WorldWideScience

Sample records for bio products drying

  1. Estimating Nitrogen Availability of Heat-Dried Bio solids

    International Nuclear Information System (INIS)

    Cogger, C.G.; Bary, A.I.; Myhre, E.A.

    2011-01-01

    As heat-dried bio solids become more widely produced and marketed, it is important to improve estimates of N availability from these materials. Objectives were to compare plant-available N among three different heat-dried bio solids and determine if current guidelines were adequate for estimating application rates. Heat-dried bio solids were surface applied to tall fescue (Festuca arundinacea Schreb.) in Washington State, USA, and forage yield and N uptake measured for two growing seasons following application. Three rates of urea and a zero-N control were used to calculate N fertilizer efficiency regressions. Application year plant-available N (estimated as urea N equivalent) for two bio solids exceeded 60% of total N applied, while urea N equivalent for the third bio solids was 45%. Residual (second-year) urea N equivalent ranged from 5 to 10%. Guidelines for the Pacific Northwest USA recommend mineralization estimates of 35 to 40% for heat-dried bio solids, but this research shows that some heat-dried materials fall well above that range.

  2. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Black liquor gasification (BLG) for bio-fuel or electricity production at the modern pulp mills is a field in continuous evolution and the efforts are considerably driven by the climate change, fuel security, and renewable energy. This paper evaluates and compares two BLG systems for methanol production: (i) oxygen blown pressurized thermal BLG; and (ii) dry BLG with direct causticization, which have been regarded as the most potential technology candidates for the future deployment. A key objective is to assess integration possibilities of BLG technologies with the reference Kraft pulp mill producing 1000 air dried tonnes (ADt) pulp/day replacing conventional recovery cycle. The study was performed to compare the systems’ performance in terms of potential methanol production, energy efficiency, and potential CO 2 reductions. The results indicate larger potential of black liquor conversion to methanol from the pressurized BLG system (about 77 million tonnes/year of methanol) than the dry BLG system (about 30 million tonnes/year of methanol) utilizing identical amount of black liquor available worldwide (220 million tDS/year). The potential CO 2 emissions reduction from the transport sector is substantially higher in pressurized BLG system (117 million tonnes/year CO 2 reductions) as compared to dry BLG system (45 million tonnes/year CO 2 reductions). However, the dry BLG system with direct causticization shows better results when considering consequences of additional biomass import. In addition, comparison of methanol production via BLG with other bio-refinery products, e.g. hydrogen, dimethyl ether (DME) and bio-methane, has also been discussed.

  3. Influence of biomass pretreatment on upgrading of bio-oil: Comparison of dry and hydrothermal torrefaction.

    Science.gov (United States)

    Xu, Xiwei; Tu, Ren; Sun, Yan; Li, Zhiyu; Jiang, Enchen

    2018-08-01

    The dry and hydrothermal torrefacation of on Camellia Shell (CS) was carried on three different devices- batch autoclave, quartz tube, and auger reactor. The torrefied bio-char products were investigated via TGA, elemental analysis and industrial analysis. Moreover, the pyrolysis and catalytic pyrolysis properties of torrefied bio-char were investigated. The results showed torrefaction significantly influenced the content of hemicellulose in CS. And hydrothermal torrefaction via batch autoclave and dry torrefaction via auger reactors promoted the hemicellulose to strip from the CS. Quartz tube and auger reactor were beneficial for devolatilization and improving heat value of torrefied bio-char. The result showed that the main products were phenols and acids. And hydrothermal torrefaction pretreatment effectively reduced the acids content from 34.5% to 13.2% and enriched the content of phenols (from 27.23% to 60.05%) in bio-oil due to the decreasing of hemicellulos in torrefied bio-char. And the catalyst had slight influence on the bio-oil distribution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. FAST PYROLYSIS – EFFECT OF WOOD DRYING ON THE YIELD AND PROPERTIES OF BIO-OIL

    Directory of Open Access Journals (Sweden)

    Eriks Samulis

    2007-11-01

    Full Text Available The composition and properties of the products of fast pyrolysis of hardwood, obtained in a two-chamber (drying and pyrolytic ablation type reactor in the temperature range 450-600ºС, were investigated. It has been found that, upon the additional drying of wood at 200ºС and subsequent pyrolysis, the quality of bio-oil is improved owing to the decrease in the amount of water and acids. It has been shown that the increase of the drying temperature to 240ºС decreases the yield of the main product. Optimum parameters of the drying conditions and the temperature of the pyrolysis of wood, at which the bio-oil yield exceeds 60% and its calorific value makes up 17-20 МJ/kg, have been determined.

  5. Moisture variation associated with water input and evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Gao, Ding; Chen, Tong-Bin; Liu, Hong-Tao; Zheng, Guo-Di; Yang, Qi-Wei

    2012-08-01

    The variation of moisture during sewage sludge bio-drying was investigated. In situ measurements were conducted to monitor the bulk moisture and water vapor, while the moisture content, water generation, water evaporation and aeration water input of the bio-drying bulk were calculated based on the water mass balance. The moisture in the sewage sludge bio-drying material decreased from 66% to 54% in response to control technology for bio-drying. During the temperature increasing and thermophilic phases of sewage sludge bio-drying, the moisture content, water generation and water evaporation of the bulk initially increased and then decreased. The peak water generation and evaporation occurred during the thermophilic phase. During the bio-drying, water evaporation was much greater than water generation, and aeration facilitated the water evaporation. Copyright © 2012. Published by Elsevier Ltd.

  6. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.

    Science.gov (United States)

    Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing

    2010-07-01

    Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. The environmentally friendly technology for bio fuel production

    International Nuclear Information System (INIS)

    Bekers, M.; Danilevics, A.; Guriniece, E.; Gulbis, V.

    2003-01-01

    . Friendly for environment and sustainable development of this region will be guarantied. Conclusion: The presented system can produce followed quantities of products per year: Fuel ethanol 21,37 milj.l, bio diesel 20016,7 t, distillery dried grain with soluble 30300 t, meat 74458,4 t, raw glycerol 3488,8 t, greenhouse vegetables 6452,6 t, honey 3750 t, spirit beverages 27,5 milj. l, neutral ethanol 1,0 mil.l, pressed CO 2 1800 t

  8. BioBoost. Biomass based energy intermediates boosting bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)

    2013-10-01

    To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)

  9. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Exergy Steam Drying and Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prem; Muenter, Claes (Exergy Engineering and Consulting, SE-417 55 Goeteborg (Sweden)). e-mail: verma@exergyse.com

    2008-10-15

    Exergy Steam Drying technology has existed for past 28 years and many new applications have been developed during this period. But during past few years the real benefits have been exploited in connection with bio-fuel production and energy integration. The steam dryer consists of a closed loop system, where the product is conveyed by superheated and pressurised carrier steam. The carrier steam is generated by the water vapours from the product being dried, and is indirectly superheated by another higher temperature energy source such as steam, flue gas, thermal oil etc. Besides the superior heat transfer advantages of using pressurised steam as a drying medium, the energy recovery is efficient and simple as the recovered energy (80-90%) is available in the form of steam. In some applications the product quality is significantly improved. Examples presented in this paper: Bio-Combine for pellets production: Through integration of the Exergy Steam Dryer for wood with a combined heat and power (CHP) plant, together with HP steam turbine, the excess carrier steam can be utilised for district heating and/or electrical power production in a condensing turbine. Bio-ethanol production: Both for first and second generation of ethanol can the Exergy process be integrated for treatment of raw material and by-products. Exergy Steam Dryer can dry the distillers dark grains and solubles (DDGS), wood, bagasse and lignin. Bio-diesel production: Oil containing seeds and fruits can be treated in order to improve both the quality of oil and animal feed protein, thus minimizing further oil processing costs and increasing the sales revenues. Sewage sludge as bio-mass: Municipal sewage sludge can be considered as a renewable bio-fuel. By drying and incineration, the combustion heat value of the sludge is sufficient for the drying process, generation of electrical energy and production of district heat. Keywords; Exergy, bio-fuel, bio-mass, pellets, bio-ethanol, biodiesel, bio

  11. Dry land Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Bio solids Applications

    International Nuclear Information System (INIS)

    Koenig, R.T.; Cogger, C.G.; Bary, A.I.

    2011-01-01

    Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha -1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.

  12. Production of bio-synthetic natural gas in Canada.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system.

  13. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Renato O. Arazo

    2017-01-01

    Full Text Available The optimization of bio-oil produced from sewage sludge using fast pyrolysis in a fluidized bed reactor was investigated. Effects of temperature, sludge particle size and vapor residence time on bio-oil properties, such as yield, high heating value (HHV and moisture content were evaluated through experimental and statistical analyses. Characterization of the pyrolysis products (bio-oil and biogas was also done. Optimum conditions produced a bio-oil product with an HHV that is nearly twice as much as lignocellulosic-derived bio-oil, and with properties comparable to heavy fuel oil. Contrary to generally acidic bio-oil, the sludge-derived bio-oil has almost neutral pH which could minimize the pipeline and engine corrosions. The Fourier Transform Infrared and gas-chromatography and mass spectrometry analyses of bio-oil showed a dominant presence of gasoline-like compounds. These results demonstrate that fast pyrolysis of sewage sludge from domestic wastewater treatment plant is a favorable technology to produce biofuels for various applications.

  14. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  15. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Science.gov (United States)

    Tuorto, Steven J; Brown, Chris M; Bidle, Kay D; McGuinness, Lora R; Kerkhof, Lee J

    2015-01-01

    This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  16. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Directory of Open Access Journals (Sweden)

    Steven J Tuorto

    Full Text Available This report describes BioDry (patent pending, a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc., freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  17. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  18. Production of bio-jet fuel from microalgae

    Science.gov (United States)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  19. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  20. Study of bio-oil and bio-char production from algae by slow pyrolysis

    International Nuclear Information System (INIS)

    Chaiwong, K.; Kiatsiriroat, T.; Vorayos, N.; Thararax, C.

    2013-01-01

    This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49. -- Highlights: •Bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. •Suitable temperature to obtained bio-oil and bio-char were at about 550 and 500 °C. •Saturated functional carbon of bio-oil was heavy naphtha, kerosene, diesel oil. •ECR had an average value of 0.49

  1. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Khola, G.; Ghazala, B.

    2011-01-01

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  2. Bioethanol production from dried sweet sorghum stalk

    Energy Technology Data Exchange (ETDEWEB)

    Almodares, A.; Etemadifar, Z.; Ghoreishi, F.; Yosefi, F. [Biology Dept. Univ. of Isfahan, Isfahan (Iran, Islamic Republic of)], e-mail: aalmodares@yahoo.com

    2012-11-01

    Bioethanol as a renewable transportation fuel has a great potential for energy and clean environment. Among crops sweet sorghum is one of the best feedstock for ethanol production under hot and dry climatic conditions. Because it has higher tolerance to salt and drought comparing to sugarcane and corn that are currently used for bio-fuel production in the world. Generally mills are used to extract the juice from sweet sorghum stalks. Three roller mills extract around nearly 50 percent of the juice and more mills is needed to extract higher percentage of the juice. More over under cold weather the stalks become dry and juice is not extracted from the stalk, therefore reduce harvesting period. In this study stalks were harvested, leaves were stripped from the stalks and the stalks were chopped to nearly 4 mm length and sun dried. The dry stalks were grounded to 60 mesh powder by a mill. Fermentation medium consists of 15-35% (w/w) sweet sorghum powder, micronutrients and active yeast inoculum from 0.5-1% (w/w) by submerge fermentation method. The fermentation time and temperature were 48-72 hours and 30 deg, respectively. The results showed the highest amount of ethanol (14.5 % w/w sorghum) was produced with 10% sweet sorghum powder and 1% of yeast inoculum, three day fermentation at 30 deg.

  3. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming

    International Nuclear Information System (INIS)

    Zhang, Yanan; Brown, Tristan R.; Hu, Guiping; Brown, Robert C.

    2013-01-01

    This paper evaluates the economic feasibility of biohydrogen production via two bio-oil processing pathways: bio-oil gasification and bio-oil reforming. Both pathways employ fast pyrolysis to produce bio-oil from biomass stock. The two pathways are modeled using Aspen Plus ® for a 2000 t d −1 facility. Equipment sizing and cost calculations are based on Aspen Economic Evaluation® software. Biohydrogen production capacity at the facility is 147 t d −1 for the bio-oil gasification pathway and 160 t d −1 for the bio-oil reforming pathway. The biomass-to-fuel energy efficiencies are 47% and 84% for the bio-oil gasification and bio-oil reforming pathways, respectively. Total capital investment (TCI) is 435 million dollars for the bio-oil gasification pathway and is 333 million dollars for the bio-oil reforming pathway. Internal rates of return (IRR) are 8.4% and 18.6% for facilities employing the bio-oil gasification and bio-oil reforming pathways, respectively. Sensitivity analysis demonstrates that biohydrogen price, biohydrogen yield, fixed capital investment (FCI), bio-oil yield, and biomass cost have the greatest impacts on facility IRR. Monte-Carlo analysis shows that bio-oil reforming is more economically attractive than bio-oil gasification for biohydrogen production. -- Highlights: ► Biohydrogen production via bio-oil reforming has higher energy efficiency compared to gasification. ► Hydrogen price, fixed capital cost, and feedstock cost most strongly affect IRR. ► Lower risk investment is biohydrogen production via bio-oil reforming

  4. Towards sustainable agricultural production: Growth and production of three varieties of shallot with some various Nitrobacter bio-fertilizer concentrations

    Science.gov (United States)

    Saharuddin; Dungga, N. E.; Syam’un, E.; Amin, A. R.

    2018-05-01

    Organic production is important for health and eliminates the risk of chemical residues. Taking part on sustainable agriculture production, this research was conducted in January to March 2017. Located in Palajau Village, in Jeneponto Regency, altitude 120 m above sea level, South Sulawesi. The research was aimed to determine the growth and production of shallot varieties and their interaction with Nitrobacter bio-fertilizer. The study conducted in the form of a two-factor factorial experiment using Randomized Block Design as environmental design. The first factor was varieties (Bima, Bangkok and Tajuk), and the second factor was concentration of Nitrobacter bio-fertilizer; control-without fertilizer, 30 and 60 mL of fertilizer per 3000 mL of water. Results show that the varietal treatment of Tajuk gave a good response to the observed parameters, and the Nitrobacter bio-fertilizer treatment of 60 mL of fertilizer 3000 mL of water gave good results on the number of bulbs per cluster, bulbs and dried bulbs per plot (of tons per ha bulbs). Bangkok variety combined with Nitrobacter bio-fertilizer concentration of 60 mL of fertilizer per 3000 mL of water per plot showed the highest yield of bulb that is 9.13 tons per ha compared with Bima and Tajuk varieties.

  5. Bio energy - Environment, technique and market

    International Nuclear Information System (INIS)

    Hohle, Erik Eid

    2001-01-01

    Leading abstract. In this book, a group of experts discusses everything about the use of bio fuels, from the briquettes of dry alder used in automobile gas generators during World War II to the most advanced present-day use. The chapters are: (1) Energy and society, (2) Production of biomass, (3) Bio fuel - properties and production, (4) Bio fuel - conversion and use, (5) Environment and environmental engineering, (6) Economy and planning and (7) Bio energy in the energy system of the future. There is a list of literature and a glossary at the end of the book

  6. Study on rapid bio-drying technology of cow dung with CaO2

    Science.gov (United States)

    Chen, Xiaotian; Qu, Guangfei; Liu, Shugen; Xie, Ruosong; He, Yanhua

    2017-05-01

    Effect of CaO2 on cow dung rapid bio-drying technology was researched. A static aerobic composting system was applied to this experiment which combining natural ventilation with Turing in the process of composting. The physical characteristics of cow dung was observed and the compost temperature, moisture content, organic matter, total nitrogen, total phosphorus, potassium content was determined which in order to study the effect of CaO2 on rapid drying of cattle in the compost. In the initial stage of compost, adding CaO2 groups compared with the control group, the temperature rise faster, 4-6 days in advance to the thermophilic phase; at the end of composting, the CaO2 composition and moisture content decreased significantly to below 30%. The addition of CaO2 in fertilizer was shorten the composting time, extend the thermophilic phase, to provide sufficient oxygen meeting the growth needs of aerobic microorganisms. It convinced that the rapid bio-drying of dairy manure has a good effect and provided a new idea for the effective treatment of cow dung.

  7. Bio-flex obtained from pyrolysis of biomass as fuel; Bio-flex obtido da pirolise de biomassa como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Mesa Perez, Juan Miguel; Viltre Rodriguez, Roberto Alfonso; Marin Mesa, Henry Ramon [Bioware Tecnologia, Campinas, SP (Brazil); Rocha, Jose Dilcio [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico; Samaniego, Manuel Raul Pelaez [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Planejamento de Sistemas Energeticos; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2006-07-01

    This paper describes the BIOWARE experience in the bio fuel production from biomass residues. Fast pyrolysis of a mixture of sugar cane trash and elephant grass carried out in a fluidized bed reactor with capacity of 200 kg/h dry feed (12% w/w). The co-products particulate charcoal, acid extract, and bio-oil were obtained. The fast pyrolysis pilot plant PPR-200 belonged to UNICAMP and is operated by BIOWARE personnel. This paper presents the chemical rote to bio-flex production (a kind of bio diesel from acid esterification) from pyrolytic carboxylic acids. Both ethanol and methanol were used as reactant but higher yields were found with methanol. (author)

  8. Jatropha bio-diesel production and use

    International Nuclear Information System (INIS)

    Achten, W.M.J.; Aerts, R.; Muys, B.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.

    2008-01-01

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  9. Jatropha bio-diesel production and use

    Energy Technology Data Exchange (ETDEWEB)

    Achten, W.M.J.; Aerts, R.; Muys, B. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); Verchot, L. [World Agroforestry Centre (ICRAF) Head Quarters, United Nations Avenue, P.O. Box 30677, Nairobi (Kenya); Franken, Y.J. [FACT Foundation, Horsten 1, 5612 AX Eindhoven (Netherlands); Mathijs, E. [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Willem de Croylaan 42 Box 2424, BE-3001 Leuven (Belgium); Singh, V.P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India)

    2008-12-15

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  10. Bio-fuels production and the environmental indicators

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos Sebastiao de Paula [Mechanical Engineering Department/Pontifical Catholic University of Rio de Janeiro - PUC-Rio, Rua Marques de Sao Vicente 225, Gavea, CEP 22453-900, Rio de Janeiro, RJ (Brazil); Muylaert de Araujo, Maria Silvia [Energy and Environment Planning Program/Federal University of Rio de Janeiro - COPPE/UFRJ, Cidade Universitaria, Centro de Tecnologia, Bloco C, sala 211, Ilha do Fundao, CEP: 21945-970, Caixa Postal: 68501, Rio de Janeiro, RJ (Brazil)

    2009-10-15

    The paper evaluates the role of the bio-fuels production in the transportation sector in the world, for programs of greenhouse gases emissions reductions and sustainable environmental performance. Depending on the methodology used to account for the local pollutant emissions and the global greenhouse gases emissions during the production and consumption of both the fossil and bio-fuels, the results can show huge differences. If it is taken into account a life cycle inventory approach to compare the different fuel sources, these results can present controversies. A comparison study involving the American oil diesel and soybean diesel developed by the National Renewable Energy Laboratory presents CO{sub 2} emissions for the bio-diesel which are almost 20% of the emissions for the oil diesel: 136 g CO{sub 2}/bhp-h for the bio-diesel from soybean and 633 g CO{sub 2}/bhp-h for the oil diesel [National Renewable Energy Laboratory - NREL/SR-580-24089]. Besides that, important local environmental impacts can also make a big difference. The water consumption in the soybean production is much larger in comparison with the water consumption for the diesel production [National Renewable Energy Laboratory - NREL/SR-580-24089]. Brazil has an important role to play in this scenario because of its large experience in bio-fuels production since the seventies, and the country has conditions to produce bio-fuels for attending great part of the world demand in a sustainable pathway. (author)

  11. Challenges for bio-based products in sustainable value chains

    NARCIS (Netherlands)

    Cardon, L.; Lin, J.W.; De Groote, M.; Ragaert, K.; Kopecka, J.A.; Koster, R.P.

    2011-01-01

    This work concerns studies related to strategic development of products in which bio-based plastics are or will be applied, referred to as bio-based products. The studies cover (1) current and potential benefits of bio-based products in extended value chains including activities after end-of-life of

  12. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization

    International Nuclear Information System (INIS)

    Hu, Zhiquan; Zheng, Yang; Yan, Feng; Xiao, Bo; Liu, Shiming

    2013-01-01

    Pyrolysis experiments of blue-green algae blooms (BGAB) were carried out in a fixed-bed reactor to determine the effects of pyrolysis temperature, particle size and sweep gas flow rate on pyrolysis product yields and bio-oil properties. The pyrolysis temperature, particle size and sweep gas flow rate were varied in the ranges of 300–700 °C, below 0.25–2.5 mm and 50–400 mL min −1 , respectively. The maximum oil yield of 54.97% was obtained at a pyrolysis temperature of 500 °C, particle size below 0.25 mm and sweep gas flow rate of 100 mL min −1 . The elemental analysis and calorific value of the oil were determined, and the chemical composition of the oil was investigated using gas chromatography–mass spectroscopy (GC–MS) technique. The analysis of bio-oil composition showed that bio-oil from BGAB could be a potential source of renewable fuel with a heating value of 31.9 MJ kg −1 . - Highlights: ► Bio-oil production from pyrolysis of blue-green algae blooms in fixed bed reactor. ► Effects of pyrolysis conditions on product distribution were investigated. ► The maximum bio-oil yield reached 54.97 wt %. ► The bio-oil has high heating value and may be suitable as renewable fuel. ► Pyrolysis of algal biomass beneficial for energy recovery, eutrophication control

  13. Past, Present, and Future Production of Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers

  14. Improvement of lipid content in green algae for subsequent use in bio-fuel production

    International Nuclear Information System (INIS)

    Mojtaba Azma; Raha Abdul Rahim; Rosfarizan Mohamad; Arbakariya Ariff

    2009-01-01

    Full text: Heterotrophic cultivation technique of microalgae, Tetraselmis suecica, in shake flask under different medium composition and culture conditions were developed aimed at improvement of the cell composition and biomass production for subsequent used in bio diesel synthesis. Heterotrophic microalgae cell was developed from the adaptation of the photo trophic cell by photo periodic, manipulation of medium and culture conditions. The performance of heterotrophic cultivation of T. suecica was substantially improved in term of growth rate, final cell concentration, specific growth rate and productivity as well as cell composition especially totals lipid concentration. The cultivation time to reach maximum cell concentration was decreased from 408 hr in photoautotrophic to 142 hr in heterotrophic cultivation. The final cell concentration (24.3 g/L) was increased more than three times in heterotrophic cultivation as compared to that obtained in photoautotrophic cultivation (8.4 g/L). In addition, the maximum productivity (0.17 g/L.h -1 ) for heterotrophic cultivation was nine times higher than photoautotrophic cultivation (0.02 g/L.h -1 ). Moreover the among of protein decreased from 47.7 percentage of dry cell weight in photoautotrophic to 10.5 percent in heterotrophic cells. On the other side the total lipid (53.8) and carbohydrate (14.8) percentage of dry cell weight in heterotrophic cells increased more than two times compare with photoautotrophic cells (24.5 and 7.4 respectively) that is very important from bio fuel production viewpoint. (author)

  15. A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications.

    Science.gov (United States)

    Chen, Chih-Yuan; Chang, Chia-Lin; Chang, Chih-Wei; Lai, Shin-Chi; Chien, Tsung-Fu; Huang, Hong-Yi; Chiou, Jin-Chern; Luo, Ching-Hsing

    2013-03-04

    This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications. Furthermore, this study proposes a recording device to store bio-potential signal data and provides portability and low-power consumption for the proposed acquisition system. To acquire differential bio-potentials, such as electrocardiogram (ECG) signals, the proposed recording device includes a low-power front-end acquisition chip fabricated using a complementary metal-oxide-semiconductor (CMOS) process, a commercial microcontroller (MSP430F149), and a secure digital (SD) card for portable healthcare applications. The proposed system can obtain ECG signals efficiently and are comfortable to the skin. The power consumption of the system is about 85 mW for continuous working over a 3 day period with two AA batteries. It can also be used as a compact Holter ECG system.

  16. Continuous production of bio-oil by catalytic liquefaction from wet distiller’s grain with solubles (WDGS) from bio-ethanol production

    International Nuclear Information System (INIS)

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh; Glasius, Marianne; Rudolf, Andreas; Iversen, Steen Brummerstedt

    2012-01-01

    Bio-refinery concepts are currently receiving much attention due to the drive toward flexible, highly efficient systems for utilization of biomass for food, feed, fuel and bio-chemicals. One way of achieving this is through appropriate process integration, in this particular case combining enzymatic bio-ethanol production with catalytic liquefaction of the wet distillers grains with soluble, a byproduct from the bio-ethanol process. The catalytic liquefaction process is carried out at sub-critical conditions (280–370 °C and 25 MPa) in the presence of a homogeneous alkaline and a heterogeneous Zirconia catalyst, a process known as the Catliq ® process. In the current work, catalytic conversion of WDGS was performed in a continuous pilot plant with a maximum capacity of 30 dm 3 h −1 of wet biomass. In the process, WDGS was converted to bio-oil, gases and water-soluble organic compounds. The oil obtained was characterized using several analysis methods, among them elementary analysis and GC–MS. The study shows that WDGS can be converted to bio oil with high yields. The results also indicate that through the combination of bio-ethanol production and catalytic liquefaction, it is possible to significantly increase the liquid product yield and scope, opening up for a wider end use applicability. -- Highlights: ► Hydrothermal liquefaction of wet biomass. ► Product phase analysis: oil, acqeous, gas and mineral phase. ► Energy and mass balance evaluation.

  17. Evaluation of bio-fertilizer application to ameliorate the environment and crop production

    International Nuclear Information System (INIS)

    Nasir, A.; Khalid, M.U.; Anwar, S.; Arslan, C.

    2012-01-01

    An experiment was conducted during 2011-2012 to evaluate the effect of mechanically dried bio-slurry on cabbage growth, productivity, and soil health in terms of nutrients availability at field conditions. To achieve these objectives, a Golden Acre cabbage field was selected at University of Agriculture Faisalabad. The soil type was sandy loam and canal water was used for irrigation. Randomized complete block design was used in experiment with four treatments replicated four times. The bio-slurry was taken from Al-Hamd Exports at Sutyana road, Faisalabad. During the growing period of cabbage, data regarding bio metric features of cabbage crop was taken. The results showed 20-30% increase in plants density, plants height and root depth, and 10% reduction in unfold leaves per plant in bio-slurry treated plots. It was followed by the treatment in which bio-slurry was applied in combination with chemical fertilizers. The treatment with 100% chemical fertilizers showed least significant effect in improving these characteristics of the crop. The fertilization effect of bio-slurry was evaluated by measuring residual amount of NPK and organic matter (OM) in soil after harvesting of the crop. The bio-slurry treated plots showed better results as it reside 15% more amount of OM and NPK in the soil in relation with chemical fertilizer treated plots. A reduction of about 15% in EC of soil was also recorded in the plots where bio-slurry was applied. This showed that bio-slurry application on saline soil can reduce the salinity of soil. The cabbage yield was measured from each plot. It showed minimum yield 45 t/ha and maximum 79.25 t/ha from control and bio-slurry treated plots respectively. It was followed by chemical fertilizer treated plots as 68 t/ha. The results revealed that bio-slurry mobilize the nutrients in soil better than chemical fertilizers. Bio-slurry can be affectively used in contrast with chemical fertilizers and can be proved as an efficient soil conditioner

  18. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  19. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    Bae, Hyeun Jong; Wi, Seung Gon; Lee, Yoon Gyo; Kim, Ho Myung; Kim, Su Bae

    2011-10-01

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. The 2nd year Research scope includes: 1) Optimization of pre-treatment conditions for enzymatic hydrolysis of lignocellulosic biomass and 2) Demonstration of enzymatic hydrolysis by recombinant enzymes. To optimize the pretreatment, we applied two processes: a wet process (wet milling + popping), and dry process (popping + dry milling). Out of these, the wet process presented the best glucose yield with a 93.1% conversion, while the dry process yielded 69.6%, and the unpretreated process yielded <20%. The recombinant cellulolytic enzymes showed very high specific activity, about 80-1000 times on CMC and 13-70 times on filter paper at pH 3.5 and 55 .deg. C

  20. Increase of Bio-Gas Power Potential

    OpenAIRE

    V. A. Sednin; О. F. Kraetskaya; I. N. Prokoрenia

    2012-01-01

    The paper presents a review of industrial technologies for obtaining gas-synthesis which is applicable for bio-gas enrichment process. Comparative characteristics are given in the paper. The paper thoroughly considers a technology of dry methane conversion as the most expedient variant recommended for the application in this case. The bio-gas enrichment carried out during its production expands possibilities and efficiency of its application.

  1. The Role of Bio-productivity on Bio-energy Yields

    Directory of Open Access Journals (Sweden)

    Marc J. J. Janssens

    2009-04-01

    Full Text Available The principal photosynthetic pathways convert solar energy differently depending on the environmental conditions and the plant morphotype. Partitioning of energy storage within crops will vary according to environmental and seasonal conditions as well. Highest energy concentration is found in terpens like latex and, to a lesser extent, in lipids. Ideally, we want plant ingredients with high energy content easily amenable to ready-to-use bio-fuel. Generally, these crops are adapted to drier areas and tend to save on eco-volume space. Competition with food crops could be avoided by fetching energy from cheap agricultural by-products or waste products such as bagasse in the sugar cane. This would in fact mean that reducing power of agricultural residues should be extracted from the biomass through non-photosynthetic processes like animal ingestion or industrial bio-fermentation. Conversion and transformation efficiencies in the production chain are illustrated for some relevant crops in the light of the maximum power theorem.

  2. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  3. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    International Nuclear Information System (INIS)

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-01

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy

  4. Increase of Bio-Gas Power Potential

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2012-01-01

    Full Text Available The paper presents a review of industrial technologies for obtaining gas-synthesis which is applicable for bio-gas enrichment process. Comparative characteristics are given in the paper. The paper thoroughly considers a technology of dry methane conversion as the most expedient variant recommended for the application in this case. The bio-gas enrichment carried out during its production expands possibilities and efficiency of its application.

  5. Bio-oil and bio-char production from biomass and their structural analyses

    International Nuclear Information System (INIS)

    Kilic, Murat; Özsin, Gamzenur; Pütün, Ayşe E.; Pütün, Ersan

    2015-01-01

    Energy demand is increasing day by day because of the rapid developments in the population, industrialization and urbanisation. Since, fossil fuels will be at the verge of getting extinct, researches are mostly focused on the renewable sources, such as biomass, in recent years. This paper provides an environmentally friendly process to convert waste biomass samples to bio-oil and bio-char by pyrolysis. For this purpose, pyrolysis characteristics of pomegranate peels under inert atmosphere were studied by using both TGA to analysis decomposition behaviour and a batch reactor to investigate product yields and properties. The properties of bio-oil and bio-char were investigated by different analytical techniques such as GC-MS, FT-IR, SEM, He pycnometry and elemental analysis. As a consequence, it is possible to obtain bio-oil, which has similar properties like petroleum hydrocarbons, and to obtain bio-char, which can be further used as a solid fuel or a carbonaceous adsorbent material via pyrolysis process. (full text)

  6. Assessment of multifunctional bio fertilizers on tomato plants cultivated under a fertigation system

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Ahmad Nazrul Abdul Wahid; Khairuddin Abdul Rahim

    2012-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) has developed a series of multifunctional bio organic fertilizers, namely, MULTIFUNCTIONAL BIOFERT PG and PA and MF-BIOPELLET, in an effort to reduce dependency on chemical fertilizer for crop production. These products contain indigenous microorganisms that have desired characteristics, which include plant growth promoting, phosphate solubilising, antagonistic towards bacterial wilt disease and enhancing N 2 -fixing activity. These products were formulated as liquid inoculants, and introduced into a fertigation system in an effort to reduce usage of chemical fertilizers. A greenhouse trial was conducted to evaluate the effectiveness of multifunctional bio fertilizers on tomato plants grown under a fertigation system. Multifunctional bio fertilizer products were applied singly and in combination with different rates of NPK in the fertigation system. Fresh and dry weights of tomato plants were determined. Application of multifunctional bio fertilizer combined with 20 g NPK resulted in significantly higher fresh and dry weights as compared to other treatments. (author)

  7. Resource recovery from bio-based production processes: a future necessity?

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; S.B.A. Udugama, Isuru; Cignitti, Stefano

    2017-01-01

    The promise of transforming waste streams with small economic value into valuable products makes resource recovery technologies in bio-based production processes an attractive proposition. However, the use of resource recovery technologies in industrial applications is still minimal, despite its...... technologies to industrial bio-based production processes. The role and importance of economics, technology readiness and socio-environmental impacts of resource recovery in successfully implementing resource recovery technologies in industrial bio-based production processes is also discussed. Finally, based...... wide use in closely related processes such as dairy production. In this paper, a perspective on the role of resource recovery in bio-based production processes is provided through reviewing the past practice and identifying the benefits, opportunities and challenges of introducing resource recovery...

  8. Long-term sustainability of bio-components production

    Directory of Open Access Journals (Sweden)

    Souček Ivan

    2012-01-01

    Full Text Available Biofuels play an increasingly important role in motor fuel market. The list of biofuels (bio-components in accordance with EU legislations contains a number of substances not widely used in the market. Traditionally these include: fatty acid methyl esters (FAME, in the Czech Republic methyl ether of rape seed oil and bioethanol (also ethyl terc. buthyl ether ETBE, based on bioethanol. The availability and possible utilizations of bio-component fuels in Czech Republic and Serbia are discussed. Additional attention is paid on the identification of the possibilities to improve effectiveness of rape seeds cultivation and utilization of by-products from FAME production (utilization of sew, rape-meal and glycerol which will allow fulfilment of the sustainability criteria for the first generation biofuels. The new approaches on renewable co-processing are commented. The concept of 3E (emissions, energy demand, and economics is introduced specifying three main attributes for effective production of FAME production in accordance with legal compliances. Bio-components price change is analyzed in comparison to the price of motor fuels, identifying possible (speculative crude price break-even point at the level of 149-176 USD/bbl at which point bio-fuels would become economically cost effective for the use by refiners.

  9. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  10. Environmental sustainability assessment of bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2009-01-01

    Bio-ethanol is playing an important role in renewable energy for transport according to Thai government policy. This study aims to evaluate the energy efficiency and renewability of bio-ethanol system and identify the current significant environmental risks and availability of feedstocks in Thailand. Four of the seven existing ethanol plants contributing 53% of the total ethanol fuel production in Thailand have been assessed by the net energy balance method and Life Cycle Assessment (LCA). A renewability and net energy ratio portfolio has been used to indicate whether existing bio-ethanol production systems have net energy gain and could help reduce dependency on fossil energy. In addition, LCA has been conducted to identify and evaluate the environmental hotspots of 'cradle to gate' bio-ethanol production. The results show that there are significant differences of energy and environmental performance among the four existing production systems even for the same feedstock. The differences are dependent on many factors such as farming practices, feedstock transportion, fuel used in ethanol plants, operation practices and technology of ethanol conversion and waste management practices. Recommendations for improving the overall energy and environmental performance of the bio-ethanol system are suggested in order to direct the bio-ethanol industry in Thailand towards environmental sustainability.

  11. Bio ethanol production from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Loh Soh Kheang; Muhammad Asyraf Kasim; Nasrin Abu Bakar

    2010-01-01

    Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

  12. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    Science.gov (United States)

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Bio-cellulose Production by Beijerinckia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 in Sago By-product Medium.

    Science.gov (United States)

    Voon, W W Y; Muhialdin, B J; Yusof, N L; Rukayadi, Y; Meor Hussin, A S

    2018-06-19

    Bio-cellulose is the microbial extracellular cellulose that is produced by growing several microorganisms on agriculture by-products, and it is used in several food applications. This study aims to utilize sago by-product, coconut water, and the standard medium Hestrin-Schramm as the carbon sources in the culture medium for bio-cellulose production. The bacteria Beijerinkia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 were selected based on their bio-cellulose production activity. The structure was determined by Fourier transform infrared spectroscopy and scanning electron microscopy, while the toxicity safety was evaluated by brine shrimp lethality test. The results of Fourier transform infrared spectroscopy showed that the bio-cellulose produced by B. fluminensis cultivated in sago by-products was of high quality. The bio-cellulose production by B. fluminensis in the sago by-product medium was slightly higher than that in the coconut water medium and was comparable with the production in the Hestrin-Schramm medium. Brine shrimp lethality test confirmed that the bio-cellulose produced by B. fluminensis in the sago by-product medium has no toxicity, which is safe for applications in the food industry. This is the first study to determine the high potential of sago by-product to be used as a new carbon source for the bio-cellulose production.

  14. Bio-oil production from cotton stalk

    International Nuclear Information System (INIS)

    Zheng Jilu; Yi Weiming; Wang Nana

    2008-01-01

    Cotton stalk was fast pyrolyzed at temperatures between 480 deg. C and 530 deg. C in a fluidized bed, and the main product of bio-oil is obtained. The experimental result shows that the highest bio-oil yield of 55 wt% was obtained at 510 deg. C for cotton stalk. The chemical composition of the bio-oil acquired was analyzed by GC-MS, and its heat value, stability, miscibility and corrosion characteristics were determined. These results showed that the bio-oil obtained can be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel can be refined to be used by vehicles. Furthermore, the energy performance of the pyrolysis process was analyzed. In the pyrolysis system used in our experiment, some improvements to former pyrolysis systems are done. Two screw feeders were used to prevent jamming the feeding system, and the condenser is equipped with some nozzles and a heat exchanger to cool quickly the cleaned hot gas into bio-oil

  15. Spray Drying of Suspensions for Pharma and Bio Products: Drying Kinetics and Morphology

    DEFF Research Database (Denmark)

    Sloth, Jakob; Jørgensen, Kåre; Bach, Poul

    2009-01-01

    An experimental investigation of the spray drying behavior of droplets containing excipients and carrier materials used in the pharmaceutical and biotechnological industries has been conducted. Specifically, rice starch suspensions with different amounts of TiO2, maltodextrin, dextrin, NaCl and N...

  16. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    International Nuclear Information System (INIS)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Lima, Isabel M.; Laird, David A.; Hicks, Kevin B.

    2010-01-01

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ∼20 MJ kg -1 , and densities >1.0 Mg m -3 ) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, ∼20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed 'farm scale' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields.

  17. Process systems engineering studies for catalytic production of bio-based platform molecules from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2017-01-01

    Highlights: • A process-systems engineering study for production of bio-based platform molecules to is presented. • Experimentally verified catalysis studies for biomass conversion are investigated. • New separations for effective recovery of bio-based platform molecules are developed. • Separations are integrated with catalytic biomass conversions. • Proposed process can compete economically with the current production approaches. - Abstract: This work presents a process-system engineering study of an integrated catalytic conversion strategy to produce bio-based platform molecules (levulinic acid (LA), furfural (FF), and propyl guaiacol (PG)) from hemicellulose (C_5), cellulose (C_6), and lignin fractions of lignocellulosic biomass. A commercial-scale process based on the strategy produces high numerical carbon yields (overall yields: 35.2%; C_6-to-LA: 20.4%, C_5-to-FF: 69.2%, and Lignin-to-PG: 13.3%) from a dilute concentration of solute (1.3–30.0 wt.% solids), but a high recovery of these molecules requires an efficient separation system with low energy requirement. A heat exchanger network significantly reduced the total energy requirements of the process. An economic analysis showed that the minimum selling price of LA as the highest value-added product (42.3 × 10"3 t of LA/y using 700 × 10"3 dry t/y of corn stover) is US$1707/t despite using negative economic parameters, and that this system can be cost-competitive with current production approaches.

  18. Bio-diesel fuels production: Feasibility studies

    International Nuclear Information System (INIS)

    Tabasso, L.

    1993-01-01

    This paper reviews the efforts being made by Italy's national government and private industry to develop diesel engine fuels derived from vegetable oils, in particular, sunflower seed oil. These fuels are being promoted in Italy from the environmental protection stand-point in that they don't contain any sulfur, the main cause of acid rain, and from the agricultural stand-point in that they provide Italian farmers, whose food crop production capacity is limited due to European Communities agreements, with the opportunity to use their set-aside land for the production of energy crops. This paper provides brief notes on the key performance characteristics of bio-diesel fuels, whose application doesn't require any modifications to diesel engines, apart from minor adjustments to the air/fuel mix regulating system, and assesses commercialization prospects. Brief mention is made of the problems being encountered by the Government in the establishing fair bio-fuel production tax rebates which are compatible with the marketing practices of the petroleum industry. One of the strategies being considered is to use the bio-fuels as additives to be mixed with conventional fuel oils so as to derive a fuel which meets the new European air pollution standards

  19. Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products.

    Science.gov (United States)

    Sherwood, James; Clark, James H; Farmer, Thomas J; Herrero-Davila, Lorenzo; Moity, Laurianne

    2016-12-29

    Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond.

  20. Consumer Attitude and Behavior towards Bio-products in Slovak Republic

    Directory of Open Access Journals (Sweden)

    Jana Chovancova

    2014-07-01

    Full Text Available Bio-product market is very challenging and developing rapidly. Consumers have raised great interest in healthy and tasty diet with high nutritional compounds, confidence in food safety, environmental and animal welfare concern and also sustainability. The aim of this paper is to analyze consumer attitude and behavior as well as the factors influencing purchasing behavior when deciding to buy bio-products or their substitutes. The essential part of the article presents the partial results of the research, which was directed to consumers buying bio-products in Slovakia.

  1. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Hicks, Kevin B. [Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038 (United States); Lima, Isabel M. [Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA 70124 (United States); Laird, David A. [National Soil Tilth Laboratory, U.S. Agricultural Research Service, U.S. Department of Agriculture, 2110 University Blvd., Ames, IA 50011 (United States)

    2010-01-15

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are {proportional_to}20 MJ kg{sup -1}, and densities >1.0 Mg m{sup -3}) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, {proportional_to}20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed ''farm scale'' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields. (author)

  2. Optimization on Pretreatment Conditions of Seaweed Liquid Waste for Bio ethanol Production

    International Nuclear Information System (INIS)

    Nur Zatul-Iffah Zakaria; Dachyar Arbain; Mohd Noor Ahmad; Mohd Irfan Hatim Mohamed Dzahir

    2015-01-01

    Seaweed liquid waste (SLW) from a non-conventional seaweed (Gracilaria sp.) drying process where the seaweed is ruptured and filter-squeezed has been investigated. The liquid contains proteins and minerals which potentially pollute the environment if it is not been properly treated. For that reason, this paper deals with study on the feasibility of SLW utilization as a feedstock for bio ethanol production. The fermentation of bio ethanol production was carried out by Saccharomyces cerevisiae in which ethanol produced was measured by gas chromatography. In order to increase its fermentable sugar content, the SLW was treated with dilute acid. Center composite design of response surface methodology (RSM) had been used to optimize the sugar content by varying the parameters involved in the dilute acid pretreatment conditions. These are sulphuric acid concentration (M), temperature (degree Celsius) and seaweed waste concentration (g/ ml). It was obtained that the R 2 value reached 0.97 indicating that the model is acceptable. The three parameters showed p-value less than 0.05 suggesting their significance interactions. The optimization resulted 25 times improvement of reducing sugar concentration. The reducing sugar resulting from the optimized pretreatment was later used as fermentation medium to produce ethanol up to 123.197 mg/ l. (author)

  3. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  4. Impact of dry eye on work productivity.

    Science.gov (United States)

    Yamada, Masakazu; Mizuno, Yoshinobu; Shigeyasu, Chika

    2012-01-01

    The purpose of this study was to evaluate the impact of dry eye on work productivity of office workers, especially in terms of presenteeism. A total of 396 individuals aged ≥20 years (258 men and 138 women, mean age 43.4 ± 13.0 years) were recruited through an online survey. Data from 355 responders who did not have missing values were included in the analysis. They were classified into the following four groups according to the diagnostic status and subjective symptoms of dry eye: a definite dry eye group; a marginal dry eye group; a self-reported dry eye group; and a control group. The impact of dry eye on work productivity was evaluated using the Japanese version of the Work Limitations Questionnaire. The cost of work productivity loss associated with dry eye and the economic benefits of providing treatment for dry eye were also assessed. The degree of work performance loss was 5.65% in the definite dry eye group, 4.37% in the marginal dry eye group, 6.06% in the self-reported dry eye group, and 4.27% in the control group. Productivity in the self-reported dry eye group was significantly lower than that in the control group (P work productivity loss associated with dry eye was estimated to be USD 741 per person. Dry eye impairs work performance among office workers, which may lead to a substantial loss to industry. Management of symptoms of dry eye by providing treatment may contribute to improvement in work productivity.

  5. The factors which influence the consumption of bio products

    Directory of Open Access Journals (Sweden)

    Duguleană, L.

    2011-01-01

    Full Text Available The consumption of ecological products is an expensive “fashion” on the international market. However, the production and processing of the row BIO materials represent a complex problem, which demands solutions. The Romanian BIO products market has a favourable image, even though consumption represents only 1% of the total consumption. 90% of the raw materials are exported. Unfortunately, the products exported return to Romania, processed, with 4-5 times higher prices. The direction for a clean and healthier life style is designed. Its evolution will decide the future.

  6. Effect of Media on Algae Growth for Bio-Fuel Production

    Directory of Open Access Journals (Sweden)

    Sriharsha KARAMPUDI

    2011-08-01

    Full Text Available Bio-fuels are commonly produced from oleaginous crops, such as rapeseed, soybean, sunflower and oil palm. However, microalgae can be an attractive alternative feedstock for future biofuels because some of the species contain very high amounts of oil, which can be used to extract and be processed into transportation fuels. Their growth rate is very high and faster, can be cultivated in non-agricultural land and waste water. In addition, production of microalgae is not seasonal and they can be harvested routinely as needed. Two strains of Scenedesmus dimorphus (fresh water microalgae were tested for their growth in proteose medium and Modified Bold 3N medium with different levels of nitrogen and glycerol and growth rates were measured using cell count, fresh and dry weight. The growth of S. dimorphus was better in proteose medium with half of the nitrogen source recommended by the UTEX than other media tested. ANOVA table showed significant differences between days, between media, and day media interaction. When compared to dry weight of S. dimorphus in all media, the growth was better in proteose medium with 10 mL/L glycerol.

  7. Effect of Media on Algae Growth for Bio-Fuel Production

    Directory of Open Access Journals (Sweden)

    Sriharsha KARAMPUDI

    2011-08-01

    Full Text Available Bio-fuels are commonly produced from oleaginous crops, such as rapeseed, soybean, sunflower and oil palm. However, microalgae can be an attractive alternative feedstock for future biofuels because some of the species contain very high amounts of oil, which can be used to extract and be processed into transportation fuels. Their growth rate is very high and faster, can be cultivated in non-agricultural land and waste water. In addition, production of microalgae is not seasonal and they can be harvested routinely as needed. Two strains of Scenedesmus dimorphus (fresh water microalgae were tested for their growth in proteose medium and Modified Bold 3N medium with different levels of nitrogen and glycerol and growth rates were measured using cell count, fresh and dry weight. The growth of S. dimorphus was better in proteose medium with half of the nitrogen source recommended by the UTEX than other media tested. ANOVA table showed significant differences between days, between media, and day � media interaction. When compared to dry weight of S. dimorphus in all media, the growth was better in proteose medium with 10 mL/L glycerol.

  8. Algae for Bio diesel production

    International Nuclear Information System (INIS)

    Bravi, M.; De Filippis, P.; Balestrieri, M.

    2008-01-01

    A sustainable bio fuels production cannot ignore the competition between the food and agroenergy chains for the cultivable land, and many advocate oleaginous microbial biomass as a possible solution to this problem. Their advantages include fast growth, significant oil content, productivity significantly larger than that featured by higher plants but, most importantly, the possibility of exploiting marginal lands. Before they can be deployed on a large scale, some remaining critical points must be solved

  9. Carrageenan drying with dehumidified air: drying characteristics and product quality

    NARCIS (Netherlands)

    Djaeni, M.; Sasongko, S.B.; Prasetyaningrum, Aji A A.A.; Jin, X.; Boxtel, van A.J.B.

    2012-01-01

    Applying dehumidified air is considered as an option to retain quality in carrageenan drying. This work concerns the effects of operational temperature, air velocity, and carrageenan thickness on the progress of drying and product quality when using dehumidified air. Final product quality and

  10. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa

    2006-01-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H 2 concentration in the biogas is 10%-20% and no CH 4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  11. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    Science.gov (United States)

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  13. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja; van de Beld, Bert; Bridgwater, Anthony V.; Marklund, Magnus

    2017-04-06

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with the 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.

  14. Impact of dry eye on work productivity

    Directory of Open Access Journals (Sweden)

    Yamada M

    2012-10-01

    Full Text Available Masakazu Yamada, Yoshinobu Mizuno, Chika ShigeyasuNational Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, JapanBackground: The purpose of this study was to evaluate the impact of dry eye on work productivity of office workers, especially in terms of presenteeism.Methods: A total of 396 individuals aged ≥20 years (258 men and 138 women, mean age 43.4 ± 13.0 years were recruited through an online survey. Data from 355 responders who did not have missing values were included in the analysis. They were classified into the following four groups according to the diagnostic status and subjective symptoms of dry eye: a definite dry eye group; a marginal dry eye group; a self-reported dry eye group; and a control group. The impact of dry eye on work productivity was evaluated using the Japanese version of the Work Limitations Questionnaire. The cost of work productivity loss associated with dry eye and the economic benefits of providing treatment for dry eye were also assessed.Results: The degree of work performance loss was 5.65% in the definite dry eye group, 4.37% in the marginal dry eye group, 6.06% in the self-reported dry eye group, and 4.27% in the control group. Productivity in the self-reported dry eye group was significantly lower than that in the control group (P < 0.05. The annual cost of work productivity loss associated with dry eye was estimated to be USD 741 per person.Conclusion: Dry eye impairs work performance among office workers, which may lead to a substantial loss to industry. Management of symptoms of dry eye by providing treatment may contribute to improvement in work productivity.Keywords: burden of disease, dry eye, presenteeism, quality of life

  15. Recent developments in drying of food products

    Science.gov (United States)

    Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Rama Sharath Reddy, Maddela; Reddy, Kancham Reddy Naveen Kumar

    2017-05-01

    Drying is a dehydration process to preserve agricultural products for long period usage. The most common and cheapest method is open sun drying in which the products are simply laid on ground, road, mats, roof, etc. But the open sun drying has some disadvantages like dependent on good weather, contamination by dust, birds and animals consume a considerable quantity, slow drying rate and damages due to strong winds and rain. To overcome these difficulties solar dryers are developed with closed environment for drying agricultural products effectively. To obtain good quality food with reduced energy consumption, selection of appropriate drying process and proper input parameters is essential. In recent years several researchers across the world have developed new drying systems for improving the product quality, increasing the drying rate, decreasing the energy consumption, etc. Some of the new systems are fluidized bed, vibrated fluidized bed, desiccant, microwave, vacuum, freeze, infrared, intermittent, electro hydrodynamic and hybrid dryers. In this review the most recent progress in the field of drying of agricultural food products such as new methods, new products and modeling and optimization techniques has been presented. Challenges and future directions are also highlighted. The review will be useful for new researchers entering into this ever needed and ever growing field of engineering.

  16. Demineralization of Sargassum spp. Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Vázquez, Liz M., E-mail: limdiaz@uprrp.edu; Rojas-Pérez, Arnulfo; Fuentes-Caraballo, Mariela; Robles, Isis V. [Department of Chemistry, University of Puerto Rico Río Piedras Campus, San Juan, PR (United States); Jena, Umakanta [Bioenergy Laboratory, Desert Research Institute, Reno, NV (United States); Das, K. C. [College of Engineering, University of Georgia, Athens, GA (United States)

    2015-02-11

    Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL), and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier transform infrared-attenuated total reflectance spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5–21 MPa). Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46 to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4 ± 0.1 and 22.2 ± 0.1% (ash-free dry basis), respectively.

  17. Demineralization of Sargassum spp. Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-Oil Production

    International Nuclear Information System (INIS)

    Díaz-Vázquez, Liz M.; Rojas-Pérez, Arnulfo; Fuentes-Caraballo, Mariela; Robles, Isis V.; Jena, Umakanta; Das, K. C.

    2015-01-01

    Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL), and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier transform infrared-attenuated total reflectance spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5–21 MPa). Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46 to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4 ± 0.1 and 22.2 ± 0.1% (ash-free dry basis), respectively.

  18. Demineralization of Sargassum spp. macroalgae biomass: selective hydrothermal liquefaction process for bio-oil production

    Directory of Open Access Journals (Sweden)

    Liz M Díaz-Vázquez

    2015-02-01

    Full Text Available Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier Transform Infrared - Attenuated Total Reflectance (FTIR-ATR Spectroscopy, Energy Dispersive Spectroscopy (EDS, Scanning Electron Microscopy (SEM, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment, was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5-21 MPa. Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46% to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4±0.1 % and 22.2±0.1 % (ash free dry basis, respectively.

  19. Scalable and continuous fabrication of bio-inspired dry adhesives with a thermosetting polymer.

    Science.gov (United States)

    Lee, Sung Ho; Kim, Sung Woo; Kang, Bong Su; Chang, Pahn-Shick; Kwak, Moon Kyu

    2018-04-04

    Many research groups have developed unique micro/nano-structured dry adhesives by mimicking the foot of the gecko with the use of molding methods. Through these previous works, polydimethylsiloxane (PDMS) has been developed and become the most commonly used material for making artificial dry adhesives. The material properties of PDMS are well suited for making dry adhesives, such as conformal contacts with almost zero preload, low elastic moduli for stickiness, and easy cleaning with low surface energy. From a performance point of view, dry adhesives made with PDMS can be highly advantageous but are limited by its low productivity, as production takes an average of approximately two hours. Given the low productivity of PDMS, some research groups have developed dry adhesives using UV-curable materials, which are capable of continuous roll-to-roll production processes. However, UV-curable materials were too rigid to produce good adhesion. Thus, we established a PDMS continuous-production system to achieve good productivity and adhesion performance. We designed a thermal roll-imprinting lithography (TRL) system for the continuous production of PDMS microstructures by shortening the curing time by controlling the curing temperature (the production speed is up to 150 mm min-1). Dry adhesives composed of PDMS were fabricated continuously via the TRL system.

  20. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  1. Determining waste lipids stability and possible effects in bio diesel production

    International Nuclear Information System (INIS)

    Azocar, L.; Ciudad, G.; Navia, R.

    2009-01-01

    Waste lipids are a sustainable raw material alternative for bio diesel production, avoiding excessive use of agricultural soil. However, this raw material can be degraded in a short time of storage, affecting bio diesel production process and quality. The aim of this work was to investigate the possible degradation of waste frying oil (WFO) and animal fat (AF), monitoring parameters that could affect the bio diesel quality. (Author)

  2. Retention of short chain fatty acids under drying and storage conditions

    Directory of Open Access Journals (Sweden)

    Alexandre Santos Souza

    2011-09-01

    Full Text Available Cheese whey permeate was used as a substrate for the fermentation of Propionibacterium freudenreichi PS1 for the production of short chain fatty acids, components of the bio-aroma of Swiss cheese. The liquid bio-aroma was encapsulated by spray drying under different conditions of air inlet temperature and feed rate. A study was carried out on the stability of the bio-aroma during storage in laminated packages at 30 °C for 96 days using the product showing the greatest retention of acetic and propionic acids. The results showed that the best drying conditions were an air entrance temperature of 180 °C and a feed rate of 24 g/min resulting in particles with a smooth surface and few invaginations and micro-fissures. However, 72% of the acetic acid and 80% of the propionic acid were lost during storage showing that the wall material used was inadequate to guarantee product stability.

  3. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.

    Science.gov (United States)

    Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K

    2017-11-01

    The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, 1 H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study for a simplified LCA methodology adapted to bio-products. Final report

    International Nuclear Information System (INIS)

    2009-01-01

    Agricultural resources form a renewable stock of raw materials that can be used for various purposes: food supply, production of energy (including biofuels), bio-products and bio-based construction materials. The use of agricultural resources to produce bio-products is expanding in France and throughout the world, partly due to the presumed advantages of these products towards the environment. In this context, ADEME (the French Environment and Energy Management Agency) commissioned a study for the development of a methodological framework to evaluate the environmental impacts of bio-products. This study was also in charge of the identification of areas of improvement for the 'Bilan Produit', an environmental assessment tool developed by ADEME, in order to allow a future integration of bio-products. The first step of this study consisted of a comparative review of the existing bio-products' LCA (Life Cycle Assessment). This review underlined a deep heterogeneity among the methodologies used, as well as a lack of transparency in the results displayed. In a second step of the project, all the methodological issues in the evaluation of bio-products were studied, and recommendations for the resolution of each one of them have been proposed. These critical analyses are presented in individual fact-sheets, which detail the specific issues of each question, facts from the bibliographic review, the results of the tests conducted on three bio-products, and finally the methodological recommendations to answer the question. This project showed that some methodological recommendations had to be specified depending on the objective of the LCA: eco-design, environmental labeling or comparative LCA. The work conducted also identified some necessary improvements to the Bilan Produit tool, which come under four categories: addition of the missing inventories, integration of metadata regarding the inventories, consideration for the specific end-of-life scenarios of bio-products, and

  5. Advanced biomass science and technology for bio-based products: proceedings

    Science.gov (United States)

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  6. Dry alcohol production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for dry alcohol production plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects a production plant with a capacity of 40 m3/y was manufactured, at "Zorka Pharma", Šabac in 1995-1996. The product meets all quality demands, as well as environmental regulations. The dry alcohol production process is fully automatized. There is no waste in the process, neither gaseous, nor liquid. The chosen process provides safe operation according to temperature regime and resistance in the pipes, air purification columns and filters. Working at increased pressure is suitable for evaporation and condensation at increased temperatures. The production process can be controlled manually, which is necessary during start-up, and repairs.

  7. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  8. Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type

    International Nuclear Information System (INIS)

    Luo, Yan; Guda, Vamshi Krishna; Hassan, El Barbary; Steele, Philip H.; Mitchell, Brian; Yu, Fei

    2016-01-01

    Highlights: • Oxidation had more influence on the yield of total hydrocarbons than distillation. • The highest total hydrocarbon yield was obtained from oxidized distilled bio-oil. • The 2nd-stage hydrocarbons were in the range of gasoline fuel boiling points. • The main products for upgrading of oxidized bio-oil were aliphatic hydrocarbons. • The main products for upgrading of non-oxidized bio-oil were aromatic hydrocarbons. - Abstract: Distilled and oxidized distilled bio-oils were subjected to 1st-stage mild hydrodeoxygenation and 2nd-stage full hydrodeoxygenation using nickel/silica–alumina catalyst as a means to enhance hydrocarbon yield. Raw bio-oil was treated for hydrodeoxygenation as a control to which to compare study treatments. Following two-stage hydrodeoxygenation, four types of hydrocarbons were mainly comprised of gasoline and had water contents, oxygen contents and total acid numbers of nearly zero and higher heating values of 44–45 MJ/kg. Total hydrocarbon yields for raw bio-oil, oxidized raw bio-oil, distilled bio-oil and oxidized distilled bio-oil were 11.6, 16.2, 12.9 and 20.5 wt.%, respectively. The results indicated that oxidation had the most influence on increasing the yield of gasoline fuel type followed by distillation. Gas chromatography/mass spectrometry characterization showed that 66.0–76.6% of aliphatic hydrocarbons and 19.5–31.6% of aromatic hydrocarbons were the main products for oxidized bio-oils while 35.5–38.7% of aliphatic hydrocarbons and 58.2–63.1% of aromatic hydrocarbons were the main products for non-oxidized bio-oils. Both aliphatic and aromatic hydrocarbons are important components for liquid transportation fuels and chemical products.

  9. Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis

    International Nuclear Information System (INIS)

    Dewayanto, Nugroho; Isha, Ruzinah; Nordin, Mohd Ridzuan

    2014-01-01

    Highlights: • Vacuum pyrolysis has been employed to produce bio-oil from palm oil waste. • Effect of the pyrolysis temperature was investigated in this study. • Bio-oil properties of cellulosic and oily based material were determined. • Bio-oil from decanter cake has potential to be used as fuel. - Abstract: The present study was carried out to investigate the potential of palm oil decanter cake (PDC) for bio-oil production at various temperatures by vacuum pyrolysis. PDC was first dried in oven at 105 °C for 24 h to remove moisture and ground to particle size of 0.85–2 mm. Pyrolysis experiments were carried out at 400, 450, 500, 550 and 600 °C, with heating rate of 15 °C/min. The highest yield of bio-oil (22.12 wt%) was obtained at pyrolysis temperature of 500 °C. The chemical characterization of bio-oil was studied using 1 H NMR, FTIR, CHNS analyzer and GC–MS. The other properties like pH, calorific value and thermal volatilization were also determined. The pH value recorded to be 6.38, which is found to be higher as compared to other bio-oils. The calorific value of PDC bio-oil found to be 36.79 MJ/kg, which is slightly lower than that of conventional liquid fuel such as gasoline and diesel fuel. However, the bio-oil obtained from PDC has better fuel characteristics than that of bio-oil derived from palm kernel shell (PKS)

  10. Bio production of red pigment by local isolate of Monascus purpureus

    International Nuclear Information System (INIS)

    Youssef, B.M.; Khalaf, M.A.; Emam, D.A.; Hazaa, M.M.; Shash, S.M.

    2009-01-01

    There is an increased interest on natural pigments to replace some currently used synthetic dyes, since the latter have been associated with toxic effects in foods. The red pigment of the fungus Monascus is widely used in all the world as food additives or pharmaceuticals. The Monascus purpureus local strain, which was isolated from dried silage sample was employed for red pigment production in submerged fermentation (Sm F) conditions. Different fermentation parameters including: incubation period, temperature, initial ph of the medium, agitation, different carbon and nitrogen sources, bio elements and type of inoculum and its age; were carried out under Sm F conditions to enhance the red pigment production. The maximum red pigment production (1.27 gI -1 ) was achieved at incubation temperature 30 C, initial ph 5.5, agitation rate 150 rpm, 2% starch and 0.4% ammonium sulphate as carbon and nitrogen sources, respectively, after 4 days when the production medium inoculated with 12 h age from seed culture inoculum. An experiment was conducted to investigate the effect of gamma irradiation on the activity of Monascus purpureus towards red pigment production. The maximum red pigment production (I.9 gI -1 ) was obtained at 0.5 kGy dose level

  11. Life cycle GHG analysis of rice straw bio-DME production and application in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Sagisaka, Masayuki; Yamaguchi, Katsunobu

    2013-01-01

    Highlights: • Life cycle GHG emissions of rice straw bio-DME production in Thailand are assessed. • Bio-DME replaces diesel in engines and supplements LPG for household application. • Rice straw bio-DME in both cases of substitution helps reduce GHG emissions. - Abstract: Thailand is one of the leading countries in rice production and export; an abundance of rice straw, therefore, is left in the field nowadays and is commonly burnt to facilitate quick planting of the next crop. The study assesses the life cycle greenhouse gas (GHG) emissions of using rice straw for bio-DME production in Thailand. The analysis is divided into two scenarios of rice straw bio-DME utilization i.e. used as automotive fuel for diesel engines and used as LPG supplement for household application. The results reveal that that utilization of rice straw for bio-DME in the two scenarios could help reduce GHG emissions by around 14–70% and 2–66%, respectively as compared to the diesel fuel and LPG substituted. In case rice straw is considered as a by-product of rice cultivation, the cultivation of rice straw will be the major source of GHG emission contributing around 50% of the total GHG emissions of rice straw bio-DME production. Several factors that can affect the GHG performance of rice straw bio-DME production are discussed along with measures to enhance GHG performance of rice straw bio-DME production and utilization

  12. Characteristics of the products of hydrothermal liquefaction combined with cellulosic bio-ethanol process

    International Nuclear Information System (INIS)

    Li, Rundong; Xie, Yinghui; Yang, Tianhua; Li, Bingshuo; Zhang, Yang; Kai, Xingping

    2016-01-01

    The integration utilization of fermentation residues from cellulosic bio-ethanol has attracted a great deal of attention to balance the total cost of bio-ethanol production while simultaneously dealing with bio-ethanol wastewater. A process of hydrothermal liquefaction (HTL) of intact materials from cellulosic bio-ethanol in a batch reactor was proposed. The effects of the reaction temperature and time on the liquefaction characteristics were examined. The optimum condition for liquefaction fermentation residues was 370 °C (21.25 MPa) and 30 min with a bio-oil yield of 40.79 wt%. GC-MS results indicated that the major chemical species in the bio-oil were phenols, ketones, long-chain hydrocarbons and fatty acids. Supercritical conditions (375 °C, 23.50 MPa) was favored for the low-molecular-weight species formation compared to subcritical conditions (370 °C, 21.25 MPa), as some long-chain species decreased. This work thus can provide a novel idea for bio-oil production from HTL of cellulosic bio-ethanol fermentation residues. - Highlights: • Bio-oil production via HTL combined with cellulosic bio-ethanol process was proposed. • Optimum condition for HTL of materials from cellulosic bio-ethanol was 370 °C and 30 min. • Bio-oil contained higher content of hydrocarbons and lower contents of organic acids.

  13. Refining Bio-Gas Produced from Biomass: An Alternative to Cooking Gas

    Directory of Open Access Journals (Sweden)

    A. S. ABDULKAREEM

    2005-06-01

    Full Text Available Our life is completely dependent on a reliable and adequate supply of energy. In other to reduce dependence on fossil fuels, the use of animal dung in producing a renewable alternative source of energy has been proved using cow dung. This work is aimed at produced and refined bio - gas from animal dung by reduces the H2S and CO2 content of bio - gas in other to improved the quality of the bio - gas to be used as an alternative to the petroleum based produces in use now. The sample of gas produced was passed through the gas chromatography to determine the percentage composition (mol % dry basis of the bio - gas contents. The results of the bio - gas before refinement were 54.09% mole dry CH4, 40.02mole % dry CO2 and 0.80mole % dry H2S which conformed with the literature values of 50 - 65 % mole dry CH4, 35 - 50 % mole dry CO2 and 0.1 - 1.0 % mole dry H2S. After refining, the composition of bio - gas on dry basis were 54.09% mole dry CH4, 4.01% mole dry CO2, 0.02% mole dry O2, 0.05% mole dry NH3, 0.01% mole dry H2S, 0.5% mole dry H2 and 2.54% mole dry N2. Analysis of the remnant indicated that it could be used for plant nutrient.

  14. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria.

    Science.gov (United States)

    Wagner, Jonathan; Bransgrove, Rachel; Beacham, Tracey A; Allen, Michael J; Meixner, Katharina; Drosg, Bernhard; Ting, Valeska P; Chuck, Christopher J

    2016-05-01

    A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production.

    Science.gov (United States)

    Harnisch, Falk; Rosa, Luis F M; Kracke, Frauke; Virdis, Bernardino; Krömer, Jens O

    2015-03-01

    The production of fuels and chemicals by electricity-driven bio-production (i.e., using electric energy to drive biosynthesis) holds great promises. However, this electrification of white biotechnology is particularly challenging to achieve because of the different optimal operating conditions of electrochemical and biochemical reactions. In this article, we address the technical parameters and obstacles to be taken into account when engineering microbial bioelectrochemical systems (BES) for bio-production. In addition, BES-based bio-production processes reported in the literature are compared against industrial needs showing that a still large gap has to be closed. Finally, the feasibility of BES bio-production is analysed based on bulk electricity prices. Using the example of lysine production from sucrose, we demonstrate that there is a realistic market potential as cost savings of 8.4 % (in EU) and 18.0 % (in US) could be anticipated, if the necessary yields can be obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bio-charcoal production from municipal organic solid wastes

    Science.gov (United States)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  17. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors.

    Science.gov (United States)

    Simoes, Francisco; Vale, Peter; Stephenson, Tom; Soares, Ana

    2017-12-21

    Biological struvite (bio-struvite) production through biomineralization has been suggested as an alternative to chemically derived struvite production to recover phosphorus from wastewater streams. In this study, statistical experimental design techniques were used to find the optimal growth rate (μ) of Brevibacterium antiquum in sludge liquors. Acetate, oleic acid, NaCl, NH 4 -N, and Ca 2+ were shown to affect the growth rate of B. antiquum. The growth rate reached 3.44 1/d when the bacteria were supplemented with 3.0% w/v NaCl and 1124 mg chemical oxygen demand/L as acetate. However, NaCl was found to hinder the biomineralization of bio-struvite. A two-stage experiment demonstrated that bio-struvite was produced in the presence of acetate. Bio-struvite production was confirmed with X-ray spectroscopy and crystal morphology (prismatic, tabular, and twinned crystal habit) through electron microscope analysis. The bio-struvite production was estimated by measuring phosphate content of the recovered precipitates, reaching 9.6 mg P/L as bio-struvite. Overall, these results demonstrated the optimal conditions required to achieve high growth rates as well as bio-struvite production with B. antiquum. The results obtained in this study could be used to develop a process to grow B. antiquum in wastewater streams in mixed cultures and recover phosphorus-rich products such as struvite.

  18. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.

    Science.gov (United States)

    Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie

    2018-07-01

    During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Bio-based products from solar energy and carbon dioxide.

    Science.gov (United States)

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y J; Ju, U S; Park, Y C [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  1. Matching Crew Diet and Crop Food Production in BIO-Plex

    Science.gov (United States)

    Jones, Harry; Kwauk, Xianmin; Mead, Susan C. (Technical Monitor)

    2000-01-01

    This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato. The BIO-Plex Biomass Production System food production and the external food supply must be matched to the crew diet requirement for calories and nutritional balance. The crop production and external supply specifications can each be varied as long as their sum matches the required diet specification. We have wide flexibility in choosing the crops and resupply. We can easily grow one-half the crew calories in one BIO-Plex Biomass Production Chamber (BPC) if we grow only the most productive crops (wheat, potato, and sweet potato) and it we achieve nominal crop productivity. If we assume higher productivity we can grow a wider variety of crops. If we grow one-half of the crew calories, externally supplied foods can easily provide the other half of the calories and balance the diet. We can not grow 95 percent of the crew calories in two BPCs at nominal productivity while growing a balanced diet. We produce maximum calories by growing wheat, potato, and peanut.

  2. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    Science.gov (United States)

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A comparative review of petroleum-based and bio-based acrolein production.

    Science.gov (United States)

    Liu, Lu; Ye, X Philip; Bozell, Joseph J

    2012-07-01

    Acrolein is an important chemical intermediate for many common industrial chemicals, leading to an array of useful end products. This paper reviews all the synthetic methods, including the former (aldol condensation) and contemporary (partial oxidation of propylene) manufacturing methods, the partial oxidation of propane, and most importantly, the bio-based glycerol-dehydration route. Emphasis is placed on the petroleum-based route from propylene and the bio-based route from glycerol, an abundantly available and relatively inexpensive raw material available from biodiesel production. This review provides technical details and incentives for industrial proyduction that justify a transition toward bio-based acrolein production. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    Science.gov (United States)

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  5. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    Science.gov (United States)

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: enzo.montoneri@unito.it [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  7. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    International Nuclear Information System (INIS)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-01-01

    Highlights: ► Municipal bio-wastes are a sustainable source of bio-based products. ► Refuse derived soluble bio-organics promote chlorophyll synthesis. ► Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. ► Sustainable chemistry exploiting urban refuse allows sustainable development. ► Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  8. Bio-oil based biorefinery strategy for the production of succinic acid

    Science.gov (United States)

    2013-01-01

    Background Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. Results The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. Conclusions The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production. PMID:23657107

  9. PYROLYSIS OF ISOCHRYSIS MICROALGAE WITH METAL OXIDE CATALYSTS FOR BIO-OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    TEVFİK AYSU

    2016-12-01

    Full Text Available Pyrolysis of Isochrysis microalgae was carried out in a fixed-bed reactor without and with metal oxide catalysts (CeO2, TiO2, Al2O3 at the temperatures of 450, 500 and 550 oC with a constant heating rate of 40 oC/min. The pyrolysis conditions including catalyst and temperature were studied in terms of their effects on the yields of pyrolysis products and quality. The amount of bio-char, bio-oil and gas products was calculated. The composition of the produced bio-oils was determined by Elemental analysis (EA, Fourier transform infrared spectroscopy (FT-IR, proton nuclear magnetic resonance (1H NMR and Gas chromatography/mass spectrometry (GC–MS techniques. As a result of the pyrolysis experiments, it is shown that there have been significant effects of both catalyst and temperature on the conversion of Isochrysis microalgae into solid, liquid (bio-oil and gas products. The highest bio-oil yield (24.30 % including aqueous phase was obtained in the presence of TiO2 (50% as catalyst at 500 °C. 98 different compounds were identified by GC-MS in bio-oils obtained at 500 oC. According to 1H NMR analysis, bio-oils contained ∼60-64 % aliphatic and ∼17-19 % aromatic structural units. EA showed that the bio-oils contained ∼66-69 % C and having 31-34 MJ/kg higher heating values.

  10. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Kah Weng Siew

    2013-12-01

    Full Text Available Glycerol (a bio-waste generated from biodiesel production has been touted as a promising bio-syngas precursor via reforming route. Previous studies have indicated that carbon deposition is the major performance-limiting factor for nickel (Ni catalyst during glycerol steam reforming. In the current paper, dry (CO2-reforming of glycerol, a new reforming route was carried out over alumina (Al2O3-supported non-promoted and lanthanum-promoted Ni catalysts. Both sets of catalysts were synthesized via wet co-impregnation procedure. The physicochemical characterization of the catalyst showed that the promoted catalyst possessed smaller metal crystallite size, hence higher metal dispersion compared to the virgin Ni/Al2O3 catalyst. This was also corroborated by the surface images captured by the FESEM analysis. In addition, BET surface area measurement gave 92.05m²/g for non-promoted Ni catalyst whilst promoted catalysts showed an average of 1 to 6% improvement depending on the La loading. Reaction studies at 873 K showed that glycerol dry reforming successfully produced H2 with glycerol conversion and H2 yield that peaked at 9.7% and 25% respectively over 2wt% La content. The optimum catalytic performance by 2%La-Ni/Al2O3 can be attributed to the larger BET surface area and smaller crystallite size that ensured accessibility of active catalytic sites.  © 2013 BCREC UNDIP. All rights reservedReceived: 12nd May 2013; Revised: 7th October 2013; Accepted: 16th October 2013[How to Cite: Siew, K.W., Lee, H.C., Gimbun, J., Cheng, C.K. (2013. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 160-166. (doi:10.9767/bcrec.8.2.4874.160-166][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4874.160-166

  11. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  12. Bio-fuel co-products in France: perspectives and consequences for cattle food

    International Nuclear Information System (INIS)

    2010-01-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  13. Understanding intentions to purchase bio-based products

    NARCIS (Netherlands)

    Onwezen, Marleen C.; Reinders, Machiel J.; Sijtsema, Siet J.

    2017-01-01

    This article aims to explore whether subjective ambivalence increases the understanding of consumers' intentions to buy bio-based products. Subjective ambivalence is the aversive feeling that accompanies evaluations containing both negative and positive elements. Two studies (N = 1851) in six

  14. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Havva

    2009-01-01

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially.

  15. Bio solids Effects in Chihuahuan Desert Rangelands: A Ten-Year Study

    International Nuclear Information System (INIS)

    Wester, D.B; Sosebee, R.E; Fish, E.B; Villalobos, J.C; Zartman, R.E; Gonzalez, R.M; Jurado, P.; Moffet, C.A

    2011-01-01

    Arid and semiarid rangelands are suitable for responsible bio solids application. Topical application is critical to avoid soil and vegetation disturbance. Surface-applied bio solids have long-lasting effects in these ecosystems. We conducted a 10-year research program investigating effects of bio solids applied at rates from 0 to 90 dry Mg ha -1 on soil water infiltration; runoff and leachate water quality; soil erosion; forage production and quality; seedling establishment; plant physiological responses; nitrogen dynamics; bio solids decomposition; and grazing animal behavior and management. Bio solids increased soil water infiltration and reduced erosion. Effects on soil water quality were observed only at the highest application rates. Bio solids increased soil nitrate-nitrogen. Bio solids increased forage production and improved forage quality. Bio solids increased leaf area of grasses; photosynthetic rates were not necessarily increased by bio solids. Bio solids effects on plant establishment are expected only under moderately favorable conditions. Over an 82-mo exposure period, total organic carbon, nitrogen, and total and available phosphorus decreased and inorganic matter increased. Grazing animals spent more time grazing, ruminating, and resting in bio solids-treated areas; positive effects on average daily gain were observed during periods of higher rainfall. Our results suggest that annual bio solids application rates of up to 18 Mg ha -1 are appropriate for desert rangelands.

  16. Assessment of two techniques for drying of easily degradable organic bio-waste; Bedoemning av tvaa tekniker foer torkning av laett nedbrytbart organiskt matavfall

    Energy Technology Data Exchange (ETDEWEB)

    Raaholt, Birgitta; Bergstroem, Birgitta; Broberg, Agneta; Holtz, Emma; Nordberg, Ulf; Del Pilar Castillo, Maria; Baky, Andras

    2011-10-15

    incoming material to treatment plants, energy consumption, cost, and climate impact. The quality of the dried material was evaluated with respect to purity degree, shelf-life stability, nutritional content, bio fuel potential and rehydration properties. In the system analysis, each drying technology, combined with a supposed subsequent digestion process, was compared to today's system for collection and digestion of food waste. An initial assessment of the potential of the microwave-vacuum drying process was made, as an alternative technique for hygienisation of food waste which contains animal by-products (ABP). The results indicate that the microwave process would be possible to adjust, in order to meet the time-temperature requirements for hygienisation. However, complementing studies are required to optimise and control the process towards the required microbiological reduction. Dried material has, as expected, advantages from both an odour and storage point of view; the lower water content corresponds to lower water activity and accordingly longer shelf-life and reduced risk for e.g. mould growth and odour. Even if energy is needed for drying the material, there are environmental advantages at collection of food waste (at transport distances less than about 50 km). Digestion experiments showed that dried food waste from households in Goeteborg did not result in any significant differences in methane exchange, with regard to organic matter (VS), expressed as m{sup 3}CH{sub 4}/tonne VS, compared with fresh food waste. Dried waste from food establishments in Boraas showed significantly lower methane exchange, with respect to organic matter (VS), than fresh food waste. The reasons for this need to be further investigated. A project delimitation was that the techniques were evaluated based upon food waste which was collected during a relatively short period of time. The target group of the project is the Swedish food industry, personnel responsible for waste

  17. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production

    Science.gov (United States)

    Fernandez-Lopez, Maria; Anastasakis, Kostas; De Jong, Wiebren; Valverde, Jose Luis; Sanchez-Silva, Luz

    2017-11-01

    Fast pyrolysis characterization of three dry manure samples was studied using a pyrolyzer. A heating rate of 600°C/s and a holding time of 10 s were selected to reproduce industrial conditions. The effect of the peak pyrolysis temperature (600, 800 and 1000°C) on the pyrolysis product yield and composition was evaluated. Char and bio-oil were gravimetrically quantified. Scanning electron microscopy (SEM) was used to analyse the char structure. H2, CH4, CO and CO2 were measured by means of gas chromatography (GC). A decrease in the char yield and an increase of the gas yield were observed when temperature increased. From 800°C on, it was observed that the char yield of samples Dig R and SW were constant, which indicated that the primary devolatilization reactions stopped. This fact was also corroborated by GC analysis. The bio-oil yield slightly increased with temperature, showing a maximum of 20.7 and 27.8 wt.% for samples Pre and SW, respectively, whereas sample Dig R showed a maximum yield of 16.5 wt.% at 800°C. CO2 and CO were the main released gases whereas H2 and CH4 production increased with temperature. Finally, an increase of char porosity was observed with temperature.

  18. Bio-fuels

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  19. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    Full Text Available The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  20. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes. PMID:26207757

  1. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  2. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    OpenAIRE

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid biomass because of their logistic advantages, better mineral balance, and better processability. Especially the ease of pressurization, which is required for large scale synthesis gas production, is...

  3. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh [Southern Research, Durham, NC (United States); Meng, Jiajia [Southern Research, Durham, NC (United States); McCabe, Kevin [Southern Research, Durham, NC (United States); Larson, Eric [Princeton Univ., NJ (United States). Princeton Environmental Inst.; Mastro, Kelly [Southern Research, Durham, NC (United States)

    2016-04-25

    Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fast pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.

  4. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    Fast pyrolysis may be used for sewage sludge treatment with the advantages of a significant reduction of solid waste volume and production of a bio-oil that can be used as fuel. A study of the influence of the reaction temperature on sewage sludge pyrolysis has been carried out using a pyrolysis...... of 392 g/mol, and metal concentrations lower than 0.14 wt % on a dry basis (db). Less optimal oil properties with respect to industrial applications were observed for oil samples obtained at 475 and 625 °C. Char properties of the 575 °C sample were an ash content of 81 wt % and a HHV of 6.1 MJ/kg db...

  5. Bio production of Vanillin from Agro-Industrial Wastes

    International Nuclear Information System (INIS)

    Abd EI-Aziz, A.B.

    2011-01-01

    The present study describes an environmentally friendly vanillin production processes from agro industrial wastes. Ferulic 'acid is a well-known product of cereal. brans and sugarcane bagasse lignin degradation, ferulic acid and cellulose degradation sugars were used as feedstock for the vanillin bio production by Debaryomyces hansenii. The bioconversion of ferulic into vanillin by Debaryomyces hansenii was affected by the type and amount of ferulic acid. Addition of purified ferulic acid (2 g/l) and using of adapted yeast cells. increase the yield of vanillin and decrease the secondary products. Yeast extract (3 g/l) and glucose (20 g/l) proved to be the best component as co-substrates for bio production of vanillin. Variable aeration conditions were tested by simultaneously vanilIin the ratio of medium to vessel volume and the agitation speed. under excess aeration, oxidation of a, significant portion of vanillin to vanillic acid occur, thus reducing the vanillin yield. Increasing the inoculum size up to 1 g/I and using low doses of gamma irradiation (0.25 kGy) increase the vanillin production. Under optimum conditions vanillin production from ferulic acid by Debaryomyces attained very high level of 1531 mg/1 with a molar yield of 76.5%

  6. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid

  7. Assessment of abandoned agricultural land resource for bio-energy production in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Kukk, Liia; Astover, Alar; Roostalu, Hugo; Suuster, Elsa; Noormets, Merrit; Sepp, Kalev (Estonian Univ. of Life Sciences, Inst. of Agricultural and Environmental Sciences, Tartu (Estonia)); Muiste, Peeter (Estonian Univ. of Life Sciences, Inst. of Forestry and Rural Engineering, Tartu (Estonia))

    2010-03-15

    The current study locates and quantifies abandoned agricultural areas using the Geographic Information System (GIS) and evaluates the suitability of abandoned fields for bio-energy production in Tartumaa (Tartu County) in Estonia. Soils of abandoned areas are generally of low quality and thereby limited suitability for crop production; as a result soil-crop suitability analyses could form the basis of knowledge-based bio-energy planning. The study estimated suitable areas for bio-energy production using willow (Salix sp), grey alder [Alnus incana (L.) Moench], hybrid aspen (Populus tremuloides Michx.Populus tremula L.), reed canary grass (Phalaris arundinacea L.), and Caucasian goat's rue (Galega orientalis Lam.) in separate plantations. A combined land-use strategy is also presented as these crops are partially suitable to the same areas. Reed canary grass and grey alder have the highest energy potentials and each would re-use more than 80% of the available abandoned agricultural land. Energy grasses and short-rotation forestry in combined land-use strategy represents the opportunity of covering approximately a quarter of county's annual energy demand. The study estimates only agronomic potential, so further bio-energy analysis should take into account technical and economic limitations. Developed framework supports knowledge-based decision-making processes from field to regional scale to achieve sustainable bio-energy production

  8. Screening of Jerusalem artichoke varieties for bio-ethanol production in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Passarinho, P.C.; Oliveira, A.C.; Rosa, M.F. [INETI, Departamento de Energias Renovaveis, Estrada do Paco do Lumiar, Ed. G, 1649-038, Lisboa (Portugal)

    2008-07-01

    The aim of this work was the evaluation of the potential of 9 Jerusalem artichoke varieties for the sustainable production of bio-ethanol in Portugal. The tubers, which are the part of the plant with higher sugar content, were harvested at different stages of development (29 to 55 weeks), and crashed for juice extraction. The two phases obtained were characterized in terms of total sugars, protein, ash and dry matter. The ethanol productivity of the different J. artichoke varieties was then evaluated fermenting juice or mixtures of juice and pulp aqueous extract with a strain of Kluyveromyces marxianus, a yeast able to hydrolyze and ferment inulin polymers. The chamical characteristic more dependable on the harvest period was the amount of total sugars in the tubers. Juices, obtained until 48 weeks development, contained 173 - 235 g/L of total sugars while juices from the last harvest presented markedly lower sugar contents, indicating crop degradation or sugar migration to the soil. Regarding the fermentative process, ethanol yields ranged from 0.3 to 0.5 g/g. The main conclusion of this work indicates C13 variety as the best. Although bearing a lower sugar concentration in tubers, the substantially higher agricultural productivities (kg/m2) after 8 months growing allowed to estimate productions higher than 10 000 L/ha.

  9. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility

    NARCIS (Netherlands)

    Oever, van den Martien; Molenveld, Karin

    2017-01-01

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of

  10. Consumer perception of bio-based products-An exploratory study in 5 European countries

    NARCIS (Netherlands)

    Sijtsema, Siet J.; Onwezen, Marleen C.; Reinders, Machiel J.; Dagevos, Hans; Partanen, Asta; Meeusen-van Onna, Marieke

    2016-01-01

    This study explores people's perceptions (i.e., positive and negative associations, mixed feelings) regarding the concept of 'bio-based' in general and specific bio-based products. This exploratory study is one of the first consumer studies in the field of bio-based research. Three focus group

  11. Research on determination of bio-burden for radiation sterilization of health care products

    International Nuclear Information System (INIS)

    Liu Qinfang

    2008-01-01

    In order to provide data of bio-burden for dose setting in radiation sterilization, determination of bio-burden on 148 kinds of health care products from 52 manufacturers were carried out. The culture of microorganisms, different elution technology, and correction coefficient of the microbiological methods have been used for determination of bio-burden. Frequent distribution of bio-burden was established. 5 kinds of elution processes were checked. Actual data of bio-burden for dose setting in radiation sterilization was gotten. (authors)

  12. Utilization of geothermal energy for drying fish products

    International Nuclear Information System (INIS)

    Arason, S.; Arnason, H.

    1992-01-01

    This paper is about industrial uses of geothermal energy for drying of fish products. Drying is an ancient method for preservation of foods, the main purpose of which is to increase the preservation time. For drying, an external source of energy is needed to extract water. In this paper an emphasis is placed on drying fish and associated processes, and how geothermal energy can be used to substitute oil or electricity. The Icelandic Fisheries Laboratories have been experimenting with different methods of drying, and several drying stations have been designed for indoor drying of fish products. Today there are more than a dozen companies in this country which are drying fish indoors using for that purpose electricity and/or geothermal energy. Further possibilities are available when fish processing plants are located in geothermal areas

  13. Production of gasoline fraction from bio-oil under atmospheric conditions by an integrated catalytic transformation process

    International Nuclear Information System (INIS)

    Zhang, Zhaoxia; Bi, Peiyan; Jiang, Peiwen; Fan, Minghui; Deng, Shumei; Zhai, Qi; Li, Quanxin

    2015-01-01

    This work aimed to develop an integrated process for production of gasoline fraction bio-fuels from bio-oil under atmospheric conditions. This novel transformation process included the catalytic cracking of bio-oil to light olefins and the subsequent synthesis of liquid hydrocarbon bio-fuels from light olefins with two reactors in series. The yield of bio-fuel was up to 193.8 g/(kg bio-oil) along with a very low oxygen content, high RONs (research octane numbers), high LHVs (lower heating values) and low benzene content under the optimizing reaction conditions. Coke deposition seems to be the main cause of catalyst deactivation in view of the fact that the deactivated catalysts was almost recovered by on-line treating the used catalyst with oxygen. The integrated transformation potentially provides a useful way for the development of gasoline range hydrocarbon fuels using renewable lignocellulose biomass. - Graphical abstract: An integrated process for production of gasoline fraction bio-fuels from bio-oil through the catalytic cracking of bio-oil to light olefins followed by the synthesis of liquid hydrocarbon bio-fuels from light olefins in series. - Highlights: • A new route for production of gasoline-range bio-fuels from bio-oil was achieved. • The process was an integrated catalytic transformation at atmospheric pressure. • Bio-oil is converted into light olefins and then converted to biofuel in series. • C_6–C_1_0 bio-fuels derived from bio-oil had high RONs and LHVs.

  14. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production

    Directory of Open Access Journals (Sweden)

    Fernandez-Lopez Maria

    2017-01-01

    Full Text Available Fast pyrolysis characterization of three dry manure samples was studied using a pyrolyzer. A heating rate of 600°C/s and a holding time of 10 s were selected to reproduce industrial conditions. The effect of the peak pyrolysis temperature (600, 800 and 1000°C on the pyrolysis product yield and composition was evaluated. Char and bio-oil were gravimetrically quantified. Scanning electron microscopy (SEM was used to analyse the char structure. H2, CH4, CO and CO2 were measured by means of gas chromatography (GC. A decrease in the char yield and an increase of the gas yield were observed when temperature increased. From 800°C on, it was observed that the char yield of samples Dig R and SW were constant, which indicated that the primary devolatilization reactions stopped. This fact was also corroborated by GC analysis. The bio-oil yield slightly increased with temperature, showing a maximum of 20.7 and 27.8 wt.% for samples Pre and SW, respectively, whereas sample Dig R showed a maximum yield of 16.5 wt.% at 800°C. CO2 and CO were the main released gases whereas H2 and CH4 production increased with temperature. Finally, an increase of char porosity was observed with temperature.

  15. Production of bio-oil from underutilized forest biomass using an auger reactor

    Science.gov (United States)

    H. Ravindran; S. Thangalzhy-Gopakumar; S. Adhikari; O. Fasina; M. Tu; B. Via; E. Carter; S. Taylor

    2015-01-01

    Conversion of underutilized forest biomass to bio-oil could be a niche market for energy production. In this work, bio-oil was produced from underutilized forest biomass at selected temperatures between 425–500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, heating value, ash, and water, were analyzed and compared with an ASTM standard...

  16. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production

    International Nuclear Information System (INIS)

    Chang, Siu Hua

    2014-01-01

    Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed. - Highlights: • Palm EFB has high heating value and low greenhouse gas emissions during combustion. • Conversion of EFB to bio-oil is mainly by fast pyrolysis without and with catalyst. • Bio-oil from EFB is lower in heating value, heavier and more acidic than fuel oil. • The viscosity of bio-oil from EFB is between those of light and heavy fuel oils. • The flash and pour points of bio-oil from EFB are close to those of light fuel oil

  17. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH2-BioCH4-MFC-integrated system.

    Science.gov (United States)

    Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk

    2017-01-01

    In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.

  18. Utilization possibilites of waste products from fishing and hunting to biogas and bio-oil production in Uummannaq County

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Jørgensen, Marianne Willemoes

    2008-01-01

    In spring 2007 a project was carried out at the Arctic Technology Centre in which research of various possibilities of utilizing waste products from fishing and hunting generated in Uummannaq County was performed. Numerous alternatives were identified in the project, which were weighed against...... the specific conditions that apply in Uummannaq County. The best alternatives were evaluated to be biogas production and utilization of fat from the fish waste to produce bio-oil. The results showed that with the price of energy in Greenland in 2009 of 3,71 DKR per kWh, the waste in Uummannaq County would...... amount to approximately 6 million DKR when using biogas production and 5,7 million DKR when using bio-oil. Compared with the energy used in Uummannaq County today, the biogas production would be able to supply 17 percent of the energy and bio-oil production would cover approximately 16 percent....

  19. WASTE-FREE PRODUCTION TECHNOLOGY OF DRY MASHED POTATOES

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2015-01-01

    Full Text Available Summary. According to data on norms of consumption of vegetable production of scientific research institute of Food of the Russian Academy of Medical Science, potatoes win first place with norm of 120 kg a year on the person. In this regard much attention is paid to processing of potatoes that allows to prolong the term of its validity, and also to reduce the capacity of storages and to reduce transport transportations as 1 kg of a dry potatoes produсt is equivalent 7-8 kg of fresh potatoes. Thus industrial processing of potatoes on dry mashed potatoes allows to reduce losses of potatoes at storage and transportation, there is a possibility of enrichment of products vitamins and other useful components, its nutrition value remains better, conditions for complex processing of raw materials with full recycling and creations of stocks of products from potatoes on a crop failure case are created. Dry mashed potatoes are a product of long storage. On the basis of studying of the production technology of mashed potatoes the analysis of technological processes as sources of creation of waste, and the directions of recovery of secondary raw materials for complex waste-free technology of processing of potatoes are defined is provided. The waste-free technological scheme of processing of potatoes and production of dry instant mashed potatoes on the basis of dehydration and moisture thermal treatment a component providing recovery of secondary carbohydrate content raw materials in the form of waste of the main production is developed. The main stages of production of dry instant mashed potatoes are described. It is offered the technological scheme of a production line of mashed potatoes on the basis of waste-free technology. Advantages of the offered waste-free production technology of dry instant mashed potatoes with processing of secondary starch-containing raw materials are given.

  20. The potential for second generation bio-ethanol production from ...

    African Journals Online (AJOL)

    A review of possible bio-sources that can be used for bioethanol production with emphasis on those that have potential of replacing conventional fuels with little or minor modification of existing biomass production capacity and trend is presented. Data analysis indicates that the straw from maize, sorghum and wheat can ...

  1. Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil.

    Science.gov (United States)

    Biswas, Bijoy; Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2017-10-01

    Pyrolysis of azolla, sargassum tenerrimum and water hyacinth were carried out in a fixed-bed reactor at different temperatures in the range of 300-450°C in the presence of nitrogen (inert atmosphere). The objective of this study is to understand the effect of compositional changes of various aquatic biomass samples on product distribution and nature of products during slow pyrolysis. The maximum liquid product yield of azolla, sargassum tenerrimum and water hyacinth (38.5, 43.4 and 24.6wt.% respectively) obtained at 400, 450 and 400°C. Detailed analysis of the bio-oil and bio-char was investigated using 1 H NMR, FT-IR, and XRD. The characterization of bio-oil showed a high percentage of aliphatic functional groups and presence of phenolic, ketones and nitrogen-containing group. The characterization results showed that the bio-oil obtained from azolla, sargassum tenerrimum and water hyacinth can be potentially valuable as a fuel and chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. WebBio, a web-based management and analysis system for patient data of biological products in hospital.

    Science.gov (United States)

    Lu, Ying-Hao; Kuo, Chen-Chun; Huang, Yaw-Bin

    2011-08-01

    We selected HTML, PHP and JavaScript as the programming languages to build "WebBio", a web-based system for patient data of biological products and used MySQL as database. WebBio is based on the PHP-MySQL suite and is run by Apache server on Linux machine. WebBio provides the functions of data management, searching function and data analysis for 20 kinds of biological products (plasma expanders, human immunoglobulin and hematological products). There are two particular features in WebBio: (1) pharmacists can rapidly find out whose patients used contaminated products for medication safety, and (2) the statistics charts for a specific product can be automatically generated to reduce pharmacist's work loading. WebBio has successfully turned traditional paper work into web-based data management.

  3. Drying-induced physico-chemical changes in cranberry products.

    Science.gov (United States)

    Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried

    2018-02-01

    Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality

    Science.gov (United States)

    The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...

  5. Bio-based C-3 Platform Chemical: Biotechnological Production and -Conversion of 3-Hydroxypropionaldehyde

    OpenAIRE

    Rezaei, Roya

    2013-01-01

    Demands for efficient, greener, economical and sustainable production of chemicals, materials and energy have led to development of industrial biotechnology as a key technology area to provide such products from bio-based raw materials from agricultural-, forestry- and related industrial residues and by-products. For the bio-based industry, it is essential to develop a number of building blocks or platform chemicals for C2-C6 chemicals and even aromatic chemicals. 3-hydroxypropionaldehyde (3H...

  6. Production of bio surfactants (Rhamnolipids) by pseudomonas aeruginosa isolated from colombian sludges

    International Nuclear Information System (INIS)

    Pimienta, A.L; Diaz M, M. P; Carvajal S, F.G; Grosso V, J.L.

    1997-01-01

    The bio surfactant production by strains of Pseudomonas aeruginosa isolated from Colombian hydrocarbon contaminated sludge has been determined. The methodology included the isolation of microorganisms, standardization of batch culture conditions for good surfactant production and characterization of the produced rhamnolipid. Several carbon sources were evaluated with regard to the growth and production curves. The stability of the rhamnolipid was also determined under variable conditions of pH, temperature and salt concentration. The strain Pseudomonas aeruginosa BS 3 showed bio surfactant production capabilities of rhamnolipid resulting in concentrations up to 2 g-dm with surface tensions of 30 - 32 mN-m in batch cultures with commercial nutrients

  7. Computational Methods to Assess the Production Potential of Bio-Based Chemicals.

    Science.gov (United States)

    Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M; Herrgård, Markus J

    2018-01-01

    Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.

  8. Characteristics of bio-oil from the pyrolysis of palm kernel shell in a newly developed two-stage pyrolyzer

    International Nuclear Information System (INIS)

    Oh, Seung-Jin; Choi, Gyung-Goo; Kim, Joo-Sik

    2016-01-01

    Pyrolysis of palm kernel shell was performed using a two-stage pyrolyzer consisting of an auger reactor and a fluidized bed reactor within the auger reactor temperature range of ∼290–380 °C at the fluidized bed reactor temperature of ∼520 °C, and with a variable residence time of the feed material in the auger reactor. The highest bio-oil yield of the two-stage pyrolysis was ∼56 wt%. The bio-oil derived from the auger reactor contained degradation products of the hemicelluloses of PKS, such as acetic acid, and furfural, whereas the fluidized bed reactor produced a bio-oil with high concentrations of acetic acid and phenol. The auger reactor temperature and the residence time of PKS in the auger reactor had an influence on the acetic acid concentration in the bio-oil, while their changes did not induce an observable trend on the phenol concentration in the bio-oil derived from the fluidized bed reactor. The maximum concentrations of acetic acid and phenol in bio-oil were ∼78 and 12 wt% dry basis, respectively. As a result, it was possible for the two-stage pyrolyzer to separately produce two different bio-oils in one operation without any costly fractionation process of bio-oils. - Highlights: • The two-stage pyrolyzer is composed of an auger and a fluidized bed reactor. • The two-stage pyrolyzer produced two different bio-oils in a single operation. • The maximum bio-oil yield of the two-stage pyrolysis was ∼56 wt%. • The maximum concentration of acetic acid in bio-oil was ∼78 wt% dry basis. • The maximum concentration of phenol in bio-oil was ∼12 wt% dry basis.

  9. Study of by-products of agro-food industries which could be used for bio-fuel production (animal fat, used food oils, and wine production by-products). Synthesis of the final report

    International Nuclear Information System (INIS)

    Gomy, Catherine; Thonier, Gregoire; Gagnepain, Bruno; Mhiri, Tarek

    2015-04-01

    As the Renewable Energy directive proposes the implementation of incentive arrangements for the production of bio-fuels from biomass, this report proposes a synthesis of a study which addressed three by-products of agro-food industry and of catering (collective, traditional, fast) which can help to reach objectives of energy production from biomass: used food oils, rendered animal fat of category 1 and 2, and vinification by-products (grape marc, lees, sludge). The objectives were to quantify, at the French national and regional levels, present resources and uses for these three by-products, non-valorised volumes and thus potentially available volumes for the production of liquid bio-fuels, to identify present actors and their interactions, and to study the potential of local production of liquid bio-fuels. The study comprised a comprehensive analysis of production and valorisation sectors for the three addressed types of by-products, and an identification of recent experiments implemented for the production of liquid bio-fuels. This synthesis states the lessons learned from the study of these three different sectors, and proposes recommendations for further developments

  10. Catalytic hydrothermal liquefaction (HTL of biomass for bio-crude production using Ni/HZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2017-04-01

    Full Text Available Hydrothermal liquefaction (HTL is an effective method that can convert biomass into bio-crude, but direct use of bio-crude derived from biomass HTL remains a challenge due to the lower quality. In this study, bifunctional Ni/HZSM-5 catalysts and zinc hydrolysis were combined to produce upgraded bio-crude in an in-situ HTL process. The K2CO3 and HZSM-5 catalysts with different Ni loading ratios were tested. The effects of different catalysts on the yield and quality of bio-crude and gas were investigated. The results indicated that the catalysts improved bio-crude and gas yields, compared to pine sawdust liquefaction without catalyst. The catalysts reduced the contents of undesirable oxygenated compounds such as acids, ketones, phenols, alcohols and esters in bio-crude products while increased desirable hydrocarbons content. K2CO3 produced highest bio-crude yield and lowest solid residue yield among all catalysts. Compared to parent HZSM-5 catalyst, bifunctional Ni/HZSM-5 catalysts exhibited higher catalyst activity to improve quality of upgraded bio-crude due to its integration of cracking and hydrodeoxygenation reactions. 6%Ni/HZSM-5 catalyst produced the bio-crude with the highest hydrocarbons content at 11.02%. This catalyst can be a candidate for bio-crude production from biomass HTL.

  11. Composting plant conversion for the production of bio based products; Konversion eines Kompostwerkes zur Herstellung biobasierter Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Marc [Universitaetsklinikum Jena (Germany). Stabsstelle Umweltschutz

    2013-03-15

    The intention behind this paper is to explore the potential of extracting bio based products such as lactic acid and further organic acid compounds during a successful composting process, by inserting an additional pre-treatment level into the existing process. The fundamental idea of extracting bio based products and biogas is based on the extension of a composting plant with an anaerobic intermediate level of maceration and a bypass reactor as a potential bio-refinery. For the extraction of carboxylic acid out of the macerated substance the principle of electrodialysis on a laboratory scale can be successfully verified by means of concentration of free acids. The concluding assessment of the composting plant Darmstadt-Kranichstein with regards to its potential shows that further examination on a large scale for the extraction of biobased products using biowaste is deemed to be appropriate on material and energetic consideration. The study demonstrates the potential for a combined aerobic/anaerobic plant with composting, renewable energy and secondary raw materials generation. (orig.)

  12. Effects of Freeze-Dried Vegetable Products on the Technological Process and the Quality of Dry Fermented Sausages.

    Science.gov (United States)

    Eisinaite, Viktorija; Vinauskiene, Rimante; Viskelis, Pranas; Leskauskaite, Daiva

    2016-09-01

    The aim of this study was to compare the chemical composition of freeze-dried vegetable powders: celery, celery juice, parsnip and leek. The effect of different freeze-dried vegetables onto the ripening process and the properties of dry fermented sausages was also evaluated. Vegetable products significantly (p products contained higher amounts of nitrates, total phenolic compounds and lower amounts of sucrose, parsnip had higher concentration of proteins, leek was rich in fat. The analysis of pH, water activity, lactic acid bacteria, coagulase-positive staphylococci and coliforms content showed that the incorporation of freeze-dried vegetables had no negative effect on the fermentation and ripening process of dry fermented sausages. In addition, the color parameters for sausages with the added lyophilised celery products were considerable (p products and control. Freeze-dried celery, celery juice, parsnip and leek have some potential for the usage as a functional ingredient or as a source for indirect addition of nitrate in the production of fermented sausages. © 2016 Institute of Food Technologists®

  13. Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel

    Science.gov (United States)

    Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.

    2016-10-01

    Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.

  14. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products.

    Science.gov (United States)

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2015-09-01

    This study aimed to evaluate impingement drying (ID) as a rapid drying method to dry wet apple pomace (WAP) and to investigate the fortification of dried apple pomace flour (APF) or WAP in bakery and meat products. ID at ~110 °C reduced the moisture content of apple pomace from 80 % (wet basis) to 4.5 % within 3 h, compared with 24 h to 2.2 % using 40 °C forced-air drying and ~60 h to 2.3 % using freeze drying. Furthermore, ID enhanced the extractable phenolic compounds, allowing for a 58 % increase in total phenolic content (TPC) compared with wet pomace, a 110 % and 83 % higher than TPC in forced-air dried and freeze dried samples, respectively. The 15-20 % APF-fortified cookies were found to be ~44-59 % softer, ~30 % more chewy, and ~14 % moister than those of the control. WAP-fortified meat products had significantly higher dietary fiber content (0.7-1.8 % vs. 0.1-0.2 % in control) and radical scavenging activity than that of the control. These results suggest that impingement drying is a fast and effective method for preparing dried APF with highly retained bioactive compounds, and apple pomace fortified products maintained or even had improved quality.

  15. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    Science.gov (United States)

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  16. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen; Ho, Cheng-Yu.; Chen, Wei-En; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chou, Chia-Hung; Lay, Jiunn-Jyi [Department of Science and Technology, National Kaohsiung First University, Kaohsiung (China)

    2008-10-15

    By using brewery yeast waste and microflora from rice straw compost, an anaerobic semi-solid bio-hydrogen-producing system has been established. For the purpose of industrialization, the major players of both aerobic and anaerobic bacterial strains in the system were isolated and their combination for an effective production of bio-hydrogen and other bio-fuels was examined in this study. The phylogenetic analysis found that four anaerobic isolates (Clostridium beijerinckii L9, Clostridium diolis Z2, Clostridium roseum Z5-1, and C. roseum W8) were highly related with each other and belongs to the cluster I clostridia family, the family that many of solvent-producing strains included. On the other hand, one of the aerobic isolates, the Bacillus thermoamylovorans strain I, shown multiple extracellular enzyme activities including lipase, protease, {alpha}-amylase, pectinase and cellulase, was suggested as a good partner for creating an anaerobic environment and pre-saccharification of substrate for those co-cultured solventogenic clostridial strain. Among these clostridial strains, though C. beijerinckii L9 do not show as many extracellular enzyme activities as Bacillus, but it performs the highest hydrogen-producing ability. The original microflora can be updated to a syntrophic bacterial co-culture system contended only with B. thermoamylovorans I and C. beijerinckii L9. The combination of aerobic Bacillus and anaerobic Clostridium may play the key role for developing the industrialized bio-fuels and bio-hydrogen-producing system from biomass. (author)

  17. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  18. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass.

    Science.gov (United States)

    Leng, Lijian; Li, Jun; Yuan, Xingzhong; Li, Jingjing; Han, Pei; Hong, Yuchun; Wei, Feng; Zhou, Wenguang

    2018-03-01

    Co-liquefaction of municipal sewage sludge (MSS) and lignocellulosic biomass such as rice straw or wood sawdust at different mixing ratios and the characterization of the obtained bio-oil and bio-char were investigated. Synergistic effects were found during co-processing of MSS with biomass for production of bio-oil with higher yield and better fuel properties than those from individual feedstock. The co-liquefaction of MSS/rice straw (4/4, wt) increased the bio-oil yield from 22.74% (bio-oil yield from liquefaction of MSS individually) or 23.67% (rice straw) to 32.45%. Comparable increase on bio-oil yield was also observed for MSS/wood sawdust mixtures (2/6, wt). The bio-oils produced from MSS/biomass mixtures were mainly composed of esters and phenols with lower boiling points (degradation temperatures) than those from individual feedstock (identified with higher heavy bio-oil fractions). These synergistic effects were probably resulted from the interactions between the intermittent products of MSS and those of biomass during processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Preliminary detection of native lipase producing microorganisms for bio diesel production

    International Nuclear Information System (INIS)

    Ciudad, G.; Jorquera, M.; Briones, R.; Azocar, L.; Leal, J.; Navia, R.

    2009-01-01

    Lipase producing microorganisms (LPM) may catalyze the hydrolysis or transesterification of triacylglycerols to alkyl esters of fatty acids (bio diesel). The main objective of this work was to detect LPM in oil and grease contaminated environments for future applications in bio diesel production from rapeseed oil. Samples from contaminated soil (with rapeseed oil) from an industrial facility and contaminated soil (with salmon grease) near to a fish wastewater treatment plant were collected. (Author)

  20. Preliminary detection of native lipase producing microorganisms for bio diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Ciudad, G.; Jorquera, M.; Briones, R.; Azocar, L.; Leal, J.; Navia, R.

    2009-07-01

    Lipase producing microorganisms (LPM) may catalyze the hydrolysis or transesterification of triacylglycerols to alkyl esters of fatty acids (bio diesel). The main objective of this work was to detect LPM in oil and grease contaminated environments for future applications in bio diesel production from rapeseed oil. Samples from contaminated soil (with rapeseed oil) from an industrial facility and contaminated soil (with salmon grease) near to a fish wastewater treatment plant were collected. (Author)

  1. The way to bio heat. A manual on production of heat from bio fuel; Veien til biovarme. Manual for produksjon av ferdigvarme fra biobrensel

    Energy Technology Data Exchange (ETDEWEB)

    Breen, Tor; Liodden, Ole Joergen; Farsund Oeystein; Martinsen, Arnold Kyrre

    2008-09-26

    The manual is a tool in the process of planning and establishing a bio heat company. It focuses on both technical, administrative, and economic aspects. Part 1 of the manual briefly reviews the production of bio fuel and bio heat, part 2 considers the organizational aspects of the project, and part 3 is a tool box containing laws and regulations, templates for contracts/agreements etc

  2. Bio-ethanol Production from Green Onion by Yeast in Repeated Batch.

    Science.gov (United States)

    Robati, Reza

    2013-09-01

    Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast "Saccharomyces cerevisiae" in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.

  3. Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Highlights: ► We study synthetic gas production from dry black liquor gasification system. ► Direct causticization eliminates energy intensive lime kiln reducing biomass use. ► Results show large SNG production potential at significant energy efficiency (58%). ► Substantial CO 2 capture potential plus CO 2 reductions from natural gas replacement. ► Significant transport fuel replacement especially in Sweden and Europe. -- Abstract: Synthetic natural gas (SNG) production from dry black liquor gasification (DBLG) system is an attractive option to reduce CO 2 emissions replacing natural gas. This article evaluates the energy conversion performance of SNG production from oxygen blown circulating fluidized bed (CFB) black liquor gasification process with direct causticization by investigating system integration with a reference pulp mill producing 1000 air dried tonnes (ADt) of pulp per day. The direct causticization process eliminates use of energy intensive lime kiln that is a main component required in the conventional black liquor recovery cycle with the recovery boiler. The paper has estimated SNG production potential, the process energy ratio of black liquor (BL) conversion to SNG, and quantified the potential CO 2 abatement. Based on reference pulp mill capacity, the results indicate a large potential of SNG production (about 162 MW) from black liquor but at a cost of additional biomass import (36.7 MW) to compensate the total energy deficit. The process shows cold gas energy efficiency of about 58% considering black liquor and biomass import as major energy inputs. About 700 ktonnes per year of CO 2 abatement i.e. both possible CO 2 capture and CO 2 offset from bio-fuel use replacing natural gas, is estimated. Moreover, the SNG production offers a significant fuel replacement in transport sector especially in countries with large pulp and paper industry e.g. in Sweden, about 72% of motor gasoline and 40% of total motor fuel could be replaced.

  4. Recent developments in high-quality drying of vegetables, fruits, and aquatic products.

    Science.gov (United States)

    Zhang, Min; Chen, Huizhi; Mujumdar, Arun S; Tang, Juming; Miao, Song; Wang, Yuchuan

    2017-04-13

    Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.

  5. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials production

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Tanaka, K.; Asaji, T. [Tateyama Machine Co., Ltd., 30 Shimonoban, Toyama, Toyama 930-1305 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Ter 18/c (Hungary); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2010-02-15

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C{sub 60} ion beam production.

  6. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    Science.gov (United States)

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  7. Assembly and method for drying a product

    NARCIS (Netherlands)

    Boxtel, van A.J.B.; Bartels, P.V.; Djaeni, M.; Sanders, J.P.M.; Straten, van G.

    2008-01-01

    The application relates to an assembly for drying a product, comprising at least on drying device and at least one adsorption device, in which the adsorption device is provided with regenerable adsorption material for extracting water from a gas and comprises a gas inlet and a gas outlet, and is

  8. Energetic performance analysis of drying agricultural products ...

    African Journals Online (AJOL)

    Renewable energy sources such as solar energy for drying purposes in a more effective and efficient way is inevitable for preservation of agricultural products in developing nations with inadequate access to electricity. This study investigates the effects of using a solar tracking device on the energy performance of drying ...

  9. Influence of product thickness, chamber pressure and heating conditions on production rate of freeze-dried yoghurt

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N.K. [G.B. Pant Univ., of Agriculture and Technology (India). Dept. of Mechanical Engineering; Arora, C.P. [Indian Inst. of Tech., New Delhi (India)

    1995-06-01

    The effects of product thickness, chamber pressure and heating conditions on product temperature profiles and production rate of freeze-dried yoghurt were investigated experimentally. Three sample thicknesses - 3.8 mm, 6.2 mm and 9.4 mm - were tested at chamber pressures of 0.01 and 0.5 mmHg. The production rate increased by decreasing product thickness in contact heating through the bottom of the frozen layer, whereas no significant change was observed in radiant heating. A reduction in chamber pressure from 0.50 to 0.01 mmHg increased the drying time in radiant heating. Maximum production rate was obtained when the thickness of dried product was 6.2 mm, when heat was transferred simultaneously through the frozen and dried layers, and the chamber pressure was at 0.01 mmHg. Use of the product tray developed in this study prevents the growth of dry layers at the contact surfaces. (Author)

  10. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Zulkafli Ghazali; Mohd Zaid Mohamed; Phongsakorn, P.T.; Mohamad Puad Abu

    2014-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  11. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Perspectives on Resource Recovery from Bio-Based Production Processes: From Concept to Implementation

    DEFF Research Database (Denmark)

    S.B.A. Udugama, Isuru; Mansouri, Seyed Soheil; Mitic, Aleksandar

    2017-01-01

    Recovering valuable compounds from waste streams of bio-based production processes is in line with the circular economy paradigm, and is achievable by implementing “simple-to-use” and well-established process separation technologies. Such solutions are acceptable from industrial, economic...... and environmental points of view, implying relatively easy future implementation on pilot- and full-scale levels in the bio-based industry. Reviewing such technologies is therefore the focus here. Considerations about technology readiness level (TRL) and Net Present Value (NPV) are included in the review, since TRL...... and NPV contribute significantly to the techno-economic evaluation of future and promising process solutions. Based on the present review, a qualitative guideline for resource recovery from bio-based production processes is proposed. Finally, future approaches and perspectives toward identification...

  13. Hydrothermal Liquefaction of Dried Distillers Grains with solubles: A reaction temperature study

    DEFF Research Database (Denmark)

    Mørup, Anders; Christensen, Per Runge; Aarup, David Friis

    2012-01-01

    provides rapid heating of biomass feeds and the option of performing multiple sequential repetitions. This bypasses long, uncontrollable temperature gradients and unintended changes in the reaction chemistry. The product, a crude bio-oil, was characterized in terms of yield, elemental composition......The effect of the reaction temperature on hydrothermal liquefaction of dried distillers grains with solubles (DDGS) was investigated using a novel stop-flow reactor system at varying temperatures (300–400 °C), fixed pressure (250 bar), and fixed reaction time (15 min). The stop-flow reactor......, and chemical composition. Higher reaction temperatures resulted in improved bio-oil yields, less char formation, and higher heating values of the bio-oil. A supercritical reaction temperature of 400 °C was found to produce bio-oil in the highest yields and of the best quality....

  14. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    Science.gov (United States)

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-07-28

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  15. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    Science.gov (United States)

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  16. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered......% of that accumulated by the prey bacteria, even at high biomass concentrations. This innovative downstream process highlights how B. bacteriovorus can be used as a novel, biological lytic agent for the inexpensive, industrial scale recovery of intracellular products from different Gram-negative prey cultures....

  17. Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yangyang; Parajuli, Prem B.

    2011-08-10

    Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

  18. Bio-methane & Bio-hydrogen. Status and perspectives of biological methane and hydrogen production

    NARCIS (Netherlands)

    Wijffels, R.H.; Janssen, M.G.J.

    2003-01-01

    Eerst wordt het kader geschetst voor de potentiële rol van bio-methaan en bio-waterstof in de energiehuishouding en de invloeden daarop van de ontwikkeling van eindgebruikstechnologie en infrastructuur, en het energiebeleid. Daarna wordt uitvoerig ingegaan op de technieken voor bio-methaan en

  19. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    Silva Munoz, L. de

    2007-12-01

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  20. Positive aspects issued from bio-corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    De Silva Munoz, Leonardo

    2007-01-01

    Microbially influenced corrosion or bio-corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio-corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio films could play a major role in steel bio-corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild ph conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase / glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author) [fr

  1. Production of gaseous and liquid bio-fuels from the upgrading of lignocellulosic bio-oil in sub- and supercritical water: Effect of operating conditions on the process

    International Nuclear Information System (INIS)

    Remón, J.; Arcelus-Arrillaga, P.; García, L.; Arauzo, J.

    2016-01-01

    Highlights: • Bio-oil valorisation in sub-/supercritical water: a promising route for bio-fuels. • Effect of P, T, t, catalyst and water regime on bio-oil upgrading studied in depth. • Tailor-made route for H_2, CH_4 and liquid bio-fuel production in a single process. • Upgraded liquid with high proportions of C and H, higher HHV and less O content. - Abstract: This work analyses the influence of the temperature (310–450 °C), pressure (200–260 bar), catalyst/bio-oil mass ratio (0–0.25 g catalyst/g bio-oil), and reaction time (0–60 min) on the reforming in sub- and supercritical water of bio-oil obtained from the fast pyrolysis of pinewood. The upgrading experiments were carried out in a batch micro-bomb reactor employing a co-precipitated Ni–Co/Al–Mg catalyst. This reforming process turned out to be highly customisable for the valorisation of bio-oil for the production of either gaseous or liquid bio-fuels. Depending on the operating conditions and water regime (sub/supercritical), the yields to upgraded bio-oil (liquid), gas and solid varied as follows: 5–90%, 7–91% and 3–31%, respectively. The gas phase, having a LHV ranging from 2 to 17 MJ/m"3 STP, was made up of a mixture of H_2 (9–31 vol.%), CO_2 (41–84 vol.%), CO (1–22 vol.%) and CH_4 (1–45 vol.%). The greatest H_2 production from bio-oil (76% gas yield with a relative amount of H_2 of 30 vol.%) was achieved under supercritical conditions at a temperature of 339 °C, 200 bar of pressure and using a catalyst/bio-oil ratio of 0.2 g/g for 60 min. The amount of C, H and O (wt.%) in the upgraded bio-oil varied from 48 to 74, 4 to 9 and 13 to 48, respectively. This represents an increase of up to 37% and 171% in the proportions of C and H, respectively, as well as a decrease of up to 69% in the proportion of O. The HHV of the treated bio-oil shifted from 20 to 35 MJ/kg, which corresponds to an increase of up to 89% with respect to the HHV of the original bio-oil. With a

  2. Impact of Dry Eye Disease on Work Productivity, and Patients' Satisfaction With Over-the-Counter Dry Eye Treatments.

    Science.gov (United States)

    Nichols, Kelly K; Bacharach, Jason; Holland, Edward; Kislan, Thomas; Shettle, Lee; Lunacsek, Orsolya; Lennert, Barb; Burk, Caroline; Patel, Vaishali

    2016-06-01

    To assess the effect of dry eye disease on work productivity and performance of non-work-related activities, and patients' satisfaction with over-the-counter (OTC) dry eye treatments. In this prospective, noninterventional, cross-sectional study, conducted at 10 U.S. optometry/ophthalmology practices, 158 symptomatic dry eye patients naïve to prescription medication underwent standard dry eye diagnostic tests and completed Work Productivity and Activity Impairment (WPAI) and Ocular Surface Disease Index (OSDI) questionnaires. Use of OTC dry eye medication, and satisfaction with OTC medication and symptom relief were also assessed. On average, dry eye resulted in loss of 0.36% of work time (∼5 minutes over 7 days) and ∼30% impairment of workplace performance (presenteeism), work productivity, and non-job-related activities. Presenteeism and productivity impairment scores showed significant correlation with OSDI total (r = 0.55) and symptom domain (r = 0.50) scores, but not with dry eye clinical signs. Activity impairment score showed stronger correlation with OSDI total (r = 0.61) and symptom domain (r = 0.53) scores than with clinical signs (r ≤ 0.20). Almost 75% of patients used OTC dry eye medication. Levels of patient satisfaction with OTC medication (64.2%) and symptom relief from OTC (37.3%) were unaffected by administration frequency (≥3 vs. ≤2 times daily). Dry eye causes negligible absenteeism, but markedly reduces workplace and non-job-related performances. Impairment of work performance is more closely linked to dry eye symptoms than to clinical signs. Patients' perceptions of OTC dry eye medication tend to be more positive than their perceptions of symptom relief.

  3. The mycobiota of three dry-cured meat products from Slovenia

    DEFF Research Database (Denmark)

    Sonjak, Silva; Ličen, Mia; Frisvad, Jens Christian

    2011-01-01

    “milanense” was isolated from 21 items. The other penicillia were rarely isolated. Of the isolated and identified species, those that can produce mycotoxins are: A. versicolor, Penicillium brevicompactum, Penicillium chrysogenum, P. nordicum, and Penicillium polonicum. Their growth on dry-cured meat products......The surface mycobiota of three types of Slovenian dry-cured meat products were isolated from a total of 75 items of product that were sampled periodically during the drying/ripening stage of processing. The predominant filamentous fungal genus isolated was Penicillium. Eurotium spp., Aspergillus...

  4. Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment.

    Science.gov (United States)

    Kim, Ho Myeong; Choi, Yong-Soo; Lee, Dae-Seok; Kim, Yong-Hwan; Bae, Hyeun-Jong

    2017-07-01

    Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Technical aspects of the production of dried extract of Maytenus ilicifolia leaves by jet spouted bed drying.

    Science.gov (United States)

    Cordeiro, Daniel S; Oliveira, Wanderley P

    2005-08-11

    This work presents an evaluation of the performance of jet spouted bed with inert particles for production of dried extracts of Maytenus ilicifolia leaves. The development of the extraction procedure was carried-out with the aid of three factors and three levels Box-Behnken design. The effects of the extraction variables, temperature (Text); stirring time (theta); and the ratio of the plant to solvent mass (m(p)/m(s)) on the extraction yield were investigated. The drying performance and product properties were evaluated through the measurement of the product size distribution, loss on drying (Up), flavonoid degradation (D) and, process thermal efficiency (eta). These parameters were measured as a function of the inlet temperature of the spouting gas (Tgi), the feed mass flow rate of the concentrated extract relative to mass flow rate of the spouting gas (Ws/Wg), the ratio between the feed flow rate of spouting gas relative to feed flow rate at a minimum spouting condition (Q/Qms) and the static bed height (H0). A powder product with a low degradation of active substances and good physical properties were obtained for selected operating conditions. These results indicate the feasibility of this drying equipment for the production of dried extracts of M. ilicifolia Martius ex Reiss leaves.

  6. Production of bio-oil with flash pyrolysis and the combustion of it; Biooeljyn tuotanto flashpyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T. [Vapo Oy, Jyvaeskylae (Finland)

    1995-12-31

    The target of the research is to study the production of bio-oils using flash-pyrolysis and utilization of the bio-oil in oil-fueled boilers. The PDU-device was ordered in December 1994. The device was tested in Canada in the beginning of March 1996. The device will be mounted in Otaniemi in the research unit of VTT Energy. The device will by equipped, if possible, with a hot-filtering device in order to improve the purity and the quality of the oil. The capacity of the PDU-device is 20 kg/h of dry biomass of about 10 wt-% DS-content, with particle size less than 6 mm. The actual tests will be made in autumn 1996. The investment costs of the PDU are about 2.5 million FIM. The Canadian funding of the project is about 50 %. It has been planned that within the research project of Vapo oy, about 50 - 100 tons of bio-oil will be acquired from Canada for the engine tests carried out by Wartsilae Diesel, and the project will be responsible for planning and operation of the PDU and the demonstration plants. About 50 tons of wood-oil was received from Canada in January 1996 for the engine tests, the results of which will be reported separately by Wartsilae Diesel. The present costs of the tasks are about 1.2 million FIM, but the main part of the costs will be formed in 1996-1997

  7. Production of bio-oil with flash pyrolysis and the combustion of it; Biooeljyn tuotanto flashpyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T [Vapo Oy, Jyvaeskylae (Finland)

    1996-12-31

    The target of the research is to study the production of bio-oils using flash-pyrolysis and utilization of the bio-oil in oil-fueled boilers. The PDU-device was ordered in December 1994. The device was tested in Canada in the beginning of March 1996. The device will be mounted in Otaniemi in the research unit of VTT Energy. The device will by equipped, if possible, with a hot-filtering device in order to improve the purity and the quality of the oil. The capacity of the PDU-device is 20 kg/h of dry biomass of about 10 wt-% DS-content, with particle size less than 6 mm. The actual tests will be made in autumn 1996. The investment costs of the PDU are about 2.5 million FIM. The Canadian funding of the project is about 50 %. It has been planned that within the research project of Vapo oy, about 50 - 100 tons of bio-oil will be acquired from Canada for the engine tests carried out by Wartsilae Diesel, and the project will be responsible for planning and operation of the PDU and the demonstration plants. About 50 tons of wood-oil was received from Canada in January 1996 for the engine tests, the results of which will be reported separately by Wartsilae Diesel. The present costs of the tasks are about 1.2 million FIM, but the main part of the costs will be formed in 1996-1997

  8. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Fermentation of Anaerobic Cow Waste as Bio-Slurry Organic Fertilizer and Nitrogen Chemical Fertilizer on Soybean

    Science.gov (United States)

    Yafizham; Sutarno

    2018-02-01

    The study aimed was to evaluate the effect of bio-slurry organic fertilizer and urea chemical fertilizer combination on fresh material weight, phosphorus and potassium soybean straw, and seed weight per soybean plant plot. The experiment was conducted with a randomized block design with a single treatment repeated 5 times consisting of P0: control (without fertilizer), P1: bio-slurry 10 t/ha + 25 kg of N/ha, P2: bio-slurry 10 t/ha + 50 kg of N/ha, P3: bio-slurry 10 t/ha + 75 kg of N/ha, P4: bio-slurry 10 t/ha + 100 kg of N/ha and P5: bio-slurry 10 t/ha. The results showed that bio-slurry treatment of 10 t/ha + 25 kg of N/ha resulted in the highest fresh weight and dry weight of soybean plants, respectively of 240.7 g and 22.33 g, but not significantly different from the bio-slurry treatment of 10 t/ha + 50 kg of N/ha which yielded fresh weight of 197.7 g and a dry weight of 19.08 g. P production of 10.23 g per plant was significantly higher than other treatments but didn’t differ significantly between P2 and P4 treatments of 8.05 and 7.17 g per plant. The bio-slurry treatment of 10 t/ha + 25 kg of N/ha also yielded K of 6.46 g per plant butn’t unlike the bio-slurry treatment of 10 t/ha + 50 kg of N/ha. While the number of pods per plant and weight of 100 grains of the highest soybean seeds were also produced from bio-slurry treatment of 10 t/ha + 25 kg of N/ha.

  10. Production of bio diesel from chicken frying oil

    International Nuclear Information System (INIS)

    Bakir, E.T.; Fadhil, A.B.

    2011-01-01

    Chicken fried oil was converted into different bio diesels through single step transesterification and two step transesterification, namely acid-base and base-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The results showed that two step base catalyzed transesterification was better compared to other methods. It resulted in higher yield and better fuel properties. Transesterification of fried chicken oil was monitored by TLC technique and compared with that of the parent oil. Fuel properties of the products have been measured and found markedly enhanced compared to those of the parent oil. Also, the values satisfied the standard limits according to the ASTM standards. Blending of the better bio diesel sample with petro diesel was made using three volume percentages (10, 30 and 50% v/v). The results disclosed that blending had slight effect on the original properties of petro diesel.

  11. Bio-based composites from stone groundwood applied to new product development

    OpenAIRE

    Julián Pérez, Fernando; Méndez González, José Alberto; Espinach Orús, Xavier; Verdaguer Pujadas, Narcís; Mutjé Pujol, Pere; Vilaseca Morera, Fabiola

    2012-01-01

    This paper deals with the product design, engineering, and material selection intended for the manufacturing of an eco-friendly chair. The final product is expected to combine design attributes with technical and legal feasibility with the implementation of new bio-based materials. Considering the industrial design, a range of objectives and trends were determined after setting the market requirements, and the final concept was proposed and modeled. The product geometry, production technology...

  12. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  13. Bio-fuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    European Union bio-fuel use for transport reached 12 million tonnes of oil equivalent (mtoe) threshold during 2009. The slowdown in the growth of European consumption deepened again. Bio-fuel used in transport only grew by 18.7% between 2008 and 2009, as against 30.3% between 2007 and 2008 and 41.8% between 2006 and 2007. The bio-fuel incorporation rate in all fuels used by transport in the E.U. is unlikely to pass 4% in 2009. We can note that: -) the proportion of bio-fuel in the German fuels market has plummeted since 2007: from 7.3% in 2007 to 5.5% in 2009; -) France stays on course with an incorporation rate of 6.25% in 2009; -) In Spain the incorporation rate reached 3.4% in 2009 while it was 1.9% in 2008. The European bio-diesel industry has had another tough year. European production only rose by 16.6% in 2009 or by about 9 million tonnes which is well below the previous year-on-year growth rate recorded (35.7%). France is leading the production of bio-ethanol fuels in Europe with an output of 1250 million liters in 2009 while the total European production reached 3700 million litters and the world production 74000 million liters. (A.C.)

  14. DryCardTM — A Low-Cost Dryness Indicator for Dried Products

    Directory of Open Access Journals (Sweden)

    James F. Thompson

    2017-10-01

    Full Text Available Mycotoxin contamination of food and feed is a significant health hazard in humid areas of the world. Fungal development can be halted if the water activity of dried products is kept below 0.65. This preliminary study evaluates the color response and response time of a low-cost humidity indicator that estimates water activity. The DryCardTM has a consistent color response to relative humidity and its response time is fast enough to be used in practical situations for estimating water activity. The card comes with use instructions and it can be reused many times. It is a crucial tool to assist smallholder farmers and traders in ensuring their crops have been adequately dried.

  15. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    Science.gov (United States)

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  16. Potential of waste frying oil as a feedstock for the production of bio-diesel

    Energy Technology Data Exchange (ETDEWEB)

    Quadri, Syed M Raza [Dept. of Chemical Engineering, Z.H.C.E.T, A.M.U, Aligarh (India)], e-mail: chemicalraza@gmail.com; Wani, Omar Bashir; Athar, Moina [Dept. of Petroleum Studies, Z.H.C.E.T, A.M.U, Aligarh (India)

    2012-11-01

    To face the challenges of climbing Petroleum demand and of climate changes related to Carbon dioxide emissions, interest grows in sustainable fuels made from organic matter. World production of bio fuels has experienced phenomenal growth. The search for alternatives to petroleum based fuel has led to the development of fuels from various renewable sources, including feed stocks, such as fats and oils. Several kinds of fuels can be derived from these feed stocks. One of them is biodiesel, which is mono alkyl esters of vegetables oils and animal fats and produced by transesterification of oil and fats with alcohols in the presence of acid, alkali or enzyme base catalysts. The main hurdle in using the biodiesel is its cost which is mainly the cost of virgin oil. In India every year Millions of liters of waste frying oil are discarded into the sewage system which adds cost to its treatment and add up to the pollution of ground water. This paper proposed the production of Bio-diesel from the very same waste frying oil. The production of Bio-diesel from this waste frying oil offers economic, social, environmental and health benefits. The Bio-diesel produced finds the same use as the conventional diesel but this happens to be cost effective.

  17. Environmental cost-effectiveness of bio diesel production in Greece: Current policies and alternative scenarios

    International Nuclear Information System (INIS)

    Iliopoulos, Constantine; Rozakis, Stelios

    2010-01-01

    Following European Directive 2003/30/EC, the Greek Government adapted legislation that introduces and regulates the bio diesel market. The implemented quota scheme allocates the country's annual, predetermined, tax exempt production of bio diesel to industries based on their ability to meet several criteria. A number of bio diesel supply chain stakeholders have criticized this policy for being efficiency-robbing and vague. This paper uses 2007 data from energy crop farms and three bio diesel-producing companies in order to assess these criticisms. We study the economic and environmental aspects of the currently adopted policy and compare them to three alternative scenarios. We conclude that such criticisms have a merit and that policy makers need to reconsider their alternative options regarding the promotion of bio diesel in transport. Permission of sales directly to local consumers and promotion of forward integration by farmers are efficiency enhancing and environment-friendly means of promoting the use of bio diesel in transport.

  18. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char

    International Nuclear Information System (INIS)

    Dong, Tao; Gao, Difeng; Miao, Chao; Yu, Xiaochen; Degan, Charles; Garcia-Pérez, Manuel; Rasco, Barbara; Sablani, Shyam S.; Chen, Shulin

    2015-01-01

    Highlights: • Highly active catalyst was prepared using bio-char co-produced in Auger pyrolysis. • Catalyst inhibitors in crude oil were effectively removed by a practical refinery process. • Free fatty acids (FFA) content in refined microalgal oil was reduced to less than 0.5%. • A total fatty acid methyl ester (FAME) yield of 99% was obtained via a two-step process. • The inexpensive bio-char catalyst is superior to Amberlyst-15 in pre-esterification. - Abstract: An efficient process for biodiesel production from fast-refined microalgal oil was demonstrated. A low cost catalyst prepared from pyrolysis-derived bio-char, was applied in pre-esterification to reduce free fatty acid (FFA) content. Results showed that the bio-char catalyst was highly active in esterification; however, the performance of the catalyst significantly reduced when crude microalgal oil was used as feedstock. To solve the problem caused by catalyst-fouling, a fast and scalable crude oil refinery procedure was carried out to remove chlorophyll and phospholipids that might degrade the catalyst and the quality of biodiesel. The activity and reusability of bio-char catalyst were remarkably improved in the fast-refined oil. FFA content in the refined microalgal oil was reduced to less than 0.5% after pre-esterification. The bio-char catalyst could be reused for 10 cycles without dramatic loss in activity. The pre-esterification fits the first-order kinetic reaction with activation energy of 42.16 kJ/mol. The activity of bio-char catalyst was superior to commercial Amberlyst-15 under the same reaction condition. A total fatty acid methyl ester (FAME, namely biodiesel) yield of 99% was obtained following the second-step CaO-catalyzed transesterification. The cost-effective bio-char catalyst has great potential for biodiesel production using feedstocks having high FFA content.

  19. Description of Ethical Bio-Technology Assessment Tools for Agriculture and Food Production. Interim Report Ethical Bio-TA Tools

    NARCIS (Netherlands)

    Beekman, V.

    2004-01-01

    The objective of 'Ethical Bio-TA Tools' project is to develop and improve tools for the ethical assessment of new technologies in agriculture and food production in general and modern biotechnologies in particular. The developed tools need to be designed for various purposes and contexts. They

  20. Bio-succinic acid production: Escherichia coli strains design from genome-scale perspectives

    Directory of Open Access Journals (Sweden)

    Bashir Sajo Mienda

    2017-10-01

    Full Text Available Escherichia coli (E. coli has been established to be a native producer of succinic acid (a platform chemical with different applications via mixed acid fermentation reactions. Genome-scale metabolic models (GEMs of E. coli have been published with capabilities of predicting strain design strategies for the production of bio-based succinic acid. Proof-of-principle strains are fundamentally constructed as a starting point for systems strategies for industrial strains development. Here, we review for the first time, the use of E. coli GEMs for construction of proof-of-principles strains for increasing succinic acid production. Specific case studies, where E. coli proof-of-principle strains were constructed for increasing bio-based succinic acid production from glucose and glycerol carbon sources have been highlighted. In addition, a propose systems strategies for industrial strain development that could be applicable for future microbial succinic acid production guided by GEMs have been presented.

  1. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Wang, Shurong; Guo, Zuogang; Cai, Qinjie; Guo, Long

    2012-01-01

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h −1 . The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h −1 . A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain

  2. Production of bio-oil with flash pyrolysis; Biooeljyn tuotanto flash-pyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T [Vapo Oy, Jyvaeskylae (Finland)

    1997-12-01

    The target of the R and D work is to study the production of bio-oils using Flash-pyrolysis technology and utilisation of the bio-oil in oil-fuelled boilers. The PDU-unit was installed at VTT Energy in Otaniemi in April 1996. The first test were carried out in June. In the whole project Vapo Oy is responsible for: acquiring the 20 kg/h PDU-device for development; follow up of the engine tests; the investment of 5 MW demonstration plant; to carry on the boiler and engine tests with Finnish bio-oils. (orig.)

  3. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    Science.gov (United States)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  4. Understanding bio-economics

    NARCIS (Netherlands)

    Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2008-01-01

    New plants for production of bio-based fuels, chemicals or plastics are being set up at an accelerating pace. However, this transition towards bio-based fuels, feedstocks and chemicals has not come without consequences. Increased demand has pushed up prices of key agricultural products such as maize

  5. Design methodology for bio-based processing: Biodiesel and fatty alcohol production

    DEFF Research Database (Denmark)

    Simasatikul, Lida; Arpornwichanopa, Amornchai; Gani, Rafiqul

    2013-01-01

    A systematic design methodology is developed for producing multiple main products plus side products starting with one or more bio-based renewable source. A superstructure that includes all possible reaction and separation operations is generated through thermodynamic insights and available data........ Economic analysis and net present value are determined to find the best economically and operationally feasible process. The application of the methodology is presented through a case study involving biodiesel and fatty alcohol productions....

  6. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Structural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh

    Liq® process compared with combustion is that also wet material can be processed. In the process, the waste is transformed to bio-oil, combustible gases and water-soluble organic compounds. The raw material used in this study was DDGS (Dried Distilled Grain with Solubles), a residual product in 1st generation...

  8. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

    NARCIS (Netherlands)

    Jonker, J.G.G.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2013-01-01

    This paper determines the energy consumption ratio and overall bio-energy production costs of microalgae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is

  9. Bio-hydrogen production from glycerol by a strain of Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.A.S.S; Bartolomeu, M.L.; Tome, M.M.; Rosa, M.F. [INETI, Unit of Biomass/Renewable Energy Department, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2008-07-01

    The goal of this work was to evaluate the H2 production from glycerol-containing byproducts obtained from biodiesel industrial production, using Enterobacter aerogenes ATCC 13048 Sputum. H2 production using as substrate pure glycerol and glycerol-containing biodiesel byproducts was compared. The effect of parameters such as initial substrate concentration and sodium chloride addition on the bio-hydrogen production efficiency was also investigated. The results showed that using 10 g/L of pure glycerol or biodiesel residues, containing the same concentration of glycerol as substrate, lead to similar bio-hydrogen productions (3.46 LH2/L and 3.28 LH2/L fermentation medium, respectively). This indicates that the performance of the E. aerogenes strain used was not influenced by the presence of other components than glycerol in biodiesel residues, at least for the tested waste concentration range. When sodium chloride was added to the fermentation medium with pure 10 g/L glycerol, H2 production was not affected (3.34 LH2/L fermentation medium), showing that metabolism of the E. aerogenes strain was not inhibited by this biodiesel waste component up to 4 g/L chloride concentration. Biodiesel residues used without sterilization provided a higher H2 production (1.03 L) than the ones submitted to previous sterilization in autoclave (0.89 L).

  10. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  11. Fabrication of Dry Electrode for Recording Bio-potentials

    International Nuclear Information System (INIS)

    Wang Yu; Yang Jian-Hong; Guo Kai; Pei Wei-Hua; Gui Qiang; Li Xiao-Qian; Chen Hong-Da

    2011-01-01

    Development of minimally invasive dry electrodes for recording biopotentials is presented. The detailed fabrication process is outlined. A dry electrode is formed by a number of microneedles. The lengths of the microneedles are about 150μm and the diameters are about 50μm. The tips of the microneedles are sharp enough to penetrate into the skin. The silver/silver chloride is grown on microneedle arrays and demonstrates good character. The electrocardiogram shows that the dry electrode is suitable for recording biopotentials. (general)

  12. Screening and Optimization of Bio surfactant Production by the Hydrocarbon-Degrading Bacteria

    International Nuclear Information System (INIS)

    Ainon Hamzah; Noramiza Sabturani; Shahidan Radiman

    2013-01-01

    Bio surfactants are amphiphilic compounds produced by microorganisms as secondary metabolite. The unique properties of bio surfactants make them possible to replace or to be added to synthetic surfactants which are mainly used in food, cosmetics and pharmaceutical industries and in environmental applications. In this study twenty hydrocarbon-degrading bacteria were screened for bio surfactant production. All of the bacterial isolates were grown in mineral salt medium (MSM) with addition of 1 % (v/v) Tapis crude oil as carbon source. The presence of bio surfactant was determined by the drop-collapse test, microplate analysis, oil spreading technique, emulsification index (%EI24) and surface tension measurement. Only one isolate, Pseudomonas aeruginosa UKMP14T, was found to be positive for all the qualitative tests and reducing the surface tension of the medium to 49.5 dynes/ with emulsification index of 25.29 %. This isolate produced bio surfactant optimally at pH 9.0 and incubation temperature of 37 degree Celsius. Furthermore, P. aeruginosa UKMP14T when grown in MSM with addition of 1 % (v/v) glycerol and 1.3 g/ L ammonium sulphate with C/N ratio 14:1 produced bio surfactant with percentage of surface tension reduction at 55 % or 30.6 dynes/ cm with %EI24 of 43 %. This percentage of surface tension reduction represents an increasing reduction in surface tension of medium by 39 % over the value before optimization. This study showed that P. aeruginosa UKMP14T has the ability to biodegrade hydrocarbon and concurrently produce bio surfactant. (author)

  13. Characterization of In-Drum Drying Products

    International Nuclear Information System (INIS)

    Kroselj, V.; Jankovic, M.; Skanata, D.; Medakovic, S.; Harapin, D.; Hertl, B.

    2006-01-01

    A few years ago Krsko NPP decided to introduce In-Drum Drying technology for treatment and conditioning of evaporator concentrates and spent ion resins. The main reason to employ this technology was the need for waste volume reduction and experience with vermiculite-cement solidification that proved inadequate for Krsko NPP. Use of In-Drum Drying technology was encouraged by good experience in the field at some German and Spanish NPP's. In the paper, solidification techniques in vermiculite-cement matrix and In-Drum Drying System are described briefly. The resulting waste forms (so called solidification and dryer products) and containers that are used for interim storage of these wastes are described as well. A comparison of the drying versus solidification technology is performed and advantages as well as disadvantages are underlined. Experience gained during seven years of system operation has shown that crying technology resulted in volume reduction by factor of 20 for evaporator concentrates, and by factor of 5 for spent ion resin. Special consideration is paid to the characterization of dryer products. For evaporator concentrates the resulting waste form is a solid salt block with up to 5% bound water. It is packaged in stainless steel drums (net volume of 200 l) with bolted lids and lifting rings. The fluidized spent ion resins (primary and blow-down) are sluiced into the spent resin drying tank. The resin is dewatered and dried by electrical jacket heaters. The resulting waste (i.e. fine granulates) is directly discharged into a shielded stainless steel drum with bolted lid and lifting rings. Characterization of both waste forms has been performed in accordance with recommendations given in Characterization of Radioactive Waste Forms and Packages issued by International Atomic Energy Agency, 1997. This means that radiological, chemical, physical, mechanical, biological and thermal properties of the waste form has been taken into consideration. In the paper

  14. Panorama 2007: Potential biomass mobilization for bio-fuel production worldwide, in Europe and in France

    International Nuclear Information System (INIS)

    Lorne, D.

    2007-01-01

    One key factor in ensuring the success of bio-fuel technologies, which are expected to see high growth, is the availability of biomass resources. Although the targets set in Europe and France for the replacement of petroleum products in the transport sector by 2010 can be met by converting farm surpluses into biofuels, in order to proceed further, it will be necessary to mobilize a resource that is more abundant and potentially less costly: ligno-cellulosic materials, i.e. wood or straw. The future of biofuels depends on establishing the much-awaited 'second generation' bio-fuel pathways able to convert ligno-cellulosic materials to ethanol, bio-diesel and bio-kerosene. (author)

  15. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    Science.gov (United States)

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  16. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    Science.gov (United States)

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Design methodology for bio-based processing: Biodiesel and fatty alcohol production

    DEFF Research Database (Denmark)

    Simasatikul, Lida; Arpornwichanop, Amornchai; Gani, Rafiqul

    2012-01-01

    A systematic design methodology is developed for producing two main products plus side products starting with one or more bio-based renewable source. A superstructure that includes all possible reaction and separation operations is generated through thermodynamic insights and available data. The ....... Economic analysis and net present value are determined to find the best economically and operationally feasible process. The application of the methodology is presented through a case study involving biodiesel and fatty alcohol productions....

  18. Study of Application of Vinasse from Bio-ethanol Production to Farmland

    Science.gov (United States)

    Chen, Yan; Shinogi, Yoshiyuki

    During bio-ethanol production from sugarcane molasses, large amounts of vinasse, which is strongly acidic with high COD and BOD, is produced as a by-product. Disposal of vinasse is one restrictive problem for sustainable bio-ethanol production. In this study, possible application of vinasse to farmland was investigated. First, the staple characteristics of vinasse were determined. Second, availability of nutrients such as nitrogen and potassium to crops and dynamics in the soil environment were studied in the laboratory, and crop growth experiments were carried out in the field. Farmland application of vinasse as a substitute for one third of the potassium showed no significant damage to the growth of red-radishes and tomatoes. When large amounts of vinasse are applied to farmland as a substitution for the nitrogen in traditional chemical fertilizers, nitrogen-hunger especially immediately after application is expected. In addition, it is necessary to take into consideration the leaching of ions and the dark material in the vinasse for proper timing of application and soil conditions.

  19. Spatial Distribution of Biomass and Woody Litter for Bio-Energy in Biscay (Spain

    Directory of Open Access Journals (Sweden)

    Esperanza Mateos

    2018-05-01

    Full Text Available Forest management has been considered a subject of interest, because they act as carbon (C sinks to mitigate CO 2 emissions and also as producers of woody litter (WL for bio-energy. Overall, a sustainably managed system of forests and forest products contributes to carbon mitigation in a positive, stable way. With increasing demand for sustainable production, the need to effectively utilise site-based resources increases. The utilization of WL for bio-energy can help meet the need for renewable energy production. The objective of the present study was to investigate biomass production (including C sequestration from the most representative forestry species (Pinus radiata D. Don and Ecualyptus globulus Labill of Biscay (Spain. Data from the third and fourth Spanish Forest Inventories (NFI3-2005 and NFI4-2011 were used. We also estimated the potential WL produced in the forest activities. Our findings were as follows: Forests of Biscay stored 12.084 Tg of biomass (dry basis, with a mean of 147.34 Mg ha - 1 in 2005 and 14.509 Tg of biomass (dry basis, with a mean of 179.82 Mg ha - 1 in 2011. The total equivalent CO 2 in Biscay’s forests increased by 1.629 Tg year - 1 between 2005 and 2011. The study shows that the energy potential of carbon accumulated in the WL amounted to 1283.2 million MJ year - 1 . These results suggest a considerable potential for energy production.

  20. 21 CFR 344.52 - Labeling of ear drying aid drug products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Labeling of ear drying aid drug products. 344.52 Section 344.52 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Labeling of ear drying aid drug products. (a) Statement of identity. The labeling of the product contains...

  1. Bio-oil Production - Process Optimization and Product Quality

    DEFF Research Database (Denmark)

    Hoffmann, Jessica

    , fossil fuels still accounted for 87% of global and 81% of EU primary energy consumption. In an effort to reduce the carbon footprint of a continued supply of liquid fuels, processes utilizing biomass in general, and lignocellulosic biomass in particular, are being developed to replace their fossil...... such candidate is hydrothermal liquefaction (HTL), a thermochemical process that converts low-value biomass feedstocks to a high-value bio-through the use of hot compressed water and catalysts. As there is typically residual oxygen left in the bio-crude from HTL, further processing involves upgrading in order...

  2. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    OpenAIRE

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  3. Quality of fresh and dry onion (Аllium cepa L. products for different

    Directory of Open Access Journals (Sweden)

    Л. Ф. Скалецька

    2013-08-01

    Full Text Available The article features results of studying suitability to processing for various varieties of onion as grown in the conditions of Ukrainian Forest-Steppe. A complex assessment has been completed for fresh products of onion for 9 different varieties by the content of basic biochemical, biological, economic, organoleptic characteristics with the view of determining the most suitable for drying. Varieties are singled out , which bulbs accumulate the biggest dry matter, sugar, C vitamin content and display the highest yield of consumable products. Assessment of dry products against the set of organoleptic and technological indicators has been completed. This revealed loss of basic biochemical components of onions during drying and long-term storage of dried products, as well as established increasing of the content of dry matters and acids and decreasing of that of sugars and vitamin C while storing the dried onion. The set of examined parameters

  4. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste.

    Science.gov (United States)

    Prajapati, Kalp Bhusan; Singh, Rajesh

    2018-05-10

    In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.

    Science.gov (United States)

    Xu, Lei; Tschirner, Ulrike

    2014-08-01

    Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

  6. Chlamydomonas as a model for biofuels and bio-products production.

    Science.gov (United States)

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis

    International Nuclear Information System (INIS)

    Phan, Binh M.Q.; Duong, Long T.; Nguyen, Viet D.; Tran, Trong B.; Nguyen, My H.H.; Nguyen, Luong H.; Nguyen, Duc A.; Luu, Loc C.

    2014-01-01

    Agricultural activities in Vietnam generate about 62 million tonnes of biomass (rice straw, rice husk, bagasse, corn cob, corn stover, etc.) annually. In this work, four different types of biomass from Vietnam, namely rice straw, rice husk, factory bagasse, and corn cob, have been studied as potential raw materials to produce bio-oil by fast pyrolysis technology. Test runs were conducted in a fluidized-bed reactor at a temperature of 500 °C and residence time less than 2 s. Size and moisture content of the feed were less than 2 mm and 2%, respectively. It was found that yields of bio-oil as a liquid product obtained from pyrolysis of these feedstocks were more than 50% and that obtained from the bagasse was the highest. Bio-oil quality from Vietnamese biomass resources satisfies ASTM D7544-12 standard for pyrolysis liquid biofuels. These results showed the potential of using biomass in Vietnam to produce bio-oil which could be directly used as a combustion fuel or upgraded into transportation fuels and chemicals. - Highlights: • Four types of Vietnamese biomass were firstly analyzed in detail. • Optimal conditions for fast pyrolysis reaction for Vietnamese biomass types. • Bio-oil product adapted to the standard specification for pyrolysis liquid biofuel

  8. Bio-diesel fuels production: Feasibility studies. Se l'agricoltore semina il gasolio

    Energy Technology Data Exchange (ETDEWEB)

    Tabasso, L.

    This paper reviews the efforts being made by Italy's national government and private industry to develop diesel engine fuels derived from vegetable oils, in particular, sunflower seed oil. These fuels are being promoted in Italy from the environmental protection stand-point in that they don't contain any sulfur, the main cause of acid rain, and from the agricultural stand-point in that they provide Italian farmers, whose food crop production capacity is limited due to European Communities agreements, with the opportunity to use their set-aside land for the production of energy crops. This paper provides brief notes on the key performance characteristics of bio-diesel fuels, whose application doesn't require any modifications to diesel engines, apart from minor adjustments to the air/fuel mix regulating system, and assesses commercialization prospects. Brief mention is made of the problems being encountered by the Government in the establishing fair bio-fuel production tax rebates which are compatible with the marketing practices of the petroleum industry. One of the strategies being considered is to use the bio-fuels as additives to be mixed with conventional fuel oils so as to derive a fuel which meets the new European air pollution standards.

  9. Farmer evaluation of dried banana based products | Pekke | African ...

    African Journals Online (AJOL)

    A farmer participatory evaluation of dried banana based products was conducted in various districts of Uganda. Bananas were dried using a tunnel solar dryer developed by Post Harvest Handling and Storage project (PHHS) of Kawanda Post-harvest Programme and improved by the National Banana Research ...

  10. Current problems of raw fish material processing while manufacturing dried products

    Directory of Open Access Journals (Sweden)

    Yashonkov A. A.

    2017-09-01

    Full Text Available The substantiation for using techniques of fish raw material canning has been presented, raw fish being caught or farmed in aquaculture. The main problems in raw fish canning have been reviewed, including significant reduction in thermolabile vitamins in the ultimate product as compared with the raw material due to the thermal processing. Promising canning technique – vacuum drying – has been proposed. This technique makes possible to reduce the temperature of thermal processing down to 50…55 °С and significantly enlarge preservation of thermolabile vitamins from the raw fish. Sampling of raw materials, semi-finished products, finished products, including preparation for analysis has been conducted by standard methods. Disadvantages of this way have been found, it is low energy efficiency of the process. The way to intensify the vacuum drying of aquatic organisms has been proposed based on the method of preliminary pore-forming due to augmenting the area of moisture evaporation. The design of the pilot plant has been proposed in order to research the process of pore forming and vacuum drying. Target species for processing have been suggested. They are as follows: Azov goby (fillet for food products and Black Sea sprat for feeds. The recipes of the feed mixture for granulated floating food for trout have been developed. The results of the first series of the pilot research have been provided. The experiments have proved that preliminary pore forming immediately before vacuum drying makes possible to enlarge the surface area of moisture evaporation by 15…25 %. By processing photomicrographs of sections by means of a special software the authors have got the results demonstrating that when manufacturing dried products by pore forming and drying under pressure 10 kPa the pore take 35...38 % of the inner volume of the product and with drying under pressure 10 kPa – only 18...21 %, and when drying under the atmospheric pressure – 11...13 %.

  11. The feasibility of bio-oil production and application on the basis of the rotating cone technology

    International Nuclear Information System (INIS)

    Gansekoele, E.; Wagenaar, B.M.

    2001-07-01

    The overall objective of the project on the title subject is to scale up the novel, rotating cone technology for flash pyrolysis of biomass and examine the related bio-energy system by application of bio-oil from several feedstocks in engines and combustion chambers. The specific objectives are: (1) To identify and characterize biomass feedstocks suitable for conversion to bio-oil by means of flash pyrolysis in a rotating cone reactor; (2) To scale-up the rotating cone reactor to a commercial size (200 kg biomass per hour); (3) To optimize the process with respect to quality and yield of the bio-oil in various test runs; (4) To produce bio-oil from various feedstocks in long lasting production runs; (5) To characterize the bio-oil and test it in properly adapted diesel engines and furnaces; and (6) To estimate the market potential for bio-oil and the economic feasibility of the technology. The objectives of the partners are: (1) to establish the most cost effective pre-treatment procedures to produce proper biomass feedstock for the pyrolysis process. In addition, 25 tons of pretreated biomass feedstock was prepared (CIEMAT, Spain); (2) design of the rotating cone pyrolysis plant at a biomass throughput of 200 kg/h, optimization of the pilot plant, and carrying out long duration runs (BTG, Netherlands); (3) development and construction of the flash pyrolysis pilot plant (KARA, Netherlands); and (4) investigation of the application of bio-oil in a combustion chamber, in a gas turbine and a diesel engine with respect to performance, efficiencies and emissions ( Rostock University, Germany). This report comprises the research results of all the partners for the whole chain: from biomass pre-treatment to bio-oil production and application. The different subjects are Biomass pre-treatment, Development of the 200 kg/h pyrolysis plant, Bio-oil application, and Economics and market potential of bio-oil application. refs

  12. Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Gangarapu, S.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely

  13. Potential of impulse drying technology for molded pulp products manufacture

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido

    2016-01-01

    The vision of the Green Fiber Bottle (GFB) project is to develop a paper bottle for beer, which will be both recyclable and biodegradable. The early prototypes of the bottle are very promising but there are huge technical and scientific challenges ahead to mature the production technology....... The possibility of applying the concept of impulse drying during the drying stage is suggested. This would give benefits in terms of productivity and it would also reduce energy consumption.With the aim of understanding and controlling the impulse drying phenomena, a simplified approach is proposed. Finally......, a potential design for a testing equipment is described....

  14. 'Bio-energy Schaffhausen': biogas, proteins and fibres, all three from grass

    International Nuclear Information System (INIS)

    Widmer, F.; Mueller, P.H.

    2002-01-01

    Bioenergie Schaffhausen Ltd., Switzerland, has commissioned the first industrial bio-refinery for processing grass. This unique grass refinery process provides a new industrial utilisation of grass. The products are green power and technical fibres for heat and sound insulation. The green electricity and green gas are made and sold by Etawatt Ltd. and Schaffhausen City Works, the green heat is used internally as process heat. All plant components are utilised for generation of value-added products, which makes the plant economically profitable even at a relatively small scale. The fully continuous and automated plant includes raw material reception, pre-treatment, fractionation, separation, and drying of fibres; separation of protein; juice treatment and conversion to biogas in a so-called UASB reactor; gas cleaning and conversion to electricity and process heat in a combined heat and power plant. The design capacity of the plant is 20,000 t fresh grass or 5,000 t dry substance input per year in two shifts. The plant supplier is '2B Biorefineries' (www.2bio.ch). The start up was in October 2001. Over 500 tons of grass have been processed. The grass refinery has produced so far 78,000 m 3 biogas, 150,000 kWh green electricity and 250,000 kWh green heat. Further, 80 tons of insulation fibres have been produced and sold in the market under the brand name '2B Gratec'. Over 30 buildings have been insulated. The washer and drier have not reached production capacity. The drying is a critical process for fibre quality. The drier is being modified and a new washer is being installed. It is planned to run at design capacity from May 2003. (author)

  15. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  16. Bio-oils and other bio fuels used in heat- and power generation; Flytande biobraenslen foer el- och vaermeproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Sandgren, Annamaria; Ekdahl, Emma; Sernhed, Kerstin; Lindstroem, Erica

    2010-05-15

    The purpose of this study was to assemble and disseminate knowledge about bio-oils and other bio fuels which are used for heat- and power generation or liquid bio fuels/oils that may become interesting in the future. One aim of this study was to give an updated picture of the Swedish market for bio-oils and to provide an overview of practical experience on the usage of bio-oils in the Swedish heat and power industry. In order to show a green profile, bio-oils can be used in the heat and power generation. However, not all bio-oils can be viewed as climate friendly. Some production of bio-oils may actually - if a lifecycle perspective is considered - lead to increased emissions of greenhouse gases, and there are also ethical issues that need to be considered. The data collection was carried out in three different fields. The objective of the first part was to create an overview of the Swedish market for liquid bio fuels/oils for heat and power production. The second part of the study aimed to clarify the issues surrounding environmental and ethical issues associated with the use of different bio-oils. A selection of oil crops for a closer study was made based on production volume (soybean, palm oil and rapeseed) and expected future potential (jatropha). This part of the study was based on a literature review. In the third part of the study technical and practical experiences from using bio-oils in heat and power production were studied. The interviews made with purchasing managers in the second part gave valuable information on which utilities would be the most interesting to interview for the study of technical and practical experiences, where interviews were carried out with persons familiar with the daily operation of the plant. The use of liquid bio fuels was about 4.3 % of total fuel use in Swedish district heating production in 2007 (1.2 % pine oil and 3.0 % other bio-oil). In other words, it is mainly bio-oils that have been used and not other types of liquid

  17. Bio-oils and other bio fuels used in heat- and power generation; Flytande biobraenslen foer el- och vaermeproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Sandgren, Annamaria; Ekdahl, Emma; Sernhed, Kerstin; Lindstroem, Erica

    2010-05-15

    The purpose of this study was to assemble and disseminate knowledge about bio-oils and other bio fuels which are used for heat- and power generation or liquid bio fuels/oils that may become interesting in the future. One aim of this study was to give an updated picture of the Swedish market for bio-oils and to provide an overview of practical experience on the usage of bio-oils in the Swedish heat and power industry. In order to show a green profile, bio-oils can be used in the heat and power generation. However, not all bio-oils can be viewed as climate friendly. Some production of bio-oils may actually - if a lifecycle perspective is considered - lead to increased emissions of greenhouse gases, and there are also ethical issues that need to be considered. The data collection was carried out in three different fields. The objective of the first part was to create an overview of the Swedish market for liquid bio fuels/oils for heat and power production. The second part of the study aimed to clarify the issues surrounding environmental and ethical issues associated with the use of different bio-oils. A selection of oil crops for a closer study was made based on production volume (soybean, palm oil and rapeseed) and expected future potential (jatropha). This part of the study was based on a literature review. In the third part of the study technical and practical experiences from using bio-oils in heat and power production were studied. The interviews made with purchasing managers in the second part gave valuable information on which utilities would be the most interesting to interview for the study of technical and practical experiences, where interviews were carried out with persons familiar with the daily operation of the plant. The use of liquid bio fuels was about 4.3 % of total fuel use in Swedish district heating production in 2007 (1.2 % pine oil and 3.0 % other bio-oil). In other words, it is mainly bio-oils that have been used and not other types of liquid

  18. CRM strategy in the case of Colombian companies of bio-products

    International Nuclear Information System (INIS)

    Rojas Lopez, Miguel David; Vera, Madalyd; Arias, Maria Isabel

    2012-01-01

    The agricultural sector in Colombia and in the world presents growth rates, indicating potential customers for the use of inputs in production. The use of these products is increasingly constrained by environmental factors and health factors; thus, the market for bio-products for agricultural uses growth considerably, but far from achieving the sales of agro-chemical products. In Colombia, there are medium and small companies engaged in the development and production of technologies that compete with large corporations, for a market accustomed to use chemical products from traditional brands. The implementation of solid strategies for managing the customer relationships (CRM) will be an alternative to increase market share.

  19. Climate change impacts on productivity of dry lands in Sudan

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sudan is one of the top 13 countries regarding the extent of dry land coverage. The area that fell under dry land classification is more than 1.5 million km2. Despite the extensive coverage of dry lands, it is water and not land that limits the agricultural production. Thus climate change and variability were expected to present ...

  20. Harnessing indigenous plant seed oil for the production of bio-fuel by an oleaginous fungus, Cunninghamella blakesleeana- JSK2, isolated from tropical soil.

    Science.gov (United States)

    Sukrutha, S K; Janakiraman, Savitha

    2014-01-01

    Cunninghamella blakesleeana- JSK2, a gamma-linolenic acid (GLA) producing tropical fungal isolate, was utilized as a tool to evaluate the influence of various plant seed oils on biomass, oleagenicity and bio-fuel production. The fungus accumulated 26 % total lipid of their dry biomass (2 g/l) and 13 % of GLA in its total fatty acid. Among the various plant seed oils tested as carbon sources for biotransformation studies, watermelon oil had an effect on biomass and total lipid increasing up to 9.24 g/l and 34 % respectively. Sunflower, pumpkin, and onion oil increased GLA content between 15-18 %. Interestingly, an indigenous biodiesel commodity, Pongamia pinnata oil showed tremendous effect on fatty acid profile in C. blakesleeana- JSK2, when used as a sole source of carbon. There was complete inhibition of GLA from 13 to 0 % and increase in oleic acid content, one of the key components of biodiesel to 70 % (from 20 % in control). Our results suggest the potential application of indigenous plant seed oils, particularly P. pinnata oil, for the production of economically valuable bio-fuel in oleaginous fungi in general, and C. blakesleeana- JSK2, in particular.

  1. Method to upgrade bio-oils to fuel and bio-crude

    Science.gov (United States)

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  2. Land application uses for dry flue gas desulfurization by-products. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    Flue gas desulfurization (FGD) scrubbing technologies create several types of by-products. This project focused primarily on by-product materials obtained from what are commonly called ''dry scrubbers'' which produce a dry, solid material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Prior to this project, dry FGD by-products were generally treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing; The major objective of this project was to develop beneficial uses, via recycling, capable of providing economic benefits to both the producer and the end user of the FGD by-product. It is equally important, however, that the environmental impacts be carefully assessed so that the new uses developed are not only technically feasible but socially acceptable. Specific objectives developed for this project were derived over an 18-month period during extensive discussions with personnel from industry, regulatory agencies and research institutions. These were stated as follows: Objective 1: To characterize the material generated by dry FGD processes. Objective 2: To demonstrate the utilization of dry FGD by-product as a soil amendment on agricultural lands and on abandoned and active surface coal mines in Ohio. Objective 3: To demonstrate the use of dry FGD by-product as an engineering material for soil stabilization. Objective 4: To determine the quantities of dry FGD by-product that can be utilized in each of these applications. Objective 5. To determine the environmental and economic impacts of utilizing the material. Objective 6. To calibrate environmental, engineering, and economic models that can be used to determine the applicability and costs of utilizing these processes at other sites.

  3. The potato chips and dry mashed as products of potato rational processing

    Directory of Open Access Journals (Sweden)

    A. Mazur

    2015-05-01

    Full Text Available Introduction. The percentage of potato processing for food products in the former Soviet Union decreased to 1%, at the same time in some countries of Europe and the USA the share of potato processing is 60-80%. Numerous works have shown the economic feasibility of potato processing for food products. Materials and methods. In laboratory and industrial conditions of the open stock company «Mashpishcheprod» (Maryina Gorka, Minsk region, Belarus researches have been conducted on increase of efficiency of technological processes potato processing. Sampling, preparation and conducting of tests were performed by standard and special methods of analysis. Results and discussion. Potato varieties suitable for the production of dry mashed potatoes and potatocrisps have been determined, acclimatization before processing ensures minimumthe content of the reducing sugars, which provide high quality of the finished product. Studies have shown that the process of kneading potato at temperatures close to cooking temperature is optimal, in which the process of destruction cells is hardly taking place. Pneumatic dryers for drying boiled potato provide high product quality due to the low temperature of heating and short contact of a powdered product with a drying agent. However, the contents of damaged cells in the finished product do not exceed 1.3-2.6%. The optimum modes and parameters of potato crisps production have been defined, the processes of cutting, blanching, treatment with salt, drying and roasting have been scientifically grounded, that provide a finished product with fat content not more than 27.7%. Conclusion. Economic expediency of processing the following varieties of potato Desire, Temp, Synthesis for dry mashed potato and potato crisps has been proved. The processes of kneading and drying potato are decisive stages of the processing, because they determine the number of destroyedcells in the finished product. Optimal parameters of production

  4. Feasibility of DEXA prediction of dry matter and mass for horticultural products

    International Nuclear Information System (INIS)

    Bartle, C.M.; West, J.G.

    2009-01-01

    Previously the DEXA system used in this research has been deployed commercially in meat processing plants with the objective of accurately determining the fat content of bulk and packaged meat, through a JV with ANZCO Foods and a partnership with Smiths Detection. This present research is aimed at demonstrating an ability to measure the dry matter distribution and in turn the net dry matter for individual horticultural products using DEXA. The DEXA images are obtained while scanning the products on a conveyor belt running at speeds representative of production grading situations. The products reported on here are primarily potatoes (because of a direct commercial interest), but also a butternut pumpkin and two rock melons. The grading and dry matter measurement capability is based on detecting change in the effective atomic number (EAN) with change in the elemental proportions within the product and there being effectively a binary mixture (e.g dry matter and water) present. Grading of fruit and vegetables on this basis is expected to be challenging. The commercial meat/fat grading already commercialised as a DEXA system is associated with 1.8 EAN units difference between fat (carbon rich Z eff =5.8) and fully-lean meat (oxygen rich Z eff =7.6) but this range is large compared to what is expected for horticultural products. The dry matter in horticultural products is primarily starch (plus minerals) and the EAN difference between starch (and minerals) and water is unknown here but calculations give the difference as little as 0.2 EAN units, dependant on the mineral content in the product. In this work we show that the dry matter sensitivities of the DEXA technology for horticultural products is discernable allowing measurement of dry matter distributions, and net dry matter values. The EAN range is indeed much smaller than for fat/meat mixtures, and consistent differences are yet to be demonstrated for an assembly of product, except for potatoes where consistency

  5. Social Life Cycle Approach as a Tool for Promoting the Market Uptake of Bio-Based Products from a Consumer Perspective

    Directory of Open Access Journals (Sweden)

    Pasquale Marcello Falcone

    2018-03-01

    Full Text Available The sustainability of bio-based products, especially when compared with fossil based products, must be assured. The life cycle approach has proven to be a promising way to analyze the social, economic and environmental impacts of bio-based products along the whole value chain. Until now, however, the social aspects have been under-investigated in comparison to environmental and economic aspects. In this context, the present paper aims to identify the main social impact categories and indicators that should be included in a social sustainability assessment of bio-based products, with a focus on the consumers’ category. To identify which social categories and indicators are most relevant, we carry out a literature review on existing social life cycle studies; this is followed by a focus group with industrial experts and academics. Afterwards, we conduct semi-structured interviews with some consumer representatives to understand which social indicators pertaining to consumers are perceived as relevant. Our findings highlight the necessity for the development and dissemination of improved frameworks capable of exploiting the consumers’ role in the ongoing process of market uptake of bio-based products. More specifically, this need regards the effective inclusion of some social indicators (i.e., end users’ health and safety, feedback mechanisms, transparency, and end-of-life responsibility in the social life cycle assessment scheme for bio-based products. This would allow consumers, where properly communicated, to make more informed and aware purchasing choices, therefore having a flywheel effect on the market diffusion of a bio-based product.

  6. THE LINE FOR PRODUCTION OF DRIED APPLES, PEARS, CARROTS, PUMPKIN AND CHIPS

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2015-01-01

    Full Text Available The line is intended for processing of fruit and vegetable raw materials and receiving dried apples, pears, carrots, pumpkins and the fruit-and-vegetable of chips. The line solves problems of improvement of quality of a ready-made product and thermal production efficiency due to more rational alternation of the technological modes of a moisture increment and dehumidification with high extent of use of an energy potential of the heat carrier, use of the inert heat carrier (steam identical by the form for technological thermal processes, decrease in specific energy consumption and metal consumption, and also an intensification of moisture evaporation and creation of the compact multipurpose technological line for production of fruit and vegetable products with the expanded range. The technological production line of dried apples, pears, carrots, pumpkin and fruit and vegetable chips contains the jet washer, the inspection conveyor, the size grader, the car for removal of a seed nest and the device are sharp fruits and vegetables on plates, the sulfiter, the dryer and the packing automatic packing machine. Thus the line contains the combined toroidal device for heatmoisture of handling continuous action divided into sections: section of heating of raw materials, section of convective drying, section of preliminary hydration, which is located between microwave drying sections, and the section of cooling of the dried-up product intended for bringing a product to final readiness. The equipment complex from the drum car with the washing block and multipurpose installation with crushing of raw materials and office of sunflower seeds taking into account raw materials type is provided in lines. Are used recirculation a contour, the heating of the initial raw material fulfilled after drying of pairs and a condensate in the closed contour for creation energy-saving of the "know-how" of a ready product. The line represents modular blocks and is recustomized

  7. Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading

    International Nuclear Information System (INIS)

    Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo, Beatriz

    2016-01-01

    Highlights: • GHG emissions from the upgrading of pyrolysis-derived bio-oil is quantified.. • Soil organic carbon sequestration rate had a significant effect on GHG emission. • Increasing plant scale could improve the environmental performance of the system. • Nitrogen to the pyrolysis reactor had significant impact on GHG emissions. - Abstract: This study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.

  8. Genetic Engineering In BioButanol Production And Tolerance

    Directory of Open Access Journals (Sweden)

    Ashok Rao

    Full Text Available ABSTRACT The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. Higher-chain alcohols possess chemical properties that are more similar to gasoline. Ethanol and butanol are two products which are used as biofuel. Butanol production was more concerned than ethanol because of its high octane number. Unfortunately, these alcohols are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. The synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of bio-butanol. Knock out and over-expression of genes is the major approaches towards genetic manipulation and metabolic engineering of microbes. Yet there are TargeTron Technology, Antisense RNA and CRISPR technology has a vital role in genome manipulation of C.acetobutylicum. This review concentrates on the recent developments for efficient production of butanol and butanol tolerance by various genetically engineered microbes.

  9. Bio surfactants production in bioreactor assisted with membrane process; Producao de biossurfactantes em biorreator assistido por processos com membranas

    Energy Technology Data Exchange (ETDEWEB)

    Kronemberger, Frederico de Araujo; Borges, Cristiano Piacsek [Universidade Federal do Rio de Janeiro (UFRJ). COPPE. Programa de Engenharia Quimica, RJ (Brazil)], e-mails: frederico@peq.coppe.ufrj.br, cristiano@peq.coppe.ufrj.br, s.noblat@csn.com.br; Freire, Denise Maria Guimaraes [Universidade Federal do Rio de Janeiro (UFRJ). Instituto de Quimica. Departamento de Bioquimica, RJ (Brazil)], e-mail: freire@iq.ufrj.br

    2010-04-15

    Chemically synthesized surfactants are widely used in the pharmaceutical, food and oil industries. However, they may eventually be replaced by bio surfactants, which are biodegradable and produced from renewable substrates, the surface active molecules produced by micro-organisms. Currently bio surfactants use is limited to some specific applications as they are not economically competitive. The fermentation technology needs to be improved to expand the production scale and lower costs. The most studied bio surfactants are produced by aerobic microorganisms. The main difficulty of this fermentation process is the excess foam caused by injecting air into the vessel. To overcome this problem, a membrane contactor can be used for the non-dispersive transfer of oxygen from the gas to liquid phase. The main objective of this study was to produce rhamno lipidic type bio surfactants from a strain of Pseudomonas aeruginosa (PA1), isolated from oil wells. This production used a hollow-fiber membrane contactor to oxygenate the culture medium. The study results indicate this bio surfactant is economically viable in large scale production. (author)

  10. Why we need resilience thinking to meet societal challenges in bio-based production systems

    NARCIS (Netherlands)

    Ge, L.; Anten, N.P.R.; Dixhoorn, van I.D.E.; Feindt, P.H.; Kramer, K.; Leemans, H.B.J.; Gielen-Meuwissen, M.P.M.; Spoolder, H.A.M.; Sukkel, W.

    2016-01-01

    The need to feed an increasing world population and to
    respond to the effects of climate change creates
    unprecedented challenges for bio-based production systems.
    Many of these systems have been designed to maximize
    productivity and efficiency under standard

  11. Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model.

    Science.gov (United States)

    De la Cruz Quiroz, Reynaldo; Roussos, Sevastianos; Hernández, Daniel; Rodríguez, Raúl; Castillo, Francisco; Aguilar, Cristóbal N

    2015-01-01

    In recent years, production and use of bio-pesticides have increasing and replacing some synthetic chemical pesticides applied to food commodities. In this review, biological control is focused as an alternative, to some synthetic chemical treatments that cause environmental, human health, and food quality risks. In addition, several phytopathogenic microorganisms have developed resistance to some of these synthetic chemicals and become more difficult to control. Worldwide, the bio-pesticides market is growing annually at a rate of 44% in North America, 20% in Europe and Oceania, 10% in Latin and South American countries and 6% in Asia. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers an alternative to bio-pesticide production with advantages versus conventional submerged fermentations, as reduced cost and energy consumption, low production of residual water and high stability products. In this review, recent data about state of art regarding bio-pesticides production under SSF on agroindustrial wastes will be discussed. SSF can be defined as a microbial process that generally occurs on solid material in the absence of free water. This material has the ability to absorb water with or without soluble nutrients, since the substrate must have water to support the microorganism's growth and metabolism. Changes in water content are analyzed in order to select the conditions for a future process, where water stress can be combined with the best spore production conditions, obtaining in this way an inexpensive biotechnological option for modern agriculture in developing countries.

  12. Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Ju; Park, Young-Kwon; Kim, Joo Sik [Faculty of Environmental Engineering, University of Seoul, 90 Jeonnong-Dong, Dondaemun-Gu, Seoul 130-743 (Korea)

    2008-08-15

    Radiata pine sawdust was pyrolyzed in a bubbling fluidized bed equipped with a char separation system. The influence of the reaction conditions on the production of bio-oil was investigated through the establishment of mass balance, and the examination of the products' chemical and physical characteristics. The optimal reaction temperature for the production of bio-oil was between 673 and 723 K, and the yield was above 50 wt.% of the product. An optimal feed size also existed. In a particle with a size that was less than 0.3 mm, the bio-oil yield decreased due to overheating, which led to gas formation. A higher flow rate and feeding rate were found to be more effective for the production of bio-oil, but did not significantly affect it. The main compounds of bio-oil were phenolics, including cresol, guaiacol, eugenol, benzendiol and their derivatives, ketones, and aldehydes. In addition, high-quality bio-oils, which contained less than 0.005 wt.% of solid, no ash and low concentrations of alkali and alkaline earth metals, were produced due to the char removal system. (author)

  13. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  14. TECHNO-ECONOMIC ANALYSIS: PRELIMINARY ASSESSMENT OF PYROLYSIS OIL PRODUCTION COSTS AND MATERIAL ENERGY BALANCE ASSOCIATED WITH A TRANSPORTABLE FAST PYROLYSIS SYSTEM

    Directory of Open Access Journals (Sweden)

    Phil Badger

    2011-02-01

    Full Text Available A techno-economic analysis was performed for a 100 dry-ton/day (90,719 kg/day fast pyrolysis transportable plant. Renewable Oil International® LLC provided the life cycle cost of operating a 100 dry-ton/day fast pyrolysis system using southern pine wood chips as feedstock. Since data was not available from an actual large-scale plant, the study examined data obtained from an actual 15 dry-ton/day pilot plant and from several smaller plants. These data were used to obtain base figures to aid in the development of models to generate scaled-up costs for a larger 100 dry-ton/day facility. Bio-oil represented 60% of mass of product yield. The cost for the bio-oil from fast pyrolysis was valued at $0.94/gal. Energy cost bio-oil and char was valued at $6.35/MMBTU. Costs associated with purchasing feedstocks can drastically influence the final cost of the bio-oil. The assumed cost of feedstocks was $25/wet ton or $50/dry ton. This paper is part of a larger study investigating the economic and environmental impacts for producing bio-oil / biocide wood preservatives.

  15. Bio-production of a polyalcohol (xylitol) from lignocellulosic resources : a review

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, M.; Tabil, L.; Panigrahi, S. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering

    2006-07-01

    Lignocellulosic materials that are supplied from several sources at a low price can be utilized as feedstock for chemicals and bio-products. Xylitol is a high value polyalcohol produced by the reduction of D-xylose. It has many advantageous properties, such as low-calorie sweetening power. Due to its higher yield and because downstream processing is expected to be less costly, biotechnological production of xylitol is often more attractive than the chemical method of catalytic hydrogenation. Studies about the bio-production of xylitol, have been mostly focused on establishing the operational parameters and the process options that maximize its yield and productivity in free cell systems. However, some gaps in knowledge exist regarding this bioconversion process in immobilized cell systems and choosing an appropriate carrier for biocatalysts in a fermentation medium. This paper reviewed the metabolism of xylose by microorganisms, variables and process parameters affecting bioconversion of xylose to xylitol in defined media and complex media of lignocellulosic hydrolysates using free and immobilized cell systems. It discussed the natural occurrence, chemical structure, and physical properties of xylitol. Methods of production were discussed, including solid-liquid extraction; chemical production of xylitol; microbial production of xylitol; production of xylitol by bacteria; production of xylitol by molds; and production of xylitol by yeasts. The paper also discussed the parameters of fermentation, including xylose concentration; carbon source; nitrogen source; inoculum age and concentration; aeration rate; and temperature and pH. The production of xylitol from hemicellulose hydrolysate was also discussed along with immobilized-cell fermentation and xylitol recovery from fermented hydrolysate. It was concluded that purification and recovery of xylitol are the primary challenges related to this process, and a successful fermentation using immobilized cell system could

  16. Status and potential of bio-methane fuel

    International Nuclear Information System (INIS)

    2008-01-01

    This document first indicates and describes the various bio-methane production processes which can be implemented on a short term (use of organic wastes or effluents), on a medium term (from energetic crops) and on a longer term (gasification). It discusses and assesses the potential production of bio-methane fuel from different sources and processes. It describes the steps of the production of bio-methane fuel from biogas, with notably biogas refinement to produce bio-methane through three processes (de-carbonation, desulfurization, dehydration). Cost productions are assessed. Expected technology advances are evoked. Finally, the authors outline the contribution of bio-methane in the limitation of greenhouse gas emissions in the transport sector

  17. The effects of catalysts on the conversion of organic matter and bio-fuel production in the microwave pyrolysis of sludge at different temperatures.

    Science.gov (United States)

    Ma, Rui; Huang, Xiaofei; Zhou, Yang; Fang, Lin; Sun, Shichang; Zhang, Peixin; Zhang, Xianghua; Zhao, Xuxin

    2017-08-01

    Adding catalyst could improve the yields and qualities of bio-gas and bio-oil, and realize the oriented production. Results showed that the catalytic gas-production capacities of CaO were higher than those of Fe 2 O 3 , and the bio-gas yield at 800°C reached a maximum of 35.1%. Because the polar cracking active sites of CaO reduced the activation energy of the pyrolysis reaction and resulted in high catalytic cracking efficiencies. In addition, the quality of bio-oil produced by CaO was superior to that by Fe 2 O 3 , although the bio-oil yield of CaO was relatively weak. The light bio-fuel oriented catalytic pyrolysis could be realized when adding different catalysts. At 800°C, CaO was 45% higher than Fe 2 O 3 in aspect of H 2 production while Fe 2 O 3 was 103% higher than CaO in aspect of CH 4 production. Therefore, CaO was more suitable for H 2 production and Fe 2 O 3 was more suitable for CH 4 production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bio-Chemicals Derived from Waste: Building on the Concept of a Bio-Refinery

    International Nuclear Information System (INIS)

    Habib, M.; Habib, U.; Khan, A.U.; Rehman, Z.U.; Zeb, A.; Moeed, A.; Pasha, M.K.; Memon, A.R.

    2013-01-01

    The work presented here has looked into the thermal-conversion of wheat and barley spent grains (SG). Wheat fermentation was carried in the laboratory to get a mashed product while barley grain residues were sourced from a local brewing company. Pyrolysis carried at 460, 520 and 540 Degree C at ambient conditions of pressure in a bench scale fluidized bed reactor resulted in producing bio-oil, charcoal and non-condensable gases. These products were characterized by using the Gas Chromatography Mass Spectrometry (GC-MS), Differential Thermo-glavemetric Analysis (DTG), Elemental Analyzer (E.A) and a Bomb Calorimeter. The final pyrolysis product analysis revealed that the bio-oil production yields and Higher Heating Value (HHV) largely depended on the pyrolysis temperature and the sample type. In comparison with original raw grain samples, the analysis of thermally treated (pyrolysis) spent grains revealed the presence of high carbon and low oxygen contents. Results gathered in this work have shown that high bio-crude-oil production yields can be obtained at 520 Degree C (53 and 37wt percentage bio-oil from wheat and barley SG). Pyrolysis of wheat and barley SG resulted in giving a Higher Heating Value (HHV) of 21.80 and 21.86 MJ/kg at 540 and 460 Degree C, which is considerably more in comparison to their virgin counterparts. This suggested route thus has a potential for further up-gradation of waste bio-mass for use as an intermediate fuel or as a raw material source for producing other bio-chemicals. (author)

  19. Bio diesel, v. 15(58)

    International Nuclear Information System (INIS)

    Gicheva, Ljubitsa

    2007-01-01

    The history of bio-fuels/bio-diesel is more political and economical than it is technological. The technology of the production is the same as it was 200 years ago. The economy closed the usage of bio-fuels in the middies of the 20 Th century and put it back on the agenda of the world economy at the beginning of the 21 st century. With price of more then 70 US$ per barrel of grudge oil, production and usage of bio-fuels becomes more economical category rather than political and ecological. If we, additionally, add secondary, yet nowadays very important factors, as ecological protection, recycling the emission of poisonous gasses, exploitation of agro sector, then the reincarnation of bio-fuels is very interesting, and for Macedonia a potentially strategic category. The basics of the biography is to follow in the article paying special attention on the characteristics, standards, production, processing and usage of the bio-diesel fuel as well as the blended B20 and B5. (Author)

  20. Bio diesel, v. 15(59)

    International Nuclear Information System (INIS)

    Gicheva, Ljubitsa

    2007-01-01

    The history of bio-fuels/bio-diesel is more political and economical than it is technological. The technology of the production is the same as it was 200 years ago. The economy closed the usage of bio-fuels in the middies of the 20 Th century and put it back on the agenda of the world economy at the beginning of the 21 st century. With price of more then 70 US$ per barrel of grudge oil, production and usage of bio-fuels becomes more economical category rather than political and ecological. If we, additionally, add secondary, yet nowadays very important factors, as ecological protection, recycling the emission of poisonous gasses, exploitation of agro sector, then the reincarnation of bio-fuels is very interesting, and for Macedonia a potentially strategic category. The basics of the biography is to follow in the article paying special attention on the characteristics, standards, production, processing and usage of the bio-diesel fuel as well as the blended B20 and B5. (Author)

  1. Consumer knowledge, preference, and perceived quality of dried tomato products in Ghana.

    Science.gov (United States)

    Owureku-Asare, Mavis; Ambrose, R P Kingsly; Oduro, Ibok; Tortoe, Charles; Saalia, Firibu K

    2017-05-01

    Postharvest losses (PHL) are incurred in the tomato value chain in Ghana and solar drying of tomato is a promising technology for reducing the loss. However, there are concerns on the usage, functionality and sensory appeal of the dried products to consumers, compounded with the lack of information and research on dried tomato processing in Ghana. A survey was carried out by administering semistructured questionnaires to 395 randomly selected and willing respondents in the Accra Metropolis. Information was obtained on the socioeconomic profile, consumption pattern, knowledge, and acceptance of tomato processing technologies and assessment of quality attributes important to consumers. Most consumers (74%) preferred tomato powder that is conveniently packaged to retain the characteristic intense taste and the flavor using Friedman's rank mean procedure. The study indicated that consumers were more concerned about good manufacturing practices during the production of solar-dried tomato (48.8%) rather than the quality attributes (8.6%). These findings indicate the need for safe solar drying procedures in order to increase consumer acceptability of solar-dried tomato products in Ghana.

  2. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery.

    Science.gov (United States)

    Chen, Jinbo

    2018-06-14

    Hyper-accumulator biomass, Pteris vittata L., was hydrothermally converted into bio-oils via hydrothermal liquefaction (HTL) in sub-supercritical water. The distributions and characterizations of various products as well as energy recovery under different temperatures (250-390 °C) were investigated. The highest bio-oil yield of 16.88% was obtained at 350 °C with the hydrothermal conversion of 61.79%, where the bio-oil was dominated by alcohols, esters, phenols, ketones and acidic compounds. The higher heating values of bio-oil were in the range of 19.93-35.45 MJ/kg with a H/C ratio of 1.26-1.46, illustrating its high energy density and potential for use as an ideal liquid fuel. The main gaseous products were CO 2 , H 2 , CO, and CH 4 with the H 2 yield peaking at 22.94%. The total energy recovery from bio-oils and solid residues fell within the range of 37.72-45.10%, highlighting the potential of HTL to convert hyper-accumulator biomass into valuable fuels with high conversion efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    Science.gov (United States)

    Lan, Tian

    The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were

  4. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. DRUM DRYER FOR DRYING THE PARTICULATE PRODUCTS

    Directory of Open Access Journals (Sweden)

    I. S. Iurova

    2014-01-01

    Full Text Available Summary. For raise effectiveness drying process drum-type installation in which drum the mechanism of creation of various zones providing a necessary temperature and hydrodynamic regime of process of drying in process of product passage on a drum and changes in it of a relationship of various forms of communication of a moisture, and also a process intensification at last stage of drying by creation разряжения in a continuous technological stream of drying is provided is offered. The drum provides formation of a zone of separation of heat-transfer agent by means of the dissector, zones of intensive drying by disposing lobate nozzles in chessboard order with a dividing ring, zones of separation of the completed heat-transfer agent from жома as a result of separator installation in which the elliptic disk having cuts on a straight line from edge to the centre places, with formation of the triangular slot for passage dried pulp and heat-transfer agent, and also zones the final drying by performance of a section of a drum matching to a zone perforated on which length are had spring-loaded lobate nozzles representing the blades connected bow-shaped rod with metal plates, had with outer side of a drum and under the form repeating its contour, thus the bow-shaped rod from the interior of a drum which ends are supplied by springs rest against overhead and bottom persistent screw nuts, and blades and metal plates are installed with possibility of twirl concerning a fastening place on a drum and supplied by reinforcing ribs.

  6. Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming

    International Nuclear Information System (INIS)

    Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C.; Garceau, Nathaniel; T-Raissi, Ali

    2012-01-01

    Pyrolysis of fast-growing aquatic biomass - Lemna minor (commonly known as duckweed) with the emphasis on production, characterization and catalytic application of bio-char is reported in this paper. The yield of bio-char was determined as a function of L. minor pyrolysis temperature and sweep gas flow rate. It was found that the pore development during L. minor pyrolysis was not significant and the changes in the reaction conditions (temperature and sweep gas flow rate) did not alter markedly the textural characteristics and BET surface area of the bio-char produced. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of L. minor and different bio-char samples in inert (helium) and oxidative (air) media showed substantial differences in their TG/DTG patterns. A comparison of scanning electron micrographs (SEM) of L. minor, bio-char and ash indicated that the basic structural features of L. minor remained intact and were not affected by thermolysis. The inorganic ash content of L. minor derived bio-char is significantly higher than that of typical terrestrial (plant) biomass. The energy dispersive spectroscopic (EDS) analysis of L. minor ash showed that it mostly consisted of silica, and small quantities of Na, K and Ca compounds. The treatment of bio-char with CO 2 at 800 °C increased its BET surface area. It was found that CO 2 -treated bio-char exhibited appreciable initial catalytic activity in biogas reforming. -- Highlights: ► New data on characterization of bio-chars derived from Lemna minor are presented. ► Effect of pyrolysis operational parameters on bio-char properties is determined. ► Basic skeletal structure of Lemna minor leaflets does not change during pyrolysis. ► Bio-chars show an appreciable initial catalytic activity for biogas reforming.

  7. The Application of Bio-organic Fertilizer on Physic nut Production

    International Nuclear Information System (INIS)

    Tumavip, Amnag; Piadiang, Nattaya

    2006-09-01

    The Application of bio-organic fertilizers on Physics nut production were conduction in an area of Agricultural Occupational Promotion and Development Center, Cholburi Province (Plant Cultural) Cholburi. The period of 3 months (August - November 2006), Physic nut production both with and without husk were on the field. Experimental design was RCBD with 5 treatments. Results revealed that no significant difference between treatments (P>0.05). physic nut applied with the microbial fertilizer (OAP) produced greater yields with husks (71.21 Kg/rai) and without husks( 24.30 kg/rai) than chemical treatment 45.18 and 17.22 kg/rai respectively.

  8. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    Science.gov (United States)

    Ploykrathok, T.; Chanyotha, S.

    2017-06-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.

  9. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    International Nuclear Information System (INIS)

    Ploykrathok, T; Chanyotha, S

    2017-01-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated. (paper)

  10. Development of the MILENA gasification technology for the production of Bio-SNG

    NARCIS (Netherlands)

    Meijden, van der C.M.

    2010-01-01

    The production of Substitute Natural Gas from biomass (Bio-SNG) is an attractive option to reduce CO2 emissions and replace declining fossil natural gas reserves. The Energy research Center of the Netherlands (ECN) is working on the development of the MILENA gasification technology that is ideally

  11. Land application uses for dry FGD by-products. Phase 2 report

    Energy Technology Data Exchange (ETDEWEB)

    Stehouwer, R.; Dick, W.; Bigham, J. [Ohio State Univ., Columbus, OH (United States)] [and others

    1996-03-01

    A study was initiated in December 1990 to demonstrate large volume beneficial uses of flue gas desulfurization (FGD) by-products. A Phase 1 report provided results of an extensive characterization of chemical, physical, mineralogical and engineering properties of 58 dry FGD by-product samples. The Phase 1 report concluded that high volume beneficial reuses will depend on the economics related to their ability to substitute for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mine lands). Phase 2 objectives were (1) to conduct laboratory and greenhouse studies of FGD and soil (spoil) mixtures for agronomic and engineering applications, (2) to initiate field studies related to high volume agronomic and engineering uses, and (3) to develop the basic methodological framework for estimation of the financial and economic costs and benefits to society of several FGD reuse options and to make some preliminary runs of economic models. High volume beneficial reuses of dry FGD by-products have been successfully demonstrated. Adverse environmental impacts have been negligible. Although few sources of dry FGD by-products currently exist in Ohio and the United States there is potential for smaller coal-fired facilities to adopt S0{sub 2} scrubbing technologies that produce dry FGD material. Also much of what we have learned from studies on dry FGD by-products is applicable to the more prevalent wet FGD by-products. The adaptation of the technologies demonstrated in this project seem to be not only limited by economic constraints, but even more so, by the need to create awareness of the market potential of using these FGD by-products.

  12. Effect of dry period length on milk production in subsequent lactation

    DEFF Research Database (Denmark)

    Sørensen, J.T.; Enevoldsen, Carsten

    1991-01-01

    , two treatments were compared within herd. Compared with a 7-wk planned dry period, a 3-wk decrease lowered the level of milk production by 2.8 kg of 4% FCM/d in the first 84 d of the subsequent lactation, whereas a 3-wk increase raised the level of milk production by .5 kg/d. In the first 168 d......The effect of planned dry period lengths of 4, 7, and 10 wk on subsequent lactational yield was estimated with 366 cows in an experiment in which dry period was manipulated independently of milk yield prior to drying off. In two herds, all three treatments were compared within herd; in six herds...... of the subsequent lactation, the difference between 4-wk and 7-wk planned dry periods was 2.7 kg/d, and the difference between 7- and 10-wk periods was .4 kg/d. There was no indication of interaction among planned dry period length and lactation number, days open in previous lactation, previous milk yield, breed...

  13. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    Directory of Open Access Journals (Sweden)

    Mehmet Koç

    2016-05-01

    Full Text Available Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transition temperature of sugar-rich products. This review gives information about the difficulties in drying of sugar-rich products via spray dryer, actions need to be taken against these difficulties and drying of sugar-rich honey and fruit juices with spray drying method.

  14. The dynamics of ochratoxigenic fungi contents through different stages of dried grape production

    Directory of Open Access Journals (Sweden)

    Hakobyan Lusine

    2017-01-01

    Full Text Available Dried vine fruit (raisin, sultana and currant is the second (after wine most important product of viticulture. Concerning this, the contamination of dried grape by ochratoxigenic fungi and ochratoxin A (OTA has attracted much attention. Favorable climatic conditions in countries with well-developed viticulture contribute to the spreading of ochratoxigenic fungi. The aim of this work was to identify the contamination sources of dried vine fruit by ochratoxigenic filamentous fungi and OTA, as well to determine the Critical Control Points (CCP at different stages of production. Primary contamination of grapes occurred during vegetation, especially maturation period, when the risk of mechanical damages was the highest one. 48 samples of soil and 81 samples of fresh grape berries collected in 4 regions of Armenia were investigated. As a result, 22 micromycetes sp. from 7 genera were isolated. Drying process is one of the main CCP. As the most of dried products is produced by open sun drying method, secondary contamination occurs in plants. In our studies 27 species of filamentous fungi were revealed in 87 samples of dried vine fruit, collected at different stages of production. The samples had quite high contamination level by potential toxigenic A. niger and A. carbonarius species.

  15. Integration of Succinic Acid Production in a Dry Mill Ethanol Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-08-01

    This project seeks to address both issues for a dry mill ethanol biorefinery by lowering the cost of sugars with the development of an advanced pretreatment process, improving the economics of succinic acid (SA), and developing a model of an ethanol dry mill to evaluate the impact of adding different products and processes to a dry mill.

  16. Effect of Hot-Water Blanching Pretreatment on Drying Characteristics and Product Qualities for the Novel Integrated Freeze-Drying of Apple Slices

    Directory of Open Access Journals (Sweden)

    Hai-ou Wang

    2018-01-01

    Full Text Available The effect of hot-water blanching (HWB on drying characteristics and product qualities of dried apple slices with the novel integrated freeze-drying (NIFD process was investigated by comparing with 3 different FD methods. Compared with the NIFD process without HWB pretreatment (VF-FD, the NIFD process with HWB pretreatment (HWB-VF-FD resulted in a significantly higher mass loss and more sufficient freezing in vacuum-frozen samples, significantly higher rehydration ratio (RR, higher shrinkage ratio (SR, smaller Vitamin C (VC content and lower hardness and better apparent shape in freeze-dried samples, and fewer change to the color of the dried or rehydrated samples (p<0.05. Compared with the conventional FD process with HWB pretreatment (HWB-PF-FD, HWB-VF-FD cost significantly less processing time and FD time and obtained significantly higher RR (p<0.05, almost the equivalent SR, VC content, and hardness, and similar appearance in dried samples. The microstructure of apple cell tissues was analyzed by transmission electron microscopy and scanning electron microscopy to interpret the above differences in drying characteristics and product qualities. The results suggested that the NIFD process of apple slices with HWB pretreatment was a promising alternative method to decrease drying time, achieve similar product quality, and simplify the process steps of the conventional FD technology.

  17. A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater co-utilization

    International Nuclear Information System (INIS)

    Orfield, Nolan D.; Keoleian, Gregory A.; Love, Nancy G.

    2014-01-01

    The high theoretical productivity of microalgae makes it a promising energy crop, but economically viable large-scale production facilities have yet to emerge. Coupling algae cultivation ponds with flue gas emissions from power utilities to provide carbon dioxide and municipal wastewater to provide nutrients has been recommended as a solution. This flue gas and wastewater co-utilization (FWC) strategy not only reduces the upstream impacts and costs associated with providing inputs, but also provides a credit for wastewater treatment, a service currently required to reduce production costs to a viable level. This study provides the first national assessment of the potential for producing algal bio-oil in the United States using FWC. Spatial-temporal algae growth was simulated using solar radiation and temperature data to calculate the average annual algae yield for any location, which significantly impacts feasibility. The results of this model were integrated into a geospatial analysis which establishes the economically viable bio-oil production potential of FWC by accounting for the relative abundance of the input resources and their proximity. At most, 1.7 billion liters of bio-oil could be produced annually in a manner economically competitive with crude oil prices of $80 per barrel. The amount of nutrients in wastewater limits yields to 20.5 L of bio-oil per capita annually, and climatic constraints further reduce this potential by nearly 60%. Carbon dioxide constraints play a negligible role. Although the bio-oil production potential of FWC is relatively small, it does provide an opportunity to increase national biofuel output while providing a needed service. - Highlights: • Spatial-temporal algae growth was simulated using historical climate data. • A geospatial overlay analysis was used to assess national production potential. • Nutrient availability in wastewater is most limiting. • At most, 1.7 billion liters of algal biofuel per year could be

  18. 2010 World bio-energy conference

    International Nuclear Information System (INIS)

    2010-01-01

    After having evoked the bio-energy price awarded to a Brazilian for his works on the use of eucalyptus as energy source, this report proposes a synthesis of the highlights of the conference: discussions about sustainability, bio-energies as an opportunity for developing countries, the success of bio-energies in Sweden, and more particularly some technological advances in the field of biofuels: a bio-LPG by Biofuel-solution AB, catalysis, bio-diesel from different products in a Swedish farm, a second generation ethanol by the Danish company Inbicon, a large scale methanization in Goteborg, a bio-refinery concept in Sweden, bio-gases

  19. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy field. Final year report. R and D on the bio-fuel production by high functional bio-reactor; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy bun'ya. Kokino bio reactor ni yoru bio nenryo seisan ni kansuru kenkyu kaihatsu (saishu nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A system was developed for producing automobile fuel from the recycled paper and waste cooking oil using high functional intelligent yeast. Element technology is the functional yeast creation technology and the online intelligent control technology of the process into which the fixed bio-reactor was inserted. Studies were made on the following: 1) creation of high activity lipase production/ethanol production yeasts; 2) bio-fuel production by intelligent bio-reactor; 3) process optimization control technology by fuzzy control; 4) stabilization of bio-fuel production yeast; 5) comprehensive investigational study. In FY 2000, the results were obtained as written below: development of the stable lipase coming from rhizopus japonicus, fixed bacterium using rhizopus oryzae fungus body which can be used more than ten times, direct ethanol fermentation from starch by developing the multi-copy glucoamylase manifestation yeast, operation of a 20L capacity bench plant, etc. (NEDO)

  20. Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system

    International Nuclear Information System (INIS)

    Jourabchi, Seyed Amirmostafa; Gan, Suyin; Ng, Hoon Kiat

    2014-01-01

    Highlights: • The pyrolysis of Jatropha curcas waste in a fixed-bed rig was studied. • Yield, calorific value, water content and acidity of bio-oil were compared. • Empirical correlations for bio-oil yield and specifications were developed. • Optimisation of bio-oil production based on combined specifications was achieved. - Abstract: This study investigated the effects of pyrolysis parameters on the yield and quality of bio-oil from Jatropha curcas pressed cake. This biomass was pyrolysed in a fixed-bed reactor over a temperature range of 573.15 K to 1073.15 K and a nitrogen linear speed range of 7.8 × 10 −5 m/s to 6.7 × 10 −2 m/s. The heating rate and biomass grain size were 50 K/min and <2 mm, respectively. The bio-oils were tested for the gross calorific value, water content and acidity. The pyrolysis process was simulated using Thermo-Gravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) for mass and energy balances analyses. Empirical correlations between the bio-oil specifications and pyrolysis parameters were developed using linear and nonlinear multiple regression methods for process optimisation. At optimum pyrolysis conditions, above 50% of the waste is converted to bio-oil with less than 30% water content, a gross calorific value of 15.12 MJ/kg and a pH of 6.77

  1. Current market of industrial bio-products and biofuels, and predictable evolutions by 2015/2030. Synthesis

    International Nuclear Information System (INIS)

    2007-04-01

    The main objectives of this study were to describe the current status of the energetic and industrial bio-product markets (biofuels, bio-lubricants, biomaterials, papers, cosmetics, and so on), to identify and analyze the evolution perspectives of these new markets on a long and medium term, to define scenarios of evolution for different sectors (agro-industry, energy, organic chemistry), to identify the most promising new markets, and to select the priority agro-industrial sectors

  2. Hydrothermal liquefaction of microalgae's for bio oil production

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, Harvind; Deng, Shuguang

    process water for algae cultivation. GC-MS, elemental analyzer, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-oil yield of 46% was obtained on Nannochloropsis salina at 310 °C...... and 107 bar. For Spirulina platensis algae sample, the highest bio-oil yield is 38% at 350 °C and 195 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins...

  3. Understanding bio-economics

    OpenAIRE

    Patel, M.K.

    2008-01-01

    New plants for production of bio-based fuels, chemicals or plastics are being set up at an accelerating pace. However, this transition towards bio-based fuels, feedstocks and chemicals has not come without consequences. Increased demand has pushed up prices of key agricultural products such as maize and corn with the result that consumers - especially those in low income areas - have reacted with concern and protest. At the same time, environmental research institutes and lobby groups - and n...

  4. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste...

  5. Tax exemption for bio fuels in Germany: is bio-ethanol really an option for climate policy?

    International Nuclear Information System (INIS)

    Henke, J.M.; Klepper, G.; Schmitz, N.

    2005-01-01

    In 2002 the German Parliament decided to exempt biofuels from the gasoline tax to increase their competitiveness compared to conventional gasoline. The policy to promote biofuels is being justified by their allegedly positive effects on climate, energy, and agricultural policy goals. An increased use of biofuels would contribute to sustainable development by reducing greenhouse-gas emissions and the use of non-renewable resources. The paper takes a closer look at bio-ethanol as a substitute for gasoline. It analyzes the underlying basic German, European, and worldwide conditions that provide the setting for the production and promotion of biofuels. It is shown that the production of bio-ethanol in Germany is not competitive and that imports are likely to increase. Using energy and greenhouse-gas balances we then demonstrate that the promotion and a possible increased use of bio-ethanol to reduce greenhouse-gas emissions are economically inefficient and that there are preferred alternative strategies. In addition, scenarios of the future development of the bio-ethanol market are derived from a model that allows for variations in all decisive variables and reflects the entire production and trade chain of bio-ethanol, from the agricultural production of wheat and sugar beet to the consumption of bio-ethanol in the fuel sector. (author)

  6. Tax exemption for bio fuels in Germany: is bio-ethanol really an option for climate policy?

    Energy Technology Data Exchange (ETDEWEB)

    Henke, J.M.; Klepper, G. [Kiel Institute for World Economics, Kiel (Germany); Schmitz, N. [Meo Consulting Team, Koeln (Germany)

    2005-11-01

    In 2002 the German Parliament decided to exempt biofuels from the gasoline tax to increase their competitiveness compared to conventional gasoline. The policy to promote biofuels is being justified by their allegedly positive effects on climate, energy, and agricultural policy goals. An increased use of biofuels would contribute to sustainable development by reducing greenhouse-gas emissions and the use of non-renewable resources. The paper takes a closer look at bio-ethanol as a substitute for gasoline. It analyzes the underlying basic German, European, and worldwide conditions that provide the setting for the production and promotion of biofuels. It is shown that the production of bio-ethanol in Germany is not competitive and that imports are likely to increase. Using energy and greenhouse-gas balances we then demonstrate that the promotion and a possible increased use of bio-ethanol to reduce greenhouse-gas emissions are economically inefficient and that there are preferred alternative strategies. In addition, scenarios of the future development of the bio-ethanol market are derived from a model that allows for variations in all decisive variables and reflects the entire production and trade chain of bio-ethanol, from the agricultural production of wheat and sugar beet to the consumption of bio-ethanol in the fuel sector. (author)

  7. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    Lee, Y. H.; Lee, S.

    2009-01-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  8. Sustainable low cost production of lignocellulosic bioethanol - "The carbon slaughterhouse". A process concept developed by BioGasol

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Langvad, Niels Bo

    2008-01-01

    technologies within pretreatment, biogas production and a unique C5-fermentation for maximum ethanol production. The BioGasol concept is a well integrated technology with more than 90% utilization of the energy potential in the biomass. The production of other biofuels such as methane and hydrogen adds value...... to the overall process benefit. The technology can be used for green field plants or for bolt on plants to existing first generation ethanol plants. Using the yields obtained in the pilot plant 1.36 USD per Gallon is a valid estimate of the Minimum Ethanol Sales Price (MESP) for the N-th plant and Bio...

  9. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment.

    Science.gov (United States)

    Chen, Dengyu; Cen, Kehui; Jing, Xichun; Gao, Jinghui; Li, Chen; Ma, Zhongqing

    2017-06-01

    Bio-oil undergoes phase separation because of poor stability. Practical application of aqueous phase bio-oil is challenging. In this study, a novel approach that combines aqueous phase bio-oil washing and torrefaction pretreatment was used to upgrade the biomass and pyrolysis product quality. The effects of individual and combined pretreatments on cotton stalk pyrolysis were studied using TG-FTIR and a fixed bed reactor. The results showed that the aqueous phase bio-oil washing pretreatment removed metals and resolved the two pyrolysis peaks in the DTG curve. Importantly, it increased the bio-oil yield and improved the pyrolysis product quality. For example, the water and acid content of bio-oil decreased significantly along with an increase in phenol formation, and the heating value of non-condensable gases improved, and these were more pronounced when combined with torrefaction pretreatment. Therefore, the combined pretreatment is a promising method, which would contribute to the development of polygeneration pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bio-MTBE. A new option to fulfil biofuel quota for gasoline; Bio-MTBE. Eine neue Option zur Erfuellung der Biokraftstoffquote in Ottokraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Oliver M.; Schade, Arnd; Locher, Annette [Evonik Industries AG, Essen (Germany)

    2013-05-15

    To meet the legally required bio-fuel quota in gasoline, an alternative to the ethanol blend E10 is nowavailable for nearly one year. Evonik Industries has introduced a bio-version of methyl tert-butyl ether (MTBE), an anti-knock agent, on the market. Chemically, both products are identical, because in production methanol is exchanged for bio-methanol. Bio-methanol is produced from raw glycerine, which arises as a byproduct from biodiesel production. This makes bio-MTBE an ideal bio-fuel component as defined by the EU's Renewable Energy Directive: Fuel components made from waste and residues are ''double counted'' regarding their bio-energy content. The product is widely used in the German and Dutch markets. In both countries, bio- MTBE is legally recognized as a bio-fuel component fulfilling double counting requirements. In the meantime, also other European countries have been introducing double counting for second-generation biofuel components. The EU Commission proposed to allow components based on residual materials to be calculated fourfold in the future. Should this be the case, bio-MTBE would become significantly more valuable. (orig.)

  11. White paper report from working groups attending the international conference on research and educational opportunities in bio-fuel crop production

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, K.T. [University of Florida, Soil and Water Science Dep., Southwest Florida Res. and Educ. Center, Immokalee, FL 34142 (United States); Gilbert, R.A. [University of Florida, Agronomy Dep., Everglades Res. and Educ. Center, Belle Glade, FL 33430 (United States); Helsel, Z.A. [Rutgers University, Plant Biology and Pathology Dep., New Brunswick, NJ 08901-8520 (United States); Buacum, L. [University of Florida, Hendry County Extension, LaBelle, FL 33935 (United States); Leon, R.; Perret, J. [EARTH University, Apto. 4442-1000, San Jose (Costa Rica)

    2010-12-15

    A conference on current research and educational programs in production of crops for bio-fuel was sponsored and organized by the EARTH University and the University of Florida in November, 2008. The meeting addressed current research on crops for bio-fuel production with discussions of research alternatives for future crop production systems, land use issues, ethics of food vs. fuel production, and carbon sequestration in environmentally sensitive tropical and sub-tropical regions of the Americas. The need and potential for development of graduate and undergraduate curricula and inter-institutional cooperation among educational institutions in the region were also discussed. Delegations from Belize, Brazil, Columbia, Costa Rica, Cuba, Honduras, Panama, The Dominican Republic, and the United States including ministers of Agriculture and Energy attended this meeting. Over a two-day period, four working groups provided a framework to facilitate networking, motivate task oriented creative thinking, and maintain a timely accomplishment of assigned duties in the context of the conference themes. Participants in the conference were assigned to one of four working groups, each following given topics: Agronomy, Environment, Socio-Economics and Education/Extension. It was the consensus of representatives of industry, academic and regulatory community assembled in Costa Rica that significant research, education and socio-economic information is needed to make production of bio-fuel crops sustainable. Agronomic research should include better crop selection based on local conditions, improved production techniques, pest and disease management, and mechanical cultivation and harvesting. Another conclusion was that tailoring of production systems to local soil characteristics and use of bio-fuel by-products to improve nutrient use efficiency and reduction of environmental impact on water quantity and quality is critical to sustainability of bio-fuel crop production. (author)

  12. Production of bio-oil via hydrothermal liquefaction of birch sawdust

    International Nuclear Information System (INIS)

    Malins, Kristaps

    2017-01-01

    Highlights: • NaOH has significant impact on hydrothermal liquefaction of birch sawdust. • High yield of bio-oil (54.1%) was obtained under developed optimal conditions. • Compounds in bio-oil have appropriate chemical structure for hydrocarbon synthesis. • The yield of marketable solid residue with potential for industrial application was 7.1%. • Solid residue has high calorific value (29.8 MJ/kg) and C content (74.6 wt.%). - Abstract: The effect of weight ratio of plywood manufacturing by-product birch sawdust (BS) to water (1/2–1/8), reaction temperature (200–340 °C), initial H 2 pressure (0–10 MPa), residence time (5–90 min), catalysts amount (0.25–7.0 wt.%) and type (FeSO 4 , ZnSO 4 , NiSO 4 , Raney-nickel, Ni65%/SiO 2 −Al 2 O 3 , Na 2 CO 3 and NaOH) on hydrothermal liquefaction of BS was investigated. High yield of bio-oil (54.1%) with calorific value (CV) 24.9 MJ/kg under developed optimal experimental conditions in the presence of NaOH (5 wt.%) utilizing weight ratio of BS to water 1/4, residence time 5 min, mixing speed 250 rpm at 300 °C without pressurized particular inert gas or H 2 atmosphere was achieved. Compounds in bio-oil analyzed by gas chromatography-mass spectrometry (GC-MS) have suitable chemical structures for conversion into renewable hydrocarbons. Marketable solid residue (SR) with yield 7.1%, high CV (29.8 MJ/kg) and perspective characteristics for industrial application was obtained. Produced gas in process analyzed by gas chromatography-thermal conductivity detector (GC–TCD) contains 60.1 vol.% of CO 2 .

  13. Applying Limestone or Basalt in Combination with Bio-Fertilizer to Sustain Rice Production on an Acid Sulfate Soil in Malaysia

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2016-07-01

    Full Text Available A study was conducted to determine the efficacy of applying ground magnesium limestone (GML or ground basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia. Soils from Kelantan Plains, Malaysia, were treated with GML, ground basalt, bio-fertilizer, GML + bio-fertilizer, and ground basalt + bio-fertilizer (4 t·ha−1 each. Results showed that soil fertility was improved by applying the soil amendments. GML and basalt contain some Zn and Cu; thus, application of these amendments would increase their contents in the soil needed for the healthy growth of rice. Basalt applied in combination with bio-fertilizer appeared to be the best agronomic option to improve the fertility of acid sulfate soils for sustainable rice production in the long run. In addition to increasing Ca, Mg, Zn, and Cu reserves in the soil, water pH increased and precipitated Al3+ and/or Fe2+. Ground basalt is cheaper than GML, but basalt dissolution in the acidic soil was slow. As such, its ameliorative effects could only be seen significantly from the second season onwards. The specially-formulated bio-fertilizer for alleviating the infertility of acid sulfate soil could also enhance rice growth. The use of the bio-fertilizer fortified with N2-fixing bacteria is a green technology that would help reduce NO3− and/or NO2− pollution and reduce the cost of rice production. The phosphate-solubilizing bacteria (PSB present in the bio-fertilizer not only increased the available P, but also helped release organic acids that would inactivate Al3+ and/or Fe2+ via the process of chelation.

  14. Land application uses for dry flue gas desulfurization by-products: Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  15. Bio-Refining of Carbohydrate-Rich Food Waste for Biofuels

    Directory of Open Access Journals (Sweden)

    Hoang-Tuong Nguyen Hao

    2015-06-01

    Full Text Available The global dependence on finite fossil fuel-derived energy is of serious concern given the predicted population increase. Over the past decades, bio-refining of woody biomass has received much attention, but data on food waste refining are sorely lacking, despite annual and global deposition of 1.3 billion tons in landfills. In addition to negative environmental impacts, this represents a squandering of valuable energy, water and nutrient resources. The potential of carbohydrate-rich food waste (CRFW for biofuel (by Rhodotorulla glutinis fermentation and biogas production (by calculating theoretical methane yield was therefore investigated using a novel integrated bio-refinery approach. In this approach, hydrolyzed CRFW from three different conditions was used for Rhodotorulla glutinis cultivation to produce biolipids, whilst residual solids after hydrolysis were characterized for methane recovery potential via anaerobic digestion. Initially, CRFW was hydrolysed using thermal- (Th, chemical- (Ch and Th-Ch combined hydrolysis (TCh, with the CRFW-leachate serving as a control (Pcon. Excessive foaming led to the loss of TCh cultures, while day-7 biomass yields were similar (3.4–3.6 g dry weight (DW L−1 for the remaining treatments. Total fatty acid methyl ester (FAME content of R. glutinis cultivated on CRFW hydrolysates were relatively low (~6.5% but quality parameters (i.e., cetane number, density, viscosity and higher heating values of biomass extracted biodiesel complied with ASTM standards. Despite low theoretical RS-derived methane potential, further research under optimised and scaled conditions will reveal the potential of this approach for the bio-refining of CRFW for energy recovery and value-added co-product production.

  16. Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products

    International Nuclear Information System (INIS)

    Ribeiro, Roseane Fagundes; Motta, Mariana Heldt; Härter, Andréia Pisching Garcia; Flores, Fernanda Cramer; Beck, Ruy Carlos Ruver; Schaffazick, Scheila Rezende

    2016-01-01

    This work aimed to obtain solid formulations from polymeric nanocapsules and nanoemulsions containing tioconazole, a broad spectrum antifungal drug. Two dehydration methods were used: spray-drying and freeze-drying, using lactose as adjuvant (10%, w/v). The liquid formulations had a mean particle size around 206 nm and 182 nm for nanocapsules and nanoemulsions, respectively, and an adequate polydispersity index. Tioconazole content was close to the theoretical amount (1.0 mg/mL). After drying, the content ranged between 98 and 102% with a mean nanometric size of the dried products after redispersion. Scanning electron microscopy showed that the particles are rounded, sphere-shaped for the dried products obtained by spray-drying, and shapeless and irregular shapes for those obtained by freeze-drying. In the microbiological evaluation, all dried products remained active against the yeast Candida albicans when compared to the original systems. The dried products obtained by spray-drying from nanocapsules presented better control of the tioconazole release when compared to the freeze-drying products. - Highlights: • Polymeric nanocapsule suspensions containing tioconazole were submitted to spray-drying and freeze-drying. • Dried products from nanocapsule suspensions were stable for 30 days. • Release studies showed that the dried products presented greater control of drug release compared to the original suspension.

  17. Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Roseane Fagundes [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); Motta, Mariana Heldt [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); Härter, Andréia Pisching Garcia; Flores, Fernanda Cramer [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); Beck, Ruy Carlos Ruver [Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000 (Brazil); Schaffazick, Scheila Rezende [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); and others

    2016-02-01

    This work aimed to obtain solid formulations from polymeric nanocapsules and nanoemulsions containing tioconazole, a broad spectrum antifungal drug. Two dehydration methods were used: spray-drying and freeze-drying, using lactose as adjuvant (10%, w/v). The liquid formulations had a mean particle size around 206 nm and 182 nm for nanocapsules and nanoemulsions, respectively, and an adequate polydispersity index. Tioconazole content was close to the theoretical amount (1.0 mg/mL). After drying, the content ranged between 98 and 102% with a mean nanometric size of the dried products after redispersion. Scanning electron microscopy showed that the particles are rounded, sphere-shaped for the dried products obtained by spray-drying, and shapeless and irregular shapes for those obtained by freeze-drying. In the microbiological evaluation, all dried products remained active against the yeast Candida albicans when compared to the original systems. The dried products obtained by spray-drying from nanocapsules presented better control of the tioconazole release when compared to the freeze-drying products. - Highlights: • Polymeric nanocapsule suspensions containing tioconazole were submitted to spray-drying and freeze-drying. • Dried products from nanocapsule suspensions were stable for 30 days. • Release studies showed that the dried products presented greater control of drug release compared to the original suspension.

  18. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  19. Selective pyrolysis of paper mill sludge by using pretreatment processes to enhance the quality of bio-oil and biochar products

    International Nuclear Information System (INIS)

    Reckamp, Joseph M.; Garrido, Rene A.; Satrio, Justinus A.

    2014-01-01

    Paper mill sludge (PMS) is a residual biomass that is generated at paper mills in large quantities. Currently, PMS is commonly disposed in landfills, which causes environmental issues through chemical leaching and greenhouse gas production. In this research, we are exploring the potential of fast pyrolysis process for converting PMS into useful bio-oil and biochar products. We demonstrate that by subjecting PMS to a combination of acid hydrolysis and torrefaction pre-treatment processes it is possible to alter the physicochemical properties and composition of the feedstock material. Fast pyrolysis of pretreated PMS produced bio-oil with significantly higher selectivity to levoglucosenone and significantly reduced the amount of ketone, aldehyde, and organic acid components. Pretreatment of PMS with combined 4% mass fraction phosphoric acid hydrolysis and 220 °C torrefaction processed prior to fast pyrolysis resulted in a 17 times increase of relative selectivity towards levoglucosenone in bio-oil product along with a reduction of acids, ketones, and aldehydes combined from 21 % to 11 %. Biochar, produced in higher yield, has characteristics that potentially make the solid byproduct ideal for soil amendment agent or sorbent material. This work reveals a promising process system to convert PMS waste into useful bio-based products. More in-depth research is required to gather more data information for assessing the economic and sustainability aspects of the process. - Highlights: • Acid hydrolysis and torrefaction reduce bio-oil yield, but improve quality. • Dilute acid conditions provide optimal treatment for bio-oil quality and yield. • Pyrolysis of treated PMS produces high selectivity to levoglucosenone formation. • Treated PMS produces bio-oil with reduced acid, ketone, and aldehyde content. • Pyrolysis of treated PMS produces biochar with low volatile matter in high yield

  20. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......-ethanol production will not lead to reduction but to increase in CO2 emission and fossil fuel dependency. Both first and second generation bio-ethanol suffer from a biomass-to-ethanol energy conversion efficiency as low as 30-40 %, and moreover external fossil fuels are used to run the conversion. There is only......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  1. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    OpenAIRE

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm cultivation comes with risks. Small-scale cultivation of sugar palm perfectly fits into local farming systems. In order to make a proper assessment of the value palm sugar as bio-ethanol crop more informati...

  2. Bio-SNG. Prospective renewable energy carrier in the E.ON gas grid; Bio-SNG. Zukuenftiger regenerativer Energietraeger im E.ON Gasnetz

    Energy Technology Data Exchange (ETDEWEB)

    Adelt, Marius; Vogel, Alexander [E.ON Ruhrgas AG, Essen (Germany)

    2010-10-15

    Biogas processing and injection into the natural gas pipeline system on an industrial scale has been around in Germany for some time. E.ON operates a number of biogas plants with a production capacity of 200-1700 m{sup 3}/h. More plants are under construction or planned. The German government is looking to increase the share of biogas (upgraded to natural gas quality) in the pipeline system to 6 billion m{sup 3}/a by 2020, so significantly more production capacity is needed. Biogas is produced mainly from dedicated energy crops (maize) as well as several catch crops and, depending on the processing plant, various amounts of bio residues. The biogas is upgraded to natural gas quality and fed into the pipeline system as biomethane (E.ON: bio natural gas). To achieve the ambitious production targets it will be necessary to tap the unused potential of wood for gasification and subsequent methanisation into bio-SNG. E.ON AG actively promotes the development and introduction of this technology. This article provides an overview of different aspects of bio-SNG production and use including: Utilisation paths for biomethane/bio-SNG (heat, fuel, CHP), Potential of wood for bio-SNG production, Bio-SNG production technologies, Current E.ON activities and projects. (orig.)

  3. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  4. Production of bio diesel from sludge palm oil by esterification using p-toluenesulfonic acid

    International Nuclear Information System (INIS)

    Adeeb Hayyan; Mohd Zahangir Alam; Mirghani, M.E.S.; Kabbashi, N.A.

    2009-01-01

    Full text: Sludge palm oil (SPO) is an attractive feedstock and a significant raw material for bio diesel production. The use of SPO as feedstock for bio diesel production requires additional pretreatment step to transesterification process, which is an esterification process. The most commonly preferred catalysts used in this process are sulfuric, sulphonic, hydrochloric and P-toluenesulfonic acid (PTSA). In this study bio diesel fuel was produced from SPO using PTSA as acid catalyst in different dosages in presence of alcohol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME). Batch esterification process of SPO was carried out to study the influence of PTSA dosage (0.25-10 % wt/wt), molar ratio of methanol to SPO (6:1-20:1), temperature (40-80 degree Celsius), reaction time (30-120 min). The effects of those parameters on FFA content, yield of treated SPO and conversion of FFA to FAME were monitored. The study showed that the FFA content of SPO reduced from 22 % to less than 0.15 % using ratio of 0.5, 0.75, 1, 1.5, and 2 % wt/wt PTSA to SPO. After esterification process dosage of PTSA at 0.75 % wt/wt shows the highest conversion of FFA to FAME as well as yield of treated SPO. The optimum condition for batch esterification process was 10:1 molar ratio, temperature 60 degree Celsius and 60 minutes reaction time. The highest yield of bio diesel after transesterification process was 76.62 % with 0.06 % FFA and 93 % ester content. (author)

  5. Spray Drying Processing: granules production and drying kinetics of droplets

    International Nuclear Information System (INIS)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2013-01-01

    Spray drying is a unit operation very common in many industrial processes. For each particular application, the resulting granulated material must possess determined properties that depend on the conditions in which the spray drying processing has been carried out, and whose dependence must be known in order to optimize the quality of the material obtained. The large number of variables that influence on the processes of matter and energy transfer and on the formation of granular material has required a detailed analysis of the drying process. Over the years there have been many studies on the spray drying processing of all kind of materials and the influence of process variables on the drying kinetics of the granulated material properties obtained. This article lists the most important works published for both the spray drying processing and the drying of individual droplets, as well as studies aimed at modeling the drying kinetics of drops. (Author)

  6. Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling

    Science.gov (United States)

    Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim

    2017-09-01

    Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.

  7. Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production.

    Science.gov (United States)

    Shanmugam, Saravanan R; Adhikari, Sushil; Wang, Zhouhang; Shakya, Rajdeep

    2017-01-01

    Hydrothermal liquefaction of wet biomass such as algae is a promising thermochemical process for the production of bio-oil. Bio-oil aqueous phase generated during liquefaction process is rich in complex organics and can be utilized for biogas production following its pre-treatment with granular activated carbon. In our study, use of 30% activated carbon resulted in higher chemical oxygen demand (COD) reduction (53±0.3%) from aqueous phase. Higher CH 4 production (84±12mL/gCOD) was also observed in 30% carbon-treated aqueous phase fed cultures, whereas only 32±6mLCH 4 /gCOD was observed in control (non-carbon treated) cultures. The results from this study indicate that almost 67±0.3% initial COD of aqueous phase can be reduced using a combination of both carbon treatment and biogas production. This study shows that aqueous phase can be utilized for CH 4 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads.

    Science.gov (United States)

    Henning, D R; Baer, R J; Hassan, A N; Dave, R

    2006-04-01

    Advances in dairy foods and dairy foods processing since 1981 have influenced consumers and processors of dairy products. Consumer benefits include dairy products with enhanced nutrition and product functionality for specific applications. Processors convert raw milk to finished product with improved efficiencies and have developed processing technologies to improve traditional products and to introduce new products for expanding the dairy foods market. Membrane processing evolved from a laboratory technique to a major industrial process for milk and whey processing. Ultra-filtration and reverse osmosis have been used extensively in fractionation of milk and whey components. Advances in cheese manufacturing methods have included mechanization of the making process. Membrane processing has allowed uniform composition of the cheese milk and starter cultures have become more predictable. Cheese vats have become larger and enclosed as well as computer controlled. Researchers have learned to control many of the functional properties of cheese by understanding the role of fat and calcium distribution, as bound or unbound, in the cheese matrix. Processed cheese (cheese, foods, spreads, and products) maintain their importance in the industry as many product types can be produced to meet market needs and provide stable products for an extended shelf life. Cheese delivers concentrated nutrients of milk and bio-active peptides to consumers. The technologies for the production of concentrated and dried milk and whey products have not changed greatly in the last 25 yr. The size and efficiencies of the equipment have increased. Use of reverse osmosis in place of vacuum condensing has been proposed. Modifying the fatty acid composition of milkfat to alter the nutritional and functional properties of dairy spread has been a focus of research in the last 2 decades. Conjugated linoleic acid, which can be increased in milkfat by alteration of the cow's diet, has been reported to have

  9. {sup 14}C determination in different bio-based products

    Energy Technology Data Exchange (ETDEWEB)

    Santos Arévalo, Francisco-Javier, E-mail: fj.santos@csic.es [Centro Nacional de Aceleradores (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía), Thomas Alva Edison 7, 41092 Seville (Spain); Gómez Martínez, Isabel; Agulló García, Lidia; Reina Maldonado, María-Teresa [Centro Nacional de Aceleradores (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía), Thomas Alva Edison 7, 41092 Seville (Spain); García León, Manuel [Centro Nacional de Aceleradores (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía), Thomas Alva Edison 7, 41092 Seville (Spain); Dpto. de Física Atómica Molecular y Nuclear, Universidad de Sevilla, Reina Mercedes s/n, 41012 Seville (Spain)

    2015-10-15

    Radiocarbon determination can be used as a tool to investigate the presence of biological elements in different bio-based products, such as biodiesel blends. These products may also be produced from fossil materials obtaining the same final molecules, so that composition is chemically indistinguishable. The amount of radiocarbon in these products can reveal how much of these biological elements have been used, usually mixed with petrol derived components, free of {sup 14}C. Some of these products are liquid and thus the handling at the laboratory is not as straightforward as with solid samples. At Centro Nacional de Aceleradores (CNA) we have tested the viability of these samples using a graphitization system coupled to an elemental analyzer used for combustion of the samples, thus avoiding any vacuum process. Samples do not follow any chemical pre-treatment procedure and are directly graphitized. Specific equipment for liquid samples related to the elemental analyzer was tested. Measurement of samples was performed by low-energy AMS at the 1 MV HVEE facility at CNA, paying special attention to background limits and reproducibility during sample preparation.

  10. Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products.

    Science.gov (United States)

    Asefa, Dereje T; Møretrø, Trond; Gjerde, Ragnhild O; Langsrud, Solveig; Kure, Cathrine F; Sidhu, Maan S; Nesbakken, Truls; Skaar, Ida

    2009-07-31

    This study investigate the diversity and dynamics of yeasts in the production processes of one unsmoked and two smoked dry-cured meat products of a Norwegian dry-cured meat production facility. A longitudinal observational study was performed to collect 642 samples from the meat, production materials, room installations and indoor and outdoor air of the production facility. Nutrient rich agar media were used to isolate the yeasts. Morphologically different isolates were re-cultivated in their pure culture forms. Both classical and molecular methods were employed for species identification. Totally, 401 yeast isolates belonging to 10 species of the following six genera were identified: Debaryomyces, Candida, Rhodotorula, Rhodosporidium, Cryptococcus and Sporidiobolus. Debaryomyces hansenii and Candida zeylanoides were dominant and contributed by 63.0% and 26.4% respectively to the total isolates recovered from both smoked and unsmoked products. The yeast diversity was higher at the pre-salting production processes with C. zeylanoides being the dominant. Later at the post-salting stages, D. hansenii occurred frequently. Laboratory studies showed that D. hansenii was more tolerant to sodium chloride and nitrite than C. zeylanoides. Smoking seems to have a killing or a temporary growth inhibiting effect on yeasts that extend to the start of the drying process. Yeasts were isolated only from 31.1% of the environmental samples. They belonged to six different species of which five of them were isolated from the meat samples too. Debaryomyces hansenii and Rhodotorula glutinis were dominant with a 62.6% and 22.0% contribution respectively. As none of the air samples contained D. hansenii, the production materials and room installations used in the production processes were believed to be the sources of contamination. The dominance of D. hansenii late in the production process replacing C. zeylanoides should be considered as a positive change both for the quality and safety

  11. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L.) Calyces Extract Dried with Foaming Agent under Different Temperatures.

    Science.gov (United States)

    Djaeni, Mohamad; Kumoro, Andri Cahyo; Sasongko, Setia Budi; Utari, Febiani Dwi

    2018-01-01

    The utilisation of roselle ( Hibiscus sabdariffa L.) calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS). The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  12. Sterilization of Carriers by using Gamma Irradiation for Bio fertilizer Inoculum Production

    International Nuclear Information System (INIS)

    Tittabutr, Panlada; Teamtisong, Kamonluck; Pewlong, Wachiraporn; Teaumroong, Neuhg; Laoharojanaphand, Sirinart; Boonkerd, Nantakorn

    2009-07-01

    Full text: Gamma irradiation has been widely used in sterilization process, which leads to improvement in the quality of the products. In the case of bio fertilizer inoculum, the sterilized carrier is also needed for producing high quality bio fertilizer. This study aimed at determining the factors, such as carrier materials, moistures, and packing sizes including packaging materials that may affect the sterilization efficiency by using gamma irradiation. All carrier materials, peat and compost, could be efficiently sterilized by irradiation. The carriers that have moisture content lower than 20% could be sterilized by irradiation at 15 kGy, while carrier with 30% moisture content must be sterilized by irradiation at 25 kGy. Higher irradiation dose was also necessary for sterilization of bigger carrier packing sizes. For, packaging materials, polyethylene bag appeared most durable after gamma irradiation even at high doses. However, contaminants could be detected in irradiated carrier after storage at room temperature for two months. It was hypothesized that these contaminants are spore forming microorganisms, which resist gamma irradiation. This hypothesis, as well as the quality of bio fertilizer produced from irradiated carrier, will be further evaluated

  13. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    A. Sattar; C. Arslan; C. Ji; S. Sattar; K. Yousaf; S. Hashim

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen productio...

  14. Bio-based chemicals - green, but also sustainable?

    DEFF Research Database (Denmark)

    Ögmundarson, Ólafur; Herrgard, Markus; Förster, Jochen

    For almost two decades, the chemical industry has put great effort into developing bio-chemicals,among others to fight global warming caused by greenhouse gas emissions, one of the biggest threats that are faced by our society today. To facilitate a growing and versatile bio-based chemical...... production, the US Department of Energy proposed in 2004 a list of 12 building block chemicals which can either be converged through biological or chemical conversions. Moving toward more bio-based chemicals, the chemical industry does not only claim to reduce climate change impacts, but also...... that they are increasing overall sustainability in chemical production. Whether such claims are justifiable is unclear. When sustainability of bio-based polymer production is assessed, various environmental trade-offs occur that need to be considered. It is not enough to claim that a bio-chemical is sustainable...

  15. Towards an integrated system for bio-energy: hydrogen production by Escherichia coli and use of palladium-coated waste cells for electricity generation in a fuel cell.

    Science.gov (United States)

    Orozco, R L; Redwood, M D; Yong, P; Caldelari, I; Sargent, F; Macaskie, L E

    2010-12-01

    Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H(2) and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials ('Bio-Pd') were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H(2). Both strains produced hydrogen and OAs but 'palladised' cells of strain IC007 (Bio-Pd(IC007)) produced ~threefold more power as compared to Bio-Pd(MC4100) (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.

  16. Long-term environmental consequences of the production and feeding of bio gas; Langfristige Auswirkungen auf die Umwelt bei der Erzeugung und Einspeisung von Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank; Koeppel, Wolfgang; Karch, Udo [Karlsruhe Univ. (T.H.) (Germany). DVGW-Forschungsstelle am Engler-Bunte-Institut; Kiefer, Joachim; Ball, Thomas [DVGW-Technologiezentrum Wasser (TZW), Karlsruhe (Germany). Abt. Grundwasser und Boden

    2010-03-15

    In the context of an investigation financed by the German Technical and Scientific Association for Gas and Water (DVGW, Bonn, Federal Republic of Germany), the effects of feeding bio gas into the natural gas grid on ground, plants, air and water were examined. The entire process chain was evaluated beginning with the biomass production till to the biogas production, processing of bio gas, feeding of bio gas and utilization of residues. The literature study was based on the results of a DVGW project finished in 2008 for the evaluation of the production of biomass for the energetic use from the view of the water protection and on an investigation of the process engineering of the cleaning of bio gas.

  17. Peri-urban Dry Season Vegetable Production in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Kintomo, AA.

    1997-01-01

    Full Text Available Peri-urban dry season vegetable production in Ibadan is increasingly becoming important, due to its relatively recent importance as a means of producing food in the city. Information on : (1 management practices ; (2 cropping systems ; and (3 economies of production, was hardly available. A diagnostic study organised in the dry season of 1994/95 addresses these issues. Its results indicate that the major crops in the system are Corchorus, Amaranthus and Celosia and are grown in intercropping systems. Farmers in the systems were constrained by poor drainage systems, weeds, dearth of improved seeds and marketing, inefficient input delivery system, high cost of input, pests and diseases and unavailability of labour at critical times. However, net benefits amounts to approximately N235650/ha/season ($ 2772. Significant and sustainable increases in productivity of the system could be achieved with the use of integrated water, crop, soil and pest management systems together with efficient input delivery systems.

  18. Change in enzyme production by gradually drying culture substrate during solid-state fermentation.

    Science.gov (United States)

    Ito, Kazunari; Gomi, Katsuya; Kariyama, Masahiro; Miyake, Tsuyoshi

    2015-06-01

    The influence of drying the culture substrate during solid-state fermentation on enzyme production was investigated using a non-airflow box. The drying caused a significant increase in enzyme production, while the mycelium content decreased slightly. This suggests that changes in the water content in the substrate during culture affect enzyme production in fungi. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    Science.gov (United States)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  1. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L. Calyces Extract Dried with Foaming Agent under Different Temperatures

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2018-01-01

    Full Text Available The utilisation of roselle (Hibiscus sabdariffa L. calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS. The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  2. Evaluation of the antifungal effects of bio-oil prepared with lignocellulosic biomass using fast pyrolysis technology.

    Science.gov (United States)

    Kim, Kwang Ho; Jeong, Han Seob; Kim, Jae-Young; Han, Gyu Seong; Choi, In-Gyu; Choi, Joon Weon

    2012-10-01

    This study was performed to investigate the utility of bio-oil, produced via a fast pyrolysis process, as an antifungal agent against wood-rot fungi. Bio-oil solutions (25-100 wt.%) were prepared by diluting the bio-oil with EtOH. Wood block samples (yellow poplar and pitch pine) were treated with diluted bio-oil solutions and then subjected to a leaching process under hot water (70°C) for 72 h. After the wood block samples were thoroughly dried, they were subjected to a soil block test using Tyromyces palustris and Trametes versicolor. The antifungal effect of the 75% and 100% bio-oil solutions was the highest for both wood blocks. Scanning electron microscopy analysis indicated that some chemical components in the bio-oil solution could agglomerate together to form clusters in the inner part of the wood during the drying process, which could act as a wood preservative against fungal growth. According to GC/MS analysis, the components of the agglomerate were mainly phenolic compounds derived from lignin polymers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    Botti, Jean; Combarnous, Michel; Jarry, Bruno; Monsan, Pierre; Burzynski, Jean-Pierre; Jeuland, Nicolas; Porot, Pierre; Demoment, Pascale; Gillmann, Marc; Marchand, Philippe; Kuentzmann, Paul; Kurtsoglou, Nicolas; Lombaert-Valot, Isabelle; Pelegrin, Marc; Renvier, Jacques; Rousseau, Julien; Stadler, Thierry; Tremeau, Benoit

    2014-01-01

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  4. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Science.gov (United States)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  5. PhD Thesis Summary: Energy Efficient Multistage Zeolite Drying for Heat-Sensitive Products

    NARCIS (Netherlands)

    Djaeni, M.; Boxtel, van A.J.B.

    2009-01-01

    Although drying takes a significant part of the total energy usage in industry, currently available drying technology is often not efficient in terms of energy consumption. Generally, the energy efficiency for drying processes ranges between 20 and 60% depending on the dryer type and product to be

  6. Inventory of future power and heat production technologies. Partial report Energy combines

    International Nuclear Information System (INIS)

    Thunman, Henrik; Lind, Fredrik; Johnsson, Filip

    2008-12-01

    This report treats different ways to produce various upgraded biofuels from lignocellulosic materials in so called polygeneration processes. Furthermore the different upgrading technologies are also investigated with respect to co-production of heat and power. The processes investigated are linked to production of - bio pellets (or lignin pellets), dried, grinded and compressed biomass (or lignin); - torrified bio pellets, dried, grinded, heat treated and compressed biomass; - bio-oils or pyrolytic oils, liquefied biomass with crude oil quality; - ethanol via hydrolysis (process where the biomass is divided into sugars and lignin) followed by fermentation; - methane via hydrolysis and fermentation; - methane via indirect gasification and methane via indirect or suspension gasification, - DME (dimethyl ether) via indirect or suspension gasification; - methanol via indirect or suspension gasification; - DME and methanol via methane produced via indirect gasification. Lignocellulosic biomasses are, for example, forest residues or biomass that can be cultivated on degraded lands. The result from this report shows that it is only the production of bio pellets that is fully commercially available today. For all the other polygeneration processes investigated the production of bio-oil and torrified bio pellets stands out from the other processes investigated, as it is the market for the product that holds back the introduction of the technology. For the other technologies one or several components are still not commercialized and the challenges for these technologies are described in the report. Summarizing the efficiencies for the different processes, the processes that produces biofuels for stationary applications, bio pellets, torrified bio pellets and bio-oil, show the highest efficiencies. Accounted for the co-generated power, efficiencies up to 90 % based on ingoing lower heating values of the dry substance fed to the process could be achieved. For the processes

  7. Effect of operating conditions on direct liquefaction of low-lipid microalgae in ethanol-water co-solvent for bio-oil production

    International Nuclear Information System (INIS)

    Ji, Changhao; He, Zhixia; Wang, Qian; Xu, Guisheng; Wang, Shuang; Xu, Zhixiang; Ji, Hengsong

    2017-01-01

    Highlights: • Low-lipid microalgae was selected as feedstock for DL in ethanol-water co-solvent. • Operating conditions had great influence on product yields and conversion rate. • Bio-oil could be obtained from all three main components. • Ethanol and water showed obviously synergistic effect during the DL of microalgae. • Bio-oil composition from DL of microalgae was different from lignocellulose biomass. - Abstract: In this work, the direct liquefaction (DL) of low-lipid microalgae Spirulina was investigated in a 50 ml autoclave reactor with ethanol and water as co-solvent. The objective of this research was carried out to examine the effect of operating conditions such as reaction temperature, reaction time, solvent/microalgae (S/M) ratio and ethanol-water co-solvent (EWCS) composition on product distribution and bio-oil characterization. The results revealed that the optimal operating conditions for bio-oil yield and conversion rate were reaction temperature of 300 °C, reaction time of 45 min, ethanol content of 50 vol.% and S/M ratio of 40/4 ml/g, which gave the bio-oil yield of 59.5% and conversion rate of 94.73%. Conversion rate in EWCS was significantly higher than that in pure water or ethanol, suggesting the synergistic effect between ethanol and water during microalgae DL. Distinct difference in composition and relative content of compound among bio-oils in different solvents were observed by GC–MS and FT-IR. Compared with hydrothermal liquefaction, the most abundant compounds in bio-oil from both EWCS and pure ethanol were esters. The presence of ethanol could enhance the bio-oil yield and improve bio-oil quality by promoting the formation of esters.

  8. Bio-objects and the media: the role of communication in bio-objectification processes.

    Science.gov (United States)

    Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia

    2013-06-01

    The representation of biological innovations in and through communication and media practices is vital for understanding the nature of "bio-objects" and the process we call "bio-objectification." This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific.

  9. Use of organic fertilizer and bio fertilizer in a modern planting system to increase the productivity of vanilla plant

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Phua Choo Kwai Hoe; Shyful Azizi Abdul Rahman; Mohd Fajri Osman; Latiffah Noordin; Abdul Razak Ruslan; Maizatul Akmam Mhd Nasir; Hazlina Abdullah; Amirul Azmi Supuan; Misman Sumin; Ahamad Sahali Mardi; Khairuddin Abdul Rahim

    2010-01-01

    Vanilla is a plant belonging to the orchid family and native to Mexico. In Malaysia, research and cultivation of vanilla plants are becoming more popular and intensive because the plant has a high commercial value. Fertilizing of vanilla plants is important to enhance the nutrients needed by the plants for growth and vanilla pod production. In 1999, research in MARDI showed that the use of chemical fertilizer NPK (15:15:15) was suitable for vanilla plants. For plants that have not produced vanilla pods foliar fertilizer must be sprayed and foliar fertilizer application must be reduced at pod production stage. The fertilizer programme is almost similar to those of other vanilla producing countries such as Indonesia and Mexico. In Indonesia, studies on organic farming of vanilla have been conducted. They have produced chemical-free vanilla fertilizer products such as Bio-Fob, Bio-TRIBA and Organo TRIBA Compost. We in Malaysian Nuclear Agency conducted a study on the effects of organic and bio fertilizers on vanilla at the vanilla experimental plot. This plot adopts the modern system of vanilla planting. The study involved the use of organic and bio fertilizer products produced in Nuclear Malaysia such as Organik NF, plant growth promoter and phosphate solubiliser and imported commercial orchid mycorrhizal bio fertilizer from Korea. The application of these fertilizers is by placing the fertilizers on the planting media in poly bags with replications according to the treatments. Observations were made weekly for 15 weeks by measuring of parameters including the bud growth and leaf number. These data are plotted in graphical form for evaluation.(author)

  10. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    Science.gov (United States)

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  11. Further development of the BEKON dry fermentation process for hygienisation of substrates in the fermenter according to BioAbfV; Weiterentwicklung der BEKON-Trockenfermentation ermoeglicht die Hygienisierung der Substrate gemaess BioAbfV im Fermenter

    Energy Technology Data Exchange (ETDEWEB)

    Liebeneiner, Rolf; Lutz, Peter [Bekon Energy Technologies GmbH und Co. KG, Unterfoehring (Germany)

    2012-11-01

    In the draft amendment to the BioAbfV (BMU, 2011), temperatures and times of residue to ensure hygienisation of substrates for thermophilic fermentation were revised on the basis of EU law on animal by-products and fertilizer law and on the basis of practical experience with the directive and recent research findings on hygienisation of biomass waste. To test the process, the required thermophilic process temperature of 50 must be ensured for the totality of substrates for a minimum time of residue. The fermentation substrates are then tested for phytohygiene and epidemic hygiene. BEKON developed their patented fermenter heating system into the world's first batch dry fermentation plant for hygienisation inside the fermenter, which was commissioned in 2010 at Spiez, Switzerland. The plant was capable of ensuring the required temperature levels and substrate hygienisation standards. The advanced thermophilic BEKON dry fermentation process thus ensures reliable hygienisation of substrates already inside the fermenter, without aerobic post-treatment of fermenation residues. This simplifies process monitoring in the subsequent composting stage. (orig.) [German] Im Entwurf zur Novellierung der BioAbfV (BMU, 2011) wurden die erforderlichen Temperaturen und Verweilzeiten zur Sicherstellung der Hygienisierung der Substrate fuer die thermophile Vergaerung ueberarbeitet. Grundlage hierfuer waren unter anderem sowohl neue und geaenderte rechtlicher Vorschriften des EU-Rechts ueber die tierischen Nebenprodukte und des Duengerechts, als auch Praxiserfahrungen seit Inkrafttreten der Verordnung und neue Forschungsergebnisse zur Hygienisierung von Bioabfaellen. Die Prozesspruefung muss dabei so vorgenommen werden, dass ueber einen zusammenhaengenden Zeitraum (der sogenannten Mindestverweilzeit) die geforderte thermophile Behandlungstemperatur von mindestens 50 C auf die gesamten Substrate einwirkt. Die seuchen- und phytohygienische Unbedenklichkeit der Gaersubstrate ist dabei

  12. Bio energy: Environment and Environmental Engineering

    International Nuclear Information System (INIS)

    Soma, Morten; Noreng, Katrina; Soerensen, Heidi; Teslo, Einar; Daehlen, Knut; Liodden, Ole Joergen; Wilhelmsen, Gunnar; Hohle, Erik Eid

    2001-01-01

    This is Chapter 5 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Environmental issues in the use of energy, (2) Environmental issues in the production of biomass, (3) Forestry, (4) Agriculture, (5) Environmental issues in fuel production and storage, (6) Environmental issues in combustion, (7) Environmental issues in using bio fuel, (8) Life cycle analyses, (9) Laws, regulations and norms for the use of bio fuel. Unlike the other sections, the one on laws is mostly concerned with Norwegian conditions

  13. Analysis of impact of temperature and saltwater on Nannochloropsis salina bio-oil production by ultra high resolution APCI FT-ICR MS

    KAUST Repository

    Sanguineti, Michael Mario

    2015-05-01

    Concentrated Nannochloropsis salina paste was reconstituted in distilled water and synthetic saltwater and processed at 250°C and 300°C via hydrothermal liquefaction. The resulting bio-oils yielded a diverse distribution of product classes, as analyzed by ultra high resolution APCI FT-ICR MS. The organic fractions were analyzed and both higher temperatures and distilled water significantly increase the number of total compounds present and the number of product classes. Major bio-oil products consisted of N1O1, hydrocarbon, and O2 classes, while O1, O4, S1, N1O2, and N2O2 classes represented the more significant minor classes. Both chlorine and sulfur containing compounds were detected in both distilled and saltwater reactions, while fewer numbers of chlorine and sulfur containing products were present in the organic fraction of the saltwater reactions. Further refinement to remove the chlorine and sulfur contents appears necessary with marine microalgal bio-oils produced via hydrothermal liquefaction. The higher heating value (MJ/kg) as calculated by the Boie equation of classes of interest in the bio-oil reveals a significant potential of algal hydrothermal liquefaction products as a sustainable and renewable fuel feedstock. © 2015.

  14. Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae.

    Science.gov (United States)

    Shanmugam, Saravanan R; Adhikari, Sushil; Shakya, Rajdeep

    2017-04-01

    Removal of nutrients (phosphorus and nitrogen) as struvite from bio-oil aqueous phase generated via hydrothermal liquefaction of algae was evaluated in this study. Effect of process parameters such as pH, temperature and reaction time on struvite formation was studied. More than 99% of phosphorus and 40-100% ammonium nitrogen were removed under all experimental conditions. X-ray diffraction analysis confirmed the formation of struvite, and the struvite recovered from bio-oil aqueous phase can be used as a slow-release fertilizer. Biogas production from struvite recovered bio-oil aqueous phase showed 3.5 times higher CH 4 yield (182±39mL/g COD) as compared to non-struvite recovered aqueous phase. The results from this study indicate that both struvite and methane can be produced from bio-oil aqueous phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bio-fuel co-products in France: perspectives and consequences for cattle food; Coproduits des biocarburants en France: perspectives et consequences en alimentation animale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  16. Water Productivity of Irrigated Rice under Transplanting, Wet Seeding and Dry Seeding Methods of Cultivation

    Directory of Open Access Journals (Sweden)

    Murali, NS.

    1997-01-01

    Full Text Available Water productivity (WP of irrigated lowland rice was determined during the 1994 dry (January to May and wet (August to December seasons on a heavy clay acid sulphate soil. Treatments consisted of three cultivation methods : transplanted rice, pregerminated seeds broadcasted on puddled soil (wet seeding and dry seeds broadcasted on unpuddled soil (dry seeding. In wet and dry seeded plots, continuous standing water condition was initiated 17 days after sowing. Total water requirement for rice production was highest in transplanted plots (755 mm in wet season and 1154 mm in dry season and was lowest in dry seeded plots (505 mm in wet season and 1040 mm in dry season. Dry seeding required no water for land preparation but transplanting and wet seeding methods required 18 - 20 % of total water requirement in dry season and 27 - 29 % in wet season. Total percolation was maximum (99 mm in wet season and 215 mm in dry season in dry seeding method and was minimum (62 mm in wet season and 94 mm in dry season in transplanting method. In dry and wet seeding methods, daily percolation gradually decreased with the age of the crop. Total seepage loss did not show any significant difference between the cultivation methods in the two seasons. Grain yield was not affected by the three cultivation methods in both seasons. Water productivity (the ratio between grain yield and total amount of water used in production was 3.5 - 4.1 kg ha-1 mm-1, 3.8 - 4.4 kg ha-1 mm-1 and 4.1 - 5.5 kg ha-1 mm-1 in transplanted, wet seeded and dry seeded rice, respectively. Labour requirement for land preparation and sowing was maximum in transplanted (219 - 226 man-hours ha-1 followed by wet (104 -112 man-hours ha-1 and dry seeded (94 - 99 man-hours ha-1 methods. However, in wet season extra labour (77 man-hours ha-1 was required for weeding after crop establishment in dry and wet seeding methods. Crop maturity was 20 days earlier in wet and dry seeding methods compared to

  17. Land application uses for dry FGD by-products

    Energy Technology Data Exchange (ETDEWEB)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. (Ohio State Univ., Columbus, OH (United States)); Haefner, R. (Geological Survey, Columbus, OH (United States). Water Resources Div.)

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  18. Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Henry Müller

    2013-10-01

    Full Text Available Plants have recently been recognized as meta-organisms due to a close symbiotic relationship with their microbiome. Comparable to humans and other eukaryotic hosts, plants also harbor a “second genome” that fulfills important host functions. These advances were driven by both “omics”-technologies guided by next-generation sequencing and microscopic insights. Additionally, these new results influence applied fields such as biocontrol and stress protection in agriculture, and new tools may impact (i the detection of new bio-resources for biocontrol and plant growth promotion, (ii the optimization of fermentation and formulation processes for biologicals, (iii stabilization of the biocontrol effect under field conditions, and (iv risk assessment studies for biotechnological applications. Examples are presented and discussed for the fields mentioned above, and next-generation bio-products were found as a sustainable alternative for agriculture.

  19. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  20. Inter-organizational collaboration in bio-based business

    NARCIS (Netherlands)

    Nuhoff-Isakhanyan, Gohar

    2016-01-01

    Globally, bio-based business is often perceived as sustainable, because its renewable production can potentially lower carbon and greenhouse emissions by substituting fossil-fuel-based production, reduce environmental sourcing problems, and create turnover and jobs. However, bio-based business

  1. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  2. Bio-slurry as fertilizer : is bio-slurry from household digesters a better fertilizer than manure? : a literature review

    NARCIS (Netherlands)

    Bonten, L.T.C.; Zwart, K.B.; Rietra, R.P.J.J.; Postma, R.; Haas, de M.J.G.; Nysingh, S.L.

    2014-01-01

    In many developing countries manure is anaerobically digested to produce biogas. The residue of manure digestion, bio-slurry, can be used as fertilizer for crop production and aquaculture. This study compared bio-slurry and manure as fertilizers. Nutrients in bio-slurry, especially nitrogen, are

  3. Bio-diesel: A candidate for a Nigeria energy mix

    International Nuclear Information System (INIS)

    Eze, T.; Dim, L. A.; Funtua, I. I.; Oladipo, M. O. A.

    2011-01-01

    This paper presents a review of bio-diesel development and economic potentials. The basics of biodiesel and its production technology are described. Attention is given to development potential, challenges and prospests of bio-diesel in Nigeria with ground facts on bio-diesel production feasibility in Nigeria highlighted.

  4. A user-friendly model for spray drying to aid pharmaceutical product development.

    Science.gov (United States)

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.

  5. Electron irradiation of dry food products

    Energy Technology Data Exchange (ETDEWEB)

    Gruenewald, Th [Bundesbahn-Zentralamt, Minden (Germany, F.R.)

    1983-01-01

    The interest of the industrial food producer is increasing in having the irradiation facility installed in the food processing chain. The throughput of the irradiator should be high and the residence time of the product in the facility should be short. These conditions can be accomplished by electron irradiators. To clarify the irradiation conditions spices taken out of the industrial process, food grade salt, sugar, and gums as models of dry food products were irradiated. With a radiation dose of 10 kGy microbial load can be reduced on 10**4 microorganisms/g. The sensory properties of the spices were not changed in an atypical way. For food grade salt and sugar changes of colour were observed which are due to lattice defects or initiated browning. The irradiation of several gums led only in some cases to an improvement of the thickness properties in the application below 50 deg C, in most cases the thickness effect was reduced. The products were packaged before irradiation. But it would be possible also to irradiate the products without packaging moving the product through the irradiation field in a closed conveyor system.

  6. Electron irradiation of dry food products

    International Nuclear Information System (INIS)

    Gruenewald, Th.

    1983-01-01

    The interest of the industrial food producer is increasing in having the irradiation facility installed in the food processing chain. The throughput of the irradiator should be high and the residence time of the product in the facility should be short. These conditions can be accomplished by electron irradiators. To clarify the irradiation conditions spices taken out of the industrial process, food grade salt, sugar, and gums as models of dry food products were irradiated. With a radiation dose of 10 kGy microbial load can be reduced on 10**4 microorganisms/g. The sensory properties of the spices were not changed in an atypical way. For food grade salt and sugar changes of colour were observed which are due to lattice defects or initiated browning. The irradiation of several gums led only in some cases to an improvement of the thickness properties in the application below 50 deg C, in most cases the thickness effect was reduced. The products were packaged before irradiation. But it would be possible also to irradiate the products without packaging moving the product through the irradiation field in a closed conveyor system. (author)

  7. Input-output energy analysis in dry apricot production of Turkey

    International Nuclear Information System (INIS)

    Esengun, Kemal; Guenduez, Orhan; Erdal, Guelistan

    2007-01-01

    The aims of this study were to determine the amount of input-output energy used in dry apricot production, to investigate the efficiency of energy consumption and to make an economic analysis of dry apricot production in Malatya, Turkey. Data used in this study were obtained from 97 farmers using a face to face questionnaire method. The sample farms were selected through a stratified random sampling technique. The population investigated was divided into two strata based on the size of apricot farms as 0.1-3.0 ha (66 farms) and larger than 3.1 ha (31 farms). The results revealed that 28647.03 MJ ha -1 energy were consumed by the first group and 17884.72 MJ ha -1 by the second group of farmers. The input-output ratio and productivities were 1.24 and 0.24 in the first strata and 1.31 and 0.25 in the second strata, respectively. Results further indicated that in both types of farms, 3/4 of the total energy cost was in non-renewable energy forms, and only 1/4 was in renewable forms. The economic analyses showed that the profit-cost ratios of the farms were 1.11 and 1.19, respectively. Net returns calculated were 414.51 $ ha -1 and 495.59 $ ha -1 in the farms investigated. It was concluded that extension activities are needed to improve the efficiency of energy consumption in dry apricot production and to employ environmentally friendly agricultural management practices and production methods

  8. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  9. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    ethanol. Fuel ethanol is known as bio-ethanol, since it is produced from plant materials by biological processes. Bioethanol is mainly produced by fermentation of sugar containing crops like corn, maize, wheat, sugar cane, sugar beet, potatoes, ...

  10. The effect of three liquid bio-fertilizers in the production of lettuce (Lactuca sativa L.) and cabbage (Brassica oleracea L. var. capitata)

    OpenAIRE

    Criollo, Hernando; Lagos, Tulio; Piarpuezan, Edwin; Pérez, Ruth

    2011-01-01

    In modern agriculture, the use of agrochemicals has grown considerably, increasing production costs and causing serious problems for the environment. The use of bio-fertilizers is a viable alternative to improve the profitability of crops, particularly for agriculture on medium and small-sized farms with intensive production systems, such as vegetables. Given that bio-fertilizers can be produced on the farm and used successfully in crop production, this research focused on the effect of three...

  11. The effect of three liquid bio-fertilizers in the production of lettuce (lactuca sativa l.) and cabbage (brassica oleracea l. var. capitata

    OpenAIRE

    Criollo Escobar, Hernando Artemio; Lagos Burbano, Tulio Cesar; Piarpuezan, Edwin; Perez, Ruth

    2012-01-01

    In modern agriculture, the use of agrochemicals has grown considerably, increasing production costs and causing serious problems for the environment. The use of bio-fertilizers is a viable alternative to improve the profitability of crops, particularly for agriculture on medium and small-sized farms with intensive production systems, such as vegetables. Given that bio-fertilizers can be produced on the farm and used successfully in crop production, this research focused on the effect of three...

  12. Continuous dry fermentation of swine manure for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuang; Zheng, Dan [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Liu, Gang–Jin [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Bioprocess Control AB, Scheelevägen 22, 223 63 Lund (Sweden); Deng, Liang–Wei, E-mail: dengliangwei@caas.cn [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041 (China); Southwest Collaborative Innovation Center of Swine for Quality & Safety, Chengdu 611130 (China); Long, Yan; Fan, Zhan–Hui [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China)

    2015-04-15

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d){sup −1} and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g{sup −1}VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L{sup −1}. Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L{sup −1}. The maximal volumetric biogas production rate of 2.34 L·(L d){sup −1} and biogas yield of 0.649 L g{sup −1}VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s{sup −1} when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield.

  13. Continuous dry fermentation of swine manure for biogas production

    International Nuclear Information System (INIS)

    Chen, Chuang; Zheng, Dan; Liu, Gang–Jin; Deng, Liang–Wei; Long, Yan; Fan, Zhan–Hui

    2015-01-01

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d) −1 and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g −1 VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L −1 . Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L −1 . The maximal volumetric biogas production rate of 2.34 L·(L d) −1 and biogas yield of 0.649 L g −1 VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s −1 when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield

  14. Prediction of supercritical carbon dioxide drying of food products in packed beds

    NARCIS (Netherlands)

    Almeida-Rivera, C.; Khalloufi, S.; Bongers, P.M.M.

    2010-01-01

    Drying assisted by supercritical carbon dioxide is foreseen to become a promising technology for sensitive food products. In this contribution, a mathematical model is derived to describe the changes in water concentration in both a solid food matrix and a fluid carrier during drying. Finite

  15. EVALUATION OF THERMAL EFFICIENCY OF THE TECHNOLOGICAL SCHEME OF APPLE CHIPS AND DRIED FRUITS PRODUCTION

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2014-01-01

    Full Text Available The estimation of thermodynamic perfection of separate technological processes is executed at heat-moisture of handling of fruit and a line of manufacture of fruit apple chips and dried fruits. The technological scheme of a line of processing of fruits and manufactures of fruit chips on the basis of convection and the microwave-dryings suggested resource-saving. The technique is made and results of calculation of thermal expenses for various schemes of manufacture of apple chips are resulted. For the offered scheme material, thermal and power streams on the basis of balance parities of technological processes are certain. The comparative thermal production efficiency of apple chips for a base foreign variant and the offered technological scheme with the closed cycle of use of the heat-carrier and the combined convection-microwave-drying is shown. In this paper we define the thermal and energy flows for the processes of convective drying, pre-microwave drying, hydrothermal treatment and final microwave drying plant material, which are one of the main stages of the production of all kinds of fruit and vegetable concentrates, including fruit apple chips. Resource-saving ways moisture-heat of handling (hydration, blanching, drying, etc. produce raw materials in the production of food concentrates suggested a reduced water flow with a high degree of use of its potential power and microwave sources. To assess the thermal efficiency of the various processes and production schemes used as indicators of thermal efficiency and proposed value of specific heat (kJ / kg given mass productivity per unit of feedstock and translational moisture. The values of the mass fraction of the heat of material flows for the base and the proposed resource-saving production scheme fruit chips, for example, apple, based on a combination of convection-microwave drying each control surface.

  16. Production of cocrystals in an excipient matrix by spray drying.

    Science.gov (United States)

    Walsh, David; Serrano, Dolores R; Worku, Zelalem Ayenew; Norris, Brid A; Healy, Anne Marie

    2018-01-30

    Spray drying is a well-established scale-up technique for the production of cocrystals. However, to the best of our knowledge, the effect of introducing a third component into the feed solution during the spray drying process has never been investigated. Cocrystal formation in the presence of a third component by a one-step spray drying process has the potential to reduce the number of unit operations which are required to produce a final pharmaceutical product (e.g. by eliminating blending with excipient). Sulfadimidine (SDM), a poorly water soluble active pharmaceutical ingredient (API), and 4-aminosalicylic acid (4ASA), a hydrophilic molecule, were used as model drug and coformer respectively to form cocrystals by spray drying in the presence of a third component (excipient). The solubility of the cocrystal in the excipient was measured using a thermal analysis approach. Trends in measured solubility were in agreement with those determined by calculated Hansen Solubility Parameter (HSP) values. The ratio of cocrystal components to excipient was altered and cocrystal formation at different weight ratios was assessed. Cocrystal integrity was preserved when the cocrystal components were immiscible with the excipient, based on the difference in Hansen Solubility Parameters (HSP). For immiscible systems (difference in HSP > 9.6 MPa 0.5 ), cocrystal formation occurred even when the proportion of excipient was high (90% w/w). When the excipient was partly miscible with the cocrystal components, cocrystal formation was observed post spray drying, but crystalline API and coformer were also recovered in the processed powder. An amorphous dispersion was formed when the excipient was miscible with the cocrystal components even when the proportion of excipient used as low (10% w/w excipient). For selected spray dried cocrystal-excipient systems an improvement in tableting characteristics was observed, relative to equivalent physical mixtures. Copyright © 2017 Elsevier

  17. Development of a model for predicting the dry matter production of mulberry [Morus alba] based on meteorological factors

    International Nuclear Information System (INIS)

    Fukui, K.; Ito, D.

    1999-01-01

    It is necessary to predict mulberry growth and yield precisely at any time during the growing period, since mulberry trees are cut anytime along with the increase of the frequency of silkworm rearing per year. Therefore, in this study, attempts were made to develop a model to predict the dry matter production in mulberry fields with standard density with the cooperation of the prefectural experimental stations of Ibaraki, Tochigi, Gunma, Saitama, Tokyo and Gifu. To construct the model, we conducted three experiments. In the first year, we estimated the dry weight of mulberry new shoots based on the length and base width. Logarithm of leaf dry weight of a new shoot was regressed linearly on the logarithm of the product of length and base width. Stem dry weight was estimated with a linear regression of the logarithm on the logarithm of the product of length and base square width. In the next year, we evaluated the maximal effective radiation (Smax) of mulberry, over which mulberry cannot use radiation to produce dry matter. This experiment included shaded and control (non-shaded) plots, and the difference between these plots was analyzed. Shading treatment decreased the dry matter production, but did not affect the radiation conversion efficiency. Shoot dry matter production increased almost proportionally with intercepted radiation except for the later growth periods. Therefore, no Smax was revealed in mulberry fields with standard density. The effect of temperature and growth stage on the radiation conversion efficiency was investigated last year. Relation of temperature and radiation conversion efficiency was not clear for shoot dry matter production. However, there was a positive relation for stem dry mater production. Although the efficiency decreased with mulberry growth for leaf dry matter production, it increased at the early growth stage and decreased at the late stage for stem dry matter production

  18. Initial Response of Pine Seedlings and Weeds to Dried Sewage Sludge in Rehabilitation of an Eroded Forest Site

    Science.gov (United States)

    Charles R. Berry

    1977-01-01

    Dried sewage sludge was applied at rates of 0, 17, 34, and 69 metric tons/ha on a badly eroded forest site in the Piedmont region of northeast Georgia. Production of weed bio mass varied directly with amount of sludge applied. Heigh growth for both shortleafand loblolly pine seedlings appeared to be greater on plots receiving 17 metric tons of sludge/ha, bu differences...

  19. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting.

    Science.gov (United States)

    Galliou, F; Markakis, N; Fountoulakis, M S; Nikolaidis, N; Manios, T

    2018-05-01

    Olive mill wastewater (OMW) is generated during the production of olive oil. Its disposal is still a major environmental problem in Mediterranean countries, despite the fact that a large number of technologies have been proposed up to date. The present work examines for the first time a novel, simple and low-cost technology for OMW treatment combining solar drying and composting. In the first step, OMW was dried in a chamber inside a solar greenhouse using swine manure as a bulking agent. The mean evaporation rate was found to be 5.2 kg H 2 O/m 2 /d for a drying period of 6 months (February-August). High phenol (75%) and low nitrogen (15%) and carbon (15%) losses were recorded at the end of the solar drying process. The final product after solar drying was rich in nutrients (N: 27.8 g/kg, P: 7.3 g/kg, K: 81.6 g/kg) but still contained significant quantities of phenols (18.4 g/kg). In order to detoxify the final product, a composting process was applied as a second step with or without the use of grape marc as bulking agent. Results showed that the use of grape marc as a bulking agent at a volume ratio of 1:1 achieved a higher compost temperature profile (60 °C) than 2:1 (solar drying product: grape marc) or no use (solar drying product). The end product after the combination of solar drying and composting had the characteristics of an organic fertilizer (57% organic carbon) rich in nutrients (3.5% N, 1% P, 6.5% K) with quite low phenol content (2.9 g/kg). Finally, the use of this product for the cultivation of pepper plants approved its fertility which was found similar with commercial NPK fertilizers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2014-01-01

    Full Text Available Organic and inorganic contaminants in sewage sludge may cause their presence also in the by-products formed during gasification processes. Thus, this paper presents multidirectional chemical instrumental activation analyses of dried sewage sludge as well as both solid (ash, char coal and liquid (tar by-products formed during sewage gasification in a fixed bed reactor which was carried out to assess the extent of that phenomenon. Significant differences were observed in the type of contaminants present in the solid and liquid by-products from the dried sewage sludge gasification. Except for heavy metals, the characteristics of the contaminants in the by-products, irrespective of their form (solid and liquid, were different from those initially determined in the sewage sludge. It has been found that gasification promotes the migration of certain valuable inorganic compounds from sewage sludge into solid by-products which might be recovered. On the other hand, the liquid by-products resulting from sewage sludge gasification require a separate process for their treatment or disposal due to their considerable loading with toxic and hazardous organic compounds (phenols and their derivatives.

  1. Biogas and BioFertilizer Production Using Green Technology

    International Nuclear Information System (INIS)

    Sirirote, Pramote

    2010-01-01

    Basically, it is technology which created and used in a way that conserves natural resources and the environment. This technology also can be environmental friendly because the use of this technology is supposed to reduce the amount of waste and pollution that is created during production and consumption. These food wastes will come from animal bone, crab skeleton, fish skeleton, rice, noodle, vegetable and others. We collect all of these wastes and then keep it in plants, and then we make sure that this waste will turn into biogas via anaerobic digestion. All of these involved hydrolysis, fermentation, aceto genesis and methano genesis process. Methane that produced will be used in biomass plant to generate electricity. Meanwhile bio fertilizer that produced will be applied on agriculture sectors as fertilizer for plants.

  2. The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems

    International Nuclear Information System (INIS)

    Holmgren, Kristina M.; Berntsson, Thore S.; Andersson, Eva; Rydberg, Tomas

    2015-01-01

    This study analyses the impact on the GHG (greenhouse gas) emissions of the raw material supply chain, the utilisation of excess heat and CO 2 storage for a bio-SNG (biomass gasification-based synthetic natural gas) system by applying a consequential life cycle assessment approach. The impact of the biomass supply chain is analysed by assessing GHG emissions of locally produced woodchips and pellets with regional or transatlantic origin. Results show that the supply area for the gasification plant can be substantially increased with only modest increases in overall GHG emissions (3–5%) by using regionally produced pellets. The transatlantic pellet chains contribute to significantly higher GHG emissions. Utilising excess heat for power generation or steam delivery for industrial use contributes to lower emissions from the system, whereas delivery of district heating can contribute to either increased or decreased emissions. The production technology of the replaced heat and the carbon intensity of the reference power production were decisive for the benefits of the heat deliveries. Finally, the storage of CO 2 separated from the syngas upgrading and from the flue gases of the gasifier can nearly double the GHG emission reduction potential of the bio-SNG system. - Highlights: • Greenhouse gas emission evaluation of gasification-based bio-SNG system is made. • The impact of biomass supply chains and utilisation of excess heat is in focus. • Locally produced woodchips result in lowest overall greenhouse gas emissions. • Regionally produced pellets have small impact on overall greenhouse gas emissions. • Storing separated CO 2 from the bio-SNG process reduces the GHG impact significantly.

  3. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  4. Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type.

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-05

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  5. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Plauborg, Finn; Kristensen, Kristian

    2017-01-01

    while N rate varied from 0 to 180 kg ha−1. Statistical analysis using mixed modelling detected two clear features: Both temperature and N supply were important factors for dry matter production. Higher temperatures were associated with decreased dry matter production mainly through its negative effect...... on radiation use efficiency (RUE) when comparing inter-annual variation in dry matter production. The loss of tuber dry matter was c. 10% per °C, which is higher than estimated in previous studies. Specifically, compared to mean air temperature from end of tuber initiation to maturity, mean air temperature...... from emergence to end of tuber initiation was more important for dry matter production. N supply promoted dry matter production (p

  6. The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction

    Science.gov (United States)

    SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.

    2016-03-01

    Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.

  7. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    Energy Technology Data Exchange (ETDEWEB)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, (Korea, Republic of)

    2006-07-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H{sub 2}/l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H{sub 2}/l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  8. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    International Nuclear Information System (INIS)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park

    2006-01-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H 2 /l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H 2 /l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  9. Experimental Investigation of the Productivity of a Wet Separation Process of Traditional and Bio-Plastics

    Directory of Open Access Journals (Sweden)

    Monica Moroni

    2018-05-01

    Full Text Available The separation process within a mechanical recycling plant plays a major role in the context of the production of high-quality secondary raw materials and the reduction of extensive waste disposal in landfills. Traditional plants for plastic separation employ dry or wet processes that rely on the different physical properties among the polymers. The hydraulic separator is a device employing a wet technology for particle separation. It allows the separation of two-polymer mixtures into two products, one collected within the instrument and the other one expelled through its outlet ducts. Apparatus performance were analyzed as a function of fluid and solid flow rates, flow patterns developing within the apparatus, in addition to the density, shape, and size of the polymers. For the hydraulic configurations tested, a two-way coupling takes place where the fluid exerts an influence on the plastic particles and the opposite occurs too. The interaction between the solid and liquid phases determines whether a certain polymer settles within the device or is expelled from the apparatus. Tests carried out with samples of increasing volumes of solid particles demonstrate that there are no significant differences in the apparatus effectiveness as far as a two-way interaction takes place. Almost pure concentrates of Polyethylene Terephthalate (PET, Polyvinyl Chloride (PVC, and Polycarbonate (PC can be obtained from a mixture of traditional polymers. Tests conducted on Polylactic Acid (PLA and Mater-Bi® samples showed that the hydraulic separator can be effectively employed to separate bio-plastics from conventional plastics with remarkable grade and recovery.

  10. Bio-based and biodegradable plastics for use in crop production.

    Science.gov (United States)

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  11. Impact of dry eye on work productivity

    OpenAIRE

    Yamada, Masakazu; Mizuno,Yoshinobu; Shigeyasu,Chika

    2012-01-01

    Masakazu Yamada, Yoshinobu Mizuno, Chika ShigeyasuNational Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, JapanBackground: The purpose of this study was to evaluate the impact of dry eye on work productivity of office workers, especially in terms of presenteeism.Methods: A total of 396 individuals aged ≥20 years (258 men and 138 women, mean age 43.4 ± 13.0 years) were recruited through an online survey. Data from 355 responders who d...

  12. Preservation of Yangzhou flavor of dried bean cured products by irradiation

    International Nuclear Information System (INIS)

    Jiang Yunsheng; Lu Maolin; Dong Jie; Guo Dongfen; Chen Xiulan; Cao Hong

    2008-01-01

    White dried tofu as raw materials of Yangzhou dishes bean curd shreds, its shelf life was shorter for the traditional craft-making. This paper through improved its production technology and products for vacuum packaging with radiation durability, the shelf life at 4 degree C for 3 months was achieved. This technology may also apply to other related products. (authors)

  13. Hygienic effects and gas production of plastic bio-digesters under tropical conditions.

    Science.gov (United States)

    Yen-Phi, Vo Thi; Clemens, Joachim; Rechenburg, Andrea; Vinneras, Björn; Lenssen, Christina; Kistemann, Thomas

    2009-12-01

    Plastic plug-flow bio-digesters have been promoted as a good option for improved treatment of manure and wastewater in developing countries although minimal information has been published on their hygienic status. This bench-scale study replicates bio-digester conditions to evaluate the reduction of pathogen and indicator microorganisms at three different hydraulic retention times (HRT) in the anaerobic treatment of pig manures at 30 degrees C for 50 days. Results showed that physicochemical values differed between HRTs. Gas production efficiency was better for longer HRTS. The accumulated sludge at the reactor's base increased with longer HRT. Phages and bacteria examined were reduced, but none was completely eliminated. Log10 reduction of bacteria ranged from 0.54 to 2.47. Phages ranged from 1.60 to 3.42. The reduction of organisms at HRT = 30 days was about one log10 unit higher than HRT = 15 days and about two log10 units higher than HRT = 3 days. The results indicate that the reduction of tested organisms increases with HRT. However the hygienic quality of the liquid effluent does not meet required quality values for surface and irrigation water. Longer HRTs are recommended to increase gas yield and achieve higher pathogen reduction. More barriers should be applied while handling bio-digester outputs to minimise risks to environmental and human health.

  14. Environmental and economic sustainability of integrated production in bio-refineries : The thistle case in Sardinia

    NARCIS (Netherlands)

    Yazan, Devrim; Mandras, Giovanni; Garau, Giorgio

    2016-01-01

    This paper aims at evaluating the environmental and economic sustainability of bio-refineries that produce multiple products through their supply chains (SCs). A physical enterprise input-output (EIO) model is used to quantify the material/energy/waste flows and integrated to the monetary EIO model

  15. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Shuvashish; Mohanty, Rama Chandra [Department of Botany, Utkal University, Vanivihar, Bhubaneswar 751004, Orissa (India); Ray, Ramesh Chandra [Microbiology Laboratory, Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar 751019, Orissa (India)

    2010-07-15

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg{sup -1} flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  16. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    International Nuclear Information System (INIS)

    Behera, Shuvashish; Mohanty, Rama Chandra; Ray, Ramesh Chandra

    2010-01-01

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg -1 flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  17. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  18. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    International Nuclear Information System (INIS)

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-01-01

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels

  19. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    Science.gov (United States)

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-11-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under thermophilic temperature condition. Most of the production was observed during the first 48 h of incubation, which continued until 72 h of incubation. The decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of the glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS-1, 131.38 mL COD-1, and 44.90 mL glucose-1 were obtained from thermophilic food waste, thermophilic noodle waste and mesophilic rice waste, respectively. The production of volatile fatty acids increased with an increase in time and temperature in food waste and noodle waste reactors whereas they decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type and 3-D response surface plots developed by using models developed. These plots developed a better understanding regarding the impact of temperature and incubation time on bio-hydrogen production trend, glucose consumption during incubation and volatile fatty acids production.

  20. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    Science.gov (United States)

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  1. Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xun [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-07-15

    Biomass is carbon-neutral and utilization of biomass as hydrogen resource shows no impact on atmospheric CO{sub 2} level. Nevertheless, a significant amount of CO{sub 2} is always produced in biomass gasification processes. If the CO{sub 2} produced can further react with biomass, then the biomass gasification coupled with CO{sub 2} reforming of biomass will result in a net decrease of CO{sub 2} level in atmosphere and produce the chemical raw material, syngas. To achieve this concept, a ''Y'' type reactor is developed and applied in bio-oil steam reforming, partial oxidation, or oxidative steam reforming coupled with CO{sub 2} reforming of bio-oil to eliminate the emission of CO{sub 2}. The experimental results show that the reaction systems can efficiently suppress the emission of CO{sub 2} from various reforming processes. The different coupled reaction systems generate the syngas with different molar ratio of CO/H{sub 2}. In addition, coke deposition is encountered in the different reforming processes. Both catalysts and experimental parameters significantly affect the coke deposition. Ni/La{sub 2}O{sub 3} catalyst shows much higher resistivity toward coke deposition than Ni/Al{sub 2}O{sub 3} catalyst, while employing high reaction temperature is vital for elimination of coke deposition. Although the different coupled reaction systems show different characteristic in terms of product distribution and coke deposition, which all can serve as methods for storage of the carbon from fossil fuels or air. (author)

  2. Cryogel-supported titanate nanotubes for waste treatment: Impact on methane production and bio-fertilizer quality.

    Science.gov (United States)

    Önnby, Linda; Harald, Kirsebom; Nges, Ivo Achu

    2015-08-10

    By reducing the cadmium (Cd(2+)) content in biomass used for bio-based products such as biogas, a less toxic bio-based fertilizer can be obtained. In this work, we demonstrate how a macroporous polymer can support titanate nanotubes, and we take advantage of its known selective adsorption behavior towards Cd(2+) in an adsorption process from real nutrient-rich process water from hydrolysis of seaweed, a pollutant-rich biomass. We show that pretreatment steps involving alteration in area-to-volume ratio performed in aerated and acidic conditions release the most Cd(2+) from the solid material. By integrating an adsorption step between hydrolysis and the biomethane, we show that it was possible to obtain high Cd(2+) removal (ca. 94%) despite molar excess (between 100 and 500) of co-present ions (e.g., Mg(2+), Ca(2+), Na(+), K(+)) and with maintained total phosphorous content. The bio-methane potential did not significantly decrease as compared to a process without cadmium removal and the yielded bio-fertilizer followed Swedish guideline values. This study provides a sound and promising alternative for a novel remediation step, enabling higher use of otherwise tricky and to some extent overlooked biomass sources. Copyright © 2015. Published by Elsevier B.V.

  3. Oil extracted from spent coffee grounds for bio-hydrotreated diesel production

    International Nuclear Information System (INIS)

    Phimsen, Songphon; Kiatkittipong, Worapon; Yamada, Hiroshi; Tagawa, Tomohiko; Kiatkittipong, Kunlanan; Laosiripojana, Navadol; Assabumrungrat, Suttichai

    2016-01-01

    Highlights: • The spent coffee oil with high FFAs was hydrotreated to liquid biofuel. • Pd/C gave higher olefins while NiMo/γ-Al_2O_3 gave higher isoparaffins liquid products. • The diesel fuel fraction can have a cetane number as high as 80. • The physiochemical properties of diesel fraction comply with commercial standard. - Abstract: Oil extracted from spent coffee grounds is utilized as a renewable source for bio-hydrotreated fuel production. In the present work, oil yield up to 13% can be obtained by Soxhlet extraction with hexane as a solvent. As the extracted oil contained high content of free fatty acids (6.14%), therefore one step alkali-catalyzed for ester based biodiesel production is impractical. Hydrotreating of extracted oil was performed over two catalysts i.e. NiMo/γ-Al_2O_3 and Pd/C with different operating parameters i.e. reaction time, operating temperature, and H_2/oil. It was found that the reaction time of 2 h and the reaction temperature of 400 °C are favorable operating conditions. The liquid products mostly consisted of n-pentadecane and n-heptadecane, which contain one carbon atom shorter than the corresponding fatty acid (C_n_−_1) i.e. palmitic and stearic acid, respectively. Unfavorable cracking of diesel product is pronounced at high temperature and prolonged reaction time. In addition, although increased H_2/oil promoted overall reaction and hydrodeoxygenation activity (C_n_−_1/C_n decreased) for both catalysts, hydrocracking is enhanced over Pd/C, leading to significant increase in gasoline yield. Moreover, Pd/C gave higher olefin content in liquid product (22.3 wt%) than NiMo/γ-Al_2O_3 (4.8 wt%). However, NiMo/γ-Al_2O_3 shows higher isomerization activity. The amount of isoparaffins catalyzed by NiMo/γ-Al_2O_3 and Pd/C were 10.8 and 1.7 wt%, respectively. Physiochemical analysis of the diesel fraction exhibit satisfactory properties. The density and kinematic viscosity were consistent with the specification of

  4. Thermal cracking of Enteromorpha prolifera with solvents to bio-oil

    International Nuclear Information System (INIS)

    Song, Linhua; Hu, Mingming; Liu, Dong; Zhang, Daoxiang; Jiang, Cuiyu

    2014-01-01

    Highlights: • Thermal cracking of EP gave rise to a maximum bio-oil yield of 27.4 wt.% at 340 °C and 40 min. • The maximum liquid yield of EP/ethonal is 36.7 wt.% at 300 °C and 30 min. • The maximum liquid yield of EP/VGO is 90.5 wt.% at 300 °C and 30 min. • The HHV of bio-oil from thermal cracking of EP/VGO is 44.51 MJ/kg. • This process has the potential for industrial production of bio-oil from EP. - Abstract: Enteromorpha prolifera (EP) is a renewable energy source that was evaluated as a feedstock to produce bio-oil by thermal cracking. Harvesting EP for bio-oil production will also reduce the damage of green tide on ocean ecology. Effects of reaction temperature between 220 and 380 °C and reaction time between 20 and 80 min on the bio-oil yield and gas and solid thermal cracking products were investigated. Effects of solvents (i.e., ethanol and vacuum gas oil (VGO)) on the yields of bio-oil, gas and solid were also studied. EP, VGO and products from thermal cracking were analyzed by elemental analysis, gas chromatography–mass spectra and gas chromatography. Results indicate that thermal cracking of EP with VGO (EP/VGO) gave rise to the maximum bio-oil yield of 90.5% at 300 °C with a reaction time of 30 min. Higher heating values and elemental analysis demonstrate that this process has the potential for industrial production of bio-oil from EP

  5. Pulsed Streamer Discharge Characteristics of Ozone Production in Dry Air

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Sakugawa, T.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 波平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    Experimental investigation of HV short pulsed streamer discharges in dry air-fed ozonizers under various operating conditions are reported. Ozone concentration, energy input and ozone production yield (efficiency) were measured at various voltages (14 to 37 kV), pulse repetition rates (25 to 400 pulses per second, pps), flow rates (1.5 to 3.0 1/min) and different gap spacings (10 to 20 mm) at a pressure of 1.01×105 Pa in dry air. A spiral copper wire (1 mm in diameter) made to a cylindrical c...

  6. Correlations of Mean Process Parameters for Agricultural Products Drying in Thin Bed in Solar Direct Dryers

    Directory of Open Access Journals (Sweden)

    MSc. Ciro César Bergues-Ricardo

    2015-11-01

    Full Text Available A group of correlations is given between mean parameters of drying process drying velocity, energy losses, useful energy, and thermal efficiency. Those are suitable for conditions of thin bed drying, in direct solar dryers, and may help for developing of an integral approach of solar drying in those conditions. Correlations are reliable for drying processes of diverse crop products specified, suchas roots, seeds, vegetables, fruits, wood, etc, with natural or forced convection. Correlations were validated in Cuba for usual ranges of efficiency and products in solar dryers of cover, cabinet and house types, in tropical conditions. These correlations are useful for design and exploitation ofdryers and for theoretical and practical comprehension of solar drying like a system.

  7. Characteristics of sustainable bio-solid fuel produced from sewage sludge as a conventional fuel substitute

    International Nuclear Information System (INIS)

    Jung, Bongjin; Nam, Wonjun; Lee, Na-Yeon; Kim, Kyung-Hoon

    2010-01-01

    Safely final disposal of sewage sludge which is being increased every year has already become serious problems. As one of the promising technologies to solve this problem, thermal drying method has been attracting wide attention due to energy recovery from sewage sludge. This paper describes several characteristics of sustainable bio-solid fuel, as a conventional fuel substitute, produced from sewage sludge drying and granulation plant having the treatment capacity of 10 ton/ day. This plant has been successfully operated many times and is now designing for scale-up. Average moisture content of twelve kinds of bio-solid fuels produced from the plant normally less than 10 wt% and average shape of them is mainly composed of granular type having a diameter of 2-8 mm for easy handling and transportation to the final market destinations. Average higher heating value, which is one of the important properties to estimate the possibility of available energy, of bio-solid fuels is about 3800 kcal/ kg as dry basis. So they can be utilized to supply energy in the coal power plant and cement kiln etc. as a conventional fuel substitute for a beneficial reuse. Characteristics including proximate analysis, ultimate analysis, contents of heavy metals, wettability etc. of bio-solid fuels have been also analyzed for the environmentally safe re utilization. (author)

  8. THERMAL POWER LOSS COMPENSATION IN THE PRODUCTION OF COOKED AND DRIED GRAINS WITH HEAT PUMPS USING

    Directory of Open Access Journals (Sweden)

    S. A. Shevtsov

    2015-01-01

    Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.

  9. Core ethical values: EuropaBio.

    Science.gov (United States)

    2002-01-01

    EuropaBio, the European Association for BioIndustries, represents 40 companies operating world wide and 14 national association (totaling around 600 small and medium-sized enterprises) involved in the research, development, testing, manufacturing, marketing, sales and distribution of biotechnology products and services in the fields of healthcare, agriculture, food and the environment.

  10. Renewable heat: the French bio-gas has find its model; some green gold on the side of the road; some green gas in water; AES DANA, a tailor-made bio-gas; Bio-gas is purified; Methabraye: biogas is brought from countryside to towns; Methanization of wastes in france: 533 sites are registered in the Atlas 2017

    International Nuclear Information System (INIS)

    Talpin, Juliette; Richard, Aude; Tuille, Frederic; Courtel, Julien

    2017-01-01

    This document addresses the themes of renewable heat and bio-methane sector in France. Seven articles are proposed, which concern: the French methanization sector is growing (alongside cogeneration, alternative processes are developed in order to transform dry biomass and valorize bio-gas into injected bio-methane and bio-CNV); recovering the grass on the side of the road allows to reduce the road maintenance costs while giving the opportunity to valorize these residues in methanization units; wastewater treatment plants are increasingly transforming biogas into biomethane to be injected in the natural gas distribution system (however, volumes are relatively low); presentation of AES Dana, located in the North of France, which is developing methanization units (from 80 kW to 2.5 MW) for agriculture biomass; presentation of three enterprises (Arol Energy, Waga Energy and Chaumeca), specialized in the production and purification of biogas, and Methabraye, a project of a methanization plant completed with a remote distribution system; panorama analysis of the methanization sector in France with a prospective of a 56 TWh potential by 2030; 533 methanization sites are registered in 2017, 80 more than in 2016: 91 pc of the biogas is valorized as heat and 9 pc as heat and power

  11. Preliminary Study on Kinetic Solid-Liquid Extraction and Bio-Active Components Analysis of Hibiscus rosa-sinensis Leaves

    International Nuclear Information System (INIS)

    Saiful Irwan Zubairi; Haizulizam Suradi; Syazwan Aizad Abdul Mutalib; Zetty Shafiqa Othman; Norshahida Bustaman; Wan Ros Maryana Wan Musa

    2014-01-01

    Hibiscus rosa-sinensis or commonly known as 'Hibiscus' is a kind of decorative flowers which often grown in a subtropical countries. This plant is often used in the preparation of traditional medicine because of its pharmacological properties that are capable of treating number of health problems. The plant contains several essential bio-active substances and nutrients especially in its flowers and leaves. One of the bioactive substances is β-sitosterol which is abundant in the leaf crude extract. Hibiscus leaves water extract yielded mucilage which is widely used in lowering high body temperature due to fever (antipyretic). Therefore, the main objective of this paper was to determine the maximum concentration of mucilage and time of exhaustive extraction from fresh and dried leaves using a Peleq's mathematical model. Moreover, several analyses were conducted such as qualitative analysis to determine the presence of bioactive substances using high performance liquid chromatography (HPLC) and determination of functional groups by means of fourier transform infrared method (FTIR). Physical properties of the extracts were evaluated to determine its acidity and viscosity of the mucilage with respect to different shear stress. The result show that the extract of dried Hibiscus leaves exhibited high in its concentrations even though the achieved exhaustive extraction was relatively slow as compared to fresh leaves (p < 0.05). Based on the HPLC analysis, the main bio-active substances of β-sitosterol was only existed in fresh leaves samples. The absence of β-sitosterol in dried leaves extract was caused by the loss of other important bio-active substances which possess surfactant capability, due to thermal degradation of drying process or the component itself was deteriorated during the pre-preparation drying process. Furthermore, the FTIR analysis shows that the same composition of the absorption peaks for both extracts with the highest absorption of O-H bonds was

  12. Drying of bio fuel utilizing waste heat; Torkning av biobraenslen med spillvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Inge; Larsson, Sara; Wennberg, Olle [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2004-10-01

    Many industries today have large sources of low grade heat (waste heat), however this energy is mainly lost with effluents to air and water. The aim of this study has been to investigate the technical and economical aspects of utilizing this low grade heat to dry biofuel. The project has been mainly focused towards the forest industry since they have both large amounts of biofuel and waste heat available. Drying of biofuel could generate added revenue (or reduced purchase costs) and through that also create larger incentives for further energy saving modifications to the main process. Due to the higher moisture content together with the risk of frozen bark in the winter time, additional fuels (such as oil) to combust bark in the existing boiler. This is mainly the case when mechanical dewatering is not available. Drying of bark results in an added energy value, which makes it possible to combust the bark without additional fuel. The primary energy demand, in the form of electricity and optional additional heating at load peaks, is low when waste heat is used for the drying process. In this way it is possible to increase the biofuel potential, since the primary energy input to the drying process is essentially lower then the increased energy value of the fuel. Drying also decreases the biological degradation of the fuel. Taking all the above into consideration, waste heat drying could result in a 25 % increase of the biofuel potential in the forest industry in Sweden, without additional cutting of wood. A survey has been done to state which commercial technologies are available for biofuel drying with waste heat. An inquiry was sent out to a number of suppliers and included a few different cases. Relations for approximating investment cost as well as electric power demand were created based on the answers from the inquiry. These relations have then been used in the economical evaluations made for a number of cases representing both sawmills and pulp and paper mills

  13. The effect of three liquid bio-fertilizers in the production of lettuce (Lactuca sativa L. and cabbage (Brassica oleracea L. var. capitata

    Directory of Open Access Journals (Sweden)

    Criollo Escobar Hernando Artemio

    2011-12-01

    Full Text Available

    In modern agriculture, the use of agrochemicals has grown considerably, increasing production costs and causing serious problems for the environment. The use of bio-fertilizers is a viable alternative to improve the profitability of crops, particularly for agriculture on medium and small-sized farms with intensive production systems, such as vegetables. Given that bio-fertilizers can be produced on the farm and used successfully in crop production, this research focused on the effect of three bio-fertilizers on the production of lettuce and cabbage, biweekly applications were made with liquid fertilizers produced from the manure of cows (BFC, guinea pigs (BFGp and pigs (BFPi and compared to a commercial foliar fertilizer (CFF and a control without an application. We observed the presence of Lactobacillus and Saccharomyces in the BFC and BFGp fertilizers and Bacillus in the BFPi fertilizer. The weight and head diameter and yield of lettuce and cabbage favored the bio-fertilizer applications compared to the control, but no statistical differences were found compared to the commercial foliar fertilizer (CFF. This behavior is attributed not only to the mineral content, but also to the presence of metabolite regulators of plant physiology, produced by the microbial action of the bio-fertilizers.

  14. [Current status of bio-based materials industry in China].

    Science.gov (United States)

    Diao, Xiaoqian; Weng, Yunxuan; Huang, Zhigang; Yang, Nan; Wang, Xiyuan; Zhang, Min; Jin, Yujuan

    2016-06-25

    In recent years, bio-based materials are becoming a new dominant industry leading the scientific and technological innovation, and economic development of the world. We reviewed the new development of bio-based materials industry in China, analyzed the entire market of bio-based materials products comprehensively, and also stated the industry status of bio-based chemicals, such as lactic acid, 1,3-propanediol, and succinic acid; biodegradable bio-based polymers, such as co-polyester of diacid and diol, polylactic acid, carbon dioxide based copolymer, polyhydroxyalknoates, polycaprolactone, and thermoplastic bio-based plastics; non-biodegradable bio-based polymers, such as bio-based polyamide, polytrimethylene terephthalate, bio-based polyurethane, and bio-based fibers.

  15. REDUCING ENVIRONMENTAL IMPACT AND COST OF PRODUCTION FOR DRYING FRUITS

    Directory of Open Access Journals (Sweden)

    Murad Erol

    2013-12-01

    Full Text Available To reduce the production costs for heat used in drying fruit plants was studied using of local biomass from tree branch pruning. The average annual get 3 t / ha biomass whit energy potential of 37 GJ/ha at a cost of up to 60 €/t. biomass at 10 - 50 mm chopped and dried below 20% can be gasefied with TLUD process characterized by high energy conversion efficiency, stability and safety in operation, emissions of CO and PM very low. TLUD process produces on average and 15% biochar that can be used as fuel or as agricultural amendment to increase fertility and for atmospheric carbon sequestration. There have been experiments simulated by model of USCMER 30/60MGB dryer equipped with two thermal modules TLUD FORTE-40 for apple slices drying heat of the apple prinings. Biomass used and biochar resulting chemical and energy were defined as micro-gasification process TLUD. That can dry 205 kg of apple slices in 6 hours with 74 kg of dry biomass to 10% of that remains and 12.2 kg biochar, biochar with or without 52 kg biomass, which costs € 8.55 or € 5.97, ie 4.3 or 6.1 times cheaper than diesel. On dry ton of sliced apple it can produce 59.6 kg biochar with soil seize -174.8 kg. CO2.

  16. Processing and characterization of bio-based composites

    Science.gov (United States)

    Lu, Hong

    Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.

  17. Primary production calculations for sea ice from bio-optical observations in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Susann Müller

    2016-09-01

    Full Text Available Abstract Bio-optics is a powerful approach for estimating photosynthesis rates, but has seldom been applied to sea ice, where measuring photosynthesis is a challenge. We measured absorption coefficients of chromophoric dissolved organic matter (CDOM, algae, and non-algal particles along with solar radiation, albedo and transmittance at four sea-ice stations in the Gulf of Finland, Baltic Sea. This unique compilation of optical and biological data for Baltic Sea ice was used to build a radiative transfer model describing the light field and the light absorption by algae in 1-cm increments. The maximum quantum yields and photoadaptation of photosynthesis were determined from 14C-incorporation in photosynthetic-irradiance experiments using melted ice. The quantum yields were applied to the radiative transfer model estimating the rate of photosynthesis based on incident solar irradiance measured at 1-min intervals. The calculated depth-integrated mean primary production was 5 mg C m–2 d–1 for the surface layer (0–20 cm ice depth at Station 3 (fast ice and 0.5 mg C m–2 d–1 for the bottom layer (20–57 cm ice depth. Additional calculations were performed for typical sea ice in the area in March using all ice types and a typical light spectrum, resulting in depth-integrated mean primary production rates of 34 and 5.6 mg C m–2 d–1 in surface ice and bottom ice, respectively. These calculated rates were compared to rates determined from 14C incorporation experiments with melted ice incubated in situ. The rate of the calculated photosynthesis and the rates measured in situ at Station 3 were lower than those calculated by the bio-optical algorithm for typical conditions in March in the Gulf of Finland by the bio-optical algorithm. Nevertheless, our study shows the applicability of bio-optics for estimating the photosynthesis of sea-ice algae.

  18. Bio-Oil Production from Fast Pyrolysis of Corn Wastes and Eucalyptus Wood in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    M.A Ebrahimi-Nik

    2014-09-01

    Full Text Available Fast pyrolysis is an attractive technology for biomass conversion, from which bio-oil is the preferred product with a great potential for use in industry and transport. Corn wastes (cob and stover and eucalyptus wood are widely being produced throughout the world. In this study, fast pyrolysis of these two materials were examined under the temperature of 500 °C; career gas flow rate of 660 l h-1; particle size of 1-2 mm; 80 and 110 g h-1 of feed rate. The experiments were carried out in a continuous fluidized bed reactor. Pyrolysis vapor was condensed in 3 cooling traps (15, 0 and -40 °C plus an electrostatic one. Eucalyptus wood was pyrolyised to 12.4, 61.4, and 26.2 percent of bio-char, bio-oil and gas, respectively while these figures were as 20.15, 49.9, and 29.95 for corn wastes. In all experiments, the bio-oil obtained from electrostatic trap was a dark brown and highly viscose liquid.

  19. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Science.gov (United States)

    Hernández, Liliana; Kafarov, Viatcheslav

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 °C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction.

  20. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Liliana; Kafarov, Viatcheslav [Universidad Industrial de Santander, Escuela de Ingenieria Quimica, Bucaramanga 678 (Colombia)

    2009-07-01

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction. (author)

  1. Microbial conversion of biomass into bio-based polymers.

    Science.gov (United States)

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bio based cogeneration plants in Sweden; Biobaserte kraftvarmeverk i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Cogeneration plants using bio fuel need a certificate in the Swedish electricity certificate system. Since the initiation of the system in 2003 the plants have taken advantage of the possibility of switching from fossil, to bio fuel. However, there is a potential for additional bio power production, provided that there is a market for the produced heating. The certificate system may contribute to an acceleration of investments in new capacities, and the facilitation of increased bio power production.

  3. Anaerobic co-digestion of cassava peels and manure: a technological approach for biogas generation and bio-fertilizer production

    International Nuclear Information System (INIS)

    Bayitse, R.; Laryea, G. N.; Selormey, G.; Oduro, W. O.; Aggey, M.; Mensah, B.; Gustavsson, M.; Bjerre, A.B.

    2014-01-01

    The modern global society faces great challenges in supply of energy and management of wastes in sustainable ways. One way of resolving the local challenges is to develop environmentally appropriate and socio economically viable biotechnological processes for converting biomass to energy. The general principles of anaerobic bio-digestion, digester design and features of bio-digestion are presented in the feature article, focusing on the prospects of utilizing cassava peels as a readily available lignocellulose feedstock for co-digestion with manure for the production of biogas and bio-fertilizer. Aside of the high cyanogenic properties, cassava peels would require pre-treatment before use as a substrate, hence, a multi-stage and high rate digestion system might be adopted in efficient digestion of cassava peels. To optimize carbon-nitrogen ratio for efficient digestion, cassava should be co-digested with manure. The socio-economic benefits of the anaerobic co-digestion technology and key policy measures to be implemented to harness bio-energy from agricultural wastes are also outlined. (au)

  4. Production of bio ethanol from waste potatoes

    Science.gov (United States)

    Jaber Noufal, Mohamad; Li, Baizhan; Maalla, Zena Ali

    2017-03-01

    In this research, production of ethanol from waste potatoes fermentation was studied using Saccharomyces cerevisiae. Potato Flour prepared from potato tubers after cooking and drying at 85°C. A homogenous slurry of potato flour prepared in water at solid-liquid ratio 1:10. Liquefaction of potato starch slurry was done with α-amylase at 80°C for 40 min followed by saccharification process which was done with glucoamylase at 65°C for two hr. Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in the production of 33 g/l ethanol. The following parameters have been analysed: temperature, time of fermentation and pH. It found that Saccharification process is affected by enzyme Amylase 300 concentration and concentration of 1000μl/100ml gives the efficient effect of the process. The best temperature for fermentation process was found to be about 35°C. Also, it noticed that ethanol production increased as a time of fermentation increased but after 48 hr further growth in fermentation time did not have an appreciable effect. Finally, the optimal value of pH for fermentation process was about 5 to 6.

  5. Bio-hydrogen production by dark fermentation from organic wastes and residues

    DEFF Research Database (Denmark)

    Liu, Dawei

    Der er stigende opmærksomhed omkring biohydrogen. Ved hydrogen fermentering kan kun en lille del af det organiske materiale eller COD i affald omdannes til hydrogen. Der findes endnu ingen full-skala bio-hydrogen anlæg, eftersom effektive rentable teknologier ikke er udviklet endnu. En to......-trins proces der kombinerer bio-hydrogen og bio-metan produktionen er en attraktiv mulighed til at øge det totale energi-udbytte af fermentering af organisk materiale. I en to-trins proces, med bio-hydrogen som første trin og bio-methan som andet trin, kunne der opnås 43mL-H2/gVSadded ved 37°C fra...... for en hurtig proces opstart og med højt brint effektivitet. Uden berigelseskulturer fejlede processen, på trods af gentagen genpodning. Optimale procesforhold for brint producerende processer blev bestemt. pH optimum af brintproducerende kulturer var 7.0 og acetat var hæmmende for brintproduktionen...

  6. Improving the microbiological quality of dried moringa leaf products through gamma irradiation

    International Nuclear Information System (INIS)

    Adu-Gyamfi, A.; Apea-Bah, F.B.; Mahami, T.; Agyei-Amposah, J.; Owulah, C.

    2011-01-01

    Complete text of publication follows. Moringa products obtained from the plant Moringa oleifera have several nutritional and medicinal uses in most developing countries. Until recently in Ghana, there were no national standards regulating its quality. The objectives of this study were to assess the microbiological quality of dried moringa leaf products and to investigate how it is affected by gamma irradiation. Samples of dried moringa leaf powder were obtained from various retail outlets in Accra and analysed for total viable cells, coliforms, moulds and yeast, Escherichia coli and Salmonella by using methods of serial dilution and pour plating. Additionally, samples of mechanical-, solar- and room-dried moringa leaves were irradiated at doses of 0, 2.5, 5.0, 7.5, 10.0 kGy with gamma radiation from a Co-60 source. The samples were subsequently analysed for total viable cells, coliforms, moulds and yeasts, Salmonella spp. and Pseudomonas spp. by using the methods of serial dilution and pour plating. Results indicated the range of the counts of total viable cells in the samples of moringa leaf powder was 5.92 - 8.44 (log 10 cfu/g). In the case of coliforms, the range of the counts was 4.85 - 7.25. The counts of moulds and yeast cells was in the range of 1.65 - 3.69. The range of the counts of E. coli in the samples was 3.71 - 4.78. Salmonella was present in some of the MLP samples analysed. The results also show that samples of room-dried moringa leaves had higher counts of total viable cells (6.20 log 10 cfu/g); coliforms (6.83); moulds and yeasts (2.99); and Pseudomonas spp. (3.52) compared to samples dried by mechanical or solar methods. Salmonella spp was not detected in all the samples. No microorganisms were detected in all the samples of moringa leaves after gamma irradiation at doses of 5, 7.5 and 10 kGy. Irradiation at 2.5 kGy reduced the counts of microorganisms to 3.57 (log 10 cfu/g) and below. Prolonged drying periods of the moringa leaves in shady

  7. Production of dry wood chips in connection with a district heating plant

    Directory of Open Access Journals (Sweden)

    Yrjölä Jukka

    2004-01-01

    Full Text Available Moisture and its variation in wood chips make the control of burning in small scale heating appliances difficult resulting in emissions and loss of efficiency. If the quality of wood chips would be better, i. e. dried and sieved fuel with more uniform size distribution would be avail able, the burning could be much cleaner and efficiency higher. In addition higher power out put could be obtained and the investment costs of the burning appliances would be lower. The production of sieved and dried wood chip with good quality could be accomplished in connection with a district heating plant. Then the plant would make profit, in addition to the district heat, from the dried wood chips sold to the neighboring buildings and enterprises sep a rated from the district heating net using wood chips in energy production. The peak power of a district heating plant is required only a short time during the coldest days of the winter. Then the excess capacity during the milder days can be used as heat source for drying of wood chips to be marketed. Then wood chips are sieved and the fuel with best quality is sold and the reject is used as fuel in the plant it self. In a larger district heating plant, quality of the fuel does not need to be so high In this paper the effect of moisture on the fuel chain and on the boiler is discussed. Energy and mass balance calculations as a tool of system design is described and the characteristics of proposed dry chips production method is discussed.

  8. The bio-ethanol production with the thin stillage recirculation

    Directory of Open Access Journals (Sweden)

    M. Rakin

    2009-01-01

    Full Text Available In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin stillage, the bioethanol yield increased and was above 100 %. Higher bioethanol yield than 100 % can be explained by the fact that the thin stillage contains carbohydrates, amino acids and yeast cells degradation products. The bioethanol yield increased with the increased number of thin stillage recirculation cycles. Dry matter content in fermenting slurry increased with the increased thin stillage quantity and the number of the thin stillage recirculation cycles (8.04 % for the first and 9.40 % for the sixth cycle. Dry matter content in thin stillage increased with the increased thin stillage quantity and the number of thin stillage recirculation cycles. Based on the obtained results it can be concluded that thin stillage recirculation increased the bioethanol yield. The highest bioethanol yields were obtained with recirculation of 10% thin stillage.

  9. BioMEMS

    CERN Document Server

    Urban, Gerald A

    2007-01-01

    Explosive growth in the field of Microsystem Technology has introduced a variety of promising products in major disciplines from microelectronics to life sciences. 'Biomes' is a discipline which focuses on microsystems for living systems. This work presents the exciting field of bio-microsystems.

  10. The Quality and Food Safety of Dry Smoke Garfish (Hemirhamphus far) Product From Maluku

    Science.gov (United States)

    Marthina Tapotubun, Alfonsina; Reiuwpassa, Fredrik; Apituley, Yolanda M. T. N.; Nanlohy, Hellen; Matrutty, Theodora E. A. A.

    2017-10-01

    Dry garfish is product of smoked process of “ikan julung” (Hemirhamphus far) and slowly the product getting dry, stiff and its colour become gold yellow-brown. The aim of this study is to find out quality and food safety of dry smoked “julung” from Maluku. The sample of this study is taken from production Keffing village, East Seram Regency, Maluku. Parameters to be analyzed are degrees of protein, fat, water, ash, TPC, Escherichia coli, Salmonella, Vibrio and total Staphylococcus aureus used standard analysis method for proximate (AOAC. 2005), sensosy parameters (BSN.2009) and food safety (BSN. 2006). Spreadsheet Ms Excel (Microsoft Inc., USA) is used for data processing; data is being analyzed descriptively to be interpreted in the research report. Dry smoked “julung” Keffing village, Maluku meet the good quality and food safety, that are ingredient degrees of water content 12.43%, protein 61.55%, fat 12.58%, ash 9.3%, TPC [6,8] × 101 CFU, total Staphylococcus sp [1,7] × 102, total E.coli 6.4 APM/g. and negatively for Salmonella and Vibrio.

  11. Potential of Tropical Fruit Waste Biomass for Production of Bio-Briquette Fuel: Using Indonesia as an Example

    Directory of Open Access Journals (Sweden)

    Anna Brunerová

    2017-12-01

    Full Text Available Within developing countries, there is an appeal to use waste biomass for energy generation in the form of bio-briquettes. This study investigated the potential use of bio-briquettes that are produced from the waste biomass of the following tropical fruits: durian (Durio zibethinus, coconut (Cocos nucifera, coffee (Coffea arabica, cacao (Theobroma cacao, banana (Musa acuminata and rambutan (Nephelium lappaceum. All fruit waste biomass samples exhibited an extremely high level of initial moisture content (78.22% in average. Fruit samples with the highest proportion of fruit waste biomass (of total unprocessed fruit mass were represented by cacao (83.82%, durian (62.56% and coconut (56.83%. Highest energy potentials (calorific value of fruit waste biomass were observed in case of coconut (18.22 MJ∙kg−1, banana (17.79 MJ∙kg−1 and durian (17.60 MJ∙kg−1 fruit samples, whereas fruit waste biomass with the lowest level of ash content originated from the rambutan (3.67%, coconut (4.52%, and durian (5.05% fruit samples. When investigating the energy demands to produce bio-briquettes from such feedstock materials, the best results (lowest amount of required deformation energy in combination with highest level of bio-briquette bulk density were achieved by the rambutan, durian and banana fruit waste biomass samples. Finally, all investigated bio-briquette samples presented satisfactory levels of bulk density (>1050 kg∙m−3. In conclusion, our results indicated the practicability and viability of such bio-briquette fuel production, as well as supporting the fact that bio-briquettes from tropical fruit waste biomass can offer a potentially attractive energy source with many benefits, especially in rural areas.

  12. Assessment of the strategies of organic fruit production and fruit drying in Uganda

    Directory of Open Access Journals (Sweden)

    Didier Pillot

    2010-04-01

    Full Text Available Organic agriculture in Uganda is developing at a fast pace and despite this trend Uganda is still unable to produce enough fresh and dry organic fruits mainly pineapple to meet the exporters demand. This current research investigated the strategies of farmers at production level by assessing the pros and cons of fruit growing, organic agriculture and fruit drying in order to understand the underlying causal factor for the low production of organic dry fruits in a major fruit producing district of Uganda.The study was carried out in two separate and distinctive areas; one which only produces and export fresh organic pineapple and the other which exports dried fruits (mainly pineapple and papaya. About 10% of the farmers in the two study areas were surveyed using questionnaires which were further followed by semi-structured interviews and participatory rural appraisals activities with various types of farmers in order to understand the different decisions and strategies of farmers.82% and 74% of farmers in the two study areas grew fruits as it gave better economic returns and for 77% and 90% respectively in the two study areas, the reasons for growing fruit was the ease of selling compared to other crops. All the farmers were relying on coffee husk for growing organic pineapples. However, 50% of the farmers want to grow pineapples (either organic or conventional but couldn't afford to buy coffee husk. Fruit drying was mainly a strategy to utilize cheap fruits during harvesting seasons for value addition. 71% and 42% of farmers in the two study areas wanted to dry fruits but it was beyond their economic capacity to buy the driers.Decision of the farmers whether to grow fruits or cereals, organic or conventional agriculture and selling the fruits as fresh or dry were dependent mainly on the economic, knowledge and resource availability of each type of practices. It is concluded that the main barrier for an increase in the production of organic dried

  13. Trend chart: bio-methane injected in gas distribution systems. Third quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2017-11-01

    This publication presents the bio-methane industry situation of continental France and overseas territories during the third quarter 2017: bio-methane production facilities, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus capacity and type, evolution forecasts of bio-methane production, detailed regional results

  14. Trend chart: bio-methane injected in gas distribution systems. Second quarter 2017

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the bio-methane industry situation of continental France and overseas territories during the first quarter 2017: bio-methane production facilities, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus capacity and type, evolution forecasts of bio-methane production, detailed regional results

  15. Trend chart: bio-methane injected in gas distribution systems. Fourth quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2018-02-01

    This publication presents the bio-methane industry situation of continental France and overseas territories during the fourth quarter 2017: bio-methane production facilities, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus capacity and type, evolution forecasts of bio-methane production, detailed regional results

  16. Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures

    Science.gov (United States)

    Hennige, S. J.; Suggett, D. J.; Warner, M. E.; McDougall, K. E.; Smith, D. J.

    2009-03-01

    Light is often the most abundant resource within the nutrient-poor waters surrounding coral reefs. Consequently, zooxanthellae ( Symbiodinium spp.) must continually photoacclimate to optimise productivity and ensure coral success. In situ coral photobiology is becoming dominated by routine assessments using state-of-the-art non-invasive bio-optical or chlorophyll a fluorescence (bio-physical) techniques. Multiple genetic types of Symbiodinium are now known to exist; however, little focus has been given as to how these types differ in terms of characteristics that are observable using these techniques. Therefore, this investigation aimed to revisit and expand upon a pivotal study by Iglesias-Prieto and Trench (1994) by comparing the photoacclimation characteristics of different Symbiodinium types based on their bio-physical (chlorophyll a fluorescence, reaction centre counts) and bio-optical (optical absorption, pigment concentrations) ‘signatures’. Signatures described here are unique to Symbiodinium type and describe phenotypic responses to set conditions, and hence are not suitable to describe taxonomic structure of in hospite Symbiodinium communities. In this study, eight Symbiodinium types from clades and sub-clades (A-B, F) were grown under two PFDs (Photon Flux Density) and examined. The photoacclimation response by Symbiodinium was highly variable between algal types for all bio-physical and for many bio-optical measurements; however, a general preference to modifying reaction centre content over effective antennae-absorption was observed. Certain bio-optically derived patterns, such as light absorption, were independent of algal type and, when considered per photosystem, were matched by reaction centre stoichiometry. Only by better understanding genotypic and phenotypic variability between Symbiodinium types can future studies account for the relative taxonomic and physiological contribution by Symbiodinium to coral acclimation.

  17. Can bio-based attributes upgrade a brand? How partial and full use of bio-based materials affects the purchase intention of brands

    NARCIS (Netherlands)

    Reinders, Machiel J.; Onwezen, Marleen C.; Meeusen, Marieke J.G.

    2017-01-01

    To reduce human dependency on fossil fuels, increasing attempts are being made to substitute synthetic materials in products with bio-based materials. Global brands attempt to differentiate themselves by adding bio-based materials to their products. However, little is known about consumers'

  18. Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources.

    Science.gov (United States)

    Qiu, Yibin; Lei, Peng; Zhang, Yatao; Sha, Yuanyuan; Zhan, Yijing; Xu, Zongqi; Li, Sha; Xu, Hong; Ouyang, Pingkai

    2018-01-01

    The Jerusalem artichoke is a perennial plant that belongs to the sunflower family. As a non-grain crop, Jerusalem artichoke possesses a number of desirable characteristics that make it a valuable feedstock for biorefinery, such as inulin content, rapid growth, strong adaptability, and high yields. This review provides a comprehensive introduction to renewable Jerusalem artichoke-based biomass resources and recent advances in bio-based product conversion. Furthermore, we discuss the latest in the development of inulinase-producing microorganisms and enhanced inulin hydrolysis capacity of microbes by genetic engineering, which lead to a more cost-effective Jerusalem artichoke biorefinery. The review is aimed at promoting Jerusalem artichoke industry and new prospects for higher value-added production.

  19. High-solid anaerobic digestion of corn straw for methane production and pretreatment of bio-briquette.

    Science.gov (United States)

    Li, Yeqing; Yan, Fang; Li, Tao; Zhou, Ying; Jiang, Hao; Qian, Mingyu; Xu, Quan

    2018-02-01

    In this study, an integrated process was developed to produce methane and high-quality bio-briquette (BB) using corn straw (CS) through high-solid anaerobic digestion (HS-AD). CS was anaerobic digested by using a leach bed reactor at four leachate recirculation strategies. After digesting for 28 days, highest methane yield of 179.6 mL/g-VS, which was corresponded to energy production of 5.55 MJ/kg-CS, was obtained at a higher initial recirculation rate of 32 L-leachate per day. Compared with bio-briquette manufactured from raw CS and lignite, the compressive, immersion and falling strength properties of bio-briquette made from AD-treated CS (solid digestate) and lignite were significantly improved. A preferred BB can be obtained with side compressive strength of 863.8 ± 10.8 N and calorific value of 20.21 MJ/kg-BB. The finding of this study indicated that the integrated process could be an alternative way to produce methane and high-quality BB with CS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparison of experimental data with results of some drying models for regularly shaped products

    Science.gov (United States)

    Kaya, Ahmet; Aydın, Orhan; Dincer, Ibrahim

    2010-05-01

    This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60°C) at specific constant velocity ( U = 1 m/s) and the relative humidity φ = 30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 × 10-5 and 5.981 × 10-5 m2/h for slab products, 0.818 × 10-5 and 6.287 × 10-5 m2/h for cylindrical products and 1.213 × 10-7 and 7.589 × 10-7 m2/h spherical products using the Model-I and 0.316 × 10-5-5.072 × 10-5 m2/h for slab products, 0.580 × 10-5-9.587 × 10-5 m2/h for cylindrical products and 1.408 × 10-7-13.913 × 10-7 m2/h spherical products using the Model-II.

  1. Analysis of the potential production and the development of bioenergy in the province of Mendoza - Bio-fuels and biomass - Using geographic information systems

    Energy Technology Data Exchange (ETDEWEB)

    Flores Marco, Noelia; Hilbert, Jorge Antonio [Instituto de Ingenieria Rural, INTA Las Cabanas y Los Reseros s/n, CP: 1712 Castelar, Buenos Aires (Argentina); Silva Colomer, Jorge [INTA EEA Junin Mendoza, Carril Isidoro Busquets s/n CP: 5572 (Argentina); Anschau, Renee Alicia; Carballo, Stella [Instituto de Clima y Agua, INTA. Las Cabanas y Los Reseros s/n, CP:1712 Castelar, Buenos Aires (Argentina)

    2010-06-15

    In this work, the partial results of the potential production of energy, starting from the biomass and the development of the crops, directed to the production of bio-fuels (Colza and Topinamur) in the North irrigation oasis of Mendoza, Argentina within the National Program of Bio-energy developed by INTA is presented. For the evaluation of the bio-energetic potential, derived from the biomass, the WISDOM methodology developed by FAO and implemented by INTA in Argentina was applied with the collaboration of national and provincial governmental entities that contribute local information The study of the potential production and the development of the bio-energetic crops have been carried out with the advising and participation of the experts of INTA of the studied crops. The province of Mendoza has semi-deserted agro-climatic characteristics. The type of soil and type of weather allows the production of great quality fruits and vegetables in the irrigated areas. The four great currents of water conform three oasis; Northeast, Center and South, which occupy the 3.67% of the surface of Mendoza. Today, Mendoza has 267,889 irrigated hectares, but the surface that was farmed by irrigation was near to the 400,000 ha. The climate contingencies, froze and hailstorm precipitations, plus the price instability cause great losses in the productive sector, taking it to the forlornness of the exploitations. The crop setting of these forlornness lands with crops directed to the production of bio-fuels and the utilization of the biomass coming from the agriculture activities and the agro industry (pruning of fruit trees, refuses of olive and vine, remnants of the peach industry, etc.) could assist the access to the energy in the rural areas, stimulating the economical improvement and the development in these communities. (author)

  2. Analysis of the potential production and the development of bioenergy in the province of Mendoza - Bio-fuels and biomass - Using geographic information systems

    International Nuclear Information System (INIS)

    Flores Marco, Noelia; Hilbert, Jorge Antonio; Silva Colomer, Jorge; Anschau, Renee Alicia; Carballo, Stella

    2010-01-01

    In this work, the partial results of the potential production of energy, starting from the biomass and the development of the crops, directed to the production of bio-fuels (Colza and Topinamur) in the North irrigation oasis of Mendoza, Argentina within the National Program of Bio-energy developed by INTA is presented. For the evaluation of the bio-energetic potential, derived from the biomass, the WISDOM methodology developed by FAO and implemented by INTA in Argentina was applied with the collaboration of national and provincial governmental entities that contribute local information The study of the potential production and the development of the bio-energetic crops have been carried out with the advising and participation of the experts of INTA of the studied crops. The province of Mendoza has semi-deserted agro-climatic characteristics. The type of soil and type of weather allows the production of great quality fruits and vegetables in the irrigated areas. The four great currents of water conform three oasis; Northeast, Center and South, which occupy the 3.67% of the surface of Mendoza. Today, Mendoza has 267,889 irrigated hectares, but the surface that was farmed by irrigation was near to the 400,000 ha. The climate contingencies, froze and hailstorm precipitations, plus the price instability cause great losses in the productive sector, taking it to the forlornness of the exploitations. The crop setting of these forlornness lands with crops directed to the production of bio-fuels and the utilization of the biomass coming from the agriculture activities and the agro industry (pruning of fruit trees, refuses of olive and vine, remnants of the peach industry, etc.) could assist the access to the energy in the rural areas, stimulating the economical improvement and the development in these communities. (author)

  3. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    International Nuclear Information System (INIS)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  4. Cell wall content and rumen dry matter disappearance of γ-irradiated wood by-products

    International Nuclear Information System (INIS)

    Flachowsky, G.; Baer, M.; Zuber, S.; Tiroke, K.

    1990-01-01

    Spruce sawdust and barks of spruce, pine and larch were irradiated with various doses of γ-rays (0; 0.1; 0.25; 0.5; 1.0 and 2.0 MGy). Cell wall constituents and rumen dry-matter disappearance (incubation time: 48 h) were determined. γ-Irradiation significantly reduced neutral detergent fibre and acid detergent fibre content of all by-products. The crude lignin of the wood by-products was not significantly influenced by γ-irradiation. Rumen dry-matter loss of untreated sawdust was 5.6%, that of barks between 18.2 (pine) and 64.6% (spruce). γ-Irradiation significantly increased rumen dry-matter loss. Increased washout due to solubilization and particle breakdown was mainly responsible for the higher dry-matter losses in the rumen after irradiation. The results do not justify practical use because of the high dose of irradiation required. (author)

  5. Trend chart: bio-methane injected in gas distribution systems. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents the bio-methane industry situation of continental France and overseas territories during the first quarter 2017: bio-methane production facilities, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus capacity and type, evolution forecasts of bio-methane production, detailed regional results, methodology used

  6. The Importance of Seedlings Quality in Timber and Bio-energy Production on marginal lands

    Science.gov (United States)

    Fragkiskakis, Nikitas; Kiourtsis, Fotios; Keramitzis, Dimitrios; Papatheodorou, Ioannis; Georgiadou, Margarita; Repmann, Frank; Gerwin, Werner

    2017-04-01

    One of the main issues that the forest sector is facing is to achieve a balance between the demand for biomass &wood production and the need to preserve the sustainability and biodiversity of forest ecosystems. The purposes of the new approaches are to ensure more efficient management of ecosystems and implement intensive forestry that will increase biomass production & timber yields. To achieve this, we need to determine the macroeconomic potential of the various options available, including the use of biotechnology and genetics. The success of the forests plantations capacity may be solved through forest certification, based on: a) Stabilization of the forests and soils structure. b) Hierarchy of biomass production in the forest's management process. c) Οrganization and implementation of effective plantation on marginal lands. d) Maintenance or increase of forest productivity by introducing new items as and when they are required. It is important to evaluate of the influence of factors such as the quality of soils of plantation areas, the utilization of the genetic resources and the management of forest operations with the environmental economic criteria such as net present value of benefits (NPV) and the corresponding flow annuities (EACF).The existing evaluations studies showed that the quality of the plantation areas has the most influence and through validated quality seed production can generate an increase in the NPV up to 73%. The importance of seedlings quality in timber and bio-energy production on marginal lands based on the literature it is estimated according to the heredity of the characteristics of the wood structure (except shrinkage). This clearly indicate that seedlings with the appropriate morphological characteristics can significantly improve the growth performance and help to support the development of biomass plantations oriented in tailor-made timber and bio-energy production.

  7. Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study.

    Science.gov (United States)

    Khedkar, Manisha A; Nimbalkar, Pranhita R; Gaikwad, Shashank G; Chavan, Prakash V; Bankar, Sandip B

    2017-02-01

    Present investigation explores the use of pineapple peel, a food industry waste, for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum B 527. Proximate analysis of pineapple peel shows that it contains 35% cellulose, 19% hemicellulose, and 16% lignin on dry basis. Drying experiments on pineapple peel waste were carried out in the temperature range of 60-120°C and experimental drying data was modeled using moisture diffusion control model to study its effect on ABE production. The production of ABE was further accomplished via acid hydrolysis, detoxification, and fermentation process. Maximum total sugar release obtained by using acid hydrolysis was 97g/L with 95-97% and 10-50% removal of phenolics and acetic acid, respectively during detoxification process. The maximum ABE titer obtained was 5.23g/L with 55.6% substrate consumption when samples dried at 120°C were used as a substrate (after detoxification). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bio-composites : opportunities for value-added biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Drzal, L.T. [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemical Engineering and Materials Science]|[Michigan State Univ., East Lansing, MI (United States). Composite Materials and Structures Center

    2003-07-01

    In order to reduce dependency on foreign oil, there is a growing need to develop and commercialize new bio-based green materials and technologies that can produce bio-based structural materials that are competitive with current synthetic products. The use of bio-based products would also improve the environment and create new opportunities for the agricultural economy. This paper described ongoing research into bio-based materials and products that replace petroleum-based products. In particular, it examined the use of biocomposites made by embedding natural/biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, corn stalk fibers and native Michigan grasses into petroleum-derived traditional plastics such as polypropylene, unsaturated polyesters and epoxies. It also examines the use of green biocomposites developed by embedding these bio-fibers into renewable resource-based bioplastics such as cellulosic plastics and soy-based plastics. New processing methods that combine biofibers with plastics were needed to produce the biocomposites with desirable mechanical properties. The study showed that biofiber reinforced petroleum-based plastic biocomposites can produce a structural material that offers a balance between ecology, economy and technology. The potential for using these materials for automotive and building materials was also presented. 1 tab., 28 figs.

  9. How big is the bio-business? Notes on measuring the size of the Dutch bio-economy

    NARCIS (Netherlands)

    Heijman, Wim

    2016-01-01

    This paper focuses on the size of the Dutch bio-economy. With the help of consolidated input-output tables, the size of the bio-economy in terms of value added is estimated for the years 2008-2012. It appears that in the Netherlands, during the period indicated, its share in national production

  10. Technological trends, global market, and challenges of bio-ethanol production.

    Science.gov (United States)

    Mussatto, Solange I; Dragone, Giuliano; Guimarães, Pedro M R; Silva, João Paulo A; Carneiro, Lívia M; Roberto, Inês C; Vicente, António; Domingues, Lucília; Teixeira, José A

    2010-01-01

    Ethanol use as a fuel additive or directly as a fuel source has grown in popularity due to governmental regulations and in some cases economic incentives based on environmental concerns as well as a desire to reduce oil dependency. As a consequence, several countries are interested in developing their internal market for use of this biofuel. Currently, almost all bio-ethanol is produced from grain or sugarcane. However, as this kind of feedstock is essentially food, other efficient and economically viable technologies for ethanol production have been evaluated. This article reviews some current and promising technologies for ethanol production considering aspects related to the raw materials, processes, and engineered strains development. The main producer and consumer nations and future perspectives for the ethanol market are also presented. Finally, technological trends to expand this market are discussed focusing on promising strategies like the use of microalgae and continuous systems with immobilized cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Initial boost release of transforming growth factor-β3 and chondrogenesis by freeze-dried bioactive polymer scaffolds.

    Science.gov (United States)

    Krüger, Jan Philipp; Machens, Isabel; Lahner, Matthias; Endres, Michaela; Kaps, Christian

    2014-12-01

    In cartilage regeneration, bio-activated implants are used in stem and progenitor cell-based microfracture cartilage repair procedures. Our aim was to analyze the chondrogenic potential of freeze-dried resorbable polymer-based polyglycolic acid (PGA) scaffolds bio-activated with transforming growth factor-β3 (TGFB3) on human subchondral mesenchymal progenitor cells known from microfracture. Progenitor cells derived from femur heads were cultured in the presence of freeze-dried TGFB3 in high-density pellet culture and in freeze-dried TGFB3-PGA scaffolds for chondrogenic differentiation. Progenitor cell cultures in PGA scaffolds as well as pellet cultures with and without continuous application of TGFB3 served as controls. Release studies showed that freeze-dried TGFB3-PGA scaffolds facilitate a rapid, initial boost-like release of 71.5% of TGFB3 in the first 10 h. Gene expression analysis and histology showed induction of typical chondrogenic markers like type II collagen and formation of cartilaginous tissue in TGFB3-PGA scaffolds seeded with subchondral progenitor cells and in pellet cultures stimulated with freeze-dried TGFB3. Chondrogenic differentiation in freeze-dried TGFB3-PGA scaffolds was comparable to cultures receiving TGFB3 continuously, while non-stimulated controls did not show chondrogenesis during prolonged culture for 14 days. These results suggest that bio-activated, freeze-dried TGFB3-PGA scaffolds have chondrogenic potential and are a promising tool for stem cell-mediated cartilage regeneration.

  12. Bio-Diesel Production from Oil of Orange ( Citrus Sinensis ) Peels as ...

    African Journals Online (AJOL)

    Although, in Nigeria orange peels are considered as a waste, this study is intended to convert the waste into wealth by establishing the production of biodiesel with oil obtained from orange peels; using transeterification process. Oil from sun-dried/ ground orange peels were extractedusing n-hexane. Transesterification ...

  13. Sustainable Biofuels and Other Related Bio-Products from Palm Cultivations

    Directory of Open Access Journals (Sweden)

    Ani Farid Nasir

    2016-01-01

    Full Text Available Various kinds of palm trees are grown in the tropical regions of the world that provide edible oils for food consumption. They have in common in providing edible oils from the nuts and some from the mesocarp such as oil palm. More than 400 mills in Malaysia have provided more than sufficient energy from the biomass in processing the fruits to crude palm oil. The biomass are the mesocarp fibres, shells or endocarp, empty fruit bunches and palm oil mill effluents. One option of treatment of this biomass is to convert into bio-oil, bio-char, bio-adhesives and methyl ester. Recent research using microwave processing of biomass and biodiesel are given in this paper.

  14. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products.

    Science.gov (United States)

    Lim, Kar; Ma, Mitzi; Dolan, Kirk D

    2011-09-01

    The effect of spray drying on degradation of nutraceutical components in cull blueberry extract was investigated. Samples collected before and after spray drying were tested for antioxidant capacity using oxygen radical absorbance capacity (ORAC(FL) ) and total phenolics; and for individual anthocyanidins. In Study 1, four different levels of maltodextrin (blueberry solids to maltodextrin ratios of 5: 95, 10: 90, 30: 70, and 50: 50) were spray dried a pilot-scale spray dryer. There was significantly higher retention of nutraceutical components with increased levels of maltodextrin indicating a protective effect of maltodextrin on the nutraceutical components during spray drying. In Study 2, the air inlet temperature of the spray dryer was kept constant for all runs at 150 °C, with 2 different outlet temperatures of 80 and 90 °C. The degradation of nutraceutical components was not significantly different at the 2 selected outlet temperatures. ORAC(FL) reduction for blueberry samples after spray drying was 66.3% to 69.6%. After spray drying, total phenolics reduction for blueberry was 8.2% to 17.5%. Individual anthocyanidin reduction for blueberry was 50% to 70%. The experimental spray dried powders compared favorably to commercial blueberry powders. Results of the study show that use of blueberry by-products is feasible to make a value-added powder. Results can be used by producers to estimate final nutraceutical content of spray-dried blueberry by-products. © 2011 Institute of Food Technologists®

  15. Prospects for a bio-based succinate industry.

    Science.gov (United States)

    McKinlay, James B; Vieille, C; Zeikus, J Gregory

    2007-09-01

    Bio-based succinate is receiving increasing attention as a potential intermediary feedstock for replacing a large petrochemical-based bulk chemical market. The prospective economical and environmental benefits of a bio-based succinate industry have motivated research and development of succinate-producing organisms. Bio-based succinate is still faced with the challenge of becoming cost competitive against petrochemical-based alternatives. High succinate concentrations must be produced at high rates, with little or no by-products to most efficiently use substrates and to simplify purification procedures. Herein are described the current prospects for a bio-based succinate industry, with emphasis on specific bacteria that show the greatest promise for industrial succinate production. The succinate-producing characteristics and the metabolic pathway used by each bacterial species are described, and the advantages and disadvantages of each bacterial system are discussed.

  16. Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Koo, Won-Mo; Jung, Su-Hwa; Kim, Joo-Sik

    2014-01-01

    Fast pyrolysis of ACQ (alkaline copper quaternary)-treated wood was carried out in a bench-scale pyrolysis plant equipped with a fluidized bed reactor and char separation system. This study focused on the production of a bio-oil with low copper and chlorine contents, especially by adopting the fractional condensation of bio-oil using water condensers, an impact separator and an electrostatic precipitator. In addition, various analytical tools were applied to investigate the physicochemical properties of the pyrolysis products and the behavior of the preservative during pyrolysis. The bio-oil yield was maximized at 63.7 wt% at a pyrolysis temperature of 411 °C. Highly water-soluble holocellulose-derived components such as acetic acid and hydroxyacetone were mainly collected by the condensers, while lignin-derived components and levoglucosan were mainly observed in the oils collected by the impact separator and electrostatic precipitator. All the bio-oils produced in the experiments were almost free of copper and chlorine. Most copper in ACQ was transferred into the char. - Highlights: • ACQ(alkaline copper quaternary)-treated wood was successfully pyrolyzed in a bench-scale fluidized bed. • Bio-oils separately collected were different in their characteristics. • Bio-oils were free of didecyldimethylammonium chloride. • Bio oils were almost free of copper and chlorine. • The concentration of levoglucosan in a bio-oil was 24–31 wt%

  17. Effect of biomass pretreatment on the product distribution and composition resulting from the hydrothermal liquefaction of short rotation coppice willow

    DEFF Research Database (Denmark)

    Grigoras, Ionela; Stroe, Rodica-Elisabeta; Sintamarean, Iulia-Maria

    2017-01-01

    A major challenge for the implementation of hydrothermal liquefaction (HTL) as a continuous process is the formulation of lignocellulosic feedstock, which is prone to phase separation into water and biomass parts when pressurized. One approach to remedy such phase separation is to reduce the dry...... from the HTL of willow and proposes short rotation coppice as an alternative biomass feedstock for biofuels production. Alkaline–thermal pretreatment, besides making high dry matter pumpable feedstock slurries, also led to an increase in the production of the bio-crude product with an oxygen content...

  18. Fiberboard created using the natural adhesive properties of distillers dried grains with solubles

    Science.gov (United States)

    Distillers dried grains with solubles (DDGS) were employed as a bio-based resin/adhesive. DDGS were defatted with hexane, ball ground and screened prior to use. DDGS flour was mixed dry with Paulownia wood (PW) to make composites using the following conditions: temperature of 150-195 oC, PW particle...

  19. Comparison of experimental data with results of some drying models for regularly shaped products

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Ahmet [Aksaray University, Department of Mechanical Engineering, Aksaray (Turkey); Aydin, Orhan [Karadeniz Technical University, Department of Mechanical Engineering, Trabzon (Turkey); Dincer, Ibrahim [University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, Oshawa, ON (Canada)

    2010-05-15

    This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60 C) at specific constant velocity (U = 1 m/s) and the relative humidity {phi}=30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 x 10{sup -5} and 5.981 x 10{sup -5} m{sup 2}/h for slab products, 0.818 x 10{sup -5} and 6.287 x 10{sup -5} m{sup 2}/h for cylindrical products and 1.213 x 10{sup -7} and 7.589 x 10{sup -7} m{sup 2}/h spherical products using the model-I and 0.316 x 10{sup -5}-5.072 x 10{sup -5} m{sup 2}/h for slab products, 0.580 x 10{sup -5}-9.587 x 10{sup -5} m{sup 2}/h for cylindrical products and 1.408 x 10{sup -7}-13.913 x 10{sup -7} m{sup 2}/h spherical products using the model-II. (orig.)

  20. Drying of α-amylase by spray drying and freeze-drying - a comparative study

    Directory of Open Access Journals (Sweden)

    S. S. de Jesus

    2014-09-01

    Full Text Available This study is aimed at comparing two traditional methods of drying of enzymes and at verifying the efficiency of each one and their advantages and disadvantages. The experiments were performed with a laboratory spray dryer and freeze-dryer using α-amylase as the model enzyme. An experimental design in star revealed that spray drying is mainly influenced by the inlet air temperature and feed flow rate, which were considered to be the main factors influencing the enzymatic activity and water activity; the long period of material exposure to high temperatures causes a partial activity loss. In the experiments of freeze drying, three methods of freezing were used (freezer, acetone and dry ice, and liquid nitrogen and samples subsequently freeze-dried for times ranging between 0-24 hours. The product obtained from the two techniques showed high enzymatic activity and low water activity. For the drying of heat-resistant enzymes, in which the product to be obtained does not have high added value, spray drying may be more economically viable because, in the freeze drying process, the process time can be considered as a limiting factor when choosing a technique.

  1. Steam pretreatment of dry and ensiled industrial hemp for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Sipos, Balint; Reczey, Kati [Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Szt. Gellert ter 4., H-1111 Budapest (Hungary); Kreuger, Emma; Bjoernsson, Lovisa [Lund University, Department of Biotechnology, P.O. Box 124, SE-221 00 Lund (Sweden); Svensson, Sven-Erik [Swedish University of Agricultural Sciences, Department of Agriculture - Farming Systems, Technology and Product Quality, P.O. Box 104, SE-230 53 Alnarp (Sweden); Zacchi, Guido [Lund University, Department of Chemical Engineering, P.O. Box 124, SE-221 00 Lund (Sweden)

    2010-12-15

    Biomass can be converted into liquid and gaseous biofuels with good efficiency. In this study, the conversion of industrial hemp (Cannabis sativa L.), a biomass source that can be cultivated with a high biomass yield per hectare, was used. Steam pretreatment of dry and ensiled hemp was investigated prior to ethanol production. The pretreatment efficiency was evaluated in terms of sugar recovery and polysaccharide conversion in the enzymatic hydrolysis step. For both materials, impregnation with 2% SO{sub 2} followed by steam pretreatment at 210 C for 5 min were found to be the optimal conditions leading to the highest overall yield of glucose. Simultaneous saccharification and fermentation experiments carried out with optimised pretreatment conditions resulted in ethanol yields of 163 g kg{sup -1} ensiled hemp (dry matter) (71% of the theoretical maximum) and 171 g kg{sup -1} dry hemp (74%), which corresponds to 206-216 l Mg{sup -1} ethanol based on initial dry material. (author)

  2. Economic feasibility studies on radiation preservation of dried and cured fishery products, onions and potatoes

    International Nuclear Information System (INIS)

    Ahmed, M.; Karim, A.; Quaiyum, M.A.; Bhuiya, A.D.; Matin, M.A.; Siddiqui, A.K.; Hossain, M.M.

    1989-01-01

    Dried and cured fishery products, onions and potatoes face enormous storage losses in Bangladesh due to insect infestation and sprouting. Research and development work was carried out to assess the suitability of introducing irradiation processing of these products in the country. Experiments showed that a dose of 0.04-0.68 kGy could inhibit sprouting in onions. Sprouting in potatoes could be inhibited at 0.10 kGy. Dried and cured fishery products could be disinfested of insects at a dose of 0.30 kGy. Infrastructure such as transportation, storage, marketing and existing systems of post-harvest handling were analysed. Post-harvest storage losses of onion and dried fish were more than 50% after 6 months of storage. Potatoes could not be kept at ambient conditions for over 3 months after the harvesting season. Irradiation of onions and dried fish, if they were stored in suitable conditions after proper packaging, could save significant storage losses. Irradiated potatoes could be stored at 14 deg. C instead of 2-4 deg. C as practised normally. On the basis of the data collected on dried and cured fishery products, onions and potatoes, economic feasibility studies were conducted. Assumptions for calculation of cost of the irradiation facility were: (i) strength of the irradiator source: 7.40 PBq of 60 Co; (ii) construction period: 2 years; (iii) operating time: 7200 hours per year; (iv) economic life: 20 years; (v) capacity utilization: 80-90%. In addition to dried and cured fish, potatoes and onions, this facility would also treat fresh fish and medical products in order to maximize its use. It would have an investment cost of US $1.9 million. The payback period was found to be less than 4 years. If additional warehouses could be built along with the facility, such a venture would be more profitable. 23 refs, 8 figs, 28 tabs

  3. Transfer of pollution from municipal wastewater to bio solids: their chemical characterization; Transferencia de contaminacion desde el agua residual urbana a los lodos de depuracion: caracterizacion de biosolidos

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.

    2007-07-01

    Production of bio solids depends on the amount of wastewater treated according the expression y=ax''2,5575, being y the log of TM/year of bio solids produced, and X the log then m''3/year of wastewater treated. Quality of bio solids generated by three WWTP does not seem function either of the amount of treated water and neither of the treatment process applied (active sludges or bio discs). The bio solids exhibited values of 20-25% in dehidradation, and those of organic matter, nitrogen and phosp hour being equal to 60-75%, 7% and 4%, respectively. Moreover, the total of metals there present were 11-19 g/kg over dried matter, supposing Fe, Zn, Cu and Mn the 97% of all metals, and being Hg the minority metal. Bio solids can be used in agricultural practices (they agree with the Spanish normative here applied) and they concentrated the organic matter and metals found in wastewater up to 417 and 869 times, respectively. At the same time, we have estimated that each 4841 of wastewater produced 1 kg of bio solid. (Author)

  4. Evaluation of apricot (Prunus armeniaca L.) seed kernel as a potential feedstock for the production of liquid bio-fuels and activated carbons

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.

    2017-01-01

    Highlights: • Apricot (Prunus armeniaca L.) is presented as a source for biodiesel, bio-oil and activated carbon. • Methylic and ethylic esters of apricot seed kernel oil conformed to ASTM (D6751) standards. • High yield (43.66% w/w) of bio-oil was produced by pyrolysis of de-oiled seed kernel. • High quality of activated carbon was obtained from the biochar. - Abstract: Production of liquid bio-fuels (biodiesel and bio-oil) as well as activated carbon from one non-edible feedstock, apricot (Prunus armeniaca L.) seed kernel was the main objective of the present research work. The oil was extracted from apricot seed kernel with a yield of 49.44% w/w of kernels. Potassium hydroxide-catalyzed transesterification of apricot (Prunus armeniaca L.) seed kernel oil with methanol and ethanol was then applied to produce methylic and ethylic, respectively. Properties of the obtained biodiesels were evaluated and found conformed to ASTM D 6751 limits. The apricot de-oiled seed kernel was pyrolyzed in a semi-batch reactor for bio-oil production. The effect of the pyrolysis temperatures (350, 400, 450, 500, 550 and 600 °C), pyrolysis time (30, 60, 90, 120 and 150 min) and feed particles size (0.25, 0.40, 0.59 and 0.84 mm) on the bio-oil yield was investigated. The maximum production of bio-oil (43.66% w/w) was achieved at a pyrolysis temperature of 450 °C, 60 min pyrolysis time and a feed particles size of 0.25 mm. The bio-oil obtained under the optimal conditions was characterized by the elemental analysis, FTIR spectroscopy and column chromatography. The FTIR analysis of the produced bio-fuel indicated that it composes mainly of alkanes, alkenes, ketones, carboxylic acids and amines. Properties of the resulting bio-oil were analyzed in terms of calorific value, density, flash point, pH, acid value, pour point and refractive index. The properties were close to those of petroleum fractions and comparable to those of other bio-oils published in literature. Referring to

  5. Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell

    International Nuclear Information System (INIS)

    Asadullah, Mohammad; Ab Rasid, Nurul Suhada; Kadir, Sharifah Aishah Syed A.; Azdarpour, Amin

    2013-01-01

    Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min −1 of gas and 10 g min −1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg −1 . As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil. -- Highlights: • Maximum 56 wt% yield of bio-oil was obtained at 550 °C from palm kernel shell. • Two layer of bio-oil was observed up to 500 °C, while it was one layer above 500 °C. • Bio-oil from palm kernel shell provides more than 40% area ratio of phenol in GC–MS analysis. • The calorific value of palm kernel shell bio-oil is higher than other bio-oil

  6. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue.

    Science.gov (United States)

    Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2018-02-01

    A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage

    Science.gov (United States)

    Quintana, Gabriel; Gerbino, Esteban; Gómez-Zavaglia, Andrea

    2017-01-01

    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum. Considering that okara is an agro-waste obtained in large quantities, these results represent an

  8. Life cycle risks for human health: a comparison of petroleum versus bio-based production of five bulk organic chemicals.

    Science.gov (United States)

    Roes, Alexander L; Patel, Martin K

    2007-10-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses bio-based feedstocks instead of the fossil raw materials used in the petrochemical sector. The purpose of this study was to investigate whether the production of chemicals by means of white biotechnology has lower conventional risks than their production by petrochemical processes. Conventional risks are the risks of well-established processes, and not those related to genetically modified microorganisms and plants. Our approach combines classical risk assessment methods (largely based on toxicology), as developed by the life cycle assessment (LCA) community, with statistics on technological disasters, accidents, and work-related illnesses. Moreover, it covers the total process chain for both petrochemical and bio-based products from cradle to grave. The approach was applied to five products: the plastics polytrimethylene terephthalate (PTT), polyhydroxyalkanoates (PHA), polyethylene terephthalate (PET), polyethylene (PE), and ethanol. Our results show that the conventional risks related to the white biotechnology products studied are lower than those of the petrochemical products. However, considering the uncertainties with respect to the ranges of input data, the (incomplete) coverage of emissions by the environmental priority strategies (EPS) 2000 method, and the uncertainties of the assumptions made in this study (i.e., large to very large), the differences in results between bio-based and petrochemical products fall into the uncertainty range. Because of this, future research is necessary to decrease the uncertainties before we can conclude that the conventional risks of biotechnologically produced chemicals are lower than those of fossil-fuel-derived chemicals.

  9. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  10. High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge

    International Nuclear Information System (INIS)

    Wong, Y.M.; Juan, J.C.; Ting, Adeline; Wu, T.Y.

    2014-01-01

    Bio-hydrogen is a promising sustainable energy to replace fossil fuels. This study investigated bio-H 2 production from the inoculum of heat-pretreated landfill leachate sludge using glucose as model substrate. The seed sludge pretreated at 65 °C showed the highest amount of H 2 at the optimum condition of pH 6 and 37 °C. The maximum H 2 yield estimated by the modified Gompertz model was 6.43 mol H 2 /mol glucose. The high efficient of H 2 production is thermodynamically feasible with the Gibbs free energy of −34 kJ/mol. This study reveals that pretreated landfill leachate sludge has considerable potential for H 2 production. - Highlights: • Heat retreated landfill leachate sludge revealed high efficient H 2 production. • High efficient H 2 yield, 6.4 mol H 2 /mol glucose. • The synergisms between H 2 -producing bacteria may responsible for the high H 2 yield. • High H 2 yield is thermodynamically feasible with Gibbs free energy of −34 kJ/mol

  11. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    Science.gov (United States)

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation.

    Science.gov (United States)

    Chandrasekhar, K; Amulya, K; Mohan, S Venkata

    2015-11-01

    A novel solid state bio-electrofermentation system (SBES), which can function on the self-driven bioelectrogenic activity was designed and fabricated in the laboratory. SBES was operated with food waste as substrate and evaluated for simultaneous production of electrofuels viz., bioelectricity, biohydrogen (H2) and bioethanol. The system illustrated maximum open circuit voltage and power density of 443 mV and 162.4 mW/m(2), respectively on 9 th day of operation while higher H2 production rate (21.9 ml/h) was observed on 19th day of operation. SBES system also documented 4.85% w/v bioethanol production on 20th day of operation. The analysis of end products confirmed that H2 production could be generally attributed to a mixed acetate/butyrate-type of fermentation. Nevertheless, the presence of additional metabolites in SBES, including formate, lactate, propionate and ethanol, also suggested that other metabolic pathways were active during the process, lowering the conversion of substrate into H2. SBES also documented 72% substrate (COD) removal efficiency along with value added product generation. Continuous evolution of volatile fatty acids as intermediary metabolites resulted in pH drop and depicted its negative influence on SBES performance. Bio-electrocatalytic analysis was carried out to evaluate the redox catalytic capabilities of the biocatalyst. Experimental data illustrated that solid-state fermentation can be effectively integrated in SBES for the production of value added products with the possibility of simultaneous solid waste remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microbial bio-fuels: a solution to carbon emissions and energy crisis.

    Science.gov (United States)

    Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar

    2018-06-01

    Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.

  14. Recent advances in nanostructured biomimetic dry adhesives

    Directory of Open Access Journals (Sweden)

    Andras ePattantyus-Abraham

    2013-12-01

    Full Text Available The relatively large size of the gecko and its ability to climb a multitude of structures with ease has often been cited as the inspiration upon which the field of dry adhesives is based. Since 2010, there have been many advances in the field of dry adhesives with much of the new research focusing on developing nanoscale and hierarchical features in a concentrated effort to develop synthetic gecko-like dry adhesives which are strong, durable and self-cleaning. A brief overview of the geckos and the hairs which it uses to adhere to many different surfaces is provided before delving into the current methods and materials used to fabricate synthetic gecko hairs. A summary of the recently published literature on bio-inspired, nanostructured dry adhesives is presented with an emphasis being placed on fabrication techniques.

  15. Inventory of future power and heat production technologies. Partial report Energy combines; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Energikombinat

    Energy Technology Data Exchange (ETDEWEB)

    Thunman, Henrik; Lind, Fredrik; Johnsson, Filip (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2008-12-15

    This report treats different ways to produce various upgraded biofuels from lignocellulosic materials in so called polygeneration processes. Furthermore the different upgrading technologies are also investigated with respect to co-production of heat and power. The processes investigated are linked to production of - bio pellets (or lignin pellets), dried, grinded and compressed biomass (or lignin); - torrified bio pellets, dried, grinded, heat treated and compressed biomass; - bio-oils or pyrolytic oils, liquefied biomass with crude oil quality; - ethanol via hydrolysis (process where the biomass is divided into sugars and lignin) followed by fermentation; - methane via hydrolysis and fermentation; - methane via indirect gasification and methane via indirect or suspension gasification, - DME (dimethyl ether) via indirect or suspension gasification; - methanol via indirect or suspension gasification; - DME and methanol via methane produced via indirect gasification. Lignocellulosic biomasses are, for example, forest residues or biomass that can be cultivated on degraded lands. The result from this report shows that it is only the production of bio pellets that is fully commercially available today. For all the other polygeneration processes investigated the production of bio-oil and torrified bio pellets stands out from the other processes investigated, as it is the market for the product that holds back the introduction of the technology. For the other technologies one or several components are still not commercialized and the challenges for these technologies are described in the report. Summarizing the efficiencies for the different processes, the processes that produces biofuels for stationary applications, bio pellets, torrified bio pellets and bio-oil, show the highest efficiencies. Accounted for the co-generated power, efficiencies up to 90 % based on ingoing lower heating values of the dry substance fed to the process could be achieved. For the processes

  16. Bio-fuels - biohazard

    International Nuclear Information System (INIS)

    Slovak, K.

    2008-01-01

    Politicians have a clear explanation for growing commodity prices. It is all the fault of speculators. It is easy to point the finger at an imaginary enemy. It is more difficult and from the point of view of a political career suicidal to admit one's mistakes. And there are reasons for remorse. According to studies prepared by the OECD and the World Bank bio-fuels are to be blame for high food prices. The bio-fuel boom that increases the demand for agro-commodities has been created by politicians offering generous subsidies. And so farming products do not end up on the table, but in the fuel tanks of cars in the form of additives. And their only efficiency is that they make food more expensive. The first relevant indication that environmentalist tendencies in global politics have resulted in shortages and food price increases can be found in a confidential report prepared by the World Bank. Parts of the report were leaked to the media last month. According to this information growing bio-fuel production has resulted in a food price increase by 75%. The theory that this development was caused by speculators and Chinese and Indian demand received a serious blow. And the OECD report definitely contradicted the excuse used by the politicians. According to the report one of the main reasons for growing food prices are generously subsidized bio-fuels. Their share of the increase of demand for agro-commodities in 2005 -2007 was 60% according to the study. (author)

  17. Development of an oven drying protocol to improve biodiesel production for an indigenous chlorophycean microalga Scenedesmus sp.

    Science.gov (United States)

    Bagchi, Sourav Kumar; Rao, Pavuluri Srinivasa; Mallick, Nirupama

    2015-03-01

    Drying of wet algal biomass is a major bottleneck in viable commercial production of the microalgal biodiesel. In the present investigation, an oven drying protocol was standardized for drying of wet Scenedesmus biomass at 60, 80 and 100°C with initial sample thickness of 5.0, 7.5 and 10.0mm. The optimum drying temperature was found to be 80°C with a maximum lipid yield of 425.0±5.9mgg(-1) at 15h drying time for 5.0mm thick samples with 0.033kWh power consumption. Partial drying at 80°C up to 10% residual moisture content was efficient showing 93% lipid recovery with 8h drying and a power consumption of 0.017kWh. Scenedesmus biomass was also found to be rich in saturated and mono-unsaturated fatty acids. Thus, the drying protocol demonstrates its suitability to improve the downstream processing of biodiesel production by significantly lowering the power consumption and the drying time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    Science.gov (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  19. Determination of Extraction Process Conditions of Gambier Catechin (Uncaria Gambier Roxb) from Solok Bio Bio Lima Puluh Kota District – West Sumatera

    Science.gov (United States)

    Desni Rahman, Elly; Sari, Ellyta; Burmawi; Frizka; Endah

    2018-03-01

    Catechin content is the determinant key of quality in gambier trade. The required Catechin content of gambier extracts as a herbal medicinal ingridient is greater than 90%. Mostly, Local gambier that produced by community is not uniform and low quality, thus lowering the price in the export markets. The quality improvement of gambier can be done by extraction and purification processes. This study aims to determine the best extraction process of catechin from Gambier (Uncaria Roxb) which derived from Solok Bio Bio Lima Puluh Kota, West Sumatra. The research methodology includes pre purification: raw materials preparation, washing, filtration, extraction, drying and testing. Washing was done on 100 gr gambier with a variation of water at 500, 600, 700, and 800 ml, heating for an hour at a temperature of 70°C, screened, filtered, and allow to stand until a precipitate is formed, wash repeatedly, filtered, and dried. Further, extract with a solvent variation of : water, etyl acetate, heated at 70°C temperature for 1 hour, then filtered. Filtrate then thickened by using a Rotary evaporator, dried at 50°C temperature for 48 hours and analyzed. The results showed that the best conditions of the extraction process is by using a solvent etyl acetate, at a temperature of 70°C, grading 97.40% catechins.

  20. Quality of dried cauliflower according to the methods and drying parameters

    Directory of Open Access Journals (Sweden)

    Łapczyńska-Kordon Bogusława

    2018-01-01

    Full Text Available The quality of food products is a complex concept. It can be defined in many ways. The common element of most of these definitions is the condition of meeting the requirements of consumers. Quality determines product compliance with the requirements set by the normalized regulations. The paper attempts to determine the optimal method and parameters of cauliflower drying. In addition, a qualitative assessment of the obtained product was made. The results show that the method and parameters of drying significantly affect the quality of the dried cauliflower. Convection drying guarantees higher drought quality with respect to the color of the sample (higher brightness, taste and odor. Of the drying parameters accepted in the experiment, the most positive effect on the tested parameters was recorded using convection drying at a flow rate of 0.2 ms-1 and the least favorable for microwave drying 170 or 210 W.

  1. Effects of Bio solids Application on Pasture and Grape Vines in South-Eastern Australia

    International Nuclear Information System (INIS)

    Nash, D.; Butler, C.; Cody, J.; Warne, M.S.J.; McLaughlin, M.J.; Heemsbergen, D.; Broos, K.; McLaughlin, M.J.; Heemsbergen, D.; Broos, K.; Bell, M.; Barry, G.; Pritchard, D.; Penny, N.; Penny, N.

    2011-01-01

    Bio solids were applied to a pasture and a vineyard in south-eastern Australia. At both sites, soil Cd, Cu, and Zn concentrations linearly increased with bio solids application rates although not to the extent of exceeding soil quality guidelines. Bio solids marginally increased soil C and N concentrations at the pasture site but significantly increased P concentrations. With lower overall soil fertility at the vineyard, bio solids increased C, N, and P concentrations. At neither site did bio solids application affect soil microbial endpoints. Bio solids increased pasture production compared to the unfertilised control but had little effect on grape production or quality. Interestingly, over the 3-year trial, there was no difference in pasture production between the bio solids treated plots and plots receiving inorganic fertiliser. These results suggest that bio solids could be used as a fertiliser to stimulate pasture production and as a soil conditioner to improve vineyard soils in this region.

  2. Limits to the potential of bio-fuels and bio-sequestration of carbon

    International Nuclear Information System (INIS)

    Pearman, Graeme I.

    2013-01-01

    This document examines bio-physical limits of bio-fuels and bio-sequestration of carbon by examining available solar radiation and observed efficiencies with which natural ecosystems and agricultural systems convert that energy to biomass. It compares these energy/carbon exchanges with national levels of energy use and carbon emissions for Australia, Brazil, China, Japan, Republic of Korea, New Zealand, Papua New Guinea, Singapore, Sweden, United Kingdom and United States. Globally primary energy consumption (related carbon emissions) is currently equivalent to ∼0.06% of the incident solar energy, and 43% of the energy (carbon) captured by photosynthesis. The nations fall into three categories. Those with primary energy consumption that is: 1–10% (Japan, Korea and Singapore); ∼0.1% (China, UK and the US) and; 0.1–0.01% (Australia, Brazil, Papua New Guinea, New Zealand and Sweden) of incident solar radiation. The percentage of energy captured in biomass follows this pattern, but generally lower by ∼3 orders of magnitude. The energy content of traded wheat, corn and rice represents conversion efficiencies of solar radiation of 0.08–0.17% and for sugar close to 1%, ignoring energy use in production and conversion of biomass to fuels. The study implies that bio-fuels or bio-sequestration can only be a small part of an inclusive portfolio of actions towards a low carbon future and minimised net emissions of carbon to the atmosphere. - Highlights: • Global energy consumption is ∼0.06% of solar; 43% of net primary production. • 11 nations studied fall into 3 groups: consumption/solar=1–10%; ∼0.1%; 0.1–0.01%. • % of energy captured in biomass is lower by ∼3 orders of magnitude. • Crops and natural ecosystems capture 0.1–0.3% and sugar 1% of solar energy. • Significant bio-energy/carbon sequestration via biomass is unrealistic

  3. Engineering BioBrick vectors from BioBrick parts

    Directory of Open Access Journals (Sweden)

    Knight Thomas F

    2008-04-01

    Full Text Available Abstract Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have been contributed to, and are available from, the Registry of Standard Biological Parts. Results Here we extended the same advantages of BioBrick standard biological parts to the plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick parts that encode many useful vector functions. We combined the new parts to make a BioBrick base vector that facilitates BioBrick vector construction. We demonstrated the utility of the process by constructing seven new BioBrick vectors. We also successfully used the resulting vectors to assemble and propagate other BioBrick standard biological parts. Conclusion We extended the principles of part reuse and standardization to BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced from all existing and newly designed BioBrick parts. We invite the synthetic biology community to (1 use the process to make and share new BioBrick vectors; (2 expand the current collection of BioBrick vector parts; and (3 characterize and improve the available collection of BioBrick vector parts.

  4. Biotechnological application of sustainable biogas production through dry anaerobic digestion of Napier grass.

    Science.gov (United States)

    Dussadee, Natthawud; Ramaraj, Rameshprabu; Cheunbarn, Tapana

    2017-05-01

    Napier grass (Pennisetum purpureum), represents an interesting substrate for biogas production. The research project evaluated biogas potential production from dry anaerobic digestion of Napier grass using batch experiment. To enhance the biogas production from ensiled Napier grass, thermal and alkaline pre-treatments were performed in batch mode. Alkali hydrolysis of Napier grass was performed prior to batch dry anaerobic digestion at three different mild concentrations of sodium hydroxide (NaOH). The study results confirmed that NaOH pretreated sample produced high yield of biogas than untreated (raw) and hot water pretreated samples. Napier grass was used as the mono-substrate. The biogas composition of carbon dioxide (30.10%), methane (63.50%) and 5 ppm of H 2 S was estimated from the biogas. Therefore, fast-growing, high-yielding and organic matter-enriched of Napier grass was promising energy crop for biogas production.

  5. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  6. Bio fertilizer development incorporating nuclear technologies - Challenges and potentials to the industry

    International Nuclear Information System (INIS)

    Khairuddin Abdul Rahim; Phua, Choo Kwai Hoe; Ahmad Nazrul Abdul Wahid; Pauline, Liew Woan Ying; Ahamad Sahali Mardi; Mat Rasol Awang

    2010-01-01

    The development of bio fertilizer products, which involve incorporation of known microorganisms with desired functions, requires sterilisation of the carriers or substrates. Conventional sterilisation method using heat treatment or autoclaving has its limitations, especially in mass production of bio fertilizers. The Forum for Nuclear Cooperation in Asia (FNCA) through its Bio fertilizer Project Group encourages the use of gamma irradiation for carrier sterilisation, capitalising on the quality of the final products following proper sterilisation. Gamma irradiation at doses of 30 to 50 kGy was found suitable for sterilisation, depending on the carrier materials. More deliberation is needed for bio fertilizer companies far away from the gamma irradiation facilities to utilise gamma irradiation services for their bio fertilizer carriers, on aspects of cost of transportation, sterilisation, storage and convenience of use. Evaluation of bio fertilizer products on crops in the field need to be conducted to assess their efficacy. Several isotope-aided trials have been conducted to evaluate nutrient use efficiency of several formulations of Nuclear Malaysia bio fertilizer products, involving vegetable and herbal crops, with varying results. The paper highlights trials in Nuclear Malaysia and Cameron Highlands. Presently, product evaluation is limited to use of the stable isotope, nitrogen-15, in particular when considering radiation safety in field trials. Having joint trials involving potential end users is still a challenge. (author)

  7. Cost effective dry anaerobic digestion in textile bioreactors: Experimental and economic evaluation.

    Science.gov (United States)

    Patinvoh, Regina J; Osadolor, Osagie A; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-12-01

    The aim of this work was to study dry anaerobic digestion (dry-AD) of manure bedded with straw using textile-based bioreactor in repeated batches. The 90-L reactor filled with the feedstocks (22-30% total solid) and inoculum without any further treatment, while the biogas produced were collected and analyzed. The digestate residue was also analyzed to check its suitability as bio-fertilizer. Methane yield after acclimatization increased from 183 to 290NmlCH 4 /gVS, degradation time decreased from 136 to 92days and the digestate composition point to suitable bio-fertilizer. The results then used to carry out economical evaluation, which shows dry-AD in textile bioreactors is a profitable method of handling the waste with maximum payback period of 5years, net present value from $7,000 to $9,800,000 (small to large bioreactors) with internal rate of return from 56.6 to 19.3%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells; Des aspects positifs issus des recherches en biocorrosion: de la production d'hydrogene aux biopiles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Silva Munoz, L. de

    2007-12-15

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  9. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    Directory of Open Access Journals (Sweden)

    Adam Figiel

    2016-12-01

    Full Text Available The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  10. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    Science.gov (United States)

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  11. Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Wan Daud, W.M.A.; Sahu, J.N.

    2011-01-01

    In this work palm shell waste was pyrolyzed to produces bio-oil. The effects of several parameters on the pyrolysis efficiency were tested to identify the optimal bio-oil production conditions. The tested parameters include temperature, N 2 flow rate, feed-stock particle size, and reaction time. The experiments were conducted using a fix-bed reactor. The efficient response surface methodology (RSM), with a central composite design (CCD), were used for modeling and optimization the process parameters. The results showed that the second-order polynomial equation explains adequately the non-linear nature of the modeled response. An R 2 value of 0.9337 indicates a sufficient adjustment of the model with the experimental data. The optimal conditions found to be at the temperature of 500 o C, N 2 flow rate of 2 L/min, particle size of 2 mm and reaction time of 60 min and yield of bio-oil was approximately obtained 46.4 wt %. In addition, Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) were used to characterize the gained bio-oil under the optimum condition. -- Highlights: → The RSM, with a CCD, was used for modeling and optimization for bio-oil synthesis. → The obtained model explains adequately the non-linear nature. → An R 2 value of 0.9337 ensures a sufficient adjustment of the model. → It explains the importance of the experimental factors, their interactions.

  12. Bio-oil based biorefinery strategy for the production of succinic acid

    DEFF Research Database (Denmark)

    Wang, Caixia; Thygesen, Anders; Liu, Yilan

    2013-01-01

    Background: Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic...

  13. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    Science.gov (United States)

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  14. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2} g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2}/g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge

  15. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/ g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2}/ g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2} / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/ g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from

  16. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    International Nuclear Information System (INIS)

    Shireen Meher Kotay; Debabrata Das

    2006-01-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H 2 production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H 2 / g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H 2 /g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H 2 / g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H 2 g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H 2 /g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H 2 /g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge. (authors)

  17. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    International Nuclear Information System (INIS)

    Shireen Meher Kotay; Debabrata Das

    2006-01-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H 2 production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H 2 / g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H 2 / g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H 2 / g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H 2 / g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H 2 / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H 2 / g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge. (authors)

  18. Research of rheological characteristics and determination of rational parameters of drying process of activated ferment for bakery products

    Directory of Open Access Journals (Sweden)

    D. M. Borodulin

    2017-01-01

    Full Text Available The work is aimed at investigating the rheological properties of the ferment in the process of maturation and storage with subsequent determination of the rational parameters of its drying in various drying plants with the analysing of microflora of dried samples. We studied the rheological properties of the ferment using the strain of the lactobacilli L. Acidothilus 146A (activator and without it, which showed that the ferment for the production of special purpose bakery products to non-Newtonian or anomalously viscous liquids described by the Osthald-de-Vale rheological equation. We found that the introduction the strain of the lactobacilli L. Acidothilus 146A helps to reduce the viscosity during maturation by almost 3 times, and when storing the samples – in 2 times, this is indicated by the value of the consistency coefficient. The activator reduces the influence of temperature, so the structure of the ferment becomes more stable. It is easier to further process in this state. Consequently, the energy consumption for production is significantly reduced and the increases expiration date after the strain of the lactobacilli L. Acidothilus 146A is added to the starter for the production of special purpose bakery products. We detected kinetic patterns of drying of the activated ferment in thermoradiation, convective and sublimation dryers under different temperature operating conditions. We have determined the rational parameters of drying the ferment for the production of bakery products of specialized purpose. We analyzed the useful microflora of the dried samples. It has been revealed that microorganisms undergoing convective and sublimation (freeze drying are subjected to the smallest destructive effect. We found that microorganisms are less destroyed by convective and freeze drying. The microbial titer in these samples is at least 1(105CFU/g. While drying by the method of infrared irradiation, this titer is lower by a factor of ten

  19. CHARACTERIZATION OF BIO-OIL FROM PALM KERNEL SHELL PYROLYSIS

    Directory of Open Access Journals (Sweden)

    R. Ahmad

    2014-12-01

    Full Text Available Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212–300 µm, 300–600 µm, 600µm–1.18 mm and 1.18–2.36 mm under a heating rate of 50 °C min-1 were investigated. The maximum bio-oil yield was 38.40% at 450 °C with a heating rate of 50 °C min-1 and a nitrogen sweep gas flow rate of 50 ml min-1. The bio-oil products were analysed by Fourier transform infra-red spectroscopy (FTIR and gas chromatography–mass spectroscopy (GCMS. The FTIR analysis showed that the bio-oil was dominated by oxygenated species. The phenol, phenol, 2-methoxy- and furfural that were identified by GCMS analysis are highly suitable for extraction from the bio-oil as value-added chemicals. The highly oxygenated oils need to be upgraded in order to be used in other applications such as transportation fuels.

  20. Cardboard proportions and total solids contents as driving factors in dry co-fermentation of food waste.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Bernet, Nicolas; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-01-01

    This study evaluated the influence of the co-substrate proportions (0-60% of cardboard in dry basis) and the initial total solid contents (20-40%) on the batch fermentation performance. Maximum hydrogen yields were obtained when mono-fermenting food waste at high solids contents (89mlH 2 ·gVS -1 ). The hydrogen yields were lower when increasing the proportions of cardboard. The lower hydrogen yields at higher proportions of cardboard were translated into higher yields of caproic acid (up to 70.1gCOD·kgCOD bio -1 ), produced by consumption of acetic acid and hydrogen. The highest substrate conversions were achieved at low proportions of cardboard, indicating a stabilization effect due to higher buffering capacities in co-fermentation. Clostridiales were predominant in all operational conditions. This study opens up new possibilities for using the cardboard proportions for controlling the production of high added-value products in dry co-fermentation of food waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Theoretical and practical aspects of aroma retention in spray drying and freeze drying

    NARCIS (Netherlands)

    Coumans, W.J.; Kerkhof, P.J.A.M.; Bruin, S.

    1994-01-01

    A review with 75 refs. on aroma loss in slab drying, spray drying and freeze drying. For many food products the presence of volatile aroma components is a prime quality feature. Upon drying part of these components may be lost, leading to unbalanced flavor patterns in the reconstituted product. The

  2. Pilot study of Bio-jet A-1 fuel production for Stockholm-Arlanda Airport; Foerstudie foer biobaserat flygbraensle foer Stockholm-Arlanda Flygplats

    Energy Technology Data Exchange (ETDEWEB)

    Ekbom, Tomas; Hjerpe, Carl; Hagstroem, Martin; Hermann, Fredrik

    2009-11-15

    The air traffic industry faces big changes in the near future, one being how to reduce their share of the CO{sub 2}-emissions. Therefore LFV set the framework to investigate the pre-conditions for a biorefinery plant in conjunction with Arlanda Airport. The biorefinery is based on advanced gasification technology and Fischer-Tropsch synthesis to a bio-jet fuel product. Locations at Brista and Igelsta were studied for two different process plant configurations, with each 50 kton bio-jet fuel annual capacity, or 290 and 610 MW{sub th} biomass input, respectively. The biomass-to-fuels efficiency was 46 % and total net efficiency was 79 %. The capital investment was calculated as 5.1 and 7.4 billion SEK, and production costs of 8300 SEK (812 EUR/1183 USD) and 5000 SEK (490 EUR/714 USD) per cubic meter bio-jet, respectively, whereas the Jet A-1 fuel today costs some 6000 SEK, at crude oil price of USD 67 per barrel

  3. Production of biodiesel from Parinari polyandra B. seed oil using bio ...

    African Journals Online (AJOL)

    Two agricultural residues, cocoa pod ash (CPA) and rice husk ash (RHA), were investigated as bio-based catalysts for the transesterification of Parinari polyandra seeds oil and the results obtained using these bio-based catalysts were compared with potassium hydroxide which is a conventional catalyst. Oil was extracted ...

  4. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    OpenAIRE

    Mehmet Koç; Figen Kaymak-Ertekin

    2016-01-01

    Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity) and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transiti...

  5. Production of dried shrimp mixed with turmeric and salt by Spouted Bed technique enter the rectangular chamber.

    Science.gov (United States)

    Thanthong, P.; Mustafa, Y.; Ngamrungroj, D.

    2017-09-01

    Today, dried shrimp in the market were refused food colour and drying until shrimp are colourful and tasty. Meanwhile, Community groups, women’s health trying to produce food products come from herbs. As an alternative to consumers. The production process is also a traditional way to dry. In order to extend the shelf life longer. Sometimes, potential risks, both in quality and quantity of products. As a result, consumers are enormous. Thus, this research aims to study the possibility to produce shrimp dried mixed with turmeric and salt. Then dried shrimp mixed with turmeric and salt to keep up the quality criteria of the Food and Drug Administration-FDA It can reduce the risk of the consumer and can keep up in a kitchen Thailand. When buying shrimp from the fisherman’s boat Will be made clear, clean impurities and shaking the sand to dry. Prepare a mixture of turmeric and salt. The shrimp were dipped into a beef with stirrer for 3 minutes. And scoop up centrifugal shrimp with dried. Measurement of initial moisture content averaging 78%wb. Then drying technique Spouted enter the rectangular chamber a continuous manner. Until average moisture content to 17%wb. The air temperature in the drying chamber at 180 °C and hot air speed 4.5 m/s, a state heat transfer Mass and moisture within the shrimp. In chamber when drying, the shrimp have moved freely behaviour can spit water out faster does not burn. Shaving legs of shrimp shell fragments lightweight is sorting out the top of drying chamber. Private shrimp were dried out to the front of the quad drying chamber. Power consumption 27.5 MJ/kg, divided into electrical energy 12.3 MJ/kg and thermal energy is 15.2 MJ/kg. The hot air comes from burning LPG gas burner with dual automatic. And can adjustable to room temperature drying characteristics modulation setting.

  6. Research advances in dry anaerobic digestion process of solid ...

    African Journals Online (AJOL)

    The dry anaerobic digestion process is an innovative waste-recycling method to treat high-solidcontent bio-wastes. This can be done without dilution with water by microbial consortia in an oxygenfree environment to recover potential renewable energy and nutrient-rich fertilizer for sustainable solid waste management.

  7. [Preface for special issue on bio-based materials (2016)].

    Science.gov (United States)

    Weng, Yunxuan

    2016-06-25

    Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.

  8. Bio-fuels are not so green

    International Nuclear Information System (INIS)

    Lemarchand, F.

    2007-01-01

    Today there is an unrelenting trend for bio-fuels but some scientists question their utility. Some surveys show that the environmental balance sheet for bio-fuels is strongly positive for instance it is assessed that the production of 1 MJ of ethanol from beet roots of wheat requires only 0.49 MJ of fossil energy, interesting figure when compared to the 1.14 MJ of fossil energy needed to produce 1 MJ of gasoline. Other studies are less optimistic, all depends strongly on the basic data used and on the approach followed. Some scientists wonder whether all the pollutants generated in the transformation processes are well taken into account. In fact the environment benefit of the first generation of bio-fuels is mild because scientists do not know how to use efficiently the wood-cellulose by-products of plants. There is a notably exception to that, it is the sugar cane in Brazil, this plant has a good energy conversion rate and its by-products are completely and efficiently used in industry. A way to valorize cellulose by-products is to transform them in ethanol and hydrogen through the use of mushroom enzymes. (A.C.)

  9. Manufacturing of curd products of increased biological value for the elderly from dried components.

    Science.gov (United States)

    Zabodalova, Ludmila A; Belozerova, Maria S; Evstigneeva, Tatiana N

    2018-01-01

    In recent years, the number of elderly people has increased, and the diseases that arise in old age are associated, amongst other factors, with malnutrition. In the elderly, the need for primary nutrients and energy changes, so the development of food products intended for this particular group of people is becom- ing increasingly important. The purpose of this research is to work out the composition of and technology for producing low-fat curd products from raw milk and vegetable components. The developed products can be used for their gerodietetic properties, because nutritional and energy needs in the elderly were taken into account when designing the product. The curd product was manufactured from skimmed dried milk (SDM), soy isolate protein (SIP) and spelt grain. Optimal conditions for the recombination of SIP were determined. The influence of mass fraction of SIP on the properties of the clot and the end product was studied. The degree of dispersion of the grain component was determined, from the organoleptic evaluation of samples of the mixture, and the optimum method of addition was chosen. The method of adding cooked spelt into the clot after pressing was chosen. Harrington’s generalized desirability function was used for the calculation of the optimum mass frac- tion of the grain component in the end product. The formulation and technology for a curd product based on dry ingredients were determined. The amino acid composition and content of essential components in the developed product were determined, and the biological and nutritional value were calculated. The use of dry ingredients for the production of a curd product makes it possible to manufac- ture the product in the absence of raw milk. The formulation of the product is designed taking into account the needs of the body in old age. The incorporation of spelt increases the biological value of the curd product to 81.5%.

  10. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  11. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Directory of Open Access Journals (Sweden)

    Trevor James Morgan

    Full Text Available The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C and four residence times (between ~1.2 and 12 s. The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals on pyrolysis products is: 1 to increase the dry bio-oil yield, 2 to decrease the amount of undetected material, 3 to produce a slight increase in CO yield or no change, 4 to slightly decrease CO2 yield or no change, and 5 to produce a more stable bio-oil (less aging. Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  12. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  14. Continuous dry fermentation of swine manure for biogas production.

    Science.gov (United States)

    Chen, Chuang; Zheng, Dan; Liu, Gang-Jin; Deng, Liang-Wei; Long, Yan; Fan, Zhan-Hui

    2015-04-01

    A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644L · (Ld)(-1) and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g(-)(1)VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L(-1). Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L(-1). The maximal volumetric biogas production rate of 2.34 L ·(Ld)(-1) and biogas yield of 0.649 L g(-1)VS were obtained with TS concentration of 25% at 25°C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s(-1) when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Agrice 2004. Activity report - from bio-resources to industry

    International Nuclear Information System (INIS)

    2005-01-01

    It has been ten years since AGRICE was founded to support technological research in the field of bio-products. Even if bio-products are indeed a commercial reality, and growing in diversity, they are still marginal in the marketplace. However, the amplification of the greenhouse effect, our increasing energy dependence, the inexorable rise in oil prices, international competition and the emergence of a genuine political awareness are all factors that converge in favour of bio-products, offering a promising future. Of course, the development of bio-products is dependent on a number of conditions: biomass resources, technological advances, mobilisation of actors through dynamic research programmes (conversion of lignocellulosic biomass for alternative fuels or hydrogen, bio-technology applied to chemicals), new agro-industrial supply chains, financial instruments to bridge the cost gap with fossil fuels, a national strategy supported by a public authority dedicated to non-food uses. In the immediate future, the recent decision to open up the biofuels market via implementation of the European biofuels directive (5.75% of the market in 2010) provides an opportunity to lay the groundwork for a veritable industry of plant-based products, opening the way to the bio-refineries of the future. There is considerable potential for the development of bio-products in France. An additional 25 to 30 million tonnes-oil-equivalent (toe) of agricultural and forestry biomass could be processed into energy and industrial bio-products in France. Accordingly we can set our sights on an overall objective of substituting plant feedstocks for petroleum used in fuels and chemicals, on the order of 10% in 2020, and 20 to 30% by 2030-2050. To achieve these goals many technological advances will be necessary, with constant attention to the requirements of sustainable development. In this respect AGRICE is an invaluable tool for guiding, catalysing and supporting research efforts in these fields

  16. Design and optimization of a fixed - bed reactor for hydrogen production via bio-ethanol steam reforming

    International Nuclear Information System (INIS)

    Maria A Goula; Olga A Bereketidou; Costas G Economopoulos; Olga A Bereketidou; Costas G Economopoulos

    2006-01-01

    Global climate changes caused by CO 2 emissions are currently debated around the world. Renewable sources of energy are being sought as alternatives to replace fossil fuels. Hydrogen is theoretically the best fuel, environmentally friendly and its combustion reaction leads only to the production of water. Bio-ethanol has been proven to be effective in the production of hydrogen via steam reforming reaction. In this research the steam reforming reaction of bio-ethanol is studied at low temperatures over 15,3 % Ni/La 2 O 3 catalyst. The reaction and kinetic analysis takes place in a fixed - bed reactor in 130 - 250 C in atmospheric pressure. This study lays emphasis on the design and the optimization of the fixed - bed reactor, including the total volume of the reactor, the number and length of the tubes and the degree of ethanol conversion. Finally, it is represented an approach of the total cost of the reactor, according to the design characteristics and the materials that can be used for its construction. (authors)

  17. Bio-fuels of the first generation

    International Nuclear Information System (INIS)

    2012-04-01

    After having briefly recalled the objective of use of renewable energies and the role bio-fuels may play, this publication briefly presents various bio-fuels: bio-diesel (from colza, soybean or sunflower oil), and ethanol (from beet, sugar cane, wheat or corn). Some key data regarding bio-fuel production and use in France are briefly commented. The publication outlines strengths (a positive energy assessment, a decreased dependency on imported fossil fuels and a higher supply safety, a diversification of agriculture revenues and prospects, a reduction of greenhouse gas emissions) and weaknesses (uncertainty regarding the evolution of soil use, an environmental impact related to farming methods) of this sector. Actions undertaken by the ADEME in collaboration with other agencies and institutions are briefly overviewed

  18. Bio-methane. Challenges and technical solutions

    International Nuclear Information System (INIS)

    Blaisonneau, Laurent; Carlu, Elieta; Feuillette, Vincent

    2012-06-01

    Among the new energy sectors in development, biogas has many benefits: several valorization possibilities (bio-methane, electricity and heat), continuous production, easy storage. In Europe, and particularly in France, the bio-methane market will be in the next years a driver for the improvement of the economic, environmental and social performance of the actors of the value chain of biogas. ENEA releases a report on the current state of the bio-methane market in Europe. This publication mainly describes: An outlook of the market evolution and the corresponding stakes for the actors of this sector, the technical and economic characteristics, maturity level and specificities of each biogas upgrading process, An analysis of the French regulatory framework for bio-methane injection into the grid

  19. Bio-energy in Europe: changing technology choices

    International Nuclear Information System (INIS)

    Faaij, Andre P.C.

    2006-01-01

    Bio-energy is seen as one of the key options to mitigate greenhouse gas emissions and substitute fossil fuels. This is certainly evident in Europe, where a kaleidoscope of activities and programs was and is executed for developing and stimulating bio-energy. Over the past 10-15 years in the European Union, heat and electricity production from biomass increased with some 2% and 9% per year, respectively, between 1990 and 2000 and biofuel production increased about eight-fold in the same period. Biomass contributed some two-thirds of the total renewable energy production in the European Union (EU) (2000 PJ) or 4% of the total energy supply in 1999. Given the targets for heat, power and biofuels, this contribution may rise to some 10% (6000 PJ) in 2010. Over time, the scale at which bio-energy is being used has increased considerably. This is true for electricity and combined heat and power plants, and how biomass markets are developing from purely regional to international markets, with increasing cross-border trade-flows. So far, national policy programs proved to be of vital importance for the success of the development of bio-energy, which led to very specific technological choices in various countries. For the future, a supra-national approach is desired: comprehensive research development, demonstration and deployment trajectories for key options as biomass integrated gasification/combined cycle and advanced biofuel concepts, develop an international biomass market allowing for international trade and an integral policy approach for bio-energy incorporating energy, agricultural, forestry, waste and industrial policies. The Common Agricultural Policy of the (extended) EU should fully incorporate bio-energy and perennial crops in particular

  20. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products

    DEFF Research Database (Denmark)

    Andrade, Maria J.; Thorsen, Line; Rodríguez, Alicia

    2014-01-01

    mould growth and OTA accumulation in dry-cured meat products. The inoculation of D. hansenii should be made at the beginning of processing (at the end of post salting) when the a(w) of the product is still high (near 0.94). This action in addition to application of appropriate hygienic actions......The ability of the osmotolerant yeast Debaryomyces hansenii to inhibit Penicillium nordicum, the most common ochratoxigenic mould encountered in dry-cured meat products, was evaluated. The antagonistic effect of ten D. hansenii strains isolated from dry-cured ham was screened in vitro using malt...... extract media and meat extract peptone media with the water activity (a(w)) adjusted to 0.97 and 0.90. A significant inhibition of the two tested P. nordicum strains by D. hansenii cells and cell-free supernatants was observed. At 0.97 a(w), increasing D. hansenii inoculum concentrations significantly...