analysis of the Bioenergy Resources in Randers, Norddjurs and Syddjurs' (Ea Energy Analyses, 2010). The data basis for both studies is very similar, and as such the current report incorporates and builds upon many of the SSCM reports findings. The present report describes the market structures and price developments of the aforementioned biomass resources. The market structures and trade conditions are described on a local (the 3 municipalities), national (Denmark) and regional/international (European/global) level. (LN)

  9. Analysis of Norwegian bio energy statistics. Quality improvement proposals; Analyse av norsk bioenergistatistikk. Forslag til kvalitetsheving

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report is an assessment of the current model and presentation form of bio energy statistics. It appears proposed revision and enhancement of both collection and data representation. In the context of market development both in general for energy and particularly for bio energy and government targets, a good bio energy statistics form the basis to follow up the objectives and means.(eb)

  10. Bioenergy Status Document 2011; Statusdocument Bio-energie 2011

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.

    2011-03-15

    The Dutch status document on bio-energy has been updated with data for the year 2011. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets. The status document shows there has been a slight increase in the share of bio-energy in overall energy consumption as well as in the total amount of renewable energy generated (which now stands at a little over 4% of gross final consumption). The question, however, is whether this growth is sufficient to meet the European target of 14% renewables in 2020. The limited growth is due partly to the decrease in the amount of energy generated in the category 'other incineration'. In addition, there was a decline in the physical delivery of transport biofuels because certain types of fuel can be 'double-counted' in the records, although they do not contribute to the 14% target. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets [Dutch] Het statusdocument bio-energie 2011 geeft de huidige status weer van bioenergie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken aan overheden en marktpartijen in de ontwikkelingen van bio-energie. De kabinetsdoelstellingen voor hernieuwbare energie zijn conform de doelstellingen uit de richtlijn voor hernieuwbare energie (2009/28/EG), die is vastgesteld door de EC. In 2020 moet 14% van het nationale bruto finaal eindgebruik afkomstig zijn van hernieuwbare bronnen, de Nederlandse overheid schat dat dat overeenkomt met 300 PJ. Naar schatting is in 2011 ongeveer 88 PJ aan hernieuwbare energie geproduceerd, ongeveer evenveel

  11. A preliminary study of the effects of plastic film-mulched raised beds on soil temperature and crop performance of early-sown short-season spring maize (Zea mays L. in the North China Plain

    Directory of Open Access Journals (Sweden)

    Jing Dang

    2016-08-01

    Full Text Available To identify a strategy for earlier sowing and harvesting of spring maize (Zea mays L. in an alternative maize–maize double cropping system, a 2-year field experiment was performed at Quzhou experimental station of China Agricultural University in 2014 and 2015. A short-season cultivar, Demeiya number 1 (KX7349, was used in the experiment. Soil temperature to 5 cm depth in the early crop growth stage, crop growth, crop yield, and water use of different treatments (plastic film-mulched raised bed (RF and flat field without plastic film mulching (CK in 2014; RF, plastic film-mulched flat field (FF, and CK in 2015 were measured or calculated and compared. Soil temperature in the film-mulched treatments was consistently higher than that in CK (1.6–3.5 °C in average during the early growth stage. Crops in plastic film-mulched treatments used 214 fewer growing-degree days (GDDs in 2014 and 262 fewer GDDs in 2015. In 2014, the RF treatment yielded 32.7% higher biomass than CK, although its 9.4% higher grain yield was not statistically significant. Also, RF used 17.9% less water and showed 33.1% higher water use efficiency (WUE than CK. In 2015, RF and FF showed 56.2% and 49.5% higher yield, 15.0% and 4.5% lower water use (ET, and 63.4% and 75.7% higher WUE, respectively, than CK. RF markedly increased soil temperature in the early crop season, accelerated crop growth, reduced ET, and greatly increased crop yield and WUE. Compared with FF, RF had no obvious effect on crop growth rate, although soil temperature during the period between sowing and stem elongation was slightly increased. However, RF resulted in lower ET and higher WUE than FF. Effects of RF on soil water dynamics as well as its cost-effectiveness remain topics for further study.

  12. First report of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae) on larvae of Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) in maize (Zea mays L.) under different cropping systems.

    Science.gov (United States)

    Silva, R B; Cruz, I; Penteado-Dias, A M

    2014-08-01

    In the context of the modern agriculture, pest control is important in order to increase productivity in maize (Zea mays L.). However, this control should be done rationally, prioritising environmentally safer methods such as biological control. This paper aims to report the occurrence of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae) in Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) larvae collected in maize subjected to different cropping systems. The experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS) in Sete Lagoas, Minas Gerais State, Brazil, using organic and conventional production. Ten plants were sampled from each of the 24 plots and for each production system, three times a week during the entire cycle of maize (variety BR 106). In the laboratory, larvae were distributed in individual rearing containers with artificial diet until the end of the biological cycle. An increased number of S. frugiperda larvae was observed in organic single crop maize; hence a higher percentage of S. frugiperda larvae parasitised by Hymenoptera and Diptera also occurred in the maize under this production system. Dolichozele koebelei had not yet been described in association with larvae of S. frugiperda. The percentage of parasitism of S. frugiperda larvae was high in both experiments, indicating the importance of natural control agents in reducing the population density of S. frugiperda, and especially the importance of an appropriate crop management.

  13. First report of Dolichozele koebeleiViereck, 1911 (Hymenoptera: Braconidae on larvae of Spodoptera frugiperda (J. E. Smith, 1797 (Lepidoptera: Noctuidae in maize (Zea maysL. under different cropping systems

    Directory of Open Access Journals (Sweden)

    RB Silva

    Full Text Available In the context of the modern agriculture, pest control is important in order to increase productivity in maize (Zea maysL.. However, this control should be done rationally, prioritising environmentally safer methods such as biological control. This paper aims to report the occurrence of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae in Spodoptera frugiperda(J. E. Smith, 1797 (Lepidoptera: Noctuidae larvae collected in maize subjected to different cropping systems. The experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS in Sete Lagoas, Minas Gerais State, Brazil, using organic and conventional production. Ten plants were sampled from each of the 24 plots and for each production system, three times a week during the entire cycle of maize (variety BR 106. In the laboratory, larvae were distributed in individual rearing containers with artificial diet until the end of the biological cycle. An increased number of S. frugiperda larvae was observed in organic single crop maize; hence a higher percentage of S. frugiperda larvae parasitised by Hymenoptera and Diptera also occurred in the maize under this production system. Dolichozele koebelei had not yet been described in association with larvae of S. frugiperda. The percentage of parasitism of S. frugiperda larvae was high in both experiments, indicating the importance of natural control agents in reducing the population density of S. frugiperda, and especially the importance of an appropriate crop management.

  14. INFLUENCE OF CROP SEQUENCES ON AGRONOMIC CHARACTERISTICS OF CORN (Zea mays L. UNDER NO-TILLAGE INFLUÊNCIA DE SUCESSÃO DE CULTURAS SOBRE CARACTERÍSTICAS AGRONÔMICAS DO MILHO (Zea mays L. EM PLANTIO DIRETO

    Directory of Open Access Journals (Sweden)

    Liovando Marciano da Costa

    2007-09-01

    Full Text Available

    Evoluated agronomic characteristics of corn in six crop sequences (corn-corn, soybean-corn, sunflower-corn, pearl milletcorn, sorghum-corn and pigeon pea-corn under no-tillage for three years, in Rio Verde, Goiás State. Significance was observed by the test F for plant height, 100 grain weight and grain moisture. Pigeon pea, soybean, sunflower and pearl millet, resulted in taller corn plants. No statistical differences were found between crop sequences for corn grain yield and other characteristics.

    KEY-WORDS: Crop sequences; corn; agronomic characteristics.

    Avaliaram-se características agronômicas na cultura do milho em seis sucessões de culturas (milho-milho, soja-milho,girassol-milho, milheto-milho, sorgo-milho e guandu milho em plantio direto, durante três anos, em Rio Verde, Goiás. Observou-se significância, pelo teste F, para altura de planta, peso de 100 grãos e umidade dos grãos na colheita. Guandu, soja, girassol e milheto proporcionaram maior altura da planta de milho. Não foram observadas diferenças estatísticas entre as sucessões para produtividades de grãos e demais características avaliadas.

    PALAVRAS-CHAVE: Sucessão de culturas; milho; características agronômicas.

  15. Bio-energy feedstock yields and their water quality benefits in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  16. Urban Wood-Based Bio-Energy Systems in Seattle

    Energy Technology Data Exchange (ETDEWEB)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  17. Bio-energy retains its mitigation potential under elevated CO2.

    Directory of Open Access Journals (Sweden)

    Marion Liberloo

    Full Text Available BACKGROUND: If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. METHODOLOGY/MAIN FINDINGS: We maintained full size poplar short rotation coppice (SRC systems under both current ambient and future elevated [CO2] (550 ppm and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. CONCLUSIONS/SIGNIFICANCE: Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.

  18. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.).

    Science.gov (United States)

    Yang, Zhongzhou; Chen, Jing; Dou, Runzhi; Gao, Xiang; Mao, Chuanbin; Wang, Li

    2015-11-30

    In this study, the phytotoxicity of seven metal oxide nanoparticles(NPs)-titanium dioxide (nTiO₂), silicon dioxide (nSiO₂), cerium dioxide (nCeO₂), magnetite (nFe₃O₄), aluminum oxide (nAl₂O₃), zinc oxide (nZnO) and copper oxide (nCuO)-was assessed on two agriculturally significant crop plants (maize and rice). The results showed that seed germination was not affected by any of the seven metal oxide NPs. However, at the concentration of 2000 mg·L(-1), the root elongation was significantly inhibited by nCuO (95.73% for maize and 97.28% for rice), nZnO (50.45% for maize and 66.75% for rice). On the contrary, minor phytotoxicity of nAl₂O₃ was only observed in maize, and no obvious toxic effects were found in the other four metal oxide NPs. By further study we found that the phytotoxic effects of nZnO, nAl₂O₃ and nCuO (25 to 2000 mg·L(-)¹) were concentration dependent, and were not caused by the corresponding Cu(2+), Zn(2+) and Al(3+) ions (0.11 mg·L(-)¹, 1.27 mg·L(-)¹ and 0.74 mg·L(-)¹, respectively). Furthermore, ZnO NPs (rice. Overall, this study provided valuable information for the application of engineered NPs in agriculture and the assessment of the potential environmental risks.

  19. Biodiversity of Dominant Cultivable Endophytic Bacteria Inhabiting Tissues of Six Different Cultivars of Maize (Zea mays L. ssp. mays) Cropped under Field Conditions.

    Science.gov (United States)

    Pisarska, Katarzyna; Pietr, Stanisław Jerzy

    2015-01-01

    Endophytic bacteria (EnB) play a crucial role in plant development. This study was an attempt to isolate and identify dominant cultivable EnB inhabiting young seedlings germinated in vitro and leaves of six maize cultivars grown under field conditions at temperate climate zone with culture-dependent approach. We isolated bacteria from field cropped maize only. Strains were identified based on 16S rRNA gene sequencing. In particular, members of Actinobacteria, Bacteroidetes, Firmicutes and α- and γ-Proteobacteria were found. Species of two genus Pseudomonas and Bacillus were dominant among them. Higher diversity of EnB was found in plants collected from Kobierzyce, where we identified 35 species from 16 genera with 22 species uniquely found at this field. On the contrary, from maize leaves collected at Smolice we identified 24 species representing 10 genera with 10 species uniquely isolated from this field. However, none of species was common for all cultivars at both locations. Among isolated EnB six species only, Pseudomonas clemancea, Pseudomonasfluorescens, Bacillus megaterium, Bacillus simplex, Arthrobacter nicotinovorans and Arthrobacter nitroguajacolicus, were found in aboveground parts of the same cultivar grown on both tested fields. The fact that the same cultivars, sown from the same lots of seeds, under field conditions on two different locations were colonized with noticeably different associations of cultivable EnB suggest that cultivar genotype is an important factor selecting endophytic bacteria from local agro-environment. To our knowledge this is first report about the significant variation of diversity of cultivable endophytic bacteria inhabiting aboveground parts of the same maize cultivars grown at different locations.

  20. Bio-energy in China. Content analysis of news articles on Chinese professional internet platforms

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Mei [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Northwest Agriculture and Forestry University, College of Forestry (China); Tahvanainen, Liisa; Pelkonen, Paavo [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Ahponen, Pirkkoliisa [Faculty of Social Sciences and Regional Studies, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)

    2009-06-15

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on www.Google.cn. A thorough analysis was conducted by focusing on one of them: www.china5e.com. The news articles on www.china5e.com were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future. (author)

  1. Bio-energy in China: Content analysis of news articles on Chinese professional internet platforms

    Energy Technology Data Exchange (ETDEWEB)

    Qu Mei [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Northwest Agriculture and Forestry University, College of Forestry (China)], E-mail: qu@cc.joensuu.fi; Tahvanainen, Liisa [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Ahponen, Pirkkoliisa [Faculty of Social Sciences and Regional Studies, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Pelkonen, Paavo [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)

    2009-06-15

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on (www.Google.cn). A thorough analysis was conducted by focusing on one of them: (www.china5e.com). The news articles on (www.china5e.com) were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future.

  2. ZEA MAIZE: A MODERN CRAZE

    Directory of Open Access Journals (Sweden)

    Dhamija Isha

    2013-06-01

    Full Text Available Zea stands for ‘sustaining life’ and Mays stands for ‘life giver’. Zea mays is one of the oldest and most dynamic crop species, which has gained popularity in modern world too, due to its applications in diverse dishes. Corn is produced in every continent of the world with the exception of Antarctica. It is an annual monoecious sunny plant, surviving perfectly in nutrient rich, well-drained soil. Each and every part of the corn, from husk to corn silk is beneficial for the society. There are more than 3,500 different uses for corn products. Corn does much more than feed people and livestock. The plant contains alkaloids, flavonoids, saponins, maizenic acid, vitamins B1, K and minerals like potassium, phosphorous and zinc. Traditionally, Maize is used as an analgesic, anti-diarrheal, anti-prostatitic, anti-lithiasis, anti-tumor, anti-hypertensive, anti-diabetic, anti-hyperlipidemic, anti-inflammatory and anti-oxidant. In this review article, we have narrated miscellaneous uses of corn varieties and described the pharmacological activities, phytoconstituents, nutritional value and traditional uses of maize. The maize has assorted uses like culinary, medicinal and industrial. Corn dishes like corn-meal, corn-flakes, popcorn, “makki ki roti” and corn soup highlight its dominance all over the world. Therefore, maize has become a craze among modern youth.

  3. Functional genomics of bio-energy plants and related patent activities.

    Science.gov (United States)

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  4. Bio-energy utilizes surplusses at the agricultural commodity markets. Large potentials of the biomass; Bioenergie verwertet Ueberschuesse an den Agrarmaerkten. Grosse Potenziale der Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-19

    At the beginning of spring in the northern hemisphere, the situation in agricultural markets relaxes visibly. After the year 2012 was characterized by periods of drought in the United States and some Eastern European countries, in recent months good harvests in major producing countries in the southern hemisphere have provided that the stocks of major agricultural commodities are grown again. Thus, enough resources are still available for the supply of food and energy. There still exists land potential in Europe and on other continents for the use of bio-energy. In addition to new power plant crops, known arable crop cultures contribute to the exploration of such a potential: An example of this is the sugar beet. The view on the global supply balance in agricultural goods inter alia the major staple food rice shows that there exist large surpluses on the food markets. However, these surpluses do not benefit the hungry persons in the world. Hunger is a problem of distribution which is not associated with the growth of bio-energy.

  5. EFFECT OF DIFFERENT MULCHES ON THE CONTROL OF UNWISHED PLANTS IN MAIZE CROP (Zea mays EFEITO DE DIVERSAS ESPÉCIES DE COBERTURA MORTA SOBRE O CONTROLE DE PLANTAS DANINHAS DA CULTURA DO MILHO

    Directory of Open Access Journals (Sweden)

    Rogério de Araújo Almeida

    2007-09-01

    Full Text Available

    Researches of many South American countries point the zero tillage system of crop production for little farmers as a responsible factor for best soil and water conservation, less costs of production and best profits to improve the rural way of life. The treatments usually include the application of herbicides. To find agricultural systems that allow zero tillage without herbicide or with reduced usage has been considered a challenge by the researchers. This experiment was carried out in order to evaluate the effects of different mulches on the control of unwished plants in maize crop (Zea mays. Plants such as sunhemp (Crotalaria juncea, millet (Pennisetum americanum and sunflower (Helianthus annus L. cv. Stanzuela and V 2000 were grown in 100 m² areas. The sowing was made at the second April fortnight and, after sixty days, the zero tillage system with maize was established by using a manual planting machine. Just after, the plants grown in the plots were manually cut and used as mulch. The soil fertility was corrected according to the laboratorial analyses and the plant population adopted was around 60,000 plants per hectare. No weed control was made. At the maize flowering, the seed weeds grown in the plots were collected by using two samples of 1 m² plot (two replications. The plant material was dried till constant weight. Statistical analyses obtained from the data indicated the millet mulch as the best treatment to the weed control.

    Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

    NARCIS (Netherlands)

    Jonker, J.G.G.; Faaij, A.P.C.

    2013-01-01

    This paper determines the energy consumption ratio and overall bio-energy production costs of microalgae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is develo

  6. Prospect of Chinese Bio-energy Grasses to Produce Fuel Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Q.Z.; Xu, L.J. (Grassland Research Inst. of Chinese Academy of Agriculture Science, Hohhot 010010 (China)). E-mail:sunqz@126.com; Yu, Z. (College of Animal Science and Technology, Agricultural Univ., Beijing 100094 (China))

    2008-10-15

    The current energy shortage is seriously restricting the economic development of countries around the world. To seek bio-energy resources to replace liquid fossil fuels is inevitable. In China, energy grasses, Medicago sativa, Panicum virgatum, Astragalus adsurgens, Sorghum sudanense, Caragana Korshinskii and Lespedeza hedysaroides play more important role in development and utilization of fuel ethanol, and have a board application prospect

  7. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18

    activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to

  8. The scientometric biography of a leading scientist working on the field of bio-energy

    Energy Technology Data Exchange (ETDEWEB)

    Konur, Ozcan [Sirnak University Faculty of Engineering, Department of Mechanical Engineering (Turkey)], email: okonur@hotmail.com

    2011-07-01

    This paper presents a scientometric biography of a Turkish scientist, Prof. Dr. Ayhan Demirbas, who is a leading figure in the field of bio-energy. It describes the method and importance of doing such biographies and suggests that there are too few of them, this one being the first in this specific area. It provides insight into the individual, his work, his research and links in his field of studies and research. Prof. Dr. Demirbas has spent almost three decades in research, particularly in the field of bio-energy. He has researched and taught in the field of renewable energies including biodiesels, biofuels, biomass pyrolysis, liquefaction and gasification, biogas, bioalcohols, and biohydrogen. He has also studied a great variety of subjects, such as the development of pulp from plants, chemical and engineering thermodynamics, chemical and energy education, global climate change, drinking water and cereal analyses. He has published 454 articles as of 2011.

  9. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  10. Maize, tropical (Zea mays L.).

    Science.gov (United States)

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  11. Biology, Ecology, and Evolving Management of Helicoverpa zea (Lepidoptera: Noctuidae) in Sweet Corn in the United States.

    Science.gov (United States)

    Olmstead, Daniel L; Nault, Brian A; Shelton, Anthony M

    2016-08-01

    The corn earworm, Helicoverpa zea (Boddie), is a polyphagous pest found throughout the United States, where it attacks many field and vegetable crops. Although H. zea has long been a traditional pest of sweet corn, its importance to this crop has increased dramatically over the past two decades. In this review, we summarize information critical for current and future management of H. zea in sweet corn production in the United States. First, we discuss the pest status of H. zea and its life history, including migration, infestation and larval development, diapause, overwintering, and abiotic factors that affect its biology. Next we describe monitoring methods, crop protection decision-making processes, chemical control options, and the use of genetic technologies for control of H. zea Alternative H. zea management options including biological control, cultural controls, host plant resistance, and pheromone disruption are also reviewed. The role of climate change and its effects on H. zea and its ecology are discussed, as well as the recent invasion of its relative, Helicoverpa armigera (Hübner), which is a major pest of corn in other parts of the world. To conclude, we suggest future research opportunities for H. zea and H. armigera management in sweet corn.

  12. Proceedings of the Bio-Energy '80 world congress and exposition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

  13. Effects of legume cover crop and sub-soiling on soil properties and Maize (Zea mays L) growth in semi arid area of Machakos district, Kenya = Efecto del cultivo de cobertua y el subsolado sobre las propiedades del suelo y crecimiento de maiz (Zea mays L.) en la region semi arida de Machakos, Kenia

    NARCIS (Netherlands)

    Karuma, A.; Gachene, C.K.K.; Gicheru, P.; Mwangombe, A.W.; Mwangi, H.W.; Clavel, D.; Verhagen, A.; Kaufmann, Von R.; Francis, J.; Ekaya, W.

    2011-01-01

    Low crop yields in the semi arid areas of Kenya have been attributed to, among other factors, low soil fertility, low farm inputs, labour constraints and inappropriate tillage practices that lead to pulverized soils. The aim of this study was to determine the effects of legume cover crops (LCC) on s

  14. Effect of rooting depth, plant density and planting date on maize (Zea Mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2014-01-01

    Under low and poorly distributed rainfall higher food production can be achieved by increasing crop water use efficiency (WUE) through optimum soil fertility management and selection of deep-rooting cultivars, appropriate plant density and planting dates. We explored AquaCrop's applicability in sele

  15. Battle in the New World: Helicoverpa armigera versus Helicoverpa zea (Lepidoptera: Noctuidae)

    Science.gov (United States)

    2016-01-01

    The corn earworm Helicoverpa zea (Boddie) and the old world bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are allopatric species and occur in important agricultural crops. In maize, both species tend to infest the ear. The introduction of H. armigera in Brazil has created a new scenario, where these Helicoverpa species might cohabit and interact with one another, affecting the prevalence of each species in the agroecosystem, integrated pest management, and insect resistance management. In this study, larval occurrence and proportion of these species in maize was assessed in three regions of Brazil during three crop seasons. Interaction between the species was evaluated in interspecific and intraspecific scenarios under laboratory and field conditions. Helicoverpa zea was predominant in Rio Grande do Sul and the Planaltina, DF (central Brazil). In western Bahia, H. zea was predominant in the first collection, but approximately equal in number to H armigera in the second crop season. Both species exhibit high cannibalism/predation rates, and larval size was the primary factor for larval survival in the interaction studies. Larva of H. zea had higher survival when interacting with H. armigera, indicating that H. zea has an advantage in intraguild interactions with H. armigera in maize. Overall, the results from this study indicate that maize might play a role as a source of infestation or a sink of insecticide or Bt protein unselected H. armigera populations, depending on the H. zea:H. armigera intraguild competition and adult movement in the landscape. PMID:27907051

  16. Stabilization of the Soliton Transported Bio-energy in Protein Molecules in the Improved Model

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-Feng; LUO Yu-Hui

    2004-01-01

    We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-time motion and at biological temperature 300 K and behaviors of collision of the solitons by Runge-Kutta method and physical parameter values appropriate to the α-helix protein molecules. We prove that the new solitons can move without dispersion at a constant speed retaining its shape and energy in free and long-time motions and can go through each other without scattering. If considering further influence of the temperature effect of heat bath on the soliton, it is still thermally stable at biological temperature 300 K and in a time as long as 300 ps and amino acid spacings as large as 400, which shows that the lifetime of the new soliton is at least 300 ps, which is consistent with analytic result obtained by quantum perturbation theory. These results exhibit that the new soliton is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.

  17. System analysis of a bio-energy plantation: full greenhouse gas balance and energy accounting (POPFULL)

    Science.gov (United States)

    Ceulemans, R.; Janssens, I.; Berhongaray, G.; Broeckx, L.; De Groote, T.; ElKasmioui, O.; Fichot, R.; Njakou Djomo, S.; Verlinden, M.; Zona, D.

    2011-12-01

    In recent year the environmental impact of fossil fuels and their reduced availability are leading to an increasing interest in renewable energy sources, among them bio-energy. However, the cost/benefit in establishing, managing, and using these plantations for energy production should be quantified together with their environmental impact. In this project we are performing a full life cycle analysis (LCA) balance of the most important greenhouse gases (CO2, CH4, N2O, H2O and O3), together with full energy accounting of a short-rotation coppice (SRC) plantation with fast-growing trees. We established the plantation two years ago and we have been monitoring net fluxes of CO2, N2O, CH4, and O3, in combination with biomass pools (incl. soil) and fluxes, and volatile organic carbon (VOCs). This poplar plantation will be monitored for another two years then harvested and transformed into bio-energy. For the energy accounting we are performing a life cycle analysis and energy efficiency assessments over the entire cycle of the plantation until the production of electricity and heat. Here we present an overview of the results from the first two years from the plantation establishment, and some of the projections based on these first results.

  18. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  19. A study of the development of bio-energy resources and the status of eco-society in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xia; Huang, Yongmei; Gong, Jirui [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Zhang, Xinshi [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Institute of Botany, CAS, Beijing 100093 (China)

    2010-11-15

    Industrialization of bio-energy relies on the supply of resources on a large scale. The theoretical biomass resources could reach 2.61-3.51 billion tce (tons of coal equivalent)/a in China, while the available feedstock is about 440-640 million tce/a, however, among this only 1.5-2.5% has been transferred into energy at present. Marginal land utilization has great prospects of supplying bio-energy resources in China, with co-benefits, such as carbon sequestration, water/soil conservation, and wind erosion protection. There is a large area of marginal land in China, especially in northern China, including about 263 million ha of desertification land, 173 million ha of sand-land, and 17 million ha of salinizatin land. The plant species suitable to be grown in marginal lands, including some species in Salix, Hippophae, Tamarix, Caragana, and Prunus is also abundant Biomass feedstock in marginal lands would be 100 million tce/a in 2020, and 200 million tce/a in 2050. As a result, a win-win situation of eco-society and bio-energy development could be realized, with an expected 4-5% reduction of total CO{sub 2} emission in China in 2020-2050. Although much progress has been made in the field of bio-energy research in China, yet significant efforts should be taken in the future to fulfill large-scale industrialization of bio-energy. (author)

  1. Impact of crop rotation and soil amendments on long-term no-tilled soybean yields

    Science.gov (United States)

    Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...

  2. The influence of strip cropping on the state and degree of weed infestation in dent maize (Zea mays L., common bean (Phaseolus vulgaris L., and spring barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Aleksandra Głowacka

    2013-04-01

    Full Text Available The experiment was conducted in the years 2008–2010 at the Experimental Station of the Faculty of Agricultural Sciences in Zamość, University of Life Sciences in Lublin. The following factors were analysed in the experiment: I. Cultivation method – sole cropping and strip cropping, which consisted in the cultivation of three plants: dent maize, common bean, and spring barley, in adjacent strips with a width of 3.3 m; II. Weed control methods – mechanical and chemical. The subject of the research was weed infestation of the 'Celio' variety of dent maize, the 'Aura' variety of common bean, and the 'Start' variety of spring barley. Weed infestation of the crops was assessed two weeks before harvesting by determining the species composi- tion as well as the number and dry weight of weeds. The dominant weed species in maize, common bean and spring barley were Echinochloa crus-galli, Chenopodium album and Galinsoga parviflora, constituting from 58% to 70% of the total number of weeds. Strip cropping clearly reduced the number of weeds per unit area in all the cultivated species and dry weight of aboveground parts produced by them in common bean and maize crops. The limiting effect of strip cropping on the weed infestation parameters was particularly clear in combination with the mechanical weed control method.

  3. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy.

    Science.gov (United States)

    De Vries, J W; Groenestein, C M; De Boer, I J M

    2012-07-15

    Liquid animal manure and its management contributes to environmental problems such as, global warming, acidification, and eutrophication. To address these environmental issues and their related costs manure processing technologies were developed. The objective here was to assess the environmental consequences of a new manure processing technology that separates manure into a solid and liquid fraction and de-waters the liquid fraction by means of reverse osmosis. This results in a liquid mineral concentrate used as mineral nitrogen and potassium fertilizer and a solid fraction used for bio-energy production or as phosphorus fertilizer. Five environmental impact categories were quantified using life cycle assessment: climate change (CC), terrestrial acidification (TA), marine eutrophication (ME), particulate matter formation (PMF), and fossil fuel depletion (FFD). For pig as well as dairy cattle manure, we compared a scenario with the processing method and a scenario with additional anaerobic digestion of the solid fraction to a reference situation applying only liquid manure. Comparisons were based on a functional unit of 1 ton liquid manure. System boundaries were set from the manure storage under the animal house to the field application of all end products. Scenarios with only manure processing increased the environmental impact for most impact categories compared to the reference: ME did not change, whereas, TA and PMF increased up to 44% as a result of NH3 and NO(x) emissions from processing and storage of solid fraction. Including digestion reduced CC by 117% for pig manure and 104% for dairy cattle manure, mainly because of substituted electricity and avoided N2O emission from storage of solid fraction. FFD decreased by 59% for pig manure and increased 19% for dairy cattle manure. TA and PMF remained higher compared to the reference. Sensitivity analysis showed that CH4 emission from manure storage, NH3 emission from processing, and the replaced nitrogen

  4. The influence of strip cropping and weed control methods on weed diversity in dent maize (Zea mays L., narrow-leafed lupin (Lupinus angustifolius L. and oats (Avena sativa L.

    Directory of Open Access Journals (Sweden)

    Aleksandra Głowacka

    2014-01-01

    Full Text Available The experiment was conducted in 2008–2010 at the Experimental Station of the Faculty of Agricultural Sciences in Zamość, University of Life Sciences in Lublin. The research design included two factors: I. Method of cultivation – sole cropping and strip cropping (the cultivation of three plants: maize, narrow-leafed lupin and oats, in neighboring strips; II. Weed control method – mechanical and chemical. The subject of this study was weed infestation in maize, narrow-leafed lupin and oats. The greatest diversity of weeds was found in the narrow-leafed lupine crop, while the lowest diversity in maize. The dominant weed species in maize, lupine and oats were Echinochloa crus-galli, Chenopodium album and Galinsoga parviflora which ranged from 34% to 99% of the total number of weeds. Strip cropping clearly reduced the number of weeds per unit area in the narrow-leafed lupin and oat crops as well as the aboveground dry weight of weeds in all plant species. Chemical weed control significantly decreased both the number and weight of weeds in comparison with the mechanical method.

  5. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    Science.gov (United States)

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant.

  6. The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications.

    Science.gov (United States)

    Piperno, D R; Flannery, K V

    2001-02-13

    Accelerator mass spectrometry age determinations of maize cobs (Zea mays L.) from Guilá Naquitz Cave in Oaxaca, Mexico, produced dates of 5,400 carbon-14 years before the present (about 6,250 calendar years ago), making those cobs the oldest in the Americas. Macrofossils and phytoliths characteristic of wild and domesticated Zea fruits are absent from older strata from the site, although Zea pollen has previously been identified from those levels. These results, together with the modern geographical distribution of wild Zea mays, suggest that the cultural practices that led to Zea domestication probably occurred elsewhere in Mexico. Guilá Naquitz Cave has now yielded the earliest macrofossil evidence for the domestication of two major American crop plants, squash (Cucurbita pepo) and maize.

  7. Mathematical algorithm to transform digital biomass distribution maps into linear programming networks in order to optimize bio-energy delivery chains

    NARCIS (Netherlands)

    Velazquez-Marti, B.; Annevelink, E.

    2008-01-01

    Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

  8. Mathematical algorithm to relate digital maps of distribution of biomass with algorithms of linear programming to optimize bio-energy delivery chains

    NARCIS (Netherlands)

    Velazquez-Marti, B.; Annevelink, E.

    2008-01-01

    Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

  9. Water management options based on rainfall analysis for rainfed maize (Zea Mays L.) production in Rushinga district Zimbabwe

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2011-01-01

    Maize (Zea mays L.), the dominant and staple food crop in Southern and Eastern Africa, is preferred to the drought-tolerant sorghum and pearl millet even in semi-arid areas. In semi-arid areas production of maize is constrained by droughts and poor rainfall distribution. The best way to grow crops i

  10. Validating the FAO AquaCrop model for irrigated and water deficient field maize

    Science.gov (United States)

    Accurate crop development models are important tools in evaluating the effects of water deficits on crop yield or productivity. The FAO AquaCrop model, predicting crop productivity and water requirement under water-limiting conditions, was calibrated and validated for maize (Zea mays L.) using six ...

  11. Determining the potential of inedible weed biomass for bio-energy and ethanol production

    Directory of Open Access Journals (Sweden)

    Siripong Premjet

    2013-02-01

    Full Text Available Surveys of indigenous weeds in six provinces located in the low northern part of Thailand were undertaken to determine the potential of weed biomass for bio-energy and bio-ethanol. The results reveal that most of the weed samples had low moisture contents and high lower heating values (LHVs. The LHVs at the highest level, ranging from 17.7 to 18.9 Mg/kg, and at the second highest level, ranging from 16.4 to 17.6 Mg/kg, were obtained from 11 and 31 weed species, respectively. It was found that most of the collected weed samples contained high cellulose and low lignin contents. Additionally, an estimate of the theoretical ethanol yields based on the amount of cellulose and hemicellulose in each weed species indicated that a high ethanol yield resulted from weed biomasses with high cellulose and hemicellulose contents. Among the collected weed species, the highest level of ethanol yield, ranging from 478.9 to 548.5 L/ton (substrate, was achieved from 11 weed species. It was demonstrated that most of the collected weed species tested have the potential for thermal conversion and can be used as substrates for ethanol production.

  12. Bionics and Structural Biology: A Novel Approach for Bio-energy Production

    Institute of Scientific and Technical Information of China (English)

    C. Karthikeyan; R. Krishnan; S. Adline Princy

    2008-01-01

    Cellular metabolism is a very complex process. The biochemical pathways are fundamental structures of biology. These pathways possess a number of regeneration steps which facilitate energy shuttling on a massive scale. This facilitates the biochemical pathways to sustain the energy currency of the cells. This concept has been mimicked using electronic circuit components and it has been used to increase the efficiency of bio-energy generation. Six of the carbohydrate biochemical pathways have been chosen in which glycolysis is the principle pathway. All the six pathways are interrelated and coordinated in a complex manner. Mimic circuits have been designed for all the six biochemical pathways. The components of the metabolic pathways such as enzymes, cofactors etc., are substituted by appropriate electronic circuit components. Enzymes arc related to the gain of transistors by the bond dissociation energies of enzyme-substrate molecules under consideration. Cofactors and coen-zymes are represented by switches and capacitors respectively. Resistors are used for proper orientation of the circuits. The energy obtained from the current methods employed for the decomposition of organic matter is used to trigger the mimic circuits. A similar energy shuttle is observed in the mimic circuits and the percentage rise for each cycle of circuit functioning is found to be 78.90. The theoretical calculations have been made using a sample of domestic waste weighing 1.182 kg. The calculations arrived at finally speak of the efficiency of the novel methodology employed.

  13. Bio energy in regions. An advisor - based on the results of the competition bio energy regions; Bioenergie in Regionen. Ein Ratgeber - basierend auf den Ergebnissen des Wettbewerbs Bioenergie-Regionen

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Dirk [nova-Institut GmbH - Chemiepark Knapsack, Huerth (Germany); Elbe, Sebastian; Elbe, Judith [SPRINT GbR, Darmstadt (Germany); Bohnet, Sebastian; Haak, Falko; Thraen, Daniela [Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH (DBFZ), Leipzig (Germany)

    2012-11-15

    25 quite different regions in Germany are the godparents for this brochure. The spectrum includes the wind power region North Friesland in Northern Germany, the Achen Valley on the edge of the Alps in Southern Germany, the low mountain ranges of the Eifel in Western Germany and the Saxon Switzerland in East Germany. All regions contribute to the climate protection, increase of the regional value creation, job creation as well as regional alternatives of energy. The brochure under consideration describes the experiences of these 25 bio energy regions and makes these experiences available to other regions and actors. It is all about practically relevant instructions and opportunities for action in order to mobilize and utilize bio energy in regions.

  14. Importance of crop varieties and management practices: evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L. sites

    Directory of Open Access Journals (Sweden)

    P. Béziat

    2011-03-01

    Full Text Available Crop varieties and management practices such as planting and harvest dates, irrigation, and fertilization have important effects on the water and carbon fluxes over croplands, and lack or inaccuracy of this information may cause large uncertainties in hydraulic and carbon modeling. Yet the magnitude of uncertainties has not been investigated in detail. This paper provides a comprehensive assessment of the performances of a process-based ecosystem model called ORCHIDEE-STICS (a coupled model between generic ecosystem model ORCHIDEE and the crop growth model STICS, against eddy-covariance observations of CO2 and H2O fluxes at five European maize cultivation sites. The results show that ORCHIDEE-STICS has a good potential to simulate energy, water vapor and carbon dioxide fluxes from maize croplands on a daily basis. The model explains 23–75% of the observed daily net ecosystem exchange (NEE variance at five sites, and 26–79% of the latent heat flux (LE variance. Similarly, 34–83% of the variance in observed gross primary productivity (GPP is accounted for by the model. However, only 3–81% of the variance of observed terrestrial ecosystem respiration (TER is explained. Therefore, simulating TER is shown to be much more difficult than GPP. We conclude that structural deficiencies of the model in the determination of LAI and TER are the main sources of errors in simulating carbon dioxide and water vapor fluxes. A group of sensitivity analyses, by setting different crop variety, nitrogen fertilization, irrigation, and planting date, indicate that any of these factors is able to cause more than 15% change in simulated NEE although the response of these fluxes to management parameters is site-dependent. Varying management practice in the model is shown to affect not only the daily values of NEE and LE, but also the total seasonal cumulative values, and therefore the annual carbon and water budgets. However, LE is found to be less sensitive to

  15. 2010 World bio-energy conference; Compte-rendu de la conference internationale sur les bioenergies 25-27 mai a Joenkoeping en Suede

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    After having evoked the bio-energy price awarded to a Brazilian for his works on the use of eucalyptus as energy source, this report proposes a synthesis of the highlights of the conference: discussions about sustainability, bio-energies as an opportunity for developing countries, the success of bio-energies in Sweden, and more particularly some technological advances in the field of biofuels: a bio-LPG by Biofuel-solution AB, catalysis, bio-diesel from different products in a Swedish farm, a second generation ethanol by the Danish company Inbicon, a large scale methanization in Goteborg, a bio-refinery concept in Sweden, bio-gases

  16. Theory of bio-energy transport in protein molecules and its experimental evidences as well as applications (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-feng

    2007-01-01

    A new theory of bio-energy transport along pro-tein molecules, where energy is released by the hydrolysis of adenosine triphosphate (ATP), has recently been proposed for some physical and biological reasons. In this theory, Davydov's Hamiltonian and wave function of the systems are simultaneously improved and extended. A new interac-tion has been added into the original Hamiltonian. The original wave function of the excitation state of single parti-cles has been replaced by a new wave function of the two-quanta quasi-coherent state. In such a case, bio-energy is carried and transported by the new soliton along protein molecular chains. The soliton is formed through the self-trapping of two excitons interacting with amino acid resi-dues. The exciton is generated by the vibration of amide-Ⅰ (C=O stretching) arising from the energy of the hydrolysis of ATP. The properties of the soliton are extensively studied by analytical methods and its lifetime for a wide range of parameter values relevant to protein molecules is calculated using the nonlinear quantum perturbation theory. The life-time of the new soliton at the biological temperature of 300 K is large enough and belongs to the order of 10-10 s or τ/τ 0 ≥700. The different properties of the new soliton are fur-ther studied. The results show that the new soliton in the new model is a better carrier of bio-energy transport and it can play an important role in biological processes. This model is a candidate of the bio-energy transport mechanism in protein molecules.

  17. Identificación de algunos géneros microbianos asociados al cultivo del maíz (Zea mays L. en diferentes suelos de Cuba Identification of some microbial genera associated to the maize crop (Zea mays L in different Cuban soils

    Directory of Open Access Journals (Sweden)

    Heydrich Mayra

    2003-06-01

    Full Text Available Se ha demostrado que la aplicación de bioproductos a partir de microorganismos rizosféricos en la agricultura, provoca incrementos en la productividad de los cultivos. Si se trabaja con cepas nativas aumenta la factibilidad biológica de los mismos. Esta investigación se realizó con el objetivo de determinar algunos géneros microbianos asociados al cultivo del maíz variedad Francisco mejorado en suelos Nitisol Rhodic, Cambisol Eutric-Humic y Cambisol Eutric procedentes de diferentes localidades cubanas. Para ello se emplearon tres métodos de aislamiento: Método Convencional, Tubos Espermosféricos y Modelo Microcosmos. Los aislados fueron clasificados mediante la utilización de técnicas clásicas. Los resultados obtenidos demostraron que los géneros Pseudomona, Azospirillum, Azotobacter, Bacillus y Streptomyces forman parte de la comunidad microbiana de la rizosfera del cultivo del maíz en las condiciones estudiadas, constituyendo Pseudomonas el género dominante. Los métodos de aislamiento emplea­dos resultaron adecuados para la obtención de representantes típicos de las poblaciones microbianas en estudio, demostrándose la superioridad de los Tubos Espermosféricos y el Modelo Microcosmos para estos fines, ya que los mismos permiten aislar los microorganismos capaces de vivir a expensas de los exudados radicales del cultivo, en la interacción planta-bacteria. Palabras clave: rizosfera; maíz; modelo espermosférico; modelo microcosmos; Pseudomonas.It has been demonstrated that applying bio-products based on native rhizosphere micro-organisms in agriculture increases crop productivity. Working with native strains also improves their biological feasibility. Some microbial genera associated with the improved corn variety Francisco were isolated from Nitisol Rhodic, Cambisol Eutric-Humic and Cambisol Eutric soil from different Cuban regions using three isolation methods: the convencional method, the spermosphere model and the

  18. A Conversation with Blake Simmons, Vice President, Deconstruction Division, and Jon Magnuson, Director, Fungal Biotechnology Group, Joint BioEnergy Institute, Emeryville, CA

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A.; Magnuson, Jon K.

    2013-05-03

    An interview of myself and Blake Simmons conducted by Vicki Glaser, Executive Editor of Industrial Biotechnology. The subject of the interview was the relatively new PNNL led Fungal Biotechnology Group within the Joint BioEnergy Institute (JBEI).

  19. Acumulación y Distribución de Fitomasa en el Asocio de Maíz (Zea mays L. y Fríjol (Phaseolus vulgaris L. / Biomass Accumulation and Distribution in Associated Crop of Maize (Zea mays L. and Bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Pérez López Astrid Elena

    2013-08-01

    Full Text Available La asociación de cultivos se define como el crecimientoy desarrollo de dos o más especies en el mismo terreno, durante parte o todo el ciclo vegetativo. El asocio de maíz con fríjol afecta los atributos morfológicos y fisiológicos de ambas especies, lo que se manifiesta en la fitomasa acumulada en los distintos compartimentos y, finalmente, en los rendimientos. El objetivo de este trabajo fue determinar la acumulación y distribución de fitomasa de maíz y fríjol en asocio, respecto a sus unicultivos. Se sembraron las variedades: Fríjol Bola roja comercial (FBR, Cargamanto rojo (FC, una Línea Élite de Bola roja (FBE y la variedad de maíz regional Montaña de grano blanco (M. Se evaluaron siete tratamientos: cuatro unicultivos de maíz y fríjol (Mo, FBRo, FCo, FBEo y tres asociaciones (MxFBR, MxFC, MxFBE. El diseño estadístico fue de bloques completos al azar. Las variables peso seco de: tallos, hojas, mazorcas y panículas, en el maíz asociado con fríjol, disminuyeron respecto al unicultivo. La variedad de fríjol más afectada, negativamente, por el asocio fue FBE; en la cual, las variables peso seco de: tallos, hojas y vainas, se redujeron, en comparación con el unicultivo. La contribución de biomasa a la planta de fríjol, por parte de las vainas, es mayor en el asocio que en el unicultivo, excepto en la variedad FBE / Crop association is defined as the growth and development of two or more species in the same place during a part or all of the vegetative cycle. Maize and bean associationaffect morphological and physiological attributes of bothspecies, which is manifested in the biomass accumulated in the different compartments and, finally, in the yields. The aim of this research was to determine the accumulation and distribution of both maize and bean biomass in association with regard to their unicultivos. Varieties planted were: “Bola roja commercial” (FBR, “Cargamanto rojo” (FC, an elite line “Bola roja

  20. Influence of structure disorders and temperaturesof systems on the bio-energy transport in proteinmolecules (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Xiao-feng PANG

    2008-01-01

    The influence of molecular structure disor-ders and physiological temperature on the states and properties of solitons as transporters of bio-energy are numerically studied through the fourth-order Runge-Kutta method and a new theory based on my paper [Front. Phys. China, 2007, 2(4): 469]. The structure dis-orders include fluctuations in the characteristic parame-ters of the spring constant, dipole-dipole interaction con-stant and exciton-phonon coupling constant, as well as the chain-chain interaction coefficient among the three channels and ground state energy resulting from the dis-order distributions of masses of amino acid residues and impurities. In this paper, we investigate the behav-iors and states of solitons in a single protein molecu-lar chain, and in α-Helix protein molecules with three channels. In the former we prove first that the new soli-tons can move without dispersion, retaining its shape, velocity and energy in a uniform and periodic protein molecule. In this case of structure disorder, the fluctu-ations of the spring constant, dipole-dipole interaction constant and exciton-phonon coupling constant, as well as the ground state energy and the disorder distribu-tions of masses of amino acid residues of the proteins influence the states and properties of motion of solitons. However, they are still quite stable and are very robust against these structure disorders, even in the presence of larger disorders in the sequence of masses, spring con-stants and coupling constants. Still, the solitons may disperse or be destroyed when the disorder distribution of the masses and fluctuations of structure parameters are quite great. If the effect of thermal perturbation of the environment on the soliton in nonuniform proteins is considered again, it is still thermally stable at the biolog-ical temperature of 300 K, and at the longer time period of 300 ps and larger spacing of 400 amino acids. The new soliton is also thermally stable in the case of motion

  1. The Role of Bio-productivity on Bio-energy Yields

    Directory of Open Access Journals (Sweden)

    Marc J. J. Janssens

    2009-04-01

    Full Text Available The principal photosynthetic pathways convert solar energy differently depending on the environmental conditions and the plant morphotype. Partitioning of energy storage within crops will vary according to environmental and seasonal conditions as well. Highest energy concentration is found in terpens like latex and, to a lesser extent, in lipids. Ideally, we want plant ingredients with high energy content easily amenable to ready-to-use bio-fuel. Generally, these crops are adapted to drier areas and tend to save on eco-volume space. Competition with food crops could be avoided by fetching energy from cheap agricultural by-products or waste products such as bagasse in the sugar cane. This would in fact mean that reducing power of agricultural residues should be extracted from the biomass through non-photosynthetic processes like animal ingestion or industrial bio-fermentation. Conversion and transformation efficiencies in the production chain are illustrated for some relevant crops in the light of the maximum power theorem.

  2. Limited irrigation of corn-based no-till crop rotations in west central Great Plains.

    Science.gov (United States)

    Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...

  3. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence.

    Science.gov (United States)

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-07-25

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole-dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge-Kutta method and Pang's soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are

  4. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence

    Directory of Open Access Journals (Sweden)

    Xiaofeng Pang

    2016-07-01

    Full Text Available The influences of electromagnetic fields (EMFs on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole–dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge–Kutta method and Pang’s soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the

  5. Anaerobic digestion as a key technology in bio-energy production: Current achievements and challenges

    OpenAIRE

    Dewil, Raf; Appels, Lise

    2014-01-01

    Anaerobic digestion has been applied for many decades for the treatment of organic wastes like manure, wastewater sludge and crop residues. Whereas these streams were considered as a nuisance in the past, nowadays, emphasis lies on resource recovery. These wastes are, indeed, providing an important source of renewable energy. Therefore, there is a renewed interest in anaerobic digestion as a technology for sustainable renewable energy production. Also, anaerobic digestion plays a central role...

  6. Alfalfa interseeded into silage corn can serve as a cover crop and subsequent forage crop

    Science.gov (United States)

    Alfalfa (Medicago sativa) and corn (Zea mays) silage are commonly grown in rotation in dairy forage production systems throughout the northern regions of the USA. Alfalfa interseeded into silage corn could potentially serve two purposes: as a cover crop during the silage corn production year, and as...

  7. "Zea"-Because It's There

    Science.gov (United States)

    Chamberlain, Eric

    1983-03-01

    The Subject is a long standing symbiotic relationship between Zea and the movies. As usual the impossible was required - to attain cinema release quality films with dramatic interpretation - at the same time using Hy-speed macro photographic techniques. The subject was not to be recognizable until the end of the film - some four minutes long. Zea is explosive, it reacts to heat and is extremely difficult to predict when it will explode, which left little time for the focus, stop down and shooting. Using a Hy-cam at 5,000 pictures per second - a 400 ft. roll of 7247 raw stock, left but a brief three seconds for synchronization. To add to the confusion, two co-directors, a cameraman, plus equipment, were jammed into a 2 x 2m space. To achieve reasonable resolution for theatrical showing, 400,000 foot/candles of light were needed. This was achieved. The film was edited and music from Vaughan Williams' "Fantasia" recorded at St. Martins-in-the-Fields, London was added. The result was sent to the Cannes Film Festival, where it was given the Jury Award.

  8. Bio-Energy Connectivity And Ecosystem Services. An Assessment by Pandora 3.0 Model for Land Use Decision Making

    Directory of Open Access Journals (Sweden)

    Raffaele Pelorosso

    2014-05-01

    Full Text Available Landscape connectivity is one of the major issues related to biodiversity conservation and to the delivery of Ecosystem Services (ES. Several models were developed to assess landscape connectivity but lack of data and mismatching scale of analysis often represent insurmountable constraints for the correct evaluation and integration of ecological connectivity into plans and assessment procedures. In this paper a procedure for ES assessment related with Habitat and Bio-Energy Landscape Connectivity (BELC is proposed. The method is based on the connectivity measure furnished by the last version of PANDORA model and uses a modified formulation of current ES evaluation. The implementation of the model in a real case has highlighted its potential multi-scale workability. The spatial approach of the model aims at furnishing a further tool for the spread of ES and landscape ecology concepts into procedures of assessment (e.g. EIA, SEA and land use planning at different administrative scales.

  9. Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sri Bala Kameswari, K.; Chitra Kalyanaraman,; Porselvam, S. [Central Leather Research Institute (CLRI), Environmental Technology Division, Chennai (India); Thanasekaran, K. [Anna University, Centre for Environmental Studies, Chennai (India)

    2012-04-15

    The inoculum to substrate (I/S) ratio is an important factor which influences the anaerobic digestion process. In this study, the effect of different I/S ratios on the performance of co-digestion of fleshings along with mixture of sludge generated during treatment of tannery wastewater was investigated. The parameters studied were biogas generation, volatile solids reduction, volatile fatty acid (VFA) production, and the stability of the digestion process based on VFA to alkalinity ratio was evaluated for various I/S ratios. Economical significance of I/S ratio as related to the volume of the anaerobic digester and the potential benefit of bio-energy generated are discussed in detail. (orig.)

  10. Properties of Soliton-Transported Bio-energy in α-Helix Protein Molecules with Three Channels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study numerically the propagating properties of soliton-transported bio-energy excited in the α-helix protein molecules with three channels in the cases of the short-time and long-time motions and its features of collision at temperature T = 0 and biological temperature T = 300 K by the dynamic equations in the improved Davydov theory and fourth-order Runge-Kutta method, respectively. From these simulation experiments we see that the new solitons in the improved model can move without dispersion at a constant speed retaining its shape and energy in the cases of motion of both short-time or T = 0 and long time or T = 300 K and can go through each other without scattering in their collisions. In these cases its lifetime is, at least, 120 ps at 300 K, in which the soliton can travel over about 700 amino acid residues. This result is consistent with analytic result obtained by quantum perturbed theory in this model. In the meanwhile, the influences of structure disorder of α-helix protein molecules, including the inhomogeneous distribution of amino acids with different masses and fluctuations of spring constant, dipole-dipole interaction, exciton-phonon coupling constant and diagonal disorder, on the solitons are also studied by the fourth-order Runge-Kutta method. The results show that the soliton still is very robust against the structure disorders and thermal perturbation of proteins at biological temperature 300 K. Therefore we can conclude that the new soliton in the α-helix protein molecules with three channels is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.

  11. Earthworm populations are affected from Long-Term Crop Sequences and Bio-Covers under No-Tillage

    Science.gov (United States)

    Earthworms are crucial for improving soil biophysical properties in cropping systems. Consequently, effects of cropping rotation and bio-covers were assessed on earthworm populations under no-tillage sites. Main effects of 6 different cropping sequences [corn (Zea mays), cotton (Gossypium hirsutum),...

  12. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    NARCIS (Netherlands)

    Vries, de J.W.; Vinken, T.M.W.J.; Hamelin, L.; Boer, de I.J.M.

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for anaer

  13. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    DEFF Research Database (Denmark)

    De Vries, J.W.; Vinken, T.M.W.J; Hamelin, Lorie

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for an......The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co......-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage......, maize silage and glycerin, beet tails, wheat yeast concentrate (WYC), and roadside grass. Mono-digestion reduced most impacts, but represented a limited source for bio-energy. Co-digestion with maize silage, beet tails, and WYC (competing with animal feed), and glycerin increased bio-energy production...

  14. Nitrous oxide emissions after sewage sludge and inorganic N-fertilization of a willow bio-energy plantation

    Science.gov (United States)

    Klemedtsson, Leif; Hedenrud, Anna; Rychlik, Sophie; Weslien, Per; Kasimir Klemedtsson, Åsa; Achberger, Christine; Lindroth, Anders

    2014-05-01

    The use of sewage sludge as fertilizer after harvest or inorganic N-fertilization of bio-energy plantations can give rise to high emissions of the greenhouse gas nitrous oxide (N2O). Plantations of e.g. willow (Salix) are today grown and used for bioenergy purposes. They could serve as carbon and nitrogen sinks, lowering greenhouse gas emissions and helping to mitigate a change in climate. However, since N2O is such a powerful greenhouse gas it can have a large impact on the total emission of greenhouse gases from a bio-energy plantation. The magnitude of N2O emissions after fertilization is therefore important to investigate. This study concerns N2O emissions from a conventionally grown bio-energy plantation of Salix. The aim of the study was to investigate the use of sewage sludge after harvest as well as inorganic N-fertilization in a growing plantation, and its effect on emissions of N2O from the soil ecosystem. The field site is a Salix plantation in south-western Sweden, a representative site in management practices and abiotic conditions. The site was divided into two areas, a larger field and smaller plots. The field was applied with sewage sludge after harvest 2013. Emissions of N2O were measured using the micrometeorological Eddy covariance technique, with a Quantum Cascade laser (Aerodyne). The fluxes of CO2 and H2O were measured using a LI-7200(Li-cor) instrument. The flux was calculated using the EddyPro software. On the plots, N2O emissions from inorganic N-fertilization (2013) were monitored using automatic chambers (height 1.05 m, volume 0.2625 m3) and a trace gas analyzer (TGA100, Campbell Scientific, USA) during approximately one (1) year. The N2O emissions from the plots (inorganic fertilizer) and field (sewage sludge) were compared with non-fertilized plots (controls) using the automatic chambers for both comparisons. The N2O emissions from the control plot for the inorganic fertilizer had an emission over the growing season that was 0.33 kg N2O

  15. Comparative toxicity of mycotoxins to navel orangeworm (Amyelois transitella) and corn earworm (Helicoverpa zea).

    Science.gov (United States)

    Niu, Guodong; Siegel, Joel; Schuler, Mary A; Berenbaum, May R

    2009-08-01

    Mycotoxins, such as aflatoxins and ochratoxins, are widely distributed in nature and are frequently problematic crop contaminants that cause millions of dollars of annual losses in the United States. Insect infestations of crop plants significantly exacerbate mycotoxin contamination. Damage to a variety of nut species by Amyelois transitella Walker (navel orangeworm, NOW) is associated with infection by Aspergillus species and concomitant production of aflatoxins and ochratoxins. Resistance to aflatoxins in this lepidopteran is compared here with the levels of resistance in Helicoverpa zea (corn earworm, CEW), another lepidopteran that routinely encounters aflatoxins in its diet, albeit at lower levels. Measured as the developmental delay caused by aflatoxin B1 (AFB1), it is apparent that the LC(50) (defined as the concentration preventing 50% of newly hatched larvae from entering the 2nd instar within 48 h) for AFB1 is 100 times greater for A. transitella than for H. zea. Similarly, A. transitella 1st instars display substantially higher tolerance to ochratoxin A, another mycotoxin contaminant produced by Aspergillus species, than do H. zea. Our studies indicate that A. transitella, although a hostplant generalist, may well be highly specialized for mycotoxin detoxification.

  16. Crop rotations with annual and perennial forages under no-till soil management

    Science.gov (United States)

    Development of crop rotations that support sustainable agriculture depends on understanding complex relationships between soils, crops, and yield. Objectives were to measure how soil chemical and physical attributes as well as maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] stover dry weig...

  17. Cover Crop and Liquid Manure Effects on Soil Quality Indicators in a Corn Silage System.

    Science.gov (United States)

    Due to a lack of surface residue and organic matter inputs, continuous corn (Zea mays L.) silage production is one of the most demanding cropping systems imposed on our soil resources. In this study, our objective was to determine if using cover/companion crops and/or applying low-solids liquid dair...

  18. NUTRITIVE VALUE OF MAIZE (Zea Mays AND DOLECOUS (Lablab Purpureus AS AFFECTED BY PHOSPHOROUS FERTILIZATION AND INTERCROPPING

    Directory of Open Access Journals (Sweden)

    E.O. AMASAIB

    2012-11-01

    Full Text Available A field experiment was conducted at the Demonstration Farm of University of Khartoum to determine the effect of phosphorous fertilization and intercropping on the nutritive value of Zea mays and Lablab purpureus. The field experiment was arranged as Split Plot Design with four replications. The main plots were (Lablab purpureus as sole crop, Zea mays as sole crop, Lablab purpureus and Zea mays in the mixture. The sub plot treatments were phosphorous fertilization at the rate of (0, 50 and 75 kg P2O5 / ha which were then referred to as P0, P1 and P2 respectively. The plants measured were Lablab purepureus as pure stand, Lablab purepureus in the mixture, Zea mays as the pure stand and the Zea mays in the mixture. Samples of 45 days cut from sowing were used to assess the ash, crude protein (CP, ether extracts (EE, crude fiber (CF, neutral detergent fibre (NDF and dry matter digestibility. The data were statistically analyzed using complete randomized design. The results revealed that intercropping and phosphorous fertilization caused a significant (P<0.05 increased on the CP content and dry matter digestibility of all forages under estimation. Intercropping and phosphorous fertilization caused slight increase on the Ash content for all crops in this study. Moreover, Intercropping and phosphorous fertilization caused a decrease on the CF and NDF content of all forages under estimation but with no significant difference. However, Intercropping caused non–significant effect (P<0.05 on the EE content of Zea mays while, intercropping had a positive influence (P<0.05 on the EE content of Lablab purpureus. The data obtained indicated that phosphorous fertilization caused non–significant effect on the EE content of all crops in this study (P<0.05 except Lablab purpureus in the mixture with Zea mays which increased significantly (P<0.05 by increasing phosphorous level. It can be concluded that intercropping and phosphorous fertilization improved the

  19. Comparison of different cover crop mulches and extracts on inhibition of crop and weed growth

    Directory of Open Access Journals (Sweden)

    Sturm, Domonic Johannes

    2016-02-01

    Full Text Available Weed suppression of cover crops is a result of competition for light, space, water and nutrients and the release of allelochemicals in the soil. Two laboratory and greenhouse experiments were conducted to analyse biochemical effects of extracts and mulches of Fagopyrum tataricum (L. Gaertn., Raphanus sativus var. oleiformis Pers. and a cover crop mixture on germination and plant growth of the crop plants maize (Zea mays L. and sugar beet (Beta vulgaris ssp. vulgaris var. altissima Döll. and the weeds Chenopodium album L., Matricaria chamomilla L. and Stellaria media (L. Vill.. In the first experiment, aqueous cover crop extracts were applied on crop and weed seeds in germination assays. Germination rate, mean germination time and root length of crops and weeds were measured. In experiment 2, the influence of cover crop mulch on germination rate and dry weight of the test plants was determined after a period of 21 days. Significant reductions of the root length for all test plants were observed in experiment 1. Additionally, mean germination time was extended for crops and weeds by all cover crops. Germination rate and dry matter of crops and weeds were decreased significantly in experiment 2 compared to the untreated control. Root length, germination rate and mean germination time in germination tests in experiment 1 were found to be correlated with biomass of crops and weeds in experiment 2. This work reveals the important role of biochemical effects on weed suppression by cover crops.

  20. 玉米低磷胁迫研究现状%Research Situation of Low Phosphorus Stress in Zea mays

    Institute of Scientific and Technical Information of China (English)

    湛静; 陈发波

    2014-01-01

    玉米是世界第二大粮食作物,同时也是我国第一大农作物。磷是玉米生长发育所必需的元素之一,充当生物膜和核酸的重要组成元素,缺磷将严重影响玉米的生长发育。综述了缺磷对玉米苗期性状、根系、生理生化特性及产量等方面的影响。%Zea mays is not only the second largest food crops in the world ,but also the first major crops in China.Phosphorus ,one of the essential elements making up biofilm and nucleic acid ,is indispensable to Zea mays.Phosphorus deficiency will affect growth and development of Zea mays.This article summarized the effects of low phosphorus stress on seedling traits ,root,physiological and biochemistry characteristics ,and yield in Zea mays.

  1. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review

    Directory of Open Access Journals (Sweden)

    Zahid Anwar

    2014-04-01

    Full Text Available From the last several years, in serious consideration of the worldwide economic and environmental pollution issues there has been increasing research interest in the value of bio-sourced lignocellulosic biomass. Agro-industrial biomass comprised on lignocellulosic waste is an inexpensive, renewable, abundant and provides a unique natural resource for large-scale and cost-effective bio-energy collection. To expand the range of natural bio-resources the rapidly evolving tools of biotechnology can lower the conversion costs and also enhance target yield of the product of interest. In this background green biotechnology presents a promising approach to convert most of the solid agricultural wastes particularly lignocellulosic materials into liquid bio based energy-fuels. In fact, major advances have already been achieved to competitively position cellulosic ethanol with corn ethanol. The present summarized review work begins with an overview on the physico-chemical features and composition of agro-industrial biomass. The information is also given on the multi-step processing technologies of agro-industrial biomass to fuel ethanol followed by a brief summary of future considerations.

  2. Teosinte inflorescence phytolith assemblages mirror Zea taxonomy.

    Directory of Open Access Journals (Sweden)

    John P Hart

    Full Text Available Molecular DNA analyses of the New World grass (Poaceae genus Zea, comprising five species, has resolved taxonomic issues including the most likely teosinte progenitor (Zea mays ssp. parviglumis of maize (Zea mays ssp. mays. However, archaeologically, little is known about the use of teosinte by humans both prior to and after the domestication of maize. One potential line of evidence to explore these relationships is opaline phytoliths produced in teosinte fruit cases. Here we use multidimensional scaling and multiple discriminant analyses to determine if rondel phytolith assemblages from teosinte fruitcases reflect teosinte taxonomy. Our results indicate that rondel phytolith assemblages from the various taxa, including subspecies, can be statistically discriminated. This indicates that it will be possible to investigate the archaeological histories of teosinte use pending the recovery of appropriate samples.

  3. Estimation of long-terminal repeat element content in the Helicoverpa zea genome from next generation sequencing of reduced representation bacterial artificial chromosome (BAC) pools

    Science.gov (United States)

    The lepidopteran pest insect, Helicoverpa zea, feeds on cultivated corn and cotton crops in North America where control remains challenging due to evolution of resistance to chemical and transgenic insecticidal toxins, yet few genomic resources are available for this species. A bacterial artificial...

  4. Seeding date affects fall growth of winter canola (Brassica napus L. ‘Baldur’) and its performance as a winter cover crop in central Iowa

    Science.gov (United States)

    In recent years, interest has increased in finding non-grass cover crop species that could be planted after soybean (Glycine max (L) Merr.) and before corn (Zea mays L.) in Iowa crop rotations. In this study, we investigate the use of winter canola (Brassica napus L.) as an alternative cover crop fo...

  5. Cover crop management practices-implications for early season weed control in conservation tillage corn cotton rotation

    Science.gov (United States)

    Use of the winter cover crops is an integral component of the conservation systems in corn (Zea mays L.) and cotton (Gossypium hirsutum L.). A field experiment was initiated in 2004 to evaluate weed suppression provided by winter cover crops in a conservation tillage corn and cotton rotation. Rotati...

  6. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China

    NARCIS (Netherlands)

    Wang, X.B.; Dai, K.; Zhang, D.; Zhang, X.; Wang, Y.; Zhao, Q.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.

    2011-01-01

    Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming

  7. A new nitrogen index for assessment of nitrogen management practices of Andean Mountain cropping systems of Ecuador

    Science.gov (United States)

    Corn (Zea mays L.) is the most important crop for food security in several regions of Ecuador. Small farmers are using nitrogen (N) fertilizer without technical advice based on soil, crop and climatological data. The scientific literature lacks studies where tools are validated that can be used to q...

  8. Using corngrass1 to engineer poplar as a bioenergy crop

    Energy Technology Data Exchange (ETDEWEB)

    Meilan, Richard; Rubinelli, Peter Marius; Chuck, George

    2016-05-10

    Embodiments of the present invention relate generally to new bioenergy crops and methods of creating new bioenergy crops. For example, genes encoding microRNAs (miRNAs) are used to create transgenic crops. In some embodiments, over-expression of miRNA is used to produce transgenic perennials, such as trees, with altered lignin content or composition. In some embodiments, the transgenic perennials are Populus spp. In some embodiments, the miRNA is a member of the miR156 family. In some embodiments, the gene is Zea mays Cg1.

  9. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology.

    Science.gov (United States)

    Johnston-Monje, David; Raizada, Manish N

    2011-01-01

    , Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration.

  10. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology.

    Directory of Open Access Journals (Sweden)

    David Johnston-Monje

    isolate, Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration.

  11. Climate effects on crop yields in the Northeast Farming Region of China during 1961–2010

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Olesen, Jørgen Eivind; Wang, M.

    2016-01-01

    Crop production in the Northeast Farming Region of China (NFR) is affected considerably by variation in climatic conditions. Data on crop yield and weather conditions from a number of agro-meteorological stations in NFR were used in a mixed linear model to evaluate the impacts of climatic variables...... on the yield of maize (Zea mays L.), rice (Oryza sativa L.), soybean (Glycine max L. Merr.) and spring wheat (Triticum aestivum L.) in different crop growth phases. The crop growing season was divided into three growth phases based on the average crop phenological dates from records covering 1981 and 2010...

  12. Genetics and consequences of crop domestication.

    Science.gov (United States)

    Flint-Garcia, Sherry A

    2013-09-01

    Phenotypic variation has been manipulated by humans during crop domestication, which occurred primarily between 3000 and 10000 years ago in the various centers of origin around the world. The process of domestication has profound consequences on crops, where the domesticate has moderately reduced genetic diversity relative to the wild ancestor across the genome, and severely reduced diversity for genes targeted by domestication. The question that remains is whether reduction in genetic diversity has affected crop production today. A case study in maize ( Zea mays ) demonstrates the application of understanding relationships between genetic diversity and phenotypic diversity in the wild ancestor and the domesticate. As an outcrossing species, maize has tremendous genetic variation. The complementary combination of genome-wide association mapping (GWAS) approaches, large HapMap data sets, and germplasm resources is leading to important discoveries of the relationship between genetic diversity and phenotypic variation and the impact of domestication on trait variation.

  13. Urinary deoxynivalenol (DON) and zearalenone (ZEA) as biomarkers of DON and ZEA exposure of pigs.

    Science.gov (United States)

    Thanner, S; Czeglédi, L; Schwartz-Zimmermann, H E; Berthiller, F; Gutzwiller, A

    2016-05-01

    Four diets contaminated with 1.1 to 5.0 mg/kg deoxynivalenol (DON) and 0.4 to 2.4 mg/kg zearalenone (ZEA) were fed to four groups of six growing Large White pigs. Urine samples were collected after 3 to 4 days and again after 6 to 7 days on the diets. On each sampling day, half of the animals were sampled in the morning, after an 8-h fast, and the other half were sampled in the afternoon, after 7 h of ad libitum access to feed. The urinary concentrations of DON, DON-glucuronide, DON-3-sulphate, de-epoxy-DON, as well as of ZEA, ZEA-14-glucuronide, α-zearalenol and α-zearalenol-14-glucuronide, analysed using LC-MS/MS, were used to calculate urinary DON and ZEA equivalent concentrations (DONe and ZEAe). The urinary concentration of DONe (P < 0.001), but not of ZEAe (P = 0.31), was lower in the fasted than that in the fed animals. The urinary DONe/creatinine and ZEAe/creatinine ratios were highly correlated with DON and ZEA intake per kg body weight the day preceding sampling (r = 0.76 and 0.77; P < 0.001). The correlations between DON intake during the 7 h preceding urine sampling in the afternoon and urinary DONe/creatinine ratio (r = 0.88) as well as between mean ZEA intake during 3 days preceding urine sampling and urinary ZEAe/creatinine ratio (r = 0.84) were even higher, reflecting the plasma elimination half-time of several hours for DON and of more than 3 days for ZEA. ZEAe analysed in enzymatically hydrolysed urine using an ELISA kit was highly correlated with the LC-MS/MS data (r = 0.94). The urinary DONe and ZEAe to creatinine ratios, analysed in pooled urine samples of several pigs fed the same diet, can be used to estimate their exposure to DON and ZEA.

  14. CROPS Clever Robots for Crops

    NARCIS (Netherlands)

    Bontsema, J.; Hemming, J.; Pekkeriet, E.J.

    2015-01-01

    In the EU-funded CROPS project robots are developed for site-specific spraying and selective harvesting of fruit
    and fruit vegetables. The robots are being designed to harvest crops, such as greenhouse vegetables, apples,
    grapes and for canopy spraying in orchards and for precision target sp

  15. Changes in mycorrhiza development in maize induced by crop management practices

    DEFF Research Database (Denmark)

    Gavito, M.E.; Miller, M.H.

    1998-01-01

    (Zea mays L.) or with the original plant species in the field site, bromegrass (Bromus inermis Leys.) and alfalfa (Medicago sativa L.). The delay in mycorrhiza development after cropping with canola was also observed in samples taken from the field and in a bioassay, both conducted at the beginning......We selected three crop production practices; crop rotation, tillage and phosphorus fertilization, all known to affect arbuscular mycorrhiza (AM) development, to study early AM intraradical colonization in maize. Half of the plots were planted during the first year with either a host (maize, Zea...... mays L.) or a non-host (canola, Brassica napus L.) crop, and all of them with maize for the second year. Tillage and P fertilization treatments were applied to the plots in the second year. Mycorrhiza development in maize was measured in pot culture bioassays conducted before planting and after harvest...

  16. Tillage and crop residue effects on rainfed wheat and maize production in Nortern China

    NARCIS (Netherlands)

    Wang Xiaobin,; Wu Huijin,; Dai Kuai,; Zhang Dingchen,; Feng Donghui,; Zhao Quansheng,; Wu Xueping,; Jin Ke,; Cai Diangxiong,; Oenema, O.; Hoogmoed, W.B.

    2012-01-01

    Dryland farming in the dry semi-humid regions of northern China is dominated by mono-cropping systems with mainly maize (Zea mays L.) or wheat (Triticum aestivum), constrained by low and variable rainfall, and by improper management practices. Addressing these problems, field studies on tillage and

  17. Tillage and crop rotation effects on soil quality in two Iowa fields

    Science.gov (United States)

    Soil quality is affected by inherent (parent material, climate, and topography) and anthropogenic (tillage and crop rotation) factors. We evaluated effects of five tillage treatments on 23 potential soil quality indicators after 31 years in a corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] rotat...

  18. Crop growth and production responses to commercial humic products in U.S. Midwestern rainfed conditions

    Science.gov (United States)

    Humic products (humic and/or fulvic acids) have been in use for over 100 years, yet published research is scant on crop responses to humics under differing soil and weather conditions. We initiated field research experiments on corn (Zea mays L.) in Iowa in 2009 and have since expanded to multiple U...

  19. Innovations and economic success in Finnish equine and bio-energy enterprises; Innovaatiotoiminta ja taloudellinen menestyminen hevosalan ja bioenergia-alan pienyrityksissae

    Energy Technology Data Exchange (ETDEWEB)

    Tiilikainen, S.

    2009-07-01

    Cluster of industries is the critical mass of industries, which are located into certain geographical areas. In cluster supporting and related industries are linked through vertical and a horizontal relationship. Rural clusters are based on local traditions, resources and knowledge. The key advantage of cluster of industries is the fact that innovations are often created in them. The purpose of this study is to find out how creation of innovations can be improved in rural cluster of industries. The subject of this study is the link between innovations and the financial success of enterprises. The research questions are formulated as: What kinds of innovations take place in equine and bio-energy enterprises? How different factors affect to innovations made in these enterprises? How does competitiveness, the economic success of enterprises relate these innovations? Theoretical background of the study lies on the Schumpeter's' theory of entrepreneurship and innovations are defined broadly as doing new things or doing things already done on a new way. Data were collected by postal survey in August 2008 (n =165), the respondents were equine entrepreneurs from Uusimaa region and bio-energy entrepreneurs in Pohjois-Pohjanmaa region. Data were analysed using multivariate analyses. The study results reveal that, most of the innovations related to services or pricing the services. It was fairly uncommon to develop new business models, which was worrying, because many of the enterprises had enlarged or invested heavily on the capacity. The economic success did relate to innovations; those enterprises who performed poorly had not introduced any innovations or improvements during past three years, whist enterprises with good or average performance had introduced innovations or improvements. (orig.)

  20. The potential of intercropping food crops and energy crop to improve productivity of a degraded agriculture land in arid tropics

    Directory of Open Access Journals (Sweden)

    I.K.D. Jaya

    2014-04-01

    Full Text Available Degraded agricultural lands in the arid tropics have low soil organic carbon (SOC and hence low productivity. Poor farmers that their livelihoods depend highly on these types of lands are suffering. Cropping strategies that are able to improve the soil productivity are needed. In the present study, some intercropping models of food crops with bio-energy crop of castor (Ricinus communis L. were tested to assess their potential to improve the degraded land productivity. The intercropping models were: (1 castor - hybrid maize, (2 castor – short season maize, (3 castor – mungbean, and (4 castor –short season maize – mungbean. The results show that yields of the component crops in monoculture were relatively the same as in intercropping, resulted in a high Land Equivalent Ratio (LER. The highest LER (3.07 was calculated from intercropping castor plants with short season maize crops followed by mungbean with intercropping productivity of IDR 15,097,600.00 ha-1. Intercropping has a great potential to improve degraded agriculture land productivity and castor is a promising plant to improve biodiversity and area coverage on the land.

  1. Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model

    Science.gov (United States)

    Liu, Xing; Chen, Fei; Barlage, Michael; Zhou, Guangsheng; Niyogi, Dev

    2016-12-01

    Croplands are important in land-atmosphere interactions and in the modification of local and regional weather and climate; however, they are poorly represented in the current version of the coupled Weather Research and Forecasting/Noah with multiparameterization (Noah-MP) land surface modeling system. This study introduced dynamic corn (Zea mays) and soybean (Glycine max) growth simulations and field management (e.g., planting date) into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at field scales using crop biomass data sets, surface heat fluxes, and soil moisture observations. Compared to the generic dynamic vegetation and prescribed-leaf area index (LAI)-driven methods in Noah-MP, the Noah-MP-Crop showed improved performance in simulating leaf area index (LAI) and crop biomass. This model is able to capture the seasonal and annual variability of LAI and to differentiate corn and soybean in peak values of LAI as well as the length of growing seasons. Improved simulations of crop phenology in Noah-MP-Crop led to better surface heat flux simulations, especially in the early period of growing season where current Noah-MP significantly overestimated LAI. The addition of crop yields as model outputs expand the application of Noah-MP-Crop to regional agriculture studies. There are limitations in the use of current growing degree days (GDD) criteria to predict growth stages, and it is necessary to develop a new method that combines GDD with other environmental factors, to more accurately define crop growth stages. The capability introduced in Noah-MP allows further crop-related studies and development.

  2. Evaluating the physiological state of maize (Zea mays L.) plants by direct-injection electrospray mass spectrometry (DIESI-MS).

    Science.gov (United States)

    García-Flores, Martín; Juárez-Colunga, Sheila; Montero-Vargas, Josaphat Miguel; López-Arciniega, Janet Ana Isabel; Chagolla, Alicia; Tiessen, Axel; Winkler, Robert

    2012-06-01

    Climatic change is an increasing challenge for agriculture that is driving the development of suitable crops in order to ensure supply for both human nutrition and animal feed. In this context, it is increasingly important to understand the biochemical responses of cells to environmental cues at the whole system level, an aim that is being brought closer by advances in high throughput, cost-efficient plant metabolomics. To support molecular breeding activities, we have assessed the economic, technical and statistical feasibility of using direct mass spectrometry methods to evaluate the physiological state of maize (Zea mays L.) plants grown under different stress conditions.

  3. Glucolipids of Zea mays and Pisum sativum

    Energy Technology Data Exchange (ETDEWEB)

    Morohashi, Y.; Bandurski, R.S.

    1976-06-01

    The glucolipids formed upon feeding (U--/sup 14/C)glucose to embryos of Zea mays were partially characterized with respect to: (a) metabolic turnover, (b) acid lability, (c) phosphorus content, (d) chromatographic properties, and (e) hydrolysis products. The chloroform--methanol-soluble-assimilated radioactivity was examined specifically for occurrence of a glycosylated prenol phosphate. With the extraction conditions used, no evidence was found for formation of a glucosylated prenol phosphate. Several, as yet unidentified, acid-labile glucolipids undergoing metabolic turnover were observed. Four diglycerides were characterized as hydrolysis products of a fraction that contained /sup 14/C-glucose and phosphorus, and was subject to metabolic turnover. Examination of the 1-butanol-soluble glucolipids from pea (Pisum sativum) seedlings also demonstrated anionic glucolipids, evidencing metabolic turnover but none with the properties of glucosylated prenol phosphate.

  4. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  5. Influence of Dual-Bt Protein Corn on Bollworm, Helicoverpa zea (Boddie), Survivorship on Bollgard II Cotton.

    Science.gov (United States)

    Von Kanel, M B; Gore, J; Catchot, A; Cook, D; Musser, F; Caprio, M

    2016-04-01

    Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae.

  6. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Science.gov (United States)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  7. Compositional equivalency of Cry1F corn event TC6275 and conventional corn (Zea mays L.).

    Science.gov (United States)

    Herman, Rod A; Phillips, Amy M; Collins, Randy A; Tagliani, Laura A; Claussen, Fred A; Graham, Christopher D; Bickers, Brenda L; Harris, Travis A; Prochaska, Lee M

    2004-05-01

    Maize (Zea mays L.) plants have been transformed to express a Cry1F insecticidal crystal protein originally isolated from Bacillus thuringiensis Berliner. This protein controls lepidopteran pests of maize, including the European corn borer, Ostrinia nubilalis (Hübner). As part of the safety assessment for crops containing transgenes, a compositional analysis of the food and feed is conducted. This analysis is designed to detect unintended changes in the nutrient and antinutrient content of the raw commodities produced by the crop due to the insertion of the genes into the genomic DNA of the plant (pleotropic effects). Samples of transgenic and nontransgenic maize forage and grain were collected from six field sites located in the U.S. and Canada. Forage samples were analyzed for proximates and minerals, and grain was further analyzed for fatty acids, amino acids, vitamins, secondary metabolites, and antinutrients. Results demonstrated that maize expressing the Cry1F protein was equivalent to nontransgenic maize with respect to these important components. Comparison of the variability within the nontransgenic and transgenic hybrid, as compared to composition values reported in the literature, suggest that factors other than transgenes may contribute more substantially to the composition of crops.

  8. Stover removal and cover crops effects on corn production and water use under full and limited irrigation

    Science.gov (United States)

    Corn (Zea mays L.) residue removal in irrigated cropping systems for livestock forage or cellulosic ethanol is of great interest in south-central Nebraska. Irrigation water restrictions in the region have also resulted in adoption of limited-irrigation strategies. Little is known regarding the inter...

  9. 2. symposium energy crops 2009; 2. Symposium Energiepflanzen 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-27

    Within the meeting '2nd Symposium energy plants 2009', held at 17th to 18th November, 2009, in Berlin (Federal Republic of Germany), the following lectures were held: (1) The bio energy policy of the Federal Government in the area of attention between climatic protection, ecology and economy (Ilse Aigner); (2) Chances and threatens of cultivation of energy plants for a sustainable energy supply (Alois Heissenhuber); (3) Certification as a prerequisite of the global exploration of bio energy (Andreas Feige); (4) A project support in the field of cultivation of energy plants, a review (Andreas Schuette); (5) Results from the investigation of the crop rotation in the EVA network (Armin Vater); (6) Optimisation of the cultivation technology of sorghum millets (Christian Roehricht); (7) The two-culture utilization system - a comparison between ecologic and conventional cultivation (Reinhold Stuelpnagel); (8) Crop rotation with energy plants - Chances and threatens for the plant protection (Baerbel Gerowitt); (9) Efficiency of utilization of water for energy plants (Siegfried Schittenhelm); (10) Utilization of arable food grasses and permanent grassland as a substrate for biogas (Matthias Benke); (11) Economical evaluation of plant fermentation substrates (Dominik Reus); (12) Energy plants as a challenge for the agricultural engineering (Heiner Bruening); (13) Influence of the design of cultivation on the subsequent effects of the cultivation of energy plants (Michael Glemnitz); (14) Energy plants and waters protection - Key aspects and possible options of action (Heike Nitsch); (15) Neophytes as energy plants - Chances and threatens (Werner Kuhn); (16) Manifold in te landscape - extensive cultivation systems with renewable raw materials as an option for nature protection? (Peer Heck); (17) Ecologic aspects of agro forestry systems (Holger Gruenewald); (18) Enhancement of the potential of energy yield of winter wheat (Wolfgang Friedt); (19) Interspersed silphie

  10. Transforming Canada's forestry sector - Bio-energy and bio-products: Good for the planet, job creation and bottom line

    Energy Technology Data Exchange (ETDEWEB)

    Cobden, C. (Forest Products Assosiation of Canada, Ottawa, ON (Canada)), e-mail: catherine.cobden@FPAC.ca

    2010-07-01

    The Forest Products Association of Canada (FPAC) and CIBC World Markets have recently completed a new study with the goal of overhauling Canada's dominant pulp and paper industry for a new millennium. The FPAC report identified a number of emerging bio-industries that use wood fibre. A wide array of bio-energy, bio-fuels and bio-chemicals can be made using wood to create more environmentally friendly and cost-effective alternatives to those produced using fossil fuels. The study highlighted viable opportunities for the forestry sector to return to profitability - with the right investments in the right areas. Although some paper segments face very challenging economics without transformation, many segments in this sector show significant financial potential under a bio-refinery scenario. In addition to pulp and paper, this sector can become a major player in energy production and the bio-chemical industry. The ability to produce energy, fuel and chemicals from green hydrocarbons, along with forests' capacity to sequester carbon from the atmosphere, will change the nature of the game for Canada's forest products sector. Presenters will review the opportunities available for the environment, forestry workers, communities and the economy at large. (orig.)

  11. Inhibitory Effects of Bio-Energy Therapies on Cancer Growth——An overview of recent laboratory studies in the U.S. And its implications in cancer treatment

    Institute of Scientific and Technical Information of China (English)

    Kevin W. Chen

    2008-01-01

    Bioenergy therapies (such as Qigong, Reiki, Yoga, Pranic healing, and Therapeutic touch) have reported benefits for cancer patients, but few randomized control trials were done to verify their efficacy. It is believed that laboratory study of inhibitory effects of bio-energy therapies on cancer growth may lead to an understanding of the true efficacy of bio-energy and create a foundation for future clinical trials. Methods: Typical in-vitro study involved randomly dividing lab-prepared cancer cells into different groups with one being treated by bio-energy therapy and one or more as control groups. Sometimes, controls were treated by a sham healer. Typical in vivo study involved injecting or implanting cancerous cells into mice, then randomly dividing them into various groups. The control could be either non-treatment or sham treatment; the outcomes include tumor size or survival time. Results: Most studies demonstrated some inhibitory effects of bioenergy therapies on the growth of cancer cells in comparison with control. The in vivo studies reported that the bio-energy treated group had significantly slower tumor growth or longer survival lives than those in the control. One study reported survival with a normal life cycle instead of dying in 3 weeks, and cancer-infected mice developed immune response to the same breast cancer. However, researchers are confronted with methodological challenges in choosing appropriate controis, minimizing contamination, and replicating study outcomes. Conclusion: Encouraging evidence suggests hioenergy may have inhibitory effects on cancer growth, or prolong the life of cancer-infected animals, although improvement is needed in research design and replication of the findings. Bioenergy for cancer treatment is an area that is often neglected by mainstream medicine and research,and it should be seriously examined and considered as an important supplement to conventional cancer treatment.

  12. A seed mixture increases dominance of resistance to Bt cotton in Helicoverpa zea.

    Science.gov (United States)

    Brévault, Thierry; Tabashnik, Bruce E; Carrière, Yves

    2015-05-07

    Widely grown transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) can benefit agriculture, but adaptation by pests threatens their continued success. Refuges of host plants that do not make Bt toxins can promote survival of susceptible insects and delay evolution of resistance, particularly if resistance is inherited as a recessive trait. However, data have been lacking to compare the dominance of resistance when Bt and non-Bt seeds are planted in random mixtures versus separate blocks. Here we report results from greenhouse experiments with transgenic cotton producing Bt toxin Cry1Ac and the bollworm, Helicoverpa zea, showing that the dominance of resistance was significantly higher in a seed mixture relative to a block of Bt cotton. The proportion of larvae on non-Bt cotton plants in the seed mixture was also significantly higher than expected under the null hypothesis of random distribution. In simulations based on observed survival, resistance evolved 2- to 4.5-fold faster in the seed mixture relative to separate blocks of Bt and non-Bt cotton. These findings support previous modelling results indicating that block refuges may be more effective than seed mixtures for delaying resistance in pests with mobile larvae and inherently low susceptibility to the toxins in Bt crops.

  13. Plant species coexistence alleviates the impacts of lead on Zea mays L.

    Institute of Scientific and Technical Information of China (English)

    Ruyi Yang; Ling Liu; Shuting Zan; Jianjun Tang; Xin Chen

    2012-01-01

    Whether plant coexistence can reduce the impacts of lead(Pb)on crops in agroecosystems has not been well understood.We conducted a factorial experiment to investigate the effects of weeds coexisting with maize(Zea mays L.)on Pb accumulation in maize and soil microbes at two Pb levels(ambient and 300 mg/kg).Elevated Pb tended to increase the Pb concentration in maize and decreased soil microbial activity(indicated by the average well color development,AWCD),functional group diversity,as well as arbuscular mycorrhizal(AM)colonization and vesicle number of maize.Compared to the monoculture,weeds coexisting with maize reduced the Pb concentrations in the root,leaf,sheath and stem of maize at both seedling and mature stages.In maize-weed mixtures,soil microbial activity and functional group diversity tended to increase for both Pb treatments relative to the monoculture.Furthermore,principal component analysis revealed that the soil microbial community structure changed with the introduction of weeds.The highest Pb accumulation in weeds occurred for the elevated Pb treatment in a three species mixture.The results suggest that multiple plant species coexistence could reduce lead accumulation in crop plants and alleviate the negative impacts on soil microbes in polluted land,thereby highlighting the significance of plant diversity in agroecosystems.

  14. 玉米苞叶中新黄酮类化合物的分离和鉴定%Isolation and Identification of Novel Flavonoids from the Bract of Zea mays L

    Institute of Scientific and Technical Information of China (English)

    张沐新; 刘银燕; 孙薇; 杨晓虹; 王广树

    2011-01-01

    从玉米(Zea maysL)苞叶乙醇提取物中分离得到了4个黄酮类化合物,采用UV,IR,MS,1D NMR和2D NMR方法对化合物的结构进行了鉴定,它们分别为苜蓿素(1)、苜蓿素-5-O-β-D-吡喃葡萄糖苷(2)、苜蓿素-7-O-β-D-吡喃葡萄糖苷(3)和苜蓿素-7-O-[β-D-呋喃芹糖基-(1-2)]β-D-吡喃葡萄糖苷(4).其中,化合物4为新化合物,化合物1~3为首次从该植物中分离得到.%Zea mays ( maize) , a member of the Poaceae, is the most economically important crop in China,about 24 million hectares of Zea mays has been cultivated each year in China, there is about 600 kg of the bract of Zea mays per hectare, and thus the resources of the bract of Zea mays is extremely rich. Although there are some pharmacological activity researches about radical scavenging activity against hydroxyl radical and superoxide anion radical, reducing blood lipid and inhibiting arteriosclerosis, the studies on phytochemical constituents of the bract of Zea mays have not been reported. In order to utilize the resources of the bract ofZea mays, we investigated the chemical constituents of the bract of Zea mays. The air-dried bract ol Zea mays was extracted with 95% ethanol at room temperature, the extract was subjected to Diaion AB-8 column chro-matography eluated with ethanol-H2O, and the eluate was further chromatographed on silica gel and Sephadex LH-20 columns repeatedly to yield 4 flavonoid compounds. Their structures were identified as tricin( 1) , tricin 5-0-β-D-glucopyranoside(2) , tricin 7-O-/M>-glucopyranoside(3) , tricin 7-0-[β-D-apifuranosyl( 1-+2) ]-β-D-glucopyranoside(4) by spectral analysis(UV, IR, MS and ID, 2D NMR) , respectively. Among them, compound 4 is a new flavonoid compound, compounds 1, 2 and 3 are firstly isolated from this plant.

  15. Simulating Stochastic Crop Management in Cropping Systems

    Science.gov (United States)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  16. Breeding for culinary and nutritional quality of common bean (Phaseolus vulgaris L. in intercropping systems with maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Rodino A.P.

    1999-01-01

    Full Text Available Common bean (Phaseolus vulgaris L. is widely intercropped with maize (Zea mays L. in the North of Spain. Breeding beans for multiple cropping systems is important for the development of a productive and sustainable agriculture, and is mainly oriented to minimize intercrop competition and to stabilize complementarity with maize. Most agricultural research on intercropping to date has focused on the agronomic and overall yield effects of the different species, but characters related with socio-economic and food quality aspects are also important. The effect of intercropping beans with maize on food seed quality traits was studied for thirty-five bush bean varieties under different environments in Galicia (Northwestern Spain. Parameters determining Asturian (Northern Spain white bean commercial and culinary quality have also been evaluated in fifteen accessions. There are significant differences between varieties in the selected cropping systems (sole crop, intercrop with field maize and intercrop with sweet maize for dry and soaked seed weight, coat proportion, crude protein, crude fat and moisture. Different white bean accessions have been chosen according to their culinary quality. Under these environmental conditions it appears that intercropping systems with sweet maize give higher returns than sole cropping system. It is also suggested that the culinary and nutritional quality potential of some white bean accessions could be the base material in a breeding programme the objectives of which are to develop varieties giving seeds with high food quality.

  17. Effect of winter cover crops on nematode population levels in north Florida.

    Science.gov (United States)

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.

  18. SOIL CHEMICAL ATTRIBUTES AND LEAF NUTRIENTS OF ‘PACOVAN’ BANANA UNDER TWO COVER CROPS

    Directory of Open Access Journals (Sweden)

    JOSÉ EGÍDIO FLORI

    2016-01-01

    Full Text Available Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloides, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus communis L., Canavalia ensiformis, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1 and between the banana rows (location 2. There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.

  19. SETIS Magazine: BioEnergy

    OpenAIRE

    Baxter, David

    2014-01-01

    The SETIS magazine aims at delivering timely information and analysis on the state of play of energy technologies, related research and innovation efforts in support of the implementation of the European Strategic Energy Technology Plan. The editorial for the Bioenergy issue is provided by European Biomass Association President Gustav Melin. This issue also hosts interviews by: Juan Carrasco - European Energy Research Alliance (EERA) Bioenergy Joint Programme Coordinator Christia...

  20. Assessment of heavy metal accumulation and performance Of some physiological parameters in zea mays l. And Vic1a faba l. Grown on soil amended by sewage Sludge resulting from sewage water Treatment in the state of qatar

    OpenAIRE

    Mazen, A. M. A.

    1995-01-01

    Pot experiment was conducted to explore extent of concerns regarding agricultural use of sewage sludge for crop production in the state of Qatar. Extent of heavy metal accumulation and its subsequent impact on physiological performance in Zea mays and Viciafaba plants grown on sludge - amended soils was explored. Analysis revealed that all tested heavy metals were several times higher in pure sludge compared to pure garden soil. Plants grown in sludge -mixed soil accumulated large amounts of ...

  1. Influence du décalage du semis du niébé (Vigna unguiculata (L.) Walp) par rapport au maïs (Zea mays L.) sur la croissance et le rendement du niébé

    OpenAIRE

    Osiru, DSO.; Ocaya, CP.; Adipala, E.

    2002-01-01

    Effect of Time of Planting Cowpea (Vigna unguiculata (L.) Walp) Relative to Maize (Zea mays L.) on Growth and Yield of Cowpea. Field investigations were carried out for three seasons in two locations of Uganda to examine yield benefits when cowpea and maize are planted under intensive farming conditions. Additive mixtures of cowpea were planted into maize thrice at 2 weekly intervals together with sole crops. Time of introducing cowpea into maize significantly affected both the growth and yie...

  2. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    Science.gov (United States)

    Hively, Wells; Sjoerd Duiker,; Greg McCarty,; Prabhakara, Kusuma

    2015-01-01

    In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d’ Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery

  3. Induced cytomictic diversity in maize (Zea mays L.) inbred.

    Science.gov (United States)

    Rai, Prashant Kumar; Kumar, Girjesh; Tripathi, Avinash

    2010-01-01

    Mutation breeding has been used for improving oligogenic and polygenic characters, disease resistance and quantitative characters including yielding ability. The cytological stability of maize inbred lines is an important consideration in view of their extensive use in genetics and plant breeding research. Investigation in Zea mays L. confirms that the migration of chromosomes is a real event that cannot be misunderstood as an artifact produced by fixation or mechanical injuries. During present investigation, we found that out of six inbred lines of Zea mays L. viz. CM-135, CM-136, CM-137, CM-138, CM-142 and CM-213 at various treatment doses of gamma irradiations viz. 200, 400 and 600 Gy, some of the plants of inbred line CM- 138 at 200 Gy dose displayed characteristic cytoplasmic connections during all the stages of meiosis. Four plants from this treatment set were found to be engaged in a rare phenomenon reported as "Cytomixis". It elucidates that in inbred of Zea mays L., induced cytomixis through gamma rays treatment may be considered to be a possible source of production of aneuploid and polyploid gametes. This phenomenon may have several applications in Zea mays L. improvement in the sense of diversity and ever yield potential.

  4. Demographics and genetic variability of the new world bollworm (Helicoverpa zea) and the old world bollworm (Helicoverpa armigera) in Brazil.

    Science.gov (United States)

    Leite, Natália A; Alves-Pereira, Alessandro; Corrêa, Alberto S; Zucchi, Maria I; Omoto, Celso

    2014-01-01

    Helicoverpa armigera is one of the primary agricultural pests in the Old World, whereas H. zea is predominant in the New World. However, H. armigera was first documented in Brazil in 2013. Therefore, the geographical distribution, range of hosts, invasion source, and dispersal routes for H. armigera are poorly understood or unknown in Brazil. In this study, we used a phylogeographic analysis of natural H. armigera and H. zea populations to (1) assess the occurrence of both species on different hosts; (2) infer the demographic parameters and genetic structure; (3) determine the potential invasion and dispersal routes for H. armigera within the Brazilian territory; and (4) infer the geographical origin of H. armigera. We analyzed partial sequence data from the cytochrome c oxidase subunit I (COI) gene. We determined that H. armigera individuals were most prevalent on dicotyledonous hosts and that H. zea were most prevalent on maize crops, based on the samples collected between May 2012 and April 2013. The populations of both species showed signs of demographic expansion, and no genetic structure. The high genetic diversity and wide distribution of H. armigera in mid-2012 are consistent with an invasion period prior to the first reports of this species in the literature and/or multiple invasion events within the Brazilian territory. It was not possible to infer the invasion and dispersal routes of H. armigera with this dataset. However, joint analyses using sequences from the Old World indicated the presence of Chinese, Indian, and European lineages within the Brazilian populations of H. armigera. These results suggest that sustainable management plans for the control of H. armigera will be challenging considering the high genetic diversity, polyphagous feeding habits, and great potential mobility of this pest on numerous hosts, which favor the adaptation of this insect to diverse environments and control strategies.

  5. Demographics and genetic variability of the new world bollworm (Helicoverpa zea and the old world bollworm (Helicoverpa armigera in Brazil.

    Directory of Open Access Journals (Sweden)

    Natália A Leite

    Full Text Available Helicoverpa armigera is one of the primary agricultural pests in the Old World, whereas H. zea is predominant in the New World. However, H. armigera was first documented in Brazil in 2013. Therefore, the geographical distribution, range of hosts, invasion source, and dispersal routes for H. armigera are poorly understood or unknown in Brazil. In this study, we used a phylogeographic analysis of natural H. armigera and H. zea populations to (1 assess the occurrence of both species on different hosts; (2 infer the demographic parameters and genetic structure; (3 determine the potential invasion and dispersal routes for H. armigera within the Brazilian territory; and (4 infer the geographical origin of H. armigera. We analyzed partial sequence data from the cytochrome c oxidase subunit I (COI gene. We determined that H. armigera individuals were most prevalent on dicotyledonous hosts and that H. zea were most prevalent on maize crops, based on the samples collected between May 2012 and April 2013. The populations of both species showed signs of demographic expansion, and no genetic structure. The high genetic diversity and wide distribution of H. armigera in mid-2012 are consistent with an invasion period prior to the first reports of this species in the literature and/or multiple invasion events within the Brazilian territory. It was not possible to infer the invasion and dispersal routes of H. armigera with this dataset. However, joint analyses using sequences from the Old World indicated the presence of Chinese, Indian, and European lineages within the Brazilian populations of H. armigera. These results suggest that sustainable management plans for the control of H. armigera will be challenging considering the high genetic diversity, polyphagous feeding habits, and great potential mobility of this pest on numerous hosts, which favor the adaptation of this insect to diverse environments and control strategies.

  6. Allelopathy in agroforestry systems: the effects of leaf extracts ofCupressus lusitanica and threeEucalyptus spp. on four Ethiopian crops

    DEFF Research Database (Denmark)

    Lisanework N.; Michelsen, Anders

    1993-01-01

    The potential allelopathic effect ofCupressus lusitanica, Eucalyptus globulus, E. camaldulensis andE. saligna on seed germination, radicle and seedling growth was investigated with four crops:Cicer arietinum (chickpea),Zea mays (maize),Pisum sativum (pea) andEragrostis tef (teff). Aqueous leaf...

  7. The Biogas from bio-energy electrical power plant of Nuevo Leon; Central electrica de biogas de bioenergia de Nuevo Leon

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu F, Jose L [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Saldana M, Jaime L [Sistemas de Energia Internacional S.A. de C.V. (Mexico)

    2005-07-01

    The biogas from bio-energy electrical power plant of Nuevo Leon represents, in all the national territory, the first experience on the advantage of biogas emitted by the sanitary landfills for the generation of electrical energy. Therefore, one of the specific objectives of this paper is the one of diffusion and reproduction of the same one in other cities of Mexico and Latin America. The project is framed within the world-wide policies on the control of emissions for the reduction of the greenhouse effect gases (GEG) and its impact in the global climatic change. The gas emitted by the trash sanitary landfills, commonly known as biogas, is a gas mixture derived from the decomposition of the organic matter of the municipal trash by microorganisms in anaerobic conditions. Biogas generated in the sanitary landfills has a methane content of 55% and a 35% of carbon dioxide. The balance 10% is made up of water steam, hydrogen, nitrogen, oxygen, hydrogen sulfur and other gases in minimum amounts. [Spanish] La Central Electrica de Biogas de Bioenergia de Nuevo Leon representa, en todo el territorio nacional, la primera experiencia sobre el aprovechamiento del biogas emitido por los rellenos sanitarios para la generacion de energia electrica. Por esta razon, uno de los objetivos especificos de este trabajo es la de difusion y reproduccion del mismo en otras ciudades de Mexico y Latinoamerica. El proyecto esta enmarcado dentro de las politicas mundiales sobre el control de emisiones para la reduccion de los gases de efecto invernadero (GEI) y su impacto en el cambio climatico global. El gas emitido por la basura dispuesta en los rellenos sanitarios, comunmente conocido como biogas, es una mezcla de gases derivado de la descompensacion de la materia organica de la basura municipal por microorganismos en condiciones anaerobias. El biogas generado en los rellenos sanitarios tiene un contenido de metano del 55% y un 35% de bioxido de carbono. El 10% restante se compone de vapor

  8. ZmSOC1, a MADS-box transcription factor from Zea mays, promotes flowering in Arabidopsis.

    Science.gov (United States)

    Zhao, Suzhou; Luo, Yanzhong; Zhang, Zhanlu; Xu, Miaoyun; Wang, Weibu; Zhao, Yangmin; Zhang, Lan; Fan, Yunliu; Wang, Lei

    2014-11-03

    Zea mays is an economically important crop, but its molecular mechanism of flowering remains largely uncharacterized. The gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), integrates multiple flowering signals to regulate floral transition in Arabidopsis. In this study, ZmSOC1 was isolated from Zea mays. Sequence alignment and phylogenetic analysis demonstrated that the ZmSOC1 protein contained a highly conserved MADS domain and a typical SOC1 motif. ZmSOC1 protein was localized in the nucleus in protoplasts and showed no transcriptional activation activity in yeast cells. ZmSOC1 was highly expressed in maize reproductive organs, including filaments, ear and endosperm, but expression was very low in embryos; on the other hand, the abiotic stresses could repress ZmSOC1 expression. Overexpression of ZmSOC1 resulted in early flowering in Arabidopsis through increasing the expression of AtLFY and AtAP1. Overall, these results suggest that ZmSOC1 is a flowering promoter in Arabidopsis.

  9. Comparative analysis of maize (Zea mays) crop performance: natural variation, incremental improvements and economic impacts.

    Science.gov (United States)

    Leibman, Mark; Shryock, Jereme J; Clements, Michael J; Hall, Michael A; Loida, Paul J; McClerren, Amanda L; McKiness, Zoe P; Phillips, Jonathan R; Rice, Elena A; Stark, Steven B

    2014-09-01

    Grain yield from maize hybrids continues to improve through advances in breeding and biotechnology. Despite genetic improvements to hybrid maize, grain yield from distinct maize hybrids is expected to vary across growing locations due to numerous environmental factors. In this study, we examine across-location variation in grain yield among maize hybrids in three case studies. The three case studies examine hybrid improvement through breeding, introduction of an insect protection trait or introduction of a transcription factor trait associated with increased yield. In all cases, grain yield from each hybrid population had a Gaussian distribution. Across-location distributions of grain yield from each hybrid partially overlapped. The hybrid with a higher mean grain yield typically outperformed its comparator at most, but not all, of the growing locations (a 'win rate'). These results suggest that a broad set of environmental factors similarly impacts grain yields from both conventional- and biotechnology-derived maize hybrids and that grain yields among two or more hybrids should be compared with consideration given to both mean yield performance and the frequency of locations at which each hybrid 'wins' against its comparators. From an economic standpoint, growers recognize the value of genetically improved maize hybrids that outperform comparators in the majority of locations. Grower adoption of improved maize hybrids drives increases in average U.S. maize grain yields and contributes significant value to the economy.

  10. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.

    Science.gov (United States)

    Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra

    2015-12-01

    Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.

  11. Optimization of anaerobic digestion of a mixture of Zea mays and Miscanthus sacchariflorus silages with various pig manure dosages.

    Science.gov (United States)

    Bułkowska, K; Pokój, T; Klimiuk, E; Gusiatin, Z M

    2012-12-01

    Digestion of crop silage (Zea mays L. and Miscanthus sacchariflorus) with 0%, 7.5%, 12.5% and 25% pig manure as co-substrate was performed in continuous stirred-tank reactors, for a constant hydraulic retention time of 45 d and organic load rate of 2.1 g L(-1)d(-1). A matrix of correlations between biogas/methane production and parameters of anaerobic digestion was created in order to estimate process stability. The values of the correlation coefficients indicated that the most stable anaerobic digestion was achieved using 7.5% and 12.5% pig manure. In contrast, the positive correlation between ammonium and volatile fatty acids (r=0.8698, psilage alone, pig manure favored the production of biogas and methane; the highest production rates were obtained with 12.5% pig manure.

  12. Oil alternative strategies and mid-long term development goals of bio-energy%石油替代战略与生物质能源中长期发展目标

    Institute of Scientific and Technical Information of China (English)

    李十中

    2011-01-01

    The guarantee feedstock resources for developing bio-energy in China were introduced in this paper, including land resources, forest resources, straw resource, agricultural residual and organic waste. The significance and developing prospect of biomass energy were presented from a strategic perspective. Main bio-energy products and biomass conversion techniques were reviewed, such as fuel ethanol, biodiesel, biogas and bio-pelletes etc. The goals of developing bio-energy at different stages in our nation from now to 2050 were introduced, and some feasible advices were given from the views of policy, technology and environmental protection.%以我国发展生物质能源的资源保障为基础,包括土地资源、林地资源、秸秆资源、农林剩余物,以及有机废弃物资源等,分析了我国生物质资源的地位作用和发展前景,综述了燃料乙醇、生物柴油、沼气等主要生物能源产品及其转化技术,介绍了我国对各种生物质能源产品从目前到2050年分阶段的发展目标,并且从政策、技术、环保等多个角度,提出了一些发展生物质能源的建议.

  13. Pinitol, a larval growth inhibitor for Heliothis zea in soybeans.

    Science.gov (United States)

    Dreyer, D L; Binder, R G; Chan, B G; Waiss, A C; Hartwig, E E; Beland, G L

    1979-09-15

    A search for insect growth inhibitors in methanol extracts of soybean leaves resulted in isolation of pinitol. Pinitol caused a 50% reduction in weight gain (ED50) of Heliothis zea larvae at about 0.7% when added to a synthetic diet. Although myo-inositol is a normal component of the insect diet, it also caused growth inhibition at higher concentrations; ED50 4%.

  14. Indicators of soil quality in the implantation of no-till system with winter crops

    Directory of Open Access Journals (Sweden)

    Marco Antonio Nogueira

    Full Text Available We assessed the effect of different winter crops on indicators of soil quality related to C and N cycling and C fractions in a Rhodic Kandiudult under no-till system at implantation, during two growing seasons, in Londrina PR Brazil. The experimental design was randomized blocks with split-plot in time arrangement, with four replications. The parcels were the winter crops: multicropping of cover crops with black oat (Avena strigosa, hairy vetch (Vicia villosa and fodder radish (Raphanus sativus; sunflower (Heliantus annuus intercropped with Urochloa ruziziensis; corn (Zea mays intercropped with Urochloa; and corn; fodder radish; or wheat (Triticum aestivum as sole crops. The subplots were the years: 2008 and 2009. Determinations consisted of total organic C, labile and resistant C, total N, microbial biomass C and N, the C/N ratio of soil organic matter, and the microbial quotient (qMic, besides microbiological and biochemical attributes, assessed only in 2009. The attributes significantly changed with the winter crops, especially the multicropping of cover crops and fodder radish, as well as effect of years. Despite stimulating the microbiological/biochemical activity, fodder radish cropping decreased the soil C in the second year, likewise the wheat cropping. The multicropping of cover crops in winter is an option for management in the establishment of no-till system, which contributes to increase the concentrations of C and stimulate the soil microbiological/biochemical activity.

  15. Growth promoting characteristics of rhizobacteria and AM Fungi for biomass amelioration of Zea mays

    Directory of Open Access Journals (Sweden)

    Kumar Manoj

    2015-01-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR and mycorrhiza were evaluated on the growth (biomass and yield of Zea mays. In the present study, selective rhizospheric PGPR (Azotobacter chroococcum, Pseudomonas aeruginosa, Azospirillum brasilense and Streptomyces sp. and a combination of six strains of arbuscular mycorrhizal fungi (AMF (Acaulospora morrowae, Gigaspora margarita, Glomus constrictum, Glomus mossae, Glomus aggregatum and Scutellospora calospora were isolated and identified with standard methods and 16S rRNA sequence analysis. PGPR and AMF were checked for their growth-promoting behavior under specific treatment conditions. The 30-48-day-old treated plants in all combinations showed a significantly higher mass value. The average dry weight from the shoot was in a range from 41-52% as compared to the control. This increase also translated into a higher mass value of the roots. Overall, an 82% growth rate was observed in terms of height as the consequence of biomass production, specifically in the case of AMF + rhizobacteria combination. We report an efficient, sustainable and cost-effective biofertilizer for enhanced biomass of Z. mays, one of the staple food crops worldwide.

  16. Small amounts of ammonium (NH4+) can increase growth of maize (Zea mays)

    KAUST Repository

    George, Jessey

    2016-09-16

    Nitrate (NOequation image) and ammonium (NHequation image) are the predominant forms of nitrogen (N) available to plants in agricultural soils. Nitrate concentrations are generally ten times higher than those of NHequation image and this ratio is consistent across a wide range of soil types. The possible contribution of these small concentrations of NHequation image to the overall N budget of crop plants is often overlooked. In this study the importance of this for the growth and nitrogen budget of maize (Zea mays L.) was investigated, using agriculturally relevant concentrations of NHequation image. Maize inbred line B73 was grown hydroponically for 30 d at low (0.5 mM) and sufficient (2.5 mM) levels of NOequation image. Ammonium was added at 0.05 mM and 0.25 mM to both levels of NOequation image. At low NOequation image levels, addition of NHequation image was found to improve the growth of maize plants. This increased plant growth was accompanied by an increase in total N uptake, as well as total phosphorus, sulphur and other micronutrients in the shoot. Ammonium influx was higher than NOequation image influx for all the plants and decreased as the total N in the nutrient medium increased. This study shows that agriculturally relevant proportions of NHequation image supplied in addition to NOequation image can increase growth of maize.

  17. NUTRIENTS POOL IN CONSORTIA OF Eucalyptus urograndis, Acacia mearnsii AND Zea mays

    Directory of Open Access Journals (Sweden)

    Márcio Viera

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810543This study aimed to determine the nutrient pool in monospecific and mixed stands of Eucalyptus urograndis and Acacia mearnsii in a consortium with Zea mays.The amount determination of nutrients of forest species was carried out in the treatments: 100E (100% of eucalyptus; 100A (100% of black wattle and 50E:50A (50% of eucalyptus + 50% of black-wattle. On the other hand, for corn, it was carried out in all treatments (100E; 100A, 50E:50A; 75E:25A – 75% of eucalyptus + 25% black-wattle and 25E:75A – 25% of eucalyptus + 75% of black wattle. The delimitation adopted was the one of a randomized block with three replications. The magnitude of the nutrient pool in the agrossilvicultural systems biomass was: N> K > Ca > Mg > P > S, for macronutrients, and Mn > Fe > Zn > B > Cu, for micronutrients. Due to the great export of nutrients through the corn harvest, residues should be kept and it is necessary to make a nutritional reposition, mainly with P, N, K, S and Zn in the following crops, because of the higher amount that are exported with the extraction of the corn tang, which reaches 75.3; 60.6; 59.9; 55.8 e 53.8%, respectively, in relation to the total stocked in the biomass.

  18. Perennial aneuploidy as a potential material for gene introgression between maize and Zea perennis

    Institute of Scientific and Technical Information of China (English)

    FU Jie; TANG Qi-lin; YANG Xiu-yan; CHENG Ming-jun; LÜ Gui-hua; WANG Pei; WU Yuan-qi; ZHENG Ming-min; ZHOU Shu-feng; RONG Ting-zhao

    2015-01-01

    Hybridization, which al ows for gene lfow between crops, is dififcult between maize and Zea perennis. In this study, we aim to initiate and study gene lfow between maize and Z. perennis via a special aneuploid plant (MDT) derived from an interspeciifc hybrid of the two species. The chromosome constitution and morphological characters of MDT as wel as certain backcross progenies were examined. Results from genomic in situ hybridization (GISH) indicate that aneuploid MDT consisted of nine maize chromosomes and 30 Z. perennis chromosomes. The backcross progenies of MDT×maize displayed signiifcant diversity of vegetative and ear morphology;several unusual plants with speciifc chromosome constitution were founded in its progenies. Some special perennial progeny with several maize chromosomes were obtained by backcrossing MDT with Z. perennis, and the ifrst whole chromosome introgression from maize to Z. perennis was detected in this study. With this novel material and method, a number of maize-tetraploid teosinte addition or substitution lines can be generated for further study, which has great signiifcance to maize and Z. perennis genetic research, especial y for promoting introgression and transferring desirable traits.

  19. Selection of inbred maize (Zea mays L.) progenies by topcrosses conducted in contrasting environments.

    Science.gov (United States)

    Rodrigues, C S; Pacheco, C A P; Guedes, M L; Pinho, R G V; Castro, C R

    2016-09-23

    The aim of this study was to identify inbred progenies of S0:1 maize (Zea mays L.) plants that were efficient at a low level of technology and responsive at a high level of technology through the use of topcrosses. Two contrasting environments were created using two levels of base fertilization and topdressing, so that the levels of nitrogen, phosphorus, and potassium were applied four times higher in one environment than in the other. We used S0:1 progenies derived from commercial hybrids in topcrosses with two testers (an elite line from the flint heterotic group and an elite line from the dent heterotic group). The progenies and three controls were evaluated in an augmented block design in Nossa Senhora das Dores, SE, Brazil in the 2010 crop season. The average grain yield in the high-technological level was 21.44% greater than that in the low-technological level. There were no changes in progeny behavior in the two technological levels for grain yield. The testers did not differ in the average grain yield of the progenies at the two technological levels. Therefore, it is possible to select progenies derived from commercial hybrids that have an efficient response to fertilization.

  20. Characterization and Fine Mapping of a Necrotic Leaf Mutant in Maize (Zea mays L.)

    Institute of Scientific and Technical Information of China (English)

    Lijing Wang; Shuai Han; Shiyi Zhong; Haizhong Wei; Yanjun Zhang; Yan Zhao; Baoshen Liu

    2013-01-01

    Maize (Zea mays L.) is a commercially important crop.Its yield can be reduced by mutations in biosynthetic and degradative pathways that cause death.In this paper,we describe the necrotic leaf (nec-t) mutant,which was obtained from an inbred line,81647.The nec-t mutant plants had yellow leaves with necrotic spots,reduced chlorophyll content,and the etiolated seedlings died under normal growth conditions.Transmission electron microscopy revealed scattered thylakoids,and reduced numbers of grana lamellae and chloroplasts per cell.Histochemical staining suggested that spot formation of nec-t leaves might be due to cell death.Genetic analysis showed that necrosis was caused by the mutation of a recessive locus.Using simple sequence repeat markers,the Nec-t gene was mapped between mmc0111 and bnlg2277 on the short arm of chromosome 2.A total of 1287 individuals with the mutant phenotype from a F2 population were used for physical mapping.The Nec-t gene was located between markers T31 and H8 within a physical region of 131.7 kb.

  1. Influence of Corn (Zea mays L. Cultivar Development on Grain Nutrient Concentration

    Directory of Open Access Journals (Sweden)

    Carla Fernanda Ferreira

    2012-01-01

    Full Text Available While corn productivity has been increased by the adoption of high-yield hybrids, there are concerns that increased grain potential may be associated with diminished grain nutrient concentration. Ten corn (Zea mays L. cultivars representing five technological levels (landrace variety, commercial variety, and double, triple, and single cross-hybrids were cropped on a Rhodic Ferralsol Eutric soil with high fertility in 2006 (dry year and 2007 (normal year in Rolândia County, Brazil. At maturity, grain was evaluated for concentrations of P, K, Ca, Mg, Fe, Mn, Zn, and Cu. In general, differences among cultivars were noted for all nutrients in both years. Concentrations of P, K, Fe, and Mn were lower in the dry year, while Ca, Mg, Cu, and Zn were higher. Soil water availability appeared to exert more influence on grain nutrient concentration than did cultivar development; nutrient removal due to grain harvest was also greatly influenced by rainfall patterns and their impact on corn productivity. Even though genetic differences were noted, which may be useful to breeding programs, long-term testing in subtropical environments will be required to clarify the interaction between genetics and climate events on grain nutrient quality and exportation.

  2. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  3. Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa.

    Science.gov (United States)

    Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of

  4. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  5. Pengaruh Jarak Tanam dan Pemangkasan terhadap Kualitas Silase Dua Varietas Jagung (Zea mays L.

    Directory of Open Access Journals (Sweden)

    La Karimuna

    2009-04-01

    Full Text Available Effects of crop arrangement and cutting on the silages quality of two varieties of maize (Zea mays L. ABSTRACT. The objective of this experiment was to study the interaction effect of varieties, spacing and cutting on the quality of silage as foodstuff. The experiment had been conducted from January to April, 2007 at the experimental Garden of Faculty of Agriculture, University of Haluoleo. This experiment was arranged in Split-Split plot design with three factors. The first factor was variety as main plot, consisting of BISI-2 variety and local variety; the second factor was space arrangement as sub plot, consisting of 60 cm x 40 cm (J1, 75 cm x 40 cm (J2, 90 cm x 40 cm (J3, the third factor was cutting period as sub plot, consisting of no cutting (Po, cutting on 40 days (P1, and cutting on 55 days (P2. So that there were 2 x 3 x 3 x 3 = 54 experimental units. Analysis of variance was applied to know the effect of treatment. If so, least significant difference (LSD 0.05 (95 % confidence level was used. Variables observed was plant growth determining silages quality, consisting of quality of crude protein, crude fiber, crude fat, and water. Results of research revealed that interaction affect of spacing and cutting periods on 40 days of BISI-2 variety gave the best yield of plant growth for plant height. While the local variety tended to adverse effect of cutting. However, the quality of silages of two varieties tended to be similar. Every crop spacing had a positive effect of cutting on 40 days. The best quality of silages of two varieties was resulted from the interaction between spacing 75 cm x 40 cm and cutting of 40 days.

  6. An In-silico attempt to catch hold of the novel microRNAs in the Bio Energy Plant (Jatropha curcus): A Big Search

    OpenAIRE

    2012-01-01

    The oil-rich and weedy plant Jatropha has been hailed as the most promising source of biofuel on the planet, as a non-food, droughtresistant and oil-rich crop, Jatropha curcas fulfils many of the requirements for biofuel industries. A better understanding of the biochemical pathway leading to the synthesis of Jatropha oil and its regulation both by exogenous and endogenous factors is essential for facilitating increased yield. Increasing evidence has shown that miRNAs play multiple roles ...

  7. Micronutrients in cereal crops

    OpenAIRE

    Hamnér, Karin

    2016-01-01

    Seven elements essential for plants are defined as micronutrients: boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni) and zinc (Zn). Deficiency of these nutrients can cause yield losses in crops and impaired crop quality. The overall aim of this thesis work was to increase the knowledge how micronutrients in Swedish cereal crops are affected by nutrient management and soil properties in order to improve crop status and avoid yield losses. Data from long term and s...

  8. Sorghums as energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Lipinsky, E. S.; Kresovich, S.

    1980-01-01

    The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)

  9. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  10. Decline of Indigenous Crop Diversity in Colonial and Postcolonial Rwanda

    Directory of Open Access Journals (Sweden)

    Jean Leonard Seburanga

    2013-01-01

    Full Text Available Global influence of the wealthiest countries drives trends in crop diversity in the developing countries. In many countries, European colonization resulted in cultural disintegration and erosion of indigenous knowledge that made citizens lose interest in their own cultural heritage and adopt imperial know-how. During the same time, native biodiversity that was once maintained by the tradition it shaped declined. Alien crops prospered and finally dominated landscapes. In this paper, I looked at the apparent decline of indigenous crop diversity in Rwanda in the light of the “cultural disturbance” that occurred in the shadow of the European colonization. An integrated research methodology that combined desk-based, socioeconomic, and vegetation surveys was used. Indigenous crops now on the fringe of extinction and, thus, requiring immediate attention from conservation policy makers and managers were identified. These include Vigna unguiculata (L. Walp. “inkoli” (Leguminosae, Coleus dysentericus Bak. “impombo” (Labiatae, Dioscorea alata Linn. “ibikoro” (Araceae, a sweet cultivar of Lagenaria siceraria (Mol. Standl. “bunure” (Cucurbitaceae, white cultivar of Sorghum bicolor (Linn. Moench “nyiragikori” (Gramineae, Amaranthus graecizans Linn. “inyabutongo” (Amaranthaceae, Eleusine coracana (Linn. Gaertn. “uburo” (Gramineae, and traditional cultivars of Zea mays Linn. “nyakagori” (Gramineae and Solanum tuberosum Linn. “kandore” (Solanaceae.

  11. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

    Science.gov (United States)

    Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo

    2016-01-01

    The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491

  12. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    Science.gov (United States)

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.

  13. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay.

    Science.gov (United States)

    Galeano, Pablo; Debat, Claudio Martínez; Ruibal, Fabiana; Fraguas, Laura Franco; Galván, Guillermo A

    2010-01-01

    The cultivation of genetically modified (GM) Bt maize (Zea mays L.) events MON810 and Bt11 is permitted in Uruguay. Local regulations specify that 10% of the crop should be a non-GM cultivar as refuge area for biodiversity, and the distance from other non-GM maize crops should be more than 250 m in order to avoid cross-pollination. However, the degree of cross-fertilization between maize crops in Uruguay is unknown. The level of adventitious presence of GM material in non-GM crops is a relevant issue for organic farming, in situ conservation of genetic resources and seed production. In the research reported here, the occurrence and frequency of cross-fertilization between commercial GM and non-GM maize crops in Uruguay was assessed. The methodology comprised field sampling and detection using DAS-ELISA and PCR. Five field-pair cases where GM maize crops were grown near non-GM maize crops were identified. These cases had the potential to cross-fertilize considering the distance between crops and the similarity of the sowing dates. Adventitious presence of GM material in the offspring of non-GM crops was found in three of the five cases. Adventitious presence of event MON810 or Bt11 in non-GM maize, which were distinguished using specific primers, matched the events in the putative sources of transgenic pollen. Percentages of transgenic seedlings in the offspring of the non-GM crops were estimated as 0.56%, 0.83% and 0.13% for three sampling sites with distances of respectively 40, 100 and 330 m from the GM crops. This is a first indication that adventitious presence of transgenes in non-GM maize crops will occur in Uruguay if isolation by distance and/or time is not provided. These findings contribute to the evaluation of the applicability of the "regulated coexistence policy" in Uruguay.

  14. PATOGENICIDAD BACTERIANA EN MAÍZ (ZEA MAYS)

    OpenAIRE

    Rocío Pérez-y-Terrón; Julio César Carmona Díaz; Jorge Alejandro Cebada Ruíz; José Antonio Munive Hernández

    2012-01-01

    El maíz es un grano de consumo mundial para alimento tanto humano como animal. México se encuentra en el séptimo lugar de la producción, China y Estados Unidos son los principales consumidores. Zea mays pertenece a la familia de las gramíneas y tiene producción anual. La planta se puede ver afectada por plagas principalmente de diferentes especies de insectos. Puede también desarrollar enfermedad debida a hongos y virus, así como a bacterias patogénicas. Dentro de estas la causada por organis...

  15. A comparison of canopy evapotranspiration between perennial rhizomatous grasses and Zea mays

    Science.gov (United States)

    Hickman, G.; Bernacchi, C.; Dohleman, F.

    2008-12-01

    Perennial rhizomatous C4 grasses are currently considered one of the most promising vegetation types to accommodate a cellulosic feedstock based liquid fuel economy. The current focus on using these vegetation types as a source of renewable fuel has sparked numerous concerns associated with environmental impacts. Of particular interest is the impact that altering the composition of vegetation at the landscape scale would have on local and regional hydrological cycles. We hypothesize that evapotranspiration, ET, will be higher for perennial grasses relative to maize as a result higher leaf area, higher above-ground biomass and prolonged growing seasons. To test this hypothesis, a technique in which ET is estimated as the residual in the energy balance equation from measurements of net radiation and sensible and latent heat fluxes was employed. Measurements were made during the 2007 growing season for three replicate plots of the perennial rhizomatous grasses Miscanthus giganteus and Panicum virgatum, as well as for Zea mays planted at the University of Illinois South Farms. When averaged across the entire growing season, ET for M. giganteus was double relative to Z. mays, and 130% of P. virgatum ET. When compared over the periods in which all three species experienced mature and closed canopies (from day of year 200 to 250), M. giganteus still showed higher rates of ET compared with Z. mays, however, the increase was only ~15%. We conclude that ET associated with perennial alternative energy crops are higher relative to annual row crop; with most ET disparity, particularly for P. virgatum, being driven by phenology, quicker canopy closure and a prolonged growing season. Physiological rates of ET were highest for M. giganteus, followed by Z. mays, followed P. virgatum. Differences in phenology were more important than those of physiology for ET overshadowing effects from increased biomass associated with M. giganteus and/or a physiological difference between these

  16. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition

    Science.gov (United States)

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-01-01

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964

  17. Study of effects of Bt maize (Zea mays) events on Lepidoptera Ostrinia nubilalis, Sesamia nonagrioidesin southwestern France.

    Science.gov (United States)

    Folcher, L; Eychenne, N; Weissenberger, A; Jarry, M; Regnault-Roger, C; Delos, M

    2006-01-01

    Crops of maize (Zea mays L.) were conducted in southwestern France with GMO (Genetic Modified Organism) vs isogenetic varieties in order to verify the control of European Corn Borer (ECB) Ostrinia nubilalis (Hübner) and the Corn Stalk Borer (CBS) Sesamia nonagrioides (Lefevbre) by GMO in field conditions. The bioassays were carried out in 1998 and 1999 before moratorium, then in 2005. Experiments involved respectively 18, 12 and 19 fields cultivated with Furio/Furio cb (GMO), Cecilia/ Elgina (GMO) and PR33P66/PR33P67 (GMO) varieties. These transgenic events expressed Cry1A(b) protein (Bt maize). Plants were noted for insect infestation assessment (number of larvae in stalks and ears per plant). Statistical tests used t-test on couple of plots. Results showed a significant difference in the density of both ECB and CBS between control and the two transgenic events. The two transgenic events acted differently. The control of the two Bt events on the two pests were differentiated and discussed. These experiments underlined the importance of field evaluation for testing real effects of transgenic events on crop according the environmental context.

  18. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition.

    Science.gov (United States)

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-10-03

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha(-1) in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.

  19. Numerical simulation of cropping

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Hutchinson, John W.

    2014-01-01

    Cropping is a cutting process whereby opposing aligned blades create a shearing failure by exerting opposing forces normal to the surfaces of a metal sheet or plate. Building on recent efforts to quantify cropping, this paper formulates a plane strain elastic-plastic model of a plate subject...... shearing accompanying the cutting process. Specifically, it provides insight into the influence of the material's microscopic shear strength and toughness on the total work of cropping. The computational model does not account for deformation of the cropping tool, friction between sliding surfaces...

  20. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    Science.gov (United States)

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite.

  1. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Science.gov (United States)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  2. Optical Reflectance and Fluorescence for Detecting Nitrogen Needs in Zea mays L.

    Science.gov (United States)

    McMurtrey, J. E.; Middleton, E. M.; Corp. L. A.; Campbell, P. K. Entcheva; Butcher, L. M.; Daughtry, C. S. T.

    2003-01-01

    Nitrogen (N) status in field grown corn (Zea mays L.) was assessed using spectral techniques. Passive reflectance remote sensing and, both passive and active fluorescence sensing methods were investigated. Reflectance and fluorescence methods are reported to detect changes in the primary plant pigments (chlorophylls a and b; carotenoids) in higher plant species. As a general rule, foliar chlorophyll a (Chl a) and chlorophyll b (Chl b) usually exist in approx.3:l ratio. In plants under stress, Chl b content is affected before Chl a reductions occur. For reflectance, a version of the chlorophyll absorption in reflectance index (CARI) method was tested with narrow bands from the Airborne Imaging Spectroradiometer for Applications (ASIA). CARI minimizes the effects of soil background on the signal from green canopies. A modified CARI (MCARI) was used to track total Chl a levels in the red dip of the spectrum from the corn canopy. A second MCARI was used to track the auxiliary plant pigments (Chl b and the carotenoids) in the yellow/orange/red edge part of the reflectance spectrum. The difference between these two MCARI indices detected variations in N levels across the field plot canopies using ASIA data. At the leaf level, ratios of fluorescence emissions in the blue, green, red and far-red wavelengths sensed responses that were associated with the plant pigments, and were indicative of energy transfer in the photosynthetic process. N stressed corn stands could be distinguish from those with optimally applied N with fluorescence emission spectra obtained from individual corn leaves. Both reflectance and fluorescence methods are sensitive in detecting corn N needs and may be especially powerful in monitoring crop conditions if both types of information can be combined.

  3. Evaluating Corn (Zea Mays L.) N Variability Via Remote Sensed Data

    Science.gov (United States)

    Sullivan, D. G.; Shaw, J. N.; Mask, P. L.; Rickman, D.; Luvall, J.; Wersinger, J. M.

    2003-01-01

    Transformations and losses of nitrogen (N) throughout the growing season can be costly. Methods in place to improve N management and facilitate split N applications during the growing season can be time consuming and logistically difficult. Remote sensing (RS) may be a method to rapidly assess temporal changes in crop N status and promote more efficient N management. This study was designed to evaluate the ability of three different RS platforms to predict N variability in corn (Zea mays L.) leaves during vegetative and early reproductive growth stages. Plots (15 x 15m) were established in the Coastal Plain (CP) and Appalachian Plateau (AP) physiographic regions each spring from 2000 to 2002 in a completely randomized design. Treatments consisted of four N rates (0, 56, 112, and 168 kg N/ha) applied as ammonium nitrate (NH4N03) replicated four time. Spectral measurements were acquired via spectroradiometer (lambda = 350 - 1050 nm), Airborne Terrestrial Applications Sensor (ATLAS) (lambda = 400 - 12,500 nm), and the IKONOS satellite (lambda = 450 - 900 nm). Spectroradiometer data were collected on a biweekly basis from V4 through R1. Due to the nature of - satellite and aircraft acquisitions, these data were acquired per availability. Chlorophyll meter (SPAD) and tissue N were collected as ancillary data along with each RS acquisition. Results showed vegetation indices derived from hand-held spectroradiometer measurements as early as V6-V8 were linearly related to yield and tissue N content. ATLAS data was correlated with tissue N at the AP site during the V6 stage (r2 = 0.66), but no significant relationships were observed at the CP site. No significant relationships were observed between plant N and IKONOS imagery. Using a combination of the greenness vegetation index (GNDVI) and the normalized difference vegetation index (NDVI), RS data acquired via ATLAS and the spectroradiometer could be used to evaluate tissue N variability and estimate corn yield variability

  4. ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    Directory of Open Access Journals (Sweden)

    Carmen Alice Teacă

    2008-11-01

    Full Text Available Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests. Experimental data regarding the germination process of wheat (from two cultivars and rye seeds in the presence of industrial wastes (thermal power station ash, effluents from a pre-bleaching stage performed on a Kraft cellulose – chlorinated lignin products or chlorolignin, along with use of an excess of some heavy metals (Zn and Cu are presented here. Relative seed germination, relative root elongation, and germination index (a factor of relative seed germination and relative root elongation were determined. Relative root elongation and germination index were more sensitive indicators of toxicity than seed germination. The toxic effects were also evaluated in hydroponics experiments, the sensitivity of three crop plant species, namely Triticum aestivum L. (wheat, Secale cereale (rye, and Zea mays (corn being compared. Physiological aspects, evidenced both by visual observation and biometric measurements (mean root, aerial part and plant length, as well as the cellulose and lignin content were examined.

  5. Aggregate distribution and associated organic carbon influenced by cover crops

    Science.gov (United States)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  6. Structure of the novel monomeric glyoxalase I from Zea mays.

    Science.gov (United States)

    Turra, Gino L; Agostini, Romina B; Fauguel, Carolina M; Presello, Daniel A; Andreo, Carlos S; González, Javier M; Campos-Bermudez, Valeria A

    2015-10-01

    The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined.

  7. Mutational effects of space flight on Zea mays seeds

    Science.gov (United States)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-01-01

    The growth and development of more than 500 Zea mays seeds flown on Long Duration Exposure Facility (LDEF) were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  8. PATOGENICIDAD BACTERIANA EN MAÍZ (ZEA MAYS

    Directory of Open Access Journals (Sweden)

    Rocío Pérez-y-Terrón

    2012-01-01

    Full Text Available El maíz es un grano de consumo mundial para alimento tanto humano como animal. México se encuentra en el séptimo lugar de la producción, China y Estados Unidos son los principales consumidores. Zea mays pertenece a la familia de las gramíneas y tiene producción anual. La planta se puede ver afectada por plagas principalmente de diferentes especies de insectos. Puede también desarrollar enfermedad debida a hongos y virus, así como a bacterias patogénicas. Dentro de estas la causada por organismos del género Pantoea. P. stewartii se sabe que tiene genes como cps que codifican para la producción de exopolisacarido sterwatan controlada por un mecanismo de quórum sensing, y hrp para el sistema de secreción tipo III involucrados en la patogenicidad de la bacteria.

  9. Response of Sorghum (Sorghum bicolor L.) to Residual Phosphate in Soybean-Sorghum and Maize-Sorghum Crop Rotation Schemes on Two Contrasting Nigerian Alfisols

    OpenAIRE

    2016-01-01

    The effectiveness of finely ground Sokoto Rock Phosphate and Morocco Rock Phosphate to enhance productivity of maize- (Zea mays L.) Sorghum (Sorghum bicolor) and soybean- (Glycine max L.) Sorghum crop rotation schemes was evaluated using Single Super Phosphate as reference fertilizer. The experiments were carried out in the screen house of the Department of Agronomy, University of Ibadan, in February and June 2013. The experiments involved 2 × 2 × 4 × 3 factorial in a Completely Randomized De...

  10. Plasmid-mediated Detoxification of Mycotoxin Zearalenone in Pseudomonas Sp. ZEA-1

    OpenAIRE

    2007-01-01

    The Pseudomonas sp. Strain ZEA-1 was isolated from rhizosphere of corn plant by an enrichment technique showed capability of utilizing zearalenone as the sole source of carbon. The bacterium rapidly utilized zearalenone beyond 200 µg/ml and showed prolific growth in a minimal medium containing 100 µg/ml zearalenone source. The course of ZEA degradation as well as the formation of its metabolites was observed by UV Spectrophotometer and thin layer chromatography analysis. Toxicity of biotransf...

  11. Cereal Crops Research Unit

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the Cereal Crops Research Unit is to 1) conduct basic research to identify and understand the biological processes affecting the growth, development...

  12. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Science.gov (United States)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  13. Effets du froid sur les stades précoces de développement du maïs (Zea mays L. (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Riva-Roveda, L.

    2015-01-01

    Full Text Available Effects of cold temperatures on the early stages of maize (Zea mays L.. A review. Introduction. Maize is a crop of great economical importance. Despite its tropical origin and its high sensitivity to low temperatures, maize is now cultivated in a wide range of latitudes. To maintain competitive yields, many genetic and agricultural adaptations have been implemented. Literature. Plant responses to environmental stresses such as drought or cold have been extensively studied. This article reviews the progress and current knowledge regarding the effects of non-freezing cold temperatures on maize plants, from germination to floral transition. During the early stages of development, cold alters plant phenology and productivity, mainly because of its negative impact on photosynthesis. Plant growth is affected and secondary osmotic and oxidative stresses induce cell damage. Conclusion. A better understanding of the effects of cold will allow the development of new strategies for improving plant tolerance through the use of various physiological, genetic and molecular approaches.

  14. Radioactivity in food crops

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  15. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    Science.gov (United States)

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  16. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications

    OpenAIRE

    Piperno, D.R.; Flannery, K. V.

    2001-01-01

    Accelerator mass spectrometry age determinations of maize cobs (Zea mays L.) from Guilá Naquitz Cave in Oaxaca, Mexico, produced dates of 5,400 carbon-14 years before the present (about 6,250 calendar years ago), making those cobs the oldest in the Americas. Macrofossils and phytoliths characteristic of wild and domesticated Zea fruits are absent from older strata from the site, although Zea pollen has previously been identified from those levels. These results, to...

  17. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  18. Diversifying crops for food and nutrition security - a case of teff.

    Science.gov (United States)

    Cheng, Acga; Mayes, Sean; Dalle, Gemedo; Demissew, Sebsebe; Massawe, Festo

    2017-02-01

    There are more than 50000 known edible plants in the world, yet two-thirds of global plant-derived food is provided by only three major cereals - maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm-season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture-stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought-after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its 'orphan crop' status. This review presents the past, present and future of an ancient grain with a potential beyond its size.

  19. Modeling nitrogen and water management effects in a wheat-maize double-cropping system.

    Science.gov (United States)

    Fang, Q; Ma, L; Yu, Q; Malone, R W; Saseendran, S A; Ahuja, L R

    2008-01-01

    Excessive N and water use in agriculture causes environmental degradation and can potentially jeopardize the sustainability of the system. A field study was conducted from 2000 to 2002 to study the effects of four N treatments (0, 100, 200, and 300 kg N ha(-1) per crop) on a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system under 70 +/- 15% field capacity in the North China Plain (NCP). The root zone water quality model (RZWQM), with the crop estimation through resource and environment synthesis (CERES) plant growth modules incorporated, was evaluated for its simulation of crop production, soil water, and N leaching in the double cropping system. Soil water content, biomass, and grain yield were better simulated with normalized root mean square errors (NRMSE, RMSE divided by mean observed value) from 0.11 to 0.15 than soil NO(3)-N and plant N uptake that had NRMSE from 0.19 to 0.43 across these treatments. The long-term simulation with historical weather data showed that, at 200 kg N ha(-1) per crop application rate, auto-irrigation triggered at 50% of the field capacity and recharged to 60% field capacity in the 0- to 50-cm soil profile were adequate for obtaining acceptable yield levels in this intensified double cropping system. Results also showed potential savings of more than 30% of the current N application rates per crop from 300 to 200 kg N ha(-1), which could reduce about 60% of the N leaching without compromising crop yields.

  20. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    Science.gov (United States)

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  1. Effects of Liquid Organic Fertilizer on Time of Tasselling, Time of Silking and Grain Yield of Maize (Zea mays

    Directory of Open Access Journals (Sweden)

    Enujeke, E. C. and Ojeifo, I. M.

    2013-04-01

    Full Text Available A study was carried out in the Teaching and Research Farm of Delta State University, Asaba Campus from August to December in 2005 and repeated between March and July, 2006 to evaluate the response of maize (Zea mays to liquid organic fertilizer. The study was conducted using a split plot fitted into randomized complete block design. Liquid organic fertilizer was diluted at the rate of 60 ml of the product to 15 litres of water and applied to maize foliage, topsoil, foliage and topsoil at the rates of 5l/ha, 10l/ha, 151/ha, l8l/ha, 201/ha and 251/ha. The result obtained indicated a positive influence of liquid organic fertilizer on time of tasselling, time of silking and grain yield of maize. Liquid organic fertilizer significantly reduced the times of tasselling and silking, and increased grain yield of maize. Based on this study, it is recommended that 151/ha of liquid organic fertilizer which produced 5.6tha’ in 2005 and 6.1tha’ of dry grain yield 2006 be applied on the topsoil of maize plant with a view to maximally exploit the great economic potentials of the crop.

  2. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Moreira, Helena; Marques, Ana P G C; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2014-01-01

    Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg(-1) was evaluated. Bacterial inoculation increased plant biomass up to 63% and led to a decrease of up to 81% in Cd shoot levels (4-88 mg Cd kg(-1)) and to an increase of up to 186% in accumulation in the roots (52-134 mg Cd kg(-1)). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.

  3. Global and grain-specific accumulation of glycoside hydrolase family 10 xylanases in transgenic maize (Zea mays).

    Science.gov (United States)

    Gray, Benjamin N; Bougri, Oleg; Carlson, Alvar R; Meissner, Judy; Pan, Shihao; Parker, Matthew H; Zhang, Dongcheng; Samoylov, Vladimir; Ekborg, Nathan A; Michael Raab, R

    2011-12-01

    In planta expression of cell wall degrading enzymes is a promising approach for developing optimized biomass feedstocks that enable low-cost cellulosic biofuels production. Transgenic plants could serve as either an enzyme source for the hydrolysis of pretreated biomass or as the primary biomass feedstock in an autohydrolysis process. In this study, two xylanase genes, Bacillus sp. NG-27 bsx and Clostridium stercorarium xynB, were expressed in maize (Zea mays) under the control of two different promoters. Severe phenotypic effects were associated with xylanase accumulation in maize, including stunted plants and sterile grains. Global expression of these xylanases from the rice ubiquitin 3 promoter (rubi3) resulted in enzyme accumulation of approximately 0.01 mg enzyme per gram dry weight, or approximately 0.1% of total soluble protein (TSP). Grain-specific expression of these enzymes from the rice glutelin 4 promoter (GluB-4) resulted in higher-level accumulation of active enzyme, with BSX and XynB accumulating up to 4.0% TSP and 16.4% TSP, respectively, in shriveled grains from selected T0 plants. These results demonstrate the potential utility of the GluB-4 promoter for biotechnological applications. The phenotypic effects of xylanase expression in maize presented here demonstrate the difficulties of hemicellulase expression in an important crop for cellulosic biofuels production. Potential alternate approaches to achieve xylanase accumulation in planta without the accompanying negative phenotypes are discussed.

  4. Detection and evolution of resistance to the pyrethroid cypermethrin in Helicoverpa zea (Lepidoptera: Noctuidae) populations in Texas.

    Science.gov (United States)

    Pietrantonio, P V; Junek, T A; Parker, R; Mott, D; Siders, K; Troxclair, N; Vargas-Camplis, J; Westbrook, J K; Vassiliou, V A

    2007-10-01

    The bollworm, Helicoverpa zea (Boddie), is a key pest of cotton in Texas. Bollworm populations are widely controlled with pyrethroid insecticides in cotton and exposed to pyrethroids in other major crops such as grain sorghum, corn, and soybeans. A statewide program that evaluated cypermethrin resistance in male bollworm populations using an adult vial test was conducted from 2003 to 2006 in the major cotton production regions of Texas. Estimated parameters from the most susceptible field population currently available (Burleson County, September 2005) were used to calculate resistance ratios and their statistical significance. Populations from several counties had statistically significant (P Nueces County in 2004, and Williamson and Uvalde Counties in 2005. These findings explain the observed pyrethroid control failures in various counties in Texas. Based on the assumption that resistance is caused by a single gene, the Hardy-Weinberg equilibrium formula was used for estimation of frequencies for the putative resistant allele (q) using 3 and 10 microg/vial as discriminatory dosages for susceptible and heterozygote resistant insects, respectively. The influence of migration on local levels of resistance was estimated by analysis of wind trajectories, which partially clarifies the rapid evolution of resistance to cypermethrin in bollworm populations. This approach could be used in evaluating resistance evolution in other migratory pests.

  5. Phosphorus and compost management influence maize (Zea mays productivity under semiarid condition with and without phosphate solubilizing bacteria

    Directory of Open Access Journals (Sweden)

    Amanullah eAmanullah

    2015-12-01

    Full Text Available Phosphorus (P unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB on the yield and yield components of maize (Zea mays L., cv. Azam. The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1 inoculated seed with PSB (+ and (2 seed not inoculated with PSB (- or control] and three compost application times [(30, 15 and 0 days before sowing (DBS] combination (six treatments were used as main plot factor, while four P levels (25, 50, 75 and 100 kg P ha-1 used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1 had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+ had tremendously increased yield and yield components of maize over PSB-control plots (- under semiarid condition.

  6. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.

    Science.gov (United States)

    Arbaoui, Sarra; Evlard, Aricia; Mhamdi, Mohamed El Wafi; Campanella, Bruno; Paul, Roger; Bettaieb, Taoufik

    2013-07-01

    The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.

  7. Uptake and effects of a mixture of widely used therapeutic drugs in Eruca sativa L. and Zea mays L. plants.

    Science.gov (United States)

    Marsoni, Milena; De Mattia, Fabrizio; Labra, Massimo; Bruno, Antonia; Bruno, Antonella; Bracale, Marcella; Vannini, Candida

    2014-10-01

    Pharmaceutically active compounds (PACs) are continuously dispersed into the environment due to human and veterinary use, giving rise to their potential accumulation in edible plants. In this study, Eruca sativa L. and Zea mays L. were selected to determine the potential uptake and accumulation of eight different PACs (Salbutamol, Atenolol, Lincomycin, Cyclophosphamide, Carbamazepine, Bezafibrate, Ofloxacin and Ranitidine) designed for human use. To mimic environmental conditions, the plants were grown in pots and irrigated with water spiked with a mixture of PACs at concentrations found in Italian wastewaters and rivers. Moreover, 10× and 100× concentrations of these pharmaceuticals were also tested. The presence of the pharmaceuticals was tested in the edible parts of the plants, namely leaves for E. sativa and grains for Z. mays. Quantification was performed by liquid chromatography mass spectroscopy (LC/MS/MS). In the grains of 100× treated Z. mays, only atenolol, lincomycin and carbamazepine were above the limit of detection (LOD). At the same concentration in E. sativa plants the uptake of all PACs was >LOD. Lincomycin and oflaxacin were above the limit of quantitation in all conditions tested in E. sativa. The results suggest that uptake of some pharmaceuticals from the soil may indeed be a potential transport route to plants and that these environmental pollutants can reach different edible parts of the selected crops. Measurements of the concentrations of these pharmaceuticals in plant materials were used to model potential adult human exposure to these compounds. The results indicate that under the current experimental conditions, crops exposed to the selected pharmaceutical mixture would not have any negative effects on human health. Moreover, no significant differences in the growth of E. sativa or Z. mays plants irrigated with PAC-spiked vs. non-spiked water were observed.

  8. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity

    Directory of Open Access Journals (Sweden)

    B. Dheeba

    2015-01-01

    Full Text Available Zea mays (maize and Vigna radiata (green gram are found to be the chromium (Cr tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and different fertilizer amendments and the yield of both plants were affected by Cr. We conclude that metal accumulation of seeds of green gram was higher than corn and the application of single fertilizer either farm yard manure (FYM or nitrogen, phosphorous, and potassium (NPK enhances the growth and yield of both the tolerant and sensitive plants in the mixed crop cultivations.

  9. Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Olesen, Jørgen Eivind; Wang, M.

    2016-01-01

    by extreme climate events and climatic change. Therefore, a set of expert survey has been done to identify current and project future climate limitations to crop production and explore appropriate adaptation measures in NFR. Droughts have been the largest limitation for maize (Zea mays L.) in NSL and SSL...... film for soil cover. With the projected climate change and increasing risk of climatic extremes, additional adaptation measures will become relevant for sustaining and improving productivity of crops in NFR to ensure food security in China......., and for soybean (Glycine max L. Merr.) in SSL. Chilling damage has been the largest limitation for rice (Oryza sativa L.) production in XA, SJ and CB. Projected climate change is expected to be beneficial for expanding the crop growing season, and to provide more suitable conditions for sowing and harvest. Autumn...

  10. Extração de corantes de milho (Zea mays L. Extraction of corn colorants (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Felix Martin Cabajal Gamarra

    2009-03-01

    Full Text Available Os corantes naturais foram amplamente utilizados de forma artesanal até antes do surgimento dos corantes sintéticos. O estudo e uso dos corantes naturais voltaram a ter importância nestes últimos anos devido aos questionamentos dos organismos internacionais da saúde e dos consumidores pelo uso indiscriminado dos corantes sintéticos, ligados ao desenvolvimento de doenças degenerativas e ao impacto ambiental. O corante extraído do milho roxo (Zea mays L. tem sido utilizado ao longo da história pela civilização Inca na preparação de alimentos e no tingimento de fibras têxteis. Neste trabalho, os pigmentos do grupo das antocianinas foram extraídos das variedades de milho roxo e do milho vermelho (Z. mays L. e depois foram caracterizados. Três métodos de extração foram utilizados: imersão, lixiviação com algumas modificações e extração supercrítica (ESC. O melhor método para extração foi o da lixiviação que alcançou 88% (m/m de rendimento, em função da massa do corante extraído e da matéria-prima. Também utilizando a lixiviação modificada, foi possível concentrar em 3% os compostos acilados, assim como recuperar 85% dos solventes utilizados. Um indicador de pH foi obtido pela fixação das antocianinas num papel de filtro, com base na estabilidade das antocianinas, ferramenta que pode ser utilizada em laboratórios de ensino de química.Natural colorants were craftly made and widely used before the discovery of the synthetic colorants. The study and the use of natural colorants have become important again in the last few years due to questions raised by the international health organizations and consumers related to the indiscriminate use of synthetic colorants which were linked to the development of degenerative illnesses and environmental impact. The colorant extracted from purple corn (Zea Mays L. was used by the Inca civilization to prepare food and to dye textile fibers. In this work, pigments from the

  11. Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized

    Science.gov (United States)

    Barker, Daniel W.; Helmers, Matthew J.; Miguez, Fernando E.; Olk, Daniel C.; Sawyer, John E.; Six, Johan; Castellano, Michael J.

    2017-01-01

    Nitrogen fertilization is critical to optimize short-term crop yield, but its long-term effect on soil organic C (SOC) is uncertain. Here, we clarify the impact of N fertilization on SOC in typical maize-based (Zea mays L.) Midwest U.S. cropping systems by accounting for site-to-site variability in maize yield response to N fertilization. Within continuous maize and maize-soybean [Glycine max (L.) Merr.] systems at four Iowa locations, we evaluated changes in surface SOC over 14 to 16 years across a range of N fertilizer rates empirically determined to be insufficient, optimum, or excessive for maximum maize yield. Soil organic C balances were negative where no N was applied but neutral (maize-soybean) or positive (continuous maize) at the agronomic optimum N rate (AONR). For continuous maize, the rate of SOC storage increased with increasing N rate, reaching a maximum at the AONR and decreasing above the AONR. Greater SOC storage in the optimally fertilized continuous maize system than in the optimally fertilized maize-soybean system was attributed to greater crop residue production and greater SOC storage efficiency in the continuous maize system. Mean annual crop residue production at the AONR was 22% greater in the continuous maize system than in the maize-soybean system and the rate of SOC storage per unit residue C input was 58% greater in the monocrop system. Our results demonstrate that agronomic optimum N fertilization is critical to maintain or increase SOC of Midwest U.S. cropland. PMID:28249014

  12. Nascent transcription affected by RNA polymerase IV in Zea mays.

    Science.gov (United States)

    Erhard, Karl F; Talbot, Joy-El R B; Deans, Natalie C; McClish, Allison E; Hollick, Jay B

    2015-04-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.

  13. Ontogeny of the sheathing leaf base in maize (Zea mays).

    Science.gov (United States)

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM.

  14. Impact of N fertilization on C balance and soil quality in maize-dhaincha cropping sequence

    Directory of Open Access Journals (Sweden)

    Sarma Banashree

    2015-01-01

    Full Text Available Excess N fertilization to achieve high crop yield is a grand old practice in developing countries. However, inorganic nutrient sources considerably replenish soil organic C (SOC. In the present study, we applied six different levels of N keeping P and K constant for maize, grown under maize (Zea mays - dhaincha (Sesbania aculeata cropping sequence. We recorded high crop yield, profuse root biomass and SOC stock with increasing N fertilization. Moreover, water holding capacity, microbial biomass carbon and particulate organic carbon improved significantly with increasing levels of N. Conversely, bulk density, mineral associated organic carbon and pH decreased with increasing application of inorganic N. Furthermore, a significant positive correlation was recorded between root biomass and soil organic carbon. A study of the sensitivity index showed particulate organic carbon and microbial biomass carbon to be good indicators of nutrient management practices. Dhaincha cultivation accelerated C and N mineralization in soil, which is reflected in increased biomass and crop yield. Hence, we conclude that inorganic N fertilization rate (7280 kg ha-1 in maize-dhaincha cropping sequence successfully maintains the SOC balance and optimize N stock in soil.

  15. Higher heating value prediction of lignocellulosic crop based on their content of main components [abstract

    Directory of Open Access Journals (Sweden)

    Godin, B.

    2010-01-01

    Full Text Available The efficiency of the energy recovery potential of lignocellulosic crops as solid biofuel depends on various characteristics. One of the main characteristics in this field is the higher heating value. It is defined as the amount of heat emitted by the combustion of a fuel, including the heat coming from the condensation of the water vapor. Its value depends on the content of main components of the lignocellulosic crops. Two models predicting the higher heating value have been built based on the content of main components of the following lignocellulosic crops: miscanthus (Miscanthus x giganteus J.M.Greef & Deuter ex Hodk. & Renvoize, switchgrass (Panicum virgatum L., Jerusalem artichoke (aerial part (Helianthus tuberosus L., fiber sorghum (Sorghum bicolor (L. Moench, fiber corn (Zea mays L. and hemp (Cannabis sativa L. [trials made at Libramont (Belgium in 2007 and 2008]. The first model predicts the higher heating value of the lignocellulosic crops based on sum of the products between the higher heating value of each component and its amount. The second model predicts the higher heating value of the lignocellulosic crop based on a multiple linear regression using step by step least mean squares.

  16. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    Science.gov (United States)

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays. These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize.

  17. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    Science.gov (United States)

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  18. Lipid extracted microalgal biomass residue as a fertilizer substitute for Zea mays L

    Directory of Open Access Journals (Sweden)

    Rahulkumar eMaurya

    2016-01-01

    Full Text Available High volumes of lipid extracted microalgal biomass residues (LMBRs are expected to be produced upon commencement of biodiesel production on a large scale, thus necessitating its value addition for sustainable development. LMBRs of Chlorella variabilis and Lyngbya majuscula were employed to substitute the nitrogen content of recommended rate of fertilizer (RRF for Zea mays L. The pot experiment comprised of 10 treatments, i.e. T1 (No fertilizer; T2 (RRF-120 N: 60 P2O5: 40 K2O kg ha-1; T3 to T6 -100, 75, 50 and 25% N through LMBR of the Chlorella sp., respectively; T7 to T10 -100, 75, 50 and 25% N through LMBR of Lyngbya sp., respectively. It was found that all LMBR substitution treatments were at par to RRF with respect to grain yield production. T10 gave the highest grain yield (65.16 g plant-1, which was closely followed by that (63.48 g plant-1 under T5. T10 also recorded the highest phosphorus and potassium contents in grains. T4 was markedly superior over control in terms of dry matter accumulation (DMA as well as carbohydrate content, which was ascribed to higher pigment content and photosynthetic activity in leaves. Even though considerably lower DMA was obtained in Lyngbya treatments, which might have been due to the presence of some toxic factors, no reduction in grain yield was apparent. The length of the tassel was significantly higher in either of the LMBRs at any substitution rates over RRF, except T6 and T7. The ascorbate peroxidase activity decreased with decreasing dose of Chlorella LMBR, while all the Lyngbya LMBR treatments recorded lower activity, which were at par with each other. Among the Chlorella treatments, only T5 recorded significantly higher values of glutathione reductase activity over RRF, while the rest were at par. There were significant increases in carbohydrate and crude fat, respectively, only in T4 and T3 over RRF, while no change was observed in crude protein due to LMBR treatments. Apparently, there was no

  19. Potentially toxic elements in foodcrops: Triticum aestivum L., Zea mays L.

    Science.gov (United States)

    Bini, Claudio; Fontana, Silvia; Squizzato, Stefania; Minello, Fabiola; Fornasier, Flavio; Wahsha, Mohammad

    2013-04-01

    Soil is the basis of the ecosystems and of our system of food production. Crops can uptake heavy metals and potentially toxic elements from the soil and store them in the roots or translocate them to the aerial parts. Excessive content of these elements in edible parts can produce toxic effects and, through the food chain and food consumption, result in a potential hazard for human health. In this study soils and plants (spring wheat, Triticum aestivum L. and maize, Zea mays L.) from a tannery district in North-East Italy were analyzed to determine pedological characters, soil microbial indicators and the content of some major and micro-nutrients and potentially toxic elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, Zn, V). The soils of the area are moderately polluted; Cr is the most important inorganic contaminant, followed by Ni, Cu and V. Factor analysis evidenced that the contaminants are in part anthropogenic and in part geogenic. Major anthropogenic origin was detected for Cr, Ni (from industrial activities), Zn, Cu, Cd (from agriculture practices). Biological Absorption Coefficient (BAC) from soil to plant roots and Translocation factor (TF) within the plant were calculated; major nutrients (K, P, S) and some micronutrients (Cu, Zn, Mg, Mn) are easily absorbed and translocated, whilst other nutrients (Ca, Fe) and potentially toxic elements or micronutrients (Al, Cd, Cr, Ni, Pb, V) are not accumulated in the seeds of the two considered species. However, the two edible species proved differently able to absorb and translocate elements, and this suggests to consider separately every species as potential PHEs transporter to the food chain and to humans. Cr concentrations in seeds and other aerial parts (stem and leaves) of the examined plants are higher than the values found for the same species and for other cereals grown on unpolluted soils. Comparing the Cr levels in edible parts with recommended dietary intake, besides other possible Cr sources

  20. Future-proof crops

    NARCIS (Netherlands)

    Kissoudis, Christos; Wiel, van de Clemens; Visser, R.G.F.; Linden, van der Gerard

    2016-01-01

    Breeding for stress-resilient crops strongly depends on technological and biological advancements that have provided a wealth of information on genetic variants and their contribution to stress tolerance. In the context of the upcoming challenges for agriculture due to climate change, such as pro

  1. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  2. Crop yields in intercropping

    NARCIS (Netherlands)

    Yu, Y.

    2016-01-01

    Abstract

    Intercropping, the cultivation of two or more crop species simultaneously in the same field, has been widely practiced by smallholder farmers in developing countries and is gaining increasing interest in developed countries. Intercropping can increase the yield per

  3. Mycorrhiza and crop production

    Energy Technology Data Exchange (ETDEWEB)

    Hayman, D.S.

    1980-10-09

    This article describes recent research with vesicular-arbuscular mycorrhiza, a symbiotic fungus-root association. The suggestion that the symbiotic association may be harnessed to achieve more economical use of phosphate fertilizers is discussed and the results from various test crops are given.

  4. L'impact des oiseaux sur le rendement des cultures de maïs (Zea mays L. dans le marais de Lwiro, Sud-Kivu, Est de la République Démocratique du Congo et quelques indications de lutte

    Directory of Open Access Journals (Sweden)

    Kizungu, B.

    2000-01-01

    Full Text Available Impact of Birds on Maize (Zea mays L. yield in the Lwiro Swamp, South-Kivu, East R.D.C. and some Suggestions for their Control. This paper presents the results of a study made on birds attacking maize (Zea mays L. cultures in the swamp of Bika project at Lwiro, (East of the Republic Democratic of Congo. A maize culture has been monitored on a 1920 m2 area from 2.5 months of age to the harvest. On a sample constituated of 100 % of maize (either2254 ears, 96.4 % (or 2173 ears was harvested and 3.6 % (or 81 ears was lost due to birds. Seven bird species attacking the crop were recorded and some useful methods which can permit to decrease the loss are suggested.

  5. MICROELEMENTS IN SUNFLOWER CROPS

    Directory of Open Access Journals (Sweden)

    Buldykova I. A.

    2015-03-01

    Full Text Available The obtained experimental data show that the incorporation of trace elements into the system of the sunflower crop has a positive impact on the mineral nutrition of plants, the number and quality of the crop. Foliar feeding of sunflower crops with micronutrients improves nutrition of plants with nitrogen, phosphorus and potassium, thus creating the preconditions for the formation of highly agrocenosis. The seed yield of sunflower increased by variants with application of micronutrients 1.2-3.5 t/ha or 4.4-12.9 percent. The greatest impact of treatment with boron and copper, exceeding the background option 3.1-3.5 t/ha or 11.5-12.9% respectively. The crop is least influenced by manganese and molybdenum. The examined elements positively influenced the structure of the sunflower crop. The greatest influence on the diameter of the basket, the number of seeds, weight of seeds in the basket, the weight of 1000 seeds was provided by the zinc and copper. Trace elements contributed to the improvement of quality indicators of sunflower. For husk content, the greatest positive effect was cobalt, zinc, manganese and copper, increasing the background option 10.1, 10.4, 10.5 and 10, and 6%, respectively, on the oil content of sunflower seeds had cobalt, copper and zinc. The oil content on these options amounted 55,0, with 55.1 and 55.2%, respectively, increasing this figure by 1.5 to 1.7 %. The acid number at variants with boron, manganese and zinc was the same with the background option and amounted to 1.8. The greatest influence on iodine number provided molybdenum, zinc and copper, which accounted for 170,5, 171,2 and 171,4, exceeding the background option 10.2 and 11.1

  6. Bio energy production in birch and hybrid aspen after addition of residue based fertilizers - establishment of fertilization trials; Bioenergiproduktion hos bjoerk och hybridasp vid tillfoersel av restproduktbaserade goedselmedel - etablering av goedslingsfoersoek

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar (EkoBalans Fenix AB, Malmoe (Sweden))

    2009-03-15

    Sewage sludge and wood ashes could be used as fertilizers in order to increase forest tree production. In southern Sweden forest growth normally increases with approximately 10 % after ash recycling due to increased N and/or P availability. P is added with the ashes and the pH-increasing effect of the wood ash can lead to increased N net mineralization. Other positive effects of wood ash recycling are improved nutrient sustainability and less acid run-off water. Possible negative effects are heavy metal accumulation, if the content of one or more heavy metals of the recycled ash exceeds the heavy metal content of the harvested biomass, and nitrate leaching if the vegetation cannot take up nitrified N. It is important to evaluate the sustainability of fertilization systems based on residues such as sludge and wood ash. Wood ash does not contain N and the P concentration often is too low for the ashes to function as an NP fertilizer. Thus N and sometimes P must be added. Sludge is an interesting alternative. The main purpose of the project is to study sustainable production of forest bio energy in intensively cultivated birch and hybrid aspen stands. Another purpose is to establish experiments that can be used for long term studies and as demonstration objects. In the first few years the goal is to study the short term effects of residue based fertilization compared to conventional NPK fertilization on tree nutrient uptake, nutrient leaching, sustainability and economy. In the long term the goal is to design appropriate fertilization strategies in a residue based fertilization system for the intensive cultivation of birch and hybrid aspen without negative side effects such as large scale nutrient leaching. Four field experiments were established in 2008 and one additional experiment in hybrid aspen will be established in the spring of 2009. Elevated bud N and P concentrations after fertilization with both Ashes+N and NPK means good possibilities for future growth

  7. Crop kites: Determining crop-water production functions using crop coefficients and sensitivity indices

    Science.gov (United States)

    Smilovic, Mikhail; Gleeson, Tom; Adamowski, Jan

    2016-11-01

    The crop-water production function quantitatively evaluates the relationship between seasonal water use and crop yield and is used to evaluate optimal irrigation depth and assess the potential of deficit and supplemental irrigation. A simple and easily applicable methodology to develop crop- and region-specific crop-water production functions using crop coefficients and sensitivity-indices is presented. Previous efforts to describe the crop-water production function have not accounted for the effects of the temporal distribution of water use and trivialize the associated variability in yields by assuming an optimized or arbitrary temporal distribution. The temporal distribution of water use throughout the growing season can significantly influence crop yield, and the ability of farmers to manage both the timing and amount of irrigation water may result in higher yields. We propose crop kites, a tool that explicitly acknowledges crop yield as a function of the temporal distribution of water use to both evaluate the complete space of water use and crop yield relationships, and extract from this space specific crop-water production functions. An example for winter wheat is presented using previously validated crop-specific sensitivity indices. Crop-water production functions are extracted from the crop kite related to specific irrigation schedules and temporal distributions of water use. Crop-water production functions associated with maximizing agricultural production agree with previous efforts characterizing the shape as a diminishing curvilinear function. Crop kites provide the tools for water managers and policy makers to evaluate crop- and region-specific agricultural production as it relates to water management and the associated economics, and to determine appropriate policies for developing and supporting the infrastructure to increase water productivity.

  8. Graviresponsiveness of surgically altered primary roots of Zea mays

    Science.gov (United States)

    Maimon, E.; Moore, R.

    1991-01-01

    We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.

  9. Use of Zea mays L. in phytoremediation of trichloroethylene.

    Science.gov (United States)

    Moccia, Emanuele; Intiso, Adriano; Cicatelli, Angela; Proto, Antonio; Guarino, Francesco; Iannece, Patrizia; Castiglione, Stefano; Rossi, Federico

    2016-09-13

    Trichloroethylene (TCE) is a chlorinated aliphatic organic compound often detected as pollutant in soils and ground water. "Green technologies" based on phytoremediation were proven to be effective to reclaim organic pollutants (e.g. TCE) and heavy metals from different environmental matrices. In this work, we use Zea mays L. for the removal of high TCE concentrations from medium cultures. In particular, we investigated a sealed bioreactor where the growth medium was contaminated with an increasing amount of TCE, in the range 55-280 mg/L; the removal capability of the maize plants was assessed by means of GC-MS and LC-MS analyses. An accurate mass balance of the system revealed that the plants were able to remove and metabolise TCE with an efficiency up to 20 %, depending on the total amount of TCE delivered in the bioreactor. Morphometric data showed that the growth of Z. mays is not significantly affected by the presence of the pollutant up to a concentration of 280 mg/L, while plants show significant alterations at higher TCE concentrations until the growth is completely inhibited for [TCE] ≃ 2000 mg/L. Finally, the presence of several TCE metabolites, including dichloroacetic and trichloroacetic acids, was detected in the roots and in the aerial part of the plants, revealing that Z. mays follows the green liver metabolic model. These results encourage further studies for the employment of this plant species in phytoremediation processes of soils and waters contaminated by TCE and, potentially, by many other chlorinated solvents.

  10. CROPS : high tech agricultural robots

    NARCIS (Netherlands)

    Bontsema, J.; Hemming, J.; Pekkeriet, E.J.

    2014-01-01

    In the EU-funded CROPS (Clever Robots for Crops) project high tech robots are developed for site-specific spraying and selective harvesting of fruit and fruit vegetables. The harvesting robots are being designed to harvest high-value crops such as greenhouse vegetables, fruits in orchards and grapes

  11. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (II Fumonisin Incidence on Kernels

    Directory of Open Access Journals (Sweden)

    Carolina Gavazzi

    2009-09-01

    Full Text Available Planting maize under no-tillage is an increasing farming practice for sustainable agriculture and sound environmental management. Although several studies on yield of no-till maize have been done, there is few information about the effect of tillage on fumonisin contamination. The present study was done to determine the effect of notillage and conventional tillage with two rates of nitrogen on fumonisin content in kernels of continuous maize. Average grain contamination with fumonisins B1 and B2 over the years 2004-06 was not significantly different, with mean values of 1682, 1984 and 2504 μg kg-1, respectively. Fumonisin B1 was the most abundant toxin found in the samples. No-tillage significantly affected the incidence of fumonisins during the first year of the trial, in which fumonisin content was significantly higher with no-till (2008 μg kg-1 compared with conventional tillage (1355 μg kg-1. However, no-tillage did not significantly affect the incidence of fumonisins in the second and third years of the study. Fumonisin content at the rate of 300 kg N ha-1 was not statistically different compared to that obtained without N fertilization. The interaction between the soil management system and the rate of applied nitrogen was only evident in the second year. Our results indicate that fumonisin contamination was affected by no-tillage only in the first year. Nitrogen fertilization had no significant effect on fumonisin content in any year. The weather conditions during susceptible stages of maize development have probably overridden the effect of nitrogen fertilization.

  12. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Science.gov (United States)

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  13. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Anjali, E-mail: joshianjali1982@gmail.com; Sharma, Arti [Centre For Nanoscience and Nanotechnology, Panjab University, Chandigarh (India); Nayyar, Harsh [Department of Botany, Panjab University, Chandigarh (India); Verma, Gaurav [Dr. SS Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh (India)

    2015-08-28

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  14. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  15. The effect of lead on the photoelectric reaction of Zea mays L. plants.

    Science.gov (United States)

    Pazurkiewicz-Kocot, K; Pietruszka, M

    2000-09-01

    We investigate the correlation between the concentrations of lead (10(-6)-10(-2) mol dm(-3) PbCl2) in the external medium and photoelectric reaction of Zea mays L. plants. The experiments were carried out on 8-10-day-old maize plants (Zea mays L. var. K33 x F2) with the use of conventional electrophysiological technique. The results suggest that in plants treated with lead ions the photoelectric reaction is significantly reduced. The pH variation of the incubation medium including the green fragments of leaves showed that lead ions caused inhibition of light-induced external acidification.

  16. Energy and Water Use Related to the Cultivation of Energy Crops: a Case Study in the Tuscany Region

    Directory of Open Access Journals (Sweden)

    Anna Dalla Marta

    2011-06-01

    Full Text Available The contribution of agrobiomasses, as a source of energy, to the reduction of greenhouse gas emissions was confirmed by several studies. Biomass from agriculture represents one of the larger and more diverse sources to exploit and in particular ethanol and diesel have the potential to be a sustainable replacement for fossil fuels, mainly for transport purposes. However, the cultivation of energy crops dedicated to the production of biofuels presents some potential problems, e.g., competitiveness with food crops, water needs, use of fertilizers, etc., and the economic, energy, and environmental convenience of such activity depends on accurate evaluations about the global efficiency of the production system. In this study, the processes related to the cultivation of energy crops were analyzed from an energy and water cost perspective. The crops studied, maize (Zea mais and sunflower (Helianthus annuus, were identified for their different water requirements and cultivation management, which in turns induces different energy costs. A 50-year climatic series of meteorological data from 19 weather stations scattered in the Tuscany region was used to feed the crop model CropSyst for the simulation of crop production, water requirement, and cultivation techniques. Obtained results were analyzed to define the real costs of energy crop cultivation, depending on energy and water balances. In the energy crop cultivation, the only positive energy balance was obtained with the more efficient system of irrigation whereas all the other cases provided negative balances. Concerning water, the results demonstrated that more than 1.000 liters of water are required for producing 1 liter of bioethanol. As a consequence, the cultivation of energy crops in the reserved areas of the region will almost double the actual water requirement of the agricultural sector in Tuscany.

  17. Policy Instruments for an Increased Supply of Energy Crops; Styrmedel foer ett utoekat utbud av biobraensle

    Energy Technology Data Exchange (ETDEWEB)

    Stenkvist, Maria; Widmark, Annika; Wiklund, Sven-Erik; Liljeblad, Anna

    2009-05-15

    development of the existing investment support scheme to include an additional number of energy crops are suggested. One of the purposes by including an additional number of energy crops within the scheme is that the energy crops with the best condition with respect to the farmer's competence, the logistics entrepreneur's technical preconditions, different quality of the soils and the suitability of different energy crops in different geographical areas can be used in order to increase production and use of energy crops. 3. Introduction of a National Program for Development of Regional Projects Supporting Cooperation between Actors on the Energy Crop Bio Fuel Market. Experiences from bio energy projects both in Sweden and in Finland shows that regional cooperation projects between energy companies, farmers, entrepreneurs within the logistics chain and other actors may by cooperation achieve increased production and use of energy crops.

  18. Effects of Vermi compost and Compost tea Application on the Growth criteria of Corn (Zea mays

    Directory of Open Access Journals (Sweden)

    R Afsharmanesh

    2016-07-01

    Full Text Available Introduction Maize (Zea mays is a cereal crop that is grown widely throughout the world in a range of agroecological environments. .Its value as a cost-effective ruminant feed is one of the main reasons that farmers grow it. However, lack of nutrients such as N and P, are the principal obstacles - to crop production under low input agricultural systems leading to dependency on chemical fertilizers. Long-term use of chemical fertilizers destroy soil physicochemical properties and it reduced permeability which restricts root growth, nutrient uptake and plant production. Therefore, the use of organic fertilizers can help to enrich the soil root zone As a result growth and yield will improve. Materials and Methods In order to study the effects of different levels of vermicompost and foliar application of tea compost on growth characteristics of the hybrid maize genotype 713, a greenhouse experiment was conducted as a factorial experiment in randomized complete block design with three replications at the Vali-e-Asr University of Rafsanjan, during 2013. Treatments were included vermicompost (0, 5%, 10%, 15%, 20%, 25% and 30% pot weight and tea composts (foliar application, non-foliar application. Measured traits were included root dry weight, root volume, leaf dry weight, stem dry weight, macro nutrient concentration (N and P and micro nutrient concentration (Zn, Mn, Fe and Cu. All the data were subjected to the statistical analysis (two-way ANOVA using SAS software (SAS 9.1.3. Differences between the treatments were performed by Duncan’s multiple range test (DMRT at 1% confidence interval. Results and Discussion Results indicated that leaf and stem dry weight affected by the application of vermicompost and tea compost. However, the interaction effects had no significant effects on the leaf and stem dry weight. Application of tea compost increased 20% and 50% leaf dry weight and stem dry weight of corn compared to non- foliar application

  19. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  20. BIO-ENERGY FROM PIG'S MANURE

    Directory of Open Access Journals (Sweden)

    Ljiljanka Tomerlin

    2004-12-01

    Full Text Available After settling, in the sample of pig’s manure, before and after anaerobic fermentation different layers appear: foam, fine colloids, floating particle-colloids and sediment-rude particles. During the anaerobic treatment it being favourable for maintaining the anaerobic fermentation was examined. It was shown that the layer from the bottom, sediment-rude particles, achieved the best results. During the anaerobic fermentation pig’s manure was stabilized and its quality improved. Produced biogas contained more than 88 vol.% of methane. The degradation of organic matter was 50 % at pH value 6.5 and temperature 35 ºC during the anaerobic fermentation that lasted 7 days.

  1. Richland Community College BioEnergy Program

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Douglas C. [Richland Community College, Decatur, IL (United States)

    2012-09-25

    The purpose of this project was to focus on education and community outreach. As such, it reflected anticipated growth in the renewable/alternative energy industry creating a vast need for trained industry professionals, engineers, operations managers, and technicians to operate state-of-the art production facilities. This project's scope leveraged Richland's initial entry in the renewable energy education, which included Associate of Applied Science degrees and certificates in biofuels and bioprocessing. This facilitated establishing a more comprehensive sustainability and renewable energy programs including experiential learning laboratory components needed to support new renewable energy education degree and certificate specialties, as well as community outreach. Renewable energy technologies addressed included: a) biodiesel, c) biomass, d) wind, e) geothermal, and f) solar. The objective is to provide increasingly innovative hands on experiential learning and knowledge transfer opportunities.

  2. Market survey Slovakia. Bio-energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    The study presents an overview of Slovakian bioenergy market, its current state and future prospects in terms of size and potentials. In the opening, the basic structure of Slovakian energy sources is presented from IEA energy statistics, then a list of programmes and valid legislation relating to RES follow. Figures from several sources show possible potential accomplishable in biomass utilisation in Slovakia. Some most promising areas containing interesting amounts of unutilised biomass are quoted. Chapter 4 contains overview of programmes supporting the use of RES, examples of already realised projects and some planned projects. In Chapter 5 there is a list of main stakeholders in the bioenergy sector, description of legal requirements and procedures necessary for starting a business in Slovakia and some ways how to promote bioenergy business in Slovakia. As the most promising opportunities identified in Slovakia we can consider projects of biomass utilisation in the form of installation of boilers and creation of distribution channels enabling steady supply of biomass for competitive prices. A lot of waste and other residues from woodworking industries or forestry is available for this purpose. Dutch companies should make maximum use of their technological know-how and try to offer equipment for biomass utilisation. Biogas is produced only on a very limited scale. The reason for that lies in relatively high initial costs that cannot be covered from farming companies and low rentability of realised projects. Still, projects solving disposal of agricultural waste on the one hand and energy production on the other are worth paying attention to. Success stories from the Netherlands could serve as a source of inspiration but doing of thoroughgoing analysis preceding investment itself is of necessity in order to cope with hidden risks and uncertainties. In any case, Dutch companies can offer technological equipment to Slovakian buyers without risks connected with making investments. The market with biofuels is currently on the move as new legislative changes have been introduced lately in Slovakia (obligatory blending of biofuels with mineral fuels) and other countries are importing a lot of biodiesel produced in Slovakia into their markets too. As a result, increase in demand can be expected and it is a question whether current domestic capacities are able to cover this increase in demand or if there is room for additional investments into biofuels sector. Current situation indicates that existing capacities should suffice for the purpose of domestic consumption, but in the event of increased foreign sales, domestic capacities may show deficient. From a shortterm point of view, Slovakian biofuels market could serve as a source of pure biofuels ready to be blended in the Dutch market. Better pricing could be gained thanks to overcapacities in biodiesel but it is necessary to begin talks directly with producers and evaluate their concrete offers.

  3. Market survey Slovak Republic. Bio-energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    The study presents an overview of Slovakian bioenergy market, its current state and future prospects in terms of size and potentials. In the opening, the basic structure of Slovakian energy sources is presented from IEA energy statistics, then a list of programmes and valid legislation relating to RES follow. Figures from several sources show possible potential accomplishable in biomass utilisation in Slovakia. Some most promising areas containing interesting amounts of unutilised biomass are quoted. Chapter 4 contains overview of programmes supporting the use of RES, examples of already realised projects and some planned projects. In Chapter 5 there is a list of main stakeholders in the bioenergy sector, description of legal requirements and procedures necessary for starting a business in Slovakia and some ways how to promote bioenergy business in Slovakia. As the most promising opportunities identified in Slovakia we can consider projects of biomass utilisation in the form of installation of boilers and creation of distribution channels enabling steady supply of biomass for competitive prices. A lot of waste and other residues from woodworking industries or forestry is available for this purpose. Dutch companies should make maximum use of their technological know-how and try to offer equipment for biomass utilisation. Biogas is produced only on a very limited scale. The reason for that lies in relatively high initial costs that cannot be covered from farming companies and low rentability of realised projects. Still, projects solving disposal of agricultural waste on the one hand and energy production on the other are worth paying attention to. Success stories from the Netherlands could serve as a source of inspiration but doing of thoroughgoing analysis preceding investment itself is of necessity in order to cope with hidden risks and uncertainties. In any case, Dutch companies can offer technological equipment to Slovakian buyers without risks connected with making investments. The market with biofuels is currently on the move as new legislative changes have been introduced lately in Slovakia (obligatory blending of biofuels with mineral fuels) and other countries are importing a lot of biodiesel produced in Slovakia into their markets too. As a result, increase in demand can be expected and it is a question whether current domestic capacities are able to cover this increase in demand or if there is room for additional investments into biofuels sector. Current situation indicates that existing capacities should suffice for the purpose of domestic consumption, but in the event of increased foreign sales, domestic capacities may show deficient. From a short-term point of view, Slovakian biofuels market could serve as a source of pure biofuels ready to be blended in the Dutch market. Better pricing could be gained thanks to overcapacities in biodiesel but it is necessary to begin talks directly with producers and evaluate their concrete offers.

  4. Halophytes As Bioenergy Crops.

    Science.gov (United States)

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops.

  5. Differences on Pb accumulation among plant tissues of 25 varieties of maize (Zea mays)

    Institute of Scientific and Technical Information of China (English)

    DAI Quanlin; YUAN Jiangang; FANG Wei; YANG Zhongyi

    2007-01-01

    Pollution of agricultural land by heavy metals has imposed an increasingly serious risk to environmental and human health in recent years.Heavy metal pollutants may enter the human food chain through agricultural products and groundwater from the polluted soils.Progress has been made in the past decade on phytoremediation,a safe and inexpensive approach to remove contaminants from soil and water using plants.However,in most cases,agricultural land in China cannot afford to grow phytoremediator plants instead of growing crops due to food supply for the great population.Therefore,new and effective methods to decrease the risk of heavy metal pollution in crops and to clean the contaminated soils are urgently needed.If we can find crop germplasms (including species and varieties) that accumulate heavy metals in their edible parts,such as the leaves of vegetables or grains of cereals,at a level low enough for safe consumption,then we can grow these selected species or varieties in the lands contaminated or potentially contaminated by heavy metals.If we can find crop germplasms that take in low concentrations of heavy metals in their edible parts and high content of the metals in their inedible parts,then we can use these selected species or varieties for soil remediation.In this study,the feasibility of the method is assessed by analyzing Pb concentrations in edible and inedible parts of 25 varieties of maize (Zea mays) grown in Pb-contaminated soils.The soil concentrations of Pb were 595.55 mg/kg in the high Pb exposed treatment and 195.55 mg/kg in the control.The results showed that the Pb concentrations in different tissues were in the order of root > shoot ≌ leaf> grain.Compared with the control,the Pb concentrations in root,shoot and leaf were greatly increased under the high Pb exposed condition,while the increments of Pb concentration in grain were relatively lower.Under the high Pb exposure,the grain Pb concentrations of 12 varieties exceeded the maximal

  6. Soil CO2 Emissions as Affected by 20-Year Continuous Cropping in Mollisols

    Institute of Scientific and Technical Information of China (English)

    YOU Meng-yang; YUAN Ya-ru; LI Lu-jun; XU Yan-li; HAN Xiao-zeng

    2014-01-01

    Long-term continuous cropping of soybean (Glycine max), spring wheat (Triticum aesativum) and maize (Zea mays) is widely practiced by local farmers in northeast China. A ifeld experiment (started in 1991) was used to investigate the differences in soil carbon dioxide (CO2) emissions under continuous cropping of the three major crops and to evaluate the relationships between CO2 lfuxes and soil temperature and moisture for Mollisols in northeast China. Soil CO2 emissions were measured using a closed-chamber method during the growing season in 2011. No remarkable differences in soil organic carbon were found among the cropping systems (P>0.05). However, signiifcant differences in CO2 emissions from soils were observed among the three cropping systems (Pcontinuous wheat ((629±22) g CO2 m-2)>continuous soybean ((474±30) g CO2 m-2). Soil temperature explained 42-65% of the seasonal variations in soil CO2 flux, with a Q10 between 1.63 and 2.31; water-filled pore space explained 25-47% of the seasonal variations in soil CO2 lfux. A multiple regression model including both soil temperature (T, °C) and water-iflled pore space (W,%), log(f)=a+bT log(W), was established, accounting for 51-66%of the seasonal variations in soil CO2 lfux. The results suggest that soil CO2 emissions and their Q10 values under a continuous cropping system largely depend on crop types in Mollisols of Northeast China.

  7. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co......-substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  8. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  9. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  10. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  11. Nitrous oxide emissions in cover crop-based corn production systems

    Science.gov (United States)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  12. Field controlled experiments of mercury accumulation in crops from air and soil

    Energy Technology Data Exchange (ETDEWEB)

    Niu Zhenchuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Xiaoshan, E-mail: zhangxsh@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wang Zhangwei, E-mail: wangzhw@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Ci Zhijia [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2011-10-15

    Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation. - Highlights: > Hg accumulation in crop organs was studied by OTCs and soil Hg enriched experiments. > Hg accumulation in foliages and roots was mainly from air and soil, respectively. > Air Hg had stronger influence than soil Hg on stem Hg accumulation. > Foliar Hg concentrations showed the trend of increase over growth stages. - Capsule Mercury accumulated in the aboveground organs of crop was mainly from the air.

  13. Designing a new cropping system for high productivity and sustainable water usage under climate change

    Science.gov (United States)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) –summer maize system. The M-M system improved yield by 14–31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr‑1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  14. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    Science.gov (United States)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  15. Winter annual cover crop has only minor effects on major corn arthropod pests.

    Science.gov (United States)

    Davis, Holly N; Currie, Randall S; Klocke, Norman L; Buschman, Lawrent L

    2010-04-01

    We studied the effects of downy brome, Bromus tectorum L., winter cover crop on several corn, Zea mays L., pests in the summer crop after the cover crop. An experiment was conducted that consisted of two trials with two levels of irrigation, two levels of weed control, and two levels of downy brome. Corn was grown three consecutive years after the downy brome grown during the winter. Banks grass mites, Oligonychus pratensis (Banks), twospotted spider mites, Tetranychus urticae Koch, and predatory mites from the genus Neoseiulus were present in downy brome at the beginning of the growing season. They moved into corn, but their numbers did not differ significantly across the treatments. Larval western corn rootworm, Diabrotica virgifera virgifera LeConte, feeding on corn roots was evaluated the second and third years of corn, production. Irrigation and herbicide treatments had no significant effects on rootworm injury levels. In one trial, rootworm injury ratings were significantly greater in treatments with a history of high versus low brome, but this effect was not significant in the other trial. Rootworm injury seemed to be similar across plots with different surface soil moistures. This suggests that the use of a winter cover crop such as downy brome will not have a major negative impact the arthropods studied.

  16. Production and characterization of amylases from Zea mays malt

    Directory of Open Access Journals (Sweden)

    Joana Paula Menezes Biazus

    2009-08-01

    Full Text Available In this work the α and β-amylase enzymes were obtained from maize (Zea mays malt and were biochemistry characterized. A germination study to obtain the maize malt with good amylase activity was made. The maize seeds were germinated in laboratory and the enzymatic activity was measured daily. Activity dependence to germination time were fitted to an exponential model (A=A0eµt, which showed that the behaviour of enzymatic activity in the germination process was similar to the growth of the microorganism. Its model could be applied to describe the mechanism of α-amylase production for each maize varieties and others cereals. Maize malt characterization showed that α and β-amylase had optimal pH between 4-6.5, optimal temperature 50 and 90ºC, and molecular weight of 67.4 and 47.5kDa, respectively. This work contributed with the advances in biotechnology generating of conditions for application of a new and of low price amylases source.Neste trabalho as enzimas α e β-amilases foram obtidas de malte de milho e depois foram caracterizadas bioquimicamente. Um estudo da germinação foi feito para obtenção do malte com boa atividade amilásica. A germinação ocorreu em escala laboratorial e a atividade enzimática foi medida diariamente. Um modelo exponencial do tipo A=A0eµt foi ajustado a dependência do tempo de germinação com a atividade, mostrando que o comportamento da atividade enzimática no processo de germinação é semelhante ao crescimento de microorganismos. Este modelo pode ser aplicado para descrever o mecanismo de produção da α-amilase para cada variedade de milho e de outros cereais. A caracterização do malte de milho mostrou que as α e β-amilase têm pH ótimo entre 4,0-6,5, temperatura ótima de 50 e 90ºC, e massa molar de 67,4 e 47,5 kDa, respectivamente. Este trabalho contribuiu com os avanços da biotecnologia gerando condições de emprego de uma nova e barata fonte de amilases.

  17. INVENTARISASI GULMA PADA TANAMAN JAGUNG (Zea mays L. DI LAHAN SAWAH KELURAHAN PADANG GALAK, DENPASAR TIMUR, KODYA DENPASAR, PROVINSI BALI

    Directory of Open Access Journals (Sweden)

    SURYANINGSIH -

    2013-05-01

    Full Text Available This study aims to determine the weed species that exist on Zea mays L. plant in paddyfields Padang Galak village, East Denpasar, Bali Province. This study is useful to provideinformation about the species of weeds found in maize (Zea mays L. in the fields of biology andagriculture, so weed control on Zea mays L. Plant can be implemented.Research was conducted from January 7 until March 11, 2011. In this study used themethod of cruising (exsploration sampling. To be more efficient and systematic results, alsoused a systematic method of lines.The results found 36 weed species belonging to 20 families. The distribution of theweed species, was found in Zea mays L. plant age of 4 weeks, which composed of 8 families 16Species. Weeds found in Zea mays L. plants aged of 6 weeks (the formation of fruit consistedof 10 familes and 23 species. While weeds found in Zea mays L. plants 8 weeks of age(ripening fruit were 14 families and 28 species. Weeds found in Zea mays L. plants aged 10weeks (before harvest comprised of 20 families and 36 species.

  18. Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars

    Science.gov (United States)

    In the present study, the role of potassium (K) in mitigating the adverse effects of drought stress (DS) on 2 maize (Zea mays L.) cultivars, ‘Shaandan 9’ (S9; drought-tolerant) and ‘Shaandan 911’ (S911; drought-sensitive), was assessed. K application increased dry matter (DM) across all growth stage...

  19. Identification and characterization of digestive serine proteases from inhibitor-resistant Helicoverpa zea larval midgut

    NARCIS (Netherlands)

    Volpicella, M.; Cordewener, J.H.G.; Jongsma, M.A.; Gallerani, R.; Ceci, L.R.; Beekwilder, M.J.

    2006-01-01

    Protease inhibitors mediate a natural form of plant defence against insects, by interfering with the digestive system of the insect. In this paper, affinity chromatography was used to isolate trypsins and chymotrypsins from Helicoverpa zea larvae, which had been raised on inhibitor-containing diet.

  20. Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Riera, Marta; Pages, Montserrat; Issinger, Olaf Georg;

    2003-01-01

    Recombinant protein kinase subunits rmCK2alpha-1 and rmCK2beta-1 from Zea mays were expressed separately in Escherichia coli and assembled to a fully active tetrameric holoenzyme complex in vitro. The obtained maize holoenzyme was purified to homogeneity, biochemically characterized, and compared...

  1. Cloning and sequencing of the casein kinase 2 alpha subunit from Zea mays

    DEFF Research Database (Denmark)

    Dobrowolska, G; Boldyreff, B; Issinger, O G

    1991-01-01

    The nucleotide sequence of the cDNA coding for the alpha subunit of casein kinase 2 of Zea mays has been determined. The cDNA clone contains an open reading frame of 996 nucleotides encoding a polypeptide comprising 332 amino acids. The primary amino acid sequence exhibits 75% identity to the alpha...

  2. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds

    DEFF Research Database (Denmark)

    Andersen, Jeppe Reitan; Zein, Imad; Wenzel, Gerhard;

    2008-01-01

    genomic fragments of six putative phenylpropanoid pathway genes in a panel of elite European inbred lines of maize (Zea mays L.) contrasting in forage quality traits. Six loci, encoding C4H, 4CL1, 4CL2, C3H, F5H, and CAD, displayed different levels of nucleotide diversity and linkage disequilibrium (LD...

  3. Chromosomal Location by Use of Trisomics and New Alleles of an Endopeptidase in Zea Mays

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel; Scandalios, John G.

    1974-01-01

    An association was found earlier between the Ep1 gene locus coding for an endopeptidase and the endosperm color gene Y1 on chromosome 6 of Zea mays. By employing primary trisomics we have unequivocally placed the Ep1 gene on chromosome 6, closely linked to the Y1 locus. Additionally we describe new...

  4. Isolation of EF1gamma from calli regenerating SSH library in Maize (Zea mays).

    Science.gov (United States)

    Xia, Y L; Ding, J; Zhang, Z M; Rong, T Z; Shi, L Y; Pan, G T

    2007-12-01

    18599Hong, a good Maize (Zea mays) inbred line as well as good transformation acceptor with high regeneration capacity, was used for isolating embryonic callus regeneration genes. Subtractive library was constructed by Suppression subtractive hybridization and screened by Reverse Northern Hybridization. The clones of No. 27 was randomly picked to sequence. NCBI blastx results showed the similarity to elongation factor 1gamma in rice.

  5. Differential distribution of cadmium in lettuce (Lactuca sativa L.) and maize (Zea mays L.).

    NARCIS (Netherlands)

    Florijn, P.J.

    1993-01-01

    Large genotypic variation in shoot Cd concentrations has been reported in literature for several plant species including lettuce ( Lactuca sativa L.) and maize ( Zea mays L.). The objective of this thesis was to elucidate the physiological andlor morphological basis of this differential behaviour us

  6. Identification and characterization of a Zea mays line carrying a transposon-tagged ENOD40

    NARCIS (Netherlands)

    Compaan, B.; Ruttink, T.; Albrecht, C.; Meeley, R.; Bisseling, T.; Franssen, H.G.J.M.

    2003-01-01

    In Zea mays, two ENOD40 homologous were identified that show only 30% of sequence homology to each other. We identified line e40-mum1 carrying a Mu transposon inserted in ZmENOD40-1, the maize gene that has the highest homology to leguminous ENOD40. The insertion causes a dramatic reduction of the Z

  7. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Science.gov (United States)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  8. Cytodifferentiation during callus initiation and somatic embryogenesis in Zea mays L.

    NARCIS (Netherlands)

    Fransz, P.F.

    1988-01-01

    This thesis deals with cytomorphogenic aspects during various phases of regeneration in tissue cultures of Zeamays L. Regeneration through tissue culture has been shown in an increasing number of plant species and is applied on large scale in agriculture and horticulture. Nevertheless,

  9. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  10. Effects of cotton condensed tannin, maysin (Corn) and pinitol (soybeans) onHeliothis zea growth and development.

    Science.gov (United States)

    Reese, J C; Chan, B G; Waiss, A C

    1982-12-01

    Maysin, a flavone glycoside from corn silks, inhibits ingestion, and thus growth, ofHeliothis zea (Boddie) larvae. Pinitol from soybeans inhibitedH. zea growth by the same mechanism. Despite the widely held assumption that tannins inhibit growth by inhibiting assimilation, cotton condensed tannin inhibitedH. zea growth by reducing ingestion; no evidence was found for a reduction in assimilation. Neonate larvae are shown to be much more sensitive to allelochemics than larvae that have fed on control diet before being transferred to diet containing plant allelochemics.

  11. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    Science.gov (United States)

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances.

  12. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays).

    Science.gov (United States)

    Wang, Guifeng; Zhong, Mingyu; Wang, Jiajia; Zhang, Jushan; Tang, Yuanping; Wang, Gang; Song, Rentao

    2014-03-01

    The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses.

  13. Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize (Zea mays L.) under water deficit stress.

    Science.gov (United States)

    Ehteshami, S M R; Aghaalikhani, M; Khavazi, K; Chaichi, M R

    2007-10-15

    The effect of seed inoculation by phosphate solubilizing microorganisms on growth, yield and nutrient uptake of maize (Zea mays L. SC. 704) was studied in a field experiment. Positive effect on plant growth, nutrient uptake, grain yield and yield components in maize plants was recorded in the treatment receiving mixed inoculum of Glomus intraradices (AM) and Pseudomonas fluorescens (Pf). Co-inoculation treatment significantly increased grain yield, yield components, harvest index, grain N and P, soil available P, root colonization percentage and crop WUE under water deficit stress. In some of investigated characteristics under well-watered conditions, chemical fertilizer treatment was higher than double inoculated treatments, but this difference was not significant. Seed inoculation only with AM positively affected the measured parameters as amount as co-inoculated treatments. According to the results showed in contrast to the inoculated treatments with AM+Pf and AM, the application of alone Pf caused a comparatively poor response. Therefore, this microorganism needs to a complement for its activity in soil. All of measured parameters in inoculated treatments were higher than uninoculated treatments under water deficit stress conditions. Furthermore, the investigated characteristics of co-inoculated plants under severe water deficit stress conditions were significantly lower than co-inoculated plants under well-watered and moderate-stressed conditions. Therefore it could be stated, these microorganisms need more time to fix and establishing themselves in soil. The present finding showed that phosphate-solubilizing microorganisms can interact positively in promoting plant growth as well as P uptake of maize plants, leading to plant tolerance improving under water deficit stress conditions.

  14. Characterization of water distribution and activities of enzymes during germination in magnetically-exposed maize (Zea mays L) seeds.

    Science.gov (United States)

    Vashisth, Ananta; Nagarajan, Shantha

    2010-10-01

    Magnetic seed treatment is one of the physical pre-sowing seed treatments to enhance the performance of crop plants. In our earlier experiment, we found significant increase in germination and vigour characteristics of maize (Zea mays L.) seeds subjected to magnetic fields. Among various combinations of magnetic field (MF) strength and duration, best results were obtained with MF of 100 mT for 2 h and 200 mT for 1 h exposure. The quicker germination in magnetically-exposed seeds might be due to greater activities of germination related enzymes, early hydration of membranes as well as greater molecular mobility of bulk and hydration water fractions. Thus, in the present study, changes in water uptake during imbibition and its distribution and activities of germinating enzymes during germination were investigated in maize seeds exposed to static magnetic fields of 100 and 200 mT for 2 and 1 h respectively by nuclear magnetic resonance (NMR) spectroscopy. The magnetically-exposed seed showed higher water uptake in phase II and III than unexposed seed. The longitudinal relaxation time T1 of seed water showed significantly higher values and hence greater molecular mobility of cellular water in magnetically-exposed seeds as compared to unexposed. Component analysis of T2 relaxation times revealed the early appearance of hydration water with least mobility and higher values of relaxation times of cytoplasmic bulk water and hydration water in magnetically-exposed over unexposed seeds. Activities of alpha-amylase, dehydorgenase and protease during germination were higher in magnetically-exposed seeds as compared to unexposed. The quicker germination in magnetically-exposed seeds might be due to greater activities of germination related enzymes, early hydration of membranes as well as greater molecular mobility of bulk and hydration water fractions.

  15. Risk assessment for Helicoverpa zea (Lepidoptera: Noctuidae) resistance on dual-gene versus single-gene corn.

    Science.gov (United States)

    Edwards, Kristine T; Caprio, Michael A; Allen, K Clint; Musser, Fred R

    2013-02-01

    Recent Environmental Protection Agency (EPA) decisions regarding resistance management in Bt-cropping systems have prompted concern in some experts that dual-gene Bt-corn (CrylA.105 and Cry2Ab2 toxins) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than single-gene Bacillus thuringiensis (Bt)-corn (CrylAb toxin). The concern is that Bt-toxin longevity could be significantly reduced with recent adoption of a natural refuge for dual-gene Bt-cotton (CrylAc and Cry2Ab2 toxins) and concurrent reduction in dual-gene corn refuge from 50 to 20%. A population genetics framework that simulates complex landscapes was applied to risk assessment. Expert opinions on effectiveness of several transgenic corn and cotton varieties were captured and used to assign probabilities to different scenarios in the assessment. At least 350 replicate simulations with randomly drawn parameters were completed for each of four risk assessments. Resistance evolved within 30 yr in 22.5% of simulations with single-gene corn and cotton with no volunteer corn. When volunteer corn was added to this assessment, risk of resistance evolving within 30 yr declined to 13.8%. When dual-gene Bt-cotton planted with a natural refuge and single-gene corn planted with a 50% structured refuge was simulated, simultaneous resistance to both toxins never occurred within 30 yr, but in 38.5% of simulations, resistance evolved to toxin present in single-gene Bt-corn (CrylAb). When both corn and cotton were simulated as dual-gene products, cotton with a natural refuge and corn with a 20% refuge, 3% of simulations evolved resistance to both toxins simultaneously within 30 yr, while 10.4% of simulations evolved resistance to CrylAb/c toxin.

  16. ZEA-TDMA: design and system level implementation of a TDMA protocol for anonymous wireless networks

    Science.gov (United States)

    Banerjee, Debasmit; Dong, Bo; Biswas, Subir

    2013-05-01

    Wireless sensor network used in military applications may be deployed in hostile environments, where privacy and security is of primary concern. This can lead to the formation of a trust-based sub-network among mutually-trusting nodes. However, designing a TDMA MAC protocol is very challenging in situations where such multiple sub-networks coexist, since TDMA protocols require node identity information for slot assignments. This paper introduces a novel distributed TDMA MAC protocol, ZEA-TDMA (Zero Exposure Anonymous TDMA), for anonymous wireless networks. ZEA-TDMA achieves slot allocation with strict anonymity constraints, i.e. without nodes having to exchange any identity revealing information. By using just the relative time of arrival of packets and a novel technique of wireless collision-detection and resolution for fixed packetsizes, ZEA-TDMA is able to achieve MAC slot-allocation which is described as follows. Initially, a newly joined node listens to its one-hop neighborhood channel usage and creates a slot allocation table based on its own relative time, and finally, selects a slot that is collision free within its one-hop neighborhood. The selected slot can however cause hidden collisions with a two-hop neighbor of the node. These collisions are resolved by a common neighbor of the colliding nodes, which first detects the collision, and then resolve them using an interrupt packet. ZEA-TDMA provides the following features: a) it is a TDMA protocol ideally suited for highly secure or strictly anonymous environments b) it can be used in heterogeneous environments where devices use different packet structures c) it does not require network time-synchronization, and d) it is insensitive to channel errors. We have implemented ZEA-TDMA on the MICA2 hardware platform running TinyOS and evaluated the protocol functionality and performance on a MICA2 test-bed.

  17. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie).

    Science.gov (United States)

    Anilkumar, Konasale J; Rodrigo-Simón, Ana; Ferré, Juan; Pusztai-Carey, Marianne; Sivasupramaniam, Sakuntala; Moar, William J

    2008-01-01

    Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.

  18. Agro-ecological zoning for wheat (Triticum aestivum, sugar beet (Beta vulgaris and corn (Zea mays on the Mashhad plain, Khorasan Razavi province

    Directory of Open Access Journals (Sweden)

    Ehsan Neamatollahi

    2012-06-01

    Full Text Available Climate is the most important factor determining the sustainability of agricultural production systems. A qualitative land evaluation was carried out for the Mashhad plain, Khorasan Razavi province, Iran, to assess the suitability of the land to grow the locally most important crops, i.e. wheat (Triticum aestivum, sugar beet (Beta vulgaris and corn (Zea mays using a Geographical Information System (GIS. The possible growing seasons were defined as early (10 September–20 June and late (10 October–20 July season for wheat, early (15 March–15 October and late (15 April–15 November season for sugar beet, and early (1 May–1 November and late (15 May–15 November season for corn. The study area covered approximately 99.915 ha−1. Climate variables were taken into account including maximum, optimum and minimum daily average temperatures and were obtained from 30 years agro-meteorological data set from 12 synoptic stations. Growing Degree Days (GDDs were determined for wheat, sugar beet, and corn crops from sowing to harvest. To produce digital elevation model for Mashhad plain two sources were used on utilization of the IRS III satellite images with resolution that is 23.5 m, and topographic maps with scale of 1:25000. Aspect and slope layers were produced by Arc GIS 9.2 software. The study identified suitable elevation, slope, and GDDs for optimal growth and indicated that high yields are possible for wheat, sugar beet, and corn on the Mashhad plain. The study also identified the most suitable regions of the Mashhad plain for each crop.

  19. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  20. Introduction of Alley Cropping

    Directory of Open Access Journals (Sweden)

    Sugeng Parmadi

    2004-01-01

    Full Text Available One of the efforts to preserve the sources of vegetarian, soil, and water is to rehabilitate the land and soil conservation. The aim of this rehabilitation is increasing and maintaining the produtivity of the land, so it can be preserved and used optimally. Therefore, it is necessary to a  develop a variety of good soil conservation, such as vegetative method and civil engineering. To find an appropriate technology, so it is necessary to develop some alternatives of soil conservation technique that are mainly implemented at dry land with its slope of more than 15% in the upstream area of discharge. One of the most suitable soil conservation technique today is Alley Cropping. Based on the research (trial and error in some areas, Alley Cropping could really provide a positive result in terms of erotion controlling and running off and maintain the land productivity. In addition, the technique is more easly operated and spends a cheaper cost than making a bench terrace.

  1. Crop demand of manganese.

    Science.gov (United States)

    Marton, Laszlo

    2012-01-01

    The objectives of this study were to evaluate some of the popular rotation crops grown in Hungary for tolerance to low external Mn(2+) levels and to determine the critical tissue concentration of Mn(2+) deficiency during early stages of growth. The minimum Mn(2+) concentration required in soil nutrient contents was 42.5 mg kg(-1) for sunflower, 24.3 mg kg(-1) for tobacco and 10.2 mg kg(-1) for triticale. Sunflower, tobacco and triticale achieved optimum growth at 48.0-65.0 mg Mn(2+) kg(-1), 24.9-32.1 mg Mn( n+) kg(-1) and 28.7 to 29.6 mg Mn(2+) kg(-1), respectively. Critical shoot Mn(2+) concentration at early stages of growth was 53.6 mg kg(-1) in sunflower, 458.0 mg kg(-1) in tobacco and 193.8 mg kg(-1) in triticale. Our results demonstrate that the tolerance to low external Mn(2+) (triticale: crop species tested.

  2. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency....

  3. Bayesian inference of baseline fertility and treatment effects via a crop yield-fertility model.

    Directory of Open Access Journals (Sweden)

    Hungyen Chen

    Full Text Available To effectively manage soil fertility, knowledge is needed of how a crop uses nutrients from fertilizer applied to the soil. Soil quality is a combination of biological, chemical and physical properties and is hard to assess directly because of collective and multiple functional effects. In this paper, we focus on the application of these concepts to agriculture. We define the baseline fertility of soil as the level of fertility that a crop can acquire for growth from the soil. With this strict definition, we propose a new crop yield-fertility model that enables quantification of the process of improving baseline fertility and the effects of treatments solely from the time series of crop yields. The model was modified from Michaelis-Menten kinetics and measured the additional effects of the treatments given the baseline fertility. Using more than 30 years of experimental data, we used the Bayesian framework to estimate the improvements in baseline fertility and the effects of fertilizer and farmyard manure (FYM on maize (Zea mays, barley (Hordeum vulgare, and soybean (Glycine max yields. Fertilizer contributed the most to the barley yield and FYM contributed the most to the soybean yield among the three crops. The baseline fertility of the subsurface soil was very low for maize and barley prior to fertilization. In contrast, the baseline fertility in this soil approximated half-saturated fertility for the soybean crop. The long-term soil fertility was increased by adding FYM, but the effect of FYM addition was reduced by the addition of fertilizer. Our results provide evidence that long-term soil fertility under continuous farming was maintained, or increased, by the application of natural nutrients compared with the application of synthetic fertilizer.

  4. Summer cover crops reduce atrazine leaching to shallow groundwater in southern Florida.

    Science.gov (United States)

    Potter, Thomas L; Bosch, David D; Joo, Hyun; Schaffer, Bruce; Muñoz-Carpena, Rafael

    2007-01-01

    At Florida's southeastern tip, sweet corn (Zea Mays) is grown commercially during winter months. Most fields are treated with atrazine (6-chloro-N-ethyl-N'-[1-methylethyl]-1,3,5-triazine-2,4-diamine). Hydrogeologic conditions indicate a potential for shallow groundwater contamination. This was investigated by measuring the parent compound and three degradates--DEA (6-chloro-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine), DIA (6-chloro-N-ethyl)-1,3,5-triazine-2,4-diamine, and HA (6-hydroxy-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine)--in water samples collected beneath sweet corn plots treated annually with the herbicide. During the study, a potential mitigation measure (i.e., the use of a cover crop, Sunn Hemp [Crotalaria juncea L.], during summer fallow periods followed by chopping and turning the crop into soil before planting the next crop) was evaluated. Over 3.5 yr and production of four corn crops, groundwater monitoring indicated leaching of atrazine, DIA, and DEA, with DEA accounting for more than half of all residues in most samples. Predominance of DEA, which increased after the second atrazine application, was interpreted as an indication of rapid and extensive atrazine degradation in soil and indicated that an adapted community of atrazine degrading organisms had developed. A companion laboratory study found a sixfold increase in atrazine degradation rate in soil after three applications. Groundwater data also revealed that atrazine and degradates concentrations were significantly lower in samples collected beneath cover crop plots when compared with concentrations below fallow plots. Together, these findings demonstrated a relatively small although potentially significant risk for leaching of atrazine and its dealkylated degradates to groundwater and that the use of a cover crop like Sunn Hemp during summer months may be an effective mitigation measure.

  5. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    Science.gov (United States)

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B

    2007-01-01

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  6. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    Directory of Open Access Journals (Sweden)

    Ian J. Bonner

    2014-10-01

    Full Text Available Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while benefiting soil and water quality and increasing biodiversity. Despite these positive traits, energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study for Hardin County, Iowa, to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. Estimates of variability in row crop production at a subfield level are used to model the economic performance of corn (Zea mays L. grain and the environmental impacts of corn stover collection using the Landscape Environmental Analysis Framework (LEAF. The strategy used in the case study integrates switchgrass (Panicum virgatum L. into subfield landscape positions where corn grain is modeled to return a net economic loss. Results show that switchgrass integration has the potential to increase sustainable biomass production from 48% to 99% (depending on the rigor of conservation practices applied to corn stover collection, while also improving field level profitability of corn. Candidate land area is highly sensitive to grain price (0.18 to 0.26 $·kg−1 and dependent on the acceptable subfield net loss for corn production (ranging from 0 to −1000 $·ha−1 and the ability of switchgrass production to meet or exceed this return. This work presents the case that switchgrass may be economically incorporated into row crop landscapes when management decisions are applied at a subfield scale within field areas modeled to have a negative net profit with current management practices.

  7. THE INFLUENCE OF MINIMUM TILLAGE SYSTEMS UPON THE SOIL PROPERTIES, YIELD AND ENERGY EFFICIENCY IN SOME ARABLE CROPS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2006-05-01

    Full Text Available The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control, yield and energy efficiency in the case of maize (Zea mays L., soyabean (Glycine hispida L. and winter wheat (Triticum aestivum L. in a three years crop rotation. For all cultures within the crop rotation, the weed encroachment is maximum for the disc harrow and rotary harrow soil tillage, followed by the chisel and paraplow. The weed encroachment is minimum for the conventional ploughing tillage technology. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control.

  8. Influence combinée des fumures organique et minérale sur la nutrition et le rendement du maïs (Zea mays: impact sur le diagnostic des carences du sol

    Directory of Open Access Journals (Sweden)

    Akanza, KP.

    2016-01-01

    Full Text Available Combined Influence of Manure and Fertilizers on Nutrition and Yield of Maize (Zea mays: Impact on the Diagnosis of Primary Soil Deficiencies. A trial was carried out at Centre National de Recherche Agronomique (CNRA station in Man, in order to study the effects of combined application of fertilizers and manure on the soil fertility, yields and nutrition of corn (Zea mays. Three doses of fertilizers and five amounts of manure were tested. Combination of levels' factors corresponds to fifteen treatments. Results show that manure is the engine of the improvement of soil fertility, nutrition and yields. All chemical characteristics of the soil have been improved, notably phosphorus, calcium and the total of exchangeable base cations. Impacts of these changes on soil' fertility, plant nutrition and performance have been established. A significant increase in the absorption of phosphorus and yield, due to manure, is observed. Soil phosphoric nutrition and yield of maize are related to the dose in the soil of each of these crucial nutrients by a quadratic production function. The ignorance of factors, that limit nutrition and production, maintains a low yield levels. Correction of deficiencies by a fertilization formula, adjusted to the soil and crop, restores productivity. Organic soil maintenance is an appropriate solution to the problems of the farmer.

  9. Crop Ontology: Vocabulary For Crop-related Concepts

    NARCIS (Netherlands)

    Matteis, L.; Chibon, P.Y.; Espinosa, H.; Skofic, M.; Finkers, H.J.; Bruskiewich, R.; Hyman, J.M.; Arnoud, E.

    2013-01-01

    Abstract. A recurrent issue for data integration is the lack of a common and structured vocabulary used by different parties to describe their data sets. The Crop Ontology (www.cropontology.org) project aims to provide a central place where the crop community can gather to generate such standardized

  10. Fungal Diversity of Maize (Zea Mays L. Grains

    Directory of Open Access Journals (Sweden)

    Gulbis Kaspars

    2016-06-01

    Full Text Available Maize is becoming more and more important crop for dairy farming as forage and as substrate for biogas production. The mycotoxin producing fungi can spoil feed, reduce cattle productivity and cause health problems. The aim of this research was to study the mycoflora of maize grains in order to clarify the fungal composition and verify the presence of potential mycotoxin producing fungi. The grain samples were collected from different maize hybrid performance trial in Research and Study farm “Vecauce” of Latvia University of Agriculture in 2014. The fungi from 14 genera were isolated from surface sterilized grains. The most abundant were Alternaria, Fusarium and Penicillium spp. Mycotoxin producing fungi are present in maize grain mycoflora, and there is a risk that maize production can contain mycotoxins.

  11. A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example.

    Science.gov (United States)

    Lorenz, Marco; Fürst, Christine; Thiel, Enrico

    2013-09-01

    Regarding increasing pressures by global societal and climate change, the assessment of the impact of land use and land management practices on land degradation and the related decrease in sustainable provision of ecosystem services gains increasing interest. Existing approaches to assess agricultural practices focus on the assessment of single crops or statistical data because spatially explicit information on practically applied crop rotations is mostly not available. This provokes considerable uncertainties in crop production models as regional specifics have to be neglected or cannot be considered in an appropriate way. In a case study in Saxony, we developed an approach to (i) derive representative regional crop rotations by combining different data sources and expert knowledge. This includes the integration of innovative crop sequences related to bio-energy production or organic farming and different soil tillage, soil management and soil protection techniques. Furthermore, (ii) we developed a regionalization approach for transferring crop rotations and related soil management strategies on the basis of statistical data and spatially explicit data taken from so called field blocks. These field blocks are the smallest spatial entity for which agricultural practices must be reported to apply for agricultural funding within the frame of the European Agricultural Fund for Rural Development (EAFRD) program. The information was finally integrated into the spatial decision support tool GISCAME to assess and visualize in spatially explicit manner the impact of alternative agricultural land use strategies on soil erosion risk and ecosystem services provision. Objective of this paper is to present the approach how to create spatially explicit information on agricultural management practices for a study area around Dresden, the capital of the German Federal State Saxony.

  12. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    Science.gov (United States)

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2016-09-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize (Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  13. PENGARUH PENAMBAHAN PUPUK NPK TERHADAP PRODUKSI BEBERAPA AKSESI TANAMAN JAGUNG (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Danny Pratikta

    2013-11-01

    Full Text Available [ENGLISH] The experiment was conducted in the Field Research, in Kumendung village, Muncar, Banyuwangi from November 2012 until February 2013. The objectives of the study was to evaluate the effect of NPK fertilizer in some accession of maize on it’s growth and production. It’s also evaluate the protein content of the accession under different fertilizer treatment. The experiment was set up as a split plot design with three replications. Main plot were NPK aplication rates (200, 300, 400 kg NPK ha-1 and the sub-plots were accesion number ( V1 = Srikandi Kuning x Manado Merah ; V2 = Bisma x Srikandi Kuning ; V3 = Srikandi Kuning x Bisma ; and V4 = Bisma x Manado Merah. An split plot statistical analysis of varience (ANOVA and Duncan Multiple Range Test (DMRT at 5 % level of probability according to Hanafiah, (2005 was realized using the excel program. Growth and yield parameters recorded at different stages of crop growth and development. There were plant height, leaves number above the ear, leaves number under the ear, tassel emergence, silk emergence, physiologically ripe age, ear lenghth, ear weight, ear circumference, ear weight per plot, kernel weight, kernel weight per plot, 100-grain weight, and protein content. The result showed that no significant different affected by the defferent NPK application rates on these accession. Base on the character selection, the yielding of all accession were higher than Bisma variety. Content of the accession were 11,14 ; 10,25 ; 10,95 ; and 10,10 mg g-1 for V1, V2, V3, and V4, respectively. Keywords: NPK Fertilizer; Maize accession; Production [INDONESIAN] Penelitian dilakukan di lahan Desa Kumendung Kecamatan Muncar Kabupaten Banyuwangi pada bulan November 2012 hingga Febuari 2013. Tujuan dari percobaan ini adalah untuk mengevaluasi pengaruh pupuk NPK terhadap pertumbuhan dan produksi beberapa Aksesi jagung, dan mengevaluasi kadar protein yang terkandung didalamnya. Percobaan menggunakan Rancangan

  14. Biosolarization in garlic crop

    Science.gov (United States)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  15. Increasing Nitrogen Use Efficiency of Corn in Midwestern Cropping Systems

    Directory of Open Access Journals (Sweden)

    J.L. Hatfield

    2001-01-01

    Full Text Available Nitrogen (N loss from agricultural systems raises concerns about the potential impact of farming practices on environmental quality. N is a critical input to agricultural production. However, there is little understanding of the interactions among crop water use, N application rates, and soil types. This study was designed to quantify these interactions in corn (Zea mays L. grown in production-size fields in central Iowa on the Clarion-Nicollet-Webster soil association. Seasonal water use varied by soil type and N application rate. Yield varied with N application rate, with the highest average yield obtained at 100 kg ha-1. N use efficiency (NUE decreased with increasing N application rates, having values around 50%. Water use efficiency (WUE decreased as N fertilizer rates increased. Analysis of plant growth patterns showed that in the low organic matter soils (lower water-holding capacities, potential yield was not achieved because of water deficits during the grain-filling period. Using precipitation data coupled with daily water use throughout the season, lower organic matter soils showed these soils began to drain earlier in the spring and continued to drain more water throughout the season. The low NUE in these soils together with increased drainage lead to greater N loss from these soils. Improved management decisions have shown that it is possible to couple water use patterns with N application to increase both WUE and NUE.

  16. Atividade de glutationa S-transferase na metabolização de acetochlor, atrazine e oxyfluorfen em milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae Glutathione S-transferase activity in acetochlor, atrazine and oxyfluorfen metabolization in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivumL. (Poaceae

    Directory of Open Access Journals (Sweden)

    Ethel Lourenzi Barbosa Novelli

    2002-05-01

    Full Text Available Este experimento foi conduzido para avaliar a seletividade em plantas dos herbicidas acetochlor, atrazine e oxyfluorfen em relação à atividade da glutationa S-transferase (GST em plantas de milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae. A atividade da GST foi detectada às 24, 48 e 72 horas após as aplicaç��es dos tratamentos. Os tratamentos do experimento consistiram de aplicação com água (controle, acetochlor (3 L.ha-1, atrazine (4 L.ha-1 e oxyfluorfen (1 L.ha-1. As maiores atividades de GST foram observadas na presença de acetochlor, principalmente às 48 horas após o tratamento. Esses aumentos foram 105, 148 e 118% em relação ao controle para milho, sorgo e trigo, respectivamente. É sugerido que a GST pode ter papel na degradação de acetochlor e pode ser uma das razões para a seletividade desse herbicida para essas culturas.This experiment was conducted to evaluate the acetochlor, atrazine and oxyfluorfen herbicides plant selectivity, in relation to glutathione S-transferase activity (GST in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivum L (Poaceae plants. GST activity was detected 24, 48 and 72 hours after treatment applications. The experiment's treatments consisted of spraying plants with water (control, acetochlor (3 L.ha-1`, atrazine (4 L.ha-1 and oxyfluorfen (1 L.ha-1. The highest GST activities were observed in presence of acetochlor, mainly at 48 hours after treatment. These increments were 105, 148 and 118% when compared to maize, sorghum and wheat control groups, respectively. It is suggested that the GST may have a role in acetochlor degradation and it may be a reason for this herbicide's selectivity in these crops.

  17. Irrigation modeling with AquaCrop

    Science.gov (United States)

    AquaCrop is a crop water productivity model developed by the Land and Water Division of UN-FAO. It simulates yield response to water of herbaceous crops, and is suited to address conditions where water is a key limiting factor in crop production. AquaCrop attempts to balance accuracy, simplicity, an...

  18. Soil erosion: perennial crop plantations

    NARCIS (Netherlands)

    Hartemink, A.E.

    2006-01-01

    Plantation agriculture is an important form of land-use in the tropics. Large areas of natural and regenerated forest have been cleared for growing oil palm, rubber, cocoa, coffee, and other perennial tree crops. These crops grown both on large scale plantations and by smallholders are important sou

  19. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  20. High plains cover crop research

    Science.gov (United States)

    Some recent statements have been made about the benefits of growing cover crops in mixtures as compared with single-species plantings of cover crops. Those stated benefits have included greatly reduced water use, enhanced soil microbiological activity, increased biomass productivity, and enhanced wa...

  1. Transgenic Crops for Herbicide Resistance

    Science.gov (United States)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  2. Crop Protection in Medieval Agriculture

    NARCIS (Netherlands)

    Zadoks, J.C.

    2013-01-01

    Mediterranean and West European pre-modern agriculture (agriculture before 1600) was by necessity ‘organic agriculture’. Crop protection is part and parcel of this agriculture, with weed control in the forefront. Crop protection is embedded in the medieval agronomy text books but specialised section

  3. Influence of microgravity on cellular differentiation in root caps of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  4. Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays

    Science.gov (United States)

    Rane, Mansi; Bawskar, Manisha; Rathod, Dnyaneshwar; Nagaonkar, Dipali; Rai, Mahendra

    2015-12-01

    In this study, the arbuscular mycorrhizal fungus (G. mosseae) and endosymbiont (P. indica) colonized Zea mays were treated with calcium phosphate nanoparticles (CaPNPs) and evaluated for their plant growth promotion efficiency. It was observed that CaPNPs in combination with both G. mosseae and P. indica are more potent plant growth promoter than independent combinations of CaPNPs + G. mosseae, CaPNPs + P. indica or CaPNPs alone. The fluorimetric studies of treated plants revealed that CaPNPs alone and in combination with P. indica can enhance vitality of Zea mays by improving chlorophyll a content and performance index of treated plants. Hence, we conclude that CaPNPs exhibit synergistic growth promotion, root proliferation and vitality improvement properties along with endosymbiotic and arbuscular mycorrhizal fungi, which after further field trials can be developed as a cost-effective nanofertilizer with pronounced efficiency.

  5. Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic

    Science.gov (United States)

    Moore, R.; Evans, M. L.; Fondren, W. M.

    1990-01-01

    Primary roots of the mutant 'Ageotropic' cultivar of Zea mays are nonresponsive to gravity. Their root caps secrete little or no mucilage and touch the root only at the extreme apex. A gap separates the cap and root at the periphery of the cap. Applying mucilage from normal roots or substances with a consistency similar to that of mucilage to tips of mutant roots causes these roots to become strongly graviresponsive. Gravicurvature stops when these substances are removed. Caps of some mutants secrete small amounts of mucilage and are graviresponsive. These results indicate that (a) the lack of graviresponsiveness in the mutant results from disrupting the transport pathway between the cap and root, (b) movement of the growth-modifying signal from the cap to the root occurs via an apoplastic pathway, and (c) mucilage is necessary for normal communication between the root cap and root in Zea mays cv Ageotropic.

  6. Optimization of drying process of Zea Mays malt to use as alternative source of amylolytics enzymes

    Directory of Open Access Journals (Sweden)

    Joana Paula Menezes Biazus

    2005-06-01

    Full Text Available This work aimed to study the drying process optimization of maize (Zea Mays malt for obtaining maize malt, without affecting enzymatic activity of alpha e beta-amylases from maize malt. Results showed that dryer operation must occur in zone at 54°C and 5.18-6 h process time. The maize malt obtained had good enzymatic properties.Este trabalho objetivou a otimização da secagem do malte de milho (Zea Mays para obter um malte sem afetar a atividade das enzimas presentes neste, alfa e beta -amilases. Os resultados mostraram que a operação do secador deve ser feita a 54°C e entre 5,18-6 h de processo. O malte obtido possuiu boas propriedades enzimáticas.

  7. Una filosofía para América Latina: Leopoldo Zea

    Directory of Open Access Journals (Sweden)

    Giuseppe Cacciatore

    2004-01-01

    Full Text Available Uno de los mas significativos recorrido filosoficos e hsitorico-culturales a traves de los que se ha manisfestado la reflexion sobre la identidad latinoamericana es indudablemente el trazado por el pensador mexicano Leopoldo Zea, alumno predilecto de jose gaos. En el, como en tanto otros intelectuales de los paises latinos del conteniente americano el problema de la individuacion de las trazas de una autonoma dimension filosofica (y de su ambivalente relacion con la tradicion indigena pre-colonial y con los modelos de la cultura europea se liga constante y significativamente al evento traumatico y dramatico de la conquista y del genocidio. Zea no se cierra en esta dicatomia civilizacion precolombina/civilizacion europea, ni olvida la que quizas es la verdadera especificidad del continente americano centromeridional, la multiculturalidad y la multietnia, el denominado mestizaje.

  8. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Science.gov (United States)

    2010-09-27

    ... March 30, 2010 (75 FR 15778-15891). Need for Correction As published, the final regulation contained... Provisions and Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation... make corrections relating to the insurance of cotton and macadamia nuts that published March 30,...

  9. Starch grains reveal early root crop horticulture in the Panamanian tropical forest.

    Science.gov (United States)

    Piperno, D R; Ranere, A J; Holst, I; Hansell, P

    2000-10-19

    Native American populations are known to have cultivated a large number of plants and domesticated them for their starch-rich underground organs. Suggestions that the likely source of many of these crops, the tropical forest, was an early and influential centre of plant husbandry have long been controversial because the organic remains of roots and tubers are poorly preserved in archaeological sediments from the humid tropics. Here we report the occurrence of starch grains identifiable as manioc (Manihot esculenta Crantz), yams (Dioscorea sp.) and arrowroot (Maranta arundinacea L.) on assemblages of plant milling stones from preceramic horizons at the Aguadulce Shelter, Panama, dated between 7,000 and 5,000 years before present (BP). The artefacts also contain maize starch (Zea mays L.), indicating that early horticultural systems in this region were mixtures of root and seed crops. The data provide the earliest direct evidence for root crop cultivation in the Americas, and support an ancient and independent emergence of plant domestication in the lowland Neotropical forest.

  10. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine [Ohio State University; Lal, Dr. Rattan [Ohio State University; Schmitz, Matthias [Rheinsche Friedrich/Wilhelms Universitaet Boon; Wullschleger, Stan D [ORNL

    2012-01-01

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  11. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine; Lal, Rattan [The Ohio State Univ., School of Environment and Natural Resources, Carbon Management and Sequestration Center, Columbus, OH (United States); Schmitz, Matthias [Rheinische Friedrich/Wilhelms-Universitaet Bonn, Steinmann Institut fuer Geologie, Mineralogie und Palaeontologie, Bonn (Germany); Wullschleger, S. [The Oakridge National Lab., Oakridge, TN (United States)

    2012-10-15

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60 % lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  12. Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings.

    Science.gov (United States)

    Bricker, T J; Pichtel, J; Brown, H J; Simmons, M

    2001-01-01

    In a growth chamber, maize (Zea mays) and Indian mustard (Brassica juncea) were grown over two croppings in soil from a Superfund site (PbTotal = 65,200 mg/kg and CdTotal = 52mg/kg). Soil treatments consisted of ethylenediaminetetraacetic acid, sodium citrate and composted sewage sludge, each at two rates (EDTA .05%, EDTA .2%, citrate .05%, citrate .2%, CSS 5% and CSS 10%, respectively). In most cases, the EDTA and citrate treatments were superior in terms of solubilizing soil Pb for root uptake and translocation into above-ground biomass. In the first maize crop, the EDTA .2% treatment resulted in 2,435 and 9,389mg/kg Pb in shoot and root tissues, respectively. The CSS treatments typically resulted in lowest Pb and Cd removal efficiencies. Lead remaining in the soil after two croppings was mainly associated with the carbonate, organic, and residual fractions, which represent the less bioavailable forms. Soil Cd was generally more mobile for plant uptake than soil Pb. The EDTA .2% and citrate treatments were most successful in promoting Cd uptake by both maize and mustard. Although Pb concentrations (mg/kg tissue) were lower for maize than mustard, the former removed more total Pb (0.2 mg per pot, mean over all treatments), compared to mustard (0.03 mg), by virtue of its higher biomass production.

  13. Crop Management Effects on the Energy and Carbon Balances of Maize Stover-Based Ethanol Production

    Directory of Open Access Journals (Sweden)

    Prem Woli

    2014-12-01

    Full Text Available This study was conducted to identify the crop management options—the combinations of various cultivars, irrigation amounts, planting dates, and soils—that would maximize the energy sustainability and eco-friendliness of maize (Zea mays L. stover-based ethanol production systems in the Mississippi Delta. Stover yields simulated with CERES-Maize were used to compute net energy value (NEV and carbon credit balance (CCB, the indicators of sustainability and eco-friendliness of ethanol production, respectively, for various scenarios. As the results showed, deeper soils with higher water holding capacities had larger NEV and CCB values. Both NEV and CCB had sigmoid relationships with irrigation amount and planting date and could be maximized by planting the crop during the optimum planting window. Stover yield had positive effects on NEV and CCB, whereas travel distance had negative. The influence of stover yield was larger than that of travel distance, indicating that increasing feedstock yields should be emphasized over reducing travel distance. The NEV and CCB values indicated that stover-based ethanol production in the Mississippi Delta is sustainable and environmentally friendly. The study demonstrated that the energy sustainability and eco-friendliness of maize stover-based ethanol production could be increased with alternative crop management options.

  14. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays

    Science.gov (United States)

    Moore, R.

    1990-01-01

    Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.

  15. Movement of endogenous calcium in the elongating zone of graviresponding roots of Zea mays

    Science.gov (United States)

    Moore, R.; Cameron, I. L.; Smith, N. K.

    1989-01-01

    Endogenous calcium (Ca) accumulates along the lower side of the elongating zone of horizontally oriented roots of Zea mays cv. Yellow Dent. This accumulation of Ca correlates positively with the onset of gravicurvature, and occurs in the cytoplasm, cell walls and mucilage of epidermal cells. Corresponding changes in endogenous Ca do not occur in cortical cells of the elongating zone of intact roots. These results indicate that the calcium asymmetries associated with root gravicurvature occur in the outermost layers of the root.

  16. PENYELENGGARAAN MAKANAN DAN TINGKAT KEPUASAN KONSUMEN DI KANTIN ZEA MAYS INSTITUT PERTANIAN BOGOR

    Directory of Open Access Journals (Sweden)

    Arnati Wulansari

    2013-11-01

    Full Text Available ABSTRACTThis research aimed was to know food service and level of customer satisfaction in the Zea Mays cafetaria at Bogor Agricultural University. Case study and descriptive analysis were applied in this study. Sampling method of purposive sampling was carried out and number of subjects used was 95 people. The food service in the Zea Mays cafetaria consists of planning, purchasing, receiving, storing, processing, and distributing. The result of analysis based on Importance Performance Analysis showed that the most important attribute was the security and hygiene product and the highest performance levels was the cleanliness of dining room. More than fifty percent subjects was concerned against nutrient content of the menu (50.5%. Based on the Customer Satisfaction Index the satisfaction value was 69.3 (satisfied. There was a correlation between job and education level with quality of the product and between income with nutrient content (p<0.05.Keywords: customer, food service, satisfactionABSTRAKPenelitian ini bertujuan untuk mengetahui penyelenggaraan makanan dan tingkat kepuasan konsumen di Kantin Zea Mays Institut Pertanian Bogor. Penelitian ini menggunakan metode penelitian analisis deskriptif dan studi kasus. Metode penarikan subjek dilakukan secara purposive dan sebanyak 95 subjek digunakan dalam penelitian ini. Penyelenggaraan makanan di Kantin Zea Mays terdiri dari perencanaan, pembelian, penerimaan, penyimpanan, pengolahan, dan penyajian. Berdasarkan hasil analisis Importance Performance Analysis (IPA diketahui bahwa atribut yang dirasakan paling penting adalah keamanan dan kebersihan produk sedangkan atribut tingkat kinerja yang paling tinggi skornya adalah kebersihan tempat makan. Lebih dari separuh subjek masih memerhatikan kandungan gizi menu (50.5%. Berdasarkan Customer Satisfaction Index (CSI diperoleh nilai kepuasan sebesar 69.3 (puas. Terdapat hubungan antara pekerjaan dan tingkat pendidikan dengan penilaian atribut mutu produk

  17. Antihypertensive and antioxidant activity of atomized andean purple corn (Zea mayz L) hydroalcoholic extract in rats

    OpenAIRE

    Arroyo, Jorge; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Químico farmaceútico.; Raez, Ernesto; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Médico patólogo.; Rodríguez, Miguel; Facultad de Odontología, Universidad Nacional Mayor de San Marcos. Lima, Perú. Odontólogo.; Chumpitaz, Víctor; Facultad Odontología, Universidad Nacional Mayor de San Marcos. Lima, Perú. Odontólogo.; Burga, Jonny; Facultad de Odontología, Universidad Nacional Mayor de San Marcos. Lima, Perú. Odontólogo.; De la Cruz, Walter; Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos. Lima, Perú. Médico.; Valencia, José; Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos. Lima, Perú. Químico Farmacéutico.

    2008-01-01

    Objectives. To determine the antihypertensive and antioxidant activity of the atomized hydroalcoholic extract of Zea mays L. (Andean purple corn) in rats with induced hypertension. Material and methods. We used five groups of six Holtzmann rats each, one without hypertension (negative control) and four with hypertension induced by L-NAME: positive control and three groups for the doses of 250, 500 and 1000 mg/kg, respectively. The treatment was carried out orally once a day for 25 days. Th...

  18. La historia de las ideas en la perspectiva de Leopoldo Zea.

    Directory of Open Access Journals (Sweden)

    Susana Vázquez

    2015-09-01

    Full Text Available Leopoldo Zea (México 1912 para muchos el mayor pensador de Hispanoamérica en la segunda mitad del siglo XX, ejerce un indudable magisterio en elplano de la historia de las idas a nivel continental (...Contenido: Introducción. Contexto histórico y genealogía de sus conceptos fundamentales. Análisis de algunas de sus obras. Reflexión final

  19. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.Article types considered include Original Research,Reviews,and Short Communications.The readership of

  20. Automatic image cropping for republishing

    Science.gov (United States)

    Cheatle, Phil

    2010-02-01

    Image cropping is an important aspect of creating aesthetically pleasing web pages and repurposing content for different web or printed output layouts. Cropping provides both the possibility of improving the composition of the image, and also the ability to change the aspect ratio of the image to suit the layout design needs of different document or web page formats. This paper presents a method for aesthetically cropping images on the basis of their content. Underlying the approach is a novel segmentation-based saliency method which identifies some regions as "distractions", as an alternative to the conventional "foreground" and "background" classifications. Distractions are a particular problem with typical consumer photos found on social networking websites such as FaceBook, Flickr etc. Automatic cropping is achieved by identifying the main subject area of the image and then using an optimization search to expand this to form an aesthetically pleasing crop. Evaluation of aesthetic functions like auto-crop is difficult as there is no single correct solution. A further contribution of this paper is an automated evaluation method which goes some way towards handling the complexity of aesthetic assessment. This allows crop algorithms to be easily evaluated against a large test set.

  1. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants. With the......Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay......-green cultivars do not display significant effects with regards to productivity. In several crops, the stay-green phenotype is observed to be associated with a higher drought resistance and a better performance under low nitrogen conditions. Among the approaches used to achieve stay-green phenotypes in transgenic...

  2. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.

    Science.gov (United States)

    Hechmi, Nejla; Ben Aissa, Nadhira; Abdennaceur, Hassen; Jedidi, Naceur

    2013-01-01

    The ubiquitous coexistence of heavy metals and organic contaminants was increased in the polluted soil and phytoremediation as a remedial technology and management option is recommended to solve the problems of co-contamination. Growth of Zea mays L and pollutant removal ability may be influenced by interactions among mixed pollutants. Pot-culture experiments were conduced to investigate the single and interactive effect of cadmium (Cd) and pentachlorophenol (PCP) on growth of Zea mays L, PCP, and Cd removal from soil. Growth response of Zea mays L is considerably influenced by interaction of Cd and PCP, significantly declining with either Cd or PCP additions. The dissipation of PCP in soils was notably affected by interactions of Cd, PCP, and plant presence or absence. At the Pentachlorophenol in both planted and non-planted soil was greatly decreased at the end of the 10-week culture, accounting for 16-20% of initial extractable concentrations in non-planted soil and 9-14% in planted soil. With the increment of Cd level, residual pentachlorophenol in the planted soil tended to increase. The pentachlorophenol residual in the presence of high concentration of Cd was even higher in the planted soil than that in the non-planted soil.

  3. Iron oxide nanoparticles coated with β-cyclodextrin polluted of Zea mays plantlets

    Directory of Open Access Journals (Sweden)

    Mihaela Racuciu

    2012-01-01

    Full Text Available The present experimental investigation is focused on the study of assimilatory pigments and nucleic acid levels in young plants intended for agricultural use (Zea mays in presence of water based magnetic fluid added in culture medium. The magnetic fluid was constituted by coating the nanosized magnetic nanoparticles (with 10.55 nm average value of the physical diameter with β-cyclodextrin (C42H70O35 and further dispersion in water. After germination, various volume fractions (between 10 mL/L and 500 mL/L of the magnetic fluid was added daily in the culture medium of Zea mays plants still at their early ontogenetic stages. Toxicity symptoms leaded to brown spots covering the leaf surface for the highest magnetic fluid volume fractions used, a putative oxidative stress generated by iron excess treatment. Relatively small volume fraction of magnetic fluid solutions induced the increase of chlorophyll a level (up to 38%, the main photosynthesis pigment, as well that the nucleic acid level (up to 57% in Zea mays plantlets. All volume fractions of magnetic fluid solutions analyzed may have severe disruptive effects such as the ratio chlorophyll a/chlorophyll b (about 50% decreasing.

  4. Field-evolved insect resistance to Bt crops: definition, theory, and data.

    Science.gov (United States)

    Tabashnik, Bruce E; Van Rensburg, J B J; Carrière, Yves

    2009-12-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect pest control have been successful, but their efficacy is reduced when pests evolve resistance. Here we review the definition of field-evolved resistance, the relationship between resistance and field control problems, the theory underlying strategies for delaying resistance, and resistance monitoring methods. We also analyze resistance monitoring data from five continents reported in 41 studies that evaluate responses of field populations of 11 lepidopteran pests to four Bt toxins produced by Bt corn and cotton. After more than a decade since initial commercialization of Bt crops, most target pest populations remain susceptible, whereas field-evolved resistance has been documented in some populations of three noctuid moth species: Spodoptera frugiperda (J. E. Smith) to Cry1F in Bt corn in Puerto Rico, Busseola fusca (Fuller) to CrylAb in Bt corn in South Africa, and Helicoverpa zea (Boddie) to CrylAc and Cry2Ab in Bt cotton in the southeastern United States. Field outcomes are consistent with predictions from theory, suggesting that factors delaying resistance include recessive inheritance of resistance, abundant refuges of non-Bt host plants, and two-toxin Bt crops deployed separately from one-toxin Bt crops. The insights gained from systematic analyses of resistance monitoring data may help to enhance the durability of transgenic insecticidal crops. We recommend continued use of the longstanding definition of resistance cited here and encourage discussions about which regulatory actions, if any, should be triggered by specific data on the magnitude, distribution, and impact of field-evolved resistance.

  5. Productivity and carbon dioxide exchange of leguminous crops: estimates from flux tower measurements

    Science.gov (United States)

    Gilmanov, Tagir G.; Baker, John M.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Castro, Saulo; Chen, Jiquan; Eugster, Werner; Fischer, Marc L.; Gamon, John A.; Gebremedhin, Maheteme T.; Glenn, Aaron J.; Griffis, Timothy J.; Hatfield, Jerry L.; Heuer, Mark W.; Howard, Daniel M.; Leclerc, Monique Y.; Loescher, Henry W.; Marloie, Oliver; Meyers, Tilden P.; Olioso, Albert; Phillips, Rebecca L.; Prueger, John H.; Skinner, R. Howard; Suyker, Andrew E.; Tenuta, Mario; Wylie, Bruce K.

    2014-01-01

    Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the data from grain crops obtained with the same method demonstrated that CO2 exchange rates and ecophysiological parameters of legumes were lower than those of maize (Zea mays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO2 m–2 yr–1 to sources of –2100 g CO2 m–2 yr–1, with an average of –330 g CO2 m–2 yr–1, indicating overall moderate CO2–source activity related to a shorter period of photosynthetic uptake and metabolic costs of N2 fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO2, with an average net ecosystem production of 980 (range 550–1200) g CO2 m–2 yr–1.

  6. Using thermal units for estimating critical period of weed competition in off-season maize crop.

    Science.gov (United States)

    López-Ovejero, Ramiro Fernando; y Garcia, Axel Garcia; de Carvalho, Saul Jorge P; Christoffoleti, Pedro J; Neto, Durval Dourado; Martins, Fernando; Nicolai, Marcelo

    2005-01-01

    Brazilian off-season maize production is characterized by low yield due to several factors, such as climate variability and inadequate management practices, specifically weed management. Thus, the goal of this study was to determinate the critical period of weed competition in off-season maize (Zea mays L.) crop using thermal units or growing degree days (GDD) approach to characterize crop growth and development. The study was carried out in experimental area of the University of São Paulo, Brazil, with weed control (C), as well as seven coexistence periods, 2, 4, 6, 8, and 12 leaves, flowering, and all crop cycle; fourteen treatments were done. Climate data were obtained from a weather station located close to the experimental area. To determine the critical period for weed control (CPWC) logistic models were fitted to yield data obtained in both W and C, as a function of GDD. For an arbitrary maximum yield loss fixed in 2.5%, the CPWC was found between 301 and 484 GDD (7-8 leaves). Also, when the arbitrary loss yield was fixed in 5 and 10%, the period before interference (PBI) was higher than the critical weed-free period (CWFP), suggesting that the weeds control can be done with only one application, between 144 and 410 GDD and 131 and 444 GDD (3-8 leaves), respectively. The GDD approach to characterize crop growth and development was successfully used to determine the critical period of weeds control in maize sown off-season. Further works will be necessary to better characterize the interaction and complexity of maize sown off-season with weeds. However, these results are encouraging because the possibility of the results to be extrapolated and because the potential of the method on providing important results to researchers, specifically crop modelers.

  7. Nutrient biofortification of food crops.

    Science.gov (United States)

    Hirschi, Kendal D

    2009-01-01

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, but the advances in molecular biology are rapidly being exploited to engineer crops with enhanced key nutrients. Nutritional targets include elevated mineral content, improved fatty acid composition, increased amino acid levels, and heightened antioxidant levels. Unfortunately, in many cases the benefits of these "biofortified" crops to human nutrition have not been demonstrated.

  8. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.).

    Science.gov (United States)

    Carbonell, Gregoria; de Imperial, Rosario Miralles; Torrijos, Manuel; Delgado, Mar; Rodriguez, José Antonio

    2011-11-01

    Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha(-1)) and NPK fertilizer (33 g plant(-1)) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.

  9. Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil.

    Science.gov (United States)

    Cano, Amanda M; Kohl, Kristina; Deleon, Sabrina; Payton, Paxton; Irin, Fahmida; Saed, Mohammad; Shah, Smit Alkesh; Green, Micah J; Cañas-Carrell, Jaclyn E

    2016-06-01

    Single-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d. In Study 1, corn was exposed to various SWNT concentrations (0, 10, and 100 mg/kg) with different functionalities (non-functionalized, OH-functionalized, or surfactant stabilized). A microwave induced heating method was used to determine SWNTs accumulated mostly in roots (0-24 μg/g), with minimal accumulation in stems and leaves (2-10 μg/g) with a limit of detection at 0.1 μg/g. Uptake was not functional group dependent. In Study 2, corn was exposed to 10 mg/kg SWNTs (non-functionalized or COOH-functionalized) under optimally grown or water deficit conditions. Plant physiological stress was determined by the measurement of photosynthetic rate throughout Study 2. No significant differences were seen between control and SWNT treatments. Considering the amount of SWNTs accumulated in corn roots, further studies are needed to address the potential for SWNTs to enter root crop species (i.e., carrots), which could present a significant pathway for human dietary exposure.

  10. Aracnidae diversity in soil cultivated with corn (Zea mays

    Directory of Open Access Journals (Sweden)

    Lígia Vanessa da Silva

    2014-09-01

    Full Text Available Studies carried out on the diversity and abundance of spiders may provide a rich information base on the degree of integrity of agricultural systems where they are found. In transgenic corn, Bacillus thuringiensis proteins are expressed in great amounts in plant tissues and may affect arthropod communities. Thus, the main goal of this work was to identify the spider diversity associated to transgenic and conventional corn hybrids. Pitfall collections were performed in conventional and transgenic corn plots during the 2010/2011 crop season, at the experimental field of the Agronomy Course of the University of Cruz Alta, RS. A total of 559 spiders were collected, from which 263 were adults and 296 young individuals. In the transgenic corn 266 spiders were collected and in the conventional one 293. Eleven families were determined and the adult individuals grouped in 27 morphospecies. Families with the largest number of representatives were Linyphiidae (29.70%, Theridiidae (5.72% and Lycosidae (5.01%. The most abundant morphospecies were Lyniphiidae sp. with 77 individuals, Erigone sp. with 40 individuals, Lynyphiidae sp. with 33 individuals, Theridiidae sp. with 21 individuals, Lycosa erythrognatha with 14 individuals and Lycosidae sp. with 13 individuals. The Shannon Diversity Index was higher for transgenic corn (H” =1.01 in February and smaller (H’=0.54 in the December collection in the conventional corn, and the Margaleff Richness Index showed higher diversity in December and February for the conventional corn (M=18.3, and smaller diversity for the transgenic corn in November (M=11.3. Families were classified in five guilds; two weavers: Irregular web builders and sheet web builders, and three hunter guilds: Night soil runners, ambush spiders and aerial night runners. The relative proportion of the spiders morphospecies found in this research, as well as the guilds, suggest that this group may not have been affected by the genetically

  11. Effects of Cultural System (Organic and Conventional on Growth, Photosynthesis and Yield Components of Sweet Corn (Zea mays L. under Semi-Arid Environment

    Directory of Open Access Journals (Sweden)

    Aspasia EFTHIMIADOU

    2009-11-01

    Full Text Available Organic sweet maize consists of a new industrial crop product. Field experiment was conducted to determine the effects of cultural systems on growth, photosynthesis and yield components of sweet maize crop (Zea mays L. F1 hybrid Midas. A randomized complete block design was employed with four replicates per treatment (organic fertilization: cow manure (5, 10 and 20 t ha1, poultry manure (5, 10 and 20 t ha1 and barley mulch (5, 10 and 20 t ha1, synthetic fertilizer (240 kg N ha1: 21-0-0 and control. The lowest dry weight, height and leaf area index and soil organic matter were measured in the control treatment. Organic matter content was proportionate to the amount of manure applied. The control plots had the lowest yield (1593 kg ha-1 and the double rate cow manure plots the had greatest one. (6104 kg ha-1. High correlation between sweet corn yield and organic matter was registered. Moreover, the lowest values of 1000-grain weight were obtained with control plot. The fertilizer plot gave values, which were similar to the full rate cow manure treatment. The photosynthetic rate of the untreated control was significantly lower than that of the other treatments. The photosynthetic rate increased as poultry manure and barley mulch rates decreased and as cow manure increased. Furthermore, the untreated control had the lowest stomatal conductance and chlorophyll content. Our results indicated that sweet corn growth and yield in the organic plots was significantly higher than those in the conventional plots.

  12. The ABCs of low-phytate crops

    Science.gov (United States)

    The maize (Zea mays L.) low phytic acid 1 gene, initially defined genetically and mapped by USDA-ARS research, was cloned by scientists at Dupont/Pioneer. Phytic acid (inositol hexaphosphate) represents the major form of phosphorus in seeds and is important to the management of phosphorus in livesto...

  13. Crop physiology calibration in CLM

    Directory of Open Access Journals (Sweden)

    I. Bilionis

    2014-10-01

    Full Text Available Farming is using more terrestrial ground, as population increases and agriculture is increasingly used for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity and net ecosystem exchange from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC.

  14. Evaluation of fresh and preserved herbaceous field crops for biogas and ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, A.

    2012-07-01

    In the future, various forms of bioenergy will be increasingly required to replace fossil energy. Globally, transportation uses almost one third of fossil energy resources, and it is thus of great importance to find ethically, economically, and environmentally viable biofuels in near future. Fieldgrown biomass, including energy crops and crop residues, are alternatives to supplement other non-food biofuel raw materials. The aim of this work was to evaluate the potential of five crops, maize (Zea mays L.), fiber hemp (Cannabis sativa L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.), and Jerusalem artichoke (Heliantus tuborosus L.) cultivated in boreal conditions as raw materials for methane and ethanol. Climate, cultivation requirements, chemical composition, and recalcitrance are some of the parameters to be considered when choosing energy crops for cultivation and for efficient conversion into biofuels. Among the studied crops, protein-rich legumes (faba bean and white lupin) were attractive options for methane, while hemp and Jerusalem artichoke had high theoretical potential for ethanol. Maize was, however, equally suitable for production of both energy carriers. Preservation of crop materials is essential to preserve and supply biomass material throughout the year. Preservation can be also considered as a mild pretreatment prior to biofuel production. Ensiling was conducted on maize, hemp, and faba bean in this work and additionally hemp was preserved in alkali conditions. Ensiling was found to be most beneficial for hemp when converted to methane, increasing the methane yield by more than 50%, whereas preservation with urea increased the energy yield of hemp as ethanol by 39%. Maize, with a high content of water-soluble carbohydrates (20% of DM), required an acid additive in order to preserve the sugars. Interestingly, hydrothermal pretreatment for maize and hemp prior to methane production was less efficient than ensiling. Enzymatic hydrolysis

  15. Soil Organic Matter Quality of an Oxisol Affected by Plant Residues and Crop Sequence under No-Tillage

    Science.gov (United States)

    Cora, Jose; Marcelo, Adolfo

    2013-04-01

    Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.

  16. Effect of emamectin benzoate on mortality, proboscis extension, gustation and reproduction of the corn earworm, Helicoverpa zea.

    Science.gov (United States)

    López, Juan D; Latheef, M A; Hoffmann, W C

    2010-01-01

    Newly emerged corn earworm adults, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) require a carbohydrate source from plant or other exudates and nectars for dispersal and reproduction. Adults actively seek and forage at feeding sites upon eclosion in the habitat of the larval host plant or during dispersal to, or colonization of, a suitable reproductive habitat. This nocturnal behavior of H. zea has potential for exploitation as a pest management strategy for suppression using an adult feeding approach. This approach entails the use of a feeding attractant and stimulant in combination with a toxicant that when ingested by the adult will either reduce fecundity/fertility at sub-lethal dosages or kill the adult. The intent of this study was to assess reproductive inhibition and toxicity of emamectin benzoate on H. zea when ingested by the adults when mixed in ppm active ingredient (wt:vol) with 2.5 M sucrose as a feeding stimulant. Because the mixture has to be ingested to function, the effect of emamectin benzoate was also evaluated at sub-lethal and lethal concentrations on proboscis extension and gustatory response of H. zea in the laboratory. Feral males captured in sex pheromone-baited traps in the field were used for toxicity evaluations because they were readily available and were more representative of the field populations than laboratory-reared adults. Laboratory-reared female moths were used for reproduction effects because it is very difficult to collect newly emerged feral females from the field. Emamectin benzoate was highly toxic to feral H. zea males with LC(50) values (95% CL) being 0.718 (0.532-0.878), 0.525 (0.316-0.751), and 0.182 (0.06-0.294) ppm for 24, 48 and 72 h responses, respectively. Sub-lethal concentrations of emamectin benzoate did not significantly reduce proboscis extension response of feral males and gustatory response of female H. zea. Sublethal concentrations of emamectin benzoate significantly reduced percent larval hatch of

  17. Crop rotation modelling - A European model intercomparison

    DEFF Research Database (Denmark)

    Kollas, Chris; Kersebaum, Kurt C; Nendel, Claas;

    2015-01-01

    Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fiftee...

  18. Investigating the response of tropical maize (Zea mays L.) cultivars against elevated levels of O3 at two developmental stages.

    Science.gov (United States)

    Singh, Aditya Abha; Agrawal, S B; Shahi, J P; Agrawal, Madhoolika

    2014-10-01

    Tropospheric ozone (O3) concentrations are rising in Indo-Gangetic plains of India, causing potential threat to agricultural productivity. Maize (Zea mays L.) is the third most important staple crop at global level after rice and wheat. Two high yielding cultivars of Indian maize (HQPM1-quality protein maize and DHM117-normal/non quality protein maize) were exposed to two levels of elevated O3 above the ambient level (NFC) viz. NFC + 15 ppb O3 (NFC + 15) and NFC + 30 ppb O3 (NFC + 30) using open top chambers under field conditions. The study was conducted to evaluate the biochemical responses of two cultivars at different developmental stages leading to change in yield responses. Initially at lower O3 dose, photosynthetic pigments showed an increase but reduction at later stage, while higher dose caused a decline at both the stages of sampling. Levels of superoxide radical (O2 (-)) and hydrogen peroxide (H2O2) significantly increased and contributed to lipid peroxidation at elevated O3. Histochemical localization assay of O2 (-) and H2O2 showed that guard cells of stomata and cells around trichomes took deeper stain at elevated O3 reflecting more formation of reactive oxygen species. Secondary metabolites like total phenol, flavonoids and anthocyanin pigments also increased in plants under O3 stress. Enzymatic antioxidants were triggered in both the cultivars due to elevated O3, while induction of non-enzymatic antioxidants was more in HQPM1. Native PAGE analysis also showed that SOD, POX, CAT, APX and GPX were stimulated at elevated O3 concentrations compared to NFC. SDS-PAGE showed reductions of major photosynthetic proteins with higher decrease in DHM117. Principal Component Analysis showed that both the cultivars showed differential response against O3 at two developmental stages. HQPM1 maintained the analogous defense strategy at both the sampling stages while DHM117 showed variable response. Overall metabolic induction of antioxidants related to defense was

  19. Ameliorative Effects of Brassinosteroid on Excess Manganese-Induced Oxidative Stress in Zea mays L.Leaves

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-hua; FENG Tao; PENG Xi-xu; YAN Ming-li; ZHOU Ping-lan; TANG Xin-ke

    2009-01-01

    Manganese (Mn) is becoming an important factor limiting crop growth and yields especially on acid soils.The present study was designed to explore the hypothesis that brassinosteroid application can enhance the tolerance of maize(Zea mays L.)to Mn stress and if so,whether or not the mechanism underlying involves regulation of antioxidative metabolism in leaves.The effects of 24-epibrassinosteroid(EBR)on the growth,photosynthesis,water status,lipid peroxidation,accumulation of reactive oxygen species,and activities or contents of antioxidant defense system in maize plants under Mn stress were investigated by a pot experiment.At supplemented Mn concentrations of 150-750 mg kg-1 soil,the growth of plants was inhibited in a concentration-dependent manner.The semi-lethal concentration was 550 mg Mn kg-1 soil.Foliage application with 0.1 mg L-1 EBR significantly reduced the decrease in dry mass,chlorophyll content,photosynthetic rate,leaf water content,and water potential of plants grown in the soil spiked with 550 mg kg-1 Mn.The oxidative stress caused by excess Mn,as reflected by the increase in malondialdehyde (MDA) content and lipoxygenase (LOX,EC 1.13.11.12) activity,accumulation of superoxide radical and H2O2,was greatly decreased by EBR treatment.Further investigations revealed that EBR application enhanced the activities ofsuperoxide dismutase (SOD,EC 1.15.1.1),peroxidase (POD,EC 1.11.1.7),catalase (EC 1.11.1.6),ascorbate peroxidase (APX,EC 1.11.1.11),dehydroascorbate reductase (DHAR,EC1.8.5.1),and glutathione reductase (GR,EC 1.6.4.2),and the contents of reduced ascorbate and glutathione,compared with the plants without EBR treatment.It iS concluded that the ameliorative effects of EBR on Mn toxicity are due to the upregulation of antioxidative capacity in maize under Mn stress.

  20. ESTABLISHING CROP PRODUCTIVITY USING RADARSAT-2

    OpenAIRE

    McNairn, H.; SHANG, J.; Jiao, X; B. Deschamps

    2012-01-01

    Crop productivity is influenced by a number of management and environmental conditions, and variations in crop growth can occur in-season due to, for example, unfavourable meteorological conditions. Consequently information on crop growth must be temporally frequent in order to adequately characterize crop productivity. Leaf Area Index (LAI) is a key indicator of crop productivity and a number of methods have been developed to derive LAI from optical satellite data. Integration of LAI estimat...

  1. 76 FR 71271 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Science.gov (United States)

    2011-11-17

    ... Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions AGENCY: Federal Crop Insurance... amend the Common Crop Insurance Regulations, Fresh Market Tomato (Dollar Plan) Crop Provisions. The... Regulations (7 CFR part 457) by revising Sec. 457.139 Fresh Market Tomato (Dollar Plan) Crop Provisions, to...

  2. Caracterização da atividade amilásica do malte de milho (Zea mays L. = Characterization of amylase activity from maize (Zea mays L. malt

    Directory of Open Access Journals (Sweden)

    Joana Paula Menezes Biazus

    2006-01-01

    Full Text Available Este trabalho objetivou estudar o processo de germinação e a caracterização da atividade bioquímica das amilases do malte de milho (Zea mays L. para gerar uma fonte de amilase de baixo custo e boa atividade enzimática. A atividade enzimática foi monitorada todos os dias durante a germinação das sementes para se obter a melhor condição de produção do malte. Os resultados mostraram que a atividade enzimática nas sementes foi maior no 4º. dia de germinação. A caracterização bioquímica mostrou que as amilases do malte apresentam faixa ótima de pH entre 4,3 e 6, com temperaturas ótimas a 50°C e 80ºC e os valores de Km e Vmax para hidrólise do amido foram de 7,69.10-2 g/L e 7,69.102g/L.min, respectivamente.This work aimed to study the germination process and characterization of the amylolytic activity of the maize (Zea mays L. malt aiming to obtain source amylases at lower cost. Enzymatic activity was monitored all days during the seed germination, for obtaining thebest condition of malt production. Results showed that the enzymatic activity from maize seeds was larger in 4° germination day. Enzymes characterization showed that the maize malt amylases have optimal zone of pH between 4.3 and 6, with optimal temperatures of 50°C and 80ºC. The Km and Vmax values for starch hydrolysis were 7.69.10-2 g/L and 7.69.102g/L.min, respectively.

  3. Energy balance of chosen crops and their potential to saturate energy consumption in Slovakia

    Directory of Open Access Journals (Sweden)

    Katarína Hrčková

    2016-06-01

    Full Text Available The aim of the present work was to assess and compare energy inputs and outputs of various crop managements in 2011–2012. Two main crops on arable land and three permanent grasslands were investigated. Silage maize (Zea mays L. and winter wheat (Triticum aestivum L. were grown on lowland, whilst two semi-natural grasslands and grassland infested by tufted hair-grass (Deschampsia caespitose (L. P. Beauv were located in mountainous regions of Slovakia. In these crops and grasslands the dry matter yield was measured and subsequently the supplementary energy, energy gain and unifying energy value – tonne of oil equivalent (TOE – were calculated. Silage maize with 233.37 GJ*ha-1 has provided the highest energy gain. In the group of grasslands, grassland infested by tufted hair-grass has offered the highest energy gain (59.77 GJ*ha-1. And this grassland had the lowest requirement on the supplementary energy (3.66 GJ*ha-1, contrary to silage maize with highest one (12.37 GJ*ha-1. The total energy potential of the crop biomasses was confronted with energy consumption in Slovakia. Winter wheat has the biggest energy potential, but it could cover only 19.6% and 11.3% total consumption of electricity or natural gas, respectively. Large area of permanent grasslands and their spatial location make them an important energy reservoir for bioenergy production. But, it is not possible to replace all consumed fossil fuels by bioenergy from these tested renewable energy sources.

  4. Mulching and Fertilization Effects on Weed Dynamics under Conservation Agriculture-Based Maize Cropping in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Florence Mtambanengwe

    2015-08-01

    Full Text Available A two-year study was conducted to assess how mulch influences weed dynamics following imposition of different fertilization treatments under three crop establishment options: (i conventional; (ii ripping; and (iii basin, in a two-year maize-legume rotation. Eight treatments were imposed within each crop establishment option and received maize stover mulch applied at 0% or 30% cover before planting  maize (Zea mays or cowpea (Vigna unguiculata as test crops. Maize received nitrogen (N at 35, 90, or 120 kg·ha−1 and phosphorus (P at 14 or 26 kg·ha−1 applied alone or in combination with 4 or 7 t cattle manure·ha−1, while cowpea received 8 or 17 N·kg·ha−1 and similar P rates to maize. Results indicated that both weed biomass and diversity were influenced more by fertilization than method of crop establishment. On treatments under high fertilizer application rates, or previously planted to cowpea weed biomass ranged between 220 and 400 g·m−2 under mulch and 370–510 g·m−2 (no mulch. Here species richness ranged between 7–16 and was dominated by dicotyledons. This was in contrast to biomass ranges of 75–200 g·m−2 in the low fertilized and control plots, where only one or two grass types dominated. Overall, weed densities were 6% to 51% higher under conventional tillage compared to the two conservation agriculture (CA options, although the data indicated that mulch significantly (p < 0.05 depressed weed density by up to 70%. We concluded that mulching could be a potential mechanism for reducing weeding labor costs for smallholders and the general environmental and health concerns associated with the use of herbicides in CA systems.

  5. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    Directory of Open Access Journals (Sweden)

    S. Kuo

    2001-01-01

    Full Text Available Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L., annual ryegrass (Lolium multiflorum, and hairy vetch (Vicia villosa, and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L. yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha-1, referred to as N0, N1, N2, and N3, respectively applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N0, N2, and N3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency’s drinking water standard of 10 mg N l�1 even at recommended N rate for corn in this region (coastal Pacific Northwest. In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake correlated well with average NO3

  6. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    Science.gov (United States)

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  7. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  8. Projected change in climate thresholds in the Northeastern U.S.: implications for crops, pests, livestock, and farmers

    Energy Technology Data Exchange (ETDEWEB)

    Chase, L. [Department of Animal Science, Cornell University, Ithaca, NY (United States); Hayhoe, K. [Department of Geosciences, Texas Tech University, Lubbock, TX (United States); Petzoldt, C. [Integrated Pest Management Program, Cornell University, Geneva, NY (United States); Seaman, A. [Integrated Pest Management Program, Cornell University, Geneva, NY (United States); Wolfe, D. W. [Department of Horticulture, Cornell University, Ithaca, NY (United States)

    2008-07-01

    Most prior climate change assessments for U.S. agriculture have focused on major world food crops such as wheat and maize. While useful from a national and global perspective, these results are not particularly relevant to the Northeastern U.S. agriculture economy, which is dominated by dairy milk production, and high-value horticultural crops such as apples (Malus domestica), grapes (vitis vinifera), sweet corn (Zea mays var. rugosa), cabbage (Brassica oleracea var. capitata), and maple syrup (sugar maple, Acer saccharum). We used statistically downscaled climate projections generated by the HadCM3 atmosphere-ocean general circulation model, run with Intergovernmental Panel on Climate Change future emissions scenarios Alfi (higher) and B1 (lower), to evaluate several climate thresholds of direct relevance to agriculture in the region. A longer (frostfree) growing season could create new opportunities for farmers with enough capital to take risks on new crops (assuming a market for new crops can be developed). However, our results indicate that many crops will have yield losses associated with increased frequency of high temperature stress, inadequate winter chill period for optimum fruiting in spring, increased pressure from marginally over-wintering and/or invasive weeds, insects, or disease, or other factors. Weeds are likely to benefit more than cash crops from increasing atmospheric carbon dioxide. Projections of thermal heat index values for dairy cows indicate a substantial potential negative impact on milk production. At the higher compared to lower emissions scenario, negative climate change effects will occur sooner, and impact a larger geographic area within the region. Farmer adaptations to climate change will not be cost- or risk-free, and the impact on individual farm families and rural communities will depend on commodity produced, available capital, and timely, accurate climate projections.

  9. Recovery of Lead(II from Aqueous Solutions by Zea mays Tassel Biosorption

    Directory of Open Access Journals (Sweden)

    Caliphs M. Zvinowanda

    2010-01-01

    Full Text Available Problem statement: Major adsorbent materials used in heavy metal ion removal from polluted aqueous streams are expensive and difficult to regenerate. In this study, the possibility of using Zea mays tassel, as an alternative low cost biosorbent material to remediate heavy metal pollution was investigated. Lead (II was used because of its wide application in industrial products and well documented toxicity. Approach: Tassel was obtained from mature Zea mays cultivar R52 hybrid plants. The tassel was milled to a powder and was used to adsorb lead(II ions from simulated solutions in batch experiments. The desorption of lead(II was carried out using nitric acid and sodium citrate solutions. The adsorbent was characterized by FTIR, EDX and ESCA before and after application of lead(II solutions. Results: For samples with concentrations of 100 mg L-1 Pb(II, 94-98% was adsorbed and 57-74 and 57-67% recoveries were achieved with 0.5-5 M nitric acid and 0.01-0.2 M sodium citrate as the stripping solutions, respectively. EDX spectrum of pure tassel indicated that group 1 and 2 metals were the major exchangeable ions present on its surface. ESCA analysis picked up small amounts of lead(II in the form of Pb(OH+ and Pb(NH+ ions on the surface of tassel adsorbent exposed to Pb2+ ions and none on pure tassel sample. Functional groups such as -H, -NH2, -C = O and -COOH which are polar and are legends which are capable of binding heavy metals were identified by FTIR. Conclusion: The potential of Zea mays tassel to adsorb and recover heavy metals from aqueous solution was successfully demonstrated with Pb(II sample solutions. The results obtained thus far demonstrated the possibility of using tassel powder in the removal as well as recovery of metals from aqueous solutions.

  10. Effect of cropping systems in no-till farming on the quality of a Brazilian Oxisol

    Directory of Open Access Journals (Sweden)

    Getulio de Freitas Seben Junior

    2014-08-01

    Full Text Available The no-till system with complex cropping sequences may improve the structural quality and carbon (C sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L. (CC, soybean/soybean (Glycine max L. Merryll (SS, and soybean-corn (SC; and seven winter crops - corn, sunflower (Helianthus annuus L., oilseed radish (Raphanus sativus L., pearl millet (Pennisetum americanum (L. Leeke, pigeon pea (Cajanus cajan (L. Millsp, grain sorghum (Sorghum bicolor (L. Moench, and sunn hemp (Crotalaria juncea L.. Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively and geometric mean diameter (3.55 and 2.92 mm of the aggregates compared to soil under SS (3.18 and 2.46 mm. The CC resulted in the highest soil organic C content (17.07 g kg-1, soil C stock (15.70 Mg ha-1, and rate of C sequestration (0.70 Mg ha-1 yr-1 among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3, and that under sunn hemp had the highest water stable aggregates (93.74 %. In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1 and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1. The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water

  11. THE INFLUENCE OF GRAMOXONE HERBICIDE ON THE CONTENT OF THE PHOTOSYNTHETIC PIGMENTS IN ZEA MAYS

    Directory of Open Access Journals (Sweden)

    Antoanela Patras

    2007-08-01

    Full Text Available The active substance of Gramoxone herbicide is interacting with plant’s photosynthetic systems, playing the role of final acceptor of the photosynthetic electrons. Except this known mode of action, it has been also observed the inhibitory action on the protoporphyrinogen oxidase – essential enzyme for chlorophylls biosynthesis, and also the decrease of photosynthetic pigment’s concentration in some spontaneous plants. Based on these prerequisites, the present study demonstrates the decrease of the photosynthetic pigment’s content in Zea mays in the presence of Gramoxone.

  12. Salmon silk genes contribute to the elucidation of the flavone pathway in maize (Zea mays L.).

    Science.gov (United States)

    McMullen, M D; Kross, H; Snook, M E; Cortés-Cruz, M; Houchins, K E; Musket, T A; Coe, E H

    2004-01-01

    We utilized maize (Zea mays L.) lines expressing the salmon silk (sm) phenotype, quantitative trait locus analysis, and analytical chemistry of flavone compounds to establish the order of undefined steps in the synthesis of the flavone maysin in maize silks. In addition to the previously described sm1 gene, we identified a second sm locus, which we designate sm2, located on the long arm of maize chromosome 2. Our data indicate that the sm1 gene encodes or controls a glucose modification enzyme and sm2 encodes or controls a rhamnosyl transferase. The order of intermediates in the late steps of maysin synthesis was established as luteolin --> isoorientin --> rhamnosylisoorientin --> maysin.

  13. Cytogenetics of monosomes in Zea mays. Comprehensive report, October 1, 1970--January 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D. F.

    1976-10-01

    Monosomics (organisms lacking one chromosome) are perhaps the most interesting of the aneuploid types because a chromosome lacks a pairing partner in each meiotic cell and because genes on an entire chromosome are present in the hemizygous condition in each meiotic cell. A recently-discovered system produces a high frequency of monosomics in a Zea mays (maize). With this system, monosomics are available in a diploid organism in relatively large numbers and for most of the chromosomes for the first time. Results are reported from studies on several aspects of the cytogenetics of monosomics.

  14. Zinc toxicity on antioxidative response in (Zea mays L. at two different pH

    Directory of Open Access Journals (Sweden)

    Hosseini, Zahra

    2013-02-01

    Full Text Available Zn is the second most abundant transition metal after iron (Fe. Excess Zn can have negative effects on plants. The effect of Zn at two different pH on lipid peroxidation (MDA, membrane permeability (EC, hydrogen peroxide (H2O2,non-protein thiols (NPT and the activities of major antioxidant enzymes Zea mays were investigated under controlled growth conditions. Zn-excess conditions increased the EC, MDA, H2O2 content and non-protein thiols and also activities of antioxidant enzymes were increased. Also zinc toxicity was higher in 4.5 pH than 7.5 pH.

  15. CropIrri: A Decision Support System for Crop Irrigation Management

    OpenAIRE

    Zhang, Yi; Feng, Liping

    2010-01-01

    International audience; A field crop irrigation management decision-making system (CropIrri) was developed based on the soil water balance model, crop phenology model, root growth model, crop water production function, and irrigation management model. The irrigation plan is made through predicating of soil water content in root zone and daily crop water requirement using historical and forecasting weather data, measured real time soil moisture data. CropIrri provided four decision modes of no...

  16. Feeding behavior and crop damage caused by capybaras (Hydrochoerus hydrochaeris in an agricultural landscape

    Directory of Open Access Journals (Sweden)

    GA Felix

    Full Text Available This study aimed to assess the yield loss caused by capybaras in rural areas of Dourados-MS, their feeding periods, crop preferences and the landscape characteristics of farms that may affect the occurrence of capybara's herds. Semi-structured interviews in 24 different farms were done during a period between April 2010 and August 2011. Field observations were held at different times of the day, and also during the night in order to record peaks of the feeding behavior in six farms. Direct counting of capybaras along with the group of animals reported as seen by the farmers during the interviews was used to estimate the size of herds. Data was analyzed using the Principal Components Analyses and the Analytic Hierarchy Process. The average number of capybaras found in a regular herd was 18.8 ± 7.90 animals. The average number of capybara herd by farms was of 1.38 ± 0.92 while the average number of capybaras by farms was 32.33 ± 27.87. Capybaras selected rice (Oryza sativa when it was available (14.5% of devastation in 1.18% of total planted area; however, the most eaten crop was corn (Zea mays with 38.55% of loss rate in 16.17% of the total planted area. Capybaras ate mostly in the evening and during the night. The availability of water resources in the rural area predisposed the occurrence of capybara's herds.

  17. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity.

    Science.gov (United States)

    De Block, Marc; Van Lijsebettens, Mieke

    2011-06-01

    The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops.

  18. Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil.

    Science.gov (United States)

    Martinelli, Samuel; Barata, Reinaldo Montrazi; Zucchi, Maria Imaculada; Silva-Filho, Marcio de Castro; Omoto, Celso

    2006-04-01

    The molecular variability among 10 populations of Spodoptera frugiperda (J.E. Smith), collected from maize, Zea mays L., or cotton Gossypium hirsutum L. crops located at distinctive geographical regions in Brazil, was assessed through random amplification of polymorphic DNA (RAPD)-polymerase chain reaction (PCR). In total, 208 RAPD markers were evaluated, and 98% of them were polymorphic. The mean genetic similarity was 0.6621 and 0.2499 by the Simple Matching and Jaccard matrices, respectively. In general, the unweighted pair-group method with arithmetic average dendrograms separated the populations into clusters related to the geographical origin of the samples. No branch of the dendrograms underpinning a molecular association of S. frugiperda has been identified to either of the two host plants. The molecular variance analysis showed that 18 and 82% of the genetic variation was distributed among and within the groups of populations, respectively. The principal coordinate analysis reinforced the pattern of population clustering found with the unweighted pair-group method with arithmetic average method. These results suggest the occurrence of considerable gene flow between S. frugiperda populations from maize and cotton fields located in the same region in Brazil. Therefore, for an effective management of this pest, there is an urgent need for a better understanding of the gene flow of S. frugiperda populations associated to different host plants along the distribution range of this pest over time in a specific cropping system.

  19. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Darija Bilandžija

    2016-01-01

    Full Text Available Nonsustainable agricultural practices often lead to soil carbon loss and increased soil carbon dioxide (CO2 emissions into the atmosphere. A research study was conducted on arable fields in central lowland Croatia to measure soil respiration, its seasonal variability, and its response to agricultural practices. Soil C-CO2 emissions were measured with the in situ static chamber method during corn (Zea mays L. and winter wheat (Triticum aestivum L. growing seasons (2012 and 2013, n = 288 in a field experiment with six different tillage treatments. During corn and winter wheat growing season, average monthly soil C-CO2 emissions ranged, respectively, from 6.2–33.6 and 22.1–36.2 kg ha−1 day−1, and were decreasing, respectively, from summer > spring > autumn and summer > autumn > spring. The same tillage treatments except for black fallow differed significantly between studied years (crops regarding soil CO2 emissions. Significant differences in soil C-CO2 emissions between different tillage treatments with crop presence were recorded during corn but not during winter wheat growing season. In these studied agroecological conditions, optimal tillage treatment regarding emitted C-CO2 is plowing to 25 cm along the slope, but it should be noted that CO2 emissions involve a complex interaction of several factors; thus, focusing on one factor, i.e., tillage, may result in a lack of consistency across studies.

  20. Recent advances in fruit crop genomics

    Directory of Open Access Journals (Sweden)

    Qiang XU,Chaoyang LIU,Manosh Kumar BISWAS,Zhiyong PAN,Xiuxin DENG

    2014-02-01

    Full Text Available In recent years, dramatic progress has been made in the genomics of fruit crops. The publication of a dozen fruit crop genomes represents a milestone for both functional genomics and breeding programs in fruit crops. Rapid advances in high-throughput sequencing technology have revolutionized the manner and scale of genomics in fruit crops. Research on fruit crops is encompassing a wide range of biological questions which are unique and cannot be addressed in a model plant such as Arabidopsis. This review summarizes recent achievements of research on the genome, transcriptome, proteome, miRNAs and epigenome of fruit crops.

  1. 冬季覆盖作物对双季稻光合特性的影响%Effects of Different Winter Cover Plants on Photosynthetic Characteristics of Double-cropping Rice

    Institute of Scientific and Technical Information of China (English)

    唐海明; 肖小平; 汤文光; 杨光立; 汤海涛

    2011-01-01

    The effects of four different winter cover plants, ryegrass, Chinese milk vetch, rape and potato, on photosynthetic characteristics of double-cropping rice in southern China were studied in experimental field from 2008 to 2009. The results showed that compared with the CK (fallow in winter), the treatments of ryegrass, Chinese milk vetch and potato increased obviously the LAI, chlorophyll content and net photosynthetic rate in leaves of the double-cropping rice during the whole growth stages, raised the grain yield and increased total bio-energy and the solar energy utilization ratio of stem, leaf and grain of double-cropping rice.%以冬闲为对照,研究了黑麦草、紫云英、油菜和马铃薯4种冬季覆盖作物对双季稻的光合特性的影响.结果表明:黑麦草、紫云英和马铃薯3种冬季覆盖作物处理能明显提高双季稻各个生长发育时期叶片的叶面积指数、叶绿素含量和净光合速率,增加稻谷产量,提高生物能及植株茎叶光能利用率、籽粒光能利用率和总光能利用率.

  2. Herbaceous energy crops: planning for a renewed commitment. [Hay, silage, rapeseed, sugar and starch crops, hydrocarbon crops

    Energy Technology Data Exchange (ETDEWEB)

    Berger, B.J.; Cushman, J.H.

    1984-01-01

    In 1984, the US Department of Energy's Biomass Energy Technology Division (BETD) began a new program of research on the production of herbaceous crops for energy. In addition to the new Herbaceous Energy Crops (HEC) Program, ongoing BETD programs involve woody and aquatic energy crops. The goal of the HEC Program is to provide the technology base that will allow industry to develop commercially viable species and systems in order to produce herbaceous biomass for fuels and energy feedstocks. The program will concentrate on crop types that can contribute the most to energy supplies while minimizing the impact of producing energy from crops on food production and the environment. Research in the HEC Program will focus on crops suitable for marginal croplands and on winter crops that can be grown between plantings of conventional crops. 1 table.

  3. Sustainability of Switchgrass Cropping Systems

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is native to the eastern two thirds of temperate North America. It has been used for conservation purposes and as a pasture grass since the 1940’s. It is currently being developed as a cellulosic biomass energy crop because it can produ...

  4. Botrytis species on bulb crops

    NARCIS (Netherlands)

    Lorbeer, J.W.; Seyb, A.M.; Boer, de M.; Ende, van den J.E.

    2007-01-01

    Abstract. A number of Botrytis species are pathogens of bulb crops. Botrytis squamosa (teleomorph= Botrytotinia squamosa) causal agent of botrytis leaf blight and B. allii the causal agent of botrytis neck rot are two of the most important fungal diseases of onion. The taxonomics of several of the n

  5. Defining and identifying crop landraces

    NARCIS (Netherlands)

    Camacho Villa, T.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B.

    2005-01-01

    Awareness of the need for biodiversity conservation is now universally accepted, but most often recent conservation activities have focused on wild species. Crop species and the diversity between and within them has significant socioeconomic as well as heritage value. The bulk of genetic diversity i

  6. Crop protection in organic agriculture

    NARCIS (Netherlands)

    Letourneau, D.; Bruggen, van A.H.C.

    2006-01-01

    The authors describe pests and diseases and their management in organic versus conventional agriculture. Also two case studies are described: 1. Pest and pathogen regulation in organic versus conventional cereal crops in Europe and 2. Pest and pathogen regulation in organic versus conventional tomat

  7. Economic impact of GM crops

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  8. Effects of Different Nitrogen Application Strategies on Yield and ForageNutritive Quality of Zea mexicana

    Institute of Scientific and Technical Information of China (English)

    WANGYong-jun; WANGKong-jun; YUANCui-ping; XUHong

    2004-01-01

    A pool experiment was carried out to study the effects of different nitrogen application strategies (rates and stages of nitrogen application) on yield and forage nutritive quality of Zea mexicana cultivated in summer, 2002. In the whole growing stage, its stem was clipped three times at the height of 25 cm when it was II0 cm high (H1, H2 and H3 stand for the first, second and third harvest stage, respectively). Six indexes including crude protein (CP), ether extract (EE), nitrogen free extract (NFE), acid detergent fiber (ADF), crude ash (CA), and general energy (GE) were employed to evaluate the forage nutritive value. The results showed that the content of CP and EE increased but the content of CA and ADF decreased under the two nitrogen rates (High-rate N, 600 kg ha-1;Mid-rate N, 300 kg ha-1). The fresh and dry harvest biomass of the whole plants on H1 and those of the leaves on H2 were also improved. But the stalks on H2 and the whole plants on H3 were affected mainly by dressing nitrogen fertilizer. The yield of CP and EE, CA,NFE, and GE was mainly affected by nitrogen rates. The ADF yield increased was due to the increment of the fresh and dry harvest biomass. Nitrogen applied as base fertilizer for summer Zea mexicana can be harvested a higher biomass and improve the forage nutritive quality.

  9. De novo assembly ofZea nicaraguensis root transcriptome identiifed 5261full-length transcripts

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; LIU Hai-lan; WU Yuan-qi; ZHANG Su-zhi; LIU Jian; LU Yan-li; TANG Qi-lin; RONG Ting-zhao

    2016-01-01

    Zea nicaraguensis, a wild relative of cultivated maize (Zea mayssubsp. mays), is considered to be a valuable germplasm to improve the waterlogging tolerance of cultivated maize. Use of reverse genetic-based gene cloning and function veriif-cation to discover waterlogging tolerance genes inZ. nicaraguensis is currently impractical, because little gene sequence information forZ. nicaraguensis is available in public databases. In this study,Z. nicaraguensis seedlings were subjected to simulated waterlogging stress and total RNAs were isolated from roots stressed and non-stressed controls. In total, 80 mol L–1 Ilumina 100-bp paired-end reads were generated.De novo assembly of the reads generated 81002 ifnal non-re-dundant contigs, from which 5261 full-length transcripts were identiifed. Among these full-length transcripts, 3169 had at least one Gene Ontology (GO) annotation, 2354 received cluster of orthologous groups (COG) terms, and 1992 were assigned a Kyoto encyclopedia of genes and genomes (KEGG) Orthology number. These sequence data represent a valuable resource for identiifcation ofZ. nicaraguensisgenes involved in waterlogging response.

  10. IDENTIFICATION OF LECTINS OF ZEA MAYS RAW MATERIAL AND THE STUDY OF LECTIN ACTIVITY

    Directory of Open Access Journals (Sweden)

    Karpiuk UV

    2013-03-01

    Full Text Available The aime of the study was to identify lectins in the Zea mays raw material: roots, stems, heads, leaves and corn silk and study their activity. Lectins activity has been studied using the biological method of ratuserytroagglutination. This method is based on formation of aggregates of lectins and rats erythrocytes. The activity unit was the floor amount of lectins that agglutinate erythrocytes. The protein nature of extracts that agglutinate has been determined using Bradford method. The lectins activity of Zea mays roots was 6,21±0,11 unit/mg of protein; of heads – 2,61±0,17 unit/mg of protein; of leaves – 0,62 ±0,05 unit/mg of protein; of corn silk – 1,06±0,08 unit/mg of protein; of stems – 0,97±0,09 unit/mg of protein. The greatest lectins activity was in leaves, stems and corn silk.

  11. Analysis of the Genome of the Sexually Transmitted Insect Virus Helicoverpa zea Nudivius 2

    Directory of Open Access Journals (Sweden)

    Zhiqiang Lu

    2012-01-01

    Full Text Available The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2 was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs. HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea.

  12. Knob-associated tandem repeats on mitotic chromosomes in maize, Zea diploperennis and their hybrids

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhiyong; GAO Yuan; HE Guanyuan; GU Mingguang; GUO Lequn; SONG Yunchun

    2004-01-01

    Knob-associated tandem repeats, 180-bp repeats and TR-1 elements, together with 45S rDNA were located on mitotic chromosomes of Zea diploperennis (DP),maize inbred line F102 and their hybrid. In DP, knobs on the short arm of chromosomes 1 and 4 and on the long arm of the chromosomes 4 and 5 are composed predominantly of the 180-bp repeats. In addition, 180-bp repeats existed together with TR-1 elements were also detected on the short arm of chromosomes 2 and 5 and on the long arm of the chromosomes 2, 6, 7, 8 and 9. In maize inbred line F102, 180-bp repeats were present in chromosomes 7S and one homologue of chromosomes 8L. TR-1 elements appeared on satellite of chromosome 6 and no detectable hybridization site co-located with 180-bp repeats was observed in maize F102. Polymorphism of size, number, and distribution of 180-bp and TR-1 signals were revealed among different chromosomes in these two species and heteromorphism existed between some homologous chromosomes in the same species.Using these excellent landmarks, the interspecific hybrid of maize and DP were identified. The results suggest that comparative analysis of 180-bp repeats and TR-1 elements may help understand the genome organization and the evolution in Zea.

  13. Chromium accumulation potential of Zea mays grown under four different fertilizers.

    Science.gov (United States)

    Dheeba, B; Sampathkumar, P; Kannan, K

    2014-12-01

    Chromium (Cr) contamination in soil is a growing concern in sustainable agriculture production and food safety. We performed pot experiment with chromium (30 mg/soil) to assess the accumulation potential of Zea mays and study the influence of four fertilizers, viz. Farm Yard Manure (FYM), NPK, Panchakavya (PK) and Vermicompost (VC) with respect to Cr accumulation. The oxidative stress and pigment (chlorophyll) levels were also examined. The results showed increased accumulation of chromium in both shoots and roots of Zea mays under FYM and NPK supply, and reduced with PK and VC. While the protein and pigment contents decreased in Cr treated plants, the fertilizers substantiated the loss to overcome the stress. Similarly, accumulation of Cr increased the levels of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) indicating the enhanced damage control activity. However, these levels were relatively low in plants supplemented with fertilizers. Our results confirm that the maize can play an effective role in bioremediation of soils polluted with chromium, particularly in supplementation with fertilizers such as farm yard manure and NPK.

  14. Effects of Different Nitrogen Application Strategies on Yield and Forage Nutritive Quality of Zea mexicana

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-jun; WANG Kong-jun; YUAN Cui-ping; XU Hong

    2004-01-01

    A pool experiment was carried out to study the effects of different nitrogen application strategies (rates and stages of nitrogen application) on yield and forage nutritive quality of Zea mexicana cultivated in summer, 2002. In the whole growing stage, its stem was clipped three times at the height of 25 cm when it was 110 cm high (H1, H2 and H3 stand for the first, second and third harvest stage, respectively). Six indexes including crude protein (CP), ether extract (EE), nitrogen free extract (NFE), acid detergent fiber (ADF), crude ash (CA), and general energy (GE) were employed to evaluate the forage nutritive value. The results showed that the content of CP and EE increased but the content of CA and ADF decreased under the two nitrogen rates (High-rate N, 600 kg ha-1;Mid-rate N, 300 kg ha-1). The fresh and dry harvest biomass of the whole plants on H1 and those of the leaves on H2 were also improved. But the stalks on H2 and the whole plants on H3 were affected mainly by dressing nitrogen fertilizer. The yield of CP and EE, CA,NFE, and GE was mainly affected by nitrogen rates. The ADF yield increased was due to the increment of the fresh and dry harvest biomass. Nitrogen applied as base fertilizer for summer Zea mexicana can be harvested a higher biomass and improve the forage nutritive quality.

  15. Sistemas de cultivo, sucessões de culturas, densidade do solo e sobrevivência de patógenos de solo Cropping systems and previous crops on soil density and survival of soil-borne pathogens

    Directory of Open Access Journals (Sweden)

    Eliane Divina de Toledo-Souza

    2008-08-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de sistemas de manejo do solo e de cultivos prévios ao plantio do feijoeiro (Phaseolus vulgaris L. sobre a densidade do solo e as populações de Rhizoctonia spp. e de Fusarium spp. Os cultivos prévios incluíram as leguminosas: guandu-anão (Cajanus cajan, estilosantes (Stylosanthes guianensis cv. Mineirão e crotalária (Crotalaria spectabilis; e as gramíneas: milheto (Pennisetum glaucum cv. BN-2, sorgo granífero (Sorghum bicolor cv. BR 304, capim-mombaça (Panicum maximum cv. Mombaça, braquiária (Brachiaria brizantha cv. Marandu e milho (Zea mays consorciado com braquiária. As culturas utilizadas no cultivo prévio foram semeadas nos verões de 2002, 2003 e 2004, e os plantios de feijoeiro, cultivar BRS Valente, foram realizados nos invernos subseqüentes de 2003, 2004 e 2005, com irrigação por pivô central. Os restos culturais dos cultivos eram incorporados ao solo, no plantio convencional, e ficavam à superfície, no plantio direto. De modo geral, as maiores populações de Fusarium spp. e Rhizoctonia spp. e as maiores densidades de solo foram encontradas no solo cultivado em plantio direto. As maiores populações de Rhizoctonia spp. foram observadas em solos mais adensados. As leguminosas geralmente aumentaram populações desses patógenos e devem ser evitadas como culturas prévias ao cultivo do feijoeiro, em ambos os sistemas de cultivo. Plantios prévios de gramíneas, em geral, são supressores das populações de Rhizoctonia spp. e de Fusarium spp. no solo.The objective of this work was to evaluate the effect of cropping systems and crops cultivated previously to common beans (Phaseolus vulgaris L. on soil density and soil populations of Rhizoctonia spp. and Fusarium spp. Previous crops included the following legumes: Cajanus cajan,Stylosanthes guianensis cv. Mineirão and Crotalaria spectabilis; and the following grasses: Pennisetum glaucum (cv. BN-2, millet, Sorghum bicolor

  16. Nutritionally Enhanced Food Crops; Progress and Perspectives

    Directory of Open Access Journals (Sweden)

    Kathleen L. Hefferon

    2015-02-01

    Full Text Available Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops.

  17. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by the Editorial Board of 85 international experts from various fields of crop sciences.

  18. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.;

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reaso...

  19. Selection and adaptation to high plant density in the Iowa Stiff Stalk synthetic maize (Zea mays L.) population

    Science.gov (United States)

    The plant density at which Zea mays L. hybrids achieve maximum grain yield has increased throughout the hybrid era while grain yield on a per plant basis has increased little. Changes in plant traits including grain yield, moisture, test weight, and stalk and root lodging have been well characterize...

  20. Effect of emamectin benzoate on mortality, proboscis extension, gustation and reproduction of the corn earworm, Helicoverpa zea

    Science.gov (United States)

    Newly emerged bollworm adults, Helicoverpa zea (Boddie) require carbohydrate source from plant exudates and nectars for reproduction. Adults actively seek such feeding sites upon eclosion in their natural habitat. We wanted to evaluate this nocturnal behavior of the bollworm for potential use as a p...

  1. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    Science.gov (United States)

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  2. Embryogenesis in Zea mays L. A structural approach to maize caryopsis development in vivo and in vitro.

    NARCIS (Netherlands)

    Lammeren, van A.A.M.

    1987-01-01

    In this thesis the embryological development of the maize plant ( Zeamays L.) is described. The investigations aim at analysing the development of polarity, the initiation of meristems, the differentiation of tissues within the embryo and the interaction between the embryo and the extr

  3. Promoting Student Inquiry Using "Zea Mays" (Corn) Cultivars for Hypothesis-Driven Experimentation in a Majors Introductory Biology Course

    Science.gov (United States)

    Blair, Amy C.; Peters, Brenda J.; Bendixen, Conrad W.

    2014-01-01

    The AAAS Vision and Change report (2011) recommends incorporating student research experiences into the biology curriculum at the undergraduate level. This article describes, in detail, how "Zea mays" (corn) cultivars were used as a model for a hypothesis-driven short-term research project in an introductory biology course at a small…

  4. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays.

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous synth

  5. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous synth

  6. Incentive Design for Introducing Genetically Modified Crops

    OpenAIRE

    Kingwell, Ross S.

    2000-01-01

    The introduction of genetically modified (GM) crops raises several issues. This paper looks at incentives required to reduce problems of illegal and improper use of GM proprietary technology used in growing GM crops. A simple model of producer behaviour describes some key influences of a farmer’s response to GM crops. The model is illustrated using the example of INGARD cotton grown in Australia. The key findings are that legitimate adoption of a GM crop by a farmer depends on their attitude ...

  7. Grain legumes in organic cropping systems

    OpenAIRE

    Hauggaard-Nielsen, Dr. Henrik

    2002-01-01

    Grain legumes are valuable protein and energy sources in animal feeds and in human diets low in meat. Furthermore, grain legumes strongly benefit the cropping system, via biological fixation of atmospheric N2 - a fundamental process for maintaining soil fertility in organic farming systems. Other positive effects in the crop rotations are recycled N-rich crop residues and the break-crop effect in cereals-rich rotations. However, yield variability in grain legumes is well known and related to...

  8. Looking forward to genetically edited fruit crops.

    Science.gov (United States)

    Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael

    2015-02-01

    The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed.

  9. 7th International Crop Science Congress Announcement

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    August 14–19,2016 Beijing,China Crop Science—Innovation and SustainabilityInternational Crop Science Congress(ICSC)is a regular forum for crop scientists from around the world to integrate current knowledge into a global context and international applications.The Congress is organized about every four years beginning in July,1992.The International Crop Science Society has primary oversight for general

  10. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.

  11. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief of

  12. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.

  13. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief

  14. Crop diversity prevents serious weed problems

    DEFF Research Database (Denmark)

    Melander, Bo

    2016-01-01

    Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified.......Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified....

  15. Managing cover crops: an economic perspective

    Science.gov (United States)

    Common reasons given by producers as to why they do not adopt cover crops are related to economics: time, labor, and cost required for planting and managing cover crops. While many of the agronomic benefits of cover crops directly relate to economics, there are costs associated with adopting the pra...

  16. Crop succession requirements in agricultural production planning

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; Stegeman, A.

    2005-01-01

    A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agricultural production planning. Crop succession information is given in the form of a set of inadmissible successions of crops. The decision variables represent the areas where a certain admis

  17. Cover crop effects on soil carbon and nitrogen under bioenergy sorghum crops

    Science.gov (United States)

    Cover crops can increase soil C and N storage and reduce the potential for N leaching under agronomic crops, but information on their benefits under bioenergy crops is scanty due to the removal of aboveground biomass. The objective of the study was to evaluate the effect of cover crops on soil organ...

  18. Use Of Crop Canopy Size To Estimate Water Requirements Of Vegetable Crops

    Science.gov (United States)

    Planting time, plant density, variety, and cultural practices vary widely for horticultural crops. It is difficult to estimate crop water requirements for crops with these variations. Canopy size, or factional ground cover, as an indicator of intercepted sunlight, is related to crop water use. We...

  19. The Impact of Inter-Kernel Movement in the Evolution of Resistance to Dual-Toxin Bt-Corn Varieties in Helicoverpa zea (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Caprio, Michael A; Martinez, Jeannette C; Porter, Patrick A; Bynum, Ed

    2016-02-01

    Seeds or kernels on hybrid plants are primarily F(2) tissue and will segregate for heterozygous alleles present in the parental F(1) hybrids. In the case of plants expressing Bt-toxins, the F(2) tissue in the kernels will express toxins as they would segregate in any F(2) tissue. In the case of plants expressing two unlinked toxins, the kernels on a Bt plant fertilized by another Bt plant would express anywhere from 0 to 2 toxins. Larvae of corn earworm [Helicoverpa zea (Boddie)] feed on a number of kernels during development and would therefore be exposed to local habitats (kernels) that varied in their toxin expression. Three models were developed for plants expressing two Bt-toxins, one where the traits are unlinked, a second where the traits were linked and a third model assuming that maternal traits were expressed in all kernels as well as paternally inherited traits. Results suggest that increasing larval movement rates off of expressing kernels tended to increase durability while increasing movement rates off of nonexpressing kernels always decreased durability. An ideal block refuge (no pollen flow between blocks and refuges) was more durable than a seed blend because the refuge expressed no toxins, while pollen contamination from plants expressing toxins in a seed blend reduced durability. A linked-trait model in an ideal refuge model predicted the longest durability. The results suggest that using a seed-blend strategy for a kernel feeding insect on a hybrid crop could dramatically reduce durability through the loss of refuge due to extensive cross-pollination.

  20. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake.

    Science.gov (United States)

    Rehman, Muhammad Zia-Ur; Rizwan, Muhammad; Ali, Shafaqat; Fatima, Nida; Yousaf, Balal; Naeem, Asif; Sabir, Muhammad; Ahmad, Hamaad Raza; Ok, Yong Sik

    2016-11-01

    Nickel (Ni) toxicity in agricultural crops is a widespread problem while little is known about the role of biochar (BC) and other organic amendments like farm manure (FM) from cattle farm and compost (Cmp) on its alleviation. A greenhouse experiment was conducted to evaluate the effects of BC, Cmp and FM on physiological and biochemical characteristics of maize (Zea mays L.) under Ni stress. Maize was grown in Ni spiked soil without and with two rates of the amendments (equivalent to 1% and 2% organic carbon, OC) applied separately to the soil. After harvest, plant height, root length, dry weight, chlorophyll contents, gas exchange characteristics and trace elements in plants were determined. In addition, post-harvest soil characteristics like pHs, ECe and bioavailable Ni were also determined. Compared to the control, all of the amendments increased plant height, root length, shoot and root dry weight with the maximum increase in all parameters by FM (2% OC) treatment. Similarly, total chlorophyll contents and gas exchange characteristics significantly increased with the application of amendments being maximum with FM (2% OC) application. Amendments significantly increased copper, zinc, manganese and iron concentrations and decreased Ni concentrations in the plants. The highest reduction in shoot Ni concentration was recorded with FM (2% OC) followed by BC (2% OC) being 73.2% and 61.1% lower compared to the control, respectively. The maximum increase in soil pH and decrease in AB-DTPA extractable Ni was recorded with BC (2% OC) followed by FM (2% OC). It is concluded that FM (2% OC) was the most effective in reducing Ni toxicity to plants by reducing Ni uptake while BC (2% OC) was the most effective in decreasing bioavailable Ni in the soil through increasing soil pH. However, long-term field studies are needed to evaluate the effects of these amendments in reducing Ni toxicity in plants.

  1. Sensitivity studies of the common bean (Vigna unguiculata) and maize (Zea mays) to different soil types from the crude oil drilling site at Kutchalli, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Anoliefo, G.O. [Dept. of Botany, Univ. of Benin, Benin City (Nigeria); Isikhuemhen, O.S. [Dept. of Natural Resources and Environmental Design, NC Agricultural and Technical State Univ., Greensboro, NC (United States); Ohimain, E.I. [Rohi Biotechnologies Ltd., Port Harcourt (Nigeria)

    2006-02-15

    Background, aims and scope. The economic growth that Nigeria has enjoyed as a result of oil revenue has its drawback through exposure of people in the oil producing areas to environmental contamination, due largely to the increase in the movement of oil. Activities associated with oil well drilling on agricultural lands have led to serious economic losses on the communities affected. The local people in most of these communities are peasants who do not know how to react to drilling wastes or polluted fields where they have their crops. A case under study is the Kutchalli oil drilling area. Methods. Waste pit soil from drilling waste dumps in Kutchalli oil drilling area was tested whole and in combinations with 'clean' soil for their abilities to support plant growth and development in common bean (Vigna unguiculata) and maize (Zea mays). Seed germination, plant height, leaf area, biomass accumulation, respiratory activity as well as soil chemical analysis were used to access the ability of waste pit soil to support plant growth and development in the test plants. Results, discussion and conclusions. Waste pit soil completely inhibited the germination of bean and maize seeds. Waste pit soil in combinations with different proportions of Kutchalli soil gave growth (germination, height of plants, number of leaves, leaf area, etc.) values that were inferior to the control soil (Kutchalli) and the independent control soil (Monguno). Seeds planted in the test soil combinations containing waste pit soil showed significantly low respiratory activity. Waste pit soil seems to be toxic to plant growth and development. Drilling mud in combination with native Kutchalli soil significantly enhanced plant growth and development. Recommendations and outlook. The seed germination, growth and development inhibition by waste pit soil suggests its toxicity. We want to suggest the need for strict control and monitoring of waste pit soil in oil drilling sites. (orig.)

  2. Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore.

    Science.gov (United States)

    Schmalenberger, Achim; Tebbe, Christoph C

    2002-04-01

    Bacterial communities in rhizospheres of transgenic maize (Zea mays, with the pat-gene conferring resistance to the herbicide glufosinate; syn. l-phosphinothricin) were compared to its isogenic, non-transgenic cultivar. Total DNA was extracted from bacterial cell consortia collected from rhizospheres of plants grown in an agricultural field. With the use of three different primer pairs binding to evolutionarily conserved regions of the bacterial 16S rRNA gene, partial sequences were amplified by polymerase chain reaction (PCR). The PCR products were subjected to single-strand conformation polymorphism (SSCP) to generate genetic profiles which corresponded to the diversity of the amplified sequences. Genetic profiles of rhizospheres consisted of 40-60 distinguishable bands depending on the chosen primer pairs, and the variability between independent replicates was very low. Neither the genetic modification nor the use of the herbicide Liberty (syn. Basta; active ingredient: glufosinate) affected the SSCP profiles as investigated with digital image analysis. In contrast, PCR-SSCP profiles of bacterial communities from rhizospheres of sugar beet, grown in the same field as a control crop, were clearly different. A less pronounced but significant difference was also observed with rhizosphere samples from fine roots of maize plants collected 35 and 70 days after sowing. Sequencing of the dominant 30 products from one typical SSCP profile generated from transgenic maize rhizospheres indicated the presence of typical soil and rhizosphere bacteria: half of the bands could be attributed to Proteobacteria, mainly of the alpha- and beta-subgroups. Other SSCP bands could be assigned to members of the following phylogenetic groups: Cytophaga-Flavobacterium-Bacteroides, Chlamydiales-Verrucomicrobium, Planctomyces, Holophaga and to Gram-positive bacteria with a high G+C DNA content.

  3. High bioavailablilty iron maize (Zea mays L. developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model and in vivo (Gallus gallus

    Directory of Open Access Journals (Sweden)

    Tako Elad

    2013-01-01

    Full Text Available Abstract Background Iron (Fe deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L. lines with contrasting Fe bioavailability (ie. Low and High. Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb synthesis and to improve the Fe status of Fe deficient broiler chickens. Methods We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate. Chicks (Gallus gallus were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME and total body Hb Fe values were used to estimate Fe bioavailability from the diets. Results DMT-1, DcytB and ferroportin expressions were higher (P  Conclusions We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable Fe maize to reduce Fe deficiency.

  4. Bt Maize Seed Mixtures for Helicoverpa zea (Lepidoptera: Noctuidae): Larval Movement, Development, and Survival on Non-transgenic Maize.

    Science.gov (United States)

    Burkness, Eric C; Cira, T M; Moser, S E; Hutchison, W D

    2015-12-01

    In 2012 and 2013, field trials were conducted near Rosemount, MN, to assess the movement and development of Helicoverpa zea (Boddie) larvae on non-Bt refuge corn plants within a seed mixture of non-Bt and Bt corn. The Bt corn hybrid expressed three Bt toxins-Cry1Ab, Cry1F, and Vip3A. As the use of seed mixtures for insect resistance management (IRM) continues to be implemented, it is necessary to further characterize how this IRM approach impacts resistance development in ear-feeding Lepidopteran pests. The potential for Bt pollen movement and cross pollination of the non-Bt ears in a seed mixture may lead to Bt toxin exposure to larvae developing on those refuge ears. Larval movement and development by H. zea, feeding on non-Bt refuge plants adjacent to either transgenic Bt or non-Bt plants, were measured to investigate the potential for unintended Bt exposure. Non-Bt plants were infested with H. zea eggs and subplots were destructively sampled twice per week within each treatment to assess larval development, location, and kernel injury. Results indicate that H. zea larval movement between plants is relatively low, ranging from 2-16% of larvae, and occurs mainly after reaching the second instar. Refuge plants in seed mixtures did not produce equivalent numbers of H. zea larvae, kernel injury, and larval development differed as compared with a pure stand of non-Bt plants. This suggests that there may be costs to larvae developing on refuge plants within seed mixtures and additional studies are warranted to define potential impacts.

  5. Réponses agro-physiologiques et efficacité d'utilisation de l'eau chez le maïs (Zea mays L. - cv. Synthetic-C soumis au déficit hydrique

    Directory of Open Access Journals (Sweden)

    Diouf, M.

    2001-01-01

    Full Text Available Agrophysiological Responses and Water Use Efficiency of Maize (Zea mays L. - cv. Synthetic-C in Water Deficit Conditions. Senegal is known to have very tow rainfall with high probability of drought occurring du ring crop development. The study on the growth of maize under water deficit conditions aimed at characterising its agro-physiological responses and the evaluation of its water use efficiency (WUE. A water deficit was applied respectively during the vegetative phase (T1, at flowering start (T3 and both during the vegetative phase and at flowering start (T2 with a period of rewatering between these two phases. For the control (TO water was applied by irrigation to maintain optimal water conditions for growth. The amount of water to complete (in low rainfall conditions during the cycle was determined by measuring "bac" evapotranspiration and using crop coefficient (Kc for maize during the different phases. The results show that Synthetic-C variety was sensitive to water deficit during the flowering phase. Actually, the relative water content (RWC, leaf water potential and crop water stress index (CWSI were less sensitive to water deficit during the flowering phase than during the vegetative phase. These parameters showed a higher rate of decrease during the vegetative phase. On the other hand, gazeous exchanges [stomatal conductance (Gs and transpiration (Tr] were found to be more sensitive to water deficit during the reproductive stage. Moreover, significantly low grain yield and WUE were observed during this phase of development. However, on the basis of physiological parameters and productivity, Synthetic-C showed a good capacity to resume its physiological activities after rewatering during the vegetative phase, similar to a good plasticity of the control.

  6. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2013-01-01

    Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co......, being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas...

  7. Heterozygosity of Knob-Associated Tandem Repeats and Knob Instability in Mitotic Chromosomes of Zea (Zea mays L. and Z. diploperennis Iltis Doebley)

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yong XIONG; Yong LIU; Yong-Gang HE; Yun-Chun SONG; Ke-Xiu LI; Guan-Yuan HE

    2005-01-01

    Knobs are blocks of heterochromatin present on chromosomes of maize (Zea mays L.) and its relatives that have effects on the frequency of genetic recombination, as well as on chromosome behavior.Knob heterozygosity and instability in six maize inbred lines and one Z. diploperennis Iltis Doebley line were investigated using the fluorescence in situ hybridization (FISH) technique with knob-associated tandem repeats (180 bp and 350 bp (TR-1)) as probes. Signals of seven heterozygous knobs containing 180-bp repeats and of one heterozygous knob containing TR- 1 were captured in chromosomes of all materials tested according to the results of FISH, which demonstrates that the 180-bp repeat is the main contributor to knob heterozygosity compared with the TR-1 element. In addition, one target cell with two TR-1 signals on one homolog of chromosome 2L, which was different from the normal cells in the maize inbred line GB57,was observed, suggesting knob duplication and an instability phenomenon in the maize genome.

  8. Effects of No-Till on Yields as Influenced by Crop and Environmental Factors

    Energy Technology Data Exchange (ETDEWEB)

    Toliver, Dustin K.; Larson, James A.; Roberts, Roland K.; English, B.C.; De La Torre Ugarte, D. G.; West, Tristram O.

    2012-02-07

    Th is research evaluated diff erences in yields and associated downside risk from using no-till and tillage practices. Yields from 442 paired tillage experiments across the United States were evaluated with respect to six crops and environmental factors including geographic location, annual precipitation, soil texture, and time since conversion from tillage to no-till. Results indicated that mean yields for sorghum [Sorghum bicolor (L.) Moench] and wheat (Triticum aestivum L.) with no-till were greater than with tillage. In addition, no-till tended to produce similar or greater mean yields than tillage for crops grown on loamy soils in the Southern Seaboard and Mississippi Portal regions. A warmer and more humid climate and warmer soils in these regions relative to the Heartland, Basin and Range, and Fruitful Rim regions appear to favor no-till on loamy soils. With the exception of corn (Zea mays L.) and cotton (Gossypium hirsutum L.) in the Southern Seaboard region, no-till performed poorly on sandy soils. Crops grown in the Southern Seaboard were less likely to have lower no-till yields than tillage yields on loamy soils and thus had lower downside yield risk than other farm resource regions. Consistent with mean yield results, soybean [Glycine max (L.) Merr.] and wheat grown on sandy soils in the Southern Seaboard region using no-till had larger downside yield risks than when produced with no-till on loamy soils. Th e key fi ndings of this study support the hypothesis that soil and climate factors impact no-till yields relative to tillage yields and may be an important factor infl uencing risk and expected return and the adoption of the practice by farmers.

  9. Review of anthraquinone applications for pest management and agricultural crop protection.

    Science.gov (United States)

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  10. Evapotranspiration, Yield and Crop Coefficient of Irrigated Maize Under Straw Mulch

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-Ying; CHEN Su-Ying; PEI Dong; LIU Meng-Yu; SUN Hong-Yong

    2005-01-01

    Maize (Zea mays L.), a staple crop grown from June to September during the rainy season on the North China Plain,is usually inter-planted in winter wheat (Triticum aestivum L.) fields about one week before harvesting of the winter wheat. In order to improve irrigation efficiency in this region of serious water shortage, field studies in 1999 and 2001, two dry seasons with less than average seasonal rainfall, were conducted with up to five irrigation applications to determine evapotranspiration, calculate the crop coefficient, and optimize the irrigation schedule with maize under mulch, as well as to establish the effects of irrigation timing and the number of applications on grain yield and water use efficiency (WUE)of maize. Results showed that with grain production at about 8000 kg ha-1 the total evapotranspiration and WUE of irrigated maize under mulch were about 380-400 mm and 2.0-2.2 kg m-3, respectively. Also in 2001 WUE of maize with mulch for the treatment with three irrigations was 11.8% better than that without mulch. In the 1999 and 2001 seasons, maize yield significantly improved (P = 0.05) with four irrigation applications, however, further increases were not significant. At the same time there were no significant differences for WUE with two to four irrigation applications.In the 2001 season mulch lead to a decrease of 50 mm in the total soil evaporation, and the maize crop coefficient under mulch varied between 0.3-1.3 with a seasonal average of 1.0.

  11. Transportation fuels from energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, V.K.; Kulsrestha, G.N.; Padmaja, K.V.; Kamra, S.; Bhagat, S.D. (Indian Inst. of Petroleum, Dehra Dun (India))

    1993-01-01

    Biomass constituents in the form of energy crops can be used as starting materials in the production of transportation fuels. The potential of biocrudes obtained from laticiferous species belonging to the families of Euphorbiaceae, Asclepiadaceae, Apocynaceae, Moraceae and Convolvulaceae for the production of hydrocarbon fuels has been explored. Results of studies carried out on upgrading these biocrudes by catalytic cracking using a commercial catalyst are presented. (author)

  12. Understanding crop and farm management

    OpenAIRE

    Chongtham, Iman Raj

    2016-01-01

    Agriculture faces challenges in meeting rising demand for food, feed, fibre and fuel while coping with pressure from globalisation, limited natural resources and climate change. Farmers will choose management practices based on their goals and available resources and these practices will influence farm performance. The aim of this thesis was to understand farmers’ crop and farm management practices and their links to farm(er) characteristics, productivity, biodiversity, marketing channels and...

  13. Cross-resistance to alpha-cypermethrin after xanthotoxin ingestion in Helicoverpa zea (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Li, X; Zangerl, A R; Schuler, M A; Berenbaum, M R

    2000-02-01

    Cytochrome P450 monooxygenases (P450) are membrane-bound hemoproteins that play important roles in conferring protection against both naturally occurring phytochemicals and synthetic organic insecticides. Despite the potential for common modes of detoxification, cross-resistance between phytochemicals and synthetic organic insecticides has rarely been documented. In this study, we examined the responses of a susceptible strain of corn earworm, Helicoverpa zea (Boddie), a polyphagous noctuid, to exposure by an allelochemical infrequently encountered in its host plants and by an insecticide widely used for control purposes. Within a single generation, survivors of xanthotoxin exposure displayed higher levels of tolerance to alpha-cypermethrin than did unexposed control larvae. The F1 offspring of xanthotoxin-exposed survivors also displayed higher alpha-cypermethrin tolerance than did offspring of unexposed control larvae, suggesting that increased alpha-cypermethrin tolerance after xanthotoxin exposure represents, at least in part, heritable resistance. Administration of piperonyl butoxide, a P450 synergist, demonstrated that resistance to both xanthotoxin and alpha-cypermethrin is P450-mediated. Alpha-cypermethrin-exposed survivors, however, failed to show superior growth on xanthotoxin diets. Assays with control larvae, larvae induced by both xanthotoxin and alpha-cypermethrin, and survivors of LD50 doses of both compounds indicated that H. zea midgut P450s are capable of metabolizing both xanthotoxin and alpha-cypermethrin. Metabolism of each compound is significantly inhibited by the presence of the other compound, suggesting that at least one form of P450 in H. zea midguts degrades both compounds and may constitute the biochemical basis for possible cross-resistance. Compared with control larvae, xanthotoxin- and alpha-cypermethrin-induced larvae displayed 2- to 4-fold higher P450-mediated metabolism of both compounds. However, xanthotoxin- and alpha

  14. Responsive Polymers for Crop Protection

    Directory of Open Access Journals (Sweden)

    Serban F. Peteu

    2010-08-01

    Full Text Available This review outlines the responsive polymer methods currently in use with their potential application to plant protection and puts forward plant-specific mechanisms as stimuli in newly devised methods for smart release of crop protection agents (CPAs. CPAs include chemicals (fungicides, insecticides, herbicides, biochemicals (antibiotics, RNA-based vaccines for plant viruses, semiochemicals (pheromones, repellents, allomones, microbial pesticides, growth regulators (insect and plant or micronutrients, all with crop protection effects. This appraisal focuses on emerging uses of polymer nano-encapsulated CPAs. Firstly, the most interesting advances in controlled release methods are critically discussed with their advantages and drawbacks. Secondly, several plant-specific stimuli-based smart methods are anticipated for use alongside the polymer nano- or micro-capsules. These new CPA release methods are designed to (i protect plants against infection produced by fungi or bacteria, and (ii apply micro-nutrients when the plants need it the most. Thus, we foresee (i the responsive release of nano- encapsulated bio-insecticides regulated by plant stress enzymes, and (ii the delivery of micro-nutrients synchronized by the nature or intensity of plant root exudates. Such continued advances of nano-scale smart polymer-based CPAs for the protection of crops herald a “small revolution” for the benefit of sustainable agriculture.

  15. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  16. Method for optimizing harvesting of crops

    DEFF Research Database (Denmark)

    2008-01-01

      In order e.g. to optimize harvesting crops of the kind which may be self dried on a field prior to a harvesting step (116, 118), there is disclosed a method of providing a mobile unit (102) for working (114, 116, 118) the field with crops, equipping the mobile unit (102) with crop biomass...... from moving the mobile unit on the field and the moisture content (109a, 109b), and determining an optimised drying time (104a, 104b) prior to the following harvesting step (116, 118) in response to the spatial crop biomass and crop moisture content characteristics map and in response to a weather...

  17. Method for optimizing harvesting of crops

    DEFF Research Database (Denmark)

    2010-01-01

    In order e.g. to optimize harvesting crops of the kind which may be self dried on a field prior to a harvesting step (116, 118), there is disclosed a method of providing a mobile unit (102) for working (114, 116, 118) the field with crops, equipping the mobile unit (102) with crop biomass measuring...... moving the mobile unit on the field and the moisture content (109a, 109b), and determining an optimised drying time (104a, 104b) prior to the following harvesting step (116, 118) in response to the spatial crop biomass and crop moisture content characteristics map and in response to a weather forecast...

  18. 7th International Crop Science Congress Announcement

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    August 14–19,2016 Beijing,China Crop Science—Innovation and SustainabilityInternational Crop Science Congress(ICSC)is a regular forum for crop scientists from around the world to integrate current knowledge into a global context and international applications.The Congress is organized about every four years beginning in July,1992.The International Crop Science Society has primary oversight for general operations of Congresses.The location will rotate among countries that propose and are accepted to host the Congress.7th International Crop Science Congress(7th ICSC),jointly hosted by the Chinese Academy of

  19. Developing Process of Tropical Crop Machinery Standardization

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ General Situation Tropical crop machinery is a new special mechanical profession, which began to develop from 1950s to 1960s in China. Because the weather, soil and farm crops varieties in tropical region are greatly different from those in the other regions, most of the traditional farm machinery can't be directly used in tropical region or on the tropical crops. Tropical crop machinery needs a special design and manufacture. So some professional research institutes and education units were set up and some enterprises were built at that time, and the profession of tropical crop machinery was formed.

  20. Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa

    OpenAIRE

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERAs). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for ERA include growth habit, ce...

  1. RELEVANCE OF CROP BIOLOGY FOR ENVIRONMENTAL RISK ASSESSMENT OF GENETICALLY MODIFIED CROPS IN AFRICA

    OpenAIRE

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERA). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for environmental risk assessmen...

  2. From crop domestication to super-domestication.

    Science.gov (United States)

    Vaughan, D A; Balázs, E; Heslop-Harrison, J S

    2007-11-01

    Research related to crop domestication has been transformed by technologies and discoveries in the genome sciences as well as information-related sciences that are providing new tools for bioinformatics and systems' biology. Rapid progress in archaeobotany and ethnobotany are also contributing new knowledge to understanding crop domestication. This sense of rapid progress is encapsulated in this Special Issue, which contains 18 papers by scientists in botanical, crop sciences and related disciplines on the topic of crop domestication. One paper focuses on current themes in the genetics of crop domestication across crops, whereas other papers have a crop or geographic focus. One feature of progress in the sciences related to crop domestication is the availability of well-characterized germplasm resources in the global network of genetic resources centres (genebanks). Germplasm in genebanks is providing research materials for understanding domestication as well as for plant breeding. In this review, we highlight current genetic themes related to crop domestication. Impressive progress in this field in recent years is transforming plant breeding into crop engineering to meet the human need for increased crop yield with the minimum environmental impact - we consider this to be 'super-domestication'. While the time scale of domestication of 10 000 years or less is a very short evolutionary time span, the details emerging of what has happened and what is happening provide a window to see where domestication might - and can - advance in the future.

  3. GENETICALLY MODIFIED FOOD CROPS AND PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Acosta Orlando

    2008-12-01

    Full Text Available The progress made in plant biotechnology has provided an opportunity to new food crops being developed having desirable traits for improving crop yield, reducing the use of agrochemicals and adding nutritional properties to staple crops. However, genetically modified (GM crops have become a subject of intense debate in which opponents argue that GM crops represent a threat to individual freedom, the environment, public health and traditional economies. Despite the advances in food crop agriculture, the current world situation is still characterised by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally-fortified staple foods to malnourished populations. Expert advice and public concern have led to designing strategies for assessing the potential risks involved in cultivating and consuming GM crops. The present critical review was aimed at expressing some conflicting points of view about the potential risks of GM crops for public health. It was concluded that GM food crops are no more risky than those genetically modified by conventional methods and that these GM crops might contribute towards reducing the amount of malnourished people around the world. However, all this needs to be complemented by effective political action aimed at increasing the income of people living below the poverty-line.

  4. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access) in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  5. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,Ph D,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  6. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L. under Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    Fahim Nawaz

    2016-09-01

    Full Text Available Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium (Se supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L. under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity and water stress (60% field capacity conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing and was repeated after one week, whereas water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41% and enhanced relative water contents (30%, total chlorophyll (53%, carotenoid contents (60%, accumulation of total free amino acids (40% and activities of superoxide dismutase (53%, catalase (30%, peroxidase (27% and ascorbate peroxidase (27% with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15% and increased crude protein (47%, fibre (10%, nitrogen free extract (10% and Se content (36% but did not affect crude ash content in water stressed maize plants. We propose

  7. IMPACT OF SALINITY AND SODICITY ON BIOMASS, TOTAL NITROGEN, NITRATE REDUCTASE ACTIVITY, LEAF AREA, AND CHLOROPHYLL CONTENTS IN MAIZE (ZEA MAYS L.

    Directory of Open Access Journals (Sweden)

    M. GUFRAN KHAN*, SHIMELIS*, G., ALEMU, H.* AND KEBENU, F**

    2014-11-01

    Full Text Available ABSTRACT: Salinity and sodicity are major constraint in increasing crop production at global level. Millions of the hectares of the land are too saline to produce economic yield.  In Ethiopia, 11 million ha of land is salt affected, about half of these soils are saline and remaining half are saline - sodic and sodic soil. As most of the arable land and quality water resources have already been exploited, the use of saline or urban/industrial waste water may be a viable alternative for further agro production. In view of such perspectives, an investigation was conducted to examine the effect of salinity (NaCl and sodicity (Na2CO3 on  biomass, total nitrogen, nitrate reductase activity, leaf area, and chlorophyll contents in Maize (Zea mays L. plants. The appropriate amount of NaCl and Na2CO3  was  dissolved in distilled water for appraisal of artificial  salinity and sodicity levels ( 0 , 4, 8,  and 12  and  mScm-1 in soil medium. Plants were also supplied with potassium (0 and 5mM KNO3 as remedial treatment. Maize plants were analyzed for germination, early growth, biomass, total nitrogen, Nitrate reductase activity, Leaf area, and chlorophyll contents as grown under different ECe levels of salinity and sodicity. The extent of salinity and sodicity effects was compared on the basis of different parameters. It was observed that plants showed substantial reduction in all parameters due to imposition of salinity and sodicity in root medium and it was more so due to sodicity. However, the use of additional potassium brought about an enhancement in these parameters.  It is suggested that plants may be raised in saline soil and saline water however; the extent of success depends upon salinity and sodicity levels, remedial treatments and plant species. The outcome of the present work may contribute towards viable utilization of saline soil and water for enhancing agro production of suitable crops, a desired goal to achieve food security.

  8. Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone.

    Science.gov (United States)

    Singh, Aditya Abha; Agrawal, S B; Shahi, J P; Agrawal, Madhoolika

    2014-02-01

    Rapid industrialization and economic developments have increased the tropospheric ozone (O3) budget since preindustrial times, and presently, it is supposed to be a major threat to crop productivity. Maize (Zea mays L.), a C4 plant is the third most important staple crop at global level with a great deal of economic importance. The present study was conducted to evaluate the performance of two maize cultivars [HQPM1: quality protein maize (QPM)] and [DHM117: nonquality protein maize (NQPM)] to variable O3 doses. Experimental setup included filtered chambers, nonfiltered chambers (NFC), and two elevated doses of O3 viz. NFC+15 ppb O3 (NFC+15) and NFC+30 ppb O3 (NFC+30). During initial growth period, both QPM and NQPM plants showed hormetic effect that is beneficial due to exposure of low doses of a toxicant (NFC and NFC+15 ppb O3), but at later stages, growth attributes were negatively affected by O3. Growth indices showed the variable pattern of photosynthate translocation under O3 stress. Foliar injury in the form of interveinal chlorosis and reddening of leaves due to increased production of anthocyanin pigments was observed at higher concentrations of O3. One-dimensional gel electrophoresis of leaves taken from NFC+30 showed reductions of major photosynthetic proteins, and differential response was observed between the two test cultivars. Decline in the number of male flowers at elevated O3 doses suggested damaging effect of O3 on reproductive structures which might be a cause of productivity losses. Variable carbon allocation pattern particularly to husk leaves, foliar injury, and damage of photosynthetic proteins led to significant reductions in economic yield at higher O3 doses. PCA showed that both the cultivars responded more or less similarly to O3 stress in their respective groupings of growth and yield parameters, but magnitude of their response was variable. It is further supported by difference in the significance of correlations between variables of

  9. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  10. Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays

    Directory of Open Access Journals (Sweden)

    ASHWINI KEDAR

    2014-11-01

    Full Text Available Kedar A, Rathod D, Yadav A, Agarkar G, Rai M. 2014. Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Bioscience 6: 132-139. Fungal endophytes are reported as rich sources of valuable secondary metabolites and could be used as bio-fertilizers. In the present study, we report growth promotion potential of two Phoma species isolated from Tinospora cordifolia and Calotropis procera on maize. The fungal endophytes enhanced growth in inoculated maize plants compared to non-inoculated plants. The main aim of this work was to assess the growth promotion activity of endophytic Phoma species on maize isolated from T. cordifolia and C. procera.

  11. Cytogenetics of monosomes in Zea mays. Progress report, October 1, 1975--January 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D. F.

    1976-10-01

    Monosomics lack a pairing partner in each meiotic cell and genes on an entire chromosome are present in the hemizygous condition. Monosomics for chromosomes 1, 2, 3, 4, 6, 7, 8, 9, and 10 in Zea mays were isolated utilizing a recently-discovered system. This is the first time that a series of this type has been recovered in any diploid organism. The monosomic plants are surprisingly vigorous, good cytological samples can be taken, and crosses made. We are isolating all possible monosomic types and characterizing them by studying the cytology of meiosis, the cytological behavior of monosomic chromosomes, the effect of monosomy and trisomy on intergenic and intragenic recombination, the frequency and types of spontaneous chromosomal aberrations arising in monosomics, the effect of monosomy on free amino acids, and the effect of monosomy on isozymes in leaves, the effect of trisomy on the lipid content, and the relative amounts of specific fatty acids in embryos.

  12. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    Science.gov (United States)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  13. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  14. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  15. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    Science.gov (United States)

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.

  16. QTL mapping of resistance to sheath blight in maize (Zea mays L.)

    Institute of Scientific and Technical Information of China (English)

    YANG Hua; YANG Junpin; RONG Tingzhao; TAN Jun; QIU Zhenggao

    2005-01-01

    The genetic linkage map has been constructed with 125 SSR markers based on BC1:2 population consisting of 322 lines derived from the combination of (CML270×478) ×CML270 in maize (Zea mays L.), covering 1939.0 cM of maize genome. The average mapping distance was about 15.5 cM. Three major QTLs of the relative resistant index of resistance to maize sheath blight (Rhizoctonia solani) had been located on chromosomes 1, 7 by composite interval mapping (CIM). 7 QTLs of the plant height have been located on chromosomes 3, 4, 5, 6. Five QTLs of ear height have been located on chromosomes 3, 4, 6. The resistance to the sheath blight is shown to be not relative to plant height and ear height genetically. Inbred line CML270 was used for molecular assisted selection and cloning the genes.

  17. Root graviresponsiveness and columella cell structure in carotenoid-deficient seedlings of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    Root graviresponsiveness in normal and carotenoid-deficient mutant seedlings of Zea mays was not significantly different. Columella cells in roots of mutant seedlings were characterized by fewer, smaller, and a reduced relative volume of plastids as compared to columella cells of normal seedlings. Plastids in columella cells of mutant seedlings possessed reduced amounts of starch. Although approximately 10 per cent of the columella cells in mutant seedlings lacked starch, their plastids were located at the bottom of the cell. These results suggest that (i) carotenoids are not necessary for root gravitropism, (ii) graviresponsiveness is not necessarily proportional to the size, number, or relative volume of plastids in columella cells, and (iii) sedimentation of plastids in columella cells may not result directly from their increased density due to starch content. Plastids in columella cells of normal and mutant seedlings were associated with bands of microtubule-like structures, suggesting that these structures may be involved in 'positioning' plastids in the cell.

  18. The effect of ethylene on root growth of Zea mays seedlings

    Science.gov (United States)

    Whalen, M. C.; Feldman, L. J.

    1988-01-01

    The control of primary root growth in Zea mays cv. Merit by ethylene was examined. At applied concentrations of ethylene equal to or greater than 0.1 microliter L-1, root elongation during 24 h was inhibited. The half-maximal response occurred at 0.6 microliter L-1 and the response saturated at 6 microliters L-1. Inhibition of elongation took place within 20 min. However, after ethylene was removed, elongation recovered to control values within 15 min. Root elongation was also inhibited by green light. The inhibition caused by a 24-h exposure to ethylene was restricted to the elongating region just behind the apex, with inhibition of cortical cell elongation being the primary contributor to the effect. Based on use of 2,5-norbornadiene, a gaseous competitive inhibitor of ethylene, it was concluded that endogenous ethylene normally inhibits root elongation.

  19. The influence of gravity on the formation of amyloplasts in columella cells of Zea mays L

    Science.gov (United States)

    Moore, R.; Fondren, W. M.; Koon, E. C.; Wang, C. L.

    1986-01-01

    Columella (i.e., putative graviperceptive) cells of Zea mays seedlings grown in the microgravity of outer space allocate significantly less volume to putative statoliths (amyloplasts) than do columella cells of Earth-grown seedlings. Amyloplasts of flight-grown seedlings are significantly smaller than those of ground controls, as is the average volume of individual starch grains. Similarly, the relative volume of starch in amyloplasts in columella cells of flight-grown seedlings is significantly less than that of Earth-grown seedlings. Microgravity does not significantly alter the volume of columella cells, the average number of amyloplasts per columella cell, or the number of starch grains per amyloplast. These results are discussed relative to the influence of gravity on cellular and organellar structure.

  20. Efficient isolation, purification, and characterization of the Helicoverpa zea VHDL receptor.

    Science.gov (United States)

    Persaud, Deryck R; Yousefi, Vandad; Haunerland, Norbert

    2003-12-01

    The study of fat body receptors (e.g., VHDL receptor) in Lepidoptera has been irksome due to the fact that isolation and purification of these proteins are difficult and resulted in extremely low yields. A rapid and efficient method is presented for the purification of Helicoverpa zea VHDL receptor by the use of VHDL-biotin ligand complexed to streptavidin coated magnetic beads. The technique can be easily applied to other ligands and allows for the purification of membrane proteins with higher yields compared to previously used methods involving immunopurification. Although the purified protein can be characterized by Western and non-radioactive ligand blots using enhanced chemiluminescence (ECL), a non-radioactive ligand blot method using VHDL-FITC is presented, which allows for the quick analysis of the receptor directly from the blot under standard UV light. Sufficient receptor protein has been derived for amino acid analysis, receptor-ligand and xenobiotic binding studies.

  1. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays).

    Science.gov (United States)

    Krippner, Johanna; Falk, Sandy; Brunn, Hubertus; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten

    2015-04-15

    Uptake of perfluoroalkyl acids (PFAAs) by maize represents a potential source of exposure for humans, either directly or indirectly via feed for animals raised for human consumption. The aim of the following study was, therefore, to determine the accumulation potential of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Two different concentrations of PFAAs were applied as aqueous solution to the soil to attain target concentrations of 0.25 mg or 1.00 mg of PFAA per kg of soil. Maize was grown in pots, and after harvesting, PFAA concentrations were measured in the straw and kernels of maize. PFCA and PFSA concentrations of straw decreased significantly with increasing chain length. In maize kernels, only PFCAs with a chain length ≤ C8 as well as perfluorobutanesulfonic acid (PFBS) were detected. The highest soil-to-plant transfer for both straw and kernels was determined for short-chained PFCAs and PFSAs.

  2. Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution.

    Science.gov (United States)

    Tschan, Martin; Robinson, Brett; Schulin, Rainer

    2008-04-01

    We investigated the extent of Sb uptake by maize (Zea mays) and sunflower (Helianthus annuus) from nutrient solutions containing concentrations from 3 to 24 mg/L of potassium antimonate, with the aim of determining the potential of Sb to enter the food chain. The maximum shoot Sb concentrations in Z. mays and H. annuus were 41 mg/kg and 77 mg/kg dry weight, respectively. There was no significant difference in Sb uptake between species. The average bioaccumulation coefficients (the plant/solution concentration quotients) were 1.02 and 1.93 for Z. mays and H. annuus, respectively. Phosphate addition did not affect plant growth or Sb uptake. Antimony uptake by both Z. mays and H. annuus is unlikely to pose a health risk to animals and humans.

  3. Sequence diversity and virulence in Zea mays of Maize streak virus isolates.

    Science.gov (United States)

    Martin, D P; Willment, J A; Billharz, R; Velders, R; Odhiambo, B; Njuguna, J; James, D; Rybicki, E P

    2001-09-30

    Full genomic sequences were determined for 12 Maize streak virus (MSV) isolates obtained from Zea mays and wild grass species. These and 10 other publicly available full-length sequences were used to classify a total of 66 additional MSV isolates that had been characterized by PCR-restriction fragment length polymorphism and/or partial nucleotide sequence analysis. A description is given of the host and geographical distribution of the MSV strain and subtype groupings identified. The relationship between the genotypes of 21 fully sequenced virus isolates and their virulence in differentially MSV-resistant Z. mays genotypes was examined. Within the only MSV strain grouping that produced severe symptoms in maize, highly virulent and widely distributed genotypes were identified that are likely to pose the most serious threat to maize production in Africa. Evidence is presented that certain of the isolates investigated may be the products of either intra- or interspecific recombination.

  4. Uptake and accumulation of copper by roots and shoots of maize(Zea may L.)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of different concentrations of copper sulfate on rootand shoot growth of maize(Zea mays L.) and the uptake and accumulation of Cu2+ by its roots and shoots were investigated in the present study. The concentrations of opper sulfate (CuSO4.5H2O) used were in the range of 10-5-10-3mol/L. Root growth decreased progressively with increasing concentration of Cu2+ in solution. The seedlings exposed to 10-3 mol/L Cu exhibited substantial growth reduction, yielding only 68% of the root length of the control. The shoot growth of the seedlings grown at 10-5-10-4 mol/L Cu2+ were more or less than the same as the control seedlings. The leaves treated with 10-3 mol/L Cu2+ were obviously inhibited in shoot growth. The fresh and dry weights both in roots and shots decreased progressively with increasing Cu2+ concentration.This fits well with the above mentioned effects of copper sulfate on root growth. Zea mays has considerable ability to remove Cu from solutions and accumulate it. The Cu content in roots of Z. Mays increased with increasing solution concentration of Cu2+. The amount of Cu in roots of plants treated with 10-3, 10-4 and 10-5 mol/L Cu2+ were 10, 8 and 1.5 fold, respectively, greater than that of roots of control plant. However, the plants transported and concentrated only a small amount of Cu in their shoots.

  5. Francisco Antonio Zea: periodista, botánico y político

    Directory of Open Access Journals (Sweden)

    Soto Arango, Diana E.

    1996-06-01

    Full Text Available This work analyzes the journalistic facet of Francisco Antonio Zea, whose first article, «Avisos de Hebephilo», was published in 1791 in the Papel Periódico de la ciudad de Santa Fé de Bogotá. His interest for the press shows at his stage of student in the National Institute of France, but won't be up to 1803, at his return to Madrid, when he proves his talent for the organization and journalistic administration on The Mercury and on the Gazette de Madrid. Later on, being manager of the Royal Botanical Garden of Madrid, he shares the management of the Semanario de Agricultura y Artes, and, finally, in 1818 establishes and directs the Venezuelan Correo del Orinoco.

    Este trabajo analiza la faceta periodística de Francisco Antonio Zea, cuyo primer artículo, «Avisos de Hebephilo», se publicó en 1791 en el Papel Periódico de la ciudad de Santa Fé de Bogota. Su interés por la prensa se manifiesta en su etapa de estudiante en el Instituto Nacional de Francia, pero no será hasta 1803, a su regreso a Madrid, cuando evidencie sus dotes para la organización y dirección periodísticas en El Mercurio y en la Gaceta de Madrid. Posteriormente, siendo director del Real Jardín Botánico de Madrid, comparte la dirección del Semanario de Agricultura y Artes, y, finalmente, en 1818 funda y dirige el venezolano Correo del Orinoco.

  6. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa

    Science.gov (United States)

    Schuiteman, Matthew A.; Vos, Ronald J.

    2017-01-01

    Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy. PMID:28248976

  7. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain.

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-03-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)-maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha(-1) of urea for wheat and 225 kg N ha(-1) of urea for maize (U), 180 kg N ha(-1) of urea and 90 kg N ha(-1) of straw for wheat and 180 kg N of urea and 45 kg N ha(-1) of straw for maize (S), 180 kg N ha(-1) of urea and 90 kg N ha(-1) of manure for wheat and 180 kg N ha(-1) of urea and 45 kg N ha(-1) of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and [Formula: see text]-N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on [Formula: see text]-N leaching from the second year and thereafter interacted with N management regimes on [Formula: see text]-N loads during all maize seasons. The average yield-scaled [Formula: see text]-N leaching losses were in order of CTS < NTS< CTU < NTU crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled [Formula: see text]-N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat-maize double-cropping systems in the North China Plain.

  8. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate how...... improvement of NUE traits of individual crops affects the succeeding crops and the NUE of the crop rotation. Based on experimental results parameterization was altered for different types of improved NUE in the EU-Rotate_N model, e.g. through higher N harvest index, reduced litter loss or improved root depth...... penetration rate. The different ways of improving NUE have different effects on the cropping system, affecting either N uptake, the ability of the crop to hold on to N already taken up, or the fraction of crop N being harvested. Due to the different modes of action, the model simulations show...

  9. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate how...... is analyzed for the whole cropping system. The environmental conditions, crop choices and management will all affect the fate of the N left in the soil, and whether this will contribute mainly to leaching loss or be used for production in later crops. As an example, increasing pre-crop fertilization was shown...... to affect the leaching after the following oilseed rape crop with up to 50 kg N ha-1 taken up before it was lost to the environment when pre-crop fertilization as well as root depth penetration rate was high. All in all, the simulations illustrate the concept of NUE as the result of interactions between...

  10. Weed management strategies for castor bean crops

    Directory of Open Access Journals (Sweden)

    Augusto Guerreiro Fontoura Costa

    2014-04-01

    Full Text Available Castor bean crops are agriculturally relevant due to the quality and versatility of their oil, both for the chemical industry and for biodiesel production. Proper weed management is important for both the cultivation and the yield of castor bean crops; therefore, the intention of the present work is to review pertinent information regarding weed management, including the studies regarding weed interference periods, chemical controls for use in different crop production systems and herbicide selectivity, for castor bean crops. Weed science research for castor bean crops is scarce. One of the main weed management challenges for castor bean crops is the absence of herbicides registered with the Ministry of Agriculture, Livestock and Food Supply (MALFS. Research for viable herbicides for weed control in castor bean crops should be directed by research and/or rural extension institutions, associations and farmers cooperatives, as well as by manufactures, for the registration of these selective herbicides, which would be primarily used to control eudicotyledons in castor bean crops. New studies involving the integration of weed control methods in castor bean also may increase the efficiency of weed management, for both small farmers using traditional crop methods in the Brazilian Northeast region, as well as for areas with the potential for large scale production, using conservation tillage systems, such as the no-tillage crop production system.

  11. Studies With Triazoles to Alleviate Drought Stress in GreenHouse-Grown Maize (Zea mays) Seedlings

    OpenAIRE

    Batlang, Utlwang

    2006-01-01

    In semi-arid environments, dry-land farming often exposes crops to drought stress. Although some plant species are well adapted to drought, most crops are not. Drought can reduce plant populations and limit growth and development in ways that have serious yield consequences. Planting at the beginning of the wet season, when rainfalls are often sporadic and unreliable, can expose young maize seedlings to severe drought. Through the use of plant growth regulators (PGR), maize seedlings can per...

  12. Enhancing the Urea-N Use Efficiency in Maize (Zea mays Cultivation on Acid Soils using Urea Amended with Zeolite and TSP

    Directory of Open Access Journals (Sweden)

    Osumanu H. Ahmed

    2009-01-01

    Full Text Available Problem Statement: Ammonia loss significantly reduces urea-N use efficiency in crop production. Efforts to reduce ammonia loss are laboratory oriented, as such limited in reflecting actual field conditions. This paper reports the effects of urea amended with triple superphosphate (TSP and zeolite (Clinoptilolite on soil pH, soil nitrate, soil exchangeable ammonium, dry matter production, N uptake, fresh cob production and urea-N uptake efficiency in maize (Zea mays cultivation on an acid soil in actual field conditions. Approach: The treatments evaluated were: (i Normal N, P, K application (74.34 g urea, 27.36 g TSP, 24.12 g KCl (T1, (ii Urea-TSP mixture (74.34 g urea+27.36 g TSP+24.12 g KCl (T2, (iii 74.34 g urea+27.36 g TSP+9.0 g zeolite (T3, (iv 74.34 g urea+27.36 g TSP+13.5 g zeolite (T4 and (v No fertilization (T5. Note, the same amount of 24.12 g KCl was used in T3 and T4 plots. Standard procedures were used to determine the selected chemical properties of zeolite, soil, TSP and urea. The pH of the urea, zeolite, soil and TSP were determined in a 1:2.5 soil: distilled water suspension and/or 0.01 N CaCl2 using a glass electrode. The CEC of the zeolite was determined by the CsCl method. Soil CEC was determined by leaching with 1 N ammonium acetate buffer adjusted to pH 7.0 followed by steam distillation. Soil samples at harvest were analyzed for pH using the method previously outlined. Exchangeable ammonium and nitrate at harvest were extracted from the soil samples by the method of Keeney and Nelson and the amount determined using a LACHAT Autoanalyzer. Total N of the plant tissues (stem and leaf was determined by the Micro-Kjeldhal method. Results: Urea amended with TSP and zeolite treatments and Urea only (urea without additives did not have long term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf

  13. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  14. Metabolomics of genetically modified crops.

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  15. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    bean may prove to be a key component of future arable cropping systems where declining supplies and high prices of fossil energy are likely to constrain the affordability and use of fertilizers. This will help address the increasing demand by consumers and governments for agriculture to reduce its...... impact on the environment and climate through new, more sustainable approaches to food production. The aims of this paper are to review the role of faba bean in global plant production systems, the requirements for optimal faba bean production and to highlight the beneficial effects of faba bean...

  16. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  17. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  18. Leopoldo Zea e o movimento latino-americano de História das idéias Leopoldo Zea and the Latin-American movement of History of Ideas

    Directory of Open Access Journals (Sweden)

    Eugênio Rezende de Carvalho

    2010-06-01

    Full Text Available O artigo analisa as etapas de fundação e consolidação de um dos mais importantes movimentos intelectuais da América Latina no século XX - o movimento latino-americano de História das Ideias -, a partir, sobretudo, das ações e escritos de seu principal líder e fundador, o filósofo mexicano Leopoldo Zea Aguilar (1912-2004. Na etapa de fundação, que corresponde à década de 1940, o foco principal é na obra inicial de Zea, bem como em seus primeiros esforços no sentido da articulação e organização institucional do movimento em escala continental. Já na etapa seguinte, que corresponde à década de 1950, é abordado o processo de consolidação orgânica e epistemológica do movimento.This article analyzes the stages of foundation and consolidation of one of the most important intellectual movements of Latin America in the twentieth century - the Latin-American movement of History of Ideas -, starting from actions and writings of its main leader and founder, the Mexican philosopher Leopoldo Zea Aguilar (1912-2004. In the 1940s, during the foundation period, the main focus is on the primary work of Zea, as well as on his first efforts to articulate and organize this movement in continental scale. Moreover, in the following stage held in the 1950s, the process of organic and epistemology consolidation of the movement is invoked.

  19. Influência da idade dos ovos de Helicoverpa zea (Boddie no parasitismo de Trichogramma pretiosum Riley Influence of egg age of Helicoverpa zea (Boddie on the parasitism by Trichogramma pretiosum Riley

    Directory of Open Access Journals (Sweden)

    Dirceu Pratissoli

    1999-05-01

    Full Text Available Entre os agentes de controle biológico, os parasitóides do gênero Trichogramma representam um dos mais importantes grupos, pois controlam diversas pragas na agricultura. Este trabalho teve por objetivo determinar a melhor idade dos ovos de Helicoverpa zea (Boddie para que Trichogramma pretiosum Riley tenha uma melhor eficiência no controle dessa praga. Ovos com um, dois, três e quatro dias foram oferecidos para o parasitismo, por um período de 24 horas a 25 ± 1ºC, umidade relativa de 70 ± 10% e fotofase de 14 horas. Ovos de um dia de idade apresentaram a maior taxa de parasitismo, viabilidade e número de descendentes por fêmea. A mais alta eficiência de T. pretiosum será alçancada no campo, quando for observado maior densidade de ovos de H. zea com, no máximo, dois dias de desenvolvimento embrionário.Among the agents of biological control, the parasitoids of the genus Trichogramma represent one of the most important groups, as they are able to control many pests in agriculture. The objective of this work was to determine the best age of the Helicoverpa zea (Boddie eggs so that the Trichogramma pretiosum Riley could have the best efficiency against this pest. One, two, three and four-days-old eggs were offered for the parasitism during 24 hours, at 25 ± 1ºC, relative humidity 70 ± 10% and photofase of 14 hours. One-day-old eggs showed the highest rates of parasitism, viability, and number of descendants for each female. The highest efficiency with T. pretiosum will be reached in the field conditions, when observed a great density of H. zea eggs until two days of embryonic development.

  20. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  1. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Directory of Open Access Journals (Sweden)

    Alex Wu

    2016-10-01

    Full Text Available The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g. light, water and nitrogen, aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modelling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modelling leaf photosynthesis has progressed from empirical modelling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modelling that connects models at the biochemical and crop levels and utilises developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modelling framework and reinforce the need for connections across levels of modelling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modelling framework to support crop improvement through photosynthetic manipulation.

  2. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  3. Efeitos da densidade e proporção de plantas de milho (Zea mays L. e caruru (Amaranhus retroflexus L. em competição Density and porportion effects among corn (Zea mays L. and pigweed (Amaranthus retroflexus L. under competition

    Directory of Open Access Journals (Sweden)

    Pedro J. Christoffoleti

    1996-01-01

    Full Text Available A maioria dos estudos de competição, entre plantas daninhas e cultivadas, conduzidos nos últimos anos, procuram quantificar a interferência que as plantas daninhas causam sobre as culturas; no entanto, poucos destes trabalhos estudam mecanisticamente os efeitos da densidade e da proporção de plantas em uma mistura de espécies, a importância da competição intra e interespecífica e a diferenciação de nicho ecológico. Desta forma, foi desenvolvida a presente pesquisa com o objetivo principal de descrever as interações competitivas e os índices de competitividade entre plantas de milho (Zea mays L. e caruru (Amarathus retroflexus L.. A metodologia utilizada foi a de um experimento substitutivo com densidade total de 400 plantas/m2 e 5 proporções, além da monocultura que variou de 50 a 800 plantas/m2, sendo conduzido no delineamento experimental de blocos casualizados, com quatro repetições. Os resultados obtidos foram analisados pelo método convencional de análise de experimentos substitutivos e pelo método da produção recíproca total e por planta. O milho foi um competidor muito mais agressivo que o caruru, sendo que para a planta cultivada a competição intraespecífica é mais importante que a competição interespecífica. O contrário é verdadeiro para o caruru, ou seja, a competição interespecífica é mais importante que a intraespecífica. Ambas espécies de plantas estão competindo pelos mesmos fatores de crescimento, pois o índice que mede a diferenciação de nicho ecológico é menor que 1,0. A determinação da influência da densidade e proporção de espécies em estudos de competição entre plantas é muito importante para a compreensão das interações competitivas.Most of the competition studies between weeds and crops conducted lately quantify the interference that the weeds cause to crops; however, these researches do not show mechanistically neither the effects of density and proportion of

  4. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize.

    Directory of Open Access Journals (Sweden)

    Joseph L Spencer

    Full Text Available BACKGROUND: Interest in the cultivation of biomass crops like the C4 grass Miscanthus x giganteus (Miscanthus is increasing as global demand for biofuel grows. In the US, Miscanthus is promoted as a crop well-suited to the Corn Belt where it could be cultivated on marginal land interposed with maize and soybean. Interactions (direct and indirect of Miscanthus, maize, and the major Corn Belt pest of maize, the western corn rootworm, (Diabrotica virgifera virgifera LeConte, WCR are unknown. Adding a perennial grass/biomass crop to this system is concerning since WCR is adapted to the continuous availability of its grass host, maize (Zea mays. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse and field study, we investigated WCR development and oviposition on Miscanthus. The suitability of Miscanthus for WCR development varied across different WCR populations. Data trends indicate that WCR populations that express behavioural resistance to crop rotation performed as well on Miscanthus as on maize. Over the entire study, total adult WCR emergence from Miscanthus (212 WCR was 29.6% of that from maize (717 WCR. Adult dry weight was 75-80% that of WCR from maize; female emergence patterns on Miscanthus were similar to females developing on maize. There was no difference in the mean no. of WCR eggs laid at the base of Miscanthus and maize in the field. CONCLUSIONS/SIGNIFICANCE: Field oviposition and significant WCR emergence from Miscanthus raises many questions about the nature of likely interactions between Miscanthus, maize and WCR and the potential for Miscanthus to act as a refuge or reservoir for Corn Belt WCR. Responsible consideration of the benefits and risks associated with Corn Belt Miscanthus are critical to protecting an agroecosystem that we depend on for food, feed, and increasingly, fuel. Implications for European agroecosystems in which Miscanthus is being proposed are also discussed in light of the WCR's recent invasion into Europe.

  5. Study of potentials bio energy, aeolian, miniature hydraulic and solar in Mexico (Annexe 9 in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Estudio de los potenciales bioenergetico, eolico, minihidraulico y solar en Mexico (Anexo 9 en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Saldana Flores, Ricardo; Miranda Miranda, Ubaldo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-08-15

    In this report we can observe maps and studies made about the evaluation of the bio energy potential of co-generation of electricity in the sugar industry and the sweepings, of the wind power potential in Latin America, the Caribbean and the Mexican Republic, of the miniature hydraulic potential and the hydro energy resources whereupon it counts country and, of the solar potential in which the OLADE presents/displays for Mexico the monthly maps of solar radiation maximum direct total and in Wm{sup 2}. [Spanish] En este reporte podemos observar mapas y estudios realizados acerca de la evaluacion del potencial bioenergetico de cogeneracion de electricidad en la industria azucarera y la basura, del potencial eoloenergetico en America Latina, el Caribe y la Republica Mexicana, del potencial minihidraulico y los recursos hidroenergeticos con que cuenta el pais y, del potencial solar en el cual la OLADE presenta para Mexico los mapas mensuales de radiacion solar maxima total y directa en W/m{sup 2}.

  6. Activity and multiple forms of peroxidase in Zea mays and Medicago sativa treated and non-treated with lead

    Energy Technology Data Exchange (ETDEWEB)

    Maier, R.

    1978-02-11

    The influence of lead on peroxidase was studied in young plants of Zee mays and Medicago sativa grown in solutions of Pb(NO/sub 3/)/sub 2/. The content of nitrate in the control- and the lead-solutions was equalized by NaNO/sub 3/. In the patterns of the multiple forms in roots and leaves of Zea and Medicago qualitatively no, or respectively negligible, change between control and lead-treated plants takes place. The temperature during the lead-treatment does not effect the numbers and the positions of bands. The bands' activity of peroxidase in lead-treated plants differs clearly from untreated plants, resulting in a different activity of the whole enzyme. In the roots and in the leaves of Zea as well as in the leaves of Medicago the relative activity of the peroxidase in lead-treated plants is raised. In the roots of Medicago the relative activity decreased slightly.

  7. Genetically Modified Crops and Food Security

    OpenAIRE

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the firs...

  8. 7 CFR 1219.5 - Crop year.

    Science.gov (United States)

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  9. 7th International Crop Science Congress Announcement

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    August 14-19,2016 Beijing,China Crop Science-Innovation and SustainabilityInternational Crop Science Congress(ICSC)is a regular forum for crop scientists from around the world to integrate current knowledge into a global context and international applications.The Congress is organized about every four years beginning in July,1992.The International Crop Science Society has primary oversight for general operations of Congresses.The location will rotate among countries that propose and are accepted to host the

  10. Origins of food crops connect countries worldwide

    Science.gov (United States)

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  11. Group-based crop change planning

    DEFF Research Database (Denmark)

    Tayyebi, Amin; Arsanjani, Jamal J.; Tayyebi, Amir H.;

    2016-01-01

    as a result of crop change in an agricultural landscape: (1) conflicts among multiple ecosystem services i.e., internal conflicts and (2) conflicts among multiple stakeholders i.e., external conflicts. While a spatial decision support system (SDSS) can provide answers concerning multifaceted problems...... erosion, greenhouse gas emission, surface water, and biodiversity, to develop two crop change scenarios by replacing perennial energy crops with annual energy crops and vice versa. We then used an online SDSS, SmartScape™, and applied it to Dane county, Wisconsin, U.S. to (1) run the two aforementioned...

  12. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects

    OpenAIRE

    Jun-ling Wang; Tao Li; Gao-yuan Liu; Joshua M. Smith; Zhi-wei Zhao

    2016-01-01

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under...

  13. Pengelolaan Hara Kalium Berdasarkan Batas Kritis Untuk Tanaman Jagung (Zea mays L.) Pada Berbagai Status Hara di Tanah Inceptisol

    OpenAIRE

    Putra, Irwan Agusnu

    2011-01-01

    IRWAN AGUSNU PUTRA, 2010. Potassium Based Nutrient Management of Critical Level For Maize (Zea mays L.) at Various Nutrient Status in the Inceptisol Soil. Under his guidance, Dr. Ir. Hamidah Hanum, MP as Chairman of the Commission of Advisors with members Dr. Ir. Chairani Hanum, MP. In North Sumatra, most of the planting area of corn in the ground Inceptisol widespread, also dominated by the relatively high clay content so that the fixation of potassium are very strong which resulted in the c...

  14. Large area crop inventory experiment crop assessment subsystem software requirements document

    Science.gov (United States)

    1975-01-01

    The functional data processing requirements are described for the Crop Assessment Subsystem of the Large Area Crop Inventory Experiment. These requirements are used as a guide for software development and implementation.

  15. Ammonia emission from crop residues : quantification of ammonia volatilization based on crop residue properties

    NARCIS (Netherlands)

    Ruijter, de F.J.; Huijsmans, J.F.M.

    2012-01-01

    This paper gives an overview of available literature data on ammonia volatilization from crop residues. From these data, a relation is derived for the ammonia emission depending on the N-content of crop residue.

  16. The Metabolism and Breeding of Phytic Acid in Maize(Zea mays)%玉米中植酸代谢及其育种

    Institute of Scientific and Technical Information of China (English)

    张少军; 陈茹梅

    2013-01-01

    植酸及其代谢中间体具有重要的生物学功能.禾谷科和油料作物的种子中积累了丰富的植酸.植酸既是一种抗营养因子,也是一种重要的健康因子.然而自植酸被发现至今,人们对于其在植物中的合成过程仍然知之甚少,对其生物学功能更是缺乏全面的了解.近年来,有关于植酸代谢及其功能分析的研究逐渐引起了人们的关注.在玉米(Zea mays)、水稻(Oryza sativa)、大豆(Glycine max)中,人们发展、分离了一系列的低植酸突变体,以期降低种子中的植酸含量,从而获得可用于生产的、能够增强动物磷和矿质营养利用效率并能降低环境污染的新品种.早期的研究发现,植物中植酸的合成途径有两条:依赖于磷脂酰的合成途径和不依赖于磷脂酰的合成途径.有证据表明,作物种子中植酸的积累主要是不依赖于磷脂酰途径的贡献.玉米是中国主要的粮食和饲料作物,关注玉米中植酸代谢和育种的相关研究将有利于动物营养强化以及人类和环境健康.本文综述了植酸的生物学功能以及植酸代谢研究现状,分析并总结了植酸的代谢通路,评述了植酸在玉米中代谢的研究成果,为今后植酸代谢相关的研究提供参考.%Phytic acid and its metabolic intermediates have irreplaceable biological functions. Phytic acid is abundant in cereal grains and soilseeds such as maize and soybean. Phytic acid is an anti-nutritional factor, but it is also an important healthy factor for human. Knowledge about its synthesis and its functions is poorly understood yet, though we know its existence early. For the past few years, a few researches focusing on the metabolism of phytic acid have been reported. Breeders have selected a series of low phytic acid mutant lines in maize (Zea mays), soybean (Glycine max) and rice (Oryza saliva) for future research, which would meet the forage application to enhance the animals' nutrition and to

  17. Production cost analysis and use of pesticides in the transgenic and conventional corn crop [Zea mays (L.)] in the valley of San Juan, Tolima.

    Science.gov (United States)

    Méndez, Kelly Avila; Chaparro Giraldo, Alejandro; Moreno, Giovanni Reyes; Castro, Carlos Silva

    2011-01-01

    A survey of 10 producers of conventional corn (Hybrids PAC 105 and Maximus) and 10 producers of transgenic corn (Pioneer Hybrid 30T17) was carried out in the municipality of Valle de San Juan in the territorial division of Tolima (Colombia), in order to analyze the differences in production costs and environmental impacts of these two agricultural technologies.  The environmental impacts were determined by calculating the field "Environmental Index Quotient" (EIQ). In the production cost analysis, a difference of 15% was found in benefit of the transgenic technology. The structure of costs of the transgenic technology was benefited by the reduced use of pesticides (insecticides and herbicides). In regards to production, the transgenic technology showed a greater yield, 5.22 ton/ha in comparison to 4.25 ton/ha the conventional technology, thus a 22% difference in yield. Finally, the EIQ calculation showed quantitative differences of 196.12 for the conventional technology (EIQ insecticides 165.14 + EIQ herbicides 30.98), while the transgenic technology was of 4.24 (EIQ insecticides 0 + EIQ herbicides 4.24). These results show a minor environmental impact when using the transgenic technology in comparison to the conventional technology, in regards to the use of insecticides and herbicides in a temporal, spatial and genotypical context analysis. :

  18. Cannibalism of Helicoverpa zea (Lepidoptera: Noctuidae) from Bacillus thuringiensis (Bt) transgenic corn versus non-Bt corn.

    Science.gov (United States)

    Chilcutt, Charles F

    2006-06-01

    Because of the importance of cannibalism in population regulation of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in corn, Zea mays L., it is useful to understand the interactions between Bacillus thuringiensis (Bt) transgenic corn and cannibalism. To determine the effects of Bt corn on cannibalism in H. zea, pairs of the same or different instars were taken from Bt or non-Bt corn and placed on artificial diet in proximity. Cannibalism occurred in 91% of pairs and was approximately 7% greater for pairs of larvae reared from Bt transgenic corn (95%) than from non-Bt corn (88%). Also, first instar by first instar pairs had a lower rate of cannibalism than other pairs. Time until cannibalism was not different for larvae from Bt corn versus non-Bt corn. Pupation rate of cannibals and surviving victims was not different for pairs from Bt corn versus non-Bt corn. Finally, cannibalism increased pupation rate of cannibals from both Bt and non-Bt corn by approximately 23 and 12%, respectively, although the increases were not significant. Thus, negative effects of Bt on larvae were compensated by increased cannibalism in comparison with larvae reared on non-Bt corn, which increased larval survival to levels comparable with larvae reared on non-Bt plants.

  19. 空心莲子草不同部位水浸提液对蚕豆、玉米化感作用机制的研究%The Study on Allelopathy Mechanism of Aqueous Extracts from the Different Organizations of Alternanthera philoxeroides Griseb on Vicia faba and Zea mays

    Institute of Scientific and Technical Information of China (English)

    熊勇; 屈睿; 王红斌; 熊开金; 姜传亮

    2011-01-01

    用空心莲子草为研究材料,以农作物蚕豆、玉米为受试植物,采用培养皿滤纸法测定空心莲子草对受试农作物种子萌发率的影响,并检测幼苗的生理指标丙二醛(MDA)含量、超氧化物歧酶(SOD)活性、过氧化物酶(POD)活力以及蚕豆根尖细胞微核率变化,来探讨化感作用机制.结果表明,空心莲子草根、茎、叶不同浓度水浸提液对受试农作物种子萌发率具有不同程度的抑制作用,且处理浓度越高抑制作用越强,水浸提液使受体幼苗体内的MDA含量增加,SOD活性、POD活性先增加后降低趋势,使蚕豆根尖细胞微核率上升.空心莲子草水溶性化感物质使受试农作物受到了氧化胁迫,抗氧化酶系统、蚕豆根尖细胞有丝分裂受到了抑制作用,从而影响了农作物幼苗的萌发和生长.%The study used Alternanthera philoxeroides as material, the subjects plants were Vicia faba and Zea may. The effects of Alternanthera philoxeroides Griseb on the seed germination of two species were studied by using culture dish filter paper method. The physiological index of tested crops MDA content, peroxidase (POD) activity changes, micronucleus rate changes of Vicia faba root-tip cell were detected. The result showed aqueous extracts form Alternanthera philoxeroides Griseb were affected to different degrees for the tested Vicia faba and Zea mays germination rate, made seedlings malondialdehyde (MDA) content to increase, made seedlings superoxide dismutase (SOD) and peroxidase (POD) activity firstly to increase and then to decrease trend, also made root tip cells of Vicia micronucleus rate to increase. The tested crops were oxidative stressed by water-soluble allelochemicals from Alternanthera philoxeroides Griseb. Antioxidant enzyme systems and root tip cells mitosis were inhibited. The aqueous extracts from the different organizations Alternanthera philoxeroides Griseb affected the germination and growth of Vicia faba and

  20. Crop protection by seed coating.

    Science.gov (United States)

    Ehsanfar, S; Modarres-Sanavy, S A M

    2005-01-01

    Providence of sufficient and healthy food for increasing human population clears the importance of notice to increasing crop production in company with environmental loss reduction. Growth and yield of every plant with sexual reproduction, depends on germination & emergence of sown seeds. Seed is a small alive plant that its biological function is protection and nutrition of embryo. Biological, chemical and physiological characteristics of seed, affect on plant performance & its resistance to undesirable environmental conditions, and even on its total yield. So attention to seed and try to increase its performance is so important. One of the factors that cause reduction in germination percentage and seedling establishment, is seed disease. It's possible to control these diseases by treating the seed before planting it. Coating the seed with pesticides, is one of the ways to gain this goal. Seed coating is a technique in which several material as fertilizers, nutritional elements, moisture attractive or repulsive agents, plant growth regulators, rhizobium inocolum, chemical & pesticide etc, add to seed by adhesive agents and cause to increase seed performance and germination. Seed coating, leads to increase benefits in seed industry, because seeds can use all of their genetic vigor. This technique is used for seeds of many garden plants, valuable crops (such as corn, sunflower, canola, alfalfa,...) and some of the grasses. In this technique that was first used in coating cereal seeds in 1930, a thin and permeable layer of pesticide is stuck on seed surface and prevent damage of seedborn pathogens. This layer is melted or splited after absorption of moisture and suitable temperature by seed, and let the radical to exit the seed. In this approach materials are used accurately with seed, evaporation & leakage of pesticide and also adverse effects of some pesticides on seeds are diminished, and these factors cause to increase the accuracy and performance of pesticide

  1. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  2. 78 FR 4305 - Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions; Correction

    Science.gov (United States)

    2013-01-22

    ... Fruit. DATES: Effective Date: January 22, 2013. FOR FURTHER INFORMATION CONTACT: Tim Hoffmann, Director... Corporation 7 CFR Part 457 RIN 0563-AC39 Common Crop Insurance Regulations; Florida Citrus Fruit Crop... corrections revised the Florida Citrus Fruit Crop Insurance Provisions that published on Friday, December...

  3. Environmental enhancement using short-rotation woody crops and perennial grasses as alternative agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, V.R. [Oak Ridge National Lab., TN (United States); Schiller, A. [Oak Ridge Inst. for Science and Education, TN (United States)

    1995-12-31

    Short-rotation woody crops and perennial grasses are grown as biomass feedstocks for energy and fiber. When replacing traditional row crops on similar lands, these alternative crops can provide multiple environmental benefits in addition to enhancing rural economies and providing valuable feedstock resources. The Department of Energy is supporting research to address how these crops can provide environmental benefits to soil, water and native wildlife species in addition to providing bioenergy feedstocks. Research is underway to address the potential for biomass crops to provide soil conservation and water quality improvements in crop settings. Replacement of traditional erosive row crops with biomass crops on marginal lands and establishment of biomass plantations as filter strips adjacent to streams and wetlands are being studied. The habitat value of different biomass crops for selected wildlife species is also under study. To date, these studies have shown that in comparison with row crops biomass plantings of both grass and tree crops increased biodiversity of birds; however, the habitat value of tree plantations is not equivalent to natural forests. The effects on native wildlife of establishing multiple plantations across a landscape are being studied. Combining findings on wildlife use of individual plantations with information on the cumulative effects of multiple plantations on wildlife populations can provide guidance for establishing and managing biomass crops to enhance biodiversity while providing biomass feedstocks. Data from site-specific environmental studies can provide input for evaluation of the probable effects of large-scale plantings at both landscape and regional levels of resolution.

  4. Cumulative and residual effects of potato cropping system management strategies on crop and soil health parameters

    Science.gov (United States)

    Soil and crop management practices can greatly affect parameters related to soil health, as well as crop productivity and disease development, and may provide options for more sustainable production. Different 3-yr potato cropping systems focused on specific management goals of soil conservation (SC...

  5. Down-regulation of ZmEXPB6 (Zea mays β-expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L.

    Science.gov (United States)

    Geilfus, Christoph-Martin; Ober, Dietrich; Eichacker, Lutz A; Mühling, Karl Hermann; Zörb, Christian

    2015-05-01

    The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments.

  6. Influence du décalage du semis du niébé (Vigna unguiculata (L. Walp par rapport au maïs (Zea mays L. sur la croissance et le rendement du niébé

    Directory of Open Access Journals (Sweden)

    Osiru, DSO.

    2002-01-01

    Full Text Available Effect of Time of Planting Cowpea (Vigna unguiculata (L. Walp Relative to Maize (Zea mays L. on Growth and Yield of Cowpea. Field investigations were carried out for three seasons in two locations of Uganda to examine yield benefits when cowpea and maize are planted under intensive farming conditions. Additive mixtures of cowpea were planted into maize thrice at 2 weekly intervals together with sole crops. Time of introducing cowpea into maize significantly affected both the growth and yield of cowpea. Simultaneous planting generally showed a yield advantage (LER> 1 of the cowpea/ maize intercropping systems irrespective of the cowpea varieties used, but LER declined when time of introducing cowpea into maize was delayed being as low as 0.76 when cowpea was planted four weeks after planting maize. The reduction in the growth and yield of cowpea was due to increased shading from the maize plants especially when cowpea was introduced at the fourth week. Therefore, to achieve yield benefit simultaneous planting of maize and cowpea recommended.

  7. Organic fertigation for greenhouse crops

    DEFF Research Database (Denmark)

    Pokhrel, Bhaniswor

    2017-01-01

    productivity is suboptimal nutrient management resulting from poor synchronization between crop nutrient demand and nutrient release from organic fertilizers, affecting the physical, chemical and biological characteristics of the root zone environment, and thus plant growth and productivity. Compared to solid...... of acidic water with ammonia. These fertilizers and commercially available lupin sap as well as pH-controlled chicken manure extract were applied either alone or in combinations to tomato, parsley or coriander grown in a peat-based medium. Their effect on nutrient availability, pH, electrical conductivity...... organic fertilizers, the application of liquid organic fertilizers potentially more accurately addresses the nutrient demand, because nutrients are readily available and different fertilizers are easily mixed. This PhD work explores the possibilities and challenges related to the application of liquid...

  8. Phytotoxicity assay of diesel fuel-spiked substrates remediated with Pleurotus tuberregium using Zea mays

    Directory of Open Access Journals (Sweden)

    E M Ogbo

    2010-06-01

    Full Text Available Summary: The remediation of soil contaminated with petroleum based compounds by white rot fungi is well documented.  In this study the ability of diesel fuel contaminated soils treated with the fungus Pleurotus tuber-regium to support plant growth was tested.  Pleurotus tuber-regium was grown in different levels (2.50, 5.00, 10.00% and control- no fungus for each level of contamination of diesel fuel contaminated soil and sawdust. The removal of petroleum hydrocarbons was highest in the 5.00% level of contamination where 55.53% of the petroleum hydrocarbons were removed. The least reduction in hydrocarbons was in the 10.00% level of contamination where only 35.53% of the hydrocarbons were removed. After the remediation the toxicity of the soils were tested by growing Zea mays in the treated soils. There was reduction in the toxicity of the soils treated with Pleurotus tuber-regium. Germination of the seeds of the test plant in treated 2.50 and 5.00% diesel fuel contaminated substrates was higher than that in the control. Germination of seeds in the 10.00% diesel fuel contaminated substrates was less than that in the control. The continued growth of the plant in the treated soils however showed no significant difference between them and the control using leaf area, plant height, fresh weight, dry weight and root length indices. The formation of lateral roots was however adversely affected in the treated 10.00% contaminated soil only substrate. The fungus was able to reduce the toxicity of diesel fuel contaminated substrates when compared with control in which there was no remediation. Industrial relevance: Nigeria is an oil producing country with heavy or high reliance on diesel fuel for use in cars and electric power generating sets. The transportation of diesel fuel is by tankers and pipelines. There have been cases of spills which has adverse effect on the environment. The study aims to solve the process of amelioration of the environment

  9. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  10. Strategies for Improving Enterprise Standardization Management of Tropical Crop Machinery

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ There are two categories of tropical crop machinery. One comprises operation machinery that is used for planting, managing and harvesting tropical crops, while the other comprises process machinery for processing tropical crops. Tropical crop machinery is distinguished from other agricultural machinery by the special crops that such machinery cultivates and processes.

  11. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  12. Soil attributes under different crop management systems in an Amazon Oxisols

    Directory of Open Access Journals (Sweden)

    Elessandra Laura Nogueira Lopes

    2015-01-01

    Full Text Available AbstractSoil biological properties have a high potential for use in assessing the impacts of crop systems. The objective of this study is to evaluate the effects of cropping systems on the biological attributes of an oxisol in the Amazonian state of Pará. The treatments consisted of approximately 20-year-old secondary vegetation, recovered pasture, no-tillage systems (NT maintained for 4 and 8 years after planting with corn (Zea mays L. and soybean (Glycine max L., and conventional tillage (CT systems every 2 years after planting with rice (Oryza sativa L. and soybean. The microbial biomass to nitrogen ratio was higher in the NT system (0.68 mg kg–1, and the NT system had greater microbial NT8. Thus, the contributions of organic matter from straw improved the soil quality in these areas. The total organic carbon (TOC content was greater in the secondary forest and CT areas (46.7 and 48.0 mg kg–1, respectively, potentially due to the higher amounts of organic matter and organic matter mineralization in these areas. However, the largest TOC stocks were observed in the pasture, which corresponded with greater carbon storage (63.5 Mg ha–1. By contrast, the no-till systems were not efficient for storing C, with concentrations of 5.0 and 5.3 Mg ha–1 in NT-4 and NT-8, respectively. These results may reflect the short period that these systems were adopted and the vast microbial activity that was observed in these areas, with microbial quotients of 8.03 and 10.41% in NT-4 and NT-8, respectively.

  13. Hyperspectral Reflectance and Fluorescence Indices for Carbon Related Parameters in Corn Crops

    Science.gov (United States)

    Middleton, E. M.; Corp, L. A.; Campbell, P. E.; Daughtry, C. S.

    2006-05-01

    The relative success in monitoring physiological or stand properties related to carbon (C) assimilation using narrow band (hyperspectral) reflectance and fluorescence indices was evaluated at leaf and canopy levels for mature corn crops (Zea mays L.) in two years. The corn crops were arranged in plots, each receiving a controlled nitrogen (N) fertilization regime at one of four dosages in experiments conducted in 2004 and 2005 at the USDA facility in Beltsville, MD, USA. Leaf reflectance spectra were obtained in conjunction with leaf level photosynthesis, chlorophyll fluorescence (ChlF), and chemistry (chlorophyll and carotenoid content per leaf area; percent C and N by dry mass). Whole plant canopy spectra and leaf area index data were obtained the same week as leaf measurements, followed by determinations of yields and biomass at harvest. The spectra were acquired using a spectroradiometer (ASD-FR FieldSpec Pro, Analytical Spectral Devices, Inc., Boulder, CO, USA), either coupled with a hemisphere for leaf optical properties or to measure nadir radiances 1 m above plant canopies within a 22o field of view. In situ photosynthesis and ChlF parameters were determined simultaneously with a photosynthetic system (Li-Cor 6400, Lincoln, Nebraska, USA) fitted with a fluorimeter under controlled conditions (temperature, irradiance, carbon dioxide, and humidity). Canopy-level steady state ChlF emissions were extracted from the apparent canopy reflectance spectra at 688 and 760 nm using the Fraunhofer Line Depth (FLD) principal. Both fluorescence and reflectance indices were successful in discriminating foliar constituents (e.g., pigment ratios, C/N ratios) but only fluorescence indices were correlated with light use efficiency (LUE) and corn yields in both years. LUE was inversely correlated (r = 0.85) with the ratio of non-photochemical (Qn) to photochemical (Qp) quenching of ChlF, (Qn/Qp). LUE was not strongly influenced by pigment levels, including the chlorophyll

  14. Impact of Tillage and Fertilizer Application Method on Gas Emissions in a Corn Cropping System

    Institute of Scientific and Technical Information of China (English)

    K. SMITH; D. WATTS; T. WAY; H. TORBERT; S. PRIOR

    2012-01-01

    Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas ernissions from soil.This study was conducted to determine the impact of fertilizer sources,land management practices,and fertilizer placement methods on greenhouse gas (CO2,CH4,and N2O) emissions.A new prototype implement developed for applying poultry litter in subsurface bands in the soil was used in this study.The field site was located at the Sand Mountain Research and Extension Center in the Appalachian Plateau region of northeast Alabama,USA,on a Hartsells fine sandy loam (fine-loamy,siliceous,subactive,thermic Typic Hapludults).Measurements of carbon dioxide (CO2),methane (CH4),and nitrous oxide (N2O) emissions followed GRACEnet (greenhouse gas reduction through agricultural carbon enhancement network) protocols to assess the effects of different tillage (conventional vs.no-tillage) and fertilizer placement (subsurface banding vs.surface application) practices in a corn (Zea mays L.) cropping system.Fertilizer sources were urea-ammonium nitrate (UAN),ammonium nitrate (AN) and poultry litter (M) applied at a rate of 170 kg ha -1 of available N.Banding of fertilizer resulted in the greatest concentration of gaseous loss (CO2 and N2O) compared to surface applications of fertilizer.Fertilizer banding increased CO2 and N2O toss on various sampling days throughout the season with poultry litter banding emitting more gas than UAN banding.Conventional tillage practices also resulted in a higher concentration of CO2 and N2O loss when evaluating tillage by sampling day.Throughout the course of this study,CH4 flux was not affected by tillage,fertilizer source,or fertilizer placement method.These results suggest that poultry litter use and banding practices have the potential to increase greenhouse gas emissions.

  15. Mathematical Analysis and Simulation of Crop Micrometeorology

    NARCIS (Netherlands)

    Chen, J.

    1984-01-01

    In crop micrometeorology the transfer of radiation, momentum, heat and mass to or from a crop canopy is studied. Simulation models for these processes do exist but are not easy to handle because of their complexity and the long computing time they need. Moreover, up to now such models can only be ru

  16. Cropping system effects on wind erosion potential

    Science.gov (United States)

    Wind erosion of soil is a destructive process impacting crop productivity and human health and safety. The mechanics of wind erosion and soil properties that influence erosion are well understood. Less well-studied are the effects that cropping intensity has upon those soil properties. We collected ...

  17. Characterizing pesticide dissipation in food crops

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... degradation is dominating. We are currently testing the regression to predict degradation half-lives in crops. By providing mean degradation half-lives at 20°C for more than 300 pesticides, we reduce uncertainty and improve assumptions in current practice of health risk and impact assessments....

  18. Emerging Viral Diseases of Tomato Crops

    NARCIS (Netherlands)

    Hanssen, I.M.; Lapidot, M.; Thomma, B.P.H.J.

    2010-01-01

    Viral diseases are an important limiting factor in many crop production systems. Because antiviral products are not available, control strategies rely on genetic resistance or hygienic measures to prevent viral diseases, or on eradication of diseased crops to control such diseases. Increasing intern

  19. Lubrication properties of new crop oils

    Science.gov (United States)

    Oils from new crops such as lesquerella (Lesquerella fendleri), field pennycress (Thlaspi arvense L.), meadowfoam (Limnanthes alba L.), and cuphea PSR-23 (Cuphea viscosissima × Cuphea lanceolata) were investigated and compared with vegetable oils from commodity crops such as castor, corn, and soybea...

  20. Genomics Opportunities, New Crops and New Products

    Science.gov (United States)

    This chapter describes use of molecular markers and transgenics in development of new cultivars in a survey obtained from public and private sector breeders. It also reviews traits in Rosaceae crops for which markers are currently available for use in developing new crops. The surprising results a...